btrfs: ->submit_bio_hook error push-up
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22
23 static struct kmem_cache *extent_state_cache;
24 static struct kmem_cache *extent_buffer_cache;
25
26 static LIST_HEAD(buffers);
27 static LIST_HEAD(states);
28
29 #define LEAK_DEBUG 0
30 #if LEAK_DEBUG
31 static DEFINE_SPINLOCK(leak_lock);
32 #endif
33
34 #define BUFFER_LRU_MAX 64
35
36 struct tree_entry {
37         u64 start;
38         u64 end;
39         struct rb_node rb_node;
40 };
41
42 struct extent_page_data {
43         struct bio *bio;
44         struct extent_io_tree *tree;
45         get_extent_t *get_extent;
46
47         /* tells writepage not to lock the state bits for this range
48          * it still does the unlocking
49          */
50         unsigned int extent_locked:1;
51
52         /* tells the submit_bio code to use a WRITE_SYNC */
53         unsigned int sync_io:1;
54 };
55
56 static inline struct btrfs_fs_info *
57 tree_fs_info(struct extent_io_tree *tree)
58 {
59         return btrfs_sb(tree->mapping->host->i_sb);
60 }
61
62 int __init extent_io_init(void)
63 {
64         extent_state_cache = kmem_cache_create("extent_state",
65                         sizeof(struct extent_state), 0,
66                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
67         if (!extent_state_cache)
68                 return -ENOMEM;
69
70         extent_buffer_cache = kmem_cache_create("extent_buffers",
71                         sizeof(struct extent_buffer), 0,
72                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
73         if (!extent_buffer_cache)
74                 goto free_state_cache;
75         return 0;
76
77 free_state_cache:
78         kmem_cache_destroy(extent_state_cache);
79         return -ENOMEM;
80 }
81
82 void extent_io_exit(void)
83 {
84         struct extent_state *state;
85         struct extent_buffer *eb;
86
87         while (!list_empty(&states)) {
88                 state = list_entry(states.next, struct extent_state, leak_list);
89                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
90                        "state %lu in tree %p refs %d\n",
91                        (unsigned long long)state->start,
92                        (unsigned long long)state->end,
93                        state->state, state->tree, atomic_read(&state->refs));
94                 list_del(&state->leak_list);
95                 kmem_cache_free(extent_state_cache, state);
96
97         }
98
99         while (!list_empty(&buffers)) {
100                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
101                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
102                        "refs %d\n", (unsigned long long)eb->start,
103                        eb->len, atomic_read(&eb->refs));
104                 list_del(&eb->leak_list);
105                 kmem_cache_free(extent_buffer_cache, eb);
106         }
107         if (extent_state_cache)
108                 kmem_cache_destroy(extent_state_cache);
109         if (extent_buffer_cache)
110                 kmem_cache_destroy(extent_buffer_cache);
111 }
112
113 void extent_io_tree_init(struct extent_io_tree *tree,
114                          struct address_space *mapping)
115 {
116         tree->state = RB_ROOT;
117         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
118         tree->ops = NULL;
119         tree->dirty_bytes = 0;
120         spin_lock_init(&tree->lock);
121         spin_lock_init(&tree->buffer_lock);
122         tree->mapping = mapping;
123 }
124
125 static struct extent_state *alloc_extent_state(gfp_t mask)
126 {
127         struct extent_state *state;
128 #if LEAK_DEBUG
129         unsigned long flags;
130 #endif
131
132         state = kmem_cache_alloc(extent_state_cache, mask);
133         if (!state)
134                 return state;
135         state->state = 0;
136         state->private = 0;
137         state->tree = NULL;
138 #if LEAK_DEBUG
139         spin_lock_irqsave(&leak_lock, flags);
140         list_add(&state->leak_list, &states);
141         spin_unlock_irqrestore(&leak_lock, flags);
142 #endif
143         atomic_set(&state->refs, 1);
144         init_waitqueue_head(&state->wq);
145         return state;
146 }
147
148 void free_extent_state(struct extent_state *state)
149 {
150         if (!state)
151                 return;
152         if (atomic_dec_and_test(&state->refs)) {
153 #if LEAK_DEBUG
154                 unsigned long flags;
155 #endif
156                 WARN_ON(state->tree);
157 #if LEAK_DEBUG
158                 spin_lock_irqsave(&leak_lock, flags);
159                 list_del(&state->leak_list);
160                 spin_unlock_irqrestore(&leak_lock, flags);
161 #endif
162                 kmem_cache_free(extent_state_cache, state);
163         }
164 }
165
166 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
167                                    struct rb_node *node)
168 {
169         struct rb_node **p = &root->rb_node;
170         struct rb_node *parent = NULL;
171         struct tree_entry *entry;
172
173         while (*p) {
174                 parent = *p;
175                 entry = rb_entry(parent, struct tree_entry, rb_node);
176
177                 if (offset < entry->start)
178                         p = &(*p)->rb_left;
179                 else if (offset > entry->end)
180                         p = &(*p)->rb_right;
181                 else
182                         return parent;
183         }
184
185         entry = rb_entry(node, struct tree_entry, rb_node);
186         rb_link_node(node, parent, p);
187         rb_insert_color(node, root);
188         return NULL;
189 }
190
191 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
192                                      struct rb_node **prev_ret,
193                                      struct rb_node **next_ret)
194 {
195         struct rb_root *root = &tree->state;
196         struct rb_node *n = root->rb_node;
197         struct rb_node *prev = NULL;
198         struct rb_node *orig_prev = NULL;
199         struct tree_entry *entry;
200         struct tree_entry *prev_entry = NULL;
201
202         while (n) {
203                 entry = rb_entry(n, struct tree_entry, rb_node);
204                 prev = n;
205                 prev_entry = entry;
206
207                 if (offset < entry->start)
208                         n = n->rb_left;
209                 else if (offset > entry->end)
210                         n = n->rb_right;
211                 else
212                         return n;
213         }
214
215         if (prev_ret) {
216                 orig_prev = prev;
217                 while (prev && offset > prev_entry->end) {
218                         prev = rb_next(prev);
219                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220                 }
221                 *prev_ret = prev;
222                 prev = orig_prev;
223         }
224
225         if (next_ret) {
226                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
227                 while (prev && offset < prev_entry->start) {
228                         prev = rb_prev(prev);
229                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
230                 }
231                 *next_ret = prev;
232         }
233         return NULL;
234 }
235
236 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
237                                           u64 offset)
238 {
239         struct rb_node *prev = NULL;
240         struct rb_node *ret;
241
242         ret = __etree_search(tree, offset, &prev, NULL);
243         if (!ret)
244                 return prev;
245         return ret;
246 }
247
248 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
249                      struct extent_state *other)
250 {
251         if (tree->ops && tree->ops->merge_extent_hook)
252                 tree->ops->merge_extent_hook(tree->mapping->host, new,
253                                              other);
254 }
255
256 /*
257  * utility function to look for merge candidates inside a given range.
258  * Any extents with matching state are merged together into a single
259  * extent in the tree.  Extents with EXTENT_IO in their state field
260  * are not merged because the end_io handlers need to be able to do
261  * operations on them without sleeping (or doing allocations/splits).
262  *
263  * This should be called with the tree lock held.
264  */
265 static void merge_state(struct extent_io_tree *tree,
266                         struct extent_state *state)
267 {
268         struct extent_state *other;
269         struct rb_node *other_node;
270
271         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
272                 return;
273
274         other_node = rb_prev(&state->rb_node);
275         if (other_node) {
276                 other = rb_entry(other_node, struct extent_state, rb_node);
277                 if (other->end == state->start - 1 &&
278                     other->state == state->state) {
279                         merge_cb(tree, state, other);
280                         state->start = other->start;
281                         other->tree = NULL;
282                         rb_erase(&other->rb_node, &tree->state);
283                         free_extent_state(other);
284                 }
285         }
286         other_node = rb_next(&state->rb_node);
287         if (other_node) {
288                 other = rb_entry(other_node, struct extent_state, rb_node);
289                 if (other->start == state->end + 1 &&
290                     other->state == state->state) {
291                         merge_cb(tree, state, other);
292                         state->end = other->end;
293                         other->tree = NULL;
294                         rb_erase(&other->rb_node, &tree->state);
295                         free_extent_state(other);
296                 }
297         }
298 }
299
300 static void set_state_cb(struct extent_io_tree *tree,
301                          struct extent_state *state, int *bits)
302 {
303         if (tree->ops && tree->ops->set_bit_hook)
304                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
305 }
306
307 static void clear_state_cb(struct extent_io_tree *tree,
308                            struct extent_state *state, int *bits)
309 {
310         if (tree->ops && tree->ops->clear_bit_hook)
311                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
312 }
313
314 static void set_state_bits(struct extent_io_tree *tree,
315                            struct extent_state *state, int *bits);
316
317 /*
318  * insert an extent_state struct into the tree.  'bits' are set on the
319  * struct before it is inserted.
320  *
321  * This may return -EEXIST if the extent is already there, in which case the
322  * state struct is freed.
323  *
324  * The tree lock is not taken internally.  This is a utility function and
325  * probably isn't what you want to call (see set/clear_extent_bit).
326  */
327 static int insert_state(struct extent_io_tree *tree,
328                         struct extent_state *state, u64 start, u64 end,
329                         int *bits)
330 {
331         struct rb_node *node;
332
333         if (end < start) {
334                 printk(KERN_ERR "btrfs end < start %llu %llu\n",
335                        (unsigned long long)end,
336                        (unsigned long long)start);
337                 WARN_ON(1);
338         }
339         state->start = start;
340         state->end = end;
341
342         set_state_bits(tree, state, bits);
343
344         node = tree_insert(&tree->state, end, &state->rb_node);
345         if (node) {
346                 struct extent_state *found;
347                 found = rb_entry(node, struct extent_state, rb_node);
348                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
349                        "%llu %llu\n", (unsigned long long)found->start,
350                        (unsigned long long)found->end,
351                        (unsigned long long)start, (unsigned long long)end);
352                 return -EEXIST;
353         }
354         state->tree = tree;
355         merge_state(tree, state);
356         return 0;
357 }
358
359 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
360                      u64 split)
361 {
362         if (tree->ops && tree->ops->split_extent_hook)
363                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
364 }
365
366 /*
367  * split a given extent state struct in two, inserting the preallocated
368  * struct 'prealloc' as the newly created second half.  'split' indicates an
369  * offset inside 'orig' where it should be split.
370  *
371  * Before calling,
372  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
373  * are two extent state structs in the tree:
374  * prealloc: [orig->start, split - 1]
375  * orig: [ split, orig->end ]
376  *
377  * The tree locks are not taken by this function. They need to be held
378  * by the caller.
379  */
380 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
381                        struct extent_state *prealloc, u64 split)
382 {
383         struct rb_node *node;
384
385         split_cb(tree, orig, split);
386
387         prealloc->start = orig->start;
388         prealloc->end = split - 1;
389         prealloc->state = orig->state;
390         orig->start = split;
391
392         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
393         if (node) {
394                 free_extent_state(prealloc);
395                 return -EEXIST;
396         }
397         prealloc->tree = tree;
398         return 0;
399 }
400
401 /*
402  * utility function to clear some bits in an extent state struct.
403  * it will optionally wake up any one waiting on this state (wake == 1), or
404  * forcibly remove the state from the tree (delete == 1).
405  *
406  * If no bits are set on the state struct after clearing things, the
407  * struct is freed and removed from the tree
408  */
409 static int clear_state_bit(struct extent_io_tree *tree,
410                             struct extent_state *state,
411                             int *bits, int wake)
412 {
413         int bits_to_clear = *bits & ~EXTENT_CTLBITS;
414         int ret = state->state & bits_to_clear;
415
416         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
417                 u64 range = state->end - state->start + 1;
418                 WARN_ON(range > tree->dirty_bytes);
419                 tree->dirty_bytes -= range;
420         }
421         clear_state_cb(tree, state, bits);
422         state->state &= ~bits_to_clear;
423         if (wake)
424                 wake_up(&state->wq);
425         if (state->state == 0) {
426                 if (state->tree) {
427                         rb_erase(&state->rb_node, &tree->state);
428                         state->tree = NULL;
429                         free_extent_state(state);
430                 } else {
431                         WARN_ON(1);
432                 }
433         } else {
434                 merge_state(tree, state);
435         }
436         return ret;
437 }
438
439 static struct extent_state *
440 alloc_extent_state_atomic(struct extent_state *prealloc)
441 {
442         if (!prealloc)
443                 prealloc = alloc_extent_state(GFP_ATOMIC);
444
445         return prealloc;
446 }
447
448 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
449 {
450         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
451                     "Extent tree was modified by another "
452                     "thread while locked.");
453 }
454
455 /*
456  * clear some bits on a range in the tree.  This may require splitting
457  * or inserting elements in the tree, so the gfp mask is used to
458  * indicate which allocations or sleeping are allowed.
459  *
460  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
461  * the given range from the tree regardless of state (ie for truncate).
462  *
463  * the range [start, end] is inclusive.
464  *
465  * This takes the tree lock, and returns 0 on success and < 0 on error.
466  */
467 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
468                      int bits, int wake, int delete,
469                      struct extent_state **cached_state,
470                      gfp_t mask)
471 {
472         struct extent_state *state;
473         struct extent_state *cached;
474         struct extent_state *prealloc = NULL;
475         struct rb_node *next_node;
476         struct rb_node *node;
477         u64 last_end;
478         int err;
479         int clear = 0;
480
481         if (delete)
482                 bits |= ~EXTENT_CTLBITS;
483         bits |= EXTENT_FIRST_DELALLOC;
484
485         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
486                 clear = 1;
487 again:
488         if (!prealloc && (mask & __GFP_WAIT)) {
489                 prealloc = alloc_extent_state(mask);
490                 if (!prealloc)
491                         return -ENOMEM;
492         }
493
494         spin_lock(&tree->lock);
495         if (cached_state) {
496                 cached = *cached_state;
497
498                 if (clear) {
499                         *cached_state = NULL;
500                         cached_state = NULL;
501                 }
502
503                 if (cached && cached->tree && cached->start <= start &&
504                     cached->end > start) {
505                         if (clear)
506                                 atomic_dec(&cached->refs);
507                         state = cached;
508                         goto hit_next;
509                 }
510                 if (clear)
511                         free_extent_state(cached);
512         }
513         /*
514          * this search will find the extents that end after
515          * our range starts
516          */
517         node = tree_search(tree, start);
518         if (!node)
519                 goto out;
520         state = rb_entry(node, struct extent_state, rb_node);
521 hit_next:
522         if (state->start > end)
523                 goto out;
524         WARN_ON(state->end < start);
525         last_end = state->end;
526
527         if (state->end < end && !need_resched())
528                 next_node = rb_next(&state->rb_node);
529         else
530                 next_node = NULL;
531
532         /* the state doesn't have the wanted bits, go ahead */
533         if (!(state->state & bits))
534                 goto next;
535
536         /*
537          *     | ---- desired range ---- |
538          *  | state | or
539          *  | ------------- state -------------- |
540          *
541          * We need to split the extent we found, and may flip
542          * bits on second half.
543          *
544          * If the extent we found extends past our range, we
545          * just split and search again.  It'll get split again
546          * the next time though.
547          *
548          * If the extent we found is inside our range, we clear
549          * the desired bit on it.
550          */
551
552         if (state->start < start) {
553                 prealloc = alloc_extent_state_atomic(prealloc);
554                 BUG_ON(!prealloc);
555                 err = split_state(tree, state, prealloc, start);
556                 if (err)
557                         extent_io_tree_panic(tree, err);
558
559                 prealloc = NULL;
560                 if (err)
561                         goto out;
562                 if (state->end <= end) {
563                         clear_state_bit(tree, state, &bits, wake);
564                         if (last_end == (u64)-1)
565                                 goto out;
566                         start = last_end + 1;
567                 }
568                 goto search_again;
569         }
570         /*
571          * | ---- desired range ---- |
572          *                        | state |
573          * We need to split the extent, and clear the bit
574          * on the first half
575          */
576         if (state->start <= end && state->end > end) {
577                 prealloc = alloc_extent_state_atomic(prealloc);
578                 BUG_ON(!prealloc);
579                 err = split_state(tree, state, prealloc, end + 1);
580                 if (err)
581                         extent_io_tree_panic(tree, err);
582
583                 if (wake)
584                         wake_up(&state->wq);
585
586                 clear_state_bit(tree, prealloc, &bits, wake);
587
588                 prealloc = NULL;
589                 goto out;
590         }
591
592         clear_state_bit(tree, state, &bits, wake);
593 next:
594         if (last_end == (u64)-1)
595                 goto out;
596         start = last_end + 1;
597         if (start <= end && next_node) {
598                 state = rb_entry(next_node, struct extent_state,
599                                  rb_node);
600                 goto hit_next;
601         }
602         goto search_again;
603
604 out:
605         spin_unlock(&tree->lock);
606         if (prealloc)
607                 free_extent_state(prealloc);
608
609         return 0;
610
611 search_again:
612         if (start > end)
613                 goto out;
614         spin_unlock(&tree->lock);
615         if (mask & __GFP_WAIT)
616                 cond_resched();
617         goto again;
618 }
619
620 static int wait_on_state(struct extent_io_tree *tree,
621                          struct extent_state *state)
622                 __releases(tree->lock)
623                 __acquires(tree->lock)
624 {
625         DEFINE_WAIT(wait);
626         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
627         spin_unlock(&tree->lock);
628         schedule();
629         spin_lock(&tree->lock);
630         finish_wait(&state->wq, &wait);
631         return 0;
632 }
633
634 /*
635  * waits for one or more bits to clear on a range in the state tree.
636  * The range [start, end] is inclusive.
637  * The tree lock is taken by this function
638  */
639 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
640 {
641         struct extent_state *state;
642         struct rb_node *node;
643
644         spin_lock(&tree->lock);
645 again:
646         while (1) {
647                 /*
648                  * this search will find all the extents that end after
649                  * our range starts
650                  */
651                 node = tree_search(tree, start);
652                 if (!node)
653                         break;
654
655                 state = rb_entry(node, struct extent_state, rb_node);
656
657                 if (state->start > end)
658                         goto out;
659
660                 if (state->state & bits) {
661                         start = state->start;
662                         atomic_inc(&state->refs);
663                         wait_on_state(tree, state);
664                         free_extent_state(state);
665                         goto again;
666                 }
667                 start = state->end + 1;
668
669                 if (start > end)
670                         break;
671
672                 cond_resched_lock(&tree->lock);
673         }
674 out:
675         spin_unlock(&tree->lock);
676         return 0;
677 }
678
679 static void set_state_bits(struct extent_io_tree *tree,
680                            struct extent_state *state,
681                            int *bits)
682 {
683         int bits_to_set = *bits & ~EXTENT_CTLBITS;
684
685         set_state_cb(tree, state, bits);
686         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
687                 u64 range = state->end - state->start + 1;
688                 tree->dirty_bytes += range;
689         }
690         state->state |= bits_to_set;
691 }
692
693 static void cache_state(struct extent_state *state,
694                         struct extent_state **cached_ptr)
695 {
696         if (cached_ptr && !(*cached_ptr)) {
697                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
698                         *cached_ptr = state;
699                         atomic_inc(&state->refs);
700                 }
701         }
702 }
703
704 static void uncache_state(struct extent_state **cached_ptr)
705 {
706         if (cached_ptr && (*cached_ptr)) {
707                 struct extent_state *state = *cached_ptr;
708                 *cached_ptr = NULL;
709                 free_extent_state(state);
710         }
711 }
712
713 /*
714  * set some bits on a range in the tree.  This may require allocations or
715  * sleeping, so the gfp mask is used to indicate what is allowed.
716  *
717  * If any of the exclusive bits are set, this will fail with -EEXIST if some
718  * part of the range already has the desired bits set.  The start of the
719  * existing range is returned in failed_start in this case.
720  *
721  * [start, end] is inclusive This takes the tree lock.
722  */
723
724 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
725                    int bits, int exclusive_bits, u64 *failed_start,
726                    struct extent_state **cached_state, gfp_t mask)
727 {
728         struct extent_state *state;
729         struct extent_state *prealloc = NULL;
730         struct rb_node *node;
731         int err = 0;
732         u64 last_start;
733         u64 last_end;
734
735         bits |= EXTENT_FIRST_DELALLOC;
736 again:
737         if (!prealloc && (mask & __GFP_WAIT)) {
738                 prealloc = alloc_extent_state(mask);
739                 BUG_ON(!prealloc);
740         }
741
742         spin_lock(&tree->lock);
743         if (cached_state && *cached_state) {
744                 state = *cached_state;
745                 if (state->start <= start && state->end > start &&
746                     state->tree) {
747                         node = &state->rb_node;
748                         goto hit_next;
749                 }
750         }
751         /*
752          * this search will find all the extents that end after
753          * our range starts.
754          */
755         node = tree_search(tree, start);
756         if (!node) {
757                 prealloc = alloc_extent_state_atomic(prealloc);
758                 BUG_ON(!prealloc);
759                 err = insert_state(tree, prealloc, start, end, &bits);
760                 if (err)
761                         extent_io_tree_panic(tree, err);
762
763                 prealloc = NULL;
764                 goto out;
765         }
766         state = rb_entry(node, struct extent_state, rb_node);
767 hit_next:
768         last_start = state->start;
769         last_end = state->end;
770
771         /*
772          * | ---- desired range ---- |
773          * | state |
774          *
775          * Just lock what we found and keep going
776          */
777         if (state->start == start && state->end <= end) {
778                 struct rb_node *next_node;
779                 if (state->state & exclusive_bits) {
780                         *failed_start = state->start;
781                         err = -EEXIST;
782                         goto out;
783                 }
784
785                 set_state_bits(tree, state, &bits);
786
787                 cache_state(state, cached_state);
788                 merge_state(tree, state);
789                 if (last_end == (u64)-1)
790                         goto out;
791
792                 start = last_end + 1;
793                 next_node = rb_next(&state->rb_node);
794                 if (next_node && start < end && prealloc && !need_resched()) {
795                         state = rb_entry(next_node, struct extent_state,
796                                          rb_node);
797                         if (state->start == start)
798                                 goto hit_next;
799                 }
800                 goto search_again;
801         }
802
803         /*
804          *     | ---- desired range ---- |
805          * | state |
806          *   or
807          * | ------------- state -------------- |
808          *
809          * We need to split the extent we found, and may flip bits on
810          * second half.
811          *
812          * If the extent we found extends past our
813          * range, we just split and search again.  It'll get split
814          * again the next time though.
815          *
816          * If the extent we found is inside our range, we set the
817          * desired bit on it.
818          */
819         if (state->start < start) {
820                 if (state->state & exclusive_bits) {
821                         *failed_start = start;
822                         err = -EEXIST;
823                         goto out;
824                 }
825
826                 prealloc = alloc_extent_state_atomic(prealloc);
827                 BUG_ON(!prealloc);
828                 err = split_state(tree, state, prealloc, start);
829                 if (err)
830                         extent_io_tree_panic(tree, err);
831
832                 prealloc = NULL;
833                 if (err)
834                         goto out;
835                 if (state->end <= end) {
836                         set_state_bits(tree, state, &bits);
837                         cache_state(state, cached_state);
838                         merge_state(tree, state);
839                         if (last_end == (u64)-1)
840                                 goto out;
841                         start = last_end + 1;
842                 }
843                 goto search_again;
844         }
845         /*
846          * | ---- desired range ---- |
847          *     | state | or               | state |
848          *
849          * There's a hole, we need to insert something in it and
850          * ignore the extent we found.
851          */
852         if (state->start > start) {
853                 u64 this_end;
854                 if (end < last_start)
855                         this_end = end;
856                 else
857                         this_end = last_start - 1;
858
859                 prealloc = alloc_extent_state_atomic(prealloc);
860                 BUG_ON(!prealloc);
861
862                 /*
863                  * Avoid to free 'prealloc' if it can be merged with
864                  * the later extent.
865                  */
866                 err = insert_state(tree, prealloc, start, this_end,
867                                    &bits);
868                 if (err)
869                         extent_io_tree_panic(tree, err);
870
871                 cache_state(prealloc, cached_state);
872                 prealloc = NULL;
873                 start = this_end + 1;
874                 goto search_again;
875         }
876         /*
877          * | ---- desired range ---- |
878          *                        | state |
879          * We need to split the extent, and set the bit
880          * on the first half
881          */
882         if (state->start <= end && state->end > end) {
883                 if (state->state & exclusive_bits) {
884                         *failed_start = start;
885                         err = -EEXIST;
886                         goto out;
887                 }
888
889                 prealloc = alloc_extent_state_atomic(prealloc);
890                 BUG_ON(!prealloc);
891                 err = split_state(tree, state, prealloc, end + 1);
892                 if (err)
893                         extent_io_tree_panic(tree, err);
894
895                 set_state_bits(tree, prealloc, &bits);
896                 cache_state(prealloc, cached_state);
897                 merge_state(tree, prealloc);
898                 prealloc = NULL;
899                 goto out;
900         }
901
902         goto search_again;
903
904 out:
905         spin_unlock(&tree->lock);
906         if (prealloc)
907                 free_extent_state(prealloc);
908
909         return err;
910
911 search_again:
912         if (start > end)
913                 goto out;
914         spin_unlock(&tree->lock);
915         if (mask & __GFP_WAIT)
916                 cond_resched();
917         goto again;
918 }
919
920 /**
921  * convert_extent - convert all bits in a given range from one bit to another
922  * @tree:       the io tree to search
923  * @start:      the start offset in bytes
924  * @end:        the end offset in bytes (inclusive)
925  * @bits:       the bits to set in this range
926  * @clear_bits: the bits to clear in this range
927  * @mask:       the allocation mask
928  *
929  * This will go through and set bits for the given range.  If any states exist
930  * already in this range they are set with the given bit and cleared of the
931  * clear_bits.  This is only meant to be used by things that are mergeable, ie
932  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
933  * boundary bits like LOCK.
934  */
935 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
936                        int bits, int clear_bits, gfp_t mask)
937 {
938         struct extent_state *state;
939         struct extent_state *prealloc = NULL;
940         struct rb_node *node;
941         int err = 0;
942         u64 last_start;
943         u64 last_end;
944
945 again:
946         if (!prealloc && (mask & __GFP_WAIT)) {
947                 prealloc = alloc_extent_state(mask);
948                 if (!prealloc)
949                         return -ENOMEM;
950         }
951
952         spin_lock(&tree->lock);
953         /*
954          * this search will find all the extents that end after
955          * our range starts.
956          */
957         node = tree_search(tree, start);
958         if (!node) {
959                 prealloc = alloc_extent_state_atomic(prealloc);
960                 if (!prealloc) {
961                         err = -ENOMEM;
962                         goto out;
963                 }
964                 err = insert_state(tree, prealloc, start, end, &bits);
965                 prealloc = NULL;
966                 if (err)
967                         extent_io_tree_panic(tree, err);
968                 goto out;
969         }
970         state = rb_entry(node, struct extent_state, rb_node);
971 hit_next:
972         last_start = state->start;
973         last_end = state->end;
974
975         /*
976          * | ---- desired range ---- |
977          * | state |
978          *
979          * Just lock what we found and keep going
980          */
981         if (state->start == start && state->end <= end) {
982                 struct rb_node *next_node;
983
984                 set_state_bits(tree, state, &bits);
985                 clear_state_bit(tree, state, &clear_bits, 0);
986                 if (last_end == (u64)-1)
987                         goto out;
988
989                 start = last_end + 1;
990                 next_node = rb_next(&state->rb_node);
991                 if (next_node && start < end && prealloc && !need_resched()) {
992                         state = rb_entry(next_node, struct extent_state,
993                                          rb_node);
994                         if (state->start == start)
995                                 goto hit_next;
996                 }
997                 goto search_again;
998         }
999
1000         /*
1001          *     | ---- desired range ---- |
1002          * | state |
1003          *   or
1004          * | ------------- state -------------- |
1005          *
1006          * We need to split the extent we found, and may flip bits on
1007          * second half.
1008          *
1009          * If the extent we found extends past our
1010          * range, we just split and search again.  It'll get split
1011          * again the next time though.
1012          *
1013          * If the extent we found is inside our range, we set the
1014          * desired bit on it.
1015          */
1016         if (state->start < start) {
1017                 prealloc = alloc_extent_state_atomic(prealloc);
1018                 if (!prealloc) {
1019                         err = -ENOMEM;
1020                         goto out;
1021                 }
1022                 err = split_state(tree, state, prealloc, start);
1023                 if (err)
1024                         extent_io_tree_panic(tree, err);
1025                 prealloc = NULL;
1026                 if (err)
1027                         goto out;
1028                 if (state->end <= end) {
1029                         set_state_bits(tree, state, &bits);
1030                         clear_state_bit(tree, state, &clear_bits, 0);
1031                         if (last_end == (u64)-1)
1032                                 goto out;
1033                         start = last_end + 1;
1034                 }
1035                 goto search_again;
1036         }
1037         /*
1038          * | ---- desired range ---- |
1039          *     | state | or               | state |
1040          *
1041          * There's a hole, we need to insert something in it and
1042          * ignore the extent we found.
1043          */
1044         if (state->start > start) {
1045                 u64 this_end;
1046                 if (end < last_start)
1047                         this_end = end;
1048                 else
1049                         this_end = last_start - 1;
1050
1051                 prealloc = alloc_extent_state_atomic(prealloc);
1052                 if (!prealloc) {
1053                         err = -ENOMEM;
1054                         goto out;
1055                 }
1056
1057                 /*
1058                  * Avoid to free 'prealloc' if it can be merged with
1059                  * the later extent.
1060                  */
1061                 err = insert_state(tree, prealloc, start, this_end,
1062                                    &bits);
1063                 if (err)
1064                         extent_io_tree_panic(tree, err);
1065                 prealloc = NULL;
1066                 start = this_end + 1;
1067                 goto search_again;
1068         }
1069         /*
1070          * | ---- desired range ---- |
1071          *                        | state |
1072          * We need to split the extent, and set the bit
1073          * on the first half
1074          */
1075         if (state->start <= end && state->end > end) {
1076                 prealloc = alloc_extent_state_atomic(prealloc);
1077                 if (!prealloc) {
1078                         err = -ENOMEM;
1079                         goto out;
1080                 }
1081
1082                 err = split_state(tree, state, prealloc, end + 1);
1083                 if (err)
1084                         extent_io_tree_panic(tree, err);
1085
1086                 set_state_bits(tree, prealloc, &bits);
1087                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1088                 prealloc = NULL;
1089                 goto out;
1090         }
1091
1092         goto search_again;
1093
1094 out:
1095         spin_unlock(&tree->lock);
1096         if (prealloc)
1097                 free_extent_state(prealloc);
1098
1099         return err;
1100
1101 search_again:
1102         if (start > end)
1103                 goto out;
1104         spin_unlock(&tree->lock);
1105         if (mask & __GFP_WAIT)
1106                 cond_resched();
1107         goto again;
1108 }
1109
1110 /* wrappers around set/clear extent bit */
1111 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1112                      gfp_t mask)
1113 {
1114         return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
1115                               NULL, mask);
1116 }
1117
1118 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1119                     int bits, gfp_t mask)
1120 {
1121         return set_extent_bit(tree, start, end, bits, 0, NULL,
1122                               NULL, mask);
1123 }
1124
1125 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1126                       int bits, gfp_t mask)
1127 {
1128         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1129 }
1130
1131 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1132                         struct extent_state **cached_state, gfp_t mask)
1133 {
1134         return set_extent_bit(tree, start, end,
1135                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1136                               0, NULL, cached_state, mask);
1137 }
1138
1139 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1140                        gfp_t mask)
1141 {
1142         return clear_extent_bit(tree, start, end,
1143                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1144                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1145 }
1146
1147 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1148                      gfp_t mask)
1149 {
1150         return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
1151                               NULL, mask);
1152 }
1153
1154 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1155                         struct extent_state **cached_state, gfp_t mask)
1156 {
1157         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1158                               NULL, cached_state, mask);
1159 }
1160
1161 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
1162                                  u64 end, struct extent_state **cached_state,
1163                                  gfp_t mask)
1164 {
1165         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1166                                 cached_state, mask);
1167 }
1168
1169 /*
1170  * either insert or lock state struct between start and end use mask to tell
1171  * us if waiting is desired.
1172  */
1173 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1174                      int bits, struct extent_state **cached_state, gfp_t mask)
1175 {
1176         int err;
1177         u64 failed_start;
1178         while (1) {
1179                 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1180                                      EXTENT_LOCKED, &failed_start,
1181                                      cached_state, mask);
1182                 if (err == -EEXIST && (mask & __GFP_WAIT)) {
1183                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1184                         start = failed_start;
1185                 } else {
1186                         break;
1187                 }
1188                 WARN_ON(start > end);
1189         }
1190         return err;
1191 }
1192
1193 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1194 {
1195         return lock_extent_bits(tree, start, end, 0, NULL, mask);
1196 }
1197
1198 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1199                     gfp_t mask)
1200 {
1201         int err;
1202         u64 failed_start;
1203
1204         err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1205                              &failed_start, NULL, mask);
1206         if (err == -EEXIST) {
1207                 if (failed_start > start)
1208                         clear_extent_bit(tree, start, failed_start - 1,
1209                                          EXTENT_LOCKED, 1, 0, NULL, mask);
1210                 return 0;
1211         }
1212         return 1;
1213 }
1214
1215 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1216                          struct extent_state **cached, gfp_t mask)
1217 {
1218         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1219                                 mask);
1220 }
1221
1222 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1223 {
1224         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1225                                 mask);
1226 }
1227
1228 /*
1229  * helper function to set both pages and extents in the tree writeback
1230  */
1231 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1232 {
1233         unsigned long index = start >> PAGE_CACHE_SHIFT;
1234         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1235         struct page *page;
1236
1237         while (index <= end_index) {
1238                 page = find_get_page(tree->mapping, index);
1239                 BUG_ON(!page);
1240                 set_page_writeback(page);
1241                 page_cache_release(page);
1242                 index++;
1243         }
1244         return 0;
1245 }
1246
1247 /* find the first state struct with 'bits' set after 'start', and
1248  * return it.  tree->lock must be held.  NULL will returned if
1249  * nothing was found after 'start'
1250  */
1251 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1252                                                  u64 start, int bits)
1253 {
1254         struct rb_node *node;
1255         struct extent_state *state;
1256
1257         /*
1258          * this search will find all the extents that end after
1259          * our range starts.
1260          */
1261         node = tree_search(tree, start);
1262         if (!node)
1263                 goto out;
1264
1265         while (1) {
1266                 state = rb_entry(node, struct extent_state, rb_node);
1267                 if (state->end >= start && (state->state & bits))
1268                         return state;
1269
1270                 node = rb_next(node);
1271                 if (!node)
1272                         break;
1273         }
1274 out:
1275         return NULL;
1276 }
1277
1278 /*
1279  * find the first offset in the io tree with 'bits' set. zero is
1280  * returned if we find something, and *start_ret and *end_ret are
1281  * set to reflect the state struct that was found.
1282  *
1283  * If nothing was found, 1 is returned, < 0 on error
1284  */
1285 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1286                           u64 *start_ret, u64 *end_ret, int bits)
1287 {
1288         struct extent_state *state;
1289         int ret = 1;
1290
1291         spin_lock(&tree->lock);
1292         state = find_first_extent_bit_state(tree, start, bits);
1293         if (state) {
1294                 *start_ret = state->start;
1295                 *end_ret = state->end;
1296                 ret = 0;
1297         }
1298         spin_unlock(&tree->lock);
1299         return ret;
1300 }
1301
1302 /*
1303  * find a contiguous range of bytes in the file marked as delalloc, not
1304  * more than 'max_bytes'.  start and end are used to return the range,
1305  *
1306  * 1 is returned if we find something, 0 if nothing was in the tree
1307  */
1308 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1309                                         u64 *start, u64 *end, u64 max_bytes,
1310                                         struct extent_state **cached_state)
1311 {
1312         struct rb_node *node;
1313         struct extent_state *state;
1314         u64 cur_start = *start;
1315         u64 found = 0;
1316         u64 total_bytes = 0;
1317
1318         spin_lock(&tree->lock);
1319
1320         /*
1321          * this search will find all the extents that end after
1322          * our range starts.
1323          */
1324         node = tree_search(tree, cur_start);
1325         if (!node) {
1326                 if (!found)
1327                         *end = (u64)-1;
1328                 goto out;
1329         }
1330
1331         while (1) {
1332                 state = rb_entry(node, struct extent_state, rb_node);
1333                 if (found && (state->start != cur_start ||
1334                               (state->state & EXTENT_BOUNDARY))) {
1335                         goto out;
1336                 }
1337                 if (!(state->state & EXTENT_DELALLOC)) {
1338                         if (!found)
1339                                 *end = state->end;
1340                         goto out;
1341                 }
1342                 if (!found) {
1343                         *start = state->start;
1344                         *cached_state = state;
1345                         atomic_inc(&state->refs);
1346                 }
1347                 found++;
1348                 *end = state->end;
1349                 cur_start = state->end + 1;
1350                 node = rb_next(node);
1351                 if (!node)
1352                         break;
1353                 total_bytes += state->end - state->start + 1;
1354                 if (total_bytes >= max_bytes)
1355                         break;
1356         }
1357 out:
1358         spin_unlock(&tree->lock);
1359         return found;
1360 }
1361
1362 static noinline int __unlock_for_delalloc(struct inode *inode,
1363                                           struct page *locked_page,
1364                                           u64 start, u64 end)
1365 {
1366         int ret;
1367         struct page *pages[16];
1368         unsigned long index = start >> PAGE_CACHE_SHIFT;
1369         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1370         unsigned long nr_pages = end_index - index + 1;
1371         int i;
1372
1373         if (index == locked_page->index && end_index == index)
1374                 return 0;
1375
1376         while (nr_pages > 0) {
1377                 ret = find_get_pages_contig(inode->i_mapping, index,
1378                                      min_t(unsigned long, nr_pages,
1379                                      ARRAY_SIZE(pages)), pages);
1380                 for (i = 0; i < ret; i++) {
1381                         if (pages[i] != locked_page)
1382                                 unlock_page(pages[i]);
1383                         page_cache_release(pages[i]);
1384                 }
1385                 nr_pages -= ret;
1386                 index += ret;
1387                 cond_resched();
1388         }
1389         return 0;
1390 }
1391
1392 static noinline int lock_delalloc_pages(struct inode *inode,
1393                                         struct page *locked_page,
1394                                         u64 delalloc_start,
1395                                         u64 delalloc_end)
1396 {
1397         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1398         unsigned long start_index = index;
1399         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1400         unsigned long pages_locked = 0;
1401         struct page *pages[16];
1402         unsigned long nrpages;
1403         int ret;
1404         int i;
1405
1406         /* the caller is responsible for locking the start index */
1407         if (index == locked_page->index && index == end_index)
1408                 return 0;
1409
1410         /* skip the page at the start index */
1411         nrpages = end_index - index + 1;
1412         while (nrpages > 0) {
1413                 ret = find_get_pages_contig(inode->i_mapping, index,
1414                                      min_t(unsigned long,
1415                                      nrpages, ARRAY_SIZE(pages)), pages);
1416                 if (ret == 0) {
1417                         ret = -EAGAIN;
1418                         goto done;
1419                 }
1420                 /* now we have an array of pages, lock them all */
1421                 for (i = 0; i < ret; i++) {
1422                         /*
1423                          * the caller is taking responsibility for
1424                          * locked_page
1425                          */
1426                         if (pages[i] != locked_page) {
1427                                 lock_page(pages[i]);
1428                                 if (!PageDirty(pages[i]) ||
1429                                     pages[i]->mapping != inode->i_mapping) {
1430                                         ret = -EAGAIN;
1431                                         unlock_page(pages[i]);
1432                                         page_cache_release(pages[i]);
1433                                         goto done;
1434                                 }
1435                         }
1436                         page_cache_release(pages[i]);
1437                         pages_locked++;
1438                 }
1439                 nrpages -= ret;
1440                 index += ret;
1441                 cond_resched();
1442         }
1443         ret = 0;
1444 done:
1445         if (ret && pages_locked) {
1446                 __unlock_for_delalloc(inode, locked_page,
1447                               delalloc_start,
1448                               ((u64)(start_index + pages_locked - 1)) <<
1449                               PAGE_CACHE_SHIFT);
1450         }
1451         return ret;
1452 }
1453
1454 /*
1455  * find a contiguous range of bytes in the file marked as delalloc, not
1456  * more than 'max_bytes'.  start and end are used to return the range,
1457  *
1458  * 1 is returned if we find something, 0 if nothing was in the tree
1459  */
1460 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1461                                              struct extent_io_tree *tree,
1462                                              struct page *locked_page,
1463                                              u64 *start, u64 *end,
1464                                              u64 max_bytes)
1465 {
1466         u64 delalloc_start;
1467         u64 delalloc_end;
1468         u64 found;
1469         struct extent_state *cached_state = NULL;
1470         int ret;
1471         int loops = 0;
1472
1473 again:
1474         /* step one, find a bunch of delalloc bytes starting at start */
1475         delalloc_start = *start;
1476         delalloc_end = 0;
1477         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1478                                     max_bytes, &cached_state);
1479         if (!found || delalloc_end <= *start) {
1480                 *start = delalloc_start;
1481                 *end = delalloc_end;
1482                 free_extent_state(cached_state);
1483                 return found;
1484         }
1485
1486         /*
1487          * start comes from the offset of locked_page.  We have to lock
1488          * pages in order, so we can't process delalloc bytes before
1489          * locked_page
1490          */
1491         if (delalloc_start < *start)
1492                 delalloc_start = *start;
1493
1494         /*
1495          * make sure to limit the number of pages we try to lock down
1496          * if we're looping.
1497          */
1498         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1499                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1500
1501         /* step two, lock all the pages after the page that has start */
1502         ret = lock_delalloc_pages(inode, locked_page,
1503                                   delalloc_start, delalloc_end);
1504         if (ret == -EAGAIN) {
1505                 /* some of the pages are gone, lets avoid looping by
1506                  * shortening the size of the delalloc range we're searching
1507                  */
1508                 free_extent_state(cached_state);
1509                 if (!loops) {
1510                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1511                         max_bytes = PAGE_CACHE_SIZE - offset;
1512                         loops = 1;
1513                         goto again;
1514                 } else {
1515                         found = 0;
1516                         goto out_failed;
1517                 }
1518         }
1519         BUG_ON(ret);
1520
1521         /* step three, lock the state bits for the whole range */
1522         lock_extent_bits(tree, delalloc_start, delalloc_end,
1523                          0, &cached_state, GFP_NOFS);
1524
1525         /* then test to make sure it is all still delalloc */
1526         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1527                              EXTENT_DELALLOC, 1, cached_state);
1528         if (!ret) {
1529                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1530                                      &cached_state, GFP_NOFS);
1531                 __unlock_for_delalloc(inode, locked_page,
1532                               delalloc_start, delalloc_end);
1533                 cond_resched();
1534                 goto again;
1535         }
1536         free_extent_state(cached_state);
1537         *start = delalloc_start;
1538         *end = delalloc_end;
1539 out_failed:
1540         return found;
1541 }
1542
1543 int extent_clear_unlock_delalloc(struct inode *inode,
1544                                 struct extent_io_tree *tree,
1545                                 u64 start, u64 end, struct page *locked_page,
1546                                 unsigned long op)
1547 {
1548         int ret;
1549         struct page *pages[16];
1550         unsigned long index = start >> PAGE_CACHE_SHIFT;
1551         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1552         unsigned long nr_pages = end_index - index + 1;
1553         int i;
1554         int clear_bits = 0;
1555
1556         if (op & EXTENT_CLEAR_UNLOCK)
1557                 clear_bits |= EXTENT_LOCKED;
1558         if (op & EXTENT_CLEAR_DIRTY)
1559                 clear_bits |= EXTENT_DIRTY;
1560
1561         if (op & EXTENT_CLEAR_DELALLOC)
1562                 clear_bits |= EXTENT_DELALLOC;
1563
1564         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1565         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1566                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1567                     EXTENT_SET_PRIVATE2)))
1568                 return 0;
1569
1570         while (nr_pages > 0) {
1571                 ret = find_get_pages_contig(inode->i_mapping, index,
1572                                      min_t(unsigned long,
1573                                      nr_pages, ARRAY_SIZE(pages)), pages);
1574                 for (i = 0; i < ret; i++) {
1575
1576                         if (op & EXTENT_SET_PRIVATE2)
1577                                 SetPagePrivate2(pages[i]);
1578
1579                         if (pages[i] == locked_page) {
1580                                 page_cache_release(pages[i]);
1581                                 continue;
1582                         }
1583                         if (op & EXTENT_CLEAR_DIRTY)
1584                                 clear_page_dirty_for_io(pages[i]);
1585                         if (op & EXTENT_SET_WRITEBACK)
1586                                 set_page_writeback(pages[i]);
1587                         if (op & EXTENT_END_WRITEBACK)
1588                                 end_page_writeback(pages[i]);
1589                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1590                                 unlock_page(pages[i]);
1591                         page_cache_release(pages[i]);
1592                 }
1593                 nr_pages -= ret;
1594                 index += ret;
1595                 cond_resched();
1596         }
1597         return 0;
1598 }
1599
1600 /*
1601  * count the number of bytes in the tree that have a given bit(s)
1602  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1603  * cached.  The total number found is returned.
1604  */
1605 u64 count_range_bits(struct extent_io_tree *tree,
1606                      u64 *start, u64 search_end, u64 max_bytes,
1607                      unsigned long bits, int contig)
1608 {
1609         struct rb_node *node;
1610         struct extent_state *state;
1611         u64 cur_start = *start;
1612         u64 total_bytes = 0;
1613         u64 last = 0;
1614         int found = 0;
1615
1616         if (search_end <= cur_start) {
1617                 WARN_ON(1);
1618                 return 0;
1619         }
1620
1621         spin_lock(&tree->lock);
1622         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1623                 total_bytes = tree->dirty_bytes;
1624                 goto out;
1625         }
1626         /*
1627          * this search will find all the extents that end after
1628          * our range starts.
1629          */
1630         node = tree_search(tree, cur_start);
1631         if (!node)
1632                 goto out;
1633
1634         while (1) {
1635                 state = rb_entry(node, struct extent_state, rb_node);
1636                 if (state->start > search_end)
1637                         break;
1638                 if (contig && found && state->start > last + 1)
1639                         break;
1640                 if (state->end >= cur_start && (state->state & bits) == bits) {
1641                         total_bytes += min(search_end, state->end) + 1 -
1642                                        max(cur_start, state->start);
1643                         if (total_bytes >= max_bytes)
1644                                 break;
1645                         if (!found) {
1646                                 *start = max(cur_start, state->start);
1647                                 found = 1;
1648                         }
1649                         last = state->end;
1650                 } else if (contig && found) {
1651                         break;
1652                 }
1653                 node = rb_next(node);
1654                 if (!node)
1655                         break;
1656         }
1657 out:
1658         spin_unlock(&tree->lock);
1659         return total_bytes;
1660 }
1661
1662 /*
1663  * set the private field for a given byte offset in the tree.  If there isn't
1664  * an extent_state there already, this does nothing.
1665  */
1666 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1667 {
1668         struct rb_node *node;
1669         struct extent_state *state;
1670         int ret = 0;
1671
1672         spin_lock(&tree->lock);
1673         /*
1674          * this search will find all the extents that end after
1675          * our range starts.
1676          */
1677         node = tree_search(tree, start);
1678         if (!node) {
1679                 ret = -ENOENT;
1680                 goto out;
1681         }
1682         state = rb_entry(node, struct extent_state, rb_node);
1683         if (state->start != start) {
1684                 ret = -ENOENT;
1685                 goto out;
1686         }
1687         state->private = private;
1688 out:
1689         spin_unlock(&tree->lock);
1690         return ret;
1691 }
1692
1693 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1694 {
1695         struct rb_node *node;
1696         struct extent_state *state;
1697         int ret = 0;
1698
1699         spin_lock(&tree->lock);
1700         /*
1701          * this search will find all the extents that end after
1702          * our range starts.
1703          */
1704         node = tree_search(tree, start);
1705         if (!node) {
1706                 ret = -ENOENT;
1707                 goto out;
1708         }
1709         state = rb_entry(node, struct extent_state, rb_node);
1710         if (state->start != start) {
1711                 ret = -ENOENT;
1712                 goto out;
1713         }
1714         *private = state->private;
1715 out:
1716         spin_unlock(&tree->lock);
1717         return ret;
1718 }
1719
1720 /*
1721  * searches a range in the state tree for a given mask.
1722  * If 'filled' == 1, this returns 1 only if every extent in the tree
1723  * has the bits set.  Otherwise, 1 is returned if any bit in the
1724  * range is found set.
1725  */
1726 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1727                    int bits, int filled, struct extent_state *cached)
1728 {
1729         struct extent_state *state = NULL;
1730         struct rb_node *node;
1731         int bitset = 0;
1732
1733         spin_lock(&tree->lock);
1734         if (cached && cached->tree && cached->start <= start &&
1735             cached->end > start)
1736                 node = &cached->rb_node;
1737         else
1738                 node = tree_search(tree, start);
1739         while (node && start <= end) {
1740                 state = rb_entry(node, struct extent_state, rb_node);
1741
1742                 if (filled && state->start > start) {
1743                         bitset = 0;
1744                         break;
1745                 }
1746
1747                 if (state->start > end)
1748                         break;
1749
1750                 if (state->state & bits) {
1751                         bitset = 1;
1752                         if (!filled)
1753                                 break;
1754                 } else if (filled) {
1755                         bitset = 0;
1756                         break;
1757                 }
1758
1759                 if (state->end == (u64)-1)
1760                         break;
1761
1762                 start = state->end + 1;
1763                 if (start > end)
1764                         break;
1765                 node = rb_next(node);
1766                 if (!node) {
1767                         if (filled)
1768                                 bitset = 0;
1769                         break;
1770                 }
1771         }
1772         spin_unlock(&tree->lock);
1773         return bitset;
1774 }
1775
1776 /*
1777  * helper function to set a given page up to date if all the
1778  * extents in the tree for that page are up to date
1779  */
1780 static int check_page_uptodate(struct extent_io_tree *tree,
1781                                struct page *page)
1782 {
1783         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1784         u64 end = start + PAGE_CACHE_SIZE - 1;
1785         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1786                 SetPageUptodate(page);
1787         return 0;
1788 }
1789
1790 /*
1791  * helper function to unlock a page if all the extents in the tree
1792  * for that page are unlocked
1793  */
1794 static int check_page_locked(struct extent_io_tree *tree,
1795                              struct page *page)
1796 {
1797         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1798         u64 end = start + PAGE_CACHE_SIZE - 1;
1799         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1800                 unlock_page(page);
1801         return 0;
1802 }
1803
1804 /*
1805  * helper function to end page writeback if all the extents
1806  * in the tree for that page are done with writeback
1807  */
1808 static int check_page_writeback(struct extent_io_tree *tree,
1809                              struct page *page)
1810 {
1811         end_page_writeback(page);
1812         return 0;
1813 }
1814
1815 /*
1816  * When IO fails, either with EIO or csum verification fails, we
1817  * try other mirrors that might have a good copy of the data.  This
1818  * io_failure_record is used to record state as we go through all the
1819  * mirrors.  If another mirror has good data, the page is set up to date
1820  * and things continue.  If a good mirror can't be found, the original
1821  * bio end_io callback is called to indicate things have failed.
1822  */
1823 struct io_failure_record {
1824         struct page *page;
1825         u64 start;
1826         u64 len;
1827         u64 logical;
1828         unsigned long bio_flags;
1829         int this_mirror;
1830         int failed_mirror;
1831         int in_validation;
1832 };
1833
1834 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1835                                 int did_repair)
1836 {
1837         int ret;
1838         int err = 0;
1839         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1840
1841         set_state_private(failure_tree, rec->start, 0);
1842         ret = clear_extent_bits(failure_tree, rec->start,
1843                                 rec->start + rec->len - 1,
1844                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1845         if (ret)
1846                 err = ret;
1847
1848         if (did_repair) {
1849                 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1850                                         rec->start + rec->len - 1,
1851                                         EXTENT_DAMAGED, GFP_NOFS);
1852                 if (ret && !err)
1853                         err = ret;
1854         }
1855
1856         kfree(rec);
1857         return err;
1858 }
1859
1860 static void repair_io_failure_callback(struct bio *bio, int err)
1861 {
1862         complete(bio->bi_private);
1863 }
1864
1865 /*
1866  * this bypasses the standard btrfs submit functions deliberately, as
1867  * the standard behavior is to write all copies in a raid setup. here we only
1868  * want to write the one bad copy. so we do the mapping for ourselves and issue
1869  * submit_bio directly.
1870  * to avoid any synchonization issues, wait for the data after writing, which
1871  * actually prevents the read that triggered the error from finishing.
1872  * currently, there can be no more than two copies of every data bit. thus,
1873  * exactly one rewrite is required.
1874  */
1875 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1876                         u64 length, u64 logical, struct page *page,
1877                         int mirror_num)
1878 {
1879         struct bio *bio;
1880         struct btrfs_device *dev;
1881         DECLARE_COMPLETION_ONSTACK(compl);
1882         u64 map_length = 0;
1883         u64 sector;
1884         struct btrfs_bio *bbio = NULL;
1885         int ret;
1886
1887         BUG_ON(!mirror_num);
1888
1889         bio = bio_alloc(GFP_NOFS, 1);
1890         if (!bio)
1891                 return -EIO;
1892         bio->bi_private = &compl;
1893         bio->bi_end_io = repair_io_failure_callback;
1894         bio->bi_size = 0;
1895         map_length = length;
1896
1897         ret = btrfs_map_block(map_tree, WRITE, logical,
1898                               &map_length, &bbio, mirror_num);
1899         if (ret) {
1900                 bio_put(bio);
1901                 return -EIO;
1902         }
1903         BUG_ON(mirror_num != bbio->mirror_num);
1904         sector = bbio->stripes[mirror_num-1].physical >> 9;
1905         bio->bi_sector = sector;
1906         dev = bbio->stripes[mirror_num-1].dev;
1907         kfree(bbio);
1908         if (!dev || !dev->bdev || !dev->writeable) {
1909                 bio_put(bio);
1910                 return -EIO;
1911         }
1912         bio->bi_bdev = dev->bdev;
1913         bio_add_page(bio, page, length, start-page_offset(page));
1914         btrfsic_submit_bio(WRITE_SYNC, bio);
1915         wait_for_completion(&compl);
1916
1917         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1918                 /* try to remap that extent elsewhere? */
1919                 bio_put(bio);
1920                 return -EIO;
1921         }
1922
1923         printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1924                         "sector %llu)\n", page->mapping->host->i_ino, start,
1925                         dev->name, sector);
1926
1927         bio_put(bio);
1928         return 0;
1929 }
1930
1931 /*
1932  * each time an IO finishes, we do a fast check in the IO failure tree
1933  * to see if we need to process or clean up an io_failure_record
1934  */
1935 static int clean_io_failure(u64 start, struct page *page)
1936 {
1937         u64 private;
1938         u64 private_failure;
1939         struct io_failure_record *failrec;
1940         struct btrfs_mapping_tree *map_tree;
1941         struct extent_state *state;
1942         int num_copies;
1943         int did_repair = 0;
1944         int ret;
1945         struct inode *inode = page->mapping->host;
1946
1947         private = 0;
1948         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1949                                 (u64)-1, 1, EXTENT_DIRTY, 0);
1950         if (!ret)
1951                 return 0;
1952
1953         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1954                                 &private_failure);
1955         if (ret)
1956                 return 0;
1957
1958         failrec = (struct io_failure_record *)(unsigned long) private_failure;
1959         BUG_ON(!failrec->this_mirror);
1960
1961         if (failrec->in_validation) {
1962                 /* there was no real error, just free the record */
1963                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1964                          failrec->start);
1965                 did_repair = 1;
1966                 goto out;
1967         }
1968
1969         spin_lock(&BTRFS_I(inode)->io_tree.lock);
1970         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1971                                             failrec->start,
1972                                             EXTENT_LOCKED);
1973         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1974
1975         if (state && state->start == failrec->start) {
1976                 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1977                 num_copies = btrfs_num_copies(map_tree, failrec->logical,
1978                                                 failrec->len);
1979                 if (num_copies > 1)  {
1980                         ret = repair_io_failure(map_tree, start, failrec->len,
1981                                                 failrec->logical, page,
1982                                                 failrec->failed_mirror);
1983                         did_repair = !ret;
1984                 }
1985         }
1986
1987 out:
1988         if (!ret)
1989                 ret = free_io_failure(inode, failrec, did_repair);
1990
1991         return ret;
1992 }
1993
1994 /*
1995  * this is a generic handler for readpage errors (default
1996  * readpage_io_failed_hook). if other copies exist, read those and write back
1997  * good data to the failed position. does not investigate in remapping the
1998  * failed extent elsewhere, hoping the device will be smart enough to do this as
1999  * needed
2000  */
2001
2002 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2003                                 u64 start, u64 end, int failed_mirror,
2004                                 struct extent_state *state)
2005 {
2006         struct io_failure_record *failrec = NULL;
2007         u64 private;
2008         struct extent_map *em;
2009         struct inode *inode = page->mapping->host;
2010         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2011         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2012         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2013         struct bio *bio;
2014         int num_copies;
2015         int ret;
2016         int read_mode;
2017         u64 logical;
2018
2019         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2020
2021         ret = get_state_private(failure_tree, start, &private);
2022         if (ret) {
2023                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2024                 if (!failrec)
2025                         return -ENOMEM;
2026                 failrec->start = start;
2027                 failrec->len = end - start + 1;
2028                 failrec->this_mirror = 0;
2029                 failrec->bio_flags = 0;
2030                 failrec->in_validation = 0;
2031
2032                 read_lock(&em_tree->lock);
2033                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2034                 if (!em) {
2035                         read_unlock(&em_tree->lock);
2036                         kfree(failrec);
2037                         return -EIO;
2038                 }
2039
2040                 if (em->start > start || em->start + em->len < start) {
2041                         free_extent_map(em);
2042                         em = NULL;
2043                 }
2044                 read_unlock(&em_tree->lock);
2045
2046                 if (!em || IS_ERR(em)) {
2047                         kfree(failrec);
2048                         return -EIO;
2049                 }
2050                 logical = start - em->start;
2051                 logical = em->block_start + logical;
2052                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2053                         logical = em->block_start;
2054                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2055                         extent_set_compress_type(&failrec->bio_flags,
2056                                                  em->compress_type);
2057                 }
2058                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2059                          "len=%llu\n", logical, start, failrec->len);
2060                 failrec->logical = logical;
2061                 free_extent_map(em);
2062
2063                 /* set the bits in the private failure tree */
2064                 ret = set_extent_bits(failure_tree, start, end,
2065                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2066                 if (ret >= 0)
2067                         ret = set_state_private(failure_tree, start,
2068                                                 (u64)(unsigned long)failrec);
2069                 /* set the bits in the inode's tree */
2070                 if (ret >= 0)
2071                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2072                                                 GFP_NOFS);
2073                 if (ret < 0) {
2074                         kfree(failrec);
2075                         return ret;
2076                 }
2077         } else {
2078                 failrec = (struct io_failure_record *)(unsigned long)private;
2079                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2080                          "start=%llu, len=%llu, validation=%d\n",
2081                          failrec->logical, failrec->start, failrec->len,
2082                          failrec->in_validation);
2083                 /*
2084                  * when data can be on disk more than twice, add to failrec here
2085                  * (e.g. with a list for failed_mirror) to make
2086                  * clean_io_failure() clean all those errors at once.
2087                  */
2088         }
2089         num_copies = btrfs_num_copies(
2090                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
2091                               failrec->logical, failrec->len);
2092         if (num_copies == 1) {
2093                 /*
2094                  * we only have a single copy of the data, so don't bother with
2095                  * all the retry and error correction code that follows. no
2096                  * matter what the error is, it is very likely to persist.
2097                  */
2098                 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2099                          "state=%p, num_copies=%d, next_mirror %d, "
2100                          "failed_mirror %d\n", state, num_copies,
2101                          failrec->this_mirror, failed_mirror);
2102                 free_io_failure(inode, failrec, 0);
2103                 return -EIO;
2104         }
2105
2106         if (!state) {
2107                 spin_lock(&tree->lock);
2108                 state = find_first_extent_bit_state(tree, failrec->start,
2109                                                     EXTENT_LOCKED);
2110                 if (state && state->start != failrec->start)
2111                         state = NULL;
2112                 spin_unlock(&tree->lock);
2113         }
2114
2115         /*
2116          * there are two premises:
2117          *      a) deliver good data to the caller
2118          *      b) correct the bad sectors on disk
2119          */
2120         if (failed_bio->bi_vcnt > 1) {
2121                 /*
2122                  * to fulfill b), we need to know the exact failing sectors, as
2123                  * we don't want to rewrite any more than the failed ones. thus,
2124                  * we need separate read requests for the failed bio
2125                  *
2126                  * if the following BUG_ON triggers, our validation request got
2127                  * merged. we need separate requests for our algorithm to work.
2128                  */
2129                 BUG_ON(failrec->in_validation);
2130                 failrec->in_validation = 1;
2131                 failrec->this_mirror = failed_mirror;
2132                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2133         } else {
2134                 /*
2135                  * we're ready to fulfill a) and b) alongside. get a good copy
2136                  * of the failed sector and if we succeed, we have setup
2137                  * everything for repair_io_failure to do the rest for us.
2138                  */
2139                 if (failrec->in_validation) {
2140                         BUG_ON(failrec->this_mirror != failed_mirror);
2141                         failrec->in_validation = 0;
2142                         failrec->this_mirror = 0;
2143                 }
2144                 failrec->failed_mirror = failed_mirror;
2145                 failrec->this_mirror++;
2146                 if (failrec->this_mirror == failed_mirror)
2147                         failrec->this_mirror++;
2148                 read_mode = READ_SYNC;
2149         }
2150
2151         if (!state || failrec->this_mirror > num_copies) {
2152                 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2153                          "next_mirror %d, failed_mirror %d\n", state,
2154                          num_copies, failrec->this_mirror, failed_mirror);
2155                 free_io_failure(inode, failrec, 0);
2156                 return -EIO;
2157         }
2158
2159         bio = bio_alloc(GFP_NOFS, 1);
2160         bio->bi_private = state;
2161         bio->bi_end_io = failed_bio->bi_end_io;
2162         bio->bi_sector = failrec->logical >> 9;
2163         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2164         bio->bi_size = 0;
2165
2166         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2167
2168         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2169                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2170                  failrec->this_mirror, num_copies, failrec->in_validation);
2171
2172         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2173                                          failrec->this_mirror,
2174                                          failrec->bio_flags, 0);
2175         return ret;
2176 }
2177
2178 /* lots and lots of room for performance fixes in the end_bio funcs */
2179
2180 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2181 {
2182         int uptodate = (err == 0);
2183         struct extent_io_tree *tree;
2184         int ret;
2185
2186         tree = &BTRFS_I(page->mapping->host)->io_tree;
2187
2188         if (tree->ops && tree->ops->writepage_end_io_hook) {
2189                 ret = tree->ops->writepage_end_io_hook(page, start,
2190                                                end, NULL, uptodate);
2191                 if (ret)
2192                         uptodate = 0;
2193         }
2194
2195         if (!uptodate && tree->ops &&
2196             tree->ops->writepage_io_failed_hook) {
2197                 ret = tree->ops->writepage_io_failed_hook(NULL, page,
2198                                                  start, end, NULL);
2199                 /* Writeback already completed */
2200                 if (ret == 0)
2201                         return 1;
2202                 BUG_ON(ret < 0);
2203         }
2204
2205         if (!uptodate) {
2206                 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
2207                 ClearPageUptodate(page);
2208                 SetPageError(page);
2209         }
2210         return 0;
2211 }
2212
2213 /*
2214  * after a writepage IO is done, we need to:
2215  * clear the uptodate bits on error
2216  * clear the writeback bits in the extent tree for this IO
2217  * end_page_writeback if the page has no more pending IO
2218  *
2219  * Scheduling is not allowed, so the extent state tree is expected
2220  * to have one and only one object corresponding to this IO.
2221  */
2222 static void end_bio_extent_writepage(struct bio *bio, int err)
2223 {
2224         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2225         struct extent_io_tree *tree;
2226         u64 start;
2227         u64 end;
2228         int whole_page;
2229
2230         do {
2231                 struct page *page = bvec->bv_page;
2232                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2233
2234                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2235                          bvec->bv_offset;
2236                 end = start + bvec->bv_len - 1;
2237
2238                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2239                         whole_page = 1;
2240                 else
2241                         whole_page = 0;
2242
2243                 if (--bvec >= bio->bi_io_vec)
2244                         prefetchw(&bvec->bv_page->flags);
2245
2246                 if (end_extent_writepage(page, err, start, end))
2247                         continue;
2248
2249                 if (whole_page)
2250                         end_page_writeback(page);
2251                 else
2252                         check_page_writeback(tree, page);
2253         } while (bvec >= bio->bi_io_vec);
2254
2255         bio_put(bio);
2256 }
2257
2258 /*
2259  * after a readpage IO is done, we need to:
2260  * clear the uptodate bits on error
2261  * set the uptodate bits if things worked
2262  * set the page up to date if all extents in the tree are uptodate
2263  * clear the lock bit in the extent tree
2264  * unlock the page if there are no other extents locked for it
2265  *
2266  * Scheduling is not allowed, so the extent state tree is expected
2267  * to have one and only one object corresponding to this IO.
2268  */
2269 static void end_bio_extent_readpage(struct bio *bio, int err)
2270 {
2271         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2272         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2273         struct bio_vec *bvec = bio->bi_io_vec;
2274         struct extent_io_tree *tree;
2275         u64 start;
2276         u64 end;
2277         int whole_page;
2278         int ret;
2279
2280         if (err)
2281                 uptodate = 0;
2282
2283         do {
2284                 struct page *page = bvec->bv_page;
2285                 struct extent_state *cached = NULL;
2286                 struct extent_state *state;
2287
2288                 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2289                          "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2290                          (long int)bio->bi_bdev);
2291                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2292
2293                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2294                         bvec->bv_offset;
2295                 end = start + bvec->bv_len - 1;
2296
2297                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2298                         whole_page = 1;
2299                 else
2300                         whole_page = 0;
2301
2302                 if (++bvec <= bvec_end)
2303                         prefetchw(&bvec->bv_page->flags);
2304
2305                 spin_lock(&tree->lock);
2306                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2307                 if (state && state->start == start) {
2308                         /*
2309                          * take a reference on the state, unlock will drop
2310                          * the ref
2311                          */
2312                         cache_state(state, &cached);
2313                 }
2314                 spin_unlock(&tree->lock);
2315
2316                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2317                         ret = tree->ops->readpage_end_io_hook(page, start, end,
2318                                                               state);
2319                         if (ret)
2320                                 uptodate = 0;
2321                         else
2322                                 clean_io_failure(start, page);
2323                 }
2324                 if (!uptodate) {
2325                         int failed_mirror;
2326                         failed_mirror = (int)(unsigned long)bio->bi_bdev;
2327                         /*
2328                          * The generic bio_readpage_error handles errors the
2329                          * following way: If possible, new read requests are
2330                          * created and submitted and will end up in
2331                          * end_bio_extent_readpage as well (if we're lucky, not
2332                          * in the !uptodate case). In that case it returns 0 and
2333                          * we just go on with the next page in our bio. If it
2334                          * can't handle the error it will return -EIO and we
2335                          * remain responsible for that page.
2336                          */
2337                         ret = bio_readpage_error(bio, page, start, end,
2338                                                         failed_mirror, NULL);
2339                         if (ret == 0) {
2340 error_handled:
2341                                 uptodate =
2342                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2343                                 if (err)
2344                                         uptodate = 0;
2345                                 uncache_state(&cached);
2346                                 continue;
2347                         }
2348                         if (tree->ops && tree->ops->readpage_io_failed_hook) {
2349                                 ret = tree->ops->readpage_io_failed_hook(
2350                                                         bio, page, start, end,
2351                                                         failed_mirror, state);
2352                                 if (ret == 0)
2353                                         goto error_handled;
2354                         }
2355                         BUG_ON(ret < 0);
2356                 }
2357
2358                 if (uptodate) {
2359                         set_extent_uptodate(tree, start, end, &cached,
2360                                             GFP_ATOMIC);
2361                 }
2362                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2363
2364                 if (whole_page) {
2365                         if (uptodate) {
2366                                 SetPageUptodate(page);
2367                         } else {
2368                                 ClearPageUptodate(page);
2369                                 SetPageError(page);
2370                         }
2371                         unlock_page(page);
2372                 } else {
2373                         if (uptodate) {
2374                                 check_page_uptodate(tree, page);
2375                         } else {
2376                                 ClearPageUptodate(page);
2377                                 SetPageError(page);
2378                         }
2379                         check_page_locked(tree, page);
2380                 }
2381         } while (bvec <= bvec_end);
2382
2383         bio_put(bio);
2384 }
2385
2386 struct bio *
2387 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2388                 gfp_t gfp_flags)
2389 {
2390         struct bio *bio;
2391
2392         bio = bio_alloc(gfp_flags, nr_vecs);
2393
2394         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2395                 while (!bio && (nr_vecs /= 2))
2396                         bio = bio_alloc(gfp_flags, nr_vecs);
2397         }
2398
2399         if (bio) {
2400                 bio->bi_size = 0;
2401                 bio->bi_bdev = bdev;
2402                 bio->bi_sector = first_sector;
2403         }
2404         return bio;
2405 }
2406
2407 static int __must_check submit_one_bio(int rw, struct bio *bio,
2408                                        int mirror_num, unsigned long bio_flags)
2409 {
2410         int ret = 0;
2411         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2412         struct page *page = bvec->bv_page;
2413         struct extent_io_tree *tree = bio->bi_private;
2414         u64 start;
2415
2416         start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2417
2418         bio->bi_private = NULL;
2419
2420         bio_get(bio);
2421
2422         if (tree->ops && tree->ops->submit_bio_hook)
2423                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2424                                            mirror_num, bio_flags, start);
2425         else
2426                 btrfsic_submit_bio(rw, bio);
2427
2428         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2429                 ret = -EOPNOTSUPP;
2430         bio_put(bio);
2431         return ret;
2432 }
2433
2434 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2435                      unsigned long offset, size_t size, struct bio *bio,
2436                      unsigned long bio_flags)
2437 {
2438         int ret = 0;
2439         if (tree->ops && tree->ops->merge_bio_hook)
2440                 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2441                                                 bio_flags);
2442         BUG_ON(ret < 0);
2443         return ret;
2444
2445 }
2446
2447 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2448                               struct page *page, sector_t sector,
2449                               size_t size, unsigned long offset,
2450                               struct block_device *bdev,
2451                               struct bio **bio_ret,
2452                               unsigned long max_pages,
2453                               bio_end_io_t end_io_func,
2454                               int mirror_num,
2455                               unsigned long prev_bio_flags,
2456                               unsigned long bio_flags)
2457 {
2458         int ret = 0;
2459         struct bio *bio;
2460         int nr;
2461         int contig = 0;
2462         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2463         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2464         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2465
2466         if (bio_ret && *bio_ret) {
2467                 bio = *bio_ret;
2468                 if (old_compressed)
2469                         contig = bio->bi_sector == sector;
2470                 else
2471                         contig = bio->bi_sector + (bio->bi_size >> 9) ==
2472                                 sector;
2473
2474                 if (prev_bio_flags != bio_flags || !contig ||
2475                     merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2476                     bio_add_page(bio, page, page_size, offset) < page_size) {
2477                         ret = submit_one_bio(rw, bio, mirror_num,
2478                                              prev_bio_flags);
2479                         BUG_ON(ret < 0);
2480                         bio = NULL;
2481                 } else {
2482                         return 0;
2483                 }
2484         }
2485         if (this_compressed)
2486                 nr = BIO_MAX_PAGES;
2487         else
2488                 nr = bio_get_nr_vecs(bdev);
2489
2490         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2491         if (!bio)
2492                 return -ENOMEM;
2493
2494         bio_add_page(bio, page, page_size, offset);
2495         bio->bi_end_io = end_io_func;
2496         bio->bi_private = tree;
2497
2498         if (bio_ret)
2499                 *bio_ret = bio;
2500         else {
2501                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2502                 BUG_ON(ret < 0);
2503         }
2504
2505         return ret;
2506 }
2507
2508 void set_page_extent_mapped(struct page *page)
2509 {
2510         if (!PagePrivate(page)) {
2511                 SetPagePrivate(page);
2512                 page_cache_get(page);
2513                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2514         }
2515 }
2516
2517 static void set_page_extent_head(struct page *page, unsigned long len)
2518 {
2519         WARN_ON(!PagePrivate(page));
2520         set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
2521 }
2522
2523 /*
2524  * basic readpage implementation.  Locked extent state structs are inserted
2525  * into the tree that are removed when the IO is done (by the end_io
2526  * handlers)
2527  */
2528 static int __extent_read_full_page(struct extent_io_tree *tree,
2529                                    struct page *page,
2530                                    get_extent_t *get_extent,
2531                                    struct bio **bio, int mirror_num,
2532                                    unsigned long *bio_flags)
2533 {
2534         struct inode *inode = page->mapping->host;
2535         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2536         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2537         u64 end;
2538         u64 cur = start;
2539         u64 extent_offset;
2540         u64 last_byte = i_size_read(inode);
2541         u64 block_start;
2542         u64 cur_end;
2543         sector_t sector;
2544         struct extent_map *em;
2545         struct block_device *bdev;
2546         struct btrfs_ordered_extent *ordered;
2547         int ret;
2548         int nr = 0;
2549         size_t pg_offset = 0;
2550         size_t iosize;
2551         size_t disk_io_size;
2552         size_t blocksize = inode->i_sb->s_blocksize;
2553         unsigned long this_bio_flag = 0;
2554
2555         set_page_extent_mapped(page);
2556
2557         if (!PageUptodate(page)) {
2558                 if (cleancache_get_page(page) == 0) {
2559                         BUG_ON(blocksize != PAGE_SIZE);
2560                         goto out;
2561                 }
2562         }
2563
2564         end = page_end;
2565         while (1) {
2566                 lock_extent(tree, start, end, GFP_NOFS);
2567                 ordered = btrfs_lookup_ordered_extent(inode, start);
2568                 if (!ordered)
2569                         break;
2570                 unlock_extent(tree, start, end, GFP_NOFS);
2571                 btrfs_start_ordered_extent(inode, ordered, 1);
2572                 btrfs_put_ordered_extent(ordered);
2573         }
2574
2575         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2576                 char *userpage;
2577                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2578
2579                 if (zero_offset) {
2580                         iosize = PAGE_CACHE_SIZE - zero_offset;
2581                         userpage = kmap_atomic(page, KM_USER0);
2582                         memset(userpage + zero_offset, 0, iosize);
2583                         flush_dcache_page(page);
2584                         kunmap_atomic(userpage, KM_USER0);
2585                 }
2586         }
2587         while (cur <= end) {
2588                 if (cur >= last_byte) {
2589                         char *userpage;
2590                         struct extent_state *cached = NULL;
2591
2592                         iosize = PAGE_CACHE_SIZE - pg_offset;
2593                         userpage = kmap_atomic(page, KM_USER0);
2594                         memset(userpage + pg_offset, 0, iosize);
2595                         flush_dcache_page(page);
2596                         kunmap_atomic(userpage, KM_USER0);
2597                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2598                                             &cached, GFP_NOFS);
2599                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2600                                              &cached, GFP_NOFS);
2601                         break;
2602                 }
2603                 em = get_extent(inode, page, pg_offset, cur,
2604                                 end - cur + 1, 0);
2605                 if (IS_ERR_OR_NULL(em)) {
2606                         SetPageError(page);
2607                         unlock_extent(tree, cur, end, GFP_NOFS);
2608                         break;
2609                 }
2610                 extent_offset = cur - em->start;
2611                 BUG_ON(extent_map_end(em) <= cur);
2612                 BUG_ON(end < cur);
2613
2614                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2615                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2616                         extent_set_compress_type(&this_bio_flag,
2617                                                  em->compress_type);
2618                 }
2619
2620                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2621                 cur_end = min(extent_map_end(em) - 1, end);
2622                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2623                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2624                         disk_io_size = em->block_len;
2625                         sector = em->block_start >> 9;
2626                 } else {
2627                         sector = (em->block_start + extent_offset) >> 9;
2628                         disk_io_size = iosize;
2629                 }
2630                 bdev = em->bdev;
2631                 block_start = em->block_start;
2632                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2633                         block_start = EXTENT_MAP_HOLE;
2634                 free_extent_map(em);
2635                 em = NULL;
2636
2637                 /* we've found a hole, just zero and go on */
2638                 if (block_start == EXTENT_MAP_HOLE) {
2639                         char *userpage;
2640                         struct extent_state *cached = NULL;
2641
2642                         userpage = kmap_atomic(page, KM_USER0);
2643                         memset(userpage + pg_offset, 0, iosize);
2644                         flush_dcache_page(page);
2645                         kunmap_atomic(userpage, KM_USER0);
2646
2647                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2648                                             &cached, GFP_NOFS);
2649                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2650                                              &cached, GFP_NOFS);
2651                         cur = cur + iosize;
2652                         pg_offset += iosize;
2653                         continue;
2654                 }
2655                 /* the get_extent function already copied into the page */
2656                 if (test_range_bit(tree, cur, cur_end,
2657                                    EXTENT_UPTODATE, 1, NULL)) {
2658                         check_page_uptodate(tree, page);
2659                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2660                         cur = cur + iosize;
2661                         pg_offset += iosize;
2662                         continue;
2663                 }
2664                 /* we have an inline extent but it didn't get marked up
2665                  * to date.  Error out
2666                  */
2667                 if (block_start == EXTENT_MAP_INLINE) {
2668                         SetPageError(page);
2669                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2670                         cur = cur + iosize;
2671                         pg_offset += iosize;
2672                         continue;
2673                 }
2674
2675                 ret = 0;
2676                 if (tree->ops && tree->ops->readpage_io_hook) {
2677                         ret = tree->ops->readpage_io_hook(page, cur,
2678                                                           cur + iosize - 1);
2679                 }
2680                 if (!ret) {
2681                         unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2682                         pnr -= page->index;
2683                         ret = submit_extent_page(READ, tree, page,
2684                                          sector, disk_io_size, pg_offset,
2685                                          bdev, bio, pnr,
2686                                          end_bio_extent_readpage, mirror_num,
2687                                          *bio_flags,
2688                                          this_bio_flag);
2689                         nr++;
2690                         *bio_flags = this_bio_flag;
2691                 }
2692                 if (ret)
2693                         SetPageError(page);
2694                 cur = cur + iosize;
2695                 pg_offset += iosize;
2696         }
2697 out:
2698         if (!nr) {
2699                 if (!PageError(page))
2700                         SetPageUptodate(page);
2701                 unlock_page(page);
2702         }
2703         return 0;
2704 }
2705
2706 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2707                             get_extent_t *get_extent, int mirror_num)
2708 {
2709         struct bio *bio = NULL;
2710         unsigned long bio_flags = 0;
2711         int ret;
2712
2713         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2714                                       &bio_flags);
2715         if (bio) {
2716                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2717                 BUG_ON(ret < 0);
2718         }
2719         return ret;
2720 }
2721
2722 static noinline void update_nr_written(struct page *page,
2723                                       struct writeback_control *wbc,
2724                                       unsigned long nr_written)
2725 {
2726         wbc->nr_to_write -= nr_written;
2727         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2728             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2729                 page->mapping->writeback_index = page->index + nr_written;
2730 }
2731
2732 /*
2733  * the writepage semantics are similar to regular writepage.  extent
2734  * records are inserted to lock ranges in the tree, and as dirty areas
2735  * are found, they are marked writeback.  Then the lock bits are removed
2736  * and the end_io handler clears the writeback ranges
2737  */
2738 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2739                               void *data)
2740 {
2741         struct inode *inode = page->mapping->host;
2742         struct extent_page_data *epd = data;
2743         struct extent_io_tree *tree = epd->tree;
2744         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2745         u64 delalloc_start;
2746         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2747         u64 end;
2748         u64 cur = start;
2749         u64 extent_offset;
2750         u64 last_byte = i_size_read(inode);
2751         u64 block_start;
2752         u64 iosize;
2753         sector_t sector;
2754         struct extent_state *cached_state = NULL;
2755         struct extent_map *em;
2756         struct block_device *bdev;
2757         int ret;
2758         int nr = 0;
2759         size_t pg_offset = 0;
2760         size_t blocksize;
2761         loff_t i_size = i_size_read(inode);
2762         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2763         u64 nr_delalloc;
2764         u64 delalloc_end;
2765         int page_started;
2766         int compressed;
2767         int write_flags;
2768         unsigned long nr_written = 0;
2769         bool fill_delalloc = true;
2770
2771         if (wbc->sync_mode == WB_SYNC_ALL)
2772                 write_flags = WRITE_SYNC;
2773         else
2774                 write_flags = WRITE;
2775
2776         trace___extent_writepage(page, inode, wbc);
2777
2778         WARN_ON(!PageLocked(page));
2779
2780         ClearPageError(page);
2781
2782         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2783         if (page->index > end_index ||
2784            (page->index == end_index && !pg_offset)) {
2785                 page->mapping->a_ops->invalidatepage(page, 0);
2786                 unlock_page(page);
2787                 return 0;
2788         }
2789
2790         if (page->index == end_index) {
2791                 char *userpage;
2792
2793                 userpage = kmap_atomic(page, KM_USER0);
2794                 memset(userpage + pg_offset, 0,
2795                        PAGE_CACHE_SIZE - pg_offset);
2796                 kunmap_atomic(userpage, KM_USER0);
2797                 flush_dcache_page(page);
2798         }
2799         pg_offset = 0;
2800
2801         set_page_extent_mapped(page);
2802
2803         if (!tree->ops || !tree->ops->fill_delalloc)
2804                 fill_delalloc = false;
2805
2806         delalloc_start = start;
2807         delalloc_end = 0;
2808         page_started = 0;
2809         if (!epd->extent_locked && fill_delalloc) {
2810                 u64 delalloc_to_write = 0;
2811                 /*
2812                  * make sure the wbc mapping index is at least updated
2813                  * to this page.
2814                  */
2815                 update_nr_written(page, wbc, 0);
2816
2817                 while (delalloc_end < page_end) {
2818                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2819                                                        page,
2820                                                        &delalloc_start,
2821                                                        &delalloc_end,
2822                                                        128 * 1024 * 1024);
2823                         if (nr_delalloc == 0) {
2824                                 delalloc_start = delalloc_end + 1;
2825                                 continue;
2826                         }
2827                         ret = tree->ops->fill_delalloc(inode, page,
2828                                                        delalloc_start,
2829                                                        delalloc_end,
2830                                                        &page_started,
2831                                                        &nr_written);
2832                         BUG_ON(ret);
2833                         /*
2834                          * delalloc_end is already one less than the total
2835                          * length, so we don't subtract one from
2836                          * PAGE_CACHE_SIZE
2837                          */
2838                         delalloc_to_write += (delalloc_end - delalloc_start +
2839                                               PAGE_CACHE_SIZE) >>
2840                                               PAGE_CACHE_SHIFT;
2841                         delalloc_start = delalloc_end + 1;
2842                 }
2843                 if (wbc->nr_to_write < delalloc_to_write) {
2844                         int thresh = 8192;
2845
2846                         if (delalloc_to_write < thresh * 2)
2847                                 thresh = delalloc_to_write;
2848                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
2849                                                  thresh);
2850                 }
2851
2852                 /* did the fill delalloc function already unlock and start
2853                  * the IO?
2854                  */
2855                 if (page_started) {
2856                         ret = 0;
2857                         /*
2858                          * we've unlocked the page, so we can't update
2859                          * the mapping's writeback index, just update
2860                          * nr_to_write.
2861                          */
2862                         wbc->nr_to_write -= nr_written;
2863                         goto done_unlocked;
2864                 }
2865         }
2866         if (tree->ops && tree->ops->writepage_start_hook) {
2867                 ret = tree->ops->writepage_start_hook(page, start,
2868                                                       page_end);
2869                 if (ret) {
2870                         /* Fixup worker will requeue */
2871                         if (ret == -EBUSY)
2872                                 wbc->pages_skipped++;
2873                         else
2874                                 redirty_page_for_writepage(wbc, page);
2875                         update_nr_written(page, wbc, nr_written);
2876                         unlock_page(page);
2877                         ret = 0;
2878                         goto done_unlocked;
2879                 }
2880         }
2881
2882         /*
2883          * we don't want to touch the inode after unlocking the page,
2884          * so we update the mapping writeback index now
2885          */
2886         update_nr_written(page, wbc, nr_written + 1);
2887
2888         end = page_end;
2889         if (last_byte <= start) {
2890                 if (tree->ops && tree->ops->writepage_end_io_hook)
2891                         tree->ops->writepage_end_io_hook(page, start,
2892                                                          page_end, NULL, 1);
2893                 goto done;
2894         }
2895
2896         blocksize = inode->i_sb->s_blocksize;
2897
2898         while (cur <= end) {
2899                 if (cur >= last_byte) {
2900                         if (tree->ops && tree->ops->writepage_end_io_hook)
2901                                 tree->ops->writepage_end_io_hook(page, cur,
2902                                                          page_end, NULL, 1);
2903                         break;
2904                 }
2905                 em = epd->get_extent(inode, page, pg_offset, cur,
2906                                      end - cur + 1, 1);
2907                 if (IS_ERR_OR_NULL(em)) {
2908                         SetPageError(page);
2909                         break;
2910                 }
2911
2912                 extent_offset = cur - em->start;
2913                 BUG_ON(extent_map_end(em) <= cur);
2914                 BUG_ON(end < cur);
2915                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2916                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2917                 sector = (em->block_start + extent_offset) >> 9;
2918                 bdev = em->bdev;
2919                 block_start = em->block_start;
2920                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2921                 free_extent_map(em);
2922                 em = NULL;
2923
2924                 /*
2925                  * compressed and inline extents are written through other
2926                  * paths in the FS
2927                  */
2928                 if (compressed || block_start == EXTENT_MAP_HOLE ||
2929                     block_start == EXTENT_MAP_INLINE) {
2930                         /*
2931                          * end_io notification does not happen here for
2932                          * compressed extents
2933                          */
2934                         if (!compressed && tree->ops &&
2935                             tree->ops->writepage_end_io_hook)
2936                                 tree->ops->writepage_end_io_hook(page, cur,
2937                                                          cur + iosize - 1,
2938                                                          NULL, 1);
2939                         else if (compressed) {
2940                                 /* we don't want to end_page_writeback on
2941                                  * a compressed extent.  this happens
2942                                  * elsewhere
2943                                  */
2944                                 nr++;
2945                         }
2946
2947                         cur += iosize;
2948                         pg_offset += iosize;
2949                         continue;
2950                 }
2951                 /* leave this out until we have a page_mkwrite call */
2952                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2953                                    EXTENT_DIRTY, 0, NULL)) {
2954                         cur = cur + iosize;
2955                         pg_offset += iosize;
2956                         continue;
2957                 }
2958
2959                 if (tree->ops && tree->ops->writepage_io_hook) {
2960                         ret = tree->ops->writepage_io_hook(page, cur,
2961                                                 cur + iosize - 1);
2962                 } else {
2963                         ret = 0;
2964                 }
2965                 if (ret) {
2966                         SetPageError(page);
2967                 } else {
2968                         unsigned long max_nr = end_index + 1;
2969
2970                         set_range_writeback(tree, cur, cur + iosize - 1);
2971                         if (!PageWriteback(page)) {
2972                                 printk(KERN_ERR "btrfs warning page %lu not "
2973                                        "writeback, cur %llu end %llu\n",
2974                                        page->index, (unsigned long long)cur,
2975                                        (unsigned long long)end);
2976                         }
2977
2978                         ret = submit_extent_page(write_flags, tree, page,
2979                                                  sector, iosize, pg_offset,
2980                                                  bdev, &epd->bio, max_nr,
2981                                                  end_bio_extent_writepage,
2982                                                  0, 0, 0);
2983                         if (ret)
2984                                 SetPageError(page);
2985                 }
2986                 cur = cur + iosize;
2987                 pg_offset += iosize;
2988                 nr++;
2989         }
2990 done:
2991         if (nr == 0) {
2992                 /* make sure the mapping tag for page dirty gets cleared */
2993                 set_page_writeback(page);
2994                 end_page_writeback(page);
2995         }
2996         unlock_page(page);
2997
2998 done_unlocked:
2999
3000         /* drop our reference on any cached states */
3001         free_extent_state(cached_state);
3002         return 0;
3003 }
3004
3005 /**
3006  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3007  * @mapping: address space structure to write
3008  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3009  * @writepage: function called for each page
3010  * @data: data passed to writepage function
3011  *
3012  * If a page is already under I/O, write_cache_pages() skips it, even
3013  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3014  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3015  * and msync() need to guarantee that all the data which was dirty at the time
3016  * the call was made get new I/O started against them.  If wbc->sync_mode is
3017  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3018  * existing IO to complete.
3019  */
3020 static int extent_write_cache_pages(struct extent_io_tree *tree,
3021                              struct address_space *mapping,
3022                              struct writeback_control *wbc,
3023                              writepage_t writepage, void *data,
3024                              void (*flush_fn)(void *))
3025 {
3026         int ret = 0;
3027         int done = 0;
3028         int nr_to_write_done = 0;
3029         struct pagevec pvec;
3030         int nr_pages;
3031         pgoff_t index;
3032         pgoff_t end;            /* Inclusive */
3033         int scanned = 0;
3034         int tag;
3035
3036         pagevec_init(&pvec, 0);
3037         if (wbc->range_cyclic) {
3038                 index = mapping->writeback_index; /* Start from prev offset */
3039                 end = -1;
3040         } else {
3041                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3042                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3043                 scanned = 1;
3044         }
3045         if (wbc->sync_mode == WB_SYNC_ALL)
3046                 tag = PAGECACHE_TAG_TOWRITE;
3047         else
3048                 tag = PAGECACHE_TAG_DIRTY;
3049 retry:
3050         if (wbc->sync_mode == WB_SYNC_ALL)
3051                 tag_pages_for_writeback(mapping, index, end);
3052         while (!done && !nr_to_write_done && (index <= end) &&
3053                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3054                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3055                 unsigned i;
3056
3057                 scanned = 1;
3058                 for (i = 0; i < nr_pages; i++) {
3059                         struct page *page = pvec.pages[i];
3060
3061                         /*
3062                          * At this point we hold neither mapping->tree_lock nor
3063                          * lock on the page itself: the page may be truncated or
3064                          * invalidated (changing page->mapping to NULL), or even
3065                          * swizzled back from swapper_space to tmpfs file
3066                          * mapping
3067                          */
3068                         if (tree->ops &&
3069                             tree->ops->write_cache_pages_lock_hook) {
3070                                 tree->ops->write_cache_pages_lock_hook(page,
3071                                                                data, flush_fn);
3072                         } else {
3073                                 if (!trylock_page(page)) {
3074                                         flush_fn(data);
3075                                         lock_page(page);
3076                                 }
3077                         }
3078
3079                         if (unlikely(page->mapping != mapping)) {
3080                                 unlock_page(page);
3081                                 continue;
3082                         }
3083
3084                         if (!wbc->range_cyclic && page->index > end) {
3085                                 done = 1;
3086                                 unlock_page(page);
3087                                 continue;
3088                         }
3089
3090                         if (wbc->sync_mode != WB_SYNC_NONE) {
3091                                 if (PageWriteback(page))
3092                                         flush_fn(data);
3093                                 wait_on_page_writeback(page);
3094                         }
3095
3096                         if (PageWriteback(page) ||
3097                             !clear_page_dirty_for_io(page)) {
3098                                 unlock_page(page);
3099                                 continue;
3100                         }
3101
3102                         ret = (*writepage)(page, wbc, data);
3103
3104                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3105                                 unlock_page(page);
3106                                 ret = 0;
3107                         }
3108                         if (ret)
3109                                 done = 1;
3110
3111                         /*
3112                          * the filesystem may choose to bump up nr_to_write.
3113                          * We have to make sure to honor the new nr_to_write
3114                          * at any time
3115                          */
3116                         nr_to_write_done = wbc->nr_to_write <= 0;
3117                 }
3118                 pagevec_release(&pvec);
3119                 cond_resched();
3120         }
3121         if (!scanned && !done) {
3122                 /*
3123                  * We hit the last page and there is more work to be done: wrap
3124                  * back to the start of the file
3125                  */
3126                 scanned = 1;
3127                 index = 0;
3128                 goto retry;
3129         }
3130         return ret;
3131 }
3132
3133 static void flush_epd_write_bio(struct extent_page_data *epd)
3134 {
3135         if (epd->bio) {
3136                 int rw = WRITE;
3137                 int ret;
3138
3139                 if (epd->sync_io)
3140                         rw = WRITE_SYNC;
3141
3142                 ret = submit_one_bio(rw, epd->bio, 0, 0);
3143                 BUG_ON(ret < 0);
3144                 epd->bio = NULL;
3145         }
3146 }
3147
3148 static noinline void flush_write_bio(void *data)
3149 {
3150         struct extent_page_data *epd = data;
3151         flush_epd_write_bio(epd);
3152 }
3153
3154 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3155                           get_extent_t *get_extent,
3156                           struct writeback_control *wbc)
3157 {
3158         int ret;
3159         struct extent_page_data epd = {
3160                 .bio = NULL,
3161                 .tree = tree,
3162                 .get_extent = get_extent,
3163                 .extent_locked = 0,
3164                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3165         };
3166
3167         ret = __extent_writepage(page, wbc, &epd);
3168
3169         flush_epd_write_bio(&epd);
3170         return ret;
3171 }
3172
3173 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3174                               u64 start, u64 end, get_extent_t *get_extent,
3175                               int mode)
3176 {
3177         int ret = 0;
3178         struct address_space *mapping = inode->i_mapping;
3179         struct page *page;
3180         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3181                 PAGE_CACHE_SHIFT;
3182
3183         struct extent_page_data epd = {
3184                 .bio = NULL,
3185                 .tree = tree,
3186                 .get_extent = get_extent,
3187                 .extent_locked = 1,
3188                 .sync_io = mode == WB_SYNC_ALL,
3189         };
3190         struct writeback_control wbc_writepages = {
3191                 .sync_mode      = mode,
3192                 .nr_to_write    = nr_pages * 2,
3193                 .range_start    = start,
3194                 .range_end      = end + 1,
3195         };
3196
3197         while (start <= end) {
3198                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3199                 if (clear_page_dirty_for_io(page))
3200                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3201                 else {
3202                         if (tree->ops && tree->ops->writepage_end_io_hook)
3203                                 tree->ops->writepage_end_io_hook(page, start,
3204                                                  start + PAGE_CACHE_SIZE - 1,
3205                                                  NULL, 1);
3206                         unlock_page(page);
3207                 }
3208                 page_cache_release(page);
3209                 start += PAGE_CACHE_SIZE;
3210         }
3211
3212         flush_epd_write_bio(&epd);
3213         return ret;
3214 }
3215
3216 int extent_writepages(struct extent_io_tree *tree,
3217                       struct address_space *mapping,
3218                       get_extent_t *get_extent,
3219                       struct writeback_control *wbc)
3220 {
3221         int ret = 0;
3222         struct extent_page_data epd = {
3223                 .bio = NULL,
3224                 .tree = tree,
3225                 .get_extent = get_extent,
3226                 .extent_locked = 0,
3227                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3228         };
3229
3230         ret = extent_write_cache_pages(tree, mapping, wbc,
3231                                        __extent_writepage, &epd,
3232                                        flush_write_bio);
3233         flush_epd_write_bio(&epd);
3234         return ret;
3235 }
3236
3237 int extent_readpages(struct extent_io_tree *tree,
3238                      struct address_space *mapping,
3239                      struct list_head *pages, unsigned nr_pages,
3240                      get_extent_t get_extent)
3241 {
3242         struct bio *bio = NULL;
3243         unsigned page_idx;
3244         unsigned long bio_flags = 0;
3245
3246         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3247                 struct page *page = list_entry(pages->prev, struct page, lru);
3248
3249                 prefetchw(&page->flags);
3250                 list_del(&page->lru);
3251                 if (!add_to_page_cache_lru(page, mapping,
3252                                         page->index, GFP_NOFS)) {
3253                         __extent_read_full_page(tree, page, get_extent,
3254                                                 &bio, 0, &bio_flags);
3255                 }
3256                 page_cache_release(page);
3257         }
3258         BUG_ON(!list_empty(pages));
3259         if (bio) {
3260                 int ret = submit_one_bio(READ, bio, 0, bio_flags);
3261                 BUG_ON(ret < 0);
3262         }
3263         return 0;
3264 }
3265
3266 /*
3267  * basic invalidatepage code, this waits on any locked or writeback
3268  * ranges corresponding to the page, and then deletes any extent state
3269  * records from the tree
3270  */
3271 int extent_invalidatepage(struct extent_io_tree *tree,
3272                           struct page *page, unsigned long offset)
3273 {
3274         struct extent_state *cached_state = NULL;
3275         u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3276         u64 end = start + PAGE_CACHE_SIZE - 1;
3277         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3278
3279         start += (offset + blocksize - 1) & ~(blocksize - 1);
3280         if (start > end)
3281                 return 0;
3282
3283         lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
3284         wait_on_page_writeback(page);
3285         clear_extent_bit(tree, start, end,
3286                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3287                          EXTENT_DO_ACCOUNTING,
3288                          1, 1, &cached_state, GFP_NOFS);
3289         return 0;
3290 }
3291
3292 /*
3293  * a helper for releasepage, this tests for areas of the page that
3294  * are locked or under IO and drops the related state bits if it is safe
3295  * to drop the page.
3296  */
3297 int try_release_extent_state(struct extent_map_tree *map,
3298                              struct extent_io_tree *tree, struct page *page,
3299                              gfp_t mask)
3300 {
3301         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3302         u64 end = start + PAGE_CACHE_SIZE - 1;
3303         int ret = 1;
3304
3305         if (test_range_bit(tree, start, end,
3306                            EXTENT_IOBITS, 0, NULL))
3307                 ret = 0;
3308         else {
3309                 if ((mask & GFP_NOFS) == GFP_NOFS)
3310                         mask = GFP_NOFS;
3311                 /*
3312                  * at this point we can safely clear everything except the
3313                  * locked bit and the nodatasum bit
3314                  */
3315                 ret = clear_extent_bit(tree, start, end,
3316                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3317                                  0, 0, NULL, mask);
3318
3319                 /* if clear_extent_bit failed for enomem reasons,
3320                  * we can't allow the release to continue.
3321                  */
3322                 if (ret < 0)
3323                         ret = 0;
3324                 else
3325                         ret = 1;
3326         }
3327         return ret;
3328 }
3329
3330 /*
3331  * a helper for releasepage.  As long as there are no locked extents
3332  * in the range corresponding to the page, both state records and extent
3333  * map records are removed
3334  */
3335 int try_release_extent_mapping(struct extent_map_tree *map,
3336                                struct extent_io_tree *tree, struct page *page,
3337                                gfp_t mask)
3338 {
3339         struct extent_map *em;
3340         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3341         u64 end = start + PAGE_CACHE_SIZE - 1;
3342
3343         if ((mask & __GFP_WAIT) &&
3344             page->mapping->host->i_size > 16 * 1024 * 1024) {
3345                 u64 len;
3346                 while (start <= end) {
3347                         len = end - start + 1;
3348                         write_lock(&map->lock);
3349                         em = lookup_extent_mapping(map, start, len);
3350                         if (!em) {
3351                                 write_unlock(&map->lock);
3352                                 break;
3353                         }
3354                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3355                             em->start != start) {
3356                                 write_unlock(&map->lock);
3357                                 free_extent_map(em);
3358                                 break;
3359                         }
3360                         if (!test_range_bit(tree, em->start,
3361                                             extent_map_end(em) - 1,
3362                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
3363                                             0, NULL)) {
3364                                 remove_extent_mapping(map, em);
3365                                 /* once for the rb tree */
3366                                 free_extent_map(em);
3367                         }
3368                         start = extent_map_end(em);
3369                         write_unlock(&map->lock);
3370
3371                         /* once for us */
3372                         free_extent_map(em);
3373                 }
3374         }
3375         return try_release_extent_state(map, tree, page, mask);
3376 }
3377
3378 /*
3379  * helper function for fiemap, which doesn't want to see any holes.
3380  * This maps until we find something past 'last'
3381  */
3382 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3383                                                 u64 offset,
3384                                                 u64 last,
3385                                                 get_extent_t *get_extent)
3386 {
3387         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3388         struct extent_map *em;
3389         u64 len;
3390
3391         if (offset >= last)
3392                 return NULL;
3393
3394         while(1) {
3395                 len = last - offset;
3396                 if (len == 0)
3397                         break;
3398                 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3399                 em = get_extent(inode, NULL, 0, offset, len, 0);
3400                 if (IS_ERR_OR_NULL(em))
3401                         return em;
3402
3403                 /* if this isn't a hole return it */
3404                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3405                     em->block_start != EXTENT_MAP_HOLE) {
3406                         return em;
3407                 }
3408
3409                 /* this is a hole, advance to the next extent */
3410                 offset = extent_map_end(em);
3411                 free_extent_map(em);
3412                 if (offset >= last)
3413                         break;
3414         }
3415         return NULL;
3416 }
3417
3418 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3419                 __u64 start, __u64 len, get_extent_t *get_extent)
3420 {
3421         int ret = 0;
3422         u64 off = start;
3423         u64 max = start + len;
3424         u32 flags = 0;
3425         u32 found_type;
3426         u64 last;
3427         u64 last_for_get_extent = 0;
3428         u64 disko = 0;
3429         u64 isize = i_size_read(inode);
3430         struct btrfs_key found_key;
3431         struct extent_map *em = NULL;
3432         struct extent_state *cached_state = NULL;
3433         struct btrfs_path *path;
3434         struct btrfs_file_extent_item *item;
3435         int end = 0;
3436         u64 em_start = 0;
3437         u64 em_len = 0;
3438         u64 em_end = 0;
3439         unsigned long emflags;
3440
3441         if (len == 0)
3442                 return -EINVAL;
3443
3444         path = btrfs_alloc_path();
3445         if (!path)
3446                 return -ENOMEM;
3447         path->leave_spinning = 1;
3448
3449         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3450         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3451
3452         /*
3453          * lookup the last file extent.  We're not using i_size here
3454          * because there might be preallocation past i_size
3455          */
3456         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3457                                        path, btrfs_ino(inode), -1, 0);
3458         if (ret < 0) {
3459                 btrfs_free_path(path);
3460                 return ret;
3461         }
3462         WARN_ON(!ret);
3463         path->slots[0]--;
3464         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3465                               struct btrfs_file_extent_item);
3466         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3467         found_type = btrfs_key_type(&found_key);
3468
3469         /* No extents, but there might be delalloc bits */
3470         if (found_key.objectid != btrfs_ino(inode) ||
3471             found_type != BTRFS_EXTENT_DATA_KEY) {
3472                 /* have to trust i_size as the end */
3473                 last = (u64)-1;
3474                 last_for_get_extent = isize;
3475         } else {
3476                 /*
3477                  * remember the start of the last extent.  There are a
3478                  * bunch of different factors that go into the length of the
3479                  * extent, so its much less complex to remember where it started
3480                  */
3481                 last = found_key.offset;
3482                 last_for_get_extent = last + 1;
3483         }
3484         btrfs_free_path(path);
3485
3486         /*
3487          * we might have some extents allocated but more delalloc past those
3488          * extents.  so, we trust isize unless the start of the last extent is
3489          * beyond isize
3490          */
3491         if (last < isize) {
3492                 last = (u64)-1;
3493                 last_for_get_extent = isize;
3494         }
3495
3496         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3497                          &cached_state, GFP_NOFS);
3498
3499         em = get_extent_skip_holes(inode, start, last_for_get_extent,
3500                                    get_extent);
3501         if (!em)
3502                 goto out;
3503         if (IS_ERR(em)) {
3504                 ret = PTR_ERR(em);
3505                 goto out;
3506         }
3507
3508         while (!end) {
3509                 u64 offset_in_extent;
3510
3511                 /* break if the extent we found is outside the range */
3512                 if (em->start >= max || extent_map_end(em) < off)
3513                         break;
3514
3515                 /*
3516                  * get_extent may return an extent that starts before our
3517                  * requested range.  We have to make sure the ranges
3518                  * we return to fiemap always move forward and don't
3519                  * overlap, so adjust the offsets here
3520                  */
3521                 em_start = max(em->start, off);
3522
3523                 /*
3524                  * record the offset from the start of the extent
3525                  * for adjusting the disk offset below
3526                  */
3527                 offset_in_extent = em_start - em->start;
3528                 em_end = extent_map_end(em);
3529                 em_len = em_end - em_start;
3530                 emflags = em->flags;
3531                 disko = 0;
3532                 flags = 0;
3533
3534                 /*
3535                  * bump off for our next call to get_extent
3536                  */
3537                 off = extent_map_end(em);
3538                 if (off >= max)
3539                         end = 1;
3540
3541                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3542                         end = 1;
3543                         flags |= FIEMAP_EXTENT_LAST;
3544                 } else if (em->block_start == EXTENT_MAP_INLINE) {
3545                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
3546                                   FIEMAP_EXTENT_NOT_ALIGNED);
3547                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3548                         flags |= (FIEMAP_EXTENT_DELALLOC |
3549                                   FIEMAP_EXTENT_UNKNOWN);
3550                 } else {
3551                         disko = em->block_start + offset_in_extent;
3552                 }
3553                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3554                         flags |= FIEMAP_EXTENT_ENCODED;
3555
3556                 free_extent_map(em);
3557                 em = NULL;
3558                 if ((em_start >= last) || em_len == (u64)-1 ||
3559                    (last == (u64)-1 && isize <= em_end)) {
3560                         flags |= FIEMAP_EXTENT_LAST;
3561                         end = 1;
3562                 }
3563
3564                 /* now scan forward to see if this is really the last extent. */
3565                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3566                                            get_extent);
3567                 if (IS_ERR(em)) {
3568                         ret = PTR_ERR(em);
3569                         goto out;
3570                 }
3571                 if (!em) {
3572                         flags |= FIEMAP_EXTENT_LAST;
3573                         end = 1;
3574                 }
3575                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3576                                               em_len, flags);
3577                 if (ret)
3578                         goto out_free;
3579         }
3580 out_free:
3581         free_extent_map(em);
3582 out:
3583         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3584                              &cached_state, GFP_NOFS);
3585         return ret;
3586 }
3587
3588 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3589                                               unsigned long i)
3590 {
3591         struct page *p;
3592         struct address_space *mapping;
3593
3594         if (i == 0)
3595                 return eb->first_page;
3596         i += eb->start >> PAGE_CACHE_SHIFT;
3597         mapping = eb->first_page->mapping;
3598         if (!mapping)
3599                 return NULL;
3600
3601         /*
3602          * extent_buffer_page is only called after pinning the page
3603          * by increasing the reference count.  So we know the page must
3604          * be in the radix tree.
3605          */
3606         rcu_read_lock();
3607         p = radix_tree_lookup(&mapping->page_tree, i);
3608         rcu_read_unlock();
3609
3610         return p;
3611 }
3612
3613 inline unsigned long num_extent_pages(u64 start, u64 len)
3614 {
3615         return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3616                 (start >> PAGE_CACHE_SHIFT);
3617 }
3618
3619 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3620                                                    u64 start,
3621                                                    unsigned long len,
3622                                                    gfp_t mask)
3623 {
3624         struct extent_buffer *eb = NULL;
3625 #if LEAK_DEBUG
3626         unsigned long flags;
3627 #endif
3628
3629         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3630         if (eb == NULL)
3631                 return NULL;
3632         eb->start = start;
3633         eb->len = len;
3634         rwlock_init(&eb->lock);
3635         atomic_set(&eb->write_locks, 0);
3636         atomic_set(&eb->read_locks, 0);
3637         atomic_set(&eb->blocking_readers, 0);
3638         atomic_set(&eb->blocking_writers, 0);
3639         atomic_set(&eb->spinning_readers, 0);
3640         atomic_set(&eb->spinning_writers, 0);
3641         eb->lock_nested = 0;
3642         init_waitqueue_head(&eb->write_lock_wq);
3643         init_waitqueue_head(&eb->read_lock_wq);
3644
3645 #if LEAK_DEBUG
3646         spin_lock_irqsave(&leak_lock, flags);
3647         list_add(&eb->leak_list, &buffers);
3648         spin_unlock_irqrestore(&leak_lock, flags);
3649 #endif
3650         atomic_set(&eb->refs, 1);
3651
3652         return eb;
3653 }
3654
3655 static void __free_extent_buffer(struct extent_buffer *eb)
3656 {
3657 #if LEAK_DEBUG
3658         unsigned long flags;
3659         spin_lock_irqsave(&leak_lock, flags);
3660         list_del(&eb->leak_list);
3661         spin_unlock_irqrestore(&leak_lock, flags);
3662 #endif
3663         kmem_cache_free(extent_buffer_cache, eb);
3664 }
3665
3666 /*
3667  * Helper for releasing extent buffer page.
3668  */
3669 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3670                                                 unsigned long start_idx)
3671 {
3672         unsigned long index;
3673         struct page *page;
3674
3675         if (!eb->first_page)
3676                 return;
3677
3678         index = num_extent_pages(eb->start, eb->len);
3679         if (start_idx >= index)
3680                 return;
3681
3682         do {
3683                 index--;
3684                 page = extent_buffer_page(eb, index);
3685                 if (page)
3686                         page_cache_release(page);
3687         } while (index != start_idx);
3688 }
3689
3690 /*
3691  * Helper for releasing the extent buffer.
3692  */
3693 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3694 {
3695         btrfs_release_extent_buffer_page(eb, 0);
3696         __free_extent_buffer(eb);
3697 }
3698
3699 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3700                                           u64 start, unsigned long len,
3701                                           struct page *page0)
3702 {
3703         unsigned long num_pages = num_extent_pages(start, len);
3704         unsigned long i;
3705         unsigned long index = start >> PAGE_CACHE_SHIFT;
3706         struct extent_buffer *eb;
3707         struct extent_buffer *exists = NULL;
3708         struct page *p;
3709         struct address_space *mapping = tree->mapping;
3710         int uptodate = 1;
3711         int ret;
3712
3713         rcu_read_lock();
3714         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3715         if (eb && atomic_inc_not_zero(&eb->refs)) {
3716                 rcu_read_unlock();
3717                 mark_page_accessed(eb->first_page);
3718                 return eb;
3719         }
3720         rcu_read_unlock();
3721
3722         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
3723         if (!eb)
3724                 return NULL;
3725
3726         if (page0) {
3727                 eb->first_page = page0;
3728                 i = 1;
3729                 index++;
3730                 page_cache_get(page0);
3731                 mark_page_accessed(page0);
3732                 set_page_extent_mapped(page0);
3733                 set_page_extent_head(page0, len);
3734                 uptodate = PageUptodate(page0);
3735         } else {
3736                 i = 0;
3737         }
3738         for (; i < num_pages; i++, index++) {
3739                 p = find_or_create_page(mapping, index, GFP_NOFS);
3740                 if (!p) {
3741                         WARN_ON(1);
3742                         goto free_eb;
3743                 }
3744                 set_page_extent_mapped(p);
3745                 mark_page_accessed(p);
3746                 if (i == 0) {
3747                         eb->first_page = p;
3748                         set_page_extent_head(p, len);
3749                 } else {
3750                         set_page_private(p, EXTENT_PAGE_PRIVATE);
3751                 }
3752                 if (!PageUptodate(p))
3753                         uptodate = 0;
3754
3755                 /*
3756                  * see below about how we avoid a nasty race with release page
3757                  * and why we unlock later
3758                  */
3759                 if (i != 0)
3760                         unlock_page(p);
3761         }
3762         if (uptodate)
3763                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3764
3765         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3766         if (ret)
3767                 goto free_eb;
3768
3769         spin_lock(&tree->buffer_lock);
3770         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3771         if (ret == -EEXIST) {
3772                 exists = radix_tree_lookup(&tree->buffer,
3773                                                 start >> PAGE_CACHE_SHIFT);
3774                 /* add one reference for the caller */
3775                 atomic_inc(&exists->refs);
3776                 spin_unlock(&tree->buffer_lock);
3777                 radix_tree_preload_end();
3778                 goto free_eb;
3779         }
3780         /* add one reference for the tree */
3781         atomic_inc(&eb->refs);
3782         spin_unlock(&tree->buffer_lock);
3783         radix_tree_preload_end();
3784
3785         /*
3786          * there is a race where release page may have
3787          * tried to find this extent buffer in the radix
3788          * but failed.  It will tell the VM it is safe to
3789          * reclaim the, and it will clear the page private bit.
3790          * We must make sure to set the page private bit properly
3791          * after the extent buffer is in the radix tree so
3792          * it doesn't get lost
3793          */
3794         set_page_extent_mapped(eb->first_page);
3795         set_page_extent_head(eb->first_page, eb->len);
3796         if (!page0)
3797                 unlock_page(eb->first_page);
3798         return eb;
3799
3800 free_eb:
3801         if (eb->first_page && !page0)
3802                 unlock_page(eb->first_page);
3803
3804         if (!atomic_dec_and_test(&eb->refs))
3805                 return exists;
3806         btrfs_release_extent_buffer(eb);
3807         return exists;
3808 }
3809
3810 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3811                                          u64 start, unsigned long len)
3812 {
3813         struct extent_buffer *eb;
3814
3815         rcu_read_lock();
3816         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3817         if (eb && atomic_inc_not_zero(&eb->refs)) {
3818                 rcu_read_unlock();
3819                 mark_page_accessed(eb->first_page);
3820                 return eb;
3821         }
3822         rcu_read_unlock();
3823
3824         return NULL;
3825 }
3826
3827 void free_extent_buffer(struct extent_buffer *eb)
3828 {
3829         if (!eb)
3830                 return;
3831
3832         if (!atomic_dec_and_test(&eb->refs))
3833                 return;
3834
3835         WARN_ON(1);
3836 }
3837
3838 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3839                               struct extent_buffer *eb)
3840 {
3841         unsigned long i;
3842         unsigned long num_pages;
3843         struct page *page;
3844
3845         num_pages = num_extent_pages(eb->start, eb->len);
3846
3847         for (i = 0; i < num_pages; i++) {
3848                 page = extent_buffer_page(eb, i);
3849                 if (!PageDirty(page))
3850                         continue;
3851
3852                 lock_page(page);
3853                 WARN_ON(!PagePrivate(page));
3854
3855                 set_page_extent_mapped(page);
3856                 if (i == 0)
3857                         set_page_extent_head(page, eb->len);
3858
3859                 clear_page_dirty_for_io(page);
3860                 spin_lock_irq(&page->mapping->tree_lock);
3861                 if (!PageDirty(page)) {
3862                         radix_tree_tag_clear(&page->mapping->page_tree,
3863                                                 page_index(page),
3864                                                 PAGECACHE_TAG_DIRTY);
3865                 }
3866                 spin_unlock_irq(&page->mapping->tree_lock);
3867                 ClearPageError(page);
3868                 unlock_page(page);
3869         }
3870         return 0;
3871 }
3872
3873 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3874                              struct extent_buffer *eb)
3875 {
3876         unsigned long i;
3877         unsigned long num_pages;
3878         int was_dirty = 0;
3879
3880         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3881         num_pages = num_extent_pages(eb->start, eb->len);
3882         for (i = 0; i < num_pages; i++)
3883                 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3884         return was_dirty;
3885 }
3886
3887 static int __eb_straddles_pages(u64 start, u64 len)
3888 {
3889         if (len < PAGE_CACHE_SIZE)
3890                 return 1;
3891         if (start & (PAGE_CACHE_SIZE - 1))
3892                 return 1;
3893         if ((start + len) & (PAGE_CACHE_SIZE - 1))
3894                 return 1;
3895         return 0;
3896 }
3897
3898 static int eb_straddles_pages(struct extent_buffer *eb)
3899 {
3900         return __eb_straddles_pages(eb->start, eb->len);
3901 }
3902
3903 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3904                                 struct extent_buffer *eb,
3905                                 struct extent_state **cached_state)
3906 {
3907         unsigned long i;
3908         struct page *page;
3909         unsigned long num_pages;
3910
3911         num_pages = num_extent_pages(eb->start, eb->len);
3912         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3913
3914         clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3915                               cached_state, GFP_NOFS);
3916
3917         for (i = 0; i < num_pages; i++) {
3918                 page = extent_buffer_page(eb, i);
3919                 if (page)
3920                         ClearPageUptodate(page);
3921         }
3922         return 0;
3923 }
3924
3925 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3926                                 struct extent_buffer *eb)
3927 {
3928         unsigned long i;
3929         struct page *page;
3930         unsigned long num_pages;
3931
3932         num_pages = num_extent_pages(eb->start, eb->len);
3933
3934         if (eb_straddles_pages(eb)) {
3935                 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3936                                     NULL, GFP_NOFS);
3937         }
3938         for (i = 0; i < num_pages; i++) {
3939                 page = extent_buffer_page(eb, i);
3940                 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3941                     ((i == num_pages - 1) &&
3942                      ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3943                         check_page_uptodate(tree, page);
3944                         continue;
3945                 }
3946                 SetPageUptodate(page);
3947         }
3948         return 0;
3949 }
3950
3951 int extent_range_uptodate(struct extent_io_tree *tree,
3952                           u64 start, u64 end)
3953 {
3954         struct page *page;
3955         int ret;
3956         int pg_uptodate = 1;
3957         int uptodate;
3958         unsigned long index;
3959
3960         if (__eb_straddles_pages(start, end - start + 1)) {
3961                 ret = test_range_bit(tree, start, end,
3962                                      EXTENT_UPTODATE, 1, NULL);
3963                 if (ret)
3964                         return 1;
3965         }
3966         while (start <= end) {
3967                 index = start >> PAGE_CACHE_SHIFT;
3968                 page = find_get_page(tree->mapping, index);
3969                 if (!page)
3970                         return 1;
3971                 uptodate = PageUptodate(page);
3972                 page_cache_release(page);
3973                 if (!uptodate) {
3974                         pg_uptodate = 0;
3975                         break;
3976                 }
3977                 start += PAGE_CACHE_SIZE;
3978         }
3979         return pg_uptodate;
3980 }
3981
3982 int extent_buffer_uptodate(struct extent_io_tree *tree,
3983                            struct extent_buffer *eb,
3984                            struct extent_state *cached_state)
3985 {
3986         int ret = 0;
3987         unsigned long num_pages;
3988         unsigned long i;
3989         struct page *page;
3990         int pg_uptodate = 1;
3991
3992         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3993                 return 1;
3994
3995         if (eb_straddles_pages(eb)) {
3996                 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3997                                    EXTENT_UPTODATE, 1, cached_state);
3998                 if (ret)
3999                         return ret;
4000         }
4001
4002         num_pages = num_extent_pages(eb->start, eb->len);
4003         for (i = 0; i < num_pages; i++) {
4004                 page = extent_buffer_page(eb, i);
4005                 if (!PageUptodate(page)) {
4006                         pg_uptodate = 0;
4007                         break;
4008                 }
4009         }
4010         return pg_uptodate;
4011 }
4012
4013 int read_extent_buffer_pages(struct extent_io_tree *tree,
4014                              struct extent_buffer *eb, u64 start, int wait,
4015                              get_extent_t *get_extent, int mirror_num)
4016 {
4017         unsigned long i;
4018         unsigned long start_i;
4019         struct page *page;
4020         int err;
4021         int ret = 0;
4022         int locked_pages = 0;
4023         int all_uptodate = 1;
4024         int inc_all_pages = 0;
4025         unsigned long num_pages;
4026         struct bio *bio = NULL;
4027         unsigned long bio_flags = 0;
4028
4029         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4030                 return 0;
4031
4032         if (eb_straddles_pages(eb)) {
4033                 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
4034                                    EXTENT_UPTODATE, 1, NULL)) {
4035                         return 0;
4036                 }
4037         }
4038
4039         if (start) {
4040                 WARN_ON(start < eb->start);
4041                 start_i = (start >> PAGE_CACHE_SHIFT) -
4042                         (eb->start >> PAGE_CACHE_SHIFT);
4043         } else {
4044                 start_i = 0;
4045         }
4046
4047         num_pages = num_extent_pages(eb->start, eb->len);
4048         for (i = start_i; i < num_pages; i++) {
4049                 page = extent_buffer_page(eb, i);
4050                 if (wait == WAIT_NONE) {
4051                         if (!trylock_page(page))
4052                                 goto unlock_exit;
4053                 } else {
4054                         lock_page(page);
4055                 }
4056                 locked_pages++;
4057                 if (!PageUptodate(page))
4058                         all_uptodate = 0;
4059         }
4060         if (all_uptodate) {
4061                 if (start_i == 0)
4062                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4063                 goto unlock_exit;
4064         }
4065
4066         for (i = start_i; i < num_pages; i++) {
4067                 page = extent_buffer_page(eb, i);
4068
4069                 WARN_ON(!PagePrivate(page));
4070
4071                 set_page_extent_mapped(page);
4072                 if (i == 0)
4073                         set_page_extent_head(page, eb->len);
4074
4075                 if (inc_all_pages)
4076                         page_cache_get(page);
4077                 if (!PageUptodate(page)) {
4078                         if (start_i == 0)
4079                                 inc_all_pages = 1;
4080                         ClearPageError(page);
4081                         err = __extent_read_full_page(tree, page,
4082                                                       get_extent, &bio,
4083                                                       mirror_num, &bio_flags);
4084                         if (err)
4085                                 ret = err;
4086                 } else {
4087                         unlock_page(page);
4088                 }
4089         }
4090
4091         if (bio) {
4092                 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4093                 BUG_ON(err < 0);
4094         }
4095
4096         if (ret || wait != WAIT_COMPLETE)
4097                 return ret;
4098
4099         for (i = start_i; i < num_pages; i++) {
4100                 page = extent_buffer_page(eb, i);
4101                 wait_on_page_locked(page);
4102                 if (!PageUptodate(page))
4103                         ret = -EIO;
4104         }
4105
4106         if (!ret)
4107                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4108         return ret;
4109
4110 unlock_exit:
4111         i = start_i;
4112         while (locked_pages > 0) {
4113                 page = extent_buffer_page(eb, i);
4114                 i++;
4115                 unlock_page(page);
4116                 locked_pages--;
4117         }
4118         return ret;
4119 }
4120
4121 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4122                         unsigned long start,
4123                         unsigned long len)
4124 {
4125         size_t cur;
4126         size_t offset;
4127         struct page *page;
4128         char *kaddr;
4129         char *dst = (char *)dstv;
4130         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4131         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4132
4133         WARN_ON(start > eb->len);
4134         WARN_ON(start + len > eb->start + eb->len);
4135
4136         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4137
4138         while (len > 0) {
4139                 page = extent_buffer_page(eb, i);
4140
4141                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4142                 kaddr = page_address(page);
4143                 memcpy(dst, kaddr + offset, cur);
4144
4145                 dst += cur;
4146                 len -= cur;
4147                 offset = 0;
4148                 i++;
4149         }
4150 }
4151
4152 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4153                                unsigned long min_len, char **map,
4154                                unsigned long *map_start,
4155                                unsigned long *map_len)
4156 {
4157         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4158         char *kaddr;
4159         struct page *p;
4160         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4161         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4162         unsigned long end_i = (start_offset + start + min_len - 1) >>
4163                 PAGE_CACHE_SHIFT;
4164
4165         if (i != end_i)
4166                 return -EINVAL;
4167
4168         if (i == 0) {
4169                 offset = start_offset;
4170                 *map_start = 0;
4171         } else {
4172                 offset = 0;
4173                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4174         }
4175
4176         if (start + min_len > eb->len) {
4177                 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4178                        "wanted %lu %lu\n", (unsigned long long)eb->start,
4179                        eb->len, start, min_len);
4180                 WARN_ON(1);
4181                 return -EINVAL;
4182         }
4183
4184         p = extent_buffer_page(eb, i);
4185         kaddr = page_address(p);
4186         *map = kaddr + offset;
4187         *map_len = PAGE_CACHE_SIZE - offset;
4188         return 0;
4189 }
4190
4191 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4192                           unsigned long start,
4193                           unsigned long len)
4194 {
4195         size_t cur;
4196         size_t offset;
4197         struct page *page;
4198         char *kaddr;
4199         char *ptr = (char *)ptrv;
4200         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4201         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4202         int ret = 0;
4203
4204         WARN_ON(start > eb->len);
4205         WARN_ON(start + len > eb->start + eb->len);
4206
4207         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4208
4209         while (len > 0) {
4210                 page = extent_buffer_page(eb, i);
4211
4212                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4213
4214                 kaddr = page_address(page);
4215                 ret = memcmp(ptr, kaddr + offset, cur);
4216                 if (ret)
4217                         break;
4218
4219                 ptr += cur;
4220                 len -= cur;
4221                 offset = 0;
4222                 i++;
4223         }
4224         return ret;
4225 }
4226
4227 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4228                          unsigned long start, unsigned long len)
4229 {
4230         size_t cur;
4231         size_t offset;
4232         struct page *page;
4233         char *kaddr;
4234         char *src = (char *)srcv;
4235         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4236         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4237
4238         WARN_ON(start > eb->len);
4239         WARN_ON(start + len > eb->start + eb->len);
4240
4241         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4242
4243         while (len > 0) {
4244                 page = extent_buffer_page(eb, i);
4245                 WARN_ON(!PageUptodate(page));
4246
4247                 cur = min(len, PAGE_CACHE_SIZE - offset);
4248                 kaddr = page_address(page);
4249                 memcpy(kaddr + offset, src, cur);
4250
4251                 src += cur;
4252                 len -= cur;
4253                 offset = 0;
4254                 i++;
4255         }
4256 }
4257
4258 void memset_extent_buffer(struct extent_buffer *eb, char c,
4259                           unsigned long start, unsigned long len)
4260 {
4261         size_t cur;
4262         size_t offset;
4263         struct page *page;
4264         char *kaddr;
4265         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4266         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4267
4268         WARN_ON(start > eb->len);
4269         WARN_ON(start + len > eb->start + eb->len);
4270
4271         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4272
4273         while (len > 0) {
4274                 page = extent_buffer_page(eb, i);
4275                 WARN_ON(!PageUptodate(page));
4276
4277                 cur = min(len, PAGE_CACHE_SIZE - offset);
4278                 kaddr = page_address(page);
4279                 memset(kaddr + offset, c, cur);
4280
4281                 len -= cur;
4282                 offset = 0;
4283                 i++;
4284         }
4285 }
4286
4287 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4288                         unsigned long dst_offset, unsigned long src_offset,
4289                         unsigned long len)
4290 {
4291         u64 dst_len = dst->len;
4292         size_t cur;
4293         size_t offset;
4294         struct page *page;
4295         char *kaddr;
4296         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4297         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4298
4299         WARN_ON(src->len != dst_len);
4300
4301         offset = (start_offset + dst_offset) &
4302                 ((unsigned long)PAGE_CACHE_SIZE - 1);
4303
4304         while (len > 0) {
4305                 page = extent_buffer_page(dst, i);
4306                 WARN_ON(!PageUptodate(page));
4307
4308                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4309
4310                 kaddr = page_address(page);
4311                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4312
4313                 src_offset += cur;
4314                 len -= cur;
4315                 offset = 0;
4316                 i++;
4317         }
4318 }
4319
4320 static void move_pages(struct page *dst_page, struct page *src_page,
4321                        unsigned long dst_off, unsigned long src_off,
4322                        unsigned long len)
4323 {
4324         char *dst_kaddr = page_address(dst_page);
4325         if (dst_page == src_page) {
4326                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4327         } else {
4328                 char *src_kaddr = page_address(src_page);
4329                 char *p = dst_kaddr + dst_off + len;
4330                 char *s = src_kaddr + src_off + len;
4331
4332                 while (len--)
4333                         *--p = *--s;
4334         }
4335 }
4336
4337 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4338 {
4339         unsigned long distance = (src > dst) ? src - dst : dst - src;
4340         return distance < len;
4341 }
4342
4343 static void copy_pages(struct page *dst_page, struct page *src_page,
4344                        unsigned long dst_off, unsigned long src_off,
4345                        unsigned long len)
4346 {
4347         char *dst_kaddr = page_address(dst_page);
4348         char *src_kaddr;
4349
4350         if (dst_page != src_page) {
4351                 src_kaddr = page_address(src_page);
4352         } else {
4353                 src_kaddr = dst_kaddr;
4354                 BUG_ON(areas_overlap(src_off, dst_off, len));
4355         }
4356
4357         memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4358 }
4359
4360 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4361                            unsigned long src_offset, unsigned long len)
4362 {
4363         size_t cur;
4364         size_t dst_off_in_page;
4365         size_t src_off_in_page;
4366         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4367         unsigned long dst_i;
4368         unsigned long src_i;
4369
4370         if (src_offset + len > dst->len) {
4371                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4372                        "len %lu dst len %lu\n", src_offset, len, dst->len);
4373                 BUG_ON(1);
4374         }
4375         if (dst_offset + len > dst->len) {
4376                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4377                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
4378                 BUG_ON(1);
4379         }
4380
4381         while (len > 0) {
4382                 dst_off_in_page = (start_offset + dst_offset) &
4383                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4384                 src_off_in_page = (start_offset + src_offset) &
4385                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4386
4387                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4388                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4389
4390                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4391                                                src_off_in_page));
4392                 cur = min_t(unsigned long, cur,
4393                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4394
4395                 copy_pages(extent_buffer_page(dst, dst_i),
4396                            extent_buffer_page(dst, src_i),
4397                            dst_off_in_page, src_off_in_page, cur);
4398
4399                 src_offset += cur;
4400                 dst_offset += cur;
4401                 len -= cur;
4402         }
4403 }
4404
4405 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4406                            unsigned long src_offset, unsigned long len)
4407 {
4408         size_t cur;
4409         size_t dst_off_in_page;
4410         size_t src_off_in_page;
4411         unsigned long dst_end = dst_offset + len - 1;
4412         unsigned long src_end = src_offset + len - 1;
4413         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4414         unsigned long dst_i;
4415         unsigned long src_i;
4416
4417         if (src_offset + len > dst->len) {
4418                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4419                        "len %lu len %lu\n", src_offset, len, dst->len);
4420                 BUG_ON(1);
4421         }
4422         if (dst_offset + len > dst->len) {
4423                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4424                        "len %lu len %lu\n", dst_offset, len, dst->len);
4425                 BUG_ON(1);
4426         }
4427         if (!areas_overlap(src_offset, dst_offset, len)) {
4428                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4429                 return;
4430         }
4431         while (len > 0) {
4432                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4433                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4434
4435                 dst_off_in_page = (start_offset + dst_end) &
4436                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4437                 src_off_in_page = (start_offset + src_end) &
4438                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4439
4440                 cur = min_t(unsigned long, len, src_off_in_page + 1);
4441                 cur = min(cur, dst_off_in_page + 1);
4442                 move_pages(extent_buffer_page(dst, dst_i),
4443                            extent_buffer_page(dst, src_i),
4444                            dst_off_in_page - cur + 1,
4445                            src_off_in_page - cur + 1, cur);
4446
4447                 dst_end -= cur;
4448                 src_end -= cur;
4449                 len -= cur;
4450         }
4451 }
4452
4453 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4454 {
4455         struct extent_buffer *eb =
4456                         container_of(head, struct extent_buffer, rcu_head);
4457
4458         btrfs_release_extent_buffer(eb);
4459 }
4460
4461 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4462 {
4463         u64 start = page_offset(page);
4464         struct extent_buffer *eb;
4465         int ret = 1;
4466
4467         spin_lock(&tree->buffer_lock);
4468         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4469         if (!eb) {
4470                 spin_unlock(&tree->buffer_lock);
4471                 return ret;
4472         }
4473
4474         if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4475                 ret = 0;
4476                 goto out;
4477         }
4478
4479         /*
4480          * set @eb->refs to 0 if it is already 1, and then release the @eb.
4481          * Or go back.
4482          */
4483         if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4484                 ret = 0;
4485                 goto out;
4486         }
4487
4488         radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4489 out:
4490         spin_unlock(&tree->buffer_lock);
4491
4492         /* at this point we can safely release the extent buffer */
4493         if (atomic_read(&eb->refs) == 0)
4494                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4495         return ret;
4496 }