Merge branch 'omap-gpmc-fixes-for-v3.10' of git://github.com/jonhunter/linux into...
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29
30 #define LEAK_DEBUG 0
31 #if LEAK_DEBUG
32 static DEFINE_SPINLOCK(leak_lock);
33 #endif
34
35 #define BUFFER_LRU_MAX 64
36
37 struct tree_entry {
38         u64 start;
39         u64 end;
40         struct rb_node rb_node;
41 };
42
43 struct extent_page_data {
44         struct bio *bio;
45         struct extent_io_tree *tree;
46         get_extent_t *get_extent;
47         unsigned long bio_flags;
48
49         /* tells writepage not to lock the state bits for this range
50          * it still does the unlocking
51          */
52         unsigned int extent_locked:1;
53
54         /* tells the submit_bio code to use a WRITE_SYNC */
55         unsigned int sync_io:1;
56 };
57
58 static noinline void flush_write_bio(void *data);
59 static inline struct btrfs_fs_info *
60 tree_fs_info(struct extent_io_tree *tree)
61 {
62         return btrfs_sb(tree->mapping->host->i_sb);
63 }
64
65 int __init extent_io_init(void)
66 {
67         extent_state_cache = kmem_cache_create("btrfs_extent_state",
68                         sizeof(struct extent_state), 0,
69                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
70         if (!extent_state_cache)
71                 return -ENOMEM;
72
73         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
74                         sizeof(struct extent_buffer), 0,
75                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
76         if (!extent_buffer_cache)
77                 goto free_state_cache;
78         return 0;
79
80 free_state_cache:
81         kmem_cache_destroy(extent_state_cache);
82         return -ENOMEM;
83 }
84
85 void extent_io_exit(void)
86 {
87         struct extent_state *state;
88         struct extent_buffer *eb;
89
90         while (!list_empty(&states)) {
91                 state = list_entry(states.next, struct extent_state, leak_list);
92                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
93                        "state %lu in tree %p refs %d\n",
94                        (unsigned long long)state->start,
95                        (unsigned long long)state->end,
96                        state->state, state->tree, atomic_read(&state->refs));
97                 list_del(&state->leak_list);
98                 kmem_cache_free(extent_state_cache, state);
99
100         }
101
102         while (!list_empty(&buffers)) {
103                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
104                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
105                        "refs %d\n", (unsigned long long)eb->start,
106                        eb->len, atomic_read(&eb->refs));
107                 list_del(&eb->leak_list);
108                 kmem_cache_free(extent_buffer_cache, eb);
109         }
110
111         /*
112          * Make sure all delayed rcu free are flushed before we
113          * destroy caches.
114          */
115         rcu_barrier();
116         if (extent_state_cache)
117                 kmem_cache_destroy(extent_state_cache);
118         if (extent_buffer_cache)
119                 kmem_cache_destroy(extent_buffer_cache);
120 }
121
122 void extent_io_tree_init(struct extent_io_tree *tree,
123                          struct address_space *mapping)
124 {
125         tree->state = RB_ROOT;
126         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
127         tree->ops = NULL;
128         tree->dirty_bytes = 0;
129         spin_lock_init(&tree->lock);
130         spin_lock_init(&tree->buffer_lock);
131         tree->mapping = mapping;
132 }
133
134 static struct extent_state *alloc_extent_state(gfp_t mask)
135 {
136         struct extent_state *state;
137 #if LEAK_DEBUG
138         unsigned long flags;
139 #endif
140
141         state = kmem_cache_alloc(extent_state_cache, mask);
142         if (!state)
143                 return state;
144         state->state = 0;
145         state->private = 0;
146         state->tree = NULL;
147 #if LEAK_DEBUG
148         spin_lock_irqsave(&leak_lock, flags);
149         list_add(&state->leak_list, &states);
150         spin_unlock_irqrestore(&leak_lock, flags);
151 #endif
152         atomic_set(&state->refs, 1);
153         init_waitqueue_head(&state->wq);
154         trace_alloc_extent_state(state, mask, _RET_IP_);
155         return state;
156 }
157
158 void free_extent_state(struct extent_state *state)
159 {
160         if (!state)
161                 return;
162         if (atomic_dec_and_test(&state->refs)) {
163 #if LEAK_DEBUG
164                 unsigned long flags;
165 #endif
166                 WARN_ON(state->tree);
167 #if LEAK_DEBUG
168                 spin_lock_irqsave(&leak_lock, flags);
169                 list_del(&state->leak_list);
170                 spin_unlock_irqrestore(&leak_lock, flags);
171 #endif
172                 trace_free_extent_state(state, _RET_IP_);
173                 kmem_cache_free(extent_state_cache, state);
174         }
175 }
176
177 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
178                                    struct rb_node *node)
179 {
180         struct rb_node **p = &root->rb_node;
181         struct rb_node *parent = NULL;
182         struct tree_entry *entry;
183
184         while (*p) {
185                 parent = *p;
186                 entry = rb_entry(parent, struct tree_entry, rb_node);
187
188                 if (offset < entry->start)
189                         p = &(*p)->rb_left;
190                 else if (offset > entry->end)
191                         p = &(*p)->rb_right;
192                 else
193                         return parent;
194         }
195
196         rb_link_node(node, parent, p);
197         rb_insert_color(node, root);
198         return NULL;
199 }
200
201 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
202                                      struct rb_node **prev_ret,
203                                      struct rb_node **next_ret)
204 {
205         struct rb_root *root = &tree->state;
206         struct rb_node *n = root->rb_node;
207         struct rb_node *prev = NULL;
208         struct rb_node *orig_prev = NULL;
209         struct tree_entry *entry;
210         struct tree_entry *prev_entry = NULL;
211
212         while (n) {
213                 entry = rb_entry(n, struct tree_entry, rb_node);
214                 prev = n;
215                 prev_entry = entry;
216
217                 if (offset < entry->start)
218                         n = n->rb_left;
219                 else if (offset > entry->end)
220                         n = n->rb_right;
221                 else
222                         return n;
223         }
224
225         if (prev_ret) {
226                 orig_prev = prev;
227                 while (prev && offset > prev_entry->end) {
228                         prev = rb_next(prev);
229                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
230                 }
231                 *prev_ret = prev;
232                 prev = orig_prev;
233         }
234
235         if (next_ret) {
236                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
237                 while (prev && offset < prev_entry->start) {
238                         prev = rb_prev(prev);
239                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
240                 }
241                 *next_ret = prev;
242         }
243         return NULL;
244 }
245
246 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
247                                           u64 offset)
248 {
249         struct rb_node *prev = NULL;
250         struct rb_node *ret;
251
252         ret = __etree_search(tree, offset, &prev, NULL);
253         if (!ret)
254                 return prev;
255         return ret;
256 }
257
258 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
259                      struct extent_state *other)
260 {
261         if (tree->ops && tree->ops->merge_extent_hook)
262                 tree->ops->merge_extent_hook(tree->mapping->host, new,
263                                              other);
264 }
265
266 /*
267  * utility function to look for merge candidates inside a given range.
268  * Any extents with matching state are merged together into a single
269  * extent in the tree.  Extents with EXTENT_IO in their state field
270  * are not merged because the end_io handlers need to be able to do
271  * operations on them without sleeping (or doing allocations/splits).
272  *
273  * This should be called with the tree lock held.
274  */
275 static void merge_state(struct extent_io_tree *tree,
276                         struct extent_state *state)
277 {
278         struct extent_state *other;
279         struct rb_node *other_node;
280
281         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
282                 return;
283
284         other_node = rb_prev(&state->rb_node);
285         if (other_node) {
286                 other = rb_entry(other_node, struct extent_state, rb_node);
287                 if (other->end == state->start - 1 &&
288                     other->state == state->state) {
289                         merge_cb(tree, state, other);
290                         state->start = other->start;
291                         other->tree = NULL;
292                         rb_erase(&other->rb_node, &tree->state);
293                         free_extent_state(other);
294                 }
295         }
296         other_node = rb_next(&state->rb_node);
297         if (other_node) {
298                 other = rb_entry(other_node, struct extent_state, rb_node);
299                 if (other->start == state->end + 1 &&
300                     other->state == state->state) {
301                         merge_cb(tree, state, other);
302                         state->end = other->end;
303                         other->tree = NULL;
304                         rb_erase(&other->rb_node, &tree->state);
305                         free_extent_state(other);
306                 }
307         }
308 }
309
310 static void set_state_cb(struct extent_io_tree *tree,
311                          struct extent_state *state, int *bits)
312 {
313         if (tree->ops && tree->ops->set_bit_hook)
314                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
315 }
316
317 static void clear_state_cb(struct extent_io_tree *tree,
318                            struct extent_state *state, int *bits)
319 {
320         if (tree->ops && tree->ops->clear_bit_hook)
321                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
322 }
323
324 static void set_state_bits(struct extent_io_tree *tree,
325                            struct extent_state *state, int *bits);
326
327 /*
328  * insert an extent_state struct into the tree.  'bits' are set on the
329  * struct before it is inserted.
330  *
331  * This may return -EEXIST if the extent is already there, in which case the
332  * state struct is freed.
333  *
334  * The tree lock is not taken internally.  This is a utility function and
335  * probably isn't what you want to call (see set/clear_extent_bit).
336  */
337 static int insert_state(struct extent_io_tree *tree,
338                         struct extent_state *state, u64 start, u64 end,
339                         int *bits)
340 {
341         struct rb_node *node;
342
343         if (end < start)
344                 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
345                        (unsigned long long)end,
346                        (unsigned long long)start);
347         state->start = start;
348         state->end = end;
349
350         set_state_bits(tree, state, bits);
351
352         node = tree_insert(&tree->state, end, &state->rb_node);
353         if (node) {
354                 struct extent_state *found;
355                 found = rb_entry(node, struct extent_state, rb_node);
356                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
357                        "%llu %llu\n", (unsigned long long)found->start,
358                        (unsigned long long)found->end,
359                        (unsigned long long)start, (unsigned long long)end);
360                 return -EEXIST;
361         }
362         state->tree = tree;
363         merge_state(tree, state);
364         return 0;
365 }
366
367 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
368                      u64 split)
369 {
370         if (tree->ops && tree->ops->split_extent_hook)
371                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
372 }
373
374 /*
375  * split a given extent state struct in two, inserting the preallocated
376  * struct 'prealloc' as the newly created second half.  'split' indicates an
377  * offset inside 'orig' where it should be split.
378  *
379  * Before calling,
380  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
381  * are two extent state structs in the tree:
382  * prealloc: [orig->start, split - 1]
383  * orig: [ split, orig->end ]
384  *
385  * The tree locks are not taken by this function. They need to be held
386  * by the caller.
387  */
388 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
389                        struct extent_state *prealloc, u64 split)
390 {
391         struct rb_node *node;
392
393         split_cb(tree, orig, split);
394
395         prealloc->start = orig->start;
396         prealloc->end = split - 1;
397         prealloc->state = orig->state;
398         orig->start = split;
399
400         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
401         if (node) {
402                 free_extent_state(prealloc);
403                 return -EEXIST;
404         }
405         prealloc->tree = tree;
406         return 0;
407 }
408
409 static struct extent_state *next_state(struct extent_state *state)
410 {
411         struct rb_node *next = rb_next(&state->rb_node);
412         if (next)
413                 return rb_entry(next, struct extent_state, rb_node);
414         else
415                 return NULL;
416 }
417
418 /*
419  * utility function to clear some bits in an extent state struct.
420  * it will optionally wake up any one waiting on this state (wake == 1).
421  *
422  * If no bits are set on the state struct after clearing things, the
423  * struct is freed and removed from the tree
424  */
425 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
426                                             struct extent_state *state,
427                                             int *bits, int wake)
428 {
429         struct extent_state *next;
430         int bits_to_clear = *bits & ~EXTENT_CTLBITS;
431
432         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
433                 u64 range = state->end - state->start + 1;
434                 WARN_ON(range > tree->dirty_bytes);
435                 tree->dirty_bytes -= range;
436         }
437         clear_state_cb(tree, state, bits);
438         state->state &= ~bits_to_clear;
439         if (wake)
440                 wake_up(&state->wq);
441         if (state->state == 0) {
442                 next = next_state(state);
443                 if (state->tree) {
444                         rb_erase(&state->rb_node, &tree->state);
445                         state->tree = NULL;
446                         free_extent_state(state);
447                 } else {
448                         WARN_ON(1);
449                 }
450         } else {
451                 merge_state(tree, state);
452                 next = next_state(state);
453         }
454         return next;
455 }
456
457 static struct extent_state *
458 alloc_extent_state_atomic(struct extent_state *prealloc)
459 {
460         if (!prealloc)
461                 prealloc = alloc_extent_state(GFP_ATOMIC);
462
463         return prealloc;
464 }
465
466 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
467 {
468         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
469                     "Extent tree was modified by another "
470                     "thread while locked.");
471 }
472
473 /*
474  * clear some bits on a range in the tree.  This may require splitting
475  * or inserting elements in the tree, so the gfp mask is used to
476  * indicate which allocations or sleeping are allowed.
477  *
478  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
479  * the given range from the tree regardless of state (ie for truncate).
480  *
481  * the range [start, end] is inclusive.
482  *
483  * This takes the tree lock, and returns 0 on success and < 0 on error.
484  */
485 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
486                      int bits, int wake, int delete,
487                      struct extent_state **cached_state,
488                      gfp_t mask)
489 {
490         struct extent_state *state;
491         struct extent_state *cached;
492         struct extent_state *prealloc = NULL;
493         struct rb_node *node;
494         u64 last_end;
495         int err;
496         int clear = 0;
497
498         if (delete)
499                 bits |= ~EXTENT_CTLBITS;
500         bits |= EXTENT_FIRST_DELALLOC;
501
502         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
503                 clear = 1;
504 again:
505         if (!prealloc && (mask & __GFP_WAIT)) {
506                 prealloc = alloc_extent_state(mask);
507                 if (!prealloc)
508                         return -ENOMEM;
509         }
510
511         spin_lock(&tree->lock);
512         if (cached_state) {
513                 cached = *cached_state;
514
515                 if (clear) {
516                         *cached_state = NULL;
517                         cached_state = NULL;
518                 }
519
520                 if (cached && cached->tree && cached->start <= start &&
521                     cached->end > start) {
522                         if (clear)
523                                 atomic_dec(&cached->refs);
524                         state = cached;
525                         goto hit_next;
526                 }
527                 if (clear)
528                         free_extent_state(cached);
529         }
530         /*
531          * this search will find the extents that end after
532          * our range starts
533          */
534         node = tree_search(tree, start);
535         if (!node)
536                 goto out;
537         state = rb_entry(node, struct extent_state, rb_node);
538 hit_next:
539         if (state->start > end)
540                 goto out;
541         WARN_ON(state->end < start);
542         last_end = state->end;
543
544         /* the state doesn't have the wanted bits, go ahead */
545         if (!(state->state & bits)) {
546                 state = next_state(state);
547                 goto next;
548         }
549
550         /*
551          *     | ---- desired range ---- |
552          *  | state | or
553          *  | ------------- state -------------- |
554          *
555          * We need to split the extent we found, and may flip
556          * bits on second half.
557          *
558          * If the extent we found extends past our range, we
559          * just split and search again.  It'll get split again
560          * the next time though.
561          *
562          * If the extent we found is inside our range, we clear
563          * the desired bit on it.
564          */
565
566         if (state->start < start) {
567                 prealloc = alloc_extent_state_atomic(prealloc);
568                 BUG_ON(!prealloc);
569                 err = split_state(tree, state, prealloc, start);
570                 if (err)
571                         extent_io_tree_panic(tree, err);
572
573                 prealloc = NULL;
574                 if (err)
575                         goto out;
576                 if (state->end <= end) {
577                         state = clear_state_bit(tree, state, &bits, wake);
578                         goto next;
579                 }
580                 goto search_again;
581         }
582         /*
583          * | ---- desired range ---- |
584          *                        | state |
585          * We need to split the extent, and clear the bit
586          * on the first half
587          */
588         if (state->start <= end && state->end > end) {
589                 prealloc = alloc_extent_state_atomic(prealloc);
590                 BUG_ON(!prealloc);
591                 err = split_state(tree, state, prealloc, end + 1);
592                 if (err)
593                         extent_io_tree_panic(tree, err);
594
595                 if (wake)
596                         wake_up(&state->wq);
597
598                 clear_state_bit(tree, prealloc, &bits, wake);
599
600                 prealloc = NULL;
601                 goto out;
602         }
603
604         state = clear_state_bit(tree, state, &bits, wake);
605 next:
606         if (last_end == (u64)-1)
607                 goto out;
608         start = last_end + 1;
609         if (start <= end && state && !need_resched())
610                 goto hit_next;
611         goto search_again;
612
613 out:
614         spin_unlock(&tree->lock);
615         if (prealloc)
616                 free_extent_state(prealloc);
617
618         return 0;
619
620 search_again:
621         if (start > end)
622                 goto out;
623         spin_unlock(&tree->lock);
624         if (mask & __GFP_WAIT)
625                 cond_resched();
626         goto again;
627 }
628
629 static void wait_on_state(struct extent_io_tree *tree,
630                           struct extent_state *state)
631                 __releases(tree->lock)
632                 __acquires(tree->lock)
633 {
634         DEFINE_WAIT(wait);
635         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
636         spin_unlock(&tree->lock);
637         schedule();
638         spin_lock(&tree->lock);
639         finish_wait(&state->wq, &wait);
640 }
641
642 /*
643  * waits for one or more bits to clear on a range in the state tree.
644  * The range [start, end] is inclusive.
645  * The tree lock is taken by this function
646  */
647 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
648 {
649         struct extent_state *state;
650         struct rb_node *node;
651
652         spin_lock(&tree->lock);
653 again:
654         while (1) {
655                 /*
656                  * this search will find all the extents that end after
657                  * our range starts
658                  */
659                 node = tree_search(tree, start);
660                 if (!node)
661                         break;
662
663                 state = rb_entry(node, struct extent_state, rb_node);
664
665                 if (state->start > end)
666                         goto out;
667
668                 if (state->state & bits) {
669                         start = state->start;
670                         atomic_inc(&state->refs);
671                         wait_on_state(tree, state);
672                         free_extent_state(state);
673                         goto again;
674                 }
675                 start = state->end + 1;
676
677                 if (start > end)
678                         break;
679
680                 cond_resched_lock(&tree->lock);
681         }
682 out:
683         spin_unlock(&tree->lock);
684 }
685
686 static void set_state_bits(struct extent_io_tree *tree,
687                            struct extent_state *state,
688                            int *bits)
689 {
690         int bits_to_set = *bits & ~EXTENT_CTLBITS;
691
692         set_state_cb(tree, state, bits);
693         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
694                 u64 range = state->end - state->start + 1;
695                 tree->dirty_bytes += range;
696         }
697         state->state |= bits_to_set;
698 }
699
700 static void cache_state(struct extent_state *state,
701                         struct extent_state **cached_ptr)
702 {
703         if (cached_ptr && !(*cached_ptr)) {
704                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
705                         *cached_ptr = state;
706                         atomic_inc(&state->refs);
707                 }
708         }
709 }
710
711 static void uncache_state(struct extent_state **cached_ptr)
712 {
713         if (cached_ptr && (*cached_ptr)) {
714                 struct extent_state *state = *cached_ptr;
715                 *cached_ptr = NULL;
716                 free_extent_state(state);
717         }
718 }
719
720 /*
721  * set some bits on a range in the tree.  This may require allocations or
722  * sleeping, so the gfp mask is used to indicate what is allowed.
723  *
724  * If any of the exclusive bits are set, this will fail with -EEXIST if some
725  * part of the range already has the desired bits set.  The start of the
726  * existing range is returned in failed_start in this case.
727  *
728  * [start, end] is inclusive This takes the tree lock.
729  */
730
731 static int __must_check
732 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
733                  int bits, int exclusive_bits, u64 *failed_start,
734                  struct extent_state **cached_state, gfp_t mask)
735 {
736         struct extent_state *state;
737         struct extent_state *prealloc = NULL;
738         struct rb_node *node;
739         int err = 0;
740         u64 last_start;
741         u64 last_end;
742
743         bits |= EXTENT_FIRST_DELALLOC;
744 again:
745         if (!prealloc && (mask & __GFP_WAIT)) {
746                 prealloc = alloc_extent_state(mask);
747                 BUG_ON(!prealloc);
748         }
749
750         spin_lock(&tree->lock);
751         if (cached_state && *cached_state) {
752                 state = *cached_state;
753                 if (state->start <= start && state->end > start &&
754                     state->tree) {
755                         node = &state->rb_node;
756                         goto hit_next;
757                 }
758         }
759         /*
760          * this search will find all the extents that end after
761          * our range starts.
762          */
763         node = tree_search(tree, start);
764         if (!node) {
765                 prealloc = alloc_extent_state_atomic(prealloc);
766                 BUG_ON(!prealloc);
767                 err = insert_state(tree, prealloc, start, end, &bits);
768                 if (err)
769                         extent_io_tree_panic(tree, err);
770
771                 prealloc = NULL;
772                 goto out;
773         }
774         state = rb_entry(node, struct extent_state, rb_node);
775 hit_next:
776         last_start = state->start;
777         last_end = state->end;
778
779         /*
780          * | ---- desired range ---- |
781          * | state |
782          *
783          * Just lock what we found and keep going
784          */
785         if (state->start == start && state->end <= end) {
786                 if (state->state & exclusive_bits) {
787                         *failed_start = state->start;
788                         err = -EEXIST;
789                         goto out;
790                 }
791
792                 set_state_bits(tree, state, &bits);
793                 cache_state(state, cached_state);
794                 merge_state(tree, state);
795                 if (last_end == (u64)-1)
796                         goto out;
797                 start = last_end + 1;
798                 state = next_state(state);
799                 if (start < end && state && state->start == start &&
800                     !need_resched())
801                         goto hit_next;
802                 goto search_again;
803         }
804
805         /*
806          *     | ---- desired range ---- |
807          * | state |
808          *   or
809          * | ------------- state -------------- |
810          *
811          * We need to split the extent we found, and may flip bits on
812          * second half.
813          *
814          * If the extent we found extends past our
815          * range, we just split and search again.  It'll get split
816          * again the next time though.
817          *
818          * If the extent we found is inside our range, we set the
819          * desired bit on it.
820          */
821         if (state->start < start) {
822                 if (state->state & exclusive_bits) {
823                         *failed_start = start;
824                         err = -EEXIST;
825                         goto out;
826                 }
827
828                 prealloc = alloc_extent_state_atomic(prealloc);
829                 BUG_ON(!prealloc);
830                 err = split_state(tree, state, prealloc, start);
831                 if (err)
832                         extent_io_tree_panic(tree, err);
833
834                 prealloc = NULL;
835                 if (err)
836                         goto out;
837                 if (state->end <= end) {
838                         set_state_bits(tree, state, &bits);
839                         cache_state(state, cached_state);
840                         merge_state(tree, state);
841                         if (last_end == (u64)-1)
842                                 goto out;
843                         start = last_end + 1;
844                         state = next_state(state);
845                         if (start < end && state && state->start == start &&
846                             !need_resched())
847                                 goto hit_next;
848                 }
849                 goto search_again;
850         }
851         /*
852          * | ---- desired range ---- |
853          *     | state | or               | state |
854          *
855          * There's a hole, we need to insert something in it and
856          * ignore the extent we found.
857          */
858         if (state->start > start) {
859                 u64 this_end;
860                 if (end < last_start)
861                         this_end = end;
862                 else
863                         this_end = last_start - 1;
864
865                 prealloc = alloc_extent_state_atomic(prealloc);
866                 BUG_ON(!prealloc);
867
868                 /*
869                  * Avoid to free 'prealloc' if it can be merged with
870                  * the later extent.
871                  */
872                 err = insert_state(tree, prealloc, start, this_end,
873                                    &bits);
874                 if (err)
875                         extent_io_tree_panic(tree, err);
876
877                 cache_state(prealloc, cached_state);
878                 prealloc = NULL;
879                 start = this_end + 1;
880                 goto search_again;
881         }
882         /*
883          * | ---- desired range ---- |
884          *                        | state |
885          * We need to split the extent, and set the bit
886          * on the first half
887          */
888         if (state->start <= end && state->end > end) {
889                 if (state->state & exclusive_bits) {
890                         *failed_start = start;
891                         err = -EEXIST;
892                         goto out;
893                 }
894
895                 prealloc = alloc_extent_state_atomic(prealloc);
896                 BUG_ON(!prealloc);
897                 err = split_state(tree, state, prealloc, end + 1);
898                 if (err)
899                         extent_io_tree_panic(tree, err);
900
901                 set_state_bits(tree, prealloc, &bits);
902                 cache_state(prealloc, cached_state);
903                 merge_state(tree, prealloc);
904                 prealloc = NULL;
905                 goto out;
906         }
907
908         goto search_again;
909
910 out:
911         spin_unlock(&tree->lock);
912         if (prealloc)
913                 free_extent_state(prealloc);
914
915         return err;
916
917 search_again:
918         if (start > end)
919                 goto out;
920         spin_unlock(&tree->lock);
921         if (mask & __GFP_WAIT)
922                 cond_resched();
923         goto again;
924 }
925
926 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
927                    u64 *failed_start, struct extent_state **cached_state,
928                    gfp_t mask)
929 {
930         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
931                                 cached_state, mask);
932 }
933
934
935 /**
936  * convert_extent_bit - convert all bits in a given range from one bit to
937  *                      another
938  * @tree:       the io tree to search
939  * @start:      the start offset in bytes
940  * @end:        the end offset in bytes (inclusive)
941  * @bits:       the bits to set in this range
942  * @clear_bits: the bits to clear in this range
943  * @cached_state:       state that we're going to cache
944  * @mask:       the allocation mask
945  *
946  * This will go through and set bits for the given range.  If any states exist
947  * already in this range they are set with the given bit and cleared of the
948  * clear_bits.  This is only meant to be used by things that are mergeable, ie
949  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
950  * boundary bits like LOCK.
951  */
952 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
953                        int bits, int clear_bits,
954                        struct extent_state **cached_state, gfp_t mask)
955 {
956         struct extent_state *state;
957         struct extent_state *prealloc = NULL;
958         struct rb_node *node;
959         int err = 0;
960         u64 last_start;
961         u64 last_end;
962
963 again:
964         if (!prealloc && (mask & __GFP_WAIT)) {
965                 prealloc = alloc_extent_state(mask);
966                 if (!prealloc)
967                         return -ENOMEM;
968         }
969
970         spin_lock(&tree->lock);
971         if (cached_state && *cached_state) {
972                 state = *cached_state;
973                 if (state->start <= start && state->end > start &&
974                     state->tree) {
975                         node = &state->rb_node;
976                         goto hit_next;
977                 }
978         }
979
980         /*
981          * this search will find all the extents that end after
982          * our range starts.
983          */
984         node = tree_search(tree, start);
985         if (!node) {
986                 prealloc = alloc_extent_state_atomic(prealloc);
987                 if (!prealloc) {
988                         err = -ENOMEM;
989                         goto out;
990                 }
991                 err = insert_state(tree, prealloc, start, end, &bits);
992                 prealloc = NULL;
993                 if (err)
994                         extent_io_tree_panic(tree, err);
995                 goto out;
996         }
997         state = rb_entry(node, struct extent_state, rb_node);
998 hit_next:
999         last_start = state->start;
1000         last_end = state->end;
1001
1002         /*
1003          * | ---- desired range ---- |
1004          * | state |
1005          *
1006          * Just lock what we found and keep going
1007          */
1008         if (state->start == start && state->end <= end) {
1009                 set_state_bits(tree, state, &bits);
1010                 cache_state(state, cached_state);
1011                 state = clear_state_bit(tree, state, &clear_bits, 0);
1012                 if (last_end == (u64)-1)
1013                         goto out;
1014                 start = last_end + 1;
1015                 if (start < end && state && state->start == start &&
1016                     !need_resched())
1017                         goto hit_next;
1018                 goto search_again;
1019         }
1020
1021         /*
1022          *     | ---- desired range ---- |
1023          * | state |
1024          *   or
1025          * | ------------- state -------------- |
1026          *
1027          * We need to split the extent we found, and may flip bits on
1028          * second half.
1029          *
1030          * If the extent we found extends past our
1031          * range, we just split and search again.  It'll get split
1032          * again the next time though.
1033          *
1034          * If the extent we found is inside our range, we set the
1035          * desired bit on it.
1036          */
1037         if (state->start < start) {
1038                 prealloc = alloc_extent_state_atomic(prealloc);
1039                 if (!prealloc) {
1040                         err = -ENOMEM;
1041                         goto out;
1042                 }
1043                 err = split_state(tree, state, prealloc, start);
1044                 if (err)
1045                         extent_io_tree_panic(tree, err);
1046                 prealloc = NULL;
1047                 if (err)
1048                         goto out;
1049                 if (state->end <= end) {
1050                         set_state_bits(tree, state, &bits);
1051                         cache_state(state, cached_state);
1052                         state = clear_state_bit(tree, state, &clear_bits, 0);
1053                         if (last_end == (u64)-1)
1054                                 goto out;
1055                         start = last_end + 1;
1056                         if (start < end && state && state->start == start &&
1057                             !need_resched())
1058                                 goto hit_next;
1059                 }
1060                 goto search_again;
1061         }
1062         /*
1063          * | ---- desired range ---- |
1064          *     | state | or               | state |
1065          *
1066          * There's a hole, we need to insert something in it and
1067          * ignore the extent we found.
1068          */
1069         if (state->start > start) {
1070                 u64 this_end;
1071                 if (end < last_start)
1072                         this_end = end;
1073                 else
1074                         this_end = last_start - 1;
1075
1076                 prealloc = alloc_extent_state_atomic(prealloc);
1077                 if (!prealloc) {
1078                         err = -ENOMEM;
1079                         goto out;
1080                 }
1081
1082                 /*
1083                  * Avoid to free 'prealloc' if it can be merged with
1084                  * the later extent.
1085                  */
1086                 err = insert_state(tree, prealloc, start, this_end,
1087                                    &bits);
1088                 if (err)
1089                         extent_io_tree_panic(tree, err);
1090                 cache_state(prealloc, cached_state);
1091                 prealloc = NULL;
1092                 start = this_end + 1;
1093                 goto search_again;
1094         }
1095         /*
1096          * | ---- desired range ---- |
1097          *                        | state |
1098          * We need to split the extent, and set the bit
1099          * on the first half
1100          */
1101         if (state->start <= end && state->end > end) {
1102                 prealloc = alloc_extent_state_atomic(prealloc);
1103                 if (!prealloc) {
1104                         err = -ENOMEM;
1105                         goto out;
1106                 }
1107
1108                 err = split_state(tree, state, prealloc, end + 1);
1109                 if (err)
1110                         extent_io_tree_panic(tree, err);
1111
1112                 set_state_bits(tree, prealloc, &bits);
1113                 cache_state(prealloc, cached_state);
1114                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1115                 prealloc = NULL;
1116                 goto out;
1117         }
1118
1119         goto search_again;
1120
1121 out:
1122         spin_unlock(&tree->lock);
1123         if (prealloc)
1124                 free_extent_state(prealloc);
1125
1126         return err;
1127
1128 search_again:
1129         if (start > end)
1130                 goto out;
1131         spin_unlock(&tree->lock);
1132         if (mask & __GFP_WAIT)
1133                 cond_resched();
1134         goto again;
1135 }
1136
1137 /* wrappers around set/clear extent bit */
1138 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1139                      gfp_t mask)
1140 {
1141         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1142                               NULL, mask);
1143 }
1144
1145 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1146                     int bits, gfp_t mask)
1147 {
1148         return set_extent_bit(tree, start, end, bits, NULL,
1149                               NULL, mask);
1150 }
1151
1152 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1153                       int bits, gfp_t mask)
1154 {
1155         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1156 }
1157
1158 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1159                         struct extent_state **cached_state, gfp_t mask)
1160 {
1161         return set_extent_bit(tree, start, end,
1162                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1163                               NULL, cached_state, mask);
1164 }
1165
1166 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1167                       struct extent_state **cached_state, gfp_t mask)
1168 {
1169         return set_extent_bit(tree, start, end,
1170                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1171                               NULL, cached_state, mask);
1172 }
1173
1174 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1175                        gfp_t mask)
1176 {
1177         return clear_extent_bit(tree, start, end,
1178                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1179                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1180 }
1181
1182 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1183                      gfp_t mask)
1184 {
1185         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1186                               NULL, mask);
1187 }
1188
1189 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1190                         struct extent_state **cached_state, gfp_t mask)
1191 {
1192         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1193                               cached_state, mask);
1194 }
1195
1196 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1197                           struct extent_state **cached_state, gfp_t mask)
1198 {
1199         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1200                                 cached_state, mask);
1201 }
1202
1203 /*
1204  * either insert or lock state struct between start and end use mask to tell
1205  * us if waiting is desired.
1206  */
1207 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1208                      int bits, struct extent_state **cached_state)
1209 {
1210         int err;
1211         u64 failed_start;
1212         while (1) {
1213                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1214                                        EXTENT_LOCKED, &failed_start,
1215                                        cached_state, GFP_NOFS);
1216                 if (err == -EEXIST) {
1217                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1218                         start = failed_start;
1219                 } else
1220                         break;
1221                 WARN_ON(start > end);
1222         }
1223         return err;
1224 }
1225
1226 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1227 {
1228         return lock_extent_bits(tree, start, end, 0, NULL);
1229 }
1230
1231 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1232 {
1233         int err;
1234         u64 failed_start;
1235
1236         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1237                                &failed_start, NULL, GFP_NOFS);
1238         if (err == -EEXIST) {
1239                 if (failed_start > start)
1240                         clear_extent_bit(tree, start, failed_start - 1,
1241                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1242                 return 0;
1243         }
1244         return 1;
1245 }
1246
1247 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1248                          struct extent_state **cached, gfp_t mask)
1249 {
1250         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1251                                 mask);
1252 }
1253
1254 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1255 {
1256         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1257                                 GFP_NOFS);
1258 }
1259
1260 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1261 {
1262         unsigned long index = start >> PAGE_CACHE_SHIFT;
1263         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1264         struct page *page;
1265
1266         while (index <= end_index) {
1267                 page = find_get_page(inode->i_mapping, index);
1268                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1269                 clear_page_dirty_for_io(page);
1270                 page_cache_release(page);
1271                 index++;
1272         }
1273         return 0;
1274 }
1275
1276 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1277 {
1278         unsigned long index = start >> PAGE_CACHE_SHIFT;
1279         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1280         struct page *page;
1281
1282         while (index <= end_index) {
1283                 page = find_get_page(inode->i_mapping, index);
1284                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1285                 account_page_redirty(page);
1286                 __set_page_dirty_nobuffers(page);
1287                 page_cache_release(page);
1288                 index++;
1289         }
1290         return 0;
1291 }
1292
1293 /*
1294  * helper function to set both pages and extents in the tree writeback
1295  */
1296 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1297 {
1298         unsigned long index = start >> PAGE_CACHE_SHIFT;
1299         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1300         struct page *page;
1301
1302         while (index <= end_index) {
1303                 page = find_get_page(tree->mapping, index);
1304                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1305                 set_page_writeback(page);
1306                 page_cache_release(page);
1307                 index++;
1308         }
1309         return 0;
1310 }
1311
1312 /* find the first state struct with 'bits' set after 'start', and
1313  * return it.  tree->lock must be held.  NULL will returned if
1314  * nothing was found after 'start'
1315  */
1316 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1317                                                  u64 start, int bits)
1318 {
1319         struct rb_node *node;
1320         struct extent_state *state;
1321
1322         /*
1323          * this search will find all the extents that end after
1324          * our range starts.
1325          */
1326         node = tree_search(tree, start);
1327         if (!node)
1328                 goto out;
1329
1330         while (1) {
1331                 state = rb_entry(node, struct extent_state, rb_node);
1332                 if (state->end >= start && (state->state & bits))
1333                         return state;
1334
1335                 node = rb_next(node);
1336                 if (!node)
1337                         break;
1338         }
1339 out:
1340         return NULL;
1341 }
1342
1343 /*
1344  * find the first offset in the io tree with 'bits' set. zero is
1345  * returned if we find something, and *start_ret and *end_ret are
1346  * set to reflect the state struct that was found.
1347  *
1348  * If nothing was found, 1 is returned. If found something, return 0.
1349  */
1350 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1351                           u64 *start_ret, u64 *end_ret, int bits,
1352                           struct extent_state **cached_state)
1353 {
1354         struct extent_state *state;
1355         struct rb_node *n;
1356         int ret = 1;
1357
1358         spin_lock(&tree->lock);
1359         if (cached_state && *cached_state) {
1360                 state = *cached_state;
1361                 if (state->end == start - 1 && state->tree) {
1362                         n = rb_next(&state->rb_node);
1363                         while (n) {
1364                                 state = rb_entry(n, struct extent_state,
1365                                                  rb_node);
1366                                 if (state->state & bits)
1367                                         goto got_it;
1368                                 n = rb_next(n);
1369                         }
1370                         free_extent_state(*cached_state);
1371                         *cached_state = NULL;
1372                         goto out;
1373                 }
1374                 free_extent_state(*cached_state);
1375                 *cached_state = NULL;
1376         }
1377
1378         state = find_first_extent_bit_state(tree, start, bits);
1379 got_it:
1380         if (state) {
1381                 cache_state(state, cached_state);
1382                 *start_ret = state->start;
1383                 *end_ret = state->end;
1384                 ret = 0;
1385         }
1386 out:
1387         spin_unlock(&tree->lock);
1388         return ret;
1389 }
1390
1391 /*
1392  * find a contiguous range of bytes in the file marked as delalloc, not
1393  * more than 'max_bytes'.  start and end are used to return the range,
1394  *
1395  * 1 is returned if we find something, 0 if nothing was in the tree
1396  */
1397 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1398                                         u64 *start, u64 *end, u64 max_bytes,
1399                                         struct extent_state **cached_state)
1400 {
1401         struct rb_node *node;
1402         struct extent_state *state;
1403         u64 cur_start = *start;
1404         u64 found = 0;
1405         u64 total_bytes = 0;
1406
1407         spin_lock(&tree->lock);
1408
1409         /*
1410          * this search will find all the extents that end after
1411          * our range starts.
1412          */
1413         node = tree_search(tree, cur_start);
1414         if (!node) {
1415                 if (!found)
1416                         *end = (u64)-1;
1417                 goto out;
1418         }
1419
1420         while (1) {
1421                 state = rb_entry(node, struct extent_state, rb_node);
1422                 if (found && (state->start != cur_start ||
1423                               (state->state & EXTENT_BOUNDARY))) {
1424                         goto out;
1425                 }
1426                 if (!(state->state & EXTENT_DELALLOC)) {
1427                         if (!found)
1428                                 *end = state->end;
1429                         goto out;
1430                 }
1431                 if (!found) {
1432                         *start = state->start;
1433                         *cached_state = state;
1434                         atomic_inc(&state->refs);
1435                 }
1436                 found++;
1437                 *end = state->end;
1438                 cur_start = state->end + 1;
1439                 node = rb_next(node);
1440                 if (!node)
1441                         break;
1442                 total_bytes += state->end - state->start + 1;
1443                 if (total_bytes >= max_bytes)
1444                         break;
1445         }
1446 out:
1447         spin_unlock(&tree->lock);
1448         return found;
1449 }
1450
1451 static noinline void __unlock_for_delalloc(struct inode *inode,
1452                                            struct page *locked_page,
1453                                            u64 start, u64 end)
1454 {
1455         int ret;
1456         struct page *pages[16];
1457         unsigned long index = start >> PAGE_CACHE_SHIFT;
1458         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1459         unsigned long nr_pages = end_index - index + 1;
1460         int i;
1461
1462         if (index == locked_page->index && end_index == index)
1463                 return;
1464
1465         while (nr_pages > 0) {
1466                 ret = find_get_pages_contig(inode->i_mapping, index,
1467                                      min_t(unsigned long, nr_pages,
1468                                      ARRAY_SIZE(pages)), pages);
1469                 for (i = 0; i < ret; i++) {
1470                         if (pages[i] != locked_page)
1471                                 unlock_page(pages[i]);
1472                         page_cache_release(pages[i]);
1473                 }
1474                 nr_pages -= ret;
1475                 index += ret;
1476                 cond_resched();
1477         }
1478 }
1479
1480 static noinline int lock_delalloc_pages(struct inode *inode,
1481                                         struct page *locked_page,
1482                                         u64 delalloc_start,
1483                                         u64 delalloc_end)
1484 {
1485         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1486         unsigned long start_index = index;
1487         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1488         unsigned long pages_locked = 0;
1489         struct page *pages[16];
1490         unsigned long nrpages;
1491         int ret;
1492         int i;
1493
1494         /* the caller is responsible for locking the start index */
1495         if (index == locked_page->index && index == end_index)
1496                 return 0;
1497
1498         /* skip the page at the start index */
1499         nrpages = end_index - index + 1;
1500         while (nrpages > 0) {
1501                 ret = find_get_pages_contig(inode->i_mapping, index,
1502                                      min_t(unsigned long,
1503                                      nrpages, ARRAY_SIZE(pages)), pages);
1504                 if (ret == 0) {
1505                         ret = -EAGAIN;
1506                         goto done;
1507                 }
1508                 /* now we have an array of pages, lock them all */
1509                 for (i = 0; i < ret; i++) {
1510                         /*
1511                          * the caller is taking responsibility for
1512                          * locked_page
1513                          */
1514                         if (pages[i] != locked_page) {
1515                                 lock_page(pages[i]);
1516                                 if (!PageDirty(pages[i]) ||
1517                                     pages[i]->mapping != inode->i_mapping) {
1518                                         ret = -EAGAIN;
1519                                         unlock_page(pages[i]);
1520                                         page_cache_release(pages[i]);
1521                                         goto done;
1522                                 }
1523                         }
1524                         page_cache_release(pages[i]);
1525                         pages_locked++;
1526                 }
1527                 nrpages -= ret;
1528                 index += ret;
1529                 cond_resched();
1530         }
1531         ret = 0;
1532 done:
1533         if (ret && pages_locked) {
1534                 __unlock_for_delalloc(inode, locked_page,
1535                               delalloc_start,
1536                               ((u64)(start_index + pages_locked - 1)) <<
1537                               PAGE_CACHE_SHIFT);
1538         }
1539         return ret;
1540 }
1541
1542 /*
1543  * find a contiguous range of bytes in the file marked as delalloc, not
1544  * more than 'max_bytes'.  start and end are used to return the range,
1545  *
1546  * 1 is returned if we find something, 0 if nothing was in the tree
1547  */
1548 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1549                                              struct extent_io_tree *tree,
1550                                              struct page *locked_page,
1551                                              u64 *start, u64 *end,
1552                                              u64 max_bytes)
1553 {
1554         u64 delalloc_start;
1555         u64 delalloc_end;
1556         u64 found;
1557         struct extent_state *cached_state = NULL;
1558         int ret;
1559         int loops = 0;
1560
1561 again:
1562         /* step one, find a bunch of delalloc bytes starting at start */
1563         delalloc_start = *start;
1564         delalloc_end = 0;
1565         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1566                                     max_bytes, &cached_state);
1567         if (!found || delalloc_end <= *start) {
1568                 *start = delalloc_start;
1569                 *end = delalloc_end;
1570                 free_extent_state(cached_state);
1571                 return found;
1572         }
1573
1574         /*
1575          * start comes from the offset of locked_page.  We have to lock
1576          * pages in order, so we can't process delalloc bytes before
1577          * locked_page
1578          */
1579         if (delalloc_start < *start)
1580                 delalloc_start = *start;
1581
1582         /*
1583          * make sure to limit the number of pages we try to lock down
1584          * if we're looping.
1585          */
1586         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1587                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1588
1589         /* step two, lock all the pages after the page that has start */
1590         ret = lock_delalloc_pages(inode, locked_page,
1591                                   delalloc_start, delalloc_end);
1592         if (ret == -EAGAIN) {
1593                 /* some of the pages are gone, lets avoid looping by
1594                  * shortening the size of the delalloc range we're searching
1595                  */
1596                 free_extent_state(cached_state);
1597                 if (!loops) {
1598                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1599                         max_bytes = PAGE_CACHE_SIZE - offset;
1600                         loops = 1;
1601                         goto again;
1602                 } else {
1603                         found = 0;
1604                         goto out_failed;
1605                 }
1606         }
1607         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1608
1609         /* step three, lock the state bits for the whole range */
1610         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1611
1612         /* then test to make sure it is all still delalloc */
1613         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1614                              EXTENT_DELALLOC, 1, cached_state);
1615         if (!ret) {
1616                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1617                                      &cached_state, GFP_NOFS);
1618                 __unlock_for_delalloc(inode, locked_page,
1619                               delalloc_start, delalloc_end);
1620                 cond_resched();
1621                 goto again;
1622         }
1623         free_extent_state(cached_state);
1624         *start = delalloc_start;
1625         *end = delalloc_end;
1626 out_failed:
1627         return found;
1628 }
1629
1630 int extent_clear_unlock_delalloc(struct inode *inode,
1631                                 struct extent_io_tree *tree,
1632                                 u64 start, u64 end, struct page *locked_page,
1633                                 unsigned long op)
1634 {
1635         int ret;
1636         struct page *pages[16];
1637         unsigned long index = start >> PAGE_CACHE_SHIFT;
1638         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1639         unsigned long nr_pages = end_index - index + 1;
1640         int i;
1641         int clear_bits = 0;
1642
1643         if (op & EXTENT_CLEAR_UNLOCK)
1644                 clear_bits |= EXTENT_LOCKED;
1645         if (op & EXTENT_CLEAR_DIRTY)
1646                 clear_bits |= EXTENT_DIRTY;
1647
1648         if (op & EXTENT_CLEAR_DELALLOC)
1649                 clear_bits |= EXTENT_DELALLOC;
1650
1651         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1652         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1653                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1654                     EXTENT_SET_PRIVATE2)))
1655                 return 0;
1656
1657         while (nr_pages > 0) {
1658                 ret = find_get_pages_contig(inode->i_mapping, index,
1659                                      min_t(unsigned long,
1660                                      nr_pages, ARRAY_SIZE(pages)), pages);
1661                 for (i = 0; i < ret; i++) {
1662
1663                         if (op & EXTENT_SET_PRIVATE2)
1664                                 SetPagePrivate2(pages[i]);
1665
1666                         if (pages[i] == locked_page) {
1667                                 page_cache_release(pages[i]);
1668                                 continue;
1669                         }
1670                         if (op & EXTENT_CLEAR_DIRTY)
1671                                 clear_page_dirty_for_io(pages[i]);
1672                         if (op & EXTENT_SET_WRITEBACK)
1673                                 set_page_writeback(pages[i]);
1674                         if (op & EXTENT_END_WRITEBACK)
1675                                 end_page_writeback(pages[i]);
1676                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1677                                 unlock_page(pages[i]);
1678                         page_cache_release(pages[i]);
1679                 }
1680                 nr_pages -= ret;
1681                 index += ret;
1682                 cond_resched();
1683         }
1684         return 0;
1685 }
1686
1687 /*
1688  * count the number of bytes in the tree that have a given bit(s)
1689  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1690  * cached.  The total number found is returned.
1691  */
1692 u64 count_range_bits(struct extent_io_tree *tree,
1693                      u64 *start, u64 search_end, u64 max_bytes,
1694                      unsigned long bits, int contig)
1695 {
1696         struct rb_node *node;
1697         struct extent_state *state;
1698         u64 cur_start = *start;
1699         u64 total_bytes = 0;
1700         u64 last = 0;
1701         int found = 0;
1702
1703         if (search_end <= cur_start) {
1704                 WARN_ON(1);
1705                 return 0;
1706         }
1707
1708         spin_lock(&tree->lock);
1709         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1710                 total_bytes = tree->dirty_bytes;
1711                 goto out;
1712         }
1713         /*
1714          * this search will find all the extents that end after
1715          * our range starts.
1716          */
1717         node = tree_search(tree, cur_start);
1718         if (!node)
1719                 goto out;
1720
1721         while (1) {
1722                 state = rb_entry(node, struct extent_state, rb_node);
1723                 if (state->start > search_end)
1724                         break;
1725                 if (contig && found && state->start > last + 1)
1726                         break;
1727                 if (state->end >= cur_start && (state->state & bits) == bits) {
1728                         total_bytes += min(search_end, state->end) + 1 -
1729                                        max(cur_start, state->start);
1730                         if (total_bytes >= max_bytes)
1731                                 break;
1732                         if (!found) {
1733                                 *start = max(cur_start, state->start);
1734                                 found = 1;
1735                         }
1736                         last = state->end;
1737                 } else if (contig && found) {
1738                         break;
1739                 }
1740                 node = rb_next(node);
1741                 if (!node)
1742                         break;
1743         }
1744 out:
1745         spin_unlock(&tree->lock);
1746         return total_bytes;
1747 }
1748
1749 /*
1750  * set the private field for a given byte offset in the tree.  If there isn't
1751  * an extent_state there already, this does nothing.
1752  */
1753 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1754 {
1755         struct rb_node *node;
1756         struct extent_state *state;
1757         int ret = 0;
1758
1759         spin_lock(&tree->lock);
1760         /*
1761          * this search will find all the extents that end after
1762          * our range starts.
1763          */
1764         node = tree_search(tree, start);
1765         if (!node) {
1766                 ret = -ENOENT;
1767                 goto out;
1768         }
1769         state = rb_entry(node, struct extent_state, rb_node);
1770         if (state->start != start) {
1771                 ret = -ENOENT;
1772                 goto out;
1773         }
1774         state->private = private;
1775 out:
1776         spin_unlock(&tree->lock);
1777         return ret;
1778 }
1779
1780 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1781 {
1782         struct rb_node *node;
1783         struct extent_state *state;
1784         int ret = 0;
1785
1786         spin_lock(&tree->lock);
1787         /*
1788          * this search will find all the extents that end after
1789          * our range starts.
1790          */
1791         node = tree_search(tree, start);
1792         if (!node) {
1793                 ret = -ENOENT;
1794                 goto out;
1795         }
1796         state = rb_entry(node, struct extent_state, rb_node);
1797         if (state->start != start) {
1798                 ret = -ENOENT;
1799                 goto out;
1800         }
1801         *private = state->private;
1802 out:
1803         spin_unlock(&tree->lock);
1804         return ret;
1805 }
1806
1807 /*
1808  * searches a range in the state tree for a given mask.
1809  * If 'filled' == 1, this returns 1 only if every extent in the tree
1810  * has the bits set.  Otherwise, 1 is returned if any bit in the
1811  * range is found set.
1812  */
1813 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1814                    int bits, int filled, struct extent_state *cached)
1815 {
1816         struct extent_state *state = NULL;
1817         struct rb_node *node;
1818         int bitset = 0;
1819
1820         spin_lock(&tree->lock);
1821         if (cached && cached->tree && cached->start <= start &&
1822             cached->end > start)
1823                 node = &cached->rb_node;
1824         else
1825                 node = tree_search(tree, start);
1826         while (node && start <= end) {
1827                 state = rb_entry(node, struct extent_state, rb_node);
1828
1829                 if (filled && state->start > start) {
1830                         bitset = 0;
1831                         break;
1832                 }
1833
1834                 if (state->start > end)
1835                         break;
1836
1837                 if (state->state & bits) {
1838                         bitset = 1;
1839                         if (!filled)
1840                                 break;
1841                 } else if (filled) {
1842                         bitset = 0;
1843                         break;
1844                 }
1845
1846                 if (state->end == (u64)-1)
1847                         break;
1848
1849                 start = state->end + 1;
1850                 if (start > end)
1851                         break;
1852                 node = rb_next(node);
1853                 if (!node) {
1854                         if (filled)
1855                                 bitset = 0;
1856                         break;
1857                 }
1858         }
1859         spin_unlock(&tree->lock);
1860         return bitset;
1861 }
1862
1863 /*
1864  * helper function to set a given page up to date if all the
1865  * extents in the tree for that page are up to date
1866  */
1867 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1868 {
1869         u64 start = page_offset(page);
1870         u64 end = start + PAGE_CACHE_SIZE - 1;
1871         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1872                 SetPageUptodate(page);
1873 }
1874
1875 /*
1876  * helper function to unlock a page if all the extents in the tree
1877  * for that page are unlocked
1878  */
1879 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1880 {
1881         u64 start = page_offset(page);
1882         u64 end = start + PAGE_CACHE_SIZE - 1;
1883         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1884                 unlock_page(page);
1885 }
1886
1887 /*
1888  * helper function to end page writeback if all the extents
1889  * in the tree for that page are done with writeback
1890  */
1891 static void check_page_writeback(struct extent_io_tree *tree,
1892                                  struct page *page)
1893 {
1894         end_page_writeback(page);
1895 }
1896
1897 /*
1898  * When IO fails, either with EIO or csum verification fails, we
1899  * try other mirrors that might have a good copy of the data.  This
1900  * io_failure_record is used to record state as we go through all the
1901  * mirrors.  If another mirror has good data, the page is set up to date
1902  * and things continue.  If a good mirror can't be found, the original
1903  * bio end_io callback is called to indicate things have failed.
1904  */
1905 struct io_failure_record {
1906         struct page *page;
1907         u64 start;
1908         u64 len;
1909         u64 logical;
1910         unsigned long bio_flags;
1911         int this_mirror;
1912         int failed_mirror;
1913         int in_validation;
1914 };
1915
1916 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1917                                 int did_repair)
1918 {
1919         int ret;
1920         int err = 0;
1921         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1922
1923         set_state_private(failure_tree, rec->start, 0);
1924         ret = clear_extent_bits(failure_tree, rec->start,
1925                                 rec->start + rec->len - 1,
1926                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1927         if (ret)
1928                 err = ret;
1929
1930         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1931                                 rec->start + rec->len - 1,
1932                                 EXTENT_DAMAGED, GFP_NOFS);
1933         if (ret && !err)
1934                 err = ret;
1935
1936         kfree(rec);
1937         return err;
1938 }
1939
1940 static void repair_io_failure_callback(struct bio *bio, int err)
1941 {
1942         complete(bio->bi_private);
1943 }
1944
1945 /*
1946  * this bypasses the standard btrfs submit functions deliberately, as
1947  * the standard behavior is to write all copies in a raid setup. here we only
1948  * want to write the one bad copy. so we do the mapping for ourselves and issue
1949  * submit_bio directly.
1950  * to avoid any synchronization issues, wait for the data after writing, which
1951  * actually prevents the read that triggered the error from finishing.
1952  * currently, there can be no more than two copies of every data bit. thus,
1953  * exactly one rewrite is required.
1954  */
1955 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1956                         u64 length, u64 logical, struct page *page,
1957                         int mirror_num)
1958 {
1959         struct bio *bio;
1960         struct btrfs_device *dev;
1961         DECLARE_COMPLETION_ONSTACK(compl);
1962         u64 map_length = 0;
1963         u64 sector;
1964         struct btrfs_bio *bbio = NULL;
1965         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1966         int ret;
1967
1968         BUG_ON(!mirror_num);
1969
1970         /* we can't repair anything in raid56 yet */
1971         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1972                 return 0;
1973
1974         bio = bio_alloc(GFP_NOFS, 1);
1975         if (!bio)
1976                 return -EIO;
1977         bio->bi_private = &compl;
1978         bio->bi_end_io = repair_io_failure_callback;
1979         bio->bi_size = 0;
1980         map_length = length;
1981
1982         ret = btrfs_map_block(fs_info, WRITE, logical,
1983                               &map_length, &bbio, mirror_num);
1984         if (ret) {
1985                 bio_put(bio);
1986                 return -EIO;
1987         }
1988         BUG_ON(mirror_num != bbio->mirror_num);
1989         sector = bbio->stripes[mirror_num-1].physical >> 9;
1990         bio->bi_sector = sector;
1991         dev = bbio->stripes[mirror_num-1].dev;
1992         kfree(bbio);
1993         if (!dev || !dev->bdev || !dev->writeable) {
1994                 bio_put(bio);
1995                 return -EIO;
1996         }
1997         bio->bi_bdev = dev->bdev;
1998         bio_add_page(bio, page, length, start - page_offset(page));
1999         btrfsic_submit_bio(WRITE_SYNC, bio);
2000         wait_for_completion(&compl);
2001
2002         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2003                 /* try to remap that extent elsewhere? */
2004                 bio_put(bio);
2005                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2006                 return -EIO;
2007         }
2008
2009         printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2010                       "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2011                       start, rcu_str_deref(dev->name), sector);
2012
2013         bio_put(bio);
2014         return 0;
2015 }
2016
2017 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2018                          int mirror_num)
2019 {
2020         u64 start = eb->start;
2021         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2022         int ret = 0;
2023
2024         for (i = 0; i < num_pages; i++) {
2025                 struct page *p = extent_buffer_page(eb, i);
2026                 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2027                                         start, p, mirror_num);
2028                 if (ret)
2029                         break;
2030                 start += PAGE_CACHE_SIZE;
2031         }
2032
2033         return ret;
2034 }
2035
2036 /*
2037  * each time an IO finishes, we do a fast check in the IO failure tree
2038  * to see if we need to process or clean up an io_failure_record
2039  */
2040 static int clean_io_failure(u64 start, struct page *page)
2041 {
2042         u64 private;
2043         u64 private_failure;
2044         struct io_failure_record *failrec;
2045         struct btrfs_fs_info *fs_info;
2046         struct extent_state *state;
2047         int num_copies;
2048         int did_repair = 0;
2049         int ret;
2050         struct inode *inode = page->mapping->host;
2051
2052         private = 0;
2053         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2054                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2055         if (!ret)
2056                 return 0;
2057
2058         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2059                                 &private_failure);
2060         if (ret)
2061                 return 0;
2062
2063         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2064         BUG_ON(!failrec->this_mirror);
2065
2066         if (failrec->in_validation) {
2067                 /* there was no real error, just free the record */
2068                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2069                          failrec->start);
2070                 did_repair = 1;
2071                 goto out;
2072         }
2073
2074         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2075         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2076                                             failrec->start,
2077                                             EXTENT_LOCKED);
2078         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2079
2080         if (state && state->start == failrec->start) {
2081                 fs_info = BTRFS_I(inode)->root->fs_info;
2082                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2083                                               failrec->len);
2084                 if (num_copies > 1)  {
2085                         ret = repair_io_failure(fs_info, start, failrec->len,
2086                                                 failrec->logical, page,
2087                                                 failrec->failed_mirror);
2088                         did_repair = !ret;
2089                 }
2090                 ret = 0;
2091         }
2092
2093 out:
2094         if (!ret)
2095                 ret = free_io_failure(inode, failrec, did_repair);
2096
2097         return ret;
2098 }
2099
2100 /*
2101  * this is a generic handler for readpage errors (default
2102  * readpage_io_failed_hook). if other copies exist, read those and write back
2103  * good data to the failed position. does not investigate in remapping the
2104  * failed extent elsewhere, hoping the device will be smart enough to do this as
2105  * needed
2106  */
2107
2108 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2109                                 u64 start, u64 end, int failed_mirror,
2110                                 struct extent_state *state)
2111 {
2112         struct io_failure_record *failrec = NULL;
2113         u64 private;
2114         struct extent_map *em;
2115         struct inode *inode = page->mapping->host;
2116         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2117         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2118         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2119         struct bio *bio;
2120         int num_copies;
2121         int ret;
2122         int read_mode;
2123         u64 logical;
2124
2125         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2126
2127         ret = get_state_private(failure_tree, start, &private);
2128         if (ret) {
2129                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2130                 if (!failrec)
2131                         return -ENOMEM;
2132                 failrec->start = start;
2133                 failrec->len = end - start + 1;
2134                 failrec->this_mirror = 0;
2135                 failrec->bio_flags = 0;
2136                 failrec->in_validation = 0;
2137
2138                 read_lock(&em_tree->lock);
2139                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2140                 if (!em) {
2141                         read_unlock(&em_tree->lock);
2142                         kfree(failrec);
2143                         return -EIO;
2144                 }
2145
2146                 if (em->start > start || em->start + em->len < start) {
2147                         free_extent_map(em);
2148                         em = NULL;
2149                 }
2150                 read_unlock(&em_tree->lock);
2151
2152                 if (!em) {
2153                         kfree(failrec);
2154                         return -EIO;
2155                 }
2156                 logical = start - em->start;
2157                 logical = em->block_start + logical;
2158                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2159                         logical = em->block_start;
2160                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2161                         extent_set_compress_type(&failrec->bio_flags,
2162                                                  em->compress_type);
2163                 }
2164                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2165                          "len=%llu\n", logical, start, failrec->len);
2166                 failrec->logical = logical;
2167                 free_extent_map(em);
2168
2169                 /* set the bits in the private failure tree */
2170                 ret = set_extent_bits(failure_tree, start, end,
2171                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2172                 if (ret >= 0)
2173                         ret = set_state_private(failure_tree, start,
2174                                                 (u64)(unsigned long)failrec);
2175                 /* set the bits in the inode's tree */
2176                 if (ret >= 0)
2177                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2178                                                 GFP_NOFS);
2179                 if (ret < 0) {
2180                         kfree(failrec);
2181                         return ret;
2182                 }
2183         } else {
2184                 failrec = (struct io_failure_record *)(unsigned long)private;
2185                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2186                          "start=%llu, len=%llu, validation=%d\n",
2187                          failrec->logical, failrec->start, failrec->len,
2188                          failrec->in_validation);
2189                 /*
2190                  * when data can be on disk more than twice, add to failrec here
2191                  * (e.g. with a list for failed_mirror) to make
2192                  * clean_io_failure() clean all those errors at once.
2193                  */
2194         }
2195         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2196                                       failrec->logical, failrec->len);
2197         if (num_copies == 1) {
2198                 /*
2199                  * we only have a single copy of the data, so don't bother with
2200                  * all the retry and error correction code that follows. no
2201                  * matter what the error is, it is very likely to persist.
2202                  */
2203                 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2204                          "state=%p, num_copies=%d, next_mirror %d, "
2205                          "failed_mirror %d\n", state, num_copies,
2206                          failrec->this_mirror, failed_mirror);
2207                 free_io_failure(inode, failrec, 0);
2208                 return -EIO;
2209         }
2210
2211         if (!state) {
2212                 spin_lock(&tree->lock);
2213                 state = find_first_extent_bit_state(tree, failrec->start,
2214                                                     EXTENT_LOCKED);
2215                 if (state && state->start != failrec->start)
2216                         state = NULL;
2217                 spin_unlock(&tree->lock);
2218         }
2219
2220         /*
2221          * there are two premises:
2222          *      a) deliver good data to the caller
2223          *      b) correct the bad sectors on disk
2224          */
2225         if (failed_bio->bi_vcnt > 1) {
2226                 /*
2227                  * to fulfill b), we need to know the exact failing sectors, as
2228                  * we don't want to rewrite any more than the failed ones. thus,
2229                  * we need separate read requests for the failed bio
2230                  *
2231                  * if the following BUG_ON triggers, our validation request got
2232                  * merged. we need separate requests for our algorithm to work.
2233                  */
2234                 BUG_ON(failrec->in_validation);
2235                 failrec->in_validation = 1;
2236                 failrec->this_mirror = failed_mirror;
2237                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2238         } else {
2239                 /*
2240                  * we're ready to fulfill a) and b) alongside. get a good copy
2241                  * of the failed sector and if we succeed, we have setup
2242                  * everything for repair_io_failure to do the rest for us.
2243                  */
2244                 if (failrec->in_validation) {
2245                         BUG_ON(failrec->this_mirror != failed_mirror);
2246                         failrec->in_validation = 0;
2247                         failrec->this_mirror = 0;
2248                 }
2249                 failrec->failed_mirror = failed_mirror;
2250                 failrec->this_mirror++;
2251                 if (failrec->this_mirror == failed_mirror)
2252                         failrec->this_mirror++;
2253                 read_mode = READ_SYNC;
2254         }
2255
2256         if (!state || failrec->this_mirror > num_copies) {
2257                 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2258                          "next_mirror %d, failed_mirror %d\n", state,
2259                          num_copies, failrec->this_mirror, failed_mirror);
2260                 free_io_failure(inode, failrec, 0);
2261                 return -EIO;
2262         }
2263
2264         bio = bio_alloc(GFP_NOFS, 1);
2265         if (!bio) {
2266                 free_io_failure(inode, failrec, 0);
2267                 return -EIO;
2268         }
2269         bio->bi_private = state;
2270         bio->bi_end_io = failed_bio->bi_end_io;
2271         bio->bi_sector = failrec->logical >> 9;
2272         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2273         bio->bi_size = 0;
2274
2275         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2276
2277         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2278                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2279                  failrec->this_mirror, num_copies, failrec->in_validation);
2280
2281         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2282                                          failrec->this_mirror,
2283                                          failrec->bio_flags, 0);
2284         return ret;
2285 }
2286
2287 /* lots and lots of room for performance fixes in the end_bio funcs */
2288
2289 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2290 {
2291         int uptodate = (err == 0);
2292         struct extent_io_tree *tree;
2293         int ret;
2294
2295         tree = &BTRFS_I(page->mapping->host)->io_tree;
2296
2297         if (tree->ops && tree->ops->writepage_end_io_hook) {
2298                 ret = tree->ops->writepage_end_io_hook(page, start,
2299                                                end, NULL, uptodate);
2300                 if (ret)
2301                         uptodate = 0;
2302         }
2303
2304         if (!uptodate) {
2305                 ClearPageUptodate(page);
2306                 SetPageError(page);
2307         }
2308         return 0;
2309 }
2310
2311 /*
2312  * after a writepage IO is done, we need to:
2313  * clear the uptodate bits on error
2314  * clear the writeback bits in the extent tree for this IO
2315  * end_page_writeback if the page has no more pending IO
2316  *
2317  * Scheduling is not allowed, so the extent state tree is expected
2318  * to have one and only one object corresponding to this IO.
2319  */
2320 static void end_bio_extent_writepage(struct bio *bio, int err)
2321 {
2322         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2323         struct extent_io_tree *tree;
2324         u64 start;
2325         u64 end;
2326         int whole_page;
2327
2328         do {
2329                 struct page *page = bvec->bv_page;
2330                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2331
2332                 start = page_offset(page) + bvec->bv_offset;
2333                 end = start + bvec->bv_len - 1;
2334
2335                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2336                         whole_page = 1;
2337                 else
2338                         whole_page = 0;
2339
2340                 if (--bvec >= bio->bi_io_vec)
2341                         prefetchw(&bvec->bv_page->flags);
2342
2343                 if (end_extent_writepage(page, err, start, end))
2344                         continue;
2345
2346                 if (whole_page)
2347                         end_page_writeback(page);
2348                 else
2349                         check_page_writeback(tree, page);
2350         } while (bvec >= bio->bi_io_vec);
2351
2352         bio_put(bio);
2353 }
2354
2355 /*
2356  * after a readpage IO is done, we need to:
2357  * clear the uptodate bits on error
2358  * set the uptodate bits if things worked
2359  * set the page up to date if all extents in the tree are uptodate
2360  * clear the lock bit in the extent tree
2361  * unlock the page if there are no other extents locked for it
2362  *
2363  * Scheduling is not allowed, so the extent state tree is expected
2364  * to have one and only one object corresponding to this IO.
2365  */
2366 static void end_bio_extent_readpage(struct bio *bio, int err)
2367 {
2368         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2369         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2370         struct bio_vec *bvec = bio->bi_io_vec;
2371         struct extent_io_tree *tree;
2372         u64 start;
2373         u64 end;
2374         int whole_page;
2375         int mirror;
2376         int ret;
2377
2378         if (err)
2379                 uptodate = 0;
2380
2381         do {
2382                 struct page *page = bvec->bv_page;
2383                 struct extent_state *cached = NULL;
2384                 struct extent_state *state;
2385
2386                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2387                          "mirror=%ld\n", (u64)bio->bi_sector, err,
2388                          (long int)bio->bi_bdev);
2389                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2390
2391                 start = page_offset(page) + bvec->bv_offset;
2392                 end = start + bvec->bv_len - 1;
2393
2394                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2395                         whole_page = 1;
2396                 else
2397                         whole_page = 0;
2398
2399                 if (++bvec <= bvec_end)
2400                         prefetchw(&bvec->bv_page->flags);
2401
2402                 spin_lock(&tree->lock);
2403                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2404                 if (state && state->start == start) {
2405                         /*
2406                          * take a reference on the state, unlock will drop
2407                          * the ref
2408                          */
2409                         cache_state(state, &cached);
2410                 }
2411                 spin_unlock(&tree->lock);
2412
2413                 mirror = (int)(unsigned long)bio->bi_bdev;
2414                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2415                         ret = tree->ops->readpage_end_io_hook(page, start, end,
2416                                                               state, mirror);
2417                         if (ret)
2418                                 uptodate = 0;
2419                         else
2420                                 clean_io_failure(start, page);
2421                 }
2422
2423                 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2424                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2425                         if (!ret && !err &&
2426                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2427                                 uptodate = 1;
2428                 } else if (!uptodate) {
2429                         /*
2430                          * The generic bio_readpage_error handles errors the
2431                          * following way: If possible, new read requests are
2432                          * created and submitted and will end up in
2433                          * end_bio_extent_readpage as well (if we're lucky, not
2434                          * in the !uptodate case). In that case it returns 0 and
2435                          * we just go on with the next page in our bio. If it
2436                          * can't handle the error it will return -EIO and we
2437                          * remain responsible for that page.
2438                          */
2439                         ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2440                         if (ret == 0) {
2441                                 uptodate =
2442                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2443                                 if (err)
2444                                         uptodate = 0;
2445                                 uncache_state(&cached);
2446                                 continue;
2447                         }
2448                 }
2449
2450                 if (uptodate && tree->track_uptodate) {
2451                         set_extent_uptodate(tree, start, end, &cached,
2452                                             GFP_ATOMIC);
2453                 }
2454                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2455
2456                 if (whole_page) {
2457                         if (uptodate) {
2458                                 SetPageUptodate(page);
2459                         } else {
2460                                 ClearPageUptodate(page);
2461                                 SetPageError(page);
2462                         }
2463                         unlock_page(page);
2464                 } else {
2465                         if (uptodate) {
2466                                 check_page_uptodate(tree, page);
2467                         } else {
2468                                 ClearPageUptodate(page);
2469                                 SetPageError(page);
2470                         }
2471                         check_page_locked(tree, page);
2472                 }
2473         } while (bvec <= bvec_end);
2474
2475         bio_put(bio);
2476 }
2477
2478 struct bio *
2479 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2480                 gfp_t gfp_flags)
2481 {
2482         struct bio *bio;
2483
2484         bio = bio_alloc(gfp_flags, nr_vecs);
2485
2486         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2487                 while (!bio && (nr_vecs /= 2))
2488                         bio = bio_alloc(gfp_flags, nr_vecs);
2489         }
2490
2491         if (bio) {
2492                 bio->bi_size = 0;
2493                 bio->bi_bdev = bdev;
2494                 bio->bi_sector = first_sector;
2495         }
2496         return bio;
2497 }
2498
2499 static int __must_check submit_one_bio(int rw, struct bio *bio,
2500                                        int mirror_num, unsigned long bio_flags)
2501 {
2502         int ret = 0;
2503         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2504         struct page *page = bvec->bv_page;
2505         struct extent_io_tree *tree = bio->bi_private;
2506         u64 start;
2507
2508         start = page_offset(page) + bvec->bv_offset;
2509
2510         bio->bi_private = NULL;
2511
2512         bio_get(bio);
2513
2514         if (tree->ops && tree->ops->submit_bio_hook)
2515                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2516                                            mirror_num, bio_flags, start);
2517         else
2518                 btrfsic_submit_bio(rw, bio);
2519
2520         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2521                 ret = -EOPNOTSUPP;
2522         bio_put(bio);
2523         return ret;
2524 }
2525
2526 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2527                      unsigned long offset, size_t size, struct bio *bio,
2528                      unsigned long bio_flags)
2529 {
2530         int ret = 0;
2531         if (tree->ops && tree->ops->merge_bio_hook)
2532                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2533                                                 bio_flags);
2534         BUG_ON(ret < 0);
2535         return ret;
2536
2537 }
2538
2539 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2540                               struct page *page, sector_t sector,
2541                               size_t size, unsigned long offset,
2542                               struct block_device *bdev,
2543                               struct bio **bio_ret,
2544                               unsigned long max_pages,
2545                               bio_end_io_t end_io_func,
2546                               int mirror_num,
2547                               unsigned long prev_bio_flags,
2548                               unsigned long bio_flags)
2549 {
2550         int ret = 0;
2551         struct bio *bio;
2552         int nr;
2553         int contig = 0;
2554         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2555         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2556         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2557
2558         if (bio_ret && *bio_ret) {
2559                 bio = *bio_ret;
2560                 if (old_compressed)
2561                         contig = bio->bi_sector == sector;
2562                 else
2563                         contig = bio_end_sector(bio) == sector;
2564
2565                 if (prev_bio_flags != bio_flags || !contig ||
2566                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2567                     bio_add_page(bio, page, page_size, offset) < page_size) {
2568                         ret = submit_one_bio(rw, bio, mirror_num,
2569                                              prev_bio_flags);
2570                         if (ret < 0)
2571                                 return ret;
2572                         bio = NULL;
2573                 } else {
2574                         return 0;
2575                 }
2576         }
2577         if (this_compressed)
2578                 nr = BIO_MAX_PAGES;
2579         else
2580                 nr = bio_get_nr_vecs(bdev);
2581
2582         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2583         if (!bio)
2584                 return -ENOMEM;
2585
2586         bio_add_page(bio, page, page_size, offset);
2587         bio->bi_end_io = end_io_func;
2588         bio->bi_private = tree;
2589
2590         if (bio_ret)
2591                 *bio_ret = bio;
2592         else
2593                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2594
2595         return ret;
2596 }
2597
2598 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2599 {
2600         if (!PagePrivate(page)) {
2601                 SetPagePrivate(page);
2602                 page_cache_get(page);
2603                 set_page_private(page, (unsigned long)eb);
2604         } else {
2605                 WARN_ON(page->private != (unsigned long)eb);
2606         }
2607 }
2608
2609 void set_page_extent_mapped(struct page *page)
2610 {
2611         if (!PagePrivate(page)) {
2612                 SetPagePrivate(page);
2613                 page_cache_get(page);
2614                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2615         }
2616 }
2617
2618 /*
2619  * basic readpage implementation.  Locked extent state structs are inserted
2620  * into the tree that are removed when the IO is done (by the end_io
2621  * handlers)
2622  * XXX JDM: This needs looking at to ensure proper page locking
2623  */
2624 static int __extent_read_full_page(struct extent_io_tree *tree,
2625                                    struct page *page,
2626                                    get_extent_t *get_extent,
2627                                    struct bio **bio, int mirror_num,
2628                                    unsigned long *bio_flags)
2629 {
2630         struct inode *inode = page->mapping->host;
2631         u64 start = page_offset(page);
2632         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2633         u64 end;
2634         u64 cur = start;
2635         u64 extent_offset;
2636         u64 last_byte = i_size_read(inode);
2637         u64 block_start;
2638         u64 cur_end;
2639         sector_t sector;
2640         struct extent_map *em;
2641         struct block_device *bdev;
2642         struct btrfs_ordered_extent *ordered;
2643         int ret;
2644         int nr = 0;
2645         size_t pg_offset = 0;
2646         size_t iosize;
2647         size_t disk_io_size;
2648         size_t blocksize = inode->i_sb->s_blocksize;
2649         unsigned long this_bio_flag = 0;
2650
2651         set_page_extent_mapped(page);
2652
2653         if (!PageUptodate(page)) {
2654                 if (cleancache_get_page(page) == 0) {
2655                         BUG_ON(blocksize != PAGE_SIZE);
2656                         goto out;
2657                 }
2658         }
2659
2660         end = page_end;
2661         while (1) {
2662                 lock_extent(tree, start, end);
2663                 ordered = btrfs_lookup_ordered_extent(inode, start);
2664                 if (!ordered)
2665                         break;
2666                 unlock_extent(tree, start, end);
2667                 btrfs_start_ordered_extent(inode, ordered, 1);
2668                 btrfs_put_ordered_extent(ordered);
2669         }
2670
2671         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2672                 char *userpage;
2673                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2674
2675                 if (zero_offset) {
2676                         iosize = PAGE_CACHE_SIZE - zero_offset;
2677                         userpage = kmap_atomic(page);
2678                         memset(userpage + zero_offset, 0, iosize);
2679                         flush_dcache_page(page);
2680                         kunmap_atomic(userpage);
2681                 }
2682         }
2683         while (cur <= end) {
2684                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2685
2686                 if (cur >= last_byte) {
2687                         char *userpage;
2688                         struct extent_state *cached = NULL;
2689
2690                         iosize = PAGE_CACHE_SIZE - pg_offset;
2691                         userpage = kmap_atomic(page);
2692                         memset(userpage + pg_offset, 0, iosize);
2693                         flush_dcache_page(page);
2694                         kunmap_atomic(userpage);
2695                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2696                                             &cached, GFP_NOFS);
2697                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2698                                              &cached, GFP_NOFS);
2699                         break;
2700                 }
2701                 em = get_extent(inode, page, pg_offset, cur,
2702                                 end - cur + 1, 0);
2703                 if (IS_ERR_OR_NULL(em)) {
2704                         SetPageError(page);
2705                         unlock_extent(tree, cur, end);
2706                         break;
2707                 }
2708                 extent_offset = cur - em->start;
2709                 BUG_ON(extent_map_end(em) <= cur);
2710                 BUG_ON(end < cur);
2711
2712                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2713                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2714                         extent_set_compress_type(&this_bio_flag,
2715                                                  em->compress_type);
2716                 }
2717
2718                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2719                 cur_end = min(extent_map_end(em) - 1, end);
2720                 iosize = ALIGN(iosize, blocksize);
2721                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2722                         disk_io_size = em->block_len;
2723                         sector = em->block_start >> 9;
2724                 } else {
2725                         sector = (em->block_start + extent_offset) >> 9;
2726                         disk_io_size = iosize;
2727                 }
2728                 bdev = em->bdev;
2729                 block_start = em->block_start;
2730                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2731                         block_start = EXTENT_MAP_HOLE;
2732                 free_extent_map(em);
2733                 em = NULL;
2734
2735                 /* we've found a hole, just zero and go on */
2736                 if (block_start == EXTENT_MAP_HOLE) {
2737                         char *userpage;
2738                         struct extent_state *cached = NULL;
2739
2740                         userpage = kmap_atomic(page);
2741                         memset(userpage + pg_offset, 0, iosize);
2742                         flush_dcache_page(page);
2743                         kunmap_atomic(userpage);
2744
2745                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2746                                             &cached, GFP_NOFS);
2747                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2748                                              &cached, GFP_NOFS);
2749                         cur = cur + iosize;
2750                         pg_offset += iosize;
2751                         continue;
2752                 }
2753                 /* the get_extent function already copied into the page */
2754                 if (test_range_bit(tree, cur, cur_end,
2755                                    EXTENT_UPTODATE, 1, NULL)) {
2756                         check_page_uptodate(tree, page);
2757                         unlock_extent(tree, cur, cur + iosize - 1);
2758                         cur = cur + iosize;
2759                         pg_offset += iosize;
2760                         continue;
2761                 }
2762                 /* we have an inline extent but it didn't get marked up
2763                  * to date.  Error out
2764                  */
2765                 if (block_start == EXTENT_MAP_INLINE) {
2766                         SetPageError(page);
2767                         unlock_extent(tree, cur, cur + iosize - 1);
2768                         cur = cur + iosize;
2769                         pg_offset += iosize;
2770                         continue;
2771                 }
2772
2773                 pnr -= page->index;
2774                 ret = submit_extent_page(READ, tree, page,
2775                                          sector, disk_io_size, pg_offset,
2776                                          bdev, bio, pnr,
2777                                          end_bio_extent_readpage, mirror_num,
2778                                          *bio_flags,
2779                                          this_bio_flag);
2780                 if (!ret) {
2781                         nr++;
2782                         *bio_flags = this_bio_flag;
2783                 } else {
2784                         SetPageError(page);
2785                         unlock_extent(tree, cur, cur + iosize - 1);
2786                 }
2787                 cur = cur + iosize;
2788                 pg_offset += iosize;
2789         }
2790 out:
2791         if (!nr) {
2792                 if (!PageError(page))
2793                         SetPageUptodate(page);
2794                 unlock_page(page);
2795         }
2796         return 0;
2797 }
2798
2799 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2800                             get_extent_t *get_extent, int mirror_num)
2801 {
2802         struct bio *bio = NULL;
2803         unsigned long bio_flags = 0;
2804         int ret;
2805
2806         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2807                                       &bio_flags);
2808         if (bio)
2809                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2810         return ret;
2811 }
2812
2813 static noinline void update_nr_written(struct page *page,
2814                                       struct writeback_control *wbc,
2815                                       unsigned long nr_written)
2816 {
2817         wbc->nr_to_write -= nr_written;
2818         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2819             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2820                 page->mapping->writeback_index = page->index + nr_written;
2821 }
2822
2823 /*
2824  * the writepage semantics are similar to regular writepage.  extent
2825  * records are inserted to lock ranges in the tree, and as dirty areas
2826  * are found, they are marked writeback.  Then the lock bits are removed
2827  * and the end_io handler clears the writeback ranges
2828  */
2829 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2830                               void *data)
2831 {
2832         struct inode *inode = page->mapping->host;
2833         struct extent_page_data *epd = data;
2834         struct extent_io_tree *tree = epd->tree;
2835         u64 start = page_offset(page);
2836         u64 delalloc_start;
2837         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2838         u64 end;
2839         u64 cur = start;
2840         u64 extent_offset;
2841         u64 last_byte = i_size_read(inode);
2842         u64 block_start;
2843         u64 iosize;
2844         sector_t sector;
2845         struct extent_state *cached_state = NULL;
2846         struct extent_map *em;
2847         struct block_device *bdev;
2848         int ret;
2849         int nr = 0;
2850         size_t pg_offset = 0;
2851         size_t blocksize;
2852         loff_t i_size = i_size_read(inode);
2853         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2854         u64 nr_delalloc;
2855         u64 delalloc_end;
2856         int page_started;
2857         int compressed;
2858         int write_flags;
2859         unsigned long nr_written = 0;
2860         bool fill_delalloc = true;
2861
2862         if (wbc->sync_mode == WB_SYNC_ALL)
2863                 write_flags = WRITE_SYNC;
2864         else
2865                 write_flags = WRITE;
2866
2867         trace___extent_writepage(page, inode, wbc);
2868
2869         WARN_ON(!PageLocked(page));
2870
2871         ClearPageError(page);
2872
2873         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2874         if (page->index > end_index ||
2875            (page->index == end_index && !pg_offset)) {
2876                 page->mapping->a_ops->invalidatepage(page, 0);
2877                 unlock_page(page);
2878                 return 0;
2879         }
2880
2881         if (page->index == end_index) {
2882                 char *userpage;
2883
2884                 userpage = kmap_atomic(page);
2885                 memset(userpage + pg_offset, 0,
2886                        PAGE_CACHE_SIZE - pg_offset);
2887                 kunmap_atomic(userpage);
2888                 flush_dcache_page(page);
2889         }
2890         pg_offset = 0;
2891
2892         set_page_extent_mapped(page);
2893
2894         if (!tree->ops || !tree->ops->fill_delalloc)
2895                 fill_delalloc = false;
2896
2897         delalloc_start = start;
2898         delalloc_end = 0;
2899         page_started = 0;
2900         if (!epd->extent_locked && fill_delalloc) {
2901                 u64 delalloc_to_write = 0;
2902                 /*
2903                  * make sure the wbc mapping index is at least updated
2904                  * to this page.
2905                  */
2906                 update_nr_written(page, wbc, 0);
2907
2908                 while (delalloc_end < page_end) {
2909                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2910                                                        page,
2911                                                        &delalloc_start,
2912                                                        &delalloc_end,
2913                                                        128 * 1024 * 1024);
2914                         if (nr_delalloc == 0) {
2915                                 delalloc_start = delalloc_end + 1;
2916                                 continue;
2917                         }
2918                         ret = tree->ops->fill_delalloc(inode, page,
2919                                                        delalloc_start,
2920                                                        delalloc_end,
2921                                                        &page_started,
2922                                                        &nr_written);
2923                         /* File system has been set read-only */
2924                         if (ret) {
2925                                 SetPageError(page);
2926                                 goto done;
2927                         }
2928                         /*
2929                          * delalloc_end is already one less than the total
2930                          * length, so we don't subtract one from
2931                          * PAGE_CACHE_SIZE
2932                          */
2933                         delalloc_to_write += (delalloc_end - delalloc_start +
2934                                               PAGE_CACHE_SIZE) >>
2935                                               PAGE_CACHE_SHIFT;
2936                         delalloc_start = delalloc_end + 1;
2937                 }
2938                 if (wbc->nr_to_write < delalloc_to_write) {
2939                         int thresh = 8192;
2940
2941                         if (delalloc_to_write < thresh * 2)
2942                                 thresh = delalloc_to_write;
2943                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
2944                                                  thresh);
2945                 }
2946
2947                 /* did the fill delalloc function already unlock and start
2948                  * the IO?
2949                  */
2950                 if (page_started) {
2951                         ret = 0;
2952                         /*
2953                          * we've unlocked the page, so we can't update
2954                          * the mapping's writeback index, just update
2955                          * nr_to_write.
2956                          */
2957                         wbc->nr_to_write -= nr_written;
2958                         goto done_unlocked;
2959                 }
2960         }
2961         if (tree->ops && tree->ops->writepage_start_hook) {
2962                 ret = tree->ops->writepage_start_hook(page, start,
2963                                                       page_end);
2964                 if (ret) {
2965                         /* Fixup worker will requeue */
2966                         if (ret == -EBUSY)
2967                                 wbc->pages_skipped++;
2968                         else
2969                                 redirty_page_for_writepage(wbc, page);
2970                         update_nr_written(page, wbc, nr_written);
2971                         unlock_page(page);
2972                         ret = 0;
2973                         goto done_unlocked;
2974                 }
2975         }
2976
2977         /*
2978          * we don't want to touch the inode after unlocking the page,
2979          * so we update the mapping writeback index now
2980          */
2981         update_nr_written(page, wbc, nr_written + 1);
2982
2983         end = page_end;
2984         if (last_byte <= start) {
2985                 if (tree->ops && tree->ops->writepage_end_io_hook)
2986                         tree->ops->writepage_end_io_hook(page, start,
2987                                                          page_end, NULL, 1);
2988                 goto done;
2989         }
2990
2991         blocksize = inode->i_sb->s_blocksize;
2992
2993         while (cur <= end) {
2994                 if (cur >= last_byte) {
2995                         if (tree->ops && tree->ops->writepage_end_io_hook)
2996                                 tree->ops->writepage_end_io_hook(page, cur,
2997                                                          page_end, NULL, 1);
2998                         break;
2999                 }
3000                 em = epd->get_extent(inode, page, pg_offset, cur,
3001                                      end - cur + 1, 1);
3002                 if (IS_ERR_OR_NULL(em)) {
3003                         SetPageError(page);
3004                         break;
3005                 }
3006
3007                 extent_offset = cur - em->start;
3008                 BUG_ON(extent_map_end(em) <= cur);
3009                 BUG_ON(end < cur);
3010                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3011                 iosize = ALIGN(iosize, blocksize);
3012                 sector = (em->block_start + extent_offset) >> 9;
3013                 bdev = em->bdev;
3014                 block_start = em->block_start;
3015                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3016                 free_extent_map(em);
3017                 em = NULL;
3018
3019                 /*
3020                  * compressed and inline extents are written through other
3021                  * paths in the FS
3022                  */
3023                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3024                     block_start == EXTENT_MAP_INLINE) {
3025                         /*
3026                          * end_io notification does not happen here for
3027                          * compressed extents
3028                          */
3029                         if (!compressed && tree->ops &&
3030                             tree->ops->writepage_end_io_hook)
3031                                 tree->ops->writepage_end_io_hook(page, cur,
3032                                                          cur + iosize - 1,
3033                                                          NULL, 1);
3034                         else if (compressed) {
3035                                 /* we don't want to end_page_writeback on
3036                                  * a compressed extent.  this happens
3037                                  * elsewhere
3038                                  */
3039                                 nr++;
3040                         }
3041
3042                         cur += iosize;
3043                         pg_offset += iosize;
3044                         continue;
3045                 }
3046                 /* leave this out until we have a page_mkwrite call */
3047                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3048                                    EXTENT_DIRTY, 0, NULL)) {
3049                         cur = cur + iosize;
3050                         pg_offset += iosize;
3051                         continue;
3052                 }
3053
3054                 if (tree->ops && tree->ops->writepage_io_hook) {
3055                         ret = tree->ops->writepage_io_hook(page, cur,
3056                                                 cur + iosize - 1);
3057                 } else {
3058                         ret = 0;
3059                 }
3060                 if (ret) {
3061                         SetPageError(page);
3062                 } else {
3063                         unsigned long max_nr = end_index + 1;
3064
3065                         set_range_writeback(tree, cur, cur + iosize - 1);
3066                         if (!PageWriteback(page)) {
3067                                 printk(KERN_ERR "btrfs warning page %lu not "
3068                                        "writeback, cur %llu end %llu\n",
3069                                        page->index, (unsigned long long)cur,
3070                                        (unsigned long long)end);
3071                         }
3072
3073                         ret = submit_extent_page(write_flags, tree, page,
3074                                                  sector, iosize, pg_offset,
3075                                                  bdev, &epd->bio, max_nr,
3076                                                  end_bio_extent_writepage,
3077                                                  0, 0, 0);
3078                         if (ret)
3079                                 SetPageError(page);
3080                 }
3081                 cur = cur + iosize;
3082                 pg_offset += iosize;
3083                 nr++;
3084         }
3085 done:
3086         if (nr == 0) {
3087                 /* make sure the mapping tag for page dirty gets cleared */
3088                 set_page_writeback(page);
3089                 end_page_writeback(page);
3090         }
3091         unlock_page(page);
3092
3093 done_unlocked:
3094
3095         /* drop our reference on any cached states */
3096         free_extent_state(cached_state);
3097         return 0;
3098 }
3099
3100 static int eb_wait(void *word)
3101 {
3102         io_schedule();
3103         return 0;
3104 }
3105
3106 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3107 {
3108         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3109                     TASK_UNINTERRUPTIBLE);
3110 }
3111
3112 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3113                                      struct btrfs_fs_info *fs_info,
3114                                      struct extent_page_data *epd)
3115 {
3116         unsigned long i, num_pages;
3117         int flush = 0;
3118         int ret = 0;
3119
3120         if (!btrfs_try_tree_write_lock(eb)) {
3121                 flush = 1;
3122                 flush_write_bio(epd);
3123                 btrfs_tree_lock(eb);
3124         }
3125
3126         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3127                 btrfs_tree_unlock(eb);
3128                 if (!epd->sync_io)
3129                         return 0;
3130                 if (!flush) {
3131                         flush_write_bio(epd);
3132                         flush = 1;
3133                 }
3134                 while (1) {
3135                         wait_on_extent_buffer_writeback(eb);
3136                         btrfs_tree_lock(eb);
3137                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3138                                 break;
3139                         btrfs_tree_unlock(eb);
3140                 }
3141         }
3142
3143         /*
3144          * We need to do this to prevent races in people who check if the eb is
3145          * under IO since we can end up having no IO bits set for a short period
3146          * of time.
3147          */
3148         spin_lock(&eb->refs_lock);
3149         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3150                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3151                 spin_unlock(&eb->refs_lock);
3152                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3153                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3154                                      -eb->len,
3155                                      fs_info->dirty_metadata_batch);
3156                 ret = 1;
3157         } else {
3158                 spin_unlock(&eb->refs_lock);
3159         }
3160
3161         btrfs_tree_unlock(eb);
3162
3163         if (!ret)
3164                 return ret;
3165
3166         num_pages = num_extent_pages(eb->start, eb->len);
3167         for (i = 0; i < num_pages; i++) {
3168                 struct page *p = extent_buffer_page(eb, i);
3169
3170                 if (!trylock_page(p)) {
3171                         if (!flush) {
3172                                 flush_write_bio(epd);
3173                                 flush = 1;
3174                         }
3175                         lock_page(p);
3176                 }
3177         }
3178
3179         return ret;
3180 }
3181
3182 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3183 {
3184         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3185         smp_mb__after_clear_bit();
3186         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3187 }
3188
3189 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3190 {
3191         int uptodate = err == 0;
3192         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3193         struct extent_buffer *eb;
3194         int done;
3195
3196         do {
3197                 struct page *page = bvec->bv_page;
3198
3199                 bvec--;
3200                 eb = (struct extent_buffer *)page->private;
3201                 BUG_ON(!eb);
3202                 done = atomic_dec_and_test(&eb->io_pages);
3203
3204                 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3205                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3206                         ClearPageUptodate(page);
3207                         SetPageError(page);
3208                 }
3209
3210                 end_page_writeback(page);
3211
3212                 if (!done)
3213                         continue;
3214
3215                 end_extent_buffer_writeback(eb);
3216         } while (bvec >= bio->bi_io_vec);
3217
3218         bio_put(bio);
3219
3220 }
3221
3222 static int write_one_eb(struct extent_buffer *eb,
3223                         struct btrfs_fs_info *fs_info,
3224                         struct writeback_control *wbc,
3225                         struct extent_page_data *epd)
3226 {
3227         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3228         u64 offset = eb->start;
3229         unsigned long i, num_pages;
3230         unsigned long bio_flags = 0;
3231         int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3232         int ret = 0;
3233
3234         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3235         num_pages = num_extent_pages(eb->start, eb->len);
3236         atomic_set(&eb->io_pages, num_pages);
3237         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3238                 bio_flags = EXTENT_BIO_TREE_LOG;
3239
3240         for (i = 0; i < num_pages; i++) {
3241                 struct page *p = extent_buffer_page(eb, i);
3242
3243                 clear_page_dirty_for_io(p);
3244                 set_page_writeback(p);
3245                 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3246                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3247                                          -1, end_bio_extent_buffer_writepage,
3248                                          0, epd->bio_flags, bio_flags);
3249                 epd->bio_flags = bio_flags;
3250                 if (ret) {
3251                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3252                         SetPageError(p);
3253                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3254                                 end_extent_buffer_writeback(eb);
3255                         ret = -EIO;
3256                         break;
3257                 }
3258                 offset += PAGE_CACHE_SIZE;
3259                 update_nr_written(p, wbc, 1);
3260                 unlock_page(p);
3261         }
3262
3263         if (unlikely(ret)) {
3264                 for (; i < num_pages; i++) {
3265                         struct page *p = extent_buffer_page(eb, i);
3266                         unlock_page(p);
3267                 }
3268         }
3269
3270         return ret;
3271 }
3272
3273 int btree_write_cache_pages(struct address_space *mapping,
3274                                    struct writeback_control *wbc)
3275 {
3276         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3277         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3278         struct extent_buffer *eb, *prev_eb = NULL;
3279         struct extent_page_data epd = {
3280                 .bio = NULL,
3281                 .tree = tree,
3282                 .extent_locked = 0,
3283                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3284                 .bio_flags = 0,
3285         };
3286         int ret = 0;
3287         int done = 0;
3288         int nr_to_write_done = 0;
3289         struct pagevec pvec;
3290         int nr_pages;
3291         pgoff_t index;
3292         pgoff_t end;            /* Inclusive */
3293         int scanned = 0;
3294         int tag;
3295
3296         pagevec_init(&pvec, 0);
3297         if (wbc->range_cyclic) {
3298                 index = mapping->writeback_index; /* Start from prev offset */
3299                 end = -1;
3300         } else {
3301                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3302                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3303                 scanned = 1;
3304         }
3305         if (wbc->sync_mode == WB_SYNC_ALL)
3306                 tag = PAGECACHE_TAG_TOWRITE;
3307         else
3308                 tag = PAGECACHE_TAG_DIRTY;
3309 retry:
3310         if (wbc->sync_mode == WB_SYNC_ALL)
3311                 tag_pages_for_writeback(mapping, index, end);
3312         while (!done && !nr_to_write_done && (index <= end) &&
3313                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3314                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3315                 unsigned i;
3316
3317                 scanned = 1;
3318                 for (i = 0; i < nr_pages; i++) {
3319                         struct page *page = pvec.pages[i];
3320
3321                         if (!PagePrivate(page))
3322                                 continue;
3323
3324                         if (!wbc->range_cyclic && page->index > end) {
3325                                 done = 1;
3326                                 break;
3327                         }
3328
3329                         spin_lock(&mapping->private_lock);
3330                         if (!PagePrivate(page)) {
3331                                 spin_unlock(&mapping->private_lock);
3332                                 continue;
3333                         }
3334
3335                         eb = (struct extent_buffer *)page->private;
3336
3337                         /*
3338                          * Shouldn't happen and normally this would be a BUG_ON
3339                          * but no sense in crashing the users box for something
3340                          * we can survive anyway.
3341                          */
3342                         if (!eb) {
3343                                 spin_unlock(&mapping->private_lock);
3344                                 WARN_ON(1);
3345                                 continue;
3346                         }
3347
3348                         if (eb == prev_eb) {
3349                                 spin_unlock(&mapping->private_lock);
3350                                 continue;
3351                         }
3352
3353                         ret = atomic_inc_not_zero(&eb->refs);
3354                         spin_unlock(&mapping->private_lock);
3355                         if (!ret)
3356                                 continue;
3357
3358                         prev_eb = eb;
3359                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3360                         if (!ret) {
3361                                 free_extent_buffer(eb);
3362                                 continue;
3363                         }
3364
3365                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3366                         if (ret) {
3367                                 done = 1;
3368                                 free_extent_buffer(eb);
3369                                 break;
3370                         }
3371                         free_extent_buffer(eb);
3372
3373                         /*
3374                          * the filesystem may choose to bump up nr_to_write.
3375                          * We have to make sure to honor the new nr_to_write
3376                          * at any time
3377                          */
3378                         nr_to_write_done = wbc->nr_to_write <= 0;
3379                 }
3380                 pagevec_release(&pvec);
3381                 cond_resched();
3382         }
3383         if (!scanned && !done) {
3384                 /*
3385                  * We hit the last page and there is more work to be done: wrap
3386                  * back to the start of the file
3387                  */
3388                 scanned = 1;
3389                 index = 0;
3390                 goto retry;
3391         }
3392         flush_write_bio(&epd);
3393         return ret;
3394 }
3395
3396 /**
3397  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3398  * @mapping: address space structure to write
3399  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3400  * @writepage: function called for each page
3401  * @data: data passed to writepage function
3402  *
3403  * If a page is already under I/O, write_cache_pages() skips it, even
3404  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3405  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3406  * and msync() need to guarantee that all the data which was dirty at the time
3407  * the call was made get new I/O started against them.  If wbc->sync_mode is
3408  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3409  * existing IO to complete.
3410  */
3411 static int extent_write_cache_pages(struct extent_io_tree *tree,
3412                              struct address_space *mapping,
3413                              struct writeback_control *wbc,
3414                              writepage_t writepage, void *data,
3415                              void (*flush_fn)(void *))
3416 {
3417         struct inode *inode = mapping->host;
3418         int ret = 0;
3419         int done = 0;
3420         int nr_to_write_done = 0;
3421         struct pagevec pvec;
3422         int nr_pages;
3423         pgoff_t index;
3424         pgoff_t end;            /* Inclusive */
3425         int scanned = 0;
3426         int tag;
3427
3428         /*
3429          * We have to hold onto the inode so that ordered extents can do their
3430          * work when the IO finishes.  The alternative to this is failing to add
3431          * an ordered extent if the igrab() fails there and that is a huge pain
3432          * to deal with, so instead just hold onto the inode throughout the
3433          * writepages operation.  If it fails here we are freeing up the inode
3434          * anyway and we'd rather not waste our time writing out stuff that is
3435          * going to be truncated anyway.
3436          */
3437         if (!igrab(inode))
3438                 return 0;
3439
3440         pagevec_init(&pvec, 0);
3441         if (wbc->range_cyclic) {
3442                 index = mapping->writeback_index; /* Start from prev offset */
3443                 end = -1;
3444         } else {
3445                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3446                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3447                 scanned = 1;
3448         }
3449         if (wbc->sync_mode == WB_SYNC_ALL)
3450                 tag = PAGECACHE_TAG_TOWRITE;
3451         else
3452                 tag = PAGECACHE_TAG_DIRTY;
3453 retry:
3454         if (wbc->sync_mode == WB_SYNC_ALL)
3455                 tag_pages_for_writeback(mapping, index, end);
3456         while (!done && !nr_to_write_done && (index <= end) &&
3457                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3458                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3459                 unsigned i;
3460
3461                 scanned = 1;
3462                 for (i = 0; i < nr_pages; i++) {
3463                         struct page *page = pvec.pages[i];
3464
3465                         /*
3466                          * At this point we hold neither mapping->tree_lock nor
3467                          * lock on the page itself: the page may be truncated or
3468                          * invalidated (changing page->mapping to NULL), or even
3469                          * swizzled back from swapper_space to tmpfs file
3470                          * mapping
3471                          */
3472                         if (!trylock_page(page)) {
3473                                 flush_fn(data);
3474                                 lock_page(page);
3475                         }
3476
3477                         if (unlikely(page->mapping != mapping)) {
3478                                 unlock_page(page);
3479                                 continue;
3480                         }
3481
3482                         if (!wbc->range_cyclic && page->index > end) {
3483                                 done = 1;
3484                                 unlock_page(page);
3485                                 continue;
3486                         }
3487
3488                         if (wbc->sync_mode != WB_SYNC_NONE) {
3489                                 if (PageWriteback(page))
3490                                         flush_fn(data);
3491                                 wait_on_page_writeback(page);
3492                         }
3493
3494                         if (PageWriteback(page) ||
3495                             !clear_page_dirty_for_io(page)) {
3496                                 unlock_page(page);
3497                                 continue;
3498                         }
3499
3500                         ret = (*writepage)(page, wbc, data);
3501
3502                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3503                                 unlock_page(page);
3504                                 ret = 0;
3505                         }
3506                         if (ret)
3507                                 done = 1;
3508
3509                         /*
3510                          * the filesystem may choose to bump up nr_to_write.
3511                          * We have to make sure to honor the new nr_to_write
3512                          * at any time
3513                          */
3514                         nr_to_write_done = wbc->nr_to_write <= 0;
3515                 }
3516                 pagevec_release(&pvec);
3517                 cond_resched();
3518         }
3519         if (!scanned && !done) {
3520                 /*
3521                  * We hit the last page and there is more work to be done: wrap
3522                  * back to the start of the file
3523                  */
3524                 scanned = 1;
3525                 index = 0;
3526                 goto retry;
3527         }
3528         btrfs_add_delayed_iput(inode);
3529         return ret;
3530 }
3531
3532 static void flush_epd_write_bio(struct extent_page_data *epd)
3533 {
3534         if (epd->bio) {
3535                 int rw = WRITE;
3536                 int ret;
3537
3538                 if (epd->sync_io)
3539                         rw = WRITE_SYNC;
3540
3541                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3542                 BUG_ON(ret < 0); /* -ENOMEM */
3543                 epd->bio = NULL;
3544         }
3545 }
3546
3547 static noinline void flush_write_bio(void *data)
3548 {
3549         struct extent_page_data *epd = data;
3550         flush_epd_write_bio(epd);
3551 }
3552
3553 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3554                           get_extent_t *get_extent,
3555                           struct writeback_control *wbc)
3556 {
3557         int ret;
3558         struct extent_page_data epd = {
3559                 .bio = NULL,
3560                 .tree = tree,
3561                 .get_extent = get_extent,
3562                 .extent_locked = 0,
3563                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3564                 .bio_flags = 0,
3565         };
3566
3567         ret = __extent_writepage(page, wbc, &epd);
3568
3569         flush_epd_write_bio(&epd);
3570         return ret;
3571 }
3572
3573 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3574                               u64 start, u64 end, get_extent_t *get_extent,
3575                               int mode)
3576 {
3577         int ret = 0;
3578         struct address_space *mapping = inode->i_mapping;
3579         struct page *page;
3580         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3581                 PAGE_CACHE_SHIFT;
3582
3583         struct extent_page_data epd = {
3584                 .bio = NULL,
3585                 .tree = tree,
3586                 .get_extent = get_extent,
3587                 .extent_locked = 1,
3588                 .sync_io = mode == WB_SYNC_ALL,
3589                 .bio_flags = 0,
3590         };
3591         struct writeback_control wbc_writepages = {
3592                 .sync_mode      = mode,
3593                 .nr_to_write    = nr_pages * 2,
3594                 .range_start    = start,
3595                 .range_end      = end + 1,
3596         };
3597
3598         while (start <= end) {
3599                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3600                 if (clear_page_dirty_for_io(page))
3601                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3602                 else {
3603                         if (tree->ops && tree->ops->writepage_end_io_hook)
3604                                 tree->ops->writepage_end_io_hook(page, start,
3605                                                  start + PAGE_CACHE_SIZE - 1,
3606                                                  NULL, 1);
3607                         unlock_page(page);
3608                 }
3609                 page_cache_release(page);
3610                 start += PAGE_CACHE_SIZE;
3611         }
3612
3613         flush_epd_write_bio(&epd);
3614         return ret;
3615 }
3616
3617 int extent_writepages(struct extent_io_tree *tree,
3618                       struct address_space *mapping,
3619                       get_extent_t *get_extent,
3620                       struct writeback_control *wbc)
3621 {
3622         int ret = 0;
3623         struct extent_page_data epd = {
3624                 .bio = NULL,
3625                 .tree = tree,
3626                 .get_extent = get_extent,
3627                 .extent_locked = 0,
3628                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3629                 .bio_flags = 0,
3630         };
3631
3632         ret = extent_write_cache_pages(tree, mapping, wbc,
3633                                        __extent_writepage, &epd,
3634                                        flush_write_bio);
3635         flush_epd_write_bio(&epd);
3636         return ret;
3637 }
3638
3639 int extent_readpages(struct extent_io_tree *tree,
3640                      struct address_space *mapping,
3641                      struct list_head *pages, unsigned nr_pages,
3642                      get_extent_t get_extent)
3643 {
3644         struct bio *bio = NULL;
3645         unsigned page_idx;
3646         unsigned long bio_flags = 0;
3647         struct page *pagepool[16];
3648         struct page *page;
3649         int i = 0;
3650         int nr = 0;
3651
3652         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3653                 page = list_entry(pages->prev, struct page, lru);
3654
3655                 prefetchw(&page->flags);
3656                 list_del(&page->lru);
3657                 if (add_to_page_cache_lru(page, mapping,
3658                                         page->index, GFP_NOFS)) {
3659                         page_cache_release(page);
3660                         continue;
3661                 }
3662
3663                 pagepool[nr++] = page;
3664                 if (nr < ARRAY_SIZE(pagepool))
3665                         continue;
3666                 for (i = 0; i < nr; i++) {
3667                         __extent_read_full_page(tree, pagepool[i], get_extent,
3668                                         &bio, 0, &bio_flags);
3669                         page_cache_release(pagepool[i]);
3670                 }
3671                 nr = 0;
3672         }
3673         for (i = 0; i < nr; i++) {
3674                 __extent_read_full_page(tree, pagepool[i], get_extent,
3675                                         &bio, 0, &bio_flags);
3676                 page_cache_release(pagepool[i]);
3677         }
3678
3679         BUG_ON(!list_empty(pages));
3680         if (bio)
3681                 return submit_one_bio(READ, bio, 0, bio_flags);
3682         return 0;
3683 }
3684
3685 /*
3686  * basic invalidatepage code, this waits on any locked or writeback
3687  * ranges corresponding to the page, and then deletes any extent state
3688  * records from the tree
3689  */
3690 int extent_invalidatepage(struct extent_io_tree *tree,
3691                           struct page *page, unsigned long offset)
3692 {
3693         struct extent_state *cached_state = NULL;
3694         u64 start = page_offset(page);
3695         u64 end = start + PAGE_CACHE_SIZE - 1;
3696         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3697
3698         start += ALIGN(offset, blocksize);
3699         if (start > end)
3700                 return 0;
3701
3702         lock_extent_bits(tree, start, end, 0, &cached_state);
3703         wait_on_page_writeback(page);
3704         clear_extent_bit(tree, start, end,
3705                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3706                          EXTENT_DO_ACCOUNTING,
3707                          1, 1, &cached_state, GFP_NOFS);
3708         return 0;
3709 }
3710
3711 /*
3712  * a helper for releasepage, this tests for areas of the page that
3713  * are locked or under IO and drops the related state bits if it is safe
3714  * to drop the page.
3715  */
3716 int try_release_extent_state(struct extent_map_tree *map,
3717                              struct extent_io_tree *tree, struct page *page,
3718                              gfp_t mask)
3719 {
3720         u64 start = page_offset(page);
3721         u64 end = start + PAGE_CACHE_SIZE - 1;
3722         int ret = 1;
3723
3724         if (test_range_bit(tree, start, end,
3725                            EXTENT_IOBITS, 0, NULL))
3726                 ret = 0;
3727         else {
3728                 if ((mask & GFP_NOFS) == GFP_NOFS)
3729                         mask = GFP_NOFS;
3730                 /*
3731                  * at this point we can safely clear everything except the
3732                  * locked bit and the nodatasum bit
3733                  */
3734                 ret = clear_extent_bit(tree, start, end,
3735                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3736                                  0, 0, NULL, mask);
3737
3738                 /* if clear_extent_bit failed for enomem reasons,
3739                  * we can't allow the release to continue.
3740                  */
3741                 if (ret < 0)
3742                         ret = 0;
3743                 else
3744                         ret = 1;
3745         }
3746         return ret;
3747 }
3748
3749 /*
3750  * a helper for releasepage.  As long as there are no locked extents
3751  * in the range corresponding to the page, both state records and extent
3752  * map records are removed
3753  */
3754 int try_release_extent_mapping(struct extent_map_tree *map,
3755                                struct extent_io_tree *tree, struct page *page,
3756                                gfp_t mask)
3757 {
3758         struct extent_map *em;
3759         u64 start = page_offset(page);
3760         u64 end = start + PAGE_CACHE_SIZE - 1;
3761
3762         if ((mask & __GFP_WAIT) &&
3763             page->mapping->host->i_size > 16 * 1024 * 1024) {
3764                 u64 len;
3765                 while (start <= end) {
3766                         len = end - start + 1;
3767                         write_lock(&map->lock);
3768                         em = lookup_extent_mapping(map, start, len);
3769                         if (!em) {
3770                                 write_unlock(&map->lock);
3771                                 break;
3772                         }
3773                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3774                             em->start != start) {
3775                                 write_unlock(&map->lock);
3776                                 free_extent_map(em);
3777                                 break;
3778                         }
3779                         if (!test_range_bit(tree, em->start,
3780                                             extent_map_end(em) - 1,
3781                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
3782                                             0, NULL)) {
3783                                 remove_extent_mapping(map, em);
3784                                 /* once for the rb tree */
3785                                 free_extent_map(em);
3786                         }
3787                         start = extent_map_end(em);
3788                         write_unlock(&map->lock);
3789
3790                         /* once for us */
3791                         free_extent_map(em);
3792                 }
3793         }
3794         return try_release_extent_state(map, tree, page, mask);
3795 }
3796
3797 /*
3798  * helper function for fiemap, which doesn't want to see any holes.
3799  * This maps until we find something past 'last'
3800  */
3801 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3802                                                 u64 offset,
3803                                                 u64 last,
3804                                                 get_extent_t *get_extent)
3805 {
3806         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3807         struct extent_map *em;
3808         u64 len;
3809
3810         if (offset >= last)
3811                 return NULL;
3812
3813         while(1) {
3814                 len = last - offset;
3815                 if (len == 0)
3816                         break;
3817                 len = ALIGN(len, sectorsize);
3818                 em = get_extent(inode, NULL, 0, offset, len, 0);
3819                 if (IS_ERR_OR_NULL(em))
3820                         return em;
3821
3822                 /* if this isn't a hole return it */
3823                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3824                     em->block_start != EXTENT_MAP_HOLE) {
3825                         return em;
3826                 }
3827
3828                 /* this is a hole, advance to the next extent */
3829                 offset = extent_map_end(em);
3830                 free_extent_map(em);
3831                 if (offset >= last)
3832                         break;
3833         }
3834         return NULL;
3835 }
3836
3837 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3838                 __u64 start, __u64 len, get_extent_t *get_extent)
3839 {
3840         int ret = 0;
3841         u64 off = start;
3842         u64 max = start + len;
3843         u32 flags = 0;
3844         u32 found_type;
3845         u64 last;
3846         u64 last_for_get_extent = 0;
3847         u64 disko = 0;
3848         u64 isize = i_size_read(inode);
3849         struct btrfs_key found_key;
3850         struct extent_map *em = NULL;
3851         struct extent_state *cached_state = NULL;
3852         struct btrfs_path *path;
3853         struct btrfs_file_extent_item *item;
3854         int end = 0;
3855         u64 em_start = 0;
3856         u64 em_len = 0;
3857         u64 em_end = 0;
3858         unsigned long emflags;
3859
3860         if (len == 0)
3861                 return -EINVAL;
3862
3863         path = btrfs_alloc_path();
3864         if (!path)
3865                 return -ENOMEM;
3866         path->leave_spinning = 1;
3867
3868         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3869         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3870
3871         /*
3872          * lookup the last file extent.  We're not using i_size here
3873          * because there might be preallocation past i_size
3874          */
3875         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3876                                        path, btrfs_ino(inode), -1, 0);
3877         if (ret < 0) {
3878                 btrfs_free_path(path);
3879                 return ret;
3880         }
3881         WARN_ON(!ret);
3882         path->slots[0]--;
3883         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3884                               struct btrfs_file_extent_item);
3885         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3886         found_type = btrfs_key_type(&found_key);
3887
3888         /* No extents, but there might be delalloc bits */
3889         if (found_key.objectid != btrfs_ino(inode) ||
3890             found_type != BTRFS_EXTENT_DATA_KEY) {
3891                 /* have to trust i_size as the end */
3892                 last = (u64)-1;
3893                 last_for_get_extent = isize;
3894         } else {
3895                 /*
3896                  * remember the start of the last extent.  There are a
3897                  * bunch of different factors that go into the length of the
3898                  * extent, so its much less complex to remember where it started
3899                  */
3900                 last = found_key.offset;
3901                 last_for_get_extent = last + 1;
3902         }
3903         btrfs_free_path(path);
3904
3905         /*
3906          * we might have some extents allocated but more delalloc past those
3907          * extents.  so, we trust isize unless the start of the last extent is
3908          * beyond isize
3909          */
3910         if (last < isize) {
3911                 last = (u64)-1;
3912                 last_for_get_extent = isize;
3913         }
3914
3915         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3916                          &cached_state);
3917
3918         em = get_extent_skip_holes(inode, start, last_for_get_extent,
3919                                    get_extent);
3920         if (!em)
3921                 goto out;
3922         if (IS_ERR(em)) {
3923                 ret = PTR_ERR(em);
3924                 goto out;
3925         }
3926
3927         while (!end) {
3928                 u64 offset_in_extent;
3929
3930                 /* break if the extent we found is outside the range */
3931                 if (em->start >= max || extent_map_end(em) < off)
3932                         break;
3933
3934                 /*
3935                  * get_extent may return an extent that starts before our
3936                  * requested range.  We have to make sure the ranges
3937                  * we return to fiemap always move forward and don't
3938                  * overlap, so adjust the offsets here
3939                  */
3940                 em_start = max(em->start, off);
3941
3942                 /*
3943                  * record the offset from the start of the extent
3944                  * for adjusting the disk offset below
3945                  */
3946                 offset_in_extent = em_start - em->start;
3947                 em_end = extent_map_end(em);
3948                 em_len = em_end - em_start;
3949                 emflags = em->flags;
3950                 disko = 0;
3951                 flags = 0;
3952
3953                 /*
3954                  * bump off for our next call to get_extent
3955                  */
3956                 off = extent_map_end(em);
3957                 if (off >= max)
3958                         end = 1;
3959
3960                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3961                         end = 1;
3962                         flags |= FIEMAP_EXTENT_LAST;
3963                 } else if (em->block_start == EXTENT_MAP_INLINE) {
3964                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
3965                                   FIEMAP_EXTENT_NOT_ALIGNED);
3966                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3967                         flags |= (FIEMAP_EXTENT_DELALLOC |
3968                                   FIEMAP_EXTENT_UNKNOWN);
3969                 } else {
3970                         disko = em->block_start + offset_in_extent;
3971                 }
3972                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3973                         flags |= FIEMAP_EXTENT_ENCODED;
3974
3975                 free_extent_map(em);
3976                 em = NULL;
3977                 if ((em_start >= last) || em_len == (u64)-1 ||
3978                    (last == (u64)-1 && isize <= em_end)) {
3979                         flags |= FIEMAP_EXTENT_LAST;
3980                         end = 1;
3981                 }
3982
3983                 /* now scan forward to see if this is really the last extent. */
3984                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3985                                            get_extent);
3986                 if (IS_ERR(em)) {
3987                         ret = PTR_ERR(em);
3988                         goto out;
3989                 }
3990                 if (!em) {
3991                         flags |= FIEMAP_EXTENT_LAST;
3992                         end = 1;
3993                 }
3994                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3995                                               em_len, flags);
3996                 if (ret)
3997                         goto out_free;
3998         }
3999 out_free:
4000         free_extent_map(em);
4001 out:
4002         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
4003                              &cached_state, GFP_NOFS);
4004         return ret;
4005 }
4006
4007 static void __free_extent_buffer(struct extent_buffer *eb)
4008 {
4009 #if LEAK_DEBUG
4010         unsigned long flags;
4011         spin_lock_irqsave(&leak_lock, flags);
4012         list_del(&eb->leak_list);
4013         spin_unlock_irqrestore(&leak_lock, flags);
4014 #endif
4015         kmem_cache_free(extent_buffer_cache, eb);
4016 }
4017
4018 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4019                                                    u64 start,
4020                                                    unsigned long len,
4021                                                    gfp_t mask)
4022 {
4023         struct extent_buffer *eb = NULL;
4024 #if LEAK_DEBUG
4025         unsigned long flags;
4026 #endif
4027
4028         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4029         if (eb == NULL)
4030                 return NULL;
4031         eb->start = start;
4032         eb->len = len;
4033         eb->tree = tree;
4034         eb->bflags = 0;
4035         rwlock_init(&eb->lock);
4036         atomic_set(&eb->write_locks, 0);
4037         atomic_set(&eb->read_locks, 0);
4038         atomic_set(&eb->blocking_readers, 0);
4039         atomic_set(&eb->blocking_writers, 0);
4040         atomic_set(&eb->spinning_readers, 0);
4041         atomic_set(&eb->spinning_writers, 0);
4042         eb->lock_nested = 0;
4043         init_waitqueue_head(&eb->write_lock_wq);
4044         init_waitqueue_head(&eb->read_lock_wq);
4045
4046 #if LEAK_DEBUG
4047         spin_lock_irqsave(&leak_lock, flags);
4048         list_add(&eb->leak_list, &buffers);
4049         spin_unlock_irqrestore(&leak_lock, flags);
4050 #endif
4051         spin_lock_init(&eb->refs_lock);
4052         atomic_set(&eb->refs, 1);
4053         atomic_set(&eb->io_pages, 0);
4054
4055         /*
4056          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4057          */
4058         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4059                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4060         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4061
4062         return eb;
4063 }
4064
4065 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4066 {
4067         unsigned long i;
4068         struct page *p;
4069         struct extent_buffer *new;
4070         unsigned long num_pages = num_extent_pages(src->start, src->len);
4071
4072         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4073         if (new == NULL)
4074                 return NULL;
4075
4076         for (i = 0; i < num_pages; i++) {
4077                 p = alloc_page(GFP_ATOMIC);
4078                 BUG_ON(!p);
4079                 attach_extent_buffer_page(new, p);
4080                 WARN_ON(PageDirty(p));
4081                 SetPageUptodate(p);
4082                 new->pages[i] = p;
4083         }
4084
4085         copy_extent_buffer(new, src, 0, 0, src->len);
4086         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4087         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4088
4089         return new;
4090 }
4091
4092 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4093 {
4094         struct extent_buffer *eb;
4095         unsigned long num_pages = num_extent_pages(0, len);
4096         unsigned long i;
4097
4098         eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4099         if (!eb)
4100                 return NULL;
4101
4102         for (i = 0; i < num_pages; i++) {
4103                 eb->pages[i] = alloc_page(GFP_ATOMIC);
4104                 if (!eb->pages[i])
4105                         goto err;
4106         }
4107         set_extent_buffer_uptodate(eb);
4108         btrfs_set_header_nritems(eb, 0);
4109         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4110
4111         return eb;
4112 err:
4113         for (; i > 0; i--)
4114                 __free_page(eb->pages[i - 1]);
4115         __free_extent_buffer(eb);
4116         return NULL;
4117 }
4118
4119 static int extent_buffer_under_io(struct extent_buffer *eb)
4120 {
4121         return (atomic_read(&eb->io_pages) ||
4122                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4123                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4124 }
4125
4126 /*
4127  * Helper for releasing extent buffer page.
4128  */
4129 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4130                                                 unsigned long start_idx)
4131 {
4132         unsigned long index;
4133         unsigned long num_pages;
4134         struct page *page;
4135         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4136
4137         BUG_ON(extent_buffer_under_io(eb));
4138
4139         num_pages = num_extent_pages(eb->start, eb->len);
4140         index = start_idx + num_pages;
4141         if (start_idx >= index)
4142                 return;
4143
4144         do {
4145                 index--;
4146                 page = extent_buffer_page(eb, index);
4147                 if (page && mapped) {
4148                         spin_lock(&page->mapping->private_lock);
4149                         /*
4150                          * We do this since we'll remove the pages after we've
4151                          * removed the eb from the radix tree, so we could race
4152                          * and have this page now attached to the new eb.  So
4153                          * only clear page_private if it's still connected to
4154                          * this eb.
4155                          */
4156                         if (PagePrivate(page) &&
4157                             page->private == (unsigned long)eb) {
4158                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4159                                 BUG_ON(PageDirty(page));
4160                                 BUG_ON(PageWriteback(page));
4161                                 /*
4162                                  * We need to make sure we haven't be attached
4163                                  * to a new eb.
4164                                  */
4165                                 ClearPagePrivate(page);
4166                                 set_page_private(page, 0);
4167                                 /* One for the page private */
4168                                 page_cache_release(page);
4169                         }
4170                         spin_unlock(&page->mapping->private_lock);
4171
4172                 }
4173                 if (page) {
4174                         /* One for when we alloced the page */
4175                         page_cache_release(page);
4176                 }
4177         } while (index != start_idx);
4178 }
4179
4180 /*
4181  * Helper for releasing the extent buffer.
4182  */
4183 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4184 {
4185         btrfs_release_extent_buffer_page(eb, 0);
4186         __free_extent_buffer(eb);
4187 }
4188
4189 static void check_buffer_tree_ref(struct extent_buffer *eb)
4190 {
4191         int refs;
4192         /* the ref bit is tricky.  We have to make sure it is set
4193          * if we have the buffer dirty.   Otherwise the
4194          * code to free a buffer can end up dropping a dirty
4195          * page
4196          *
4197          * Once the ref bit is set, it won't go away while the
4198          * buffer is dirty or in writeback, and it also won't
4199          * go away while we have the reference count on the
4200          * eb bumped.
4201          *
4202          * We can't just set the ref bit without bumping the
4203          * ref on the eb because free_extent_buffer might
4204          * see the ref bit and try to clear it.  If this happens
4205          * free_extent_buffer might end up dropping our original
4206          * ref by mistake and freeing the page before we are able
4207          * to add one more ref.
4208          *
4209          * So bump the ref count first, then set the bit.  If someone
4210          * beat us to it, drop the ref we added.
4211          */
4212         refs = atomic_read(&eb->refs);
4213         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4214                 return;
4215
4216         spin_lock(&eb->refs_lock);
4217         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4218                 atomic_inc(&eb->refs);
4219         spin_unlock(&eb->refs_lock);
4220 }
4221
4222 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4223 {
4224         unsigned long num_pages, i;
4225
4226         check_buffer_tree_ref(eb);
4227
4228         num_pages = num_extent_pages(eb->start, eb->len);
4229         for (i = 0; i < num_pages; i++) {
4230                 struct page *p = extent_buffer_page(eb, i);
4231                 mark_page_accessed(p);
4232         }
4233 }
4234
4235 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4236                                           u64 start, unsigned long len)
4237 {
4238         unsigned long num_pages = num_extent_pages(start, len);
4239         unsigned long i;
4240         unsigned long index = start >> PAGE_CACHE_SHIFT;
4241         struct extent_buffer *eb;
4242         struct extent_buffer *exists = NULL;
4243         struct page *p;
4244         struct address_space *mapping = tree->mapping;
4245         int uptodate = 1;
4246         int ret;
4247
4248         rcu_read_lock();
4249         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4250         if (eb && atomic_inc_not_zero(&eb->refs)) {
4251                 rcu_read_unlock();
4252                 mark_extent_buffer_accessed(eb);
4253                 return eb;
4254         }
4255         rcu_read_unlock();
4256
4257         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4258         if (!eb)
4259                 return NULL;
4260
4261         for (i = 0; i < num_pages; i++, index++) {
4262                 p = find_or_create_page(mapping, index, GFP_NOFS);
4263                 if (!p)
4264                         goto free_eb;
4265
4266                 spin_lock(&mapping->private_lock);
4267                 if (PagePrivate(p)) {
4268                         /*
4269                          * We could have already allocated an eb for this page
4270                          * and attached one so lets see if we can get a ref on
4271                          * the existing eb, and if we can we know it's good and
4272                          * we can just return that one, else we know we can just
4273                          * overwrite page->private.
4274                          */
4275                         exists = (struct extent_buffer *)p->private;
4276                         if (atomic_inc_not_zero(&exists->refs)) {
4277                                 spin_unlock(&mapping->private_lock);
4278                                 unlock_page(p);
4279                                 page_cache_release(p);
4280                                 mark_extent_buffer_accessed(exists);
4281                                 goto free_eb;
4282                         }
4283
4284                         /*
4285                          * Do this so attach doesn't complain and we need to
4286                          * drop the ref the old guy had.
4287                          */
4288                         ClearPagePrivate(p);
4289                         WARN_ON(PageDirty(p));
4290                         page_cache_release(p);
4291                 }
4292                 attach_extent_buffer_page(eb, p);
4293                 spin_unlock(&mapping->private_lock);
4294                 WARN_ON(PageDirty(p));
4295                 mark_page_accessed(p);
4296                 eb->pages[i] = p;
4297                 if (!PageUptodate(p))
4298                         uptodate = 0;
4299
4300                 /*
4301                  * see below about how we avoid a nasty race with release page
4302                  * and why we unlock later
4303                  */
4304         }
4305         if (uptodate)
4306                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4307 again:
4308         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4309         if (ret)
4310                 goto free_eb;
4311
4312         spin_lock(&tree->buffer_lock);
4313         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4314         if (ret == -EEXIST) {
4315                 exists = radix_tree_lookup(&tree->buffer,
4316                                                 start >> PAGE_CACHE_SHIFT);
4317                 if (!atomic_inc_not_zero(&exists->refs)) {
4318                         spin_unlock(&tree->buffer_lock);
4319                         radix_tree_preload_end();
4320                         exists = NULL;
4321                         goto again;
4322                 }
4323                 spin_unlock(&tree->buffer_lock);
4324                 radix_tree_preload_end();
4325                 mark_extent_buffer_accessed(exists);
4326                 goto free_eb;
4327         }
4328         /* add one reference for the tree */
4329         check_buffer_tree_ref(eb);
4330         spin_unlock(&tree->buffer_lock);
4331         radix_tree_preload_end();
4332
4333         /*
4334          * there is a race where release page may have
4335          * tried to find this extent buffer in the radix
4336          * but failed.  It will tell the VM it is safe to
4337          * reclaim the, and it will clear the page private bit.
4338          * We must make sure to set the page private bit properly
4339          * after the extent buffer is in the radix tree so
4340          * it doesn't get lost
4341          */
4342         SetPageChecked(eb->pages[0]);
4343         for (i = 1; i < num_pages; i++) {
4344                 p = extent_buffer_page(eb, i);
4345                 ClearPageChecked(p);
4346                 unlock_page(p);
4347         }
4348         unlock_page(eb->pages[0]);
4349         return eb;
4350
4351 free_eb:
4352         for (i = 0; i < num_pages; i++) {
4353                 if (eb->pages[i])
4354                         unlock_page(eb->pages[i]);
4355         }
4356
4357         WARN_ON(!atomic_dec_and_test(&eb->refs));
4358         btrfs_release_extent_buffer(eb);
4359         return exists;
4360 }
4361
4362 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4363                                          u64 start, unsigned long len)
4364 {
4365         struct extent_buffer *eb;
4366
4367         rcu_read_lock();
4368         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4369         if (eb && atomic_inc_not_zero(&eb->refs)) {
4370                 rcu_read_unlock();
4371                 mark_extent_buffer_accessed(eb);
4372                 return eb;
4373         }
4374         rcu_read_unlock();
4375
4376         return NULL;
4377 }
4378
4379 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4380 {
4381         struct extent_buffer *eb =
4382                         container_of(head, struct extent_buffer, rcu_head);
4383
4384         __free_extent_buffer(eb);
4385 }
4386
4387 /* Expects to have eb->eb_lock already held */
4388 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4389 {
4390         WARN_ON(atomic_read(&eb->refs) == 0);
4391         if (atomic_dec_and_test(&eb->refs)) {
4392                 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4393                         spin_unlock(&eb->refs_lock);
4394                 } else {
4395                         struct extent_io_tree *tree = eb->tree;
4396
4397                         spin_unlock(&eb->refs_lock);
4398
4399                         spin_lock(&tree->buffer_lock);
4400                         radix_tree_delete(&tree->buffer,
4401                                           eb->start >> PAGE_CACHE_SHIFT);
4402                         spin_unlock(&tree->buffer_lock);
4403                 }
4404
4405                 /* Should be safe to release our pages at this point */
4406                 btrfs_release_extent_buffer_page(eb, 0);
4407                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4408                 return 1;
4409         }
4410         spin_unlock(&eb->refs_lock);
4411
4412         return 0;
4413 }
4414
4415 void free_extent_buffer(struct extent_buffer *eb)
4416 {
4417         int refs;
4418         int old;
4419         if (!eb)
4420                 return;
4421
4422         while (1) {
4423                 refs = atomic_read(&eb->refs);
4424                 if (refs <= 3)
4425                         break;
4426                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4427                 if (old == refs)
4428                         return;
4429         }
4430
4431         spin_lock(&eb->refs_lock);
4432         if (atomic_read(&eb->refs) == 2 &&
4433             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4434                 atomic_dec(&eb->refs);
4435
4436         if (atomic_read(&eb->refs) == 2 &&
4437             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4438             !extent_buffer_under_io(eb) &&
4439             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4440                 atomic_dec(&eb->refs);
4441
4442         /*
4443          * I know this is terrible, but it's temporary until we stop tracking
4444          * the uptodate bits and such for the extent buffers.
4445          */
4446         release_extent_buffer(eb, GFP_ATOMIC);
4447 }
4448
4449 void free_extent_buffer_stale(struct extent_buffer *eb)
4450 {
4451         if (!eb)
4452                 return;
4453
4454         spin_lock(&eb->refs_lock);
4455         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4456
4457         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4458             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4459                 atomic_dec(&eb->refs);
4460         release_extent_buffer(eb, GFP_NOFS);
4461 }
4462
4463 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4464 {
4465         unsigned long i;
4466         unsigned long num_pages;
4467         struct page *page;
4468
4469         num_pages = num_extent_pages(eb->start, eb->len);
4470
4471         for (i = 0; i < num_pages; i++) {
4472                 page = extent_buffer_page(eb, i);
4473                 if (!PageDirty(page))
4474                         continue;
4475
4476                 lock_page(page);
4477                 WARN_ON(!PagePrivate(page));
4478
4479                 clear_page_dirty_for_io(page);
4480                 spin_lock_irq(&page->mapping->tree_lock);
4481                 if (!PageDirty(page)) {
4482                         radix_tree_tag_clear(&page->mapping->page_tree,
4483                                                 page_index(page),
4484                                                 PAGECACHE_TAG_DIRTY);
4485                 }
4486                 spin_unlock_irq(&page->mapping->tree_lock);
4487                 ClearPageError(page);
4488                 unlock_page(page);
4489         }
4490         WARN_ON(atomic_read(&eb->refs) == 0);
4491 }
4492
4493 int set_extent_buffer_dirty(struct extent_buffer *eb)
4494 {
4495         unsigned long i;
4496         unsigned long num_pages;
4497         int was_dirty = 0;
4498
4499         check_buffer_tree_ref(eb);
4500
4501         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4502
4503         num_pages = num_extent_pages(eb->start, eb->len);
4504         WARN_ON(atomic_read(&eb->refs) == 0);
4505         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4506
4507         for (i = 0; i < num_pages; i++)
4508                 set_page_dirty(extent_buffer_page(eb, i));
4509         return was_dirty;
4510 }
4511
4512 static int range_straddles_pages(u64 start, u64 len)
4513 {
4514         if (len < PAGE_CACHE_SIZE)
4515                 return 1;
4516         if (start & (PAGE_CACHE_SIZE - 1))
4517                 return 1;
4518         if ((start + len) & (PAGE_CACHE_SIZE - 1))
4519                 return 1;
4520         return 0;
4521 }
4522
4523 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4524 {
4525         unsigned long i;
4526         struct page *page;
4527         unsigned long num_pages;
4528
4529         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4530         num_pages = num_extent_pages(eb->start, eb->len);
4531         for (i = 0; i < num_pages; i++) {
4532                 page = extent_buffer_page(eb, i);
4533                 if (page)
4534                         ClearPageUptodate(page);
4535         }
4536         return 0;
4537 }
4538
4539 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4540 {
4541         unsigned long i;
4542         struct page *page;
4543         unsigned long num_pages;
4544
4545         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4546         num_pages = num_extent_pages(eb->start, eb->len);
4547         for (i = 0; i < num_pages; i++) {
4548                 page = extent_buffer_page(eb, i);
4549                 SetPageUptodate(page);
4550         }
4551         return 0;
4552 }
4553
4554 int extent_range_uptodate(struct extent_io_tree *tree,
4555                           u64 start, u64 end)
4556 {
4557         struct page *page;
4558         int ret;
4559         int pg_uptodate = 1;
4560         int uptodate;
4561         unsigned long index;
4562
4563         if (range_straddles_pages(start, end - start + 1)) {
4564                 ret = test_range_bit(tree, start, end,
4565                                      EXTENT_UPTODATE, 1, NULL);
4566                 if (ret)
4567                         return 1;
4568         }
4569         while (start <= end) {
4570                 index = start >> PAGE_CACHE_SHIFT;
4571                 page = find_get_page(tree->mapping, index);
4572                 if (!page)
4573                         return 1;
4574                 uptodate = PageUptodate(page);
4575                 page_cache_release(page);
4576                 if (!uptodate) {
4577                         pg_uptodate = 0;
4578                         break;
4579                 }
4580                 start += PAGE_CACHE_SIZE;
4581         }
4582         return pg_uptodate;
4583 }
4584
4585 int extent_buffer_uptodate(struct extent_buffer *eb)
4586 {
4587         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4588 }
4589
4590 int read_extent_buffer_pages(struct extent_io_tree *tree,
4591                              struct extent_buffer *eb, u64 start, int wait,
4592                              get_extent_t *get_extent, int mirror_num)
4593 {
4594         unsigned long i;
4595         unsigned long start_i;
4596         struct page *page;
4597         int err;
4598         int ret = 0;
4599         int locked_pages = 0;
4600         int all_uptodate = 1;
4601         unsigned long num_pages;
4602         unsigned long num_reads = 0;
4603         struct bio *bio = NULL;
4604         unsigned long bio_flags = 0;
4605
4606         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4607                 return 0;
4608
4609         if (start) {
4610                 WARN_ON(start < eb->start);
4611                 start_i = (start >> PAGE_CACHE_SHIFT) -
4612                         (eb->start >> PAGE_CACHE_SHIFT);
4613         } else {
4614                 start_i = 0;
4615         }
4616
4617         num_pages = num_extent_pages(eb->start, eb->len);
4618         for (i = start_i; i < num_pages; i++) {
4619                 page = extent_buffer_page(eb, i);
4620                 if (wait == WAIT_NONE) {
4621                         if (!trylock_page(page))
4622                                 goto unlock_exit;
4623                 } else {
4624                         lock_page(page);
4625                 }
4626                 locked_pages++;
4627                 if (!PageUptodate(page)) {
4628                         num_reads++;
4629                         all_uptodate = 0;
4630                 }
4631         }
4632         if (all_uptodate) {
4633                 if (start_i == 0)
4634                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4635                 goto unlock_exit;
4636         }
4637
4638         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4639         eb->read_mirror = 0;
4640         atomic_set(&eb->io_pages, num_reads);
4641         for (i = start_i; i < num_pages; i++) {
4642                 page = extent_buffer_page(eb, i);
4643                 if (!PageUptodate(page)) {
4644                         ClearPageError(page);
4645                         err = __extent_read_full_page(tree, page,
4646                                                       get_extent, &bio,
4647                                                       mirror_num, &bio_flags);
4648                         if (err)
4649                                 ret = err;
4650                 } else {
4651                         unlock_page(page);
4652                 }
4653         }
4654
4655         if (bio) {
4656                 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4657                 if (err)
4658                         return err;
4659         }
4660
4661         if (ret || wait != WAIT_COMPLETE)
4662                 return ret;
4663
4664         for (i = start_i; i < num_pages; i++) {
4665                 page = extent_buffer_page(eb, i);
4666                 wait_on_page_locked(page);
4667                 if (!PageUptodate(page))
4668                         ret = -EIO;
4669         }
4670
4671         return ret;
4672
4673 unlock_exit:
4674         i = start_i;
4675         while (locked_pages > 0) {
4676                 page = extent_buffer_page(eb, i);
4677                 i++;
4678                 unlock_page(page);
4679                 locked_pages--;
4680         }
4681         return ret;
4682 }
4683
4684 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4685                         unsigned long start,
4686                         unsigned long len)
4687 {
4688         size_t cur;
4689         size_t offset;
4690         struct page *page;
4691         char *kaddr;
4692         char *dst = (char *)dstv;
4693         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4694         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4695
4696         WARN_ON(start > eb->len);
4697         WARN_ON(start + len > eb->start + eb->len);
4698
4699         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4700
4701         while (len > 0) {
4702                 page = extent_buffer_page(eb, i);
4703
4704                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4705                 kaddr = page_address(page);
4706                 memcpy(dst, kaddr + offset, cur);
4707
4708                 dst += cur;
4709                 len -= cur;
4710                 offset = 0;
4711                 i++;
4712         }
4713 }
4714
4715 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4716                                unsigned long min_len, char **map,
4717                                unsigned long *map_start,
4718                                unsigned long *map_len)
4719 {
4720         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4721         char *kaddr;
4722         struct page *p;
4723         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4724         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4725         unsigned long end_i = (start_offset + start + min_len - 1) >>
4726                 PAGE_CACHE_SHIFT;
4727
4728         if (i != end_i)
4729                 return -EINVAL;
4730
4731         if (i == 0) {
4732                 offset = start_offset;
4733                 *map_start = 0;
4734         } else {
4735                 offset = 0;
4736                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4737         }
4738
4739         if (start + min_len > eb->len) {
4740                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4741                        "wanted %lu %lu\n", (unsigned long long)eb->start,
4742                        eb->len, start, min_len);
4743                 return -EINVAL;
4744         }
4745
4746         p = extent_buffer_page(eb, i);
4747         kaddr = page_address(p);
4748         *map = kaddr + offset;
4749         *map_len = PAGE_CACHE_SIZE - offset;
4750         return 0;
4751 }
4752
4753 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4754                           unsigned long start,
4755                           unsigned long len)
4756 {
4757         size_t cur;
4758         size_t offset;
4759         struct page *page;
4760         char *kaddr;
4761         char *ptr = (char *)ptrv;
4762         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4763         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4764         int ret = 0;
4765
4766         WARN_ON(start > eb->len);
4767         WARN_ON(start + len > eb->start + eb->len);
4768
4769         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4770
4771         while (len > 0) {
4772                 page = extent_buffer_page(eb, i);
4773
4774                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4775
4776                 kaddr = page_address(page);
4777                 ret = memcmp(ptr, kaddr + offset, cur);
4778                 if (ret)
4779                         break;
4780
4781                 ptr += cur;
4782                 len -= cur;
4783                 offset = 0;
4784                 i++;
4785         }
4786         return ret;
4787 }
4788
4789 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4790                          unsigned long start, unsigned long len)
4791 {
4792         size_t cur;
4793         size_t offset;
4794         struct page *page;
4795         char *kaddr;
4796         char *src = (char *)srcv;
4797         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4798         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4799
4800         WARN_ON(start > eb->len);
4801         WARN_ON(start + len > eb->start + eb->len);
4802
4803         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4804
4805         while (len > 0) {
4806                 page = extent_buffer_page(eb, i);
4807                 WARN_ON(!PageUptodate(page));
4808
4809                 cur = min(len, PAGE_CACHE_SIZE - offset);
4810                 kaddr = page_address(page);
4811                 memcpy(kaddr + offset, src, cur);
4812
4813                 src += cur;
4814                 len -= cur;
4815                 offset = 0;
4816                 i++;
4817         }
4818 }
4819
4820 void memset_extent_buffer(struct extent_buffer *eb, char c,
4821                           unsigned long start, unsigned long len)
4822 {
4823         size_t cur;
4824         size_t offset;
4825         struct page *page;
4826         char *kaddr;
4827         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4828         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4829
4830         WARN_ON(start > eb->len);
4831         WARN_ON(start + len > eb->start + eb->len);
4832
4833         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4834
4835         while (len > 0) {
4836                 page = extent_buffer_page(eb, i);
4837                 WARN_ON(!PageUptodate(page));
4838
4839                 cur = min(len, PAGE_CACHE_SIZE - offset);
4840                 kaddr = page_address(page);
4841                 memset(kaddr + offset, c, cur);
4842
4843                 len -= cur;
4844                 offset = 0;
4845                 i++;
4846         }
4847 }
4848
4849 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4850                         unsigned long dst_offset, unsigned long src_offset,
4851                         unsigned long len)
4852 {
4853         u64 dst_len = dst->len;
4854         size_t cur;
4855         size_t offset;
4856         struct page *page;
4857         char *kaddr;
4858         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4859         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4860
4861         WARN_ON(src->len != dst_len);
4862
4863         offset = (start_offset + dst_offset) &
4864                 ((unsigned long)PAGE_CACHE_SIZE - 1);
4865
4866         while (len > 0) {
4867                 page = extent_buffer_page(dst, i);
4868                 WARN_ON(!PageUptodate(page));
4869
4870                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4871
4872                 kaddr = page_address(page);
4873                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4874
4875                 src_offset += cur;
4876                 len -= cur;
4877                 offset = 0;
4878                 i++;
4879         }
4880 }
4881
4882 static void move_pages(struct page *dst_page, struct page *src_page,
4883                        unsigned long dst_off, unsigned long src_off,
4884                        unsigned long len)
4885 {
4886         char *dst_kaddr = page_address(dst_page);
4887         if (dst_page == src_page) {
4888                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4889         } else {
4890                 char *src_kaddr = page_address(src_page);
4891                 char *p = dst_kaddr + dst_off + len;
4892                 char *s = src_kaddr + src_off + len;
4893
4894                 while (len--)
4895                         *--p = *--s;
4896         }
4897 }
4898
4899 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4900 {
4901         unsigned long distance = (src > dst) ? src - dst : dst - src;
4902         return distance < len;
4903 }
4904
4905 static void copy_pages(struct page *dst_page, struct page *src_page,
4906                        unsigned long dst_off, unsigned long src_off,
4907                        unsigned long len)
4908 {
4909         char *dst_kaddr = page_address(dst_page);
4910         char *src_kaddr;
4911         int must_memmove = 0;
4912
4913         if (dst_page != src_page) {
4914                 src_kaddr = page_address(src_page);
4915         } else {
4916                 src_kaddr = dst_kaddr;
4917                 if (areas_overlap(src_off, dst_off, len))
4918                         must_memmove = 1;
4919         }
4920
4921         if (must_memmove)
4922                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4923         else
4924                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4925 }
4926
4927 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4928                            unsigned long src_offset, unsigned long len)
4929 {
4930         size_t cur;
4931         size_t dst_off_in_page;
4932         size_t src_off_in_page;
4933         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4934         unsigned long dst_i;
4935         unsigned long src_i;
4936
4937         if (src_offset + len > dst->len) {
4938                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4939                        "len %lu dst len %lu\n", src_offset, len, dst->len);
4940                 BUG_ON(1);
4941         }
4942         if (dst_offset + len > dst->len) {
4943                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4944                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
4945                 BUG_ON(1);
4946         }
4947
4948         while (len > 0) {
4949                 dst_off_in_page = (start_offset + dst_offset) &
4950                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4951                 src_off_in_page = (start_offset + src_offset) &
4952                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4953
4954                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4955                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4956
4957                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4958                                                src_off_in_page));
4959                 cur = min_t(unsigned long, cur,
4960                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4961
4962                 copy_pages(extent_buffer_page(dst, dst_i),
4963                            extent_buffer_page(dst, src_i),
4964                            dst_off_in_page, src_off_in_page, cur);
4965
4966                 src_offset += cur;
4967                 dst_offset += cur;
4968                 len -= cur;
4969         }
4970 }
4971
4972 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4973                            unsigned long src_offset, unsigned long len)
4974 {
4975         size_t cur;
4976         size_t dst_off_in_page;
4977         size_t src_off_in_page;
4978         unsigned long dst_end = dst_offset + len - 1;
4979         unsigned long src_end = src_offset + len - 1;
4980         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4981         unsigned long dst_i;
4982         unsigned long src_i;
4983
4984         if (src_offset + len > dst->len) {
4985                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4986                        "len %lu len %lu\n", src_offset, len, dst->len);
4987                 BUG_ON(1);
4988         }
4989         if (dst_offset + len > dst->len) {
4990                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4991                        "len %lu len %lu\n", dst_offset, len, dst->len);
4992                 BUG_ON(1);
4993         }
4994         if (dst_offset < src_offset) {
4995                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4996                 return;
4997         }
4998         while (len > 0) {
4999                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5000                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5001
5002                 dst_off_in_page = (start_offset + dst_end) &
5003                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5004                 src_off_in_page = (start_offset + src_end) &
5005                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5006
5007                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5008                 cur = min(cur, dst_off_in_page + 1);
5009                 move_pages(extent_buffer_page(dst, dst_i),
5010                            extent_buffer_page(dst, src_i),
5011                            dst_off_in_page - cur + 1,
5012                            src_off_in_page - cur + 1, cur);
5013
5014                 dst_end -= cur;
5015                 src_end -= cur;
5016                 len -= cur;
5017         }
5018 }
5019
5020 int try_release_extent_buffer(struct page *page, gfp_t mask)
5021 {
5022         struct extent_buffer *eb;
5023
5024         /*
5025          * We need to make sure noboody is attaching this page to an eb right
5026          * now.
5027          */
5028         spin_lock(&page->mapping->private_lock);
5029         if (!PagePrivate(page)) {
5030                 spin_unlock(&page->mapping->private_lock);
5031                 return 1;
5032         }
5033
5034         eb = (struct extent_buffer *)page->private;
5035         BUG_ON(!eb);
5036
5037         /*
5038          * This is a little awful but should be ok, we need to make sure that
5039          * the eb doesn't disappear out from under us while we're looking at
5040          * this page.
5041          */
5042         spin_lock(&eb->refs_lock);
5043         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5044                 spin_unlock(&eb->refs_lock);
5045                 spin_unlock(&page->mapping->private_lock);
5046                 return 0;
5047         }
5048         spin_unlock(&page->mapping->private_lock);
5049
5050         if ((mask & GFP_NOFS) == GFP_NOFS)
5051                 mask = GFP_NOFS;
5052
5053         /*
5054          * If tree ref isn't set then we know the ref on this eb is a real ref,
5055          * so just return, this page will likely be freed soon anyway.
5056          */
5057         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5058                 spin_unlock(&eb->refs_lock);
5059                 return 0;
5060         }
5061
5062         return release_extent_buffer(eb, mask);
5063 }