Btrfs: improve the performance of the csums lookup
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29
30 #define LEAK_DEBUG 0
31 #if LEAK_DEBUG
32 static DEFINE_SPINLOCK(leak_lock);
33 #endif
34
35 #define BUFFER_LRU_MAX 64
36
37 struct tree_entry {
38         u64 start;
39         u64 end;
40         struct rb_node rb_node;
41 };
42
43 struct extent_page_data {
44         struct bio *bio;
45         struct extent_io_tree *tree;
46         get_extent_t *get_extent;
47         unsigned long bio_flags;
48
49         /* tells writepage not to lock the state bits for this range
50          * it still does the unlocking
51          */
52         unsigned int extent_locked:1;
53
54         /* tells the submit_bio code to use a WRITE_SYNC */
55         unsigned int sync_io:1;
56 };
57
58 static noinline void flush_write_bio(void *data);
59 static inline struct btrfs_fs_info *
60 tree_fs_info(struct extent_io_tree *tree)
61 {
62         return btrfs_sb(tree->mapping->host->i_sb);
63 }
64
65 int __init extent_io_init(void)
66 {
67         extent_state_cache = kmem_cache_create("btrfs_extent_state",
68                         sizeof(struct extent_state), 0,
69                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
70         if (!extent_state_cache)
71                 return -ENOMEM;
72
73         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
74                         sizeof(struct extent_buffer), 0,
75                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
76         if (!extent_buffer_cache)
77                 goto free_state_cache;
78         return 0;
79
80 free_state_cache:
81         kmem_cache_destroy(extent_state_cache);
82         return -ENOMEM;
83 }
84
85 void extent_io_exit(void)
86 {
87         struct extent_state *state;
88         struct extent_buffer *eb;
89
90         while (!list_empty(&states)) {
91                 state = list_entry(states.next, struct extent_state, leak_list);
92                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
93                        "state %lu in tree %p refs %d\n",
94                        (unsigned long long)state->start,
95                        (unsigned long long)state->end,
96                        state->state, state->tree, atomic_read(&state->refs));
97                 list_del(&state->leak_list);
98                 kmem_cache_free(extent_state_cache, state);
99
100         }
101
102         while (!list_empty(&buffers)) {
103                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
104                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
105                        "refs %d\n", (unsigned long long)eb->start,
106                        eb->len, atomic_read(&eb->refs));
107                 list_del(&eb->leak_list);
108                 kmem_cache_free(extent_buffer_cache, eb);
109         }
110
111         /*
112          * Make sure all delayed rcu free are flushed before we
113          * destroy caches.
114          */
115         rcu_barrier();
116         if (extent_state_cache)
117                 kmem_cache_destroy(extent_state_cache);
118         if (extent_buffer_cache)
119                 kmem_cache_destroy(extent_buffer_cache);
120 }
121
122 void extent_io_tree_init(struct extent_io_tree *tree,
123                          struct address_space *mapping)
124 {
125         tree->state = RB_ROOT;
126         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
127         tree->ops = NULL;
128         tree->dirty_bytes = 0;
129         spin_lock_init(&tree->lock);
130         spin_lock_init(&tree->buffer_lock);
131         tree->mapping = mapping;
132 }
133
134 static struct extent_state *alloc_extent_state(gfp_t mask)
135 {
136         struct extent_state *state;
137 #if LEAK_DEBUG
138         unsigned long flags;
139 #endif
140
141         state = kmem_cache_alloc(extent_state_cache, mask);
142         if (!state)
143                 return state;
144         state->state = 0;
145         state->private = 0;
146         state->tree = NULL;
147 #if LEAK_DEBUG
148         spin_lock_irqsave(&leak_lock, flags);
149         list_add(&state->leak_list, &states);
150         spin_unlock_irqrestore(&leak_lock, flags);
151 #endif
152         atomic_set(&state->refs, 1);
153         init_waitqueue_head(&state->wq);
154         trace_alloc_extent_state(state, mask, _RET_IP_);
155         return state;
156 }
157
158 void free_extent_state(struct extent_state *state)
159 {
160         if (!state)
161                 return;
162         if (atomic_dec_and_test(&state->refs)) {
163 #if LEAK_DEBUG
164                 unsigned long flags;
165 #endif
166                 WARN_ON(state->tree);
167 #if LEAK_DEBUG
168                 spin_lock_irqsave(&leak_lock, flags);
169                 list_del(&state->leak_list);
170                 spin_unlock_irqrestore(&leak_lock, flags);
171 #endif
172                 trace_free_extent_state(state, _RET_IP_);
173                 kmem_cache_free(extent_state_cache, state);
174         }
175 }
176
177 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
178                                    struct rb_node *node)
179 {
180         struct rb_node **p = &root->rb_node;
181         struct rb_node *parent = NULL;
182         struct tree_entry *entry;
183
184         while (*p) {
185                 parent = *p;
186                 entry = rb_entry(parent, struct tree_entry, rb_node);
187
188                 if (offset < entry->start)
189                         p = &(*p)->rb_left;
190                 else if (offset > entry->end)
191                         p = &(*p)->rb_right;
192                 else
193                         return parent;
194         }
195
196         rb_link_node(node, parent, p);
197         rb_insert_color(node, root);
198         return NULL;
199 }
200
201 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
202                                      struct rb_node **prev_ret,
203                                      struct rb_node **next_ret)
204 {
205         struct rb_root *root = &tree->state;
206         struct rb_node *n = root->rb_node;
207         struct rb_node *prev = NULL;
208         struct rb_node *orig_prev = NULL;
209         struct tree_entry *entry;
210         struct tree_entry *prev_entry = NULL;
211
212         while (n) {
213                 entry = rb_entry(n, struct tree_entry, rb_node);
214                 prev = n;
215                 prev_entry = entry;
216
217                 if (offset < entry->start)
218                         n = n->rb_left;
219                 else if (offset > entry->end)
220                         n = n->rb_right;
221                 else
222                         return n;
223         }
224
225         if (prev_ret) {
226                 orig_prev = prev;
227                 while (prev && offset > prev_entry->end) {
228                         prev = rb_next(prev);
229                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
230                 }
231                 *prev_ret = prev;
232                 prev = orig_prev;
233         }
234
235         if (next_ret) {
236                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
237                 while (prev && offset < prev_entry->start) {
238                         prev = rb_prev(prev);
239                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
240                 }
241                 *next_ret = prev;
242         }
243         return NULL;
244 }
245
246 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
247                                           u64 offset)
248 {
249         struct rb_node *prev = NULL;
250         struct rb_node *ret;
251
252         ret = __etree_search(tree, offset, &prev, NULL);
253         if (!ret)
254                 return prev;
255         return ret;
256 }
257
258 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
259                      struct extent_state *other)
260 {
261         if (tree->ops && tree->ops->merge_extent_hook)
262                 tree->ops->merge_extent_hook(tree->mapping->host, new,
263                                              other);
264 }
265
266 /*
267  * utility function to look for merge candidates inside a given range.
268  * Any extents with matching state are merged together into a single
269  * extent in the tree.  Extents with EXTENT_IO in their state field
270  * are not merged because the end_io handlers need to be able to do
271  * operations on them without sleeping (or doing allocations/splits).
272  *
273  * This should be called with the tree lock held.
274  */
275 static void merge_state(struct extent_io_tree *tree,
276                         struct extent_state *state)
277 {
278         struct extent_state *other;
279         struct rb_node *other_node;
280
281         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
282                 return;
283
284         other_node = rb_prev(&state->rb_node);
285         if (other_node) {
286                 other = rb_entry(other_node, struct extent_state, rb_node);
287                 if (other->end == state->start - 1 &&
288                     other->state == state->state) {
289                         merge_cb(tree, state, other);
290                         state->start = other->start;
291                         other->tree = NULL;
292                         rb_erase(&other->rb_node, &tree->state);
293                         free_extent_state(other);
294                 }
295         }
296         other_node = rb_next(&state->rb_node);
297         if (other_node) {
298                 other = rb_entry(other_node, struct extent_state, rb_node);
299                 if (other->start == state->end + 1 &&
300                     other->state == state->state) {
301                         merge_cb(tree, state, other);
302                         state->end = other->end;
303                         other->tree = NULL;
304                         rb_erase(&other->rb_node, &tree->state);
305                         free_extent_state(other);
306                 }
307         }
308 }
309
310 static void set_state_cb(struct extent_io_tree *tree,
311                          struct extent_state *state, int *bits)
312 {
313         if (tree->ops && tree->ops->set_bit_hook)
314                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
315 }
316
317 static void clear_state_cb(struct extent_io_tree *tree,
318                            struct extent_state *state, int *bits)
319 {
320         if (tree->ops && tree->ops->clear_bit_hook)
321                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
322 }
323
324 static void set_state_bits(struct extent_io_tree *tree,
325                            struct extent_state *state, int *bits);
326
327 /*
328  * insert an extent_state struct into the tree.  'bits' are set on the
329  * struct before it is inserted.
330  *
331  * This may return -EEXIST if the extent is already there, in which case the
332  * state struct is freed.
333  *
334  * The tree lock is not taken internally.  This is a utility function and
335  * probably isn't what you want to call (see set/clear_extent_bit).
336  */
337 static int insert_state(struct extent_io_tree *tree,
338                         struct extent_state *state, u64 start, u64 end,
339                         int *bits)
340 {
341         struct rb_node *node;
342
343         if (end < start)
344                 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
345                        (unsigned long long)end,
346                        (unsigned long long)start);
347         state->start = start;
348         state->end = end;
349
350         set_state_bits(tree, state, bits);
351
352         node = tree_insert(&tree->state, end, &state->rb_node);
353         if (node) {
354                 struct extent_state *found;
355                 found = rb_entry(node, struct extent_state, rb_node);
356                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
357                        "%llu %llu\n", (unsigned long long)found->start,
358                        (unsigned long long)found->end,
359                        (unsigned long long)start, (unsigned long long)end);
360                 return -EEXIST;
361         }
362         state->tree = tree;
363         merge_state(tree, state);
364         return 0;
365 }
366
367 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
368                      u64 split)
369 {
370         if (tree->ops && tree->ops->split_extent_hook)
371                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
372 }
373
374 /*
375  * split a given extent state struct in two, inserting the preallocated
376  * struct 'prealloc' as the newly created second half.  'split' indicates an
377  * offset inside 'orig' where it should be split.
378  *
379  * Before calling,
380  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
381  * are two extent state structs in the tree:
382  * prealloc: [orig->start, split - 1]
383  * orig: [ split, orig->end ]
384  *
385  * The tree locks are not taken by this function. They need to be held
386  * by the caller.
387  */
388 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
389                        struct extent_state *prealloc, u64 split)
390 {
391         struct rb_node *node;
392
393         split_cb(tree, orig, split);
394
395         prealloc->start = orig->start;
396         prealloc->end = split - 1;
397         prealloc->state = orig->state;
398         orig->start = split;
399
400         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
401         if (node) {
402                 free_extent_state(prealloc);
403                 return -EEXIST;
404         }
405         prealloc->tree = tree;
406         return 0;
407 }
408
409 static struct extent_state *next_state(struct extent_state *state)
410 {
411         struct rb_node *next = rb_next(&state->rb_node);
412         if (next)
413                 return rb_entry(next, struct extent_state, rb_node);
414         else
415                 return NULL;
416 }
417
418 /*
419  * utility function to clear some bits in an extent state struct.
420  * it will optionally wake up any one waiting on this state (wake == 1).
421  *
422  * If no bits are set on the state struct after clearing things, the
423  * struct is freed and removed from the tree
424  */
425 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
426                                             struct extent_state *state,
427                                             int *bits, int wake)
428 {
429         struct extent_state *next;
430         int bits_to_clear = *bits & ~EXTENT_CTLBITS;
431
432         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
433                 u64 range = state->end - state->start + 1;
434                 WARN_ON(range > tree->dirty_bytes);
435                 tree->dirty_bytes -= range;
436         }
437         clear_state_cb(tree, state, bits);
438         state->state &= ~bits_to_clear;
439         if (wake)
440                 wake_up(&state->wq);
441         if (state->state == 0) {
442                 next = next_state(state);
443                 if (state->tree) {
444                         rb_erase(&state->rb_node, &tree->state);
445                         state->tree = NULL;
446                         free_extent_state(state);
447                 } else {
448                         WARN_ON(1);
449                 }
450         } else {
451                 merge_state(tree, state);
452                 next = next_state(state);
453         }
454         return next;
455 }
456
457 static struct extent_state *
458 alloc_extent_state_atomic(struct extent_state *prealloc)
459 {
460         if (!prealloc)
461                 prealloc = alloc_extent_state(GFP_ATOMIC);
462
463         return prealloc;
464 }
465
466 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
467 {
468         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
469                     "Extent tree was modified by another "
470                     "thread while locked.");
471 }
472
473 /*
474  * clear some bits on a range in the tree.  This may require splitting
475  * or inserting elements in the tree, so the gfp mask is used to
476  * indicate which allocations or sleeping are allowed.
477  *
478  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
479  * the given range from the tree regardless of state (ie for truncate).
480  *
481  * the range [start, end] is inclusive.
482  *
483  * This takes the tree lock, and returns 0 on success and < 0 on error.
484  */
485 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
486                      int bits, int wake, int delete,
487                      struct extent_state **cached_state,
488                      gfp_t mask)
489 {
490         struct extent_state *state;
491         struct extent_state *cached;
492         struct extent_state *prealloc = NULL;
493         struct rb_node *node;
494         u64 last_end;
495         int err;
496         int clear = 0;
497
498         if (delete)
499                 bits |= ~EXTENT_CTLBITS;
500         bits |= EXTENT_FIRST_DELALLOC;
501
502         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
503                 clear = 1;
504 again:
505         if (!prealloc && (mask & __GFP_WAIT)) {
506                 prealloc = alloc_extent_state(mask);
507                 if (!prealloc)
508                         return -ENOMEM;
509         }
510
511         spin_lock(&tree->lock);
512         if (cached_state) {
513                 cached = *cached_state;
514
515                 if (clear) {
516                         *cached_state = NULL;
517                         cached_state = NULL;
518                 }
519
520                 if (cached && cached->tree && cached->start <= start &&
521                     cached->end > start) {
522                         if (clear)
523                                 atomic_dec(&cached->refs);
524                         state = cached;
525                         goto hit_next;
526                 }
527                 if (clear)
528                         free_extent_state(cached);
529         }
530         /*
531          * this search will find the extents that end after
532          * our range starts
533          */
534         node = tree_search(tree, start);
535         if (!node)
536                 goto out;
537         state = rb_entry(node, struct extent_state, rb_node);
538 hit_next:
539         if (state->start > end)
540                 goto out;
541         WARN_ON(state->end < start);
542         last_end = state->end;
543
544         /* the state doesn't have the wanted bits, go ahead */
545         if (!(state->state & bits)) {
546                 state = next_state(state);
547                 goto next;
548         }
549
550         /*
551          *     | ---- desired range ---- |
552          *  | state | or
553          *  | ------------- state -------------- |
554          *
555          * We need to split the extent we found, and may flip
556          * bits on second half.
557          *
558          * If the extent we found extends past our range, we
559          * just split and search again.  It'll get split again
560          * the next time though.
561          *
562          * If the extent we found is inside our range, we clear
563          * the desired bit on it.
564          */
565
566         if (state->start < start) {
567                 prealloc = alloc_extent_state_atomic(prealloc);
568                 BUG_ON(!prealloc);
569                 err = split_state(tree, state, prealloc, start);
570                 if (err)
571                         extent_io_tree_panic(tree, err);
572
573                 prealloc = NULL;
574                 if (err)
575                         goto out;
576                 if (state->end <= end) {
577                         state = clear_state_bit(tree, state, &bits, wake);
578                         goto next;
579                 }
580                 goto search_again;
581         }
582         /*
583          * | ---- desired range ---- |
584          *                        | state |
585          * We need to split the extent, and clear the bit
586          * on the first half
587          */
588         if (state->start <= end && state->end > end) {
589                 prealloc = alloc_extent_state_atomic(prealloc);
590                 BUG_ON(!prealloc);
591                 err = split_state(tree, state, prealloc, end + 1);
592                 if (err)
593                         extent_io_tree_panic(tree, err);
594
595                 if (wake)
596                         wake_up(&state->wq);
597
598                 clear_state_bit(tree, prealloc, &bits, wake);
599
600                 prealloc = NULL;
601                 goto out;
602         }
603
604         state = clear_state_bit(tree, state, &bits, wake);
605 next:
606         if (last_end == (u64)-1)
607                 goto out;
608         start = last_end + 1;
609         if (start <= end && state && !need_resched())
610                 goto hit_next;
611         goto search_again;
612
613 out:
614         spin_unlock(&tree->lock);
615         if (prealloc)
616                 free_extent_state(prealloc);
617
618         return 0;
619
620 search_again:
621         if (start > end)
622                 goto out;
623         spin_unlock(&tree->lock);
624         if (mask & __GFP_WAIT)
625                 cond_resched();
626         goto again;
627 }
628
629 static void wait_on_state(struct extent_io_tree *tree,
630                           struct extent_state *state)
631                 __releases(tree->lock)
632                 __acquires(tree->lock)
633 {
634         DEFINE_WAIT(wait);
635         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
636         spin_unlock(&tree->lock);
637         schedule();
638         spin_lock(&tree->lock);
639         finish_wait(&state->wq, &wait);
640 }
641
642 /*
643  * waits for one or more bits to clear on a range in the state tree.
644  * The range [start, end] is inclusive.
645  * The tree lock is taken by this function
646  */
647 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
648 {
649         struct extent_state *state;
650         struct rb_node *node;
651
652         spin_lock(&tree->lock);
653 again:
654         while (1) {
655                 /*
656                  * this search will find all the extents that end after
657                  * our range starts
658                  */
659                 node = tree_search(tree, start);
660                 if (!node)
661                         break;
662
663                 state = rb_entry(node, struct extent_state, rb_node);
664
665                 if (state->start > end)
666                         goto out;
667
668                 if (state->state & bits) {
669                         start = state->start;
670                         atomic_inc(&state->refs);
671                         wait_on_state(tree, state);
672                         free_extent_state(state);
673                         goto again;
674                 }
675                 start = state->end + 1;
676
677                 if (start > end)
678                         break;
679
680                 cond_resched_lock(&tree->lock);
681         }
682 out:
683         spin_unlock(&tree->lock);
684 }
685
686 static void set_state_bits(struct extent_io_tree *tree,
687                            struct extent_state *state,
688                            int *bits)
689 {
690         int bits_to_set = *bits & ~EXTENT_CTLBITS;
691
692         set_state_cb(tree, state, bits);
693         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
694                 u64 range = state->end - state->start + 1;
695                 tree->dirty_bytes += range;
696         }
697         state->state |= bits_to_set;
698 }
699
700 static void cache_state(struct extent_state *state,
701                         struct extent_state **cached_ptr)
702 {
703         if (cached_ptr && !(*cached_ptr)) {
704                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
705                         *cached_ptr = state;
706                         atomic_inc(&state->refs);
707                 }
708         }
709 }
710
711 static void uncache_state(struct extent_state **cached_ptr)
712 {
713         if (cached_ptr && (*cached_ptr)) {
714                 struct extent_state *state = *cached_ptr;
715                 *cached_ptr = NULL;
716                 free_extent_state(state);
717         }
718 }
719
720 /*
721  * set some bits on a range in the tree.  This may require allocations or
722  * sleeping, so the gfp mask is used to indicate what is allowed.
723  *
724  * If any of the exclusive bits are set, this will fail with -EEXIST if some
725  * part of the range already has the desired bits set.  The start of the
726  * existing range is returned in failed_start in this case.
727  *
728  * [start, end] is inclusive This takes the tree lock.
729  */
730
731 static int __must_check
732 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
733                  int bits, int exclusive_bits, u64 *failed_start,
734                  struct extent_state **cached_state, gfp_t mask)
735 {
736         struct extent_state *state;
737         struct extent_state *prealloc = NULL;
738         struct rb_node *node;
739         int err = 0;
740         u64 last_start;
741         u64 last_end;
742
743         bits |= EXTENT_FIRST_DELALLOC;
744 again:
745         if (!prealloc && (mask & __GFP_WAIT)) {
746                 prealloc = alloc_extent_state(mask);
747                 BUG_ON(!prealloc);
748         }
749
750         spin_lock(&tree->lock);
751         if (cached_state && *cached_state) {
752                 state = *cached_state;
753                 if (state->start <= start && state->end > start &&
754                     state->tree) {
755                         node = &state->rb_node;
756                         goto hit_next;
757                 }
758         }
759         /*
760          * this search will find all the extents that end after
761          * our range starts.
762          */
763         node = tree_search(tree, start);
764         if (!node) {
765                 prealloc = alloc_extent_state_atomic(prealloc);
766                 BUG_ON(!prealloc);
767                 err = insert_state(tree, prealloc, start, end, &bits);
768                 if (err)
769                         extent_io_tree_panic(tree, err);
770
771                 prealloc = NULL;
772                 goto out;
773         }
774         state = rb_entry(node, struct extent_state, rb_node);
775 hit_next:
776         last_start = state->start;
777         last_end = state->end;
778
779         /*
780          * | ---- desired range ---- |
781          * | state |
782          *
783          * Just lock what we found and keep going
784          */
785         if (state->start == start && state->end <= end) {
786                 if (state->state & exclusive_bits) {
787                         *failed_start = state->start;
788                         err = -EEXIST;
789                         goto out;
790                 }
791
792                 set_state_bits(tree, state, &bits);
793                 cache_state(state, cached_state);
794                 merge_state(tree, state);
795                 if (last_end == (u64)-1)
796                         goto out;
797                 start = last_end + 1;
798                 state = next_state(state);
799                 if (start < end && state && state->start == start &&
800                     !need_resched())
801                         goto hit_next;
802                 goto search_again;
803         }
804
805         /*
806          *     | ---- desired range ---- |
807          * | state |
808          *   or
809          * | ------------- state -------------- |
810          *
811          * We need to split the extent we found, and may flip bits on
812          * second half.
813          *
814          * If the extent we found extends past our
815          * range, we just split and search again.  It'll get split
816          * again the next time though.
817          *
818          * If the extent we found is inside our range, we set the
819          * desired bit on it.
820          */
821         if (state->start < start) {
822                 if (state->state & exclusive_bits) {
823                         *failed_start = start;
824                         err = -EEXIST;
825                         goto out;
826                 }
827
828                 prealloc = alloc_extent_state_atomic(prealloc);
829                 BUG_ON(!prealloc);
830                 err = split_state(tree, state, prealloc, start);
831                 if (err)
832                         extent_io_tree_panic(tree, err);
833
834                 prealloc = NULL;
835                 if (err)
836                         goto out;
837                 if (state->end <= end) {
838                         set_state_bits(tree, state, &bits);
839                         cache_state(state, cached_state);
840                         merge_state(tree, state);
841                         if (last_end == (u64)-1)
842                                 goto out;
843                         start = last_end + 1;
844                         state = next_state(state);
845                         if (start < end && state && state->start == start &&
846                             !need_resched())
847                                 goto hit_next;
848                 }
849                 goto search_again;
850         }
851         /*
852          * | ---- desired range ---- |
853          *     | state | or               | state |
854          *
855          * There's a hole, we need to insert something in it and
856          * ignore the extent we found.
857          */
858         if (state->start > start) {
859                 u64 this_end;
860                 if (end < last_start)
861                         this_end = end;
862                 else
863                         this_end = last_start - 1;
864
865                 prealloc = alloc_extent_state_atomic(prealloc);
866                 BUG_ON(!prealloc);
867
868                 /*
869                  * Avoid to free 'prealloc' if it can be merged with
870                  * the later extent.
871                  */
872                 err = insert_state(tree, prealloc, start, this_end,
873                                    &bits);
874                 if (err)
875                         extent_io_tree_panic(tree, err);
876
877                 cache_state(prealloc, cached_state);
878                 prealloc = NULL;
879                 start = this_end + 1;
880                 goto search_again;
881         }
882         /*
883          * | ---- desired range ---- |
884          *                        | state |
885          * We need to split the extent, and set the bit
886          * on the first half
887          */
888         if (state->start <= end && state->end > end) {
889                 if (state->state & exclusive_bits) {
890                         *failed_start = start;
891                         err = -EEXIST;
892                         goto out;
893                 }
894
895                 prealloc = alloc_extent_state_atomic(prealloc);
896                 BUG_ON(!prealloc);
897                 err = split_state(tree, state, prealloc, end + 1);
898                 if (err)
899                         extent_io_tree_panic(tree, err);
900
901                 set_state_bits(tree, prealloc, &bits);
902                 cache_state(prealloc, cached_state);
903                 merge_state(tree, prealloc);
904                 prealloc = NULL;
905                 goto out;
906         }
907
908         goto search_again;
909
910 out:
911         spin_unlock(&tree->lock);
912         if (prealloc)
913                 free_extent_state(prealloc);
914
915         return err;
916
917 search_again:
918         if (start > end)
919                 goto out;
920         spin_unlock(&tree->lock);
921         if (mask & __GFP_WAIT)
922                 cond_resched();
923         goto again;
924 }
925
926 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
927                    u64 *failed_start, struct extent_state **cached_state,
928                    gfp_t mask)
929 {
930         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
931                                 cached_state, mask);
932 }
933
934
935 /**
936  * convert_extent_bit - convert all bits in a given range from one bit to
937  *                      another
938  * @tree:       the io tree to search
939  * @start:      the start offset in bytes
940  * @end:        the end offset in bytes (inclusive)
941  * @bits:       the bits to set in this range
942  * @clear_bits: the bits to clear in this range
943  * @cached_state:       state that we're going to cache
944  * @mask:       the allocation mask
945  *
946  * This will go through and set bits for the given range.  If any states exist
947  * already in this range they are set with the given bit and cleared of the
948  * clear_bits.  This is only meant to be used by things that are mergeable, ie
949  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
950  * boundary bits like LOCK.
951  */
952 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
953                        int bits, int clear_bits,
954                        struct extent_state **cached_state, gfp_t mask)
955 {
956         struct extent_state *state;
957         struct extent_state *prealloc = NULL;
958         struct rb_node *node;
959         int err = 0;
960         u64 last_start;
961         u64 last_end;
962
963 again:
964         if (!prealloc && (mask & __GFP_WAIT)) {
965                 prealloc = alloc_extent_state(mask);
966                 if (!prealloc)
967                         return -ENOMEM;
968         }
969
970         spin_lock(&tree->lock);
971         if (cached_state && *cached_state) {
972                 state = *cached_state;
973                 if (state->start <= start && state->end > start &&
974                     state->tree) {
975                         node = &state->rb_node;
976                         goto hit_next;
977                 }
978         }
979
980         /*
981          * this search will find all the extents that end after
982          * our range starts.
983          */
984         node = tree_search(tree, start);
985         if (!node) {
986                 prealloc = alloc_extent_state_atomic(prealloc);
987                 if (!prealloc) {
988                         err = -ENOMEM;
989                         goto out;
990                 }
991                 err = insert_state(tree, prealloc, start, end, &bits);
992                 prealloc = NULL;
993                 if (err)
994                         extent_io_tree_panic(tree, err);
995                 goto out;
996         }
997         state = rb_entry(node, struct extent_state, rb_node);
998 hit_next:
999         last_start = state->start;
1000         last_end = state->end;
1001
1002         /*
1003          * | ---- desired range ---- |
1004          * | state |
1005          *
1006          * Just lock what we found and keep going
1007          */
1008         if (state->start == start && state->end <= end) {
1009                 set_state_bits(tree, state, &bits);
1010                 cache_state(state, cached_state);
1011                 state = clear_state_bit(tree, state, &clear_bits, 0);
1012                 if (last_end == (u64)-1)
1013                         goto out;
1014                 start = last_end + 1;
1015                 if (start < end && state && state->start == start &&
1016                     !need_resched())
1017                         goto hit_next;
1018                 goto search_again;
1019         }
1020
1021         /*
1022          *     | ---- desired range ---- |
1023          * | state |
1024          *   or
1025          * | ------------- state -------------- |
1026          *
1027          * We need to split the extent we found, and may flip bits on
1028          * second half.
1029          *
1030          * If the extent we found extends past our
1031          * range, we just split and search again.  It'll get split
1032          * again the next time though.
1033          *
1034          * If the extent we found is inside our range, we set the
1035          * desired bit on it.
1036          */
1037         if (state->start < start) {
1038                 prealloc = alloc_extent_state_atomic(prealloc);
1039                 if (!prealloc) {
1040                         err = -ENOMEM;
1041                         goto out;
1042                 }
1043                 err = split_state(tree, state, prealloc, start);
1044                 if (err)
1045                         extent_io_tree_panic(tree, err);
1046                 prealloc = NULL;
1047                 if (err)
1048                         goto out;
1049                 if (state->end <= end) {
1050                         set_state_bits(tree, state, &bits);
1051                         cache_state(state, cached_state);
1052                         state = clear_state_bit(tree, state, &clear_bits, 0);
1053                         if (last_end == (u64)-1)
1054                                 goto out;
1055                         start = last_end + 1;
1056                         if (start < end && state && state->start == start &&
1057                             !need_resched())
1058                                 goto hit_next;
1059                 }
1060                 goto search_again;
1061         }
1062         /*
1063          * | ---- desired range ---- |
1064          *     | state | or               | state |
1065          *
1066          * There's a hole, we need to insert something in it and
1067          * ignore the extent we found.
1068          */
1069         if (state->start > start) {
1070                 u64 this_end;
1071                 if (end < last_start)
1072                         this_end = end;
1073                 else
1074                         this_end = last_start - 1;
1075
1076                 prealloc = alloc_extent_state_atomic(prealloc);
1077                 if (!prealloc) {
1078                         err = -ENOMEM;
1079                         goto out;
1080                 }
1081
1082                 /*
1083                  * Avoid to free 'prealloc' if it can be merged with
1084                  * the later extent.
1085                  */
1086                 err = insert_state(tree, prealloc, start, this_end,
1087                                    &bits);
1088                 if (err)
1089                         extent_io_tree_panic(tree, err);
1090                 cache_state(prealloc, cached_state);
1091                 prealloc = NULL;
1092                 start = this_end + 1;
1093                 goto search_again;
1094         }
1095         /*
1096          * | ---- desired range ---- |
1097          *                        | state |
1098          * We need to split the extent, and set the bit
1099          * on the first half
1100          */
1101         if (state->start <= end && state->end > end) {
1102                 prealloc = alloc_extent_state_atomic(prealloc);
1103                 if (!prealloc) {
1104                         err = -ENOMEM;
1105                         goto out;
1106                 }
1107
1108                 err = split_state(tree, state, prealloc, end + 1);
1109                 if (err)
1110                         extent_io_tree_panic(tree, err);
1111
1112                 set_state_bits(tree, prealloc, &bits);
1113                 cache_state(prealloc, cached_state);
1114                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1115                 prealloc = NULL;
1116                 goto out;
1117         }
1118
1119         goto search_again;
1120
1121 out:
1122         spin_unlock(&tree->lock);
1123         if (prealloc)
1124                 free_extent_state(prealloc);
1125
1126         return err;
1127
1128 search_again:
1129         if (start > end)
1130                 goto out;
1131         spin_unlock(&tree->lock);
1132         if (mask & __GFP_WAIT)
1133                 cond_resched();
1134         goto again;
1135 }
1136
1137 /* wrappers around set/clear extent bit */
1138 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1139                      gfp_t mask)
1140 {
1141         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1142                               NULL, mask);
1143 }
1144
1145 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1146                     int bits, gfp_t mask)
1147 {
1148         return set_extent_bit(tree, start, end, bits, NULL,
1149                               NULL, mask);
1150 }
1151
1152 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1153                       int bits, gfp_t mask)
1154 {
1155         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1156 }
1157
1158 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1159                         struct extent_state **cached_state, gfp_t mask)
1160 {
1161         return set_extent_bit(tree, start, end,
1162                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1163                               NULL, cached_state, mask);
1164 }
1165
1166 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1167                       struct extent_state **cached_state, gfp_t mask)
1168 {
1169         return set_extent_bit(tree, start, end,
1170                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1171                               NULL, cached_state, mask);
1172 }
1173
1174 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1175                        gfp_t mask)
1176 {
1177         return clear_extent_bit(tree, start, end,
1178                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1179                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1180 }
1181
1182 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1183                      gfp_t mask)
1184 {
1185         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1186                               NULL, mask);
1187 }
1188
1189 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1190                         struct extent_state **cached_state, gfp_t mask)
1191 {
1192         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1193                               cached_state, mask);
1194 }
1195
1196 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1197                           struct extent_state **cached_state, gfp_t mask)
1198 {
1199         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1200                                 cached_state, mask);
1201 }
1202
1203 /*
1204  * either insert or lock state struct between start and end use mask to tell
1205  * us if waiting is desired.
1206  */
1207 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1208                      int bits, struct extent_state **cached_state)
1209 {
1210         int err;
1211         u64 failed_start;
1212         while (1) {
1213                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1214                                        EXTENT_LOCKED, &failed_start,
1215                                        cached_state, GFP_NOFS);
1216                 if (err == -EEXIST) {
1217                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1218                         start = failed_start;
1219                 } else
1220                         break;
1221                 WARN_ON(start > end);
1222         }
1223         return err;
1224 }
1225
1226 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1227 {
1228         return lock_extent_bits(tree, start, end, 0, NULL);
1229 }
1230
1231 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1232 {
1233         int err;
1234         u64 failed_start;
1235
1236         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1237                                &failed_start, NULL, GFP_NOFS);
1238         if (err == -EEXIST) {
1239                 if (failed_start > start)
1240                         clear_extent_bit(tree, start, failed_start - 1,
1241                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1242                 return 0;
1243         }
1244         return 1;
1245 }
1246
1247 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1248                          struct extent_state **cached, gfp_t mask)
1249 {
1250         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1251                                 mask);
1252 }
1253
1254 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1255 {
1256         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1257                                 GFP_NOFS);
1258 }
1259
1260 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1261 {
1262         unsigned long index = start >> PAGE_CACHE_SHIFT;
1263         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1264         struct page *page;
1265
1266         while (index <= end_index) {
1267                 page = find_get_page(inode->i_mapping, index);
1268                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1269                 clear_page_dirty_for_io(page);
1270                 page_cache_release(page);
1271                 index++;
1272         }
1273         return 0;
1274 }
1275
1276 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1277 {
1278         unsigned long index = start >> PAGE_CACHE_SHIFT;
1279         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1280         struct page *page;
1281
1282         while (index <= end_index) {
1283                 page = find_get_page(inode->i_mapping, index);
1284                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1285                 account_page_redirty(page);
1286                 __set_page_dirty_nobuffers(page);
1287                 page_cache_release(page);
1288                 index++;
1289         }
1290         return 0;
1291 }
1292
1293 /*
1294  * helper function to set both pages and extents in the tree writeback
1295  */
1296 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1297 {
1298         unsigned long index = start >> PAGE_CACHE_SHIFT;
1299         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1300         struct page *page;
1301
1302         while (index <= end_index) {
1303                 page = find_get_page(tree->mapping, index);
1304                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1305                 set_page_writeback(page);
1306                 page_cache_release(page);
1307                 index++;
1308         }
1309         return 0;
1310 }
1311
1312 /* find the first state struct with 'bits' set after 'start', and
1313  * return it.  tree->lock must be held.  NULL will returned if
1314  * nothing was found after 'start'
1315  */
1316 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1317                                                  u64 start, int bits)
1318 {
1319         struct rb_node *node;
1320         struct extent_state *state;
1321
1322         /*
1323          * this search will find all the extents that end after
1324          * our range starts.
1325          */
1326         node = tree_search(tree, start);
1327         if (!node)
1328                 goto out;
1329
1330         while (1) {
1331                 state = rb_entry(node, struct extent_state, rb_node);
1332                 if (state->end >= start && (state->state & bits))
1333                         return state;
1334
1335                 node = rb_next(node);
1336                 if (!node)
1337                         break;
1338         }
1339 out:
1340         return NULL;
1341 }
1342
1343 /*
1344  * find the first offset in the io tree with 'bits' set. zero is
1345  * returned if we find something, and *start_ret and *end_ret are
1346  * set to reflect the state struct that was found.
1347  *
1348  * If nothing was found, 1 is returned. If found something, return 0.
1349  */
1350 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1351                           u64 *start_ret, u64 *end_ret, int bits,
1352                           struct extent_state **cached_state)
1353 {
1354         struct extent_state *state;
1355         struct rb_node *n;
1356         int ret = 1;
1357
1358         spin_lock(&tree->lock);
1359         if (cached_state && *cached_state) {
1360                 state = *cached_state;
1361                 if (state->end == start - 1 && state->tree) {
1362                         n = rb_next(&state->rb_node);
1363                         while (n) {
1364                                 state = rb_entry(n, struct extent_state,
1365                                                  rb_node);
1366                                 if (state->state & bits)
1367                                         goto got_it;
1368                                 n = rb_next(n);
1369                         }
1370                         free_extent_state(*cached_state);
1371                         *cached_state = NULL;
1372                         goto out;
1373                 }
1374                 free_extent_state(*cached_state);
1375                 *cached_state = NULL;
1376         }
1377
1378         state = find_first_extent_bit_state(tree, start, bits);
1379 got_it:
1380         if (state) {
1381                 cache_state(state, cached_state);
1382                 *start_ret = state->start;
1383                 *end_ret = state->end;
1384                 ret = 0;
1385         }
1386 out:
1387         spin_unlock(&tree->lock);
1388         return ret;
1389 }
1390
1391 /*
1392  * find a contiguous range of bytes in the file marked as delalloc, not
1393  * more than 'max_bytes'.  start and end are used to return the range,
1394  *
1395  * 1 is returned if we find something, 0 if nothing was in the tree
1396  */
1397 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1398                                         u64 *start, u64 *end, u64 max_bytes,
1399                                         struct extent_state **cached_state)
1400 {
1401         struct rb_node *node;
1402         struct extent_state *state;
1403         u64 cur_start = *start;
1404         u64 found = 0;
1405         u64 total_bytes = 0;
1406
1407         spin_lock(&tree->lock);
1408
1409         /*
1410          * this search will find all the extents that end after
1411          * our range starts.
1412          */
1413         node = tree_search(tree, cur_start);
1414         if (!node) {
1415                 if (!found)
1416                         *end = (u64)-1;
1417                 goto out;
1418         }
1419
1420         while (1) {
1421                 state = rb_entry(node, struct extent_state, rb_node);
1422                 if (found && (state->start != cur_start ||
1423                               (state->state & EXTENT_BOUNDARY))) {
1424                         goto out;
1425                 }
1426                 if (!(state->state & EXTENT_DELALLOC)) {
1427                         if (!found)
1428                                 *end = state->end;
1429                         goto out;
1430                 }
1431                 if (!found) {
1432                         *start = state->start;
1433                         *cached_state = state;
1434                         atomic_inc(&state->refs);
1435                 }
1436                 found++;
1437                 *end = state->end;
1438                 cur_start = state->end + 1;
1439                 node = rb_next(node);
1440                 if (!node)
1441                         break;
1442                 total_bytes += state->end - state->start + 1;
1443                 if (total_bytes >= max_bytes)
1444                         break;
1445         }
1446 out:
1447         spin_unlock(&tree->lock);
1448         return found;
1449 }
1450
1451 static noinline void __unlock_for_delalloc(struct inode *inode,
1452                                            struct page *locked_page,
1453                                            u64 start, u64 end)
1454 {
1455         int ret;
1456         struct page *pages[16];
1457         unsigned long index = start >> PAGE_CACHE_SHIFT;
1458         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1459         unsigned long nr_pages = end_index - index + 1;
1460         int i;
1461
1462         if (index == locked_page->index && end_index == index)
1463                 return;
1464
1465         while (nr_pages > 0) {
1466                 ret = find_get_pages_contig(inode->i_mapping, index,
1467                                      min_t(unsigned long, nr_pages,
1468                                      ARRAY_SIZE(pages)), pages);
1469                 for (i = 0; i < ret; i++) {
1470                         if (pages[i] != locked_page)
1471                                 unlock_page(pages[i]);
1472                         page_cache_release(pages[i]);
1473                 }
1474                 nr_pages -= ret;
1475                 index += ret;
1476                 cond_resched();
1477         }
1478 }
1479
1480 static noinline int lock_delalloc_pages(struct inode *inode,
1481                                         struct page *locked_page,
1482                                         u64 delalloc_start,
1483                                         u64 delalloc_end)
1484 {
1485         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1486         unsigned long start_index = index;
1487         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1488         unsigned long pages_locked = 0;
1489         struct page *pages[16];
1490         unsigned long nrpages;
1491         int ret;
1492         int i;
1493
1494         /* the caller is responsible for locking the start index */
1495         if (index == locked_page->index && index == end_index)
1496                 return 0;
1497
1498         /* skip the page at the start index */
1499         nrpages = end_index - index + 1;
1500         while (nrpages > 0) {
1501                 ret = find_get_pages_contig(inode->i_mapping, index,
1502                                      min_t(unsigned long,
1503                                      nrpages, ARRAY_SIZE(pages)), pages);
1504                 if (ret == 0) {
1505                         ret = -EAGAIN;
1506                         goto done;
1507                 }
1508                 /* now we have an array of pages, lock them all */
1509                 for (i = 0; i < ret; i++) {
1510                         /*
1511                          * the caller is taking responsibility for
1512                          * locked_page
1513                          */
1514                         if (pages[i] != locked_page) {
1515                                 lock_page(pages[i]);
1516                                 if (!PageDirty(pages[i]) ||
1517                                     pages[i]->mapping != inode->i_mapping) {
1518                                         ret = -EAGAIN;
1519                                         unlock_page(pages[i]);
1520                                         page_cache_release(pages[i]);
1521                                         goto done;
1522                                 }
1523                         }
1524                         page_cache_release(pages[i]);
1525                         pages_locked++;
1526                 }
1527                 nrpages -= ret;
1528                 index += ret;
1529                 cond_resched();
1530         }
1531         ret = 0;
1532 done:
1533         if (ret && pages_locked) {
1534                 __unlock_for_delalloc(inode, locked_page,
1535                               delalloc_start,
1536                               ((u64)(start_index + pages_locked - 1)) <<
1537                               PAGE_CACHE_SHIFT);
1538         }
1539         return ret;
1540 }
1541
1542 /*
1543  * find a contiguous range of bytes in the file marked as delalloc, not
1544  * more than 'max_bytes'.  start and end are used to return the range,
1545  *
1546  * 1 is returned if we find something, 0 if nothing was in the tree
1547  */
1548 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1549                                              struct extent_io_tree *tree,
1550                                              struct page *locked_page,
1551                                              u64 *start, u64 *end,
1552                                              u64 max_bytes)
1553 {
1554         u64 delalloc_start;
1555         u64 delalloc_end;
1556         u64 found;
1557         struct extent_state *cached_state = NULL;
1558         int ret;
1559         int loops = 0;
1560
1561 again:
1562         /* step one, find a bunch of delalloc bytes starting at start */
1563         delalloc_start = *start;
1564         delalloc_end = 0;
1565         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1566                                     max_bytes, &cached_state);
1567         if (!found || delalloc_end <= *start) {
1568                 *start = delalloc_start;
1569                 *end = delalloc_end;
1570                 free_extent_state(cached_state);
1571                 return found;
1572         }
1573
1574         /*
1575          * start comes from the offset of locked_page.  We have to lock
1576          * pages in order, so we can't process delalloc bytes before
1577          * locked_page
1578          */
1579         if (delalloc_start < *start)
1580                 delalloc_start = *start;
1581
1582         /*
1583          * make sure to limit the number of pages we try to lock down
1584          * if we're looping.
1585          */
1586         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1587                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1588
1589         /* step two, lock all the pages after the page that has start */
1590         ret = lock_delalloc_pages(inode, locked_page,
1591                                   delalloc_start, delalloc_end);
1592         if (ret == -EAGAIN) {
1593                 /* some of the pages are gone, lets avoid looping by
1594                  * shortening the size of the delalloc range we're searching
1595                  */
1596                 free_extent_state(cached_state);
1597                 if (!loops) {
1598                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1599                         max_bytes = PAGE_CACHE_SIZE - offset;
1600                         loops = 1;
1601                         goto again;
1602                 } else {
1603                         found = 0;
1604                         goto out_failed;
1605                 }
1606         }
1607         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1608
1609         /* step three, lock the state bits for the whole range */
1610         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1611
1612         /* then test to make sure it is all still delalloc */
1613         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1614                              EXTENT_DELALLOC, 1, cached_state);
1615         if (!ret) {
1616                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1617                                      &cached_state, GFP_NOFS);
1618                 __unlock_for_delalloc(inode, locked_page,
1619                               delalloc_start, delalloc_end);
1620                 cond_resched();
1621                 goto again;
1622         }
1623         free_extent_state(cached_state);
1624         *start = delalloc_start;
1625         *end = delalloc_end;
1626 out_failed:
1627         return found;
1628 }
1629
1630 int extent_clear_unlock_delalloc(struct inode *inode,
1631                                 struct extent_io_tree *tree,
1632                                 u64 start, u64 end, struct page *locked_page,
1633                                 unsigned long op)
1634 {
1635         int ret;
1636         struct page *pages[16];
1637         unsigned long index = start >> PAGE_CACHE_SHIFT;
1638         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1639         unsigned long nr_pages = end_index - index + 1;
1640         int i;
1641         int clear_bits = 0;
1642
1643         if (op & EXTENT_CLEAR_UNLOCK)
1644                 clear_bits |= EXTENT_LOCKED;
1645         if (op & EXTENT_CLEAR_DIRTY)
1646                 clear_bits |= EXTENT_DIRTY;
1647
1648         if (op & EXTENT_CLEAR_DELALLOC)
1649                 clear_bits |= EXTENT_DELALLOC;
1650
1651         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1652         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1653                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1654                     EXTENT_SET_PRIVATE2)))
1655                 return 0;
1656
1657         while (nr_pages > 0) {
1658                 ret = find_get_pages_contig(inode->i_mapping, index,
1659                                      min_t(unsigned long,
1660                                      nr_pages, ARRAY_SIZE(pages)), pages);
1661                 for (i = 0; i < ret; i++) {
1662
1663                         if (op & EXTENT_SET_PRIVATE2)
1664                                 SetPagePrivate2(pages[i]);
1665
1666                         if (pages[i] == locked_page) {
1667                                 page_cache_release(pages[i]);
1668                                 continue;
1669                         }
1670                         if (op & EXTENT_CLEAR_DIRTY)
1671                                 clear_page_dirty_for_io(pages[i]);
1672                         if (op & EXTENT_SET_WRITEBACK)
1673                                 set_page_writeback(pages[i]);
1674                         if (op & EXTENT_END_WRITEBACK)
1675                                 end_page_writeback(pages[i]);
1676                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1677                                 unlock_page(pages[i]);
1678                         page_cache_release(pages[i]);
1679                 }
1680                 nr_pages -= ret;
1681                 index += ret;
1682                 cond_resched();
1683         }
1684         return 0;
1685 }
1686
1687 /*
1688  * count the number of bytes in the tree that have a given bit(s)
1689  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1690  * cached.  The total number found is returned.
1691  */
1692 u64 count_range_bits(struct extent_io_tree *tree,
1693                      u64 *start, u64 search_end, u64 max_bytes,
1694                      unsigned long bits, int contig)
1695 {
1696         struct rb_node *node;
1697         struct extent_state *state;
1698         u64 cur_start = *start;
1699         u64 total_bytes = 0;
1700         u64 last = 0;
1701         int found = 0;
1702
1703         if (search_end <= cur_start) {
1704                 WARN_ON(1);
1705                 return 0;
1706         }
1707
1708         spin_lock(&tree->lock);
1709         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1710                 total_bytes = tree->dirty_bytes;
1711                 goto out;
1712         }
1713         /*
1714          * this search will find all the extents that end after
1715          * our range starts.
1716          */
1717         node = tree_search(tree, cur_start);
1718         if (!node)
1719                 goto out;
1720
1721         while (1) {
1722                 state = rb_entry(node, struct extent_state, rb_node);
1723                 if (state->start > search_end)
1724                         break;
1725                 if (contig && found && state->start > last + 1)
1726                         break;
1727                 if (state->end >= cur_start && (state->state & bits) == bits) {
1728                         total_bytes += min(search_end, state->end) + 1 -
1729                                        max(cur_start, state->start);
1730                         if (total_bytes >= max_bytes)
1731                                 break;
1732                         if (!found) {
1733                                 *start = max(cur_start, state->start);
1734                                 found = 1;
1735                         }
1736                         last = state->end;
1737                 } else if (contig && found) {
1738                         break;
1739                 }
1740                 node = rb_next(node);
1741                 if (!node)
1742                         break;
1743         }
1744 out:
1745         spin_unlock(&tree->lock);
1746         return total_bytes;
1747 }
1748
1749 /*
1750  * set the private field for a given byte offset in the tree.  If there isn't
1751  * an extent_state there already, this does nothing.
1752  */
1753 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1754 {
1755         struct rb_node *node;
1756         struct extent_state *state;
1757         int ret = 0;
1758
1759         spin_lock(&tree->lock);
1760         /*
1761          * this search will find all the extents that end after
1762          * our range starts.
1763          */
1764         node = tree_search(tree, start);
1765         if (!node) {
1766                 ret = -ENOENT;
1767                 goto out;
1768         }
1769         state = rb_entry(node, struct extent_state, rb_node);
1770         if (state->start != start) {
1771                 ret = -ENOENT;
1772                 goto out;
1773         }
1774         state->private = private;
1775 out:
1776         spin_unlock(&tree->lock);
1777         return ret;
1778 }
1779
1780 void extent_cache_csums_dio(struct extent_io_tree *tree, u64 start, u32 csums[],
1781                             int count)
1782 {
1783         struct rb_node *node;
1784         struct extent_state *state;
1785
1786         spin_lock(&tree->lock);
1787         /*
1788          * this search will find all the extents that end after
1789          * our range starts.
1790          */
1791         node = tree_search(tree, start);
1792         BUG_ON(!node);
1793
1794         state = rb_entry(node, struct extent_state, rb_node);
1795         BUG_ON(state->start != start);
1796
1797         while (count) {
1798                 state->private = *csums++;
1799                 count--;
1800                 state = next_state(state);
1801         }
1802         spin_unlock(&tree->lock);
1803 }
1804
1805 static inline u64 __btrfs_get_bio_offset(struct bio *bio, int bio_index)
1806 {
1807         struct bio_vec *bvec = bio->bi_io_vec + bio_index;
1808
1809         return page_offset(bvec->bv_page) + bvec->bv_offset;
1810 }
1811
1812 void extent_cache_csums(struct extent_io_tree *tree, struct bio *bio, int bio_index,
1813                         u32 csums[], int count)
1814 {
1815         struct rb_node *node;
1816         struct extent_state *state = NULL;
1817         u64 start;
1818
1819         spin_lock(&tree->lock);
1820         do {
1821                 start = __btrfs_get_bio_offset(bio, bio_index);
1822                 if (state == NULL || state->start != start) {
1823                         node = tree_search(tree, start);
1824                         BUG_ON(!node);
1825
1826                         state = rb_entry(node, struct extent_state, rb_node);
1827                         BUG_ON(state->start != start);
1828                 }
1829                 state->private = *csums++;
1830                 count--;
1831                 bio_index++;
1832
1833                 state = next_state(state);
1834         } while (count);
1835         spin_unlock(&tree->lock);
1836 }
1837
1838 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1839 {
1840         struct rb_node *node;
1841         struct extent_state *state;
1842         int ret = 0;
1843
1844         spin_lock(&tree->lock);
1845         /*
1846          * this search will find all the extents that end after
1847          * our range starts.
1848          */
1849         node = tree_search(tree, start);
1850         if (!node) {
1851                 ret = -ENOENT;
1852                 goto out;
1853         }
1854         state = rb_entry(node, struct extent_state, rb_node);
1855         if (state->start != start) {
1856                 ret = -ENOENT;
1857                 goto out;
1858         }
1859         *private = state->private;
1860 out:
1861         spin_unlock(&tree->lock);
1862         return ret;
1863 }
1864
1865 /*
1866  * searches a range in the state tree for a given mask.
1867  * If 'filled' == 1, this returns 1 only if every extent in the tree
1868  * has the bits set.  Otherwise, 1 is returned if any bit in the
1869  * range is found set.
1870  */
1871 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1872                    int bits, int filled, struct extent_state *cached)
1873 {
1874         struct extent_state *state = NULL;
1875         struct rb_node *node;
1876         int bitset = 0;
1877
1878         spin_lock(&tree->lock);
1879         if (cached && cached->tree && cached->start <= start &&
1880             cached->end > start)
1881                 node = &cached->rb_node;
1882         else
1883                 node = tree_search(tree, start);
1884         while (node && start <= end) {
1885                 state = rb_entry(node, struct extent_state, rb_node);
1886
1887                 if (filled && state->start > start) {
1888                         bitset = 0;
1889                         break;
1890                 }
1891
1892                 if (state->start > end)
1893                         break;
1894
1895                 if (state->state & bits) {
1896                         bitset = 1;
1897                         if (!filled)
1898                                 break;
1899                 } else if (filled) {
1900                         bitset = 0;
1901                         break;
1902                 }
1903
1904                 if (state->end == (u64)-1)
1905                         break;
1906
1907                 start = state->end + 1;
1908                 if (start > end)
1909                         break;
1910                 node = rb_next(node);
1911                 if (!node) {
1912                         if (filled)
1913                                 bitset = 0;
1914                         break;
1915                 }
1916         }
1917         spin_unlock(&tree->lock);
1918         return bitset;
1919 }
1920
1921 /*
1922  * helper function to set a given page up to date if all the
1923  * extents in the tree for that page are up to date
1924  */
1925 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1926 {
1927         u64 start = page_offset(page);
1928         u64 end = start + PAGE_CACHE_SIZE - 1;
1929         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1930                 SetPageUptodate(page);
1931 }
1932
1933 /*
1934  * helper function to unlock a page if all the extents in the tree
1935  * for that page are unlocked
1936  */
1937 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1938 {
1939         u64 start = page_offset(page);
1940         u64 end = start + PAGE_CACHE_SIZE - 1;
1941         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1942                 unlock_page(page);
1943 }
1944
1945 /*
1946  * helper function to end page writeback if all the extents
1947  * in the tree for that page are done with writeback
1948  */
1949 static void check_page_writeback(struct extent_io_tree *tree,
1950                                  struct page *page)
1951 {
1952         end_page_writeback(page);
1953 }
1954
1955 /*
1956  * When IO fails, either with EIO or csum verification fails, we
1957  * try other mirrors that might have a good copy of the data.  This
1958  * io_failure_record is used to record state as we go through all the
1959  * mirrors.  If another mirror has good data, the page is set up to date
1960  * and things continue.  If a good mirror can't be found, the original
1961  * bio end_io callback is called to indicate things have failed.
1962  */
1963 struct io_failure_record {
1964         struct page *page;
1965         u64 start;
1966         u64 len;
1967         u64 logical;
1968         unsigned long bio_flags;
1969         int this_mirror;
1970         int failed_mirror;
1971         int in_validation;
1972 };
1973
1974 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1975                                 int did_repair)
1976 {
1977         int ret;
1978         int err = 0;
1979         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1980
1981         set_state_private(failure_tree, rec->start, 0);
1982         ret = clear_extent_bits(failure_tree, rec->start,
1983                                 rec->start + rec->len - 1,
1984                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1985         if (ret)
1986                 err = ret;
1987
1988         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1989                                 rec->start + rec->len - 1,
1990                                 EXTENT_DAMAGED, GFP_NOFS);
1991         if (ret && !err)
1992                 err = ret;
1993
1994         kfree(rec);
1995         return err;
1996 }
1997
1998 static void repair_io_failure_callback(struct bio *bio, int err)
1999 {
2000         complete(bio->bi_private);
2001 }
2002
2003 /*
2004  * this bypasses the standard btrfs submit functions deliberately, as
2005  * the standard behavior is to write all copies in a raid setup. here we only
2006  * want to write the one bad copy. so we do the mapping for ourselves and issue
2007  * submit_bio directly.
2008  * to avoid any synchronization issues, wait for the data after writing, which
2009  * actually prevents the read that triggered the error from finishing.
2010  * currently, there can be no more than two copies of every data bit. thus,
2011  * exactly one rewrite is required.
2012  */
2013 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2014                         u64 length, u64 logical, struct page *page,
2015                         int mirror_num)
2016 {
2017         struct bio *bio;
2018         struct btrfs_device *dev;
2019         DECLARE_COMPLETION_ONSTACK(compl);
2020         u64 map_length = 0;
2021         u64 sector;
2022         struct btrfs_bio *bbio = NULL;
2023         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2024         int ret;
2025
2026         BUG_ON(!mirror_num);
2027
2028         /* we can't repair anything in raid56 yet */
2029         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2030                 return 0;
2031
2032         bio = bio_alloc(GFP_NOFS, 1);
2033         if (!bio)
2034                 return -EIO;
2035         bio->bi_private = &compl;
2036         bio->bi_end_io = repair_io_failure_callback;
2037         bio->bi_size = 0;
2038         map_length = length;
2039
2040         ret = btrfs_map_block(fs_info, WRITE, logical,
2041                               &map_length, &bbio, mirror_num);
2042         if (ret) {
2043                 bio_put(bio);
2044                 return -EIO;
2045         }
2046         BUG_ON(mirror_num != bbio->mirror_num);
2047         sector = bbio->stripes[mirror_num-1].physical >> 9;
2048         bio->bi_sector = sector;
2049         dev = bbio->stripes[mirror_num-1].dev;
2050         kfree(bbio);
2051         if (!dev || !dev->bdev || !dev->writeable) {
2052                 bio_put(bio);
2053                 return -EIO;
2054         }
2055         bio->bi_bdev = dev->bdev;
2056         bio_add_page(bio, page, length, start - page_offset(page));
2057         btrfsic_submit_bio(WRITE_SYNC, bio);
2058         wait_for_completion(&compl);
2059
2060         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2061                 /* try to remap that extent elsewhere? */
2062                 bio_put(bio);
2063                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2064                 return -EIO;
2065         }
2066
2067         printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2068                       "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2069                       start, rcu_str_deref(dev->name), sector);
2070
2071         bio_put(bio);
2072         return 0;
2073 }
2074
2075 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2076                          int mirror_num)
2077 {
2078         u64 start = eb->start;
2079         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2080         int ret = 0;
2081
2082         for (i = 0; i < num_pages; i++) {
2083                 struct page *p = extent_buffer_page(eb, i);
2084                 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2085                                         start, p, mirror_num);
2086                 if (ret)
2087                         break;
2088                 start += PAGE_CACHE_SIZE;
2089         }
2090
2091         return ret;
2092 }
2093
2094 /*
2095  * each time an IO finishes, we do a fast check in the IO failure tree
2096  * to see if we need to process or clean up an io_failure_record
2097  */
2098 static int clean_io_failure(u64 start, struct page *page)
2099 {
2100         u64 private;
2101         u64 private_failure;
2102         struct io_failure_record *failrec;
2103         struct btrfs_fs_info *fs_info;
2104         struct extent_state *state;
2105         int num_copies;
2106         int did_repair = 0;
2107         int ret;
2108         struct inode *inode = page->mapping->host;
2109
2110         private = 0;
2111         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2112                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2113         if (!ret)
2114                 return 0;
2115
2116         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2117                                 &private_failure);
2118         if (ret)
2119                 return 0;
2120
2121         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2122         BUG_ON(!failrec->this_mirror);
2123
2124         if (failrec->in_validation) {
2125                 /* there was no real error, just free the record */
2126                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2127                          failrec->start);
2128                 did_repair = 1;
2129                 goto out;
2130         }
2131
2132         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2133         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2134                                             failrec->start,
2135                                             EXTENT_LOCKED);
2136         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2137
2138         if (state && state->start == failrec->start) {
2139                 fs_info = BTRFS_I(inode)->root->fs_info;
2140                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2141                                               failrec->len);
2142                 if (num_copies > 1)  {
2143                         ret = repair_io_failure(fs_info, start, failrec->len,
2144                                                 failrec->logical, page,
2145                                                 failrec->failed_mirror);
2146                         did_repair = !ret;
2147                 }
2148                 ret = 0;
2149         }
2150
2151 out:
2152         if (!ret)
2153                 ret = free_io_failure(inode, failrec, did_repair);
2154
2155         return ret;
2156 }
2157
2158 /*
2159  * this is a generic handler for readpage errors (default
2160  * readpage_io_failed_hook). if other copies exist, read those and write back
2161  * good data to the failed position. does not investigate in remapping the
2162  * failed extent elsewhere, hoping the device will be smart enough to do this as
2163  * needed
2164  */
2165
2166 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2167                                 u64 start, u64 end, int failed_mirror,
2168                                 struct extent_state *state)
2169 {
2170         struct io_failure_record *failrec = NULL;
2171         u64 private;
2172         struct extent_map *em;
2173         struct inode *inode = page->mapping->host;
2174         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2175         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2176         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2177         struct bio *bio;
2178         int num_copies;
2179         int ret;
2180         int read_mode;
2181         u64 logical;
2182
2183         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2184
2185         ret = get_state_private(failure_tree, start, &private);
2186         if (ret) {
2187                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2188                 if (!failrec)
2189                         return -ENOMEM;
2190                 failrec->start = start;
2191                 failrec->len = end - start + 1;
2192                 failrec->this_mirror = 0;
2193                 failrec->bio_flags = 0;
2194                 failrec->in_validation = 0;
2195
2196                 read_lock(&em_tree->lock);
2197                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2198                 if (!em) {
2199                         read_unlock(&em_tree->lock);
2200                         kfree(failrec);
2201                         return -EIO;
2202                 }
2203
2204                 if (em->start > start || em->start + em->len < start) {
2205                         free_extent_map(em);
2206                         em = NULL;
2207                 }
2208                 read_unlock(&em_tree->lock);
2209
2210                 if (!em) {
2211                         kfree(failrec);
2212                         return -EIO;
2213                 }
2214                 logical = start - em->start;
2215                 logical = em->block_start + logical;
2216                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2217                         logical = em->block_start;
2218                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2219                         extent_set_compress_type(&failrec->bio_flags,
2220                                                  em->compress_type);
2221                 }
2222                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2223                          "len=%llu\n", logical, start, failrec->len);
2224                 failrec->logical = logical;
2225                 free_extent_map(em);
2226
2227                 /* set the bits in the private failure tree */
2228                 ret = set_extent_bits(failure_tree, start, end,
2229                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2230                 if (ret >= 0)
2231                         ret = set_state_private(failure_tree, start,
2232                                                 (u64)(unsigned long)failrec);
2233                 /* set the bits in the inode's tree */
2234                 if (ret >= 0)
2235                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2236                                                 GFP_NOFS);
2237                 if (ret < 0) {
2238                         kfree(failrec);
2239                         return ret;
2240                 }
2241         } else {
2242                 failrec = (struct io_failure_record *)(unsigned long)private;
2243                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2244                          "start=%llu, len=%llu, validation=%d\n",
2245                          failrec->logical, failrec->start, failrec->len,
2246                          failrec->in_validation);
2247                 /*
2248                  * when data can be on disk more than twice, add to failrec here
2249                  * (e.g. with a list for failed_mirror) to make
2250                  * clean_io_failure() clean all those errors at once.
2251                  */
2252         }
2253         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2254                                       failrec->logical, failrec->len);
2255         if (num_copies == 1) {
2256                 /*
2257                  * we only have a single copy of the data, so don't bother with
2258                  * all the retry and error correction code that follows. no
2259                  * matter what the error is, it is very likely to persist.
2260                  */
2261                 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2262                          "state=%p, num_copies=%d, next_mirror %d, "
2263                          "failed_mirror %d\n", state, num_copies,
2264                          failrec->this_mirror, failed_mirror);
2265                 free_io_failure(inode, failrec, 0);
2266                 return -EIO;
2267         }
2268
2269         if (!state) {
2270                 spin_lock(&tree->lock);
2271                 state = find_first_extent_bit_state(tree, failrec->start,
2272                                                     EXTENT_LOCKED);
2273                 if (state && state->start != failrec->start)
2274                         state = NULL;
2275                 spin_unlock(&tree->lock);
2276         }
2277
2278         /*
2279          * there are two premises:
2280          *      a) deliver good data to the caller
2281          *      b) correct the bad sectors on disk
2282          */
2283         if (failed_bio->bi_vcnt > 1) {
2284                 /*
2285                  * to fulfill b), we need to know the exact failing sectors, as
2286                  * we don't want to rewrite any more than the failed ones. thus,
2287                  * we need separate read requests for the failed bio
2288                  *
2289                  * if the following BUG_ON triggers, our validation request got
2290                  * merged. we need separate requests for our algorithm to work.
2291                  */
2292                 BUG_ON(failrec->in_validation);
2293                 failrec->in_validation = 1;
2294                 failrec->this_mirror = failed_mirror;
2295                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2296         } else {
2297                 /*
2298                  * we're ready to fulfill a) and b) alongside. get a good copy
2299                  * of the failed sector and if we succeed, we have setup
2300                  * everything for repair_io_failure to do the rest for us.
2301                  */
2302                 if (failrec->in_validation) {
2303                         BUG_ON(failrec->this_mirror != failed_mirror);
2304                         failrec->in_validation = 0;
2305                         failrec->this_mirror = 0;
2306                 }
2307                 failrec->failed_mirror = failed_mirror;
2308                 failrec->this_mirror++;
2309                 if (failrec->this_mirror == failed_mirror)
2310                         failrec->this_mirror++;
2311                 read_mode = READ_SYNC;
2312         }
2313
2314         if (!state || failrec->this_mirror > num_copies) {
2315                 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2316                          "next_mirror %d, failed_mirror %d\n", state,
2317                          num_copies, failrec->this_mirror, failed_mirror);
2318                 free_io_failure(inode, failrec, 0);
2319                 return -EIO;
2320         }
2321
2322         bio = bio_alloc(GFP_NOFS, 1);
2323         if (!bio) {
2324                 free_io_failure(inode, failrec, 0);
2325                 return -EIO;
2326         }
2327         bio->bi_private = state;
2328         bio->bi_end_io = failed_bio->bi_end_io;
2329         bio->bi_sector = failrec->logical >> 9;
2330         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2331         bio->bi_size = 0;
2332
2333         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2334
2335         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2336                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2337                  failrec->this_mirror, num_copies, failrec->in_validation);
2338
2339         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2340                                          failrec->this_mirror,
2341                                          failrec->bio_flags, 0);
2342         return ret;
2343 }
2344
2345 /* lots and lots of room for performance fixes in the end_bio funcs */
2346
2347 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2348 {
2349         int uptodate = (err == 0);
2350         struct extent_io_tree *tree;
2351         int ret;
2352
2353         tree = &BTRFS_I(page->mapping->host)->io_tree;
2354
2355         if (tree->ops && tree->ops->writepage_end_io_hook) {
2356                 ret = tree->ops->writepage_end_io_hook(page, start,
2357                                                end, NULL, uptodate);
2358                 if (ret)
2359                         uptodate = 0;
2360         }
2361
2362         if (!uptodate) {
2363                 ClearPageUptodate(page);
2364                 SetPageError(page);
2365         }
2366         return 0;
2367 }
2368
2369 /*
2370  * after a writepage IO is done, we need to:
2371  * clear the uptodate bits on error
2372  * clear the writeback bits in the extent tree for this IO
2373  * end_page_writeback if the page has no more pending IO
2374  *
2375  * Scheduling is not allowed, so the extent state tree is expected
2376  * to have one and only one object corresponding to this IO.
2377  */
2378 static void end_bio_extent_writepage(struct bio *bio, int err)
2379 {
2380         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2381         struct extent_io_tree *tree;
2382         u64 start;
2383         u64 end;
2384         int whole_page;
2385
2386         do {
2387                 struct page *page = bvec->bv_page;
2388                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2389
2390                 start = page_offset(page) + bvec->bv_offset;
2391                 end = start + bvec->bv_len - 1;
2392
2393                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2394                         whole_page = 1;
2395                 else
2396                         whole_page = 0;
2397
2398                 if (--bvec >= bio->bi_io_vec)
2399                         prefetchw(&bvec->bv_page->flags);
2400
2401                 if (end_extent_writepage(page, err, start, end))
2402                         continue;
2403
2404                 if (whole_page)
2405                         end_page_writeback(page);
2406                 else
2407                         check_page_writeback(tree, page);
2408         } while (bvec >= bio->bi_io_vec);
2409
2410         bio_put(bio);
2411 }
2412
2413 /*
2414  * after a readpage IO is done, we need to:
2415  * clear the uptodate bits on error
2416  * set the uptodate bits if things worked
2417  * set the page up to date if all extents in the tree are uptodate
2418  * clear the lock bit in the extent tree
2419  * unlock the page if there are no other extents locked for it
2420  *
2421  * Scheduling is not allowed, so the extent state tree is expected
2422  * to have one and only one object corresponding to this IO.
2423  */
2424 static void end_bio_extent_readpage(struct bio *bio, int err)
2425 {
2426         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2427         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2428         struct bio_vec *bvec = bio->bi_io_vec;
2429         struct extent_io_tree *tree;
2430         u64 start;
2431         u64 end;
2432         int whole_page;
2433         int mirror;
2434         int ret;
2435
2436         if (err)
2437                 uptodate = 0;
2438
2439         do {
2440                 struct page *page = bvec->bv_page;
2441                 struct extent_state *cached = NULL;
2442                 struct extent_state *state;
2443
2444                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2445                          "mirror=%ld\n", (u64)bio->bi_sector, err,
2446                          (long int)bio->bi_bdev);
2447                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2448
2449                 start = page_offset(page) + bvec->bv_offset;
2450                 end = start + bvec->bv_len - 1;
2451
2452                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2453                         whole_page = 1;
2454                 else
2455                         whole_page = 0;
2456
2457                 if (++bvec <= bvec_end)
2458                         prefetchw(&bvec->bv_page->flags);
2459
2460                 spin_lock(&tree->lock);
2461                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2462                 if (state && state->start == start) {
2463                         /*
2464                          * take a reference on the state, unlock will drop
2465                          * the ref
2466                          */
2467                         cache_state(state, &cached);
2468                 }
2469                 spin_unlock(&tree->lock);
2470
2471                 mirror = (int)(unsigned long)bio->bi_bdev;
2472                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2473                         ret = tree->ops->readpage_end_io_hook(page, start, end,
2474                                                               state, mirror);
2475                         if (ret)
2476                                 uptodate = 0;
2477                         else
2478                                 clean_io_failure(start, page);
2479                 }
2480
2481                 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2482                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2483                         if (!ret && !err &&
2484                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2485                                 uptodate = 1;
2486                 } else if (!uptodate) {
2487                         /*
2488                          * The generic bio_readpage_error handles errors the
2489                          * following way: If possible, new read requests are
2490                          * created and submitted and will end up in
2491                          * end_bio_extent_readpage as well (if we're lucky, not
2492                          * in the !uptodate case). In that case it returns 0 and
2493                          * we just go on with the next page in our bio. If it
2494                          * can't handle the error it will return -EIO and we
2495                          * remain responsible for that page.
2496                          */
2497                         ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2498                         if (ret == 0) {
2499                                 uptodate =
2500                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2501                                 if (err)
2502                                         uptodate = 0;
2503                                 uncache_state(&cached);
2504                                 continue;
2505                         }
2506                 }
2507
2508                 if (uptodate && tree->track_uptodate) {
2509                         set_extent_uptodate(tree, start, end, &cached,
2510                                             GFP_ATOMIC);
2511                 }
2512                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2513
2514                 if (whole_page) {
2515                         if (uptodate) {
2516                                 SetPageUptodate(page);
2517                         } else {
2518                                 ClearPageUptodate(page);
2519                                 SetPageError(page);
2520                         }
2521                         unlock_page(page);
2522                 } else {
2523                         if (uptodate) {
2524                                 check_page_uptodate(tree, page);
2525                         } else {
2526                                 ClearPageUptodate(page);
2527                                 SetPageError(page);
2528                         }
2529                         check_page_locked(tree, page);
2530                 }
2531         } while (bvec <= bvec_end);
2532
2533         bio_put(bio);
2534 }
2535
2536 struct bio *
2537 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2538                 gfp_t gfp_flags)
2539 {
2540         struct bio *bio;
2541
2542         bio = bio_alloc(gfp_flags, nr_vecs);
2543
2544         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2545                 while (!bio && (nr_vecs /= 2))
2546                         bio = bio_alloc(gfp_flags, nr_vecs);
2547         }
2548
2549         if (bio) {
2550                 bio->bi_size = 0;
2551                 bio->bi_bdev = bdev;
2552                 bio->bi_sector = first_sector;
2553         }
2554         return bio;
2555 }
2556
2557 static int __must_check submit_one_bio(int rw, struct bio *bio,
2558                                        int mirror_num, unsigned long bio_flags)
2559 {
2560         int ret = 0;
2561         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2562         struct page *page = bvec->bv_page;
2563         struct extent_io_tree *tree = bio->bi_private;
2564         u64 start;
2565
2566         start = page_offset(page) + bvec->bv_offset;
2567
2568         bio->bi_private = NULL;
2569
2570         bio_get(bio);
2571
2572         if (tree->ops && tree->ops->submit_bio_hook)
2573                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2574                                            mirror_num, bio_flags, start);
2575         else
2576                 btrfsic_submit_bio(rw, bio);
2577
2578         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2579                 ret = -EOPNOTSUPP;
2580         bio_put(bio);
2581         return ret;
2582 }
2583
2584 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2585                      unsigned long offset, size_t size, struct bio *bio,
2586                      unsigned long bio_flags)
2587 {
2588         int ret = 0;
2589         if (tree->ops && tree->ops->merge_bio_hook)
2590                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2591                                                 bio_flags);
2592         BUG_ON(ret < 0);
2593         return ret;
2594
2595 }
2596
2597 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2598                               struct page *page, sector_t sector,
2599                               size_t size, unsigned long offset,
2600                               struct block_device *bdev,
2601                               struct bio **bio_ret,
2602                               unsigned long max_pages,
2603                               bio_end_io_t end_io_func,
2604                               int mirror_num,
2605                               unsigned long prev_bio_flags,
2606                               unsigned long bio_flags)
2607 {
2608         int ret = 0;
2609         struct bio *bio;
2610         int nr;
2611         int contig = 0;
2612         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2613         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2614         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2615
2616         if (bio_ret && *bio_ret) {
2617                 bio = *bio_ret;
2618                 if (old_compressed)
2619                         contig = bio->bi_sector == sector;
2620                 else
2621                         contig = bio->bi_sector + (bio->bi_size >> 9) ==
2622                                 sector;
2623
2624                 if (prev_bio_flags != bio_flags || !contig ||
2625                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2626                     bio_add_page(bio, page, page_size, offset) < page_size) {
2627                         ret = submit_one_bio(rw, bio, mirror_num,
2628                                              prev_bio_flags);
2629                         if (ret < 0)
2630                                 return ret;
2631                         bio = NULL;
2632                 } else {
2633                         return 0;
2634                 }
2635         }
2636         if (this_compressed)
2637                 nr = BIO_MAX_PAGES;
2638         else
2639                 nr = bio_get_nr_vecs(bdev);
2640
2641         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2642         if (!bio)
2643                 return -ENOMEM;
2644
2645         bio_add_page(bio, page, page_size, offset);
2646         bio->bi_end_io = end_io_func;
2647         bio->bi_private = tree;
2648
2649         if (bio_ret)
2650                 *bio_ret = bio;
2651         else
2652                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2653
2654         return ret;
2655 }
2656
2657 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2658 {
2659         if (!PagePrivate(page)) {
2660                 SetPagePrivate(page);
2661                 page_cache_get(page);
2662                 set_page_private(page, (unsigned long)eb);
2663         } else {
2664                 WARN_ON(page->private != (unsigned long)eb);
2665         }
2666 }
2667
2668 void set_page_extent_mapped(struct page *page)
2669 {
2670         if (!PagePrivate(page)) {
2671                 SetPagePrivate(page);
2672                 page_cache_get(page);
2673                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2674         }
2675 }
2676
2677 /*
2678  * basic readpage implementation.  Locked extent state structs are inserted
2679  * into the tree that are removed when the IO is done (by the end_io
2680  * handlers)
2681  * XXX JDM: This needs looking at to ensure proper page locking
2682  */
2683 static int __extent_read_full_page(struct extent_io_tree *tree,
2684                                    struct page *page,
2685                                    get_extent_t *get_extent,
2686                                    struct bio **bio, int mirror_num,
2687                                    unsigned long *bio_flags)
2688 {
2689         struct inode *inode = page->mapping->host;
2690         u64 start = page_offset(page);
2691         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2692         u64 end;
2693         u64 cur = start;
2694         u64 extent_offset;
2695         u64 last_byte = i_size_read(inode);
2696         u64 block_start;
2697         u64 cur_end;
2698         sector_t sector;
2699         struct extent_map *em;
2700         struct block_device *bdev;
2701         struct btrfs_ordered_extent *ordered;
2702         int ret;
2703         int nr = 0;
2704         size_t pg_offset = 0;
2705         size_t iosize;
2706         size_t disk_io_size;
2707         size_t blocksize = inode->i_sb->s_blocksize;
2708         unsigned long this_bio_flag = 0;
2709
2710         set_page_extent_mapped(page);
2711
2712         if (!PageUptodate(page)) {
2713                 if (cleancache_get_page(page) == 0) {
2714                         BUG_ON(blocksize != PAGE_SIZE);
2715                         goto out;
2716                 }
2717         }
2718
2719         end = page_end;
2720         while (1) {
2721                 lock_extent(tree, start, end);
2722                 ordered = btrfs_lookup_ordered_extent(inode, start);
2723                 if (!ordered)
2724                         break;
2725                 unlock_extent(tree, start, end);
2726                 btrfs_start_ordered_extent(inode, ordered, 1);
2727                 btrfs_put_ordered_extent(ordered);
2728         }
2729
2730         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2731                 char *userpage;
2732                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2733
2734                 if (zero_offset) {
2735                         iosize = PAGE_CACHE_SIZE - zero_offset;
2736                         userpage = kmap_atomic(page);
2737                         memset(userpage + zero_offset, 0, iosize);
2738                         flush_dcache_page(page);
2739                         kunmap_atomic(userpage);
2740                 }
2741         }
2742         while (cur <= end) {
2743                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2744
2745                 if (cur >= last_byte) {
2746                         char *userpage;
2747                         struct extent_state *cached = NULL;
2748
2749                         iosize = PAGE_CACHE_SIZE - pg_offset;
2750                         userpage = kmap_atomic(page);
2751                         memset(userpage + pg_offset, 0, iosize);
2752                         flush_dcache_page(page);
2753                         kunmap_atomic(userpage);
2754                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2755                                             &cached, GFP_NOFS);
2756                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2757                                              &cached, GFP_NOFS);
2758                         break;
2759                 }
2760                 em = get_extent(inode, page, pg_offset, cur,
2761                                 end - cur + 1, 0);
2762                 if (IS_ERR_OR_NULL(em)) {
2763                         SetPageError(page);
2764                         unlock_extent(tree, cur, end);
2765                         break;
2766                 }
2767                 extent_offset = cur - em->start;
2768                 BUG_ON(extent_map_end(em) <= cur);
2769                 BUG_ON(end < cur);
2770
2771                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2772                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2773                         extent_set_compress_type(&this_bio_flag,
2774                                                  em->compress_type);
2775                 }
2776
2777                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2778                 cur_end = min(extent_map_end(em) - 1, end);
2779                 iosize = ALIGN(iosize, blocksize);
2780                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2781                         disk_io_size = em->block_len;
2782                         sector = em->block_start >> 9;
2783                 } else {
2784                         sector = (em->block_start + extent_offset) >> 9;
2785                         disk_io_size = iosize;
2786                 }
2787                 bdev = em->bdev;
2788                 block_start = em->block_start;
2789                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2790                         block_start = EXTENT_MAP_HOLE;
2791                 free_extent_map(em);
2792                 em = NULL;
2793
2794                 /* we've found a hole, just zero and go on */
2795                 if (block_start == EXTENT_MAP_HOLE) {
2796                         char *userpage;
2797                         struct extent_state *cached = NULL;
2798
2799                         userpage = kmap_atomic(page);
2800                         memset(userpage + pg_offset, 0, iosize);
2801                         flush_dcache_page(page);
2802                         kunmap_atomic(userpage);
2803
2804                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2805                                             &cached, GFP_NOFS);
2806                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2807                                              &cached, GFP_NOFS);
2808                         cur = cur + iosize;
2809                         pg_offset += iosize;
2810                         continue;
2811                 }
2812                 /* the get_extent function already copied into the page */
2813                 if (test_range_bit(tree, cur, cur_end,
2814                                    EXTENT_UPTODATE, 1, NULL)) {
2815                         check_page_uptodate(tree, page);
2816                         unlock_extent(tree, cur, cur + iosize - 1);
2817                         cur = cur + iosize;
2818                         pg_offset += iosize;
2819                         continue;
2820                 }
2821                 /* we have an inline extent but it didn't get marked up
2822                  * to date.  Error out
2823                  */
2824                 if (block_start == EXTENT_MAP_INLINE) {
2825                         SetPageError(page);
2826                         unlock_extent(tree, cur, cur + iosize - 1);
2827                         cur = cur + iosize;
2828                         pg_offset += iosize;
2829                         continue;
2830                 }
2831
2832                 pnr -= page->index;
2833                 ret = submit_extent_page(READ, tree, page,
2834                                          sector, disk_io_size, pg_offset,
2835                                          bdev, bio, pnr,
2836                                          end_bio_extent_readpage, mirror_num,
2837                                          *bio_flags,
2838                                          this_bio_flag);
2839                 if (!ret) {
2840                         nr++;
2841                         *bio_flags = this_bio_flag;
2842                 } else {
2843                         SetPageError(page);
2844                         unlock_extent(tree, cur, cur + iosize - 1);
2845                 }
2846                 cur = cur + iosize;
2847                 pg_offset += iosize;
2848         }
2849 out:
2850         if (!nr) {
2851                 if (!PageError(page))
2852                         SetPageUptodate(page);
2853                 unlock_page(page);
2854         }
2855         return 0;
2856 }
2857
2858 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2859                             get_extent_t *get_extent, int mirror_num)
2860 {
2861         struct bio *bio = NULL;
2862         unsigned long bio_flags = 0;
2863         int ret;
2864
2865         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2866                                       &bio_flags);
2867         if (bio)
2868                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2869         return ret;
2870 }
2871
2872 static noinline void update_nr_written(struct page *page,
2873                                       struct writeback_control *wbc,
2874                                       unsigned long nr_written)
2875 {
2876         wbc->nr_to_write -= nr_written;
2877         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2878             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2879                 page->mapping->writeback_index = page->index + nr_written;
2880 }
2881
2882 /*
2883  * the writepage semantics are similar to regular writepage.  extent
2884  * records are inserted to lock ranges in the tree, and as dirty areas
2885  * are found, they are marked writeback.  Then the lock bits are removed
2886  * and the end_io handler clears the writeback ranges
2887  */
2888 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2889                               void *data)
2890 {
2891         struct inode *inode = page->mapping->host;
2892         struct extent_page_data *epd = data;
2893         struct extent_io_tree *tree = epd->tree;
2894         u64 start = page_offset(page);
2895         u64 delalloc_start;
2896         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2897         u64 end;
2898         u64 cur = start;
2899         u64 extent_offset;
2900         u64 last_byte = i_size_read(inode);
2901         u64 block_start;
2902         u64 iosize;
2903         sector_t sector;
2904         struct extent_state *cached_state = NULL;
2905         struct extent_map *em;
2906         struct block_device *bdev;
2907         int ret;
2908         int nr = 0;
2909         size_t pg_offset = 0;
2910         size_t blocksize;
2911         loff_t i_size = i_size_read(inode);
2912         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2913         u64 nr_delalloc;
2914         u64 delalloc_end;
2915         int page_started;
2916         int compressed;
2917         int write_flags;
2918         unsigned long nr_written = 0;
2919         bool fill_delalloc = true;
2920
2921         if (wbc->sync_mode == WB_SYNC_ALL)
2922                 write_flags = WRITE_SYNC;
2923         else
2924                 write_flags = WRITE;
2925
2926         trace___extent_writepage(page, inode, wbc);
2927
2928         WARN_ON(!PageLocked(page));
2929
2930         ClearPageError(page);
2931
2932         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2933         if (page->index > end_index ||
2934            (page->index == end_index && !pg_offset)) {
2935                 page->mapping->a_ops->invalidatepage(page, 0);
2936                 unlock_page(page);
2937                 return 0;
2938         }
2939
2940         if (page->index == end_index) {
2941                 char *userpage;
2942
2943                 userpage = kmap_atomic(page);
2944                 memset(userpage + pg_offset, 0,
2945                        PAGE_CACHE_SIZE - pg_offset);
2946                 kunmap_atomic(userpage);
2947                 flush_dcache_page(page);
2948         }
2949         pg_offset = 0;
2950
2951         set_page_extent_mapped(page);
2952
2953         if (!tree->ops || !tree->ops->fill_delalloc)
2954                 fill_delalloc = false;
2955
2956         delalloc_start = start;
2957         delalloc_end = 0;
2958         page_started = 0;
2959         if (!epd->extent_locked && fill_delalloc) {
2960                 u64 delalloc_to_write = 0;
2961                 /*
2962                  * make sure the wbc mapping index is at least updated
2963                  * to this page.
2964                  */
2965                 update_nr_written(page, wbc, 0);
2966
2967                 while (delalloc_end < page_end) {
2968                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2969                                                        page,
2970                                                        &delalloc_start,
2971                                                        &delalloc_end,
2972                                                        128 * 1024 * 1024);
2973                         if (nr_delalloc == 0) {
2974                                 delalloc_start = delalloc_end + 1;
2975                                 continue;
2976                         }
2977                         ret = tree->ops->fill_delalloc(inode, page,
2978                                                        delalloc_start,
2979                                                        delalloc_end,
2980                                                        &page_started,
2981                                                        &nr_written);
2982                         /* File system has been set read-only */
2983                         if (ret) {
2984                                 SetPageError(page);
2985                                 goto done;
2986                         }
2987                         /*
2988                          * delalloc_end is already one less than the total
2989                          * length, so we don't subtract one from
2990                          * PAGE_CACHE_SIZE
2991                          */
2992                         delalloc_to_write += (delalloc_end - delalloc_start +
2993                                               PAGE_CACHE_SIZE) >>
2994                                               PAGE_CACHE_SHIFT;
2995                         delalloc_start = delalloc_end + 1;
2996                 }
2997                 if (wbc->nr_to_write < delalloc_to_write) {
2998                         int thresh = 8192;
2999
3000                         if (delalloc_to_write < thresh * 2)
3001                                 thresh = delalloc_to_write;
3002                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
3003                                                  thresh);
3004                 }
3005
3006                 /* did the fill delalloc function already unlock and start
3007                  * the IO?
3008                  */
3009                 if (page_started) {
3010                         ret = 0;
3011                         /*
3012                          * we've unlocked the page, so we can't update
3013                          * the mapping's writeback index, just update
3014                          * nr_to_write.
3015                          */
3016                         wbc->nr_to_write -= nr_written;
3017                         goto done_unlocked;
3018                 }
3019         }
3020         if (tree->ops && tree->ops->writepage_start_hook) {
3021                 ret = tree->ops->writepage_start_hook(page, start,
3022                                                       page_end);
3023                 if (ret) {
3024                         /* Fixup worker will requeue */
3025                         if (ret == -EBUSY)
3026                                 wbc->pages_skipped++;
3027                         else
3028                                 redirty_page_for_writepage(wbc, page);
3029                         update_nr_written(page, wbc, nr_written);
3030                         unlock_page(page);
3031                         ret = 0;
3032                         goto done_unlocked;
3033                 }
3034         }
3035
3036         /*
3037          * we don't want to touch the inode after unlocking the page,
3038          * so we update the mapping writeback index now
3039          */
3040         update_nr_written(page, wbc, nr_written + 1);
3041
3042         end = page_end;
3043         if (last_byte <= start) {
3044                 if (tree->ops && tree->ops->writepage_end_io_hook)
3045                         tree->ops->writepage_end_io_hook(page, start,
3046                                                          page_end, NULL, 1);
3047                 goto done;
3048         }
3049
3050         blocksize = inode->i_sb->s_blocksize;
3051
3052         while (cur <= end) {
3053                 if (cur >= last_byte) {
3054                         if (tree->ops && tree->ops->writepage_end_io_hook)
3055                                 tree->ops->writepage_end_io_hook(page, cur,
3056                                                          page_end, NULL, 1);
3057                         break;
3058                 }
3059                 em = epd->get_extent(inode, page, pg_offset, cur,
3060                                      end - cur + 1, 1);
3061                 if (IS_ERR_OR_NULL(em)) {
3062                         SetPageError(page);
3063                         break;
3064                 }
3065
3066                 extent_offset = cur - em->start;
3067                 BUG_ON(extent_map_end(em) <= cur);
3068                 BUG_ON(end < cur);
3069                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3070                 iosize = ALIGN(iosize, blocksize);
3071                 sector = (em->block_start + extent_offset) >> 9;
3072                 bdev = em->bdev;
3073                 block_start = em->block_start;
3074                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3075                 free_extent_map(em);
3076                 em = NULL;
3077
3078                 /*
3079                  * compressed and inline extents are written through other
3080                  * paths in the FS
3081                  */
3082                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3083                     block_start == EXTENT_MAP_INLINE) {
3084                         /*
3085                          * end_io notification does not happen here for
3086                          * compressed extents
3087                          */
3088                         if (!compressed && tree->ops &&
3089                             tree->ops->writepage_end_io_hook)
3090                                 tree->ops->writepage_end_io_hook(page, cur,
3091                                                          cur + iosize - 1,
3092                                                          NULL, 1);
3093                         else if (compressed) {
3094                                 /* we don't want to end_page_writeback on
3095                                  * a compressed extent.  this happens
3096                                  * elsewhere
3097                                  */
3098                                 nr++;
3099                         }
3100
3101                         cur += iosize;
3102                         pg_offset += iosize;
3103                         continue;
3104                 }
3105                 /* leave this out until we have a page_mkwrite call */
3106                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3107                                    EXTENT_DIRTY, 0, NULL)) {
3108                         cur = cur + iosize;
3109                         pg_offset += iosize;
3110                         continue;
3111                 }
3112
3113                 if (tree->ops && tree->ops->writepage_io_hook) {
3114                         ret = tree->ops->writepage_io_hook(page, cur,
3115                                                 cur + iosize - 1);
3116                 } else {
3117                         ret = 0;
3118                 }
3119                 if (ret) {
3120                         SetPageError(page);
3121                 } else {
3122                         unsigned long max_nr = end_index + 1;
3123
3124                         set_range_writeback(tree, cur, cur + iosize - 1);
3125                         if (!PageWriteback(page)) {
3126                                 printk(KERN_ERR "btrfs warning page %lu not "
3127                                        "writeback, cur %llu end %llu\n",
3128                                        page->index, (unsigned long long)cur,
3129                                        (unsigned long long)end);
3130                         }
3131
3132                         ret = submit_extent_page(write_flags, tree, page,
3133                                                  sector, iosize, pg_offset,
3134                                                  bdev, &epd->bio, max_nr,
3135                                                  end_bio_extent_writepage,
3136                                                  0, 0, 0);
3137                         if (ret)
3138                                 SetPageError(page);
3139                 }
3140                 cur = cur + iosize;
3141                 pg_offset += iosize;
3142                 nr++;
3143         }
3144 done:
3145         if (nr == 0) {
3146                 /* make sure the mapping tag for page dirty gets cleared */
3147                 set_page_writeback(page);
3148                 end_page_writeback(page);
3149         }
3150         unlock_page(page);
3151
3152 done_unlocked:
3153
3154         /* drop our reference on any cached states */
3155         free_extent_state(cached_state);
3156         return 0;
3157 }
3158
3159 static int eb_wait(void *word)
3160 {
3161         io_schedule();
3162         return 0;
3163 }
3164
3165 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3166 {
3167         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3168                     TASK_UNINTERRUPTIBLE);
3169 }
3170
3171 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3172                                      struct btrfs_fs_info *fs_info,
3173                                      struct extent_page_data *epd)
3174 {
3175         unsigned long i, num_pages;
3176         int flush = 0;
3177         int ret = 0;
3178
3179         if (!btrfs_try_tree_write_lock(eb)) {
3180                 flush = 1;
3181                 flush_write_bio(epd);
3182                 btrfs_tree_lock(eb);
3183         }
3184
3185         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3186                 btrfs_tree_unlock(eb);
3187                 if (!epd->sync_io)
3188                         return 0;
3189                 if (!flush) {
3190                         flush_write_bio(epd);
3191                         flush = 1;
3192                 }
3193                 while (1) {
3194                         wait_on_extent_buffer_writeback(eb);
3195                         btrfs_tree_lock(eb);
3196                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3197                                 break;
3198                         btrfs_tree_unlock(eb);
3199                 }
3200         }
3201
3202         /*
3203          * We need to do this to prevent races in people who check if the eb is
3204          * under IO since we can end up having no IO bits set for a short period
3205          * of time.
3206          */
3207         spin_lock(&eb->refs_lock);
3208         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3209                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3210                 spin_unlock(&eb->refs_lock);
3211                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3212                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3213                                      -eb->len,
3214                                      fs_info->dirty_metadata_batch);
3215                 ret = 1;
3216         } else {
3217                 spin_unlock(&eb->refs_lock);
3218         }
3219
3220         btrfs_tree_unlock(eb);
3221
3222         if (!ret)
3223                 return ret;
3224
3225         num_pages = num_extent_pages(eb->start, eb->len);
3226         for (i = 0; i < num_pages; i++) {
3227                 struct page *p = extent_buffer_page(eb, i);
3228
3229                 if (!trylock_page(p)) {
3230                         if (!flush) {
3231                                 flush_write_bio(epd);
3232                                 flush = 1;
3233                         }
3234                         lock_page(p);
3235                 }
3236         }
3237
3238         return ret;
3239 }
3240
3241 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3242 {
3243         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3244         smp_mb__after_clear_bit();
3245         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3246 }
3247
3248 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3249 {
3250         int uptodate = err == 0;
3251         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3252         struct extent_buffer *eb;
3253         int done;
3254
3255         do {
3256                 struct page *page = bvec->bv_page;
3257
3258                 bvec--;
3259                 eb = (struct extent_buffer *)page->private;
3260                 BUG_ON(!eb);
3261                 done = atomic_dec_and_test(&eb->io_pages);
3262
3263                 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3264                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3265                         ClearPageUptodate(page);
3266                         SetPageError(page);
3267                 }
3268
3269                 end_page_writeback(page);
3270
3271                 if (!done)
3272                         continue;
3273
3274                 end_extent_buffer_writeback(eb);
3275         } while (bvec >= bio->bi_io_vec);
3276
3277         bio_put(bio);
3278
3279 }
3280
3281 static int write_one_eb(struct extent_buffer *eb,
3282                         struct btrfs_fs_info *fs_info,
3283                         struct writeback_control *wbc,
3284                         struct extent_page_data *epd)
3285 {
3286         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3287         u64 offset = eb->start;
3288         unsigned long i, num_pages;
3289         unsigned long bio_flags = 0;
3290         int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3291         int ret = 0;
3292
3293         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3294         num_pages = num_extent_pages(eb->start, eb->len);
3295         atomic_set(&eb->io_pages, num_pages);
3296         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3297                 bio_flags = EXTENT_BIO_TREE_LOG;
3298
3299         for (i = 0; i < num_pages; i++) {
3300                 struct page *p = extent_buffer_page(eb, i);
3301
3302                 clear_page_dirty_for_io(p);
3303                 set_page_writeback(p);
3304                 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3305                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3306                                          -1, end_bio_extent_buffer_writepage,
3307                                          0, epd->bio_flags, bio_flags);
3308                 epd->bio_flags = bio_flags;
3309                 if (ret) {
3310                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3311                         SetPageError(p);
3312                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3313                                 end_extent_buffer_writeback(eb);
3314                         ret = -EIO;
3315                         break;
3316                 }
3317                 offset += PAGE_CACHE_SIZE;
3318                 update_nr_written(p, wbc, 1);
3319                 unlock_page(p);
3320         }
3321
3322         if (unlikely(ret)) {
3323                 for (; i < num_pages; i++) {
3324                         struct page *p = extent_buffer_page(eb, i);
3325                         unlock_page(p);
3326                 }
3327         }
3328
3329         return ret;
3330 }
3331
3332 int btree_write_cache_pages(struct address_space *mapping,
3333                                    struct writeback_control *wbc)
3334 {
3335         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3336         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3337         struct extent_buffer *eb, *prev_eb = NULL;
3338         struct extent_page_data epd = {
3339                 .bio = NULL,
3340                 .tree = tree,
3341                 .extent_locked = 0,
3342                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3343                 .bio_flags = 0,
3344         };
3345         int ret = 0;
3346         int done = 0;
3347         int nr_to_write_done = 0;
3348         struct pagevec pvec;
3349         int nr_pages;
3350         pgoff_t index;
3351         pgoff_t end;            /* Inclusive */
3352         int scanned = 0;
3353         int tag;
3354
3355         pagevec_init(&pvec, 0);
3356         if (wbc->range_cyclic) {
3357                 index = mapping->writeback_index; /* Start from prev offset */
3358                 end = -1;
3359         } else {
3360                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3361                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3362                 scanned = 1;
3363         }
3364         if (wbc->sync_mode == WB_SYNC_ALL)
3365                 tag = PAGECACHE_TAG_TOWRITE;
3366         else
3367                 tag = PAGECACHE_TAG_DIRTY;
3368 retry:
3369         if (wbc->sync_mode == WB_SYNC_ALL)
3370                 tag_pages_for_writeback(mapping, index, end);
3371         while (!done && !nr_to_write_done && (index <= end) &&
3372                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3373                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3374                 unsigned i;
3375
3376                 scanned = 1;
3377                 for (i = 0; i < nr_pages; i++) {
3378                         struct page *page = pvec.pages[i];
3379
3380                         if (!PagePrivate(page))
3381                                 continue;
3382
3383                         if (!wbc->range_cyclic && page->index > end) {
3384                                 done = 1;
3385                                 break;
3386                         }
3387
3388                         spin_lock(&mapping->private_lock);
3389                         if (!PagePrivate(page)) {
3390                                 spin_unlock(&mapping->private_lock);
3391                                 continue;
3392                         }
3393
3394                         eb = (struct extent_buffer *)page->private;
3395
3396                         /*
3397                          * Shouldn't happen and normally this would be a BUG_ON
3398                          * but no sense in crashing the users box for something
3399                          * we can survive anyway.
3400                          */
3401                         if (!eb) {
3402                                 spin_unlock(&mapping->private_lock);
3403                                 WARN_ON(1);
3404                                 continue;
3405                         }
3406
3407                         if (eb == prev_eb) {
3408                                 spin_unlock(&mapping->private_lock);
3409                                 continue;
3410                         }
3411
3412                         ret = atomic_inc_not_zero(&eb->refs);
3413                         spin_unlock(&mapping->private_lock);
3414                         if (!ret)
3415                                 continue;
3416
3417                         prev_eb = eb;
3418                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3419                         if (!ret) {
3420                                 free_extent_buffer(eb);
3421                                 continue;
3422                         }
3423
3424                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3425                         if (ret) {
3426                                 done = 1;
3427                                 free_extent_buffer(eb);
3428                                 break;
3429                         }
3430                         free_extent_buffer(eb);
3431
3432                         /*
3433                          * the filesystem may choose to bump up nr_to_write.
3434                          * We have to make sure to honor the new nr_to_write
3435                          * at any time
3436                          */
3437                         nr_to_write_done = wbc->nr_to_write <= 0;
3438                 }
3439                 pagevec_release(&pvec);
3440                 cond_resched();
3441         }
3442         if (!scanned && !done) {
3443                 /*
3444                  * We hit the last page and there is more work to be done: wrap
3445                  * back to the start of the file
3446                  */
3447                 scanned = 1;
3448                 index = 0;
3449                 goto retry;
3450         }
3451         flush_write_bio(&epd);
3452         return ret;
3453 }
3454
3455 /**
3456  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3457  * @mapping: address space structure to write
3458  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3459  * @writepage: function called for each page
3460  * @data: data passed to writepage function
3461  *
3462  * If a page is already under I/O, write_cache_pages() skips it, even
3463  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3464  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3465  * and msync() need to guarantee that all the data which was dirty at the time
3466  * the call was made get new I/O started against them.  If wbc->sync_mode is
3467  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3468  * existing IO to complete.
3469  */
3470 static int extent_write_cache_pages(struct extent_io_tree *tree,
3471                              struct address_space *mapping,
3472                              struct writeback_control *wbc,
3473                              writepage_t writepage, void *data,
3474                              void (*flush_fn)(void *))
3475 {
3476         struct inode *inode = mapping->host;
3477         int ret = 0;
3478         int done = 0;
3479         int nr_to_write_done = 0;
3480         struct pagevec pvec;
3481         int nr_pages;
3482         pgoff_t index;
3483         pgoff_t end;            /* Inclusive */
3484         int scanned = 0;
3485         int tag;
3486
3487         /*
3488          * We have to hold onto the inode so that ordered extents can do their
3489          * work when the IO finishes.  The alternative to this is failing to add
3490          * an ordered extent if the igrab() fails there and that is a huge pain
3491          * to deal with, so instead just hold onto the inode throughout the
3492          * writepages operation.  If it fails here we are freeing up the inode
3493          * anyway and we'd rather not waste our time writing out stuff that is
3494          * going to be truncated anyway.
3495          */
3496         if (!igrab(inode))
3497                 return 0;
3498
3499         pagevec_init(&pvec, 0);
3500         if (wbc->range_cyclic) {
3501                 index = mapping->writeback_index; /* Start from prev offset */
3502                 end = -1;
3503         } else {
3504                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3505                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3506                 scanned = 1;
3507         }
3508         if (wbc->sync_mode == WB_SYNC_ALL)
3509                 tag = PAGECACHE_TAG_TOWRITE;
3510         else
3511                 tag = PAGECACHE_TAG_DIRTY;
3512 retry:
3513         if (wbc->sync_mode == WB_SYNC_ALL)
3514                 tag_pages_for_writeback(mapping, index, end);
3515         while (!done && !nr_to_write_done && (index <= end) &&
3516                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3517                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3518                 unsigned i;
3519
3520                 scanned = 1;
3521                 for (i = 0; i < nr_pages; i++) {
3522                         struct page *page = pvec.pages[i];
3523
3524                         /*
3525                          * At this point we hold neither mapping->tree_lock nor
3526                          * lock on the page itself: the page may be truncated or
3527                          * invalidated (changing page->mapping to NULL), or even
3528                          * swizzled back from swapper_space to tmpfs file
3529                          * mapping
3530                          */
3531                         if (!trylock_page(page)) {
3532                                 flush_fn(data);
3533                                 lock_page(page);
3534                         }
3535
3536                         if (unlikely(page->mapping != mapping)) {
3537                                 unlock_page(page);
3538                                 continue;
3539                         }
3540
3541                         if (!wbc->range_cyclic && page->index > end) {
3542                                 done = 1;
3543                                 unlock_page(page);
3544                                 continue;
3545                         }
3546
3547                         if (wbc->sync_mode != WB_SYNC_NONE) {
3548                                 if (PageWriteback(page))
3549                                         flush_fn(data);
3550                                 wait_on_page_writeback(page);
3551                         }
3552
3553                         if (PageWriteback(page) ||
3554                             !clear_page_dirty_for_io(page)) {
3555                                 unlock_page(page);
3556                                 continue;
3557                         }
3558
3559                         ret = (*writepage)(page, wbc, data);
3560
3561                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3562                                 unlock_page(page);
3563                                 ret = 0;
3564                         }
3565                         if (ret)
3566                                 done = 1;
3567
3568                         /*
3569                          * the filesystem may choose to bump up nr_to_write.
3570                          * We have to make sure to honor the new nr_to_write
3571                          * at any time
3572                          */
3573                         nr_to_write_done = wbc->nr_to_write <= 0;
3574                 }
3575                 pagevec_release(&pvec);
3576                 cond_resched();
3577         }
3578         if (!scanned && !done) {
3579                 /*
3580                  * We hit the last page and there is more work to be done: wrap
3581                  * back to the start of the file
3582                  */
3583                 scanned = 1;
3584                 index = 0;
3585                 goto retry;
3586         }
3587         btrfs_add_delayed_iput(inode);
3588         return ret;
3589 }
3590
3591 static void flush_epd_write_bio(struct extent_page_data *epd)
3592 {
3593         if (epd->bio) {
3594                 int rw = WRITE;
3595                 int ret;
3596
3597                 if (epd->sync_io)
3598                         rw = WRITE_SYNC;
3599
3600                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3601                 BUG_ON(ret < 0); /* -ENOMEM */
3602                 epd->bio = NULL;
3603         }
3604 }
3605
3606 static noinline void flush_write_bio(void *data)
3607 {
3608         struct extent_page_data *epd = data;
3609         flush_epd_write_bio(epd);
3610 }
3611
3612 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3613                           get_extent_t *get_extent,
3614                           struct writeback_control *wbc)
3615 {
3616         int ret;
3617         struct extent_page_data epd = {
3618                 .bio = NULL,
3619                 .tree = tree,
3620                 .get_extent = get_extent,
3621                 .extent_locked = 0,
3622                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3623                 .bio_flags = 0,
3624         };
3625
3626         ret = __extent_writepage(page, wbc, &epd);
3627
3628         flush_epd_write_bio(&epd);
3629         return ret;
3630 }
3631
3632 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3633                               u64 start, u64 end, get_extent_t *get_extent,
3634                               int mode)
3635 {
3636         int ret = 0;
3637         struct address_space *mapping = inode->i_mapping;
3638         struct page *page;
3639         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3640                 PAGE_CACHE_SHIFT;
3641
3642         struct extent_page_data epd = {
3643                 .bio = NULL,
3644                 .tree = tree,
3645                 .get_extent = get_extent,
3646                 .extent_locked = 1,
3647                 .sync_io = mode == WB_SYNC_ALL,
3648                 .bio_flags = 0,
3649         };
3650         struct writeback_control wbc_writepages = {
3651                 .sync_mode      = mode,
3652                 .nr_to_write    = nr_pages * 2,
3653                 .range_start    = start,
3654                 .range_end      = end + 1,
3655         };
3656
3657         while (start <= end) {
3658                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3659                 if (clear_page_dirty_for_io(page))
3660                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3661                 else {
3662                         if (tree->ops && tree->ops->writepage_end_io_hook)
3663                                 tree->ops->writepage_end_io_hook(page, start,
3664                                                  start + PAGE_CACHE_SIZE - 1,
3665                                                  NULL, 1);
3666                         unlock_page(page);
3667                 }
3668                 page_cache_release(page);
3669                 start += PAGE_CACHE_SIZE;
3670         }
3671
3672         flush_epd_write_bio(&epd);
3673         return ret;
3674 }
3675
3676 int extent_writepages(struct extent_io_tree *tree,
3677                       struct address_space *mapping,
3678                       get_extent_t *get_extent,
3679                       struct writeback_control *wbc)
3680 {
3681         int ret = 0;
3682         struct extent_page_data epd = {
3683                 .bio = NULL,
3684                 .tree = tree,
3685                 .get_extent = get_extent,
3686                 .extent_locked = 0,
3687                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3688                 .bio_flags = 0,
3689         };
3690
3691         ret = extent_write_cache_pages(tree, mapping, wbc,
3692                                        __extent_writepage, &epd,
3693                                        flush_write_bio);
3694         flush_epd_write_bio(&epd);
3695         return ret;
3696 }
3697
3698 int extent_readpages(struct extent_io_tree *tree,
3699                      struct address_space *mapping,
3700                      struct list_head *pages, unsigned nr_pages,
3701                      get_extent_t get_extent)
3702 {
3703         struct bio *bio = NULL;
3704         unsigned page_idx;
3705         unsigned long bio_flags = 0;
3706         struct page *pagepool[16];
3707         struct page *page;
3708         int i = 0;
3709         int nr = 0;
3710
3711         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3712                 page = list_entry(pages->prev, struct page, lru);
3713
3714                 prefetchw(&page->flags);
3715                 list_del(&page->lru);
3716                 if (add_to_page_cache_lru(page, mapping,
3717                                         page->index, GFP_NOFS)) {
3718                         page_cache_release(page);
3719                         continue;
3720                 }
3721
3722                 pagepool[nr++] = page;
3723                 if (nr < ARRAY_SIZE(pagepool))
3724                         continue;
3725                 for (i = 0; i < nr; i++) {
3726                         __extent_read_full_page(tree, pagepool[i], get_extent,
3727                                         &bio, 0, &bio_flags);
3728                         page_cache_release(pagepool[i]);
3729                 }
3730                 nr = 0;
3731         }
3732         for (i = 0; i < nr; i++) {
3733                 __extent_read_full_page(tree, pagepool[i], get_extent,
3734                                         &bio, 0, &bio_flags);
3735                 page_cache_release(pagepool[i]);
3736         }
3737
3738         BUG_ON(!list_empty(pages));
3739         if (bio)
3740                 return submit_one_bio(READ, bio, 0, bio_flags);
3741         return 0;
3742 }
3743
3744 /*
3745  * basic invalidatepage code, this waits on any locked or writeback
3746  * ranges corresponding to the page, and then deletes any extent state
3747  * records from the tree
3748  */
3749 int extent_invalidatepage(struct extent_io_tree *tree,
3750                           struct page *page, unsigned long offset)
3751 {
3752         struct extent_state *cached_state = NULL;
3753         u64 start = page_offset(page);
3754         u64 end = start + PAGE_CACHE_SIZE - 1;
3755         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3756
3757         start += ALIGN(offset, blocksize);
3758         if (start > end)
3759                 return 0;
3760
3761         lock_extent_bits(tree, start, end, 0, &cached_state);
3762         wait_on_page_writeback(page);
3763         clear_extent_bit(tree, start, end,
3764                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3765                          EXTENT_DO_ACCOUNTING,
3766                          1, 1, &cached_state, GFP_NOFS);
3767         return 0;
3768 }
3769
3770 /*
3771  * a helper for releasepage, this tests for areas of the page that
3772  * are locked or under IO and drops the related state bits if it is safe
3773  * to drop the page.
3774  */
3775 int try_release_extent_state(struct extent_map_tree *map,
3776                              struct extent_io_tree *tree, struct page *page,
3777                              gfp_t mask)
3778 {
3779         u64 start = page_offset(page);
3780         u64 end = start + PAGE_CACHE_SIZE - 1;
3781         int ret = 1;
3782
3783         if (test_range_bit(tree, start, end,
3784                            EXTENT_IOBITS, 0, NULL))
3785                 ret = 0;
3786         else {
3787                 if ((mask & GFP_NOFS) == GFP_NOFS)
3788                         mask = GFP_NOFS;
3789                 /*
3790                  * at this point we can safely clear everything except the
3791                  * locked bit and the nodatasum bit
3792                  */
3793                 ret = clear_extent_bit(tree, start, end,
3794                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3795                                  0, 0, NULL, mask);
3796
3797                 /* if clear_extent_bit failed for enomem reasons,
3798                  * we can't allow the release to continue.
3799                  */
3800                 if (ret < 0)
3801                         ret = 0;
3802                 else
3803                         ret = 1;
3804         }
3805         return ret;
3806 }
3807
3808 /*
3809  * a helper for releasepage.  As long as there are no locked extents
3810  * in the range corresponding to the page, both state records and extent
3811  * map records are removed
3812  */
3813 int try_release_extent_mapping(struct extent_map_tree *map,
3814                                struct extent_io_tree *tree, struct page *page,
3815                                gfp_t mask)
3816 {
3817         struct extent_map *em;
3818         u64 start = page_offset(page);
3819         u64 end = start + PAGE_CACHE_SIZE - 1;
3820
3821         if ((mask & __GFP_WAIT) &&
3822             page->mapping->host->i_size > 16 * 1024 * 1024) {
3823                 u64 len;
3824                 while (start <= end) {
3825                         len = end - start + 1;
3826                         write_lock(&map->lock);
3827                         em = lookup_extent_mapping(map, start, len);
3828                         if (!em) {
3829                                 write_unlock(&map->lock);
3830                                 break;
3831                         }
3832                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3833                             em->start != start) {
3834                                 write_unlock(&map->lock);
3835                                 free_extent_map(em);
3836                                 break;
3837                         }
3838                         if (!test_range_bit(tree, em->start,
3839                                             extent_map_end(em) - 1,
3840                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
3841                                             0, NULL)) {
3842                                 remove_extent_mapping(map, em);
3843                                 /* once for the rb tree */
3844                                 free_extent_map(em);
3845                         }
3846                         start = extent_map_end(em);
3847                         write_unlock(&map->lock);
3848
3849                         /* once for us */
3850                         free_extent_map(em);
3851                 }
3852         }
3853         return try_release_extent_state(map, tree, page, mask);
3854 }
3855
3856 /*
3857  * helper function for fiemap, which doesn't want to see any holes.
3858  * This maps until we find something past 'last'
3859  */
3860 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3861                                                 u64 offset,
3862                                                 u64 last,
3863                                                 get_extent_t *get_extent)
3864 {
3865         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3866         struct extent_map *em;
3867         u64 len;
3868
3869         if (offset >= last)
3870                 return NULL;
3871
3872         while(1) {
3873                 len = last - offset;
3874                 if (len == 0)
3875                         break;
3876                 len = ALIGN(len, sectorsize);
3877                 em = get_extent(inode, NULL, 0, offset, len, 0);
3878                 if (IS_ERR_OR_NULL(em))
3879                         return em;
3880
3881                 /* if this isn't a hole return it */
3882                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3883                     em->block_start != EXTENT_MAP_HOLE) {
3884                         return em;
3885                 }
3886
3887                 /* this is a hole, advance to the next extent */
3888                 offset = extent_map_end(em);
3889                 free_extent_map(em);
3890                 if (offset >= last)
3891                         break;
3892         }
3893         return NULL;
3894 }
3895
3896 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3897                 __u64 start, __u64 len, get_extent_t *get_extent)
3898 {
3899         int ret = 0;
3900         u64 off = start;
3901         u64 max = start + len;
3902         u32 flags = 0;
3903         u32 found_type;
3904         u64 last;
3905         u64 last_for_get_extent = 0;
3906         u64 disko = 0;
3907         u64 isize = i_size_read(inode);
3908         struct btrfs_key found_key;
3909         struct extent_map *em = NULL;
3910         struct extent_state *cached_state = NULL;
3911         struct btrfs_path *path;
3912         struct btrfs_file_extent_item *item;
3913         int end = 0;
3914         u64 em_start = 0;
3915         u64 em_len = 0;
3916         u64 em_end = 0;
3917         unsigned long emflags;
3918
3919         if (len == 0)
3920                 return -EINVAL;
3921
3922         path = btrfs_alloc_path();
3923         if (!path)
3924                 return -ENOMEM;
3925         path->leave_spinning = 1;
3926
3927         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3928         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3929
3930         /*
3931          * lookup the last file extent.  We're not using i_size here
3932          * because there might be preallocation past i_size
3933          */
3934         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3935                                        path, btrfs_ino(inode), -1, 0);
3936         if (ret < 0) {
3937                 btrfs_free_path(path);
3938                 return ret;
3939         }
3940         WARN_ON(!ret);
3941         path->slots[0]--;
3942         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3943                               struct btrfs_file_extent_item);
3944         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3945         found_type = btrfs_key_type(&found_key);
3946
3947         /* No extents, but there might be delalloc bits */
3948         if (found_key.objectid != btrfs_ino(inode) ||
3949             found_type != BTRFS_EXTENT_DATA_KEY) {
3950                 /* have to trust i_size as the end */
3951                 last = (u64)-1;
3952                 last_for_get_extent = isize;
3953         } else {
3954                 /*
3955                  * remember the start of the last extent.  There are a
3956                  * bunch of different factors that go into the length of the
3957                  * extent, so its much less complex to remember where it started
3958                  */
3959                 last = found_key.offset;
3960                 last_for_get_extent = last + 1;
3961         }
3962         btrfs_free_path(path);
3963
3964         /*
3965          * we might have some extents allocated but more delalloc past those
3966          * extents.  so, we trust isize unless the start of the last extent is
3967          * beyond isize
3968          */
3969         if (last < isize) {
3970                 last = (u64)-1;
3971                 last_for_get_extent = isize;
3972         }
3973
3974         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3975                          &cached_state);
3976
3977         em = get_extent_skip_holes(inode, start, last_for_get_extent,
3978                                    get_extent);
3979         if (!em)
3980                 goto out;
3981         if (IS_ERR(em)) {
3982                 ret = PTR_ERR(em);
3983                 goto out;
3984         }
3985
3986         while (!end) {
3987                 u64 offset_in_extent;
3988
3989                 /* break if the extent we found is outside the range */
3990                 if (em->start >= max || extent_map_end(em) < off)
3991                         break;
3992
3993                 /*
3994                  * get_extent may return an extent that starts before our
3995                  * requested range.  We have to make sure the ranges
3996                  * we return to fiemap always move forward and don't
3997                  * overlap, so adjust the offsets here
3998                  */
3999                 em_start = max(em->start, off);
4000
4001                 /*
4002                  * record the offset from the start of the extent
4003                  * for adjusting the disk offset below
4004                  */
4005                 offset_in_extent = em_start - em->start;
4006                 em_end = extent_map_end(em);
4007                 em_len = em_end - em_start;
4008                 emflags = em->flags;
4009                 disko = 0;
4010                 flags = 0;
4011
4012                 /*
4013                  * bump off for our next call to get_extent
4014                  */
4015                 off = extent_map_end(em);
4016                 if (off >= max)
4017                         end = 1;
4018
4019                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4020                         end = 1;
4021                         flags |= FIEMAP_EXTENT_LAST;
4022                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4023                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4024                                   FIEMAP_EXTENT_NOT_ALIGNED);
4025                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4026                         flags |= (FIEMAP_EXTENT_DELALLOC |
4027                                   FIEMAP_EXTENT_UNKNOWN);
4028                 } else {
4029                         disko = em->block_start + offset_in_extent;
4030                 }
4031                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4032                         flags |= FIEMAP_EXTENT_ENCODED;
4033
4034                 free_extent_map(em);
4035                 em = NULL;
4036                 if ((em_start >= last) || em_len == (u64)-1 ||
4037                    (last == (u64)-1 && isize <= em_end)) {
4038                         flags |= FIEMAP_EXTENT_LAST;
4039                         end = 1;
4040                 }
4041
4042                 /* now scan forward to see if this is really the last extent. */
4043                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4044                                            get_extent);
4045                 if (IS_ERR(em)) {
4046                         ret = PTR_ERR(em);
4047                         goto out;
4048                 }
4049                 if (!em) {
4050                         flags |= FIEMAP_EXTENT_LAST;
4051                         end = 1;
4052                 }
4053                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4054                                               em_len, flags);
4055                 if (ret)
4056                         goto out_free;
4057         }
4058 out_free:
4059         free_extent_map(em);
4060 out:
4061         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
4062                              &cached_state, GFP_NOFS);
4063         return ret;
4064 }
4065
4066 static void __free_extent_buffer(struct extent_buffer *eb)
4067 {
4068 #if LEAK_DEBUG
4069         unsigned long flags;
4070         spin_lock_irqsave(&leak_lock, flags);
4071         list_del(&eb->leak_list);
4072         spin_unlock_irqrestore(&leak_lock, flags);
4073 #endif
4074         kmem_cache_free(extent_buffer_cache, eb);
4075 }
4076
4077 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4078                                                    u64 start,
4079                                                    unsigned long len,
4080                                                    gfp_t mask)
4081 {
4082         struct extent_buffer *eb = NULL;
4083 #if LEAK_DEBUG
4084         unsigned long flags;
4085 #endif
4086
4087         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4088         if (eb == NULL)
4089                 return NULL;
4090         eb->start = start;
4091         eb->len = len;
4092         eb->tree = tree;
4093         eb->bflags = 0;
4094         rwlock_init(&eb->lock);
4095         atomic_set(&eb->write_locks, 0);
4096         atomic_set(&eb->read_locks, 0);
4097         atomic_set(&eb->blocking_readers, 0);
4098         atomic_set(&eb->blocking_writers, 0);
4099         atomic_set(&eb->spinning_readers, 0);
4100         atomic_set(&eb->spinning_writers, 0);
4101         eb->lock_nested = 0;
4102         init_waitqueue_head(&eb->write_lock_wq);
4103         init_waitqueue_head(&eb->read_lock_wq);
4104
4105 #if LEAK_DEBUG
4106         spin_lock_irqsave(&leak_lock, flags);
4107         list_add(&eb->leak_list, &buffers);
4108         spin_unlock_irqrestore(&leak_lock, flags);
4109 #endif
4110         spin_lock_init(&eb->refs_lock);
4111         atomic_set(&eb->refs, 1);
4112         atomic_set(&eb->io_pages, 0);
4113
4114         /*
4115          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4116          */
4117         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4118                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4119         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4120
4121         return eb;
4122 }
4123
4124 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4125 {
4126         unsigned long i;
4127         struct page *p;
4128         struct extent_buffer *new;
4129         unsigned long num_pages = num_extent_pages(src->start, src->len);
4130
4131         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4132         if (new == NULL)
4133                 return NULL;
4134
4135         for (i = 0; i < num_pages; i++) {
4136                 p = alloc_page(GFP_ATOMIC);
4137                 BUG_ON(!p);
4138                 attach_extent_buffer_page(new, p);
4139                 WARN_ON(PageDirty(p));
4140                 SetPageUptodate(p);
4141                 new->pages[i] = p;
4142         }
4143
4144         copy_extent_buffer(new, src, 0, 0, src->len);
4145         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4146         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4147
4148         return new;
4149 }
4150
4151 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4152 {
4153         struct extent_buffer *eb;
4154         unsigned long num_pages = num_extent_pages(0, len);
4155         unsigned long i;
4156
4157         eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4158         if (!eb)
4159                 return NULL;
4160
4161         for (i = 0; i < num_pages; i++) {
4162                 eb->pages[i] = alloc_page(GFP_ATOMIC);
4163                 if (!eb->pages[i])
4164                         goto err;
4165         }
4166         set_extent_buffer_uptodate(eb);
4167         btrfs_set_header_nritems(eb, 0);
4168         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4169
4170         return eb;
4171 err:
4172         for (; i > 0; i--)
4173                 __free_page(eb->pages[i - 1]);
4174         __free_extent_buffer(eb);
4175         return NULL;
4176 }
4177
4178 static int extent_buffer_under_io(struct extent_buffer *eb)
4179 {
4180         return (atomic_read(&eb->io_pages) ||
4181                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4182                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4183 }
4184
4185 /*
4186  * Helper for releasing extent buffer page.
4187  */
4188 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4189                                                 unsigned long start_idx)
4190 {
4191         unsigned long index;
4192         unsigned long num_pages;
4193         struct page *page;
4194         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4195
4196         BUG_ON(extent_buffer_under_io(eb));
4197
4198         num_pages = num_extent_pages(eb->start, eb->len);
4199         index = start_idx + num_pages;
4200         if (start_idx >= index)
4201                 return;
4202
4203         do {
4204                 index--;
4205                 page = extent_buffer_page(eb, index);
4206                 if (page && mapped) {
4207                         spin_lock(&page->mapping->private_lock);
4208                         /*
4209                          * We do this since we'll remove the pages after we've
4210                          * removed the eb from the radix tree, so we could race
4211                          * and have this page now attached to the new eb.  So
4212                          * only clear page_private if it's still connected to
4213                          * this eb.
4214                          */
4215                         if (PagePrivate(page) &&
4216                             page->private == (unsigned long)eb) {
4217                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4218                                 BUG_ON(PageDirty(page));
4219                                 BUG_ON(PageWriteback(page));
4220                                 /*
4221                                  * We need to make sure we haven't be attached
4222                                  * to a new eb.
4223                                  */
4224                                 ClearPagePrivate(page);
4225                                 set_page_private(page, 0);
4226                                 /* One for the page private */
4227                                 page_cache_release(page);
4228                         }
4229                         spin_unlock(&page->mapping->private_lock);
4230
4231                 }
4232                 if (page) {
4233                         /* One for when we alloced the page */
4234                         page_cache_release(page);
4235                 }
4236         } while (index != start_idx);
4237 }
4238
4239 /*
4240  * Helper for releasing the extent buffer.
4241  */
4242 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4243 {
4244         btrfs_release_extent_buffer_page(eb, 0);
4245         __free_extent_buffer(eb);
4246 }
4247
4248 static void check_buffer_tree_ref(struct extent_buffer *eb)
4249 {
4250         int refs;
4251         /* the ref bit is tricky.  We have to make sure it is set
4252          * if we have the buffer dirty.   Otherwise the
4253          * code to free a buffer can end up dropping a dirty
4254          * page
4255          *
4256          * Once the ref bit is set, it won't go away while the
4257          * buffer is dirty or in writeback, and it also won't
4258          * go away while we have the reference count on the
4259          * eb bumped.
4260          *
4261          * We can't just set the ref bit without bumping the
4262          * ref on the eb because free_extent_buffer might
4263          * see the ref bit and try to clear it.  If this happens
4264          * free_extent_buffer might end up dropping our original
4265          * ref by mistake and freeing the page before we are able
4266          * to add one more ref.
4267          *
4268          * So bump the ref count first, then set the bit.  If someone
4269          * beat us to it, drop the ref we added.
4270          */
4271         refs = atomic_read(&eb->refs);
4272         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4273                 return;
4274
4275         spin_lock(&eb->refs_lock);
4276         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4277                 atomic_inc(&eb->refs);
4278         spin_unlock(&eb->refs_lock);
4279 }
4280
4281 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4282 {
4283         unsigned long num_pages, i;
4284
4285         check_buffer_tree_ref(eb);
4286
4287         num_pages = num_extent_pages(eb->start, eb->len);
4288         for (i = 0; i < num_pages; i++) {
4289                 struct page *p = extent_buffer_page(eb, i);
4290                 mark_page_accessed(p);
4291         }
4292 }
4293
4294 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4295                                           u64 start, unsigned long len)
4296 {
4297         unsigned long num_pages = num_extent_pages(start, len);
4298         unsigned long i;
4299         unsigned long index = start >> PAGE_CACHE_SHIFT;
4300         struct extent_buffer *eb;
4301         struct extent_buffer *exists = NULL;
4302         struct page *p;
4303         struct address_space *mapping = tree->mapping;
4304         int uptodate = 1;
4305         int ret;
4306
4307         rcu_read_lock();
4308         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4309         if (eb && atomic_inc_not_zero(&eb->refs)) {
4310                 rcu_read_unlock();
4311                 mark_extent_buffer_accessed(eb);
4312                 return eb;
4313         }
4314         rcu_read_unlock();
4315
4316         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4317         if (!eb)
4318                 return NULL;
4319
4320         for (i = 0; i < num_pages; i++, index++) {
4321                 p = find_or_create_page(mapping, index, GFP_NOFS);
4322                 if (!p)
4323                         goto free_eb;
4324
4325                 spin_lock(&mapping->private_lock);
4326                 if (PagePrivate(p)) {
4327                         /*
4328                          * We could have already allocated an eb for this page
4329                          * and attached one so lets see if we can get a ref on
4330                          * the existing eb, and if we can we know it's good and
4331                          * we can just return that one, else we know we can just
4332                          * overwrite page->private.
4333                          */
4334                         exists = (struct extent_buffer *)p->private;
4335                         if (atomic_inc_not_zero(&exists->refs)) {
4336                                 spin_unlock(&mapping->private_lock);
4337                                 unlock_page(p);
4338                                 page_cache_release(p);
4339                                 mark_extent_buffer_accessed(exists);
4340                                 goto free_eb;
4341                         }
4342
4343                         /*
4344                          * Do this so attach doesn't complain and we need to
4345                          * drop the ref the old guy had.
4346                          */
4347                         ClearPagePrivate(p);
4348                         WARN_ON(PageDirty(p));
4349                         page_cache_release(p);
4350                 }
4351                 attach_extent_buffer_page(eb, p);
4352                 spin_unlock(&mapping->private_lock);
4353                 WARN_ON(PageDirty(p));
4354                 mark_page_accessed(p);
4355                 eb->pages[i] = p;
4356                 if (!PageUptodate(p))
4357                         uptodate = 0;
4358
4359                 /*
4360                  * see below about how we avoid a nasty race with release page
4361                  * and why we unlock later
4362                  */
4363         }
4364         if (uptodate)
4365                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4366 again:
4367         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4368         if (ret)
4369                 goto free_eb;
4370
4371         spin_lock(&tree->buffer_lock);
4372         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4373         if (ret == -EEXIST) {
4374                 exists = radix_tree_lookup(&tree->buffer,
4375                                                 start >> PAGE_CACHE_SHIFT);
4376                 if (!atomic_inc_not_zero(&exists->refs)) {
4377                         spin_unlock(&tree->buffer_lock);
4378                         radix_tree_preload_end();
4379                         exists = NULL;
4380                         goto again;
4381                 }
4382                 spin_unlock(&tree->buffer_lock);
4383                 radix_tree_preload_end();
4384                 mark_extent_buffer_accessed(exists);
4385                 goto free_eb;
4386         }
4387         /* add one reference for the tree */
4388         check_buffer_tree_ref(eb);
4389         spin_unlock(&tree->buffer_lock);
4390         radix_tree_preload_end();
4391
4392         /*
4393          * there is a race where release page may have
4394          * tried to find this extent buffer in the radix
4395          * but failed.  It will tell the VM it is safe to
4396          * reclaim the, and it will clear the page private bit.
4397          * We must make sure to set the page private bit properly
4398          * after the extent buffer is in the radix tree so
4399          * it doesn't get lost
4400          */
4401         SetPageChecked(eb->pages[0]);
4402         for (i = 1; i < num_pages; i++) {
4403                 p = extent_buffer_page(eb, i);
4404                 ClearPageChecked(p);
4405                 unlock_page(p);
4406         }
4407         unlock_page(eb->pages[0]);
4408         return eb;
4409
4410 free_eb:
4411         for (i = 0; i < num_pages; i++) {
4412                 if (eb->pages[i])
4413                         unlock_page(eb->pages[i]);
4414         }
4415
4416         WARN_ON(!atomic_dec_and_test(&eb->refs));
4417         btrfs_release_extent_buffer(eb);
4418         return exists;
4419 }
4420
4421 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4422                                          u64 start, unsigned long len)
4423 {
4424         struct extent_buffer *eb;
4425
4426         rcu_read_lock();
4427         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4428         if (eb && atomic_inc_not_zero(&eb->refs)) {
4429                 rcu_read_unlock();
4430                 mark_extent_buffer_accessed(eb);
4431                 return eb;
4432         }
4433         rcu_read_unlock();
4434
4435         return NULL;
4436 }
4437
4438 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4439 {
4440         struct extent_buffer *eb =
4441                         container_of(head, struct extent_buffer, rcu_head);
4442
4443         __free_extent_buffer(eb);
4444 }
4445
4446 /* Expects to have eb->eb_lock already held */
4447 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4448 {
4449         WARN_ON(atomic_read(&eb->refs) == 0);
4450         if (atomic_dec_and_test(&eb->refs)) {
4451                 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4452                         spin_unlock(&eb->refs_lock);
4453                 } else {
4454                         struct extent_io_tree *tree = eb->tree;
4455
4456                         spin_unlock(&eb->refs_lock);
4457
4458                         spin_lock(&tree->buffer_lock);
4459                         radix_tree_delete(&tree->buffer,
4460                                           eb->start >> PAGE_CACHE_SHIFT);
4461                         spin_unlock(&tree->buffer_lock);
4462                 }
4463
4464                 /* Should be safe to release our pages at this point */
4465                 btrfs_release_extent_buffer_page(eb, 0);
4466                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4467                 return 1;
4468         }
4469         spin_unlock(&eb->refs_lock);
4470
4471         return 0;
4472 }
4473
4474 void free_extent_buffer(struct extent_buffer *eb)
4475 {
4476         int refs;
4477         int old;
4478         if (!eb)
4479                 return;
4480
4481         while (1) {
4482                 refs = atomic_read(&eb->refs);
4483                 if (refs <= 3)
4484                         break;
4485                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4486                 if (old == refs)
4487                         return;
4488         }
4489
4490         spin_lock(&eb->refs_lock);
4491         if (atomic_read(&eb->refs) == 2 &&
4492             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4493                 atomic_dec(&eb->refs);
4494
4495         if (atomic_read(&eb->refs) == 2 &&
4496             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4497             !extent_buffer_under_io(eb) &&
4498             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4499                 atomic_dec(&eb->refs);
4500
4501         /*
4502          * I know this is terrible, but it's temporary until we stop tracking
4503          * the uptodate bits and such for the extent buffers.
4504          */
4505         release_extent_buffer(eb, GFP_ATOMIC);
4506 }
4507
4508 void free_extent_buffer_stale(struct extent_buffer *eb)
4509 {
4510         if (!eb)
4511                 return;
4512
4513         spin_lock(&eb->refs_lock);
4514         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4515
4516         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4517             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4518                 atomic_dec(&eb->refs);
4519         release_extent_buffer(eb, GFP_NOFS);
4520 }
4521
4522 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4523 {
4524         unsigned long i;
4525         unsigned long num_pages;
4526         struct page *page;
4527
4528         num_pages = num_extent_pages(eb->start, eb->len);
4529
4530         for (i = 0; i < num_pages; i++) {
4531                 page = extent_buffer_page(eb, i);
4532                 if (!PageDirty(page))
4533                         continue;
4534
4535                 lock_page(page);
4536                 WARN_ON(!PagePrivate(page));
4537
4538                 clear_page_dirty_for_io(page);
4539                 spin_lock_irq(&page->mapping->tree_lock);
4540                 if (!PageDirty(page)) {
4541                         radix_tree_tag_clear(&page->mapping->page_tree,
4542                                                 page_index(page),
4543                                                 PAGECACHE_TAG_DIRTY);
4544                 }
4545                 spin_unlock_irq(&page->mapping->tree_lock);
4546                 ClearPageError(page);
4547                 unlock_page(page);
4548         }
4549         WARN_ON(atomic_read(&eb->refs) == 0);
4550 }
4551
4552 int set_extent_buffer_dirty(struct extent_buffer *eb)
4553 {
4554         unsigned long i;
4555         unsigned long num_pages;
4556         int was_dirty = 0;
4557
4558         check_buffer_tree_ref(eb);
4559
4560         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4561
4562         num_pages = num_extent_pages(eb->start, eb->len);
4563         WARN_ON(atomic_read(&eb->refs) == 0);
4564         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4565
4566         for (i = 0; i < num_pages; i++)
4567                 set_page_dirty(extent_buffer_page(eb, i));
4568         return was_dirty;
4569 }
4570
4571 static int range_straddles_pages(u64 start, u64 len)
4572 {
4573         if (len < PAGE_CACHE_SIZE)
4574                 return 1;
4575         if (start & (PAGE_CACHE_SIZE - 1))
4576                 return 1;
4577         if ((start + len) & (PAGE_CACHE_SIZE - 1))
4578                 return 1;
4579         return 0;
4580 }
4581
4582 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4583 {
4584         unsigned long i;
4585         struct page *page;
4586         unsigned long num_pages;
4587
4588         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4589         num_pages = num_extent_pages(eb->start, eb->len);
4590         for (i = 0; i < num_pages; i++) {
4591                 page = extent_buffer_page(eb, i);
4592                 if (page)
4593                         ClearPageUptodate(page);
4594         }
4595         return 0;
4596 }
4597
4598 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4599 {
4600         unsigned long i;
4601         struct page *page;
4602         unsigned long num_pages;
4603
4604         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4605         num_pages = num_extent_pages(eb->start, eb->len);
4606         for (i = 0; i < num_pages; i++) {
4607                 page = extent_buffer_page(eb, i);
4608                 SetPageUptodate(page);
4609         }
4610         return 0;
4611 }
4612
4613 int extent_range_uptodate(struct extent_io_tree *tree,
4614                           u64 start, u64 end)
4615 {
4616         struct page *page;
4617         int ret;
4618         int pg_uptodate = 1;
4619         int uptodate;
4620         unsigned long index;
4621
4622         if (range_straddles_pages(start, end - start + 1)) {
4623                 ret = test_range_bit(tree, start, end,
4624                                      EXTENT_UPTODATE, 1, NULL);
4625                 if (ret)
4626                         return 1;
4627         }
4628         while (start <= end) {
4629                 index = start >> PAGE_CACHE_SHIFT;
4630                 page = find_get_page(tree->mapping, index);
4631                 if (!page)
4632                         return 1;
4633                 uptodate = PageUptodate(page);
4634                 page_cache_release(page);
4635                 if (!uptodate) {
4636                         pg_uptodate = 0;
4637                         break;
4638                 }
4639                 start += PAGE_CACHE_SIZE;
4640         }
4641         return pg_uptodate;
4642 }
4643
4644 int extent_buffer_uptodate(struct extent_buffer *eb)
4645 {
4646         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4647 }
4648
4649 int read_extent_buffer_pages(struct extent_io_tree *tree,
4650                              struct extent_buffer *eb, u64 start, int wait,
4651                              get_extent_t *get_extent, int mirror_num)
4652 {
4653         unsigned long i;
4654         unsigned long start_i;
4655         struct page *page;
4656         int err;
4657         int ret = 0;
4658         int locked_pages = 0;
4659         int all_uptodate = 1;
4660         unsigned long num_pages;
4661         unsigned long num_reads = 0;
4662         struct bio *bio = NULL;
4663         unsigned long bio_flags = 0;
4664
4665         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4666                 return 0;
4667
4668         if (start) {
4669                 WARN_ON(start < eb->start);
4670                 start_i = (start >> PAGE_CACHE_SHIFT) -
4671                         (eb->start >> PAGE_CACHE_SHIFT);
4672         } else {
4673                 start_i = 0;
4674         }
4675
4676         num_pages = num_extent_pages(eb->start, eb->len);
4677         for (i = start_i; i < num_pages; i++) {
4678                 page = extent_buffer_page(eb, i);
4679                 if (wait == WAIT_NONE) {
4680                         if (!trylock_page(page))
4681                                 goto unlock_exit;
4682                 } else {
4683                         lock_page(page);
4684                 }
4685                 locked_pages++;
4686                 if (!PageUptodate(page)) {
4687                         num_reads++;
4688                         all_uptodate = 0;
4689                 }
4690         }
4691         if (all_uptodate) {
4692                 if (start_i == 0)
4693                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4694                 goto unlock_exit;
4695         }
4696
4697         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4698         eb->read_mirror = 0;
4699         atomic_set(&eb->io_pages, num_reads);
4700         for (i = start_i; i < num_pages; i++) {
4701                 page = extent_buffer_page(eb, i);
4702                 if (!PageUptodate(page)) {
4703                         ClearPageError(page);
4704                         err = __extent_read_full_page(tree, page,
4705                                                       get_extent, &bio,
4706                                                       mirror_num, &bio_flags);
4707                         if (err)
4708                                 ret = err;
4709                 } else {
4710                         unlock_page(page);
4711                 }
4712         }
4713
4714         if (bio) {
4715                 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4716                 if (err)
4717                         return err;
4718         }
4719
4720         if (ret || wait != WAIT_COMPLETE)
4721                 return ret;
4722
4723         for (i = start_i; i < num_pages; i++) {
4724                 page = extent_buffer_page(eb, i);
4725                 wait_on_page_locked(page);
4726                 if (!PageUptodate(page))
4727                         ret = -EIO;
4728         }
4729
4730         return ret;
4731
4732 unlock_exit:
4733         i = start_i;
4734         while (locked_pages > 0) {
4735                 page = extent_buffer_page(eb, i);
4736                 i++;
4737                 unlock_page(page);
4738                 locked_pages--;
4739         }
4740         return ret;
4741 }
4742
4743 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4744                         unsigned long start,
4745                         unsigned long len)
4746 {
4747         size_t cur;
4748         size_t offset;
4749         struct page *page;
4750         char *kaddr;
4751         char *dst = (char *)dstv;
4752         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4753         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4754
4755         WARN_ON(start > eb->len);
4756         WARN_ON(start + len > eb->start + eb->len);
4757
4758         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4759
4760         while (len > 0) {
4761                 page = extent_buffer_page(eb, i);
4762
4763                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4764                 kaddr = page_address(page);
4765                 memcpy(dst, kaddr + offset, cur);
4766
4767                 dst += cur;
4768                 len -= cur;
4769                 offset = 0;
4770                 i++;
4771         }
4772 }
4773
4774 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4775                                unsigned long min_len, char **map,
4776                                unsigned long *map_start,
4777                                unsigned long *map_len)
4778 {
4779         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4780         char *kaddr;
4781         struct page *p;
4782         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4783         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4784         unsigned long end_i = (start_offset + start + min_len - 1) >>
4785                 PAGE_CACHE_SHIFT;
4786
4787         if (i != end_i)
4788                 return -EINVAL;
4789
4790         if (i == 0) {
4791                 offset = start_offset;
4792                 *map_start = 0;
4793         } else {
4794                 offset = 0;
4795                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4796         }
4797
4798         if (start + min_len > eb->len) {
4799                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4800                        "wanted %lu %lu\n", (unsigned long long)eb->start,
4801                        eb->len, start, min_len);
4802                 return -EINVAL;
4803         }
4804
4805         p = extent_buffer_page(eb, i);
4806         kaddr = page_address(p);
4807         *map = kaddr + offset;
4808         *map_len = PAGE_CACHE_SIZE - offset;
4809         return 0;
4810 }
4811
4812 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4813                           unsigned long start,
4814                           unsigned long len)
4815 {
4816         size_t cur;
4817         size_t offset;
4818         struct page *page;
4819         char *kaddr;
4820         char *ptr = (char *)ptrv;
4821         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4822         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4823         int ret = 0;
4824
4825         WARN_ON(start > eb->len);
4826         WARN_ON(start + len > eb->start + eb->len);
4827
4828         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4829
4830         while (len > 0) {
4831                 page = extent_buffer_page(eb, i);
4832
4833                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4834
4835                 kaddr = page_address(page);
4836                 ret = memcmp(ptr, kaddr + offset, cur);
4837                 if (ret)
4838                         break;
4839
4840                 ptr += cur;
4841                 len -= cur;
4842                 offset = 0;
4843                 i++;
4844         }
4845         return ret;
4846 }
4847
4848 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4849                          unsigned long start, unsigned long len)
4850 {
4851         size_t cur;
4852         size_t offset;
4853         struct page *page;
4854         char *kaddr;
4855         char *src = (char *)srcv;
4856         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4857         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4858
4859         WARN_ON(start > eb->len);
4860         WARN_ON(start + len > eb->start + eb->len);
4861
4862         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4863
4864         while (len > 0) {
4865                 page = extent_buffer_page(eb, i);
4866                 WARN_ON(!PageUptodate(page));
4867
4868                 cur = min(len, PAGE_CACHE_SIZE - offset);
4869                 kaddr = page_address(page);
4870                 memcpy(kaddr + offset, src, cur);
4871
4872                 src += cur;
4873                 len -= cur;
4874                 offset = 0;
4875                 i++;
4876         }
4877 }
4878
4879 void memset_extent_buffer(struct extent_buffer *eb, char c,
4880                           unsigned long start, unsigned long len)
4881 {
4882         size_t cur;
4883         size_t offset;
4884         struct page *page;
4885         char *kaddr;
4886         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4887         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4888
4889         WARN_ON(start > eb->len);
4890         WARN_ON(start + len > eb->start + eb->len);
4891
4892         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4893
4894         while (len > 0) {
4895                 page = extent_buffer_page(eb, i);
4896                 WARN_ON(!PageUptodate(page));
4897
4898                 cur = min(len, PAGE_CACHE_SIZE - offset);
4899                 kaddr = page_address(page);
4900                 memset(kaddr + offset, c, cur);
4901
4902                 len -= cur;
4903                 offset = 0;
4904                 i++;
4905         }
4906 }
4907
4908 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4909                         unsigned long dst_offset, unsigned long src_offset,
4910                         unsigned long len)
4911 {
4912         u64 dst_len = dst->len;
4913         size_t cur;
4914         size_t offset;
4915         struct page *page;
4916         char *kaddr;
4917         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4918         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4919
4920         WARN_ON(src->len != dst_len);
4921
4922         offset = (start_offset + dst_offset) &
4923                 ((unsigned long)PAGE_CACHE_SIZE - 1);
4924
4925         while (len > 0) {
4926                 page = extent_buffer_page(dst, i);
4927                 WARN_ON(!PageUptodate(page));
4928
4929                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4930
4931                 kaddr = page_address(page);
4932                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4933
4934                 src_offset += cur;
4935                 len -= cur;
4936                 offset = 0;
4937                 i++;
4938         }
4939 }
4940
4941 static void move_pages(struct page *dst_page, struct page *src_page,
4942                        unsigned long dst_off, unsigned long src_off,
4943                        unsigned long len)
4944 {
4945         char *dst_kaddr = page_address(dst_page);
4946         if (dst_page == src_page) {
4947                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4948         } else {
4949                 char *src_kaddr = page_address(src_page);
4950                 char *p = dst_kaddr + dst_off + len;
4951                 char *s = src_kaddr + src_off + len;
4952
4953                 while (len--)
4954                         *--p = *--s;
4955         }
4956 }
4957
4958 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4959 {
4960         unsigned long distance = (src > dst) ? src - dst : dst - src;
4961         return distance < len;
4962 }
4963
4964 static void copy_pages(struct page *dst_page, struct page *src_page,
4965                        unsigned long dst_off, unsigned long src_off,
4966                        unsigned long len)
4967 {
4968         char *dst_kaddr = page_address(dst_page);
4969         char *src_kaddr;
4970         int must_memmove = 0;
4971
4972         if (dst_page != src_page) {
4973                 src_kaddr = page_address(src_page);
4974         } else {
4975                 src_kaddr = dst_kaddr;
4976                 if (areas_overlap(src_off, dst_off, len))
4977                         must_memmove = 1;
4978         }
4979
4980         if (must_memmove)
4981                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4982         else
4983                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4984 }
4985
4986 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4987                            unsigned long src_offset, unsigned long len)
4988 {
4989         size_t cur;
4990         size_t dst_off_in_page;
4991         size_t src_off_in_page;
4992         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4993         unsigned long dst_i;
4994         unsigned long src_i;
4995
4996         if (src_offset + len > dst->len) {
4997                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4998                        "len %lu dst len %lu\n", src_offset, len, dst->len);
4999                 BUG_ON(1);
5000         }
5001         if (dst_offset + len > dst->len) {
5002                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5003                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
5004                 BUG_ON(1);
5005         }
5006
5007         while (len > 0) {
5008                 dst_off_in_page = (start_offset + dst_offset) &
5009                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5010                 src_off_in_page = (start_offset + src_offset) &
5011                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5012
5013                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5014                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5015
5016                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5017                                                src_off_in_page));
5018                 cur = min_t(unsigned long, cur,
5019                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5020
5021                 copy_pages(extent_buffer_page(dst, dst_i),
5022                            extent_buffer_page(dst, src_i),
5023                            dst_off_in_page, src_off_in_page, cur);
5024
5025                 src_offset += cur;
5026                 dst_offset += cur;
5027                 len -= cur;
5028         }
5029 }
5030
5031 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5032                            unsigned long src_offset, unsigned long len)
5033 {
5034         size_t cur;
5035         size_t dst_off_in_page;
5036         size_t src_off_in_page;
5037         unsigned long dst_end = dst_offset + len - 1;
5038         unsigned long src_end = src_offset + len - 1;
5039         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5040         unsigned long dst_i;
5041         unsigned long src_i;
5042
5043         if (src_offset + len > dst->len) {
5044                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5045                        "len %lu len %lu\n", src_offset, len, dst->len);
5046                 BUG_ON(1);
5047         }
5048         if (dst_offset + len > dst->len) {
5049                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5050                        "len %lu len %lu\n", dst_offset, len, dst->len);
5051                 BUG_ON(1);
5052         }
5053         if (dst_offset < src_offset) {
5054                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5055                 return;
5056         }
5057         while (len > 0) {
5058                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5059                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5060
5061                 dst_off_in_page = (start_offset + dst_end) &
5062                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5063                 src_off_in_page = (start_offset + src_end) &
5064                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5065
5066                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5067                 cur = min(cur, dst_off_in_page + 1);
5068                 move_pages(extent_buffer_page(dst, dst_i),
5069                            extent_buffer_page(dst, src_i),
5070                            dst_off_in_page - cur + 1,
5071                            src_off_in_page - cur + 1, cur);
5072
5073                 dst_end -= cur;
5074                 src_end -= cur;
5075                 len -= cur;
5076         }
5077 }
5078
5079 int try_release_extent_buffer(struct page *page, gfp_t mask)
5080 {
5081         struct extent_buffer *eb;
5082
5083         /*
5084          * We need to make sure noboody is attaching this page to an eb right
5085          * now.
5086          */
5087         spin_lock(&page->mapping->private_lock);
5088         if (!PagePrivate(page)) {
5089                 spin_unlock(&page->mapping->private_lock);
5090                 return 1;
5091         }
5092
5093         eb = (struct extent_buffer *)page->private;
5094         BUG_ON(!eb);
5095
5096         /*
5097          * This is a little awful but should be ok, we need to make sure that
5098          * the eb doesn't disappear out from under us while we're looking at
5099          * this page.
5100          */
5101         spin_lock(&eb->refs_lock);
5102         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5103                 spin_unlock(&eb->refs_lock);
5104                 spin_unlock(&page->mapping->private_lock);
5105                 return 0;
5106         }
5107         spin_unlock(&page->mapping->private_lock);
5108
5109         if ((mask & GFP_NOFS) == GFP_NOFS)
5110                 mask = GFP_NOFS;
5111
5112         /*
5113          * If tree ref isn't set then we know the ref on this eb is a real ref,
5114          * so just return, this page will likely be freed soon anyway.
5115          */
5116         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5117                 spin_unlock(&eb->refs_lock);
5118                 return 0;
5119         }
5120
5121         return release_extent_buffer(eb, mask);
5122 }