Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29
30 #define LEAK_DEBUG 0
31 #if LEAK_DEBUG
32 static DEFINE_SPINLOCK(leak_lock);
33 #endif
34
35 #define BUFFER_LRU_MAX 64
36
37 struct tree_entry {
38         u64 start;
39         u64 end;
40         struct rb_node rb_node;
41 };
42
43 struct extent_page_data {
44         struct bio *bio;
45         struct extent_io_tree *tree;
46         get_extent_t *get_extent;
47         unsigned long bio_flags;
48
49         /* tells writepage not to lock the state bits for this range
50          * it still does the unlocking
51          */
52         unsigned int extent_locked:1;
53
54         /* tells the submit_bio code to use a WRITE_SYNC */
55         unsigned int sync_io:1;
56 };
57
58 static noinline void flush_write_bio(void *data);
59 static inline struct btrfs_fs_info *
60 tree_fs_info(struct extent_io_tree *tree)
61 {
62         return btrfs_sb(tree->mapping->host->i_sb);
63 }
64
65 int __init extent_io_init(void)
66 {
67         extent_state_cache = kmem_cache_create("btrfs_extent_state",
68                         sizeof(struct extent_state), 0,
69                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
70         if (!extent_state_cache)
71                 return -ENOMEM;
72
73         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
74                         sizeof(struct extent_buffer), 0,
75                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
76         if (!extent_buffer_cache)
77                 goto free_state_cache;
78         return 0;
79
80 free_state_cache:
81         kmem_cache_destroy(extent_state_cache);
82         return -ENOMEM;
83 }
84
85 void extent_io_exit(void)
86 {
87         struct extent_state *state;
88         struct extent_buffer *eb;
89
90         while (!list_empty(&states)) {
91                 state = list_entry(states.next, struct extent_state, leak_list);
92                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
93                        "state %lu in tree %p refs %d\n",
94                        (unsigned long long)state->start,
95                        (unsigned long long)state->end,
96                        state->state, state->tree, atomic_read(&state->refs));
97                 list_del(&state->leak_list);
98                 kmem_cache_free(extent_state_cache, state);
99
100         }
101
102         while (!list_empty(&buffers)) {
103                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
104                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
105                        "refs %d\n", (unsigned long long)eb->start,
106                        eb->len, atomic_read(&eb->refs));
107                 list_del(&eb->leak_list);
108                 kmem_cache_free(extent_buffer_cache, eb);
109         }
110
111         /*
112          * Make sure all delayed rcu free are flushed before we
113          * destroy caches.
114          */
115         rcu_barrier();
116         if (extent_state_cache)
117                 kmem_cache_destroy(extent_state_cache);
118         if (extent_buffer_cache)
119                 kmem_cache_destroy(extent_buffer_cache);
120 }
121
122 void extent_io_tree_init(struct extent_io_tree *tree,
123                          struct address_space *mapping)
124 {
125         tree->state = RB_ROOT;
126         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
127         tree->ops = NULL;
128         tree->dirty_bytes = 0;
129         spin_lock_init(&tree->lock);
130         spin_lock_init(&tree->buffer_lock);
131         tree->mapping = mapping;
132 }
133
134 static struct extent_state *alloc_extent_state(gfp_t mask)
135 {
136         struct extent_state *state;
137 #if LEAK_DEBUG
138         unsigned long flags;
139 #endif
140
141         state = kmem_cache_alloc(extent_state_cache, mask);
142         if (!state)
143                 return state;
144         state->state = 0;
145         state->private = 0;
146         state->tree = NULL;
147 #if LEAK_DEBUG
148         spin_lock_irqsave(&leak_lock, flags);
149         list_add(&state->leak_list, &states);
150         spin_unlock_irqrestore(&leak_lock, flags);
151 #endif
152         atomic_set(&state->refs, 1);
153         init_waitqueue_head(&state->wq);
154         trace_alloc_extent_state(state, mask, _RET_IP_);
155         return state;
156 }
157
158 void free_extent_state(struct extent_state *state)
159 {
160         if (!state)
161                 return;
162         if (atomic_dec_and_test(&state->refs)) {
163 #if LEAK_DEBUG
164                 unsigned long flags;
165 #endif
166                 WARN_ON(state->tree);
167 #if LEAK_DEBUG
168                 spin_lock_irqsave(&leak_lock, flags);
169                 list_del(&state->leak_list);
170                 spin_unlock_irqrestore(&leak_lock, flags);
171 #endif
172                 trace_free_extent_state(state, _RET_IP_);
173                 kmem_cache_free(extent_state_cache, state);
174         }
175 }
176
177 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
178                                    struct rb_node *node)
179 {
180         struct rb_node **p = &root->rb_node;
181         struct rb_node *parent = NULL;
182         struct tree_entry *entry;
183
184         while (*p) {
185                 parent = *p;
186                 entry = rb_entry(parent, struct tree_entry, rb_node);
187
188                 if (offset < entry->start)
189                         p = &(*p)->rb_left;
190                 else if (offset > entry->end)
191                         p = &(*p)->rb_right;
192                 else
193                         return parent;
194         }
195
196         rb_link_node(node, parent, p);
197         rb_insert_color(node, root);
198         return NULL;
199 }
200
201 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
202                                      struct rb_node **prev_ret,
203                                      struct rb_node **next_ret)
204 {
205         struct rb_root *root = &tree->state;
206         struct rb_node *n = root->rb_node;
207         struct rb_node *prev = NULL;
208         struct rb_node *orig_prev = NULL;
209         struct tree_entry *entry;
210         struct tree_entry *prev_entry = NULL;
211
212         while (n) {
213                 entry = rb_entry(n, struct tree_entry, rb_node);
214                 prev = n;
215                 prev_entry = entry;
216
217                 if (offset < entry->start)
218                         n = n->rb_left;
219                 else if (offset > entry->end)
220                         n = n->rb_right;
221                 else
222                         return n;
223         }
224
225         if (prev_ret) {
226                 orig_prev = prev;
227                 while (prev && offset > prev_entry->end) {
228                         prev = rb_next(prev);
229                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
230                 }
231                 *prev_ret = prev;
232                 prev = orig_prev;
233         }
234
235         if (next_ret) {
236                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
237                 while (prev && offset < prev_entry->start) {
238                         prev = rb_prev(prev);
239                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
240                 }
241                 *next_ret = prev;
242         }
243         return NULL;
244 }
245
246 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
247                                           u64 offset)
248 {
249         struct rb_node *prev = NULL;
250         struct rb_node *ret;
251
252         ret = __etree_search(tree, offset, &prev, NULL);
253         if (!ret)
254                 return prev;
255         return ret;
256 }
257
258 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
259                      struct extent_state *other)
260 {
261         if (tree->ops && tree->ops->merge_extent_hook)
262                 tree->ops->merge_extent_hook(tree->mapping->host, new,
263                                              other);
264 }
265
266 /*
267  * utility function to look for merge candidates inside a given range.
268  * Any extents with matching state are merged together into a single
269  * extent in the tree.  Extents with EXTENT_IO in their state field
270  * are not merged because the end_io handlers need to be able to do
271  * operations on them without sleeping (or doing allocations/splits).
272  *
273  * This should be called with the tree lock held.
274  */
275 static void merge_state(struct extent_io_tree *tree,
276                         struct extent_state *state)
277 {
278         struct extent_state *other;
279         struct rb_node *other_node;
280
281         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
282                 return;
283
284         other_node = rb_prev(&state->rb_node);
285         if (other_node) {
286                 other = rb_entry(other_node, struct extent_state, rb_node);
287                 if (other->end == state->start - 1 &&
288                     other->state == state->state) {
289                         merge_cb(tree, state, other);
290                         state->start = other->start;
291                         other->tree = NULL;
292                         rb_erase(&other->rb_node, &tree->state);
293                         free_extent_state(other);
294                 }
295         }
296         other_node = rb_next(&state->rb_node);
297         if (other_node) {
298                 other = rb_entry(other_node, struct extent_state, rb_node);
299                 if (other->start == state->end + 1 &&
300                     other->state == state->state) {
301                         merge_cb(tree, state, other);
302                         state->end = other->end;
303                         other->tree = NULL;
304                         rb_erase(&other->rb_node, &tree->state);
305                         free_extent_state(other);
306                 }
307         }
308 }
309
310 static void set_state_cb(struct extent_io_tree *tree,
311                          struct extent_state *state, int *bits)
312 {
313         if (tree->ops && tree->ops->set_bit_hook)
314                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
315 }
316
317 static void clear_state_cb(struct extent_io_tree *tree,
318                            struct extent_state *state, int *bits)
319 {
320         if (tree->ops && tree->ops->clear_bit_hook)
321                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
322 }
323
324 static void set_state_bits(struct extent_io_tree *tree,
325                            struct extent_state *state, int *bits);
326
327 /*
328  * insert an extent_state struct into the tree.  'bits' are set on the
329  * struct before it is inserted.
330  *
331  * This may return -EEXIST if the extent is already there, in which case the
332  * state struct is freed.
333  *
334  * The tree lock is not taken internally.  This is a utility function and
335  * probably isn't what you want to call (see set/clear_extent_bit).
336  */
337 static int insert_state(struct extent_io_tree *tree,
338                         struct extent_state *state, u64 start, u64 end,
339                         int *bits)
340 {
341         struct rb_node *node;
342
343         if (end < start)
344                 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
345                        (unsigned long long)end,
346                        (unsigned long long)start);
347         state->start = start;
348         state->end = end;
349
350         set_state_bits(tree, state, bits);
351
352         node = tree_insert(&tree->state, end, &state->rb_node);
353         if (node) {
354                 struct extent_state *found;
355                 found = rb_entry(node, struct extent_state, rb_node);
356                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
357                        "%llu %llu\n", (unsigned long long)found->start,
358                        (unsigned long long)found->end,
359                        (unsigned long long)start, (unsigned long long)end);
360                 return -EEXIST;
361         }
362         state->tree = tree;
363         merge_state(tree, state);
364         return 0;
365 }
366
367 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
368                      u64 split)
369 {
370         if (tree->ops && tree->ops->split_extent_hook)
371                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
372 }
373
374 /*
375  * split a given extent state struct in two, inserting the preallocated
376  * struct 'prealloc' as the newly created second half.  'split' indicates an
377  * offset inside 'orig' where it should be split.
378  *
379  * Before calling,
380  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
381  * are two extent state structs in the tree:
382  * prealloc: [orig->start, split - 1]
383  * orig: [ split, orig->end ]
384  *
385  * The tree locks are not taken by this function. They need to be held
386  * by the caller.
387  */
388 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
389                        struct extent_state *prealloc, u64 split)
390 {
391         struct rb_node *node;
392
393         split_cb(tree, orig, split);
394
395         prealloc->start = orig->start;
396         prealloc->end = split - 1;
397         prealloc->state = orig->state;
398         orig->start = split;
399
400         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
401         if (node) {
402                 free_extent_state(prealloc);
403                 return -EEXIST;
404         }
405         prealloc->tree = tree;
406         return 0;
407 }
408
409 static struct extent_state *next_state(struct extent_state *state)
410 {
411         struct rb_node *next = rb_next(&state->rb_node);
412         if (next)
413                 return rb_entry(next, struct extent_state, rb_node);
414         else
415                 return NULL;
416 }
417
418 /*
419  * utility function to clear some bits in an extent state struct.
420  * it will optionally wake up any one waiting on this state (wake == 1).
421  *
422  * If no bits are set on the state struct after clearing things, the
423  * struct is freed and removed from the tree
424  */
425 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
426                                             struct extent_state *state,
427                                             int *bits, int wake)
428 {
429         struct extent_state *next;
430         int bits_to_clear = *bits & ~EXTENT_CTLBITS;
431
432         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
433                 u64 range = state->end - state->start + 1;
434                 WARN_ON(range > tree->dirty_bytes);
435                 tree->dirty_bytes -= range;
436         }
437         clear_state_cb(tree, state, bits);
438         state->state &= ~bits_to_clear;
439         if (wake)
440                 wake_up(&state->wq);
441         if (state->state == 0) {
442                 next = next_state(state);
443                 if (state->tree) {
444                         rb_erase(&state->rb_node, &tree->state);
445                         state->tree = NULL;
446                         free_extent_state(state);
447                 } else {
448                         WARN_ON(1);
449                 }
450         } else {
451                 merge_state(tree, state);
452                 next = next_state(state);
453         }
454         return next;
455 }
456
457 static struct extent_state *
458 alloc_extent_state_atomic(struct extent_state *prealloc)
459 {
460         if (!prealloc)
461                 prealloc = alloc_extent_state(GFP_ATOMIC);
462
463         return prealloc;
464 }
465
466 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
467 {
468         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
469                     "Extent tree was modified by another "
470                     "thread while locked.");
471 }
472
473 /*
474  * clear some bits on a range in the tree.  This may require splitting
475  * or inserting elements in the tree, so the gfp mask is used to
476  * indicate which allocations or sleeping are allowed.
477  *
478  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
479  * the given range from the tree regardless of state (ie for truncate).
480  *
481  * the range [start, end] is inclusive.
482  *
483  * This takes the tree lock, and returns 0 on success and < 0 on error.
484  */
485 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
486                      int bits, int wake, int delete,
487                      struct extent_state **cached_state,
488                      gfp_t mask)
489 {
490         struct extent_state *state;
491         struct extent_state *cached;
492         struct extent_state *prealloc = NULL;
493         struct rb_node *node;
494         u64 last_end;
495         int err;
496         int clear = 0;
497
498         if (delete)
499                 bits |= ~EXTENT_CTLBITS;
500         bits |= EXTENT_FIRST_DELALLOC;
501
502         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
503                 clear = 1;
504 again:
505         if (!prealloc && (mask & __GFP_WAIT)) {
506                 prealloc = alloc_extent_state(mask);
507                 if (!prealloc)
508                         return -ENOMEM;
509         }
510
511         spin_lock(&tree->lock);
512         if (cached_state) {
513                 cached = *cached_state;
514
515                 if (clear) {
516                         *cached_state = NULL;
517                         cached_state = NULL;
518                 }
519
520                 if (cached && cached->tree && cached->start <= start &&
521                     cached->end > start) {
522                         if (clear)
523                                 atomic_dec(&cached->refs);
524                         state = cached;
525                         goto hit_next;
526                 }
527                 if (clear)
528                         free_extent_state(cached);
529         }
530         /*
531          * this search will find the extents that end after
532          * our range starts
533          */
534         node = tree_search(tree, start);
535         if (!node)
536                 goto out;
537         state = rb_entry(node, struct extent_state, rb_node);
538 hit_next:
539         if (state->start > end)
540                 goto out;
541         WARN_ON(state->end < start);
542         last_end = state->end;
543
544         /* the state doesn't have the wanted bits, go ahead */
545         if (!(state->state & bits)) {
546                 state = next_state(state);
547                 goto next;
548         }
549
550         /*
551          *     | ---- desired range ---- |
552          *  | state | or
553          *  | ------------- state -------------- |
554          *
555          * We need to split the extent we found, and may flip
556          * bits on second half.
557          *
558          * If the extent we found extends past our range, we
559          * just split and search again.  It'll get split again
560          * the next time though.
561          *
562          * If the extent we found is inside our range, we clear
563          * the desired bit on it.
564          */
565
566         if (state->start < start) {
567                 prealloc = alloc_extent_state_atomic(prealloc);
568                 BUG_ON(!prealloc);
569                 err = split_state(tree, state, prealloc, start);
570                 if (err)
571                         extent_io_tree_panic(tree, err);
572
573                 prealloc = NULL;
574                 if (err)
575                         goto out;
576                 if (state->end <= end) {
577                         state = clear_state_bit(tree, state, &bits, wake);
578                         goto next;
579                 }
580                 goto search_again;
581         }
582         /*
583          * | ---- desired range ---- |
584          *                        | state |
585          * We need to split the extent, and clear the bit
586          * on the first half
587          */
588         if (state->start <= end && state->end > end) {
589                 prealloc = alloc_extent_state_atomic(prealloc);
590                 BUG_ON(!prealloc);
591                 err = split_state(tree, state, prealloc, end + 1);
592                 if (err)
593                         extent_io_tree_panic(tree, err);
594
595                 if (wake)
596                         wake_up(&state->wq);
597
598                 clear_state_bit(tree, prealloc, &bits, wake);
599
600                 prealloc = NULL;
601                 goto out;
602         }
603
604         state = clear_state_bit(tree, state, &bits, wake);
605 next:
606         if (last_end == (u64)-1)
607                 goto out;
608         start = last_end + 1;
609         if (start <= end && state && !need_resched())
610                 goto hit_next;
611         goto search_again;
612
613 out:
614         spin_unlock(&tree->lock);
615         if (prealloc)
616                 free_extent_state(prealloc);
617
618         return 0;
619
620 search_again:
621         if (start > end)
622                 goto out;
623         spin_unlock(&tree->lock);
624         if (mask & __GFP_WAIT)
625                 cond_resched();
626         goto again;
627 }
628
629 static void wait_on_state(struct extent_io_tree *tree,
630                           struct extent_state *state)
631                 __releases(tree->lock)
632                 __acquires(tree->lock)
633 {
634         DEFINE_WAIT(wait);
635         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
636         spin_unlock(&tree->lock);
637         schedule();
638         spin_lock(&tree->lock);
639         finish_wait(&state->wq, &wait);
640 }
641
642 /*
643  * waits for one or more bits to clear on a range in the state tree.
644  * The range [start, end] is inclusive.
645  * The tree lock is taken by this function
646  */
647 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
648 {
649         struct extent_state *state;
650         struct rb_node *node;
651
652         spin_lock(&tree->lock);
653 again:
654         while (1) {
655                 /*
656                  * this search will find all the extents that end after
657                  * our range starts
658                  */
659                 node = tree_search(tree, start);
660                 if (!node)
661                         break;
662
663                 state = rb_entry(node, struct extent_state, rb_node);
664
665                 if (state->start > end)
666                         goto out;
667
668                 if (state->state & bits) {
669                         start = state->start;
670                         atomic_inc(&state->refs);
671                         wait_on_state(tree, state);
672                         free_extent_state(state);
673                         goto again;
674                 }
675                 start = state->end + 1;
676
677                 if (start > end)
678                         break;
679
680                 cond_resched_lock(&tree->lock);
681         }
682 out:
683         spin_unlock(&tree->lock);
684 }
685
686 static void set_state_bits(struct extent_io_tree *tree,
687                            struct extent_state *state,
688                            int *bits)
689 {
690         int bits_to_set = *bits & ~EXTENT_CTLBITS;
691
692         set_state_cb(tree, state, bits);
693         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
694                 u64 range = state->end - state->start + 1;
695                 tree->dirty_bytes += range;
696         }
697         state->state |= bits_to_set;
698 }
699
700 static void cache_state(struct extent_state *state,
701                         struct extent_state **cached_ptr)
702 {
703         if (cached_ptr && !(*cached_ptr)) {
704                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
705                         *cached_ptr = state;
706                         atomic_inc(&state->refs);
707                 }
708         }
709 }
710
711 static void uncache_state(struct extent_state **cached_ptr)
712 {
713         if (cached_ptr && (*cached_ptr)) {
714                 struct extent_state *state = *cached_ptr;
715                 *cached_ptr = NULL;
716                 free_extent_state(state);
717         }
718 }
719
720 /*
721  * set some bits on a range in the tree.  This may require allocations or
722  * sleeping, so the gfp mask is used to indicate what is allowed.
723  *
724  * If any of the exclusive bits are set, this will fail with -EEXIST if some
725  * part of the range already has the desired bits set.  The start of the
726  * existing range is returned in failed_start in this case.
727  *
728  * [start, end] is inclusive This takes the tree lock.
729  */
730
731 static int __must_check
732 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
733                  int bits, int exclusive_bits, u64 *failed_start,
734                  struct extent_state **cached_state, gfp_t mask)
735 {
736         struct extent_state *state;
737         struct extent_state *prealloc = NULL;
738         struct rb_node *node;
739         int err = 0;
740         u64 last_start;
741         u64 last_end;
742
743         bits |= EXTENT_FIRST_DELALLOC;
744 again:
745         if (!prealloc && (mask & __GFP_WAIT)) {
746                 prealloc = alloc_extent_state(mask);
747                 BUG_ON(!prealloc);
748         }
749
750         spin_lock(&tree->lock);
751         if (cached_state && *cached_state) {
752                 state = *cached_state;
753                 if (state->start <= start && state->end > start &&
754                     state->tree) {
755                         node = &state->rb_node;
756                         goto hit_next;
757                 }
758         }
759         /*
760          * this search will find all the extents that end after
761          * our range starts.
762          */
763         node = tree_search(tree, start);
764         if (!node) {
765                 prealloc = alloc_extent_state_atomic(prealloc);
766                 BUG_ON(!prealloc);
767                 err = insert_state(tree, prealloc, start, end, &bits);
768                 if (err)
769                         extent_io_tree_panic(tree, err);
770
771                 prealloc = NULL;
772                 goto out;
773         }
774         state = rb_entry(node, struct extent_state, rb_node);
775 hit_next:
776         last_start = state->start;
777         last_end = state->end;
778
779         /*
780          * | ---- desired range ---- |
781          * | state |
782          *
783          * Just lock what we found and keep going
784          */
785         if (state->start == start && state->end <= end) {
786                 if (state->state & exclusive_bits) {
787                         *failed_start = state->start;
788                         err = -EEXIST;
789                         goto out;
790                 }
791
792                 set_state_bits(tree, state, &bits);
793                 cache_state(state, cached_state);
794                 merge_state(tree, state);
795                 if (last_end == (u64)-1)
796                         goto out;
797                 start = last_end + 1;
798                 state = next_state(state);
799                 if (start < end && state && state->start == start &&
800                     !need_resched())
801                         goto hit_next;
802                 goto search_again;
803         }
804
805         /*
806          *     | ---- desired range ---- |
807          * | state |
808          *   or
809          * | ------------- state -------------- |
810          *
811          * We need to split the extent we found, and may flip bits on
812          * second half.
813          *
814          * If the extent we found extends past our
815          * range, we just split and search again.  It'll get split
816          * again the next time though.
817          *
818          * If the extent we found is inside our range, we set the
819          * desired bit on it.
820          */
821         if (state->start < start) {
822                 if (state->state & exclusive_bits) {
823                         *failed_start = start;
824                         err = -EEXIST;
825                         goto out;
826                 }
827
828                 prealloc = alloc_extent_state_atomic(prealloc);
829                 BUG_ON(!prealloc);
830                 err = split_state(tree, state, prealloc, start);
831                 if (err)
832                         extent_io_tree_panic(tree, err);
833
834                 prealloc = NULL;
835                 if (err)
836                         goto out;
837                 if (state->end <= end) {
838                         set_state_bits(tree, state, &bits);
839                         cache_state(state, cached_state);
840                         merge_state(tree, state);
841                         if (last_end == (u64)-1)
842                                 goto out;
843                         start = last_end + 1;
844                         state = next_state(state);
845                         if (start < end && state && state->start == start &&
846                             !need_resched())
847                                 goto hit_next;
848                 }
849                 goto search_again;
850         }
851         /*
852          * | ---- desired range ---- |
853          *     | state | or               | state |
854          *
855          * There's a hole, we need to insert something in it and
856          * ignore the extent we found.
857          */
858         if (state->start > start) {
859                 u64 this_end;
860                 if (end < last_start)
861                         this_end = end;
862                 else
863                         this_end = last_start - 1;
864
865                 prealloc = alloc_extent_state_atomic(prealloc);
866                 BUG_ON(!prealloc);
867
868                 /*
869                  * Avoid to free 'prealloc' if it can be merged with
870                  * the later extent.
871                  */
872                 err = insert_state(tree, prealloc, start, this_end,
873                                    &bits);
874                 if (err)
875                         extent_io_tree_panic(tree, err);
876
877                 cache_state(prealloc, cached_state);
878                 prealloc = NULL;
879                 start = this_end + 1;
880                 goto search_again;
881         }
882         /*
883          * | ---- desired range ---- |
884          *                        | state |
885          * We need to split the extent, and set the bit
886          * on the first half
887          */
888         if (state->start <= end && state->end > end) {
889                 if (state->state & exclusive_bits) {
890                         *failed_start = start;
891                         err = -EEXIST;
892                         goto out;
893                 }
894
895                 prealloc = alloc_extent_state_atomic(prealloc);
896                 BUG_ON(!prealloc);
897                 err = split_state(tree, state, prealloc, end + 1);
898                 if (err)
899                         extent_io_tree_panic(tree, err);
900
901                 set_state_bits(tree, prealloc, &bits);
902                 cache_state(prealloc, cached_state);
903                 merge_state(tree, prealloc);
904                 prealloc = NULL;
905                 goto out;
906         }
907
908         goto search_again;
909
910 out:
911         spin_unlock(&tree->lock);
912         if (prealloc)
913                 free_extent_state(prealloc);
914
915         return err;
916
917 search_again:
918         if (start > end)
919                 goto out;
920         spin_unlock(&tree->lock);
921         if (mask & __GFP_WAIT)
922                 cond_resched();
923         goto again;
924 }
925
926 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
927                    u64 *failed_start, struct extent_state **cached_state,
928                    gfp_t mask)
929 {
930         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
931                                 cached_state, mask);
932 }
933
934
935 /**
936  * convert_extent_bit - convert all bits in a given range from one bit to
937  *                      another
938  * @tree:       the io tree to search
939  * @start:      the start offset in bytes
940  * @end:        the end offset in bytes (inclusive)
941  * @bits:       the bits to set in this range
942  * @clear_bits: the bits to clear in this range
943  * @cached_state:       state that we're going to cache
944  * @mask:       the allocation mask
945  *
946  * This will go through and set bits for the given range.  If any states exist
947  * already in this range they are set with the given bit and cleared of the
948  * clear_bits.  This is only meant to be used by things that are mergeable, ie
949  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
950  * boundary bits like LOCK.
951  */
952 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
953                        int bits, int clear_bits,
954                        struct extent_state **cached_state, gfp_t mask)
955 {
956         struct extent_state *state;
957         struct extent_state *prealloc = NULL;
958         struct rb_node *node;
959         int err = 0;
960         u64 last_start;
961         u64 last_end;
962
963 again:
964         if (!prealloc && (mask & __GFP_WAIT)) {
965                 prealloc = alloc_extent_state(mask);
966                 if (!prealloc)
967                         return -ENOMEM;
968         }
969
970         spin_lock(&tree->lock);
971         if (cached_state && *cached_state) {
972                 state = *cached_state;
973                 if (state->start <= start && state->end > start &&
974                     state->tree) {
975                         node = &state->rb_node;
976                         goto hit_next;
977                 }
978         }
979
980         /*
981          * this search will find all the extents that end after
982          * our range starts.
983          */
984         node = tree_search(tree, start);
985         if (!node) {
986                 prealloc = alloc_extent_state_atomic(prealloc);
987                 if (!prealloc) {
988                         err = -ENOMEM;
989                         goto out;
990                 }
991                 err = insert_state(tree, prealloc, start, end, &bits);
992                 prealloc = NULL;
993                 if (err)
994                         extent_io_tree_panic(tree, err);
995                 goto out;
996         }
997         state = rb_entry(node, struct extent_state, rb_node);
998 hit_next:
999         last_start = state->start;
1000         last_end = state->end;
1001
1002         /*
1003          * | ---- desired range ---- |
1004          * | state |
1005          *
1006          * Just lock what we found and keep going
1007          */
1008         if (state->start == start && state->end <= end) {
1009                 set_state_bits(tree, state, &bits);
1010                 cache_state(state, cached_state);
1011                 state = clear_state_bit(tree, state, &clear_bits, 0);
1012                 if (last_end == (u64)-1)
1013                         goto out;
1014                 start = last_end + 1;
1015                 if (start < end && state && state->start == start &&
1016                     !need_resched())
1017                         goto hit_next;
1018                 goto search_again;
1019         }
1020
1021         /*
1022          *     | ---- desired range ---- |
1023          * | state |
1024          *   or
1025          * | ------------- state -------------- |
1026          *
1027          * We need to split the extent we found, and may flip bits on
1028          * second half.
1029          *
1030          * If the extent we found extends past our
1031          * range, we just split and search again.  It'll get split
1032          * again the next time though.
1033          *
1034          * If the extent we found is inside our range, we set the
1035          * desired bit on it.
1036          */
1037         if (state->start < start) {
1038                 prealloc = alloc_extent_state_atomic(prealloc);
1039                 if (!prealloc) {
1040                         err = -ENOMEM;
1041                         goto out;
1042                 }
1043                 err = split_state(tree, state, prealloc, start);
1044                 if (err)
1045                         extent_io_tree_panic(tree, err);
1046                 prealloc = NULL;
1047                 if (err)
1048                         goto out;
1049                 if (state->end <= end) {
1050                         set_state_bits(tree, state, &bits);
1051                         cache_state(state, cached_state);
1052                         state = clear_state_bit(tree, state, &clear_bits, 0);
1053                         if (last_end == (u64)-1)
1054                                 goto out;
1055                         start = last_end + 1;
1056                         if (start < end && state && state->start == start &&
1057                             !need_resched())
1058                                 goto hit_next;
1059                 }
1060                 goto search_again;
1061         }
1062         /*
1063          * | ---- desired range ---- |
1064          *     | state | or               | state |
1065          *
1066          * There's a hole, we need to insert something in it and
1067          * ignore the extent we found.
1068          */
1069         if (state->start > start) {
1070                 u64 this_end;
1071                 if (end < last_start)
1072                         this_end = end;
1073                 else
1074                         this_end = last_start - 1;
1075
1076                 prealloc = alloc_extent_state_atomic(prealloc);
1077                 if (!prealloc) {
1078                         err = -ENOMEM;
1079                         goto out;
1080                 }
1081
1082                 /*
1083                  * Avoid to free 'prealloc' if it can be merged with
1084                  * the later extent.
1085                  */
1086                 err = insert_state(tree, prealloc, start, this_end,
1087                                    &bits);
1088                 if (err)
1089                         extent_io_tree_panic(tree, err);
1090                 cache_state(prealloc, cached_state);
1091                 prealloc = NULL;
1092                 start = this_end + 1;
1093                 goto search_again;
1094         }
1095         /*
1096          * | ---- desired range ---- |
1097          *                        | state |
1098          * We need to split the extent, and set the bit
1099          * on the first half
1100          */
1101         if (state->start <= end && state->end > end) {
1102                 prealloc = alloc_extent_state_atomic(prealloc);
1103                 if (!prealloc) {
1104                         err = -ENOMEM;
1105                         goto out;
1106                 }
1107
1108                 err = split_state(tree, state, prealloc, end + 1);
1109                 if (err)
1110                         extent_io_tree_panic(tree, err);
1111
1112                 set_state_bits(tree, prealloc, &bits);
1113                 cache_state(prealloc, cached_state);
1114                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1115                 prealloc = NULL;
1116                 goto out;
1117         }
1118
1119         goto search_again;
1120
1121 out:
1122         spin_unlock(&tree->lock);
1123         if (prealloc)
1124                 free_extent_state(prealloc);
1125
1126         return err;
1127
1128 search_again:
1129         if (start > end)
1130                 goto out;
1131         spin_unlock(&tree->lock);
1132         if (mask & __GFP_WAIT)
1133                 cond_resched();
1134         goto again;
1135 }
1136
1137 /* wrappers around set/clear extent bit */
1138 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1139                      gfp_t mask)
1140 {
1141         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1142                               NULL, mask);
1143 }
1144
1145 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1146                     int bits, gfp_t mask)
1147 {
1148         return set_extent_bit(tree, start, end, bits, NULL,
1149                               NULL, mask);
1150 }
1151
1152 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1153                       int bits, gfp_t mask)
1154 {
1155         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1156 }
1157
1158 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1159                         struct extent_state **cached_state, gfp_t mask)
1160 {
1161         return set_extent_bit(tree, start, end,
1162                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1163                               NULL, cached_state, mask);
1164 }
1165
1166 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1167                       struct extent_state **cached_state, gfp_t mask)
1168 {
1169         return set_extent_bit(tree, start, end,
1170                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1171                               NULL, cached_state, mask);
1172 }
1173
1174 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1175                        gfp_t mask)
1176 {
1177         return clear_extent_bit(tree, start, end,
1178                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1179                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1180 }
1181
1182 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1183                      gfp_t mask)
1184 {
1185         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1186                               NULL, mask);
1187 }
1188
1189 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1190                         struct extent_state **cached_state, gfp_t mask)
1191 {
1192         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1193                               cached_state, mask);
1194 }
1195
1196 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1197                           struct extent_state **cached_state, gfp_t mask)
1198 {
1199         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1200                                 cached_state, mask);
1201 }
1202
1203 /*
1204  * either insert or lock state struct between start and end use mask to tell
1205  * us if waiting is desired.
1206  */
1207 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1208                      int bits, struct extent_state **cached_state)
1209 {
1210         int err;
1211         u64 failed_start;
1212         while (1) {
1213                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1214                                        EXTENT_LOCKED, &failed_start,
1215                                        cached_state, GFP_NOFS);
1216                 if (err == -EEXIST) {
1217                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1218                         start = failed_start;
1219                 } else
1220                         break;
1221                 WARN_ON(start > end);
1222         }
1223         return err;
1224 }
1225
1226 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1227 {
1228         return lock_extent_bits(tree, start, end, 0, NULL);
1229 }
1230
1231 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1232 {
1233         int err;
1234         u64 failed_start;
1235
1236         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1237                                &failed_start, NULL, GFP_NOFS);
1238         if (err == -EEXIST) {
1239                 if (failed_start > start)
1240                         clear_extent_bit(tree, start, failed_start - 1,
1241                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1242                 return 0;
1243         }
1244         return 1;
1245 }
1246
1247 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1248                          struct extent_state **cached, gfp_t mask)
1249 {
1250         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1251                                 mask);
1252 }
1253
1254 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1255 {
1256         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1257                                 GFP_NOFS);
1258 }
1259
1260 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1261 {
1262         unsigned long index = start >> PAGE_CACHE_SHIFT;
1263         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1264         struct page *page;
1265
1266         while (index <= end_index) {
1267                 page = find_get_page(inode->i_mapping, index);
1268                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1269                 clear_page_dirty_for_io(page);
1270                 page_cache_release(page);
1271                 index++;
1272         }
1273         return 0;
1274 }
1275
1276 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1277 {
1278         unsigned long index = start >> PAGE_CACHE_SHIFT;
1279         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1280         struct page *page;
1281
1282         while (index <= end_index) {
1283                 page = find_get_page(inode->i_mapping, index);
1284                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1285                 account_page_redirty(page);
1286                 __set_page_dirty_nobuffers(page);
1287                 page_cache_release(page);
1288                 index++;
1289         }
1290         return 0;
1291 }
1292
1293 /*
1294  * helper function to set both pages and extents in the tree writeback
1295  */
1296 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1297 {
1298         unsigned long index = start >> PAGE_CACHE_SHIFT;
1299         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1300         struct page *page;
1301
1302         while (index <= end_index) {
1303                 page = find_get_page(tree->mapping, index);
1304                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1305                 set_page_writeback(page);
1306                 page_cache_release(page);
1307                 index++;
1308         }
1309         return 0;
1310 }
1311
1312 /* find the first state struct with 'bits' set after 'start', and
1313  * return it.  tree->lock must be held.  NULL will returned if
1314  * nothing was found after 'start'
1315  */
1316 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1317                                                  u64 start, int bits)
1318 {
1319         struct rb_node *node;
1320         struct extent_state *state;
1321
1322         /*
1323          * this search will find all the extents that end after
1324          * our range starts.
1325          */
1326         node = tree_search(tree, start);
1327         if (!node)
1328                 goto out;
1329
1330         while (1) {
1331                 state = rb_entry(node, struct extent_state, rb_node);
1332                 if (state->end >= start && (state->state & bits))
1333                         return state;
1334
1335                 node = rb_next(node);
1336                 if (!node)
1337                         break;
1338         }
1339 out:
1340         return NULL;
1341 }
1342
1343 /*
1344  * find the first offset in the io tree with 'bits' set. zero is
1345  * returned if we find something, and *start_ret and *end_ret are
1346  * set to reflect the state struct that was found.
1347  *
1348  * If nothing was found, 1 is returned. If found something, return 0.
1349  */
1350 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1351                           u64 *start_ret, u64 *end_ret, int bits,
1352                           struct extent_state **cached_state)
1353 {
1354         struct extent_state *state;
1355         struct rb_node *n;
1356         int ret = 1;
1357
1358         spin_lock(&tree->lock);
1359         if (cached_state && *cached_state) {
1360                 state = *cached_state;
1361                 if (state->end == start - 1 && state->tree) {
1362                         n = rb_next(&state->rb_node);
1363                         while (n) {
1364                                 state = rb_entry(n, struct extent_state,
1365                                                  rb_node);
1366                                 if (state->state & bits)
1367                                         goto got_it;
1368                                 n = rb_next(n);
1369                         }
1370                         free_extent_state(*cached_state);
1371                         *cached_state = NULL;
1372                         goto out;
1373                 }
1374                 free_extent_state(*cached_state);
1375                 *cached_state = NULL;
1376         }
1377
1378         state = find_first_extent_bit_state(tree, start, bits);
1379 got_it:
1380         if (state) {
1381                 cache_state(state, cached_state);
1382                 *start_ret = state->start;
1383                 *end_ret = state->end;
1384                 ret = 0;
1385         }
1386 out:
1387         spin_unlock(&tree->lock);
1388         return ret;
1389 }
1390
1391 /*
1392  * find a contiguous range of bytes in the file marked as delalloc, not
1393  * more than 'max_bytes'.  start and end are used to return the range,
1394  *
1395  * 1 is returned if we find something, 0 if nothing was in the tree
1396  */
1397 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1398                                         u64 *start, u64 *end, u64 max_bytes,
1399                                         struct extent_state **cached_state)
1400 {
1401         struct rb_node *node;
1402         struct extent_state *state;
1403         u64 cur_start = *start;
1404         u64 found = 0;
1405         u64 total_bytes = 0;
1406
1407         spin_lock(&tree->lock);
1408
1409         /*
1410          * this search will find all the extents that end after
1411          * our range starts.
1412          */
1413         node = tree_search(tree, cur_start);
1414         if (!node) {
1415                 if (!found)
1416                         *end = (u64)-1;
1417                 goto out;
1418         }
1419
1420         while (1) {
1421                 state = rb_entry(node, struct extent_state, rb_node);
1422                 if (found && (state->start != cur_start ||
1423                               (state->state & EXTENT_BOUNDARY))) {
1424                         goto out;
1425                 }
1426                 if (!(state->state & EXTENT_DELALLOC)) {
1427                         if (!found)
1428                                 *end = state->end;
1429                         goto out;
1430                 }
1431                 if (!found) {
1432                         *start = state->start;
1433                         *cached_state = state;
1434                         atomic_inc(&state->refs);
1435                 }
1436                 found++;
1437                 *end = state->end;
1438                 cur_start = state->end + 1;
1439                 node = rb_next(node);
1440                 if (!node)
1441                         break;
1442                 total_bytes += state->end - state->start + 1;
1443                 if (total_bytes >= max_bytes)
1444                         break;
1445         }
1446 out:
1447         spin_unlock(&tree->lock);
1448         return found;
1449 }
1450
1451 static noinline void __unlock_for_delalloc(struct inode *inode,
1452                                            struct page *locked_page,
1453                                            u64 start, u64 end)
1454 {
1455         int ret;
1456         struct page *pages[16];
1457         unsigned long index = start >> PAGE_CACHE_SHIFT;
1458         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1459         unsigned long nr_pages = end_index - index + 1;
1460         int i;
1461
1462         if (index == locked_page->index && end_index == index)
1463                 return;
1464
1465         while (nr_pages > 0) {
1466                 ret = find_get_pages_contig(inode->i_mapping, index,
1467                                      min_t(unsigned long, nr_pages,
1468                                      ARRAY_SIZE(pages)), pages);
1469                 for (i = 0; i < ret; i++) {
1470                         if (pages[i] != locked_page)
1471                                 unlock_page(pages[i]);
1472                         page_cache_release(pages[i]);
1473                 }
1474                 nr_pages -= ret;
1475                 index += ret;
1476                 cond_resched();
1477         }
1478 }
1479
1480 static noinline int lock_delalloc_pages(struct inode *inode,
1481                                         struct page *locked_page,
1482                                         u64 delalloc_start,
1483                                         u64 delalloc_end)
1484 {
1485         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1486         unsigned long start_index = index;
1487         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1488         unsigned long pages_locked = 0;
1489         struct page *pages[16];
1490         unsigned long nrpages;
1491         int ret;
1492         int i;
1493
1494         /* the caller is responsible for locking the start index */
1495         if (index == locked_page->index && index == end_index)
1496                 return 0;
1497
1498         /* skip the page at the start index */
1499         nrpages = end_index - index + 1;
1500         while (nrpages > 0) {
1501                 ret = find_get_pages_contig(inode->i_mapping, index,
1502                                      min_t(unsigned long,
1503                                      nrpages, ARRAY_SIZE(pages)), pages);
1504                 if (ret == 0) {
1505                         ret = -EAGAIN;
1506                         goto done;
1507                 }
1508                 /* now we have an array of pages, lock them all */
1509                 for (i = 0; i < ret; i++) {
1510                         /*
1511                          * the caller is taking responsibility for
1512                          * locked_page
1513                          */
1514                         if (pages[i] != locked_page) {
1515                                 lock_page(pages[i]);
1516                                 if (!PageDirty(pages[i]) ||
1517                                     pages[i]->mapping != inode->i_mapping) {
1518                                         ret = -EAGAIN;
1519                                         unlock_page(pages[i]);
1520                                         page_cache_release(pages[i]);
1521                                         goto done;
1522                                 }
1523                         }
1524                         page_cache_release(pages[i]);
1525                         pages_locked++;
1526                 }
1527                 nrpages -= ret;
1528                 index += ret;
1529                 cond_resched();
1530         }
1531         ret = 0;
1532 done:
1533         if (ret && pages_locked) {
1534                 __unlock_for_delalloc(inode, locked_page,
1535                               delalloc_start,
1536                               ((u64)(start_index + pages_locked - 1)) <<
1537                               PAGE_CACHE_SHIFT);
1538         }
1539         return ret;
1540 }
1541
1542 /*
1543  * find a contiguous range of bytes in the file marked as delalloc, not
1544  * more than 'max_bytes'.  start and end are used to return the range,
1545  *
1546  * 1 is returned if we find something, 0 if nothing was in the tree
1547  */
1548 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1549                                              struct extent_io_tree *tree,
1550                                              struct page *locked_page,
1551                                              u64 *start, u64 *end,
1552                                              u64 max_bytes)
1553 {
1554         u64 delalloc_start;
1555         u64 delalloc_end;
1556         u64 found;
1557         struct extent_state *cached_state = NULL;
1558         int ret;
1559         int loops = 0;
1560
1561 again:
1562         /* step one, find a bunch of delalloc bytes starting at start */
1563         delalloc_start = *start;
1564         delalloc_end = 0;
1565         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1566                                     max_bytes, &cached_state);
1567         if (!found || delalloc_end <= *start) {
1568                 *start = delalloc_start;
1569                 *end = delalloc_end;
1570                 free_extent_state(cached_state);
1571                 return found;
1572         }
1573
1574         /*
1575          * start comes from the offset of locked_page.  We have to lock
1576          * pages in order, so we can't process delalloc bytes before
1577          * locked_page
1578          */
1579         if (delalloc_start < *start)
1580                 delalloc_start = *start;
1581
1582         /*
1583          * make sure to limit the number of pages we try to lock down
1584          * if we're looping.
1585          */
1586         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1587                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1588
1589         /* step two, lock all the pages after the page that has start */
1590         ret = lock_delalloc_pages(inode, locked_page,
1591                                   delalloc_start, delalloc_end);
1592         if (ret == -EAGAIN) {
1593                 /* some of the pages are gone, lets avoid looping by
1594                  * shortening the size of the delalloc range we're searching
1595                  */
1596                 free_extent_state(cached_state);
1597                 if (!loops) {
1598                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1599                         max_bytes = PAGE_CACHE_SIZE - offset;
1600                         loops = 1;
1601                         goto again;
1602                 } else {
1603                         found = 0;
1604                         goto out_failed;
1605                 }
1606         }
1607         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1608
1609         /* step three, lock the state bits for the whole range */
1610         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1611
1612         /* then test to make sure it is all still delalloc */
1613         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1614                              EXTENT_DELALLOC, 1, cached_state);
1615         if (!ret) {
1616                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1617                                      &cached_state, GFP_NOFS);
1618                 __unlock_for_delalloc(inode, locked_page,
1619                               delalloc_start, delalloc_end);
1620                 cond_resched();
1621                 goto again;
1622         }
1623         free_extent_state(cached_state);
1624         *start = delalloc_start;
1625         *end = delalloc_end;
1626 out_failed:
1627         return found;
1628 }
1629
1630 int extent_clear_unlock_delalloc(struct inode *inode,
1631                                 struct extent_io_tree *tree,
1632                                 u64 start, u64 end, struct page *locked_page,
1633                                 unsigned long op)
1634 {
1635         int ret;
1636         struct page *pages[16];
1637         unsigned long index = start >> PAGE_CACHE_SHIFT;
1638         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1639         unsigned long nr_pages = end_index - index + 1;
1640         int i;
1641         int clear_bits = 0;
1642
1643         if (op & EXTENT_CLEAR_UNLOCK)
1644                 clear_bits |= EXTENT_LOCKED;
1645         if (op & EXTENT_CLEAR_DIRTY)
1646                 clear_bits |= EXTENT_DIRTY;
1647
1648         if (op & EXTENT_CLEAR_DELALLOC)
1649                 clear_bits |= EXTENT_DELALLOC;
1650
1651         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1652         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1653                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1654                     EXTENT_SET_PRIVATE2)))
1655                 return 0;
1656
1657         while (nr_pages > 0) {
1658                 ret = find_get_pages_contig(inode->i_mapping, index,
1659                                      min_t(unsigned long,
1660                                      nr_pages, ARRAY_SIZE(pages)), pages);
1661                 for (i = 0; i < ret; i++) {
1662
1663                         if (op & EXTENT_SET_PRIVATE2)
1664                                 SetPagePrivate2(pages[i]);
1665
1666                         if (pages[i] == locked_page) {
1667                                 page_cache_release(pages[i]);
1668                                 continue;
1669                         }
1670                         if (op & EXTENT_CLEAR_DIRTY)
1671                                 clear_page_dirty_for_io(pages[i]);
1672                         if (op & EXTENT_SET_WRITEBACK)
1673                                 set_page_writeback(pages[i]);
1674                         if (op & EXTENT_END_WRITEBACK)
1675                                 end_page_writeback(pages[i]);
1676                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1677                                 unlock_page(pages[i]);
1678                         page_cache_release(pages[i]);
1679                 }
1680                 nr_pages -= ret;
1681                 index += ret;
1682                 cond_resched();
1683         }
1684         return 0;
1685 }
1686
1687 /*
1688  * count the number of bytes in the tree that have a given bit(s)
1689  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1690  * cached.  The total number found is returned.
1691  */
1692 u64 count_range_bits(struct extent_io_tree *tree,
1693                      u64 *start, u64 search_end, u64 max_bytes,
1694                      unsigned long bits, int contig)
1695 {
1696         struct rb_node *node;
1697         struct extent_state *state;
1698         u64 cur_start = *start;
1699         u64 total_bytes = 0;
1700         u64 last = 0;
1701         int found = 0;
1702
1703         if (search_end <= cur_start) {
1704                 WARN_ON(1);
1705                 return 0;
1706         }
1707
1708         spin_lock(&tree->lock);
1709         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1710                 total_bytes = tree->dirty_bytes;
1711                 goto out;
1712         }
1713         /*
1714          * this search will find all the extents that end after
1715          * our range starts.
1716          */
1717         node = tree_search(tree, cur_start);
1718         if (!node)
1719                 goto out;
1720
1721         while (1) {
1722                 state = rb_entry(node, struct extent_state, rb_node);
1723                 if (state->start > search_end)
1724                         break;
1725                 if (contig && found && state->start > last + 1)
1726                         break;
1727                 if (state->end >= cur_start && (state->state & bits) == bits) {
1728                         total_bytes += min(search_end, state->end) + 1 -
1729                                        max(cur_start, state->start);
1730                         if (total_bytes >= max_bytes)
1731                                 break;
1732                         if (!found) {
1733                                 *start = max(cur_start, state->start);
1734                                 found = 1;
1735                         }
1736                         last = state->end;
1737                 } else if (contig && found) {
1738                         break;
1739                 }
1740                 node = rb_next(node);
1741                 if (!node)
1742                         break;
1743         }
1744 out:
1745         spin_unlock(&tree->lock);
1746         return total_bytes;
1747 }
1748
1749 /*
1750  * set the private field for a given byte offset in the tree.  If there isn't
1751  * an extent_state there already, this does nothing.
1752  */
1753 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1754 {
1755         struct rb_node *node;
1756         struct extent_state *state;
1757         int ret = 0;
1758
1759         spin_lock(&tree->lock);
1760         /*
1761          * this search will find all the extents that end after
1762          * our range starts.
1763          */
1764         node = tree_search(tree, start);
1765         if (!node) {
1766                 ret = -ENOENT;
1767                 goto out;
1768         }
1769         state = rb_entry(node, struct extent_state, rb_node);
1770         if (state->start != start) {
1771                 ret = -ENOENT;
1772                 goto out;
1773         }
1774         state->private = private;
1775 out:
1776         spin_unlock(&tree->lock);
1777         return ret;
1778 }
1779
1780 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1781 {
1782         struct rb_node *node;
1783         struct extent_state *state;
1784         int ret = 0;
1785
1786         spin_lock(&tree->lock);
1787         /*
1788          * this search will find all the extents that end after
1789          * our range starts.
1790          */
1791         node = tree_search(tree, start);
1792         if (!node) {
1793                 ret = -ENOENT;
1794                 goto out;
1795         }
1796         state = rb_entry(node, struct extent_state, rb_node);
1797         if (state->start != start) {
1798                 ret = -ENOENT;
1799                 goto out;
1800         }
1801         *private = state->private;
1802 out:
1803         spin_unlock(&tree->lock);
1804         return ret;
1805 }
1806
1807 /*
1808  * searches a range in the state tree for a given mask.
1809  * If 'filled' == 1, this returns 1 only if every extent in the tree
1810  * has the bits set.  Otherwise, 1 is returned if any bit in the
1811  * range is found set.
1812  */
1813 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1814                    int bits, int filled, struct extent_state *cached)
1815 {
1816         struct extent_state *state = NULL;
1817         struct rb_node *node;
1818         int bitset = 0;
1819
1820         spin_lock(&tree->lock);
1821         if (cached && cached->tree && cached->start <= start &&
1822             cached->end > start)
1823                 node = &cached->rb_node;
1824         else
1825                 node = tree_search(tree, start);
1826         while (node && start <= end) {
1827                 state = rb_entry(node, struct extent_state, rb_node);
1828
1829                 if (filled && state->start > start) {
1830                         bitset = 0;
1831                         break;
1832                 }
1833
1834                 if (state->start > end)
1835                         break;
1836
1837                 if (state->state & bits) {
1838                         bitset = 1;
1839                         if (!filled)
1840                                 break;
1841                 } else if (filled) {
1842                         bitset = 0;
1843                         break;
1844                 }
1845
1846                 if (state->end == (u64)-1)
1847                         break;
1848
1849                 start = state->end + 1;
1850                 if (start > end)
1851                         break;
1852                 node = rb_next(node);
1853                 if (!node) {
1854                         if (filled)
1855                                 bitset = 0;
1856                         break;
1857                 }
1858         }
1859         spin_unlock(&tree->lock);
1860         return bitset;
1861 }
1862
1863 /*
1864  * helper function to set a given page up to date if all the
1865  * extents in the tree for that page are up to date
1866  */
1867 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1868 {
1869         u64 start = page_offset(page);
1870         u64 end = start + PAGE_CACHE_SIZE - 1;
1871         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1872                 SetPageUptodate(page);
1873 }
1874
1875 /*
1876  * helper function to unlock a page if all the extents in the tree
1877  * for that page are unlocked
1878  */
1879 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1880 {
1881         u64 start = page_offset(page);
1882         u64 end = start + PAGE_CACHE_SIZE - 1;
1883         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1884                 unlock_page(page);
1885 }
1886
1887 /*
1888  * helper function to end page writeback if all the extents
1889  * in the tree for that page are done with writeback
1890  */
1891 static void check_page_writeback(struct extent_io_tree *tree,
1892                                  struct page *page)
1893 {
1894         end_page_writeback(page);
1895 }
1896
1897 /*
1898  * When IO fails, either with EIO or csum verification fails, we
1899  * try other mirrors that might have a good copy of the data.  This
1900  * io_failure_record is used to record state as we go through all the
1901  * mirrors.  If another mirror has good data, the page is set up to date
1902  * and things continue.  If a good mirror can't be found, the original
1903  * bio end_io callback is called to indicate things have failed.
1904  */
1905 struct io_failure_record {
1906         struct page *page;
1907         u64 start;
1908         u64 len;
1909         u64 logical;
1910         unsigned long bio_flags;
1911         int this_mirror;
1912         int failed_mirror;
1913         int in_validation;
1914 };
1915
1916 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1917                                 int did_repair)
1918 {
1919         int ret;
1920         int err = 0;
1921         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1922
1923         set_state_private(failure_tree, rec->start, 0);
1924         ret = clear_extent_bits(failure_tree, rec->start,
1925                                 rec->start + rec->len - 1,
1926                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1927         if (ret)
1928                 err = ret;
1929
1930         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1931                                 rec->start + rec->len - 1,
1932                                 EXTENT_DAMAGED, GFP_NOFS);
1933         if (ret && !err)
1934                 err = ret;
1935
1936         kfree(rec);
1937         return err;
1938 }
1939
1940 static void repair_io_failure_callback(struct bio *bio, int err)
1941 {
1942         complete(bio->bi_private);
1943 }
1944
1945 /*
1946  * this bypasses the standard btrfs submit functions deliberately, as
1947  * the standard behavior is to write all copies in a raid setup. here we only
1948  * want to write the one bad copy. so we do the mapping for ourselves and issue
1949  * submit_bio directly.
1950  * to avoid any synchronization issues, wait for the data after writing, which
1951  * actually prevents the read that triggered the error from finishing.
1952  * currently, there can be no more than two copies of every data bit. thus,
1953  * exactly one rewrite is required.
1954  */
1955 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1956                         u64 length, u64 logical, struct page *page,
1957                         int mirror_num)
1958 {
1959         struct bio *bio;
1960         struct btrfs_device *dev;
1961         DECLARE_COMPLETION_ONSTACK(compl);
1962         u64 map_length = 0;
1963         u64 sector;
1964         struct btrfs_bio *bbio = NULL;
1965         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1966         int ret;
1967
1968         BUG_ON(!mirror_num);
1969
1970         /* we can't repair anything in raid56 yet */
1971         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1972                 return 0;
1973
1974         bio = bio_alloc(GFP_NOFS, 1);
1975         if (!bio)
1976                 return -EIO;
1977         bio->bi_private = &compl;
1978         bio->bi_end_io = repair_io_failure_callback;
1979         bio->bi_size = 0;
1980         map_length = length;
1981
1982         ret = btrfs_map_block(fs_info, WRITE, logical,
1983                               &map_length, &bbio, mirror_num);
1984         if (ret) {
1985                 bio_put(bio);
1986                 return -EIO;
1987         }
1988         BUG_ON(mirror_num != bbio->mirror_num);
1989         sector = bbio->stripes[mirror_num-1].physical >> 9;
1990         bio->bi_sector = sector;
1991         dev = bbio->stripes[mirror_num-1].dev;
1992         kfree(bbio);
1993         if (!dev || !dev->bdev || !dev->writeable) {
1994                 bio_put(bio);
1995                 return -EIO;
1996         }
1997         bio->bi_bdev = dev->bdev;
1998         bio_add_page(bio, page, length, start - page_offset(page));
1999         btrfsic_submit_bio(WRITE_SYNC, bio);
2000         wait_for_completion(&compl);
2001
2002         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2003                 /* try to remap that extent elsewhere? */
2004                 bio_put(bio);
2005                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2006                 return -EIO;
2007         }
2008
2009         printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2010                       "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2011                       start, rcu_str_deref(dev->name), sector);
2012
2013         bio_put(bio);
2014         return 0;
2015 }
2016
2017 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2018                          int mirror_num)
2019 {
2020         u64 start = eb->start;
2021         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2022         int ret = 0;
2023
2024         for (i = 0; i < num_pages; i++) {
2025                 struct page *p = extent_buffer_page(eb, i);
2026                 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2027                                         start, p, mirror_num);
2028                 if (ret)
2029                         break;
2030                 start += PAGE_CACHE_SIZE;
2031         }
2032
2033         return ret;
2034 }
2035
2036 /*
2037  * each time an IO finishes, we do a fast check in the IO failure tree
2038  * to see if we need to process or clean up an io_failure_record
2039  */
2040 static int clean_io_failure(u64 start, struct page *page)
2041 {
2042         u64 private;
2043         u64 private_failure;
2044         struct io_failure_record *failrec;
2045         struct btrfs_fs_info *fs_info;
2046         struct extent_state *state;
2047         int num_copies;
2048         int did_repair = 0;
2049         int ret;
2050         struct inode *inode = page->mapping->host;
2051
2052         private = 0;
2053         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2054                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2055         if (!ret)
2056                 return 0;
2057
2058         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2059                                 &private_failure);
2060         if (ret)
2061                 return 0;
2062
2063         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2064         BUG_ON(!failrec->this_mirror);
2065
2066         if (failrec->in_validation) {
2067                 /* there was no real error, just free the record */
2068                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2069                          failrec->start);
2070                 did_repair = 1;
2071                 goto out;
2072         }
2073
2074         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2075         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2076                                             failrec->start,
2077                                             EXTENT_LOCKED);
2078         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2079
2080         if (state && state->start == failrec->start) {
2081                 fs_info = BTRFS_I(inode)->root->fs_info;
2082                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2083                                               failrec->len);
2084                 if (num_copies > 1)  {
2085                         ret = repair_io_failure(fs_info, start, failrec->len,
2086                                                 failrec->logical, page,
2087                                                 failrec->failed_mirror);
2088                         did_repair = !ret;
2089                 }
2090                 ret = 0;
2091         }
2092
2093 out:
2094         if (!ret)
2095                 ret = free_io_failure(inode, failrec, did_repair);
2096
2097         return ret;
2098 }
2099
2100 /*
2101  * this is a generic handler for readpage errors (default
2102  * readpage_io_failed_hook). if other copies exist, read those and write back
2103  * good data to the failed position. does not investigate in remapping the
2104  * failed extent elsewhere, hoping the device will be smart enough to do this as
2105  * needed
2106  */
2107
2108 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2109                                 u64 start, u64 end, int failed_mirror,
2110                                 struct extent_state *state)
2111 {
2112         struct io_failure_record *failrec = NULL;
2113         u64 private;
2114         struct extent_map *em;
2115         struct inode *inode = page->mapping->host;
2116         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2117         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2118         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2119         struct bio *bio;
2120         int num_copies;
2121         int ret;
2122         int read_mode;
2123         u64 logical;
2124
2125         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2126
2127         ret = get_state_private(failure_tree, start, &private);
2128         if (ret) {
2129                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2130                 if (!failrec)
2131                         return -ENOMEM;
2132                 failrec->start = start;
2133                 failrec->len = end - start + 1;
2134                 failrec->this_mirror = 0;
2135                 failrec->bio_flags = 0;
2136                 failrec->in_validation = 0;
2137
2138                 read_lock(&em_tree->lock);
2139                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2140                 if (!em) {
2141                         read_unlock(&em_tree->lock);
2142                         kfree(failrec);
2143                         return -EIO;
2144                 }
2145
2146                 if (em->start > start || em->start + em->len < start) {
2147                         free_extent_map(em);
2148                         em = NULL;
2149                 }
2150                 read_unlock(&em_tree->lock);
2151
2152                 if (!em) {
2153                         kfree(failrec);
2154                         return -EIO;
2155                 }
2156                 logical = start - em->start;
2157                 logical = em->block_start + logical;
2158                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2159                         logical = em->block_start;
2160                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2161                         extent_set_compress_type(&failrec->bio_flags,
2162                                                  em->compress_type);
2163                 }
2164                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2165                          "len=%llu\n", logical, start, failrec->len);
2166                 failrec->logical = logical;
2167                 free_extent_map(em);
2168
2169                 /* set the bits in the private failure tree */
2170                 ret = set_extent_bits(failure_tree, start, end,
2171                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2172                 if (ret >= 0)
2173                         ret = set_state_private(failure_tree, start,
2174                                                 (u64)(unsigned long)failrec);
2175                 /* set the bits in the inode's tree */
2176                 if (ret >= 0)
2177                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2178                                                 GFP_NOFS);
2179                 if (ret < 0) {
2180                         kfree(failrec);
2181                         return ret;
2182                 }
2183         } else {
2184                 failrec = (struct io_failure_record *)(unsigned long)private;
2185                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2186                          "start=%llu, len=%llu, validation=%d\n",
2187                          failrec->logical, failrec->start, failrec->len,
2188                          failrec->in_validation);
2189                 /*
2190                  * when data can be on disk more than twice, add to failrec here
2191                  * (e.g. with a list for failed_mirror) to make
2192                  * clean_io_failure() clean all those errors at once.
2193                  */
2194         }
2195         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2196                                       failrec->logical, failrec->len);
2197         if (num_copies == 1) {
2198                 /*
2199                  * we only have a single copy of the data, so don't bother with
2200                  * all the retry and error correction code that follows. no
2201                  * matter what the error is, it is very likely to persist.
2202                  */
2203                 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2204                          "state=%p, num_copies=%d, next_mirror %d, "
2205                          "failed_mirror %d\n", state, num_copies,
2206                          failrec->this_mirror, failed_mirror);
2207                 free_io_failure(inode, failrec, 0);
2208                 return -EIO;
2209         }
2210
2211         if (!state) {
2212                 spin_lock(&tree->lock);
2213                 state = find_first_extent_bit_state(tree, failrec->start,
2214                                                     EXTENT_LOCKED);
2215                 if (state && state->start != failrec->start)
2216                         state = NULL;
2217                 spin_unlock(&tree->lock);
2218         }
2219
2220         /*
2221          * there are two premises:
2222          *      a) deliver good data to the caller
2223          *      b) correct the bad sectors on disk
2224          */
2225         if (failed_bio->bi_vcnt > 1) {
2226                 /*
2227                  * to fulfill b), we need to know the exact failing sectors, as
2228                  * we don't want to rewrite any more than the failed ones. thus,
2229                  * we need separate read requests for the failed bio
2230                  *
2231                  * if the following BUG_ON triggers, our validation request got
2232                  * merged. we need separate requests for our algorithm to work.
2233                  */
2234                 BUG_ON(failrec->in_validation);
2235                 failrec->in_validation = 1;
2236                 failrec->this_mirror = failed_mirror;
2237                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2238         } else {
2239                 /*
2240                  * we're ready to fulfill a) and b) alongside. get a good copy
2241                  * of the failed sector and if we succeed, we have setup
2242                  * everything for repair_io_failure to do the rest for us.
2243                  */
2244                 if (failrec->in_validation) {
2245                         BUG_ON(failrec->this_mirror != failed_mirror);
2246                         failrec->in_validation = 0;
2247                         failrec->this_mirror = 0;
2248                 }
2249                 failrec->failed_mirror = failed_mirror;
2250                 failrec->this_mirror++;
2251                 if (failrec->this_mirror == failed_mirror)
2252                         failrec->this_mirror++;
2253                 read_mode = READ_SYNC;
2254         }
2255
2256         if (!state || failrec->this_mirror > num_copies) {
2257                 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2258                          "next_mirror %d, failed_mirror %d\n", state,
2259                          num_copies, failrec->this_mirror, failed_mirror);
2260                 free_io_failure(inode, failrec, 0);
2261                 return -EIO;
2262         }
2263
2264         bio = bio_alloc(GFP_NOFS, 1);
2265         if (!bio) {
2266                 free_io_failure(inode, failrec, 0);
2267                 return -EIO;
2268         }
2269         bio->bi_private = state;
2270         bio->bi_end_io = failed_bio->bi_end_io;
2271         bio->bi_sector = failrec->logical >> 9;
2272         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2273         bio->bi_size = 0;
2274
2275         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2276
2277         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2278                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2279                  failrec->this_mirror, num_copies, failrec->in_validation);
2280
2281         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2282                                          failrec->this_mirror,
2283                                          failrec->bio_flags, 0);
2284         return ret;
2285 }
2286
2287 /* lots and lots of room for performance fixes in the end_bio funcs */
2288
2289 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2290 {
2291         int uptodate = (err == 0);
2292         struct extent_io_tree *tree;
2293         int ret;
2294
2295         tree = &BTRFS_I(page->mapping->host)->io_tree;
2296
2297         if (tree->ops && tree->ops->writepage_end_io_hook) {
2298                 ret = tree->ops->writepage_end_io_hook(page, start,
2299                                                end, NULL, uptodate);
2300                 if (ret)
2301                         uptodate = 0;
2302         }
2303
2304         if (!uptodate) {
2305                 ClearPageUptodate(page);
2306                 SetPageError(page);
2307         }
2308         return 0;
2309 }
2310
2311 /*
2312  * after a writepage IO is done, we need to:
2313  * clear the uptodate bits on error
2314  * clear the writeback bits in the extent tree for this IO
2315  * end_page_writeback if the page has no more pending IO
2316  *
2317  * Scheduling is not allowed, so the extent state tree is expected
2318  * to have one and only one object corresponding to this IO.
2319  */
2320 static void end_bio_extent_writepage(struct bio *bio, int err)
2321 {
2322         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2323         struct extent_io_tree *tree;
2324         u64 start;
2325         u64 end;
2326         int whole_page;
2327
2328         do {
2329                 struct page *page = bvec->bv_page;
2330                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2331
2332                 start = page_offset(page) + bvec->bv_offset;
2333                 end = start + bvec->bv_len - 1;
2334
2335                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2336                         whole_page = 1;
2337                 else
2338                         whole_page = 0;
2339
2340                 if (--bvec >= bio->bi_io_vec)
2341                         prefetchw(&bvec->bv_page->flags);
2342
2343                 if (end_extent_writepage(page, err, start, end))
2344                         continue;
2345
2346                 if (whole_page)
2347                         end_page_writeback(page);
2348                 else
2349                         check_page_writeback(tree, page);
2350         } while (bvec >= bio->bi_io_vec);
2351
2352         bio_put(bio);
2353 }
2354
2355 /*
2356  * after a readpage IO is done, we need to:
2357  * clear the uptodate bits on error
2358  * set the uptodate bits if things worked
2359  * set the page up to date if all extents in the tree are uptodate
2360  * clear the lock bit in the extent tree
2361  * unlock the page if there are no other extents locked for it
2362  *
2363  * Scheduling is not allowed, so the extent state tree is expected
2364  * to have one and only one object corresponding to this IO.
2365  */
2366 static void end_bio_extent_readpage(struct bio *bio, int err)
2367 {
2368         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2369         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2370         struct bio_vec *bvec = bio->bi_io_vec;
2371         struct extent_io_tree *tree;
2372         u64 start;
2373         u64 end;
2374         int whole_page;
2375         int mirror;
2376         int ret;
2377
2378         if (err)
2379                 uptodate = 0;
2380
2381         do {
2382                 struct page *page = bvec->bv_page;
2383                 struct extent_state *cached = NULL;
2384                 struct extent_state *state;
2385
2386                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2387                          "mirror=%ld\n", (u64)bio->bi_sector, err,
2388                          (long int)bio->bi_bdev);
2389                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2390
2391                 start = page_offset(page) + bvec->bv_offset;
2392                 end = start + bvec->bv_len - 1;
2393
2394                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2395                         whole_page = 1;
2396                 else
2397                         whole_page = 0;
2398
2399                 if (++bvec <= bvec_end)
2400                         prefetchw(&bvec->bv_page->flags);
2401
2402                 spin_lock(&tree->lock);
2403                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2404                 if (state && state->start == start) {
2405                         /*
2406                          * take a reference on the state, unlock will drop
2407                          * the ref
2408                          */
2409                         cache_state(state, &cached);
2410                 }
2411                 spin_unlock(&tree->lock);
2412
2413                 mirror = (int)(unsigned long)bio->bi_bdev;
2414                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2415                         ret = tree->ops->readpage_end_io_hook(page, start, end,
2416                                                               state, mirror);
2417                         if (ret)
2418                                 uptodate = 0;
2419                         else
2420                                 clean_io_failure(start, page);
2421                 }
2422
2423                 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2424                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2425                         if (!ret && !err &&
2426                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2427                                 uptodate = 1;
2428                 } else if (!uptodate) {
2429                         /*
2430                          * The generic bio_readpage_error handles errors the
2431                          * following way: If possible, new read requests are
2432                          * created and submitted and will end up in
2433                          * end_bio_extent_readpage as well (if we're lucky, not
2434                          * in the !uptodate case). In that case it returns 0 and
2435                          * we just go on with the next page in our bio. If it
2436                          * can't handle the error it will return -EIO and we
2437                          * remain responsible for that page.
2438                          */
2439                         ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2440                         if (ret == 0) {
2441                                 uptodate =
2442                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2443                                 if (err)
2444                                         uptodate = 0;
2445                                 uncache_state(&cached);
2446                                 continue;
2447                         }
2448                 }
2449
2450                 if (uptodate && tree->track_uptodate) {
2451                         set_extent_uptodate(tree, start, end, &cached,
2452                                             GFP_ATOMIC);
2453                 }
2454                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2455
2456                 if (whole_page) {
2457                         if (uptodate) {
2458                                 SetPageUptodate(page);
2459                         } else {
2460                                 ClearPageUptodate(page);
2461                                 SetPageError(page);
2462                         }
2463                         unlock_page(page);
2464                 } else {
2465                         if (uptodate) {
2466                                 check_page_uptodate(tree, page);
2467                         } else {
2468                                 ClearPageUptodate(page);
2469                                 SetPageError(page);
2470                         }
2471                         check_page_locked(tree, page);
2472                 }
2473         } while (bvec <= bvec_end);
2474
2475         bio_put(bio);
2476 }
2477
2478 struct bio *
2479 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2480                 gfp_t gfp_flags)
2481 {
2482         struct bio *bio;
2483
2484         bio = bio_alloc(gfp_flags, nr_vecs);
2485
2486         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2487                 while (!bio && (nr_vecs /= 2))
2488                         bio = bio_alloc(gfp_flags, nr_vecs);
2489         }
2490
2491         if (bio) {
2492                 bio->bi_size = 0;
2493                 bio->bi_bdev = bdev;
2494                 bio->bi_sector = first_sector;
2495         }
2496         return bio;
2497 }
2498
2499 static int __must_check submit_one_bio(int rw, struct bio *bio,
2500                                        int mirror_num, unsigned long bio_flags)
2501 {
2502         int ret = 0;
2503         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2504         struct page *page = bvec->bv_page;
2505         struct extent_io_tree *tree = bio->bi_private;
2506         u64 start;
2507
2508         start = page_offset(page) + bvec->bv_offset;
2509
2510         bio->bi_private = NULL;
2511
2512         bio_get(bio);
2513
2514         if (tree->ops && tree->ops->submit_bio_hook)
2515                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2516                                            mirror_num, bio_flags, start);
2517         else
2518                 btrfsic_submit_bio(rw, bio);
2519
2520         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2521                 ret = -EOPNOTSUPP;
2522         bio_put(bio);
2523         return ret;
2524 }
2525
2526 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2527                      unsigned long offset, size_t size, struct bio *bio,
2528                      unsigned long bio_flags)
2529 {
2530         int ret = 0;
2531         if (tree->ops && tree->ops->merge_bio_hook)
2532                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2533                                                 bio_flags);
2534         BUG_ON(ret < 0);
2535         return ret;
2536
2537 }
2538
2539 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2540                               struct page *page, sector_t sector,
2541                               size_t size, unsigned long offset,
2542                               struct block_device *bdev,
2543                               struct bio **bio_ret,
2544                               unsigned long max_pages,
2545                               bio_end_io_t end_io_func,
2546                               int mirror_num,
2547                               unsigned long prev_bio_flags,
2548                               unsigned long bio_flags)
2549 {
2550         int ret = 0;
2551         struct bio *bio;
2552         int nr;
2553         int contig = 0;
2554         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2555         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2556         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2557
2558         if (bio_ret && *bio_ret) {
2559                 bio = *bio_ret;
2560                 if (old_compressed)
2561                         contig = bio->bi_sector == sector;
2562                 else
2563                         contig = bio->bi_sector + (bio->bi_size >> 9) ==
2564                                 sector;
2565
2566                 if (prev_bio_flags != bio_flags || !contig ||
2567                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2568                     bio_add_page(bio, page, page_size, offset) < page_size) {
2569                         ret = submit_one_bio(rw, bio, mirror_num,
2570                                              prev_bio_flags);
2571                         if (ret < 0)
2572                                 return ret;
2573                         bio = NULL;
2574                 } else {
2575                         return 0;
2576                 }
2577         }
2578         if (this_compressed)
2579                 nr = BIO_MAX_PAGES;
2580         else
2581                 nr = bio_get_nr_vecs(bdev);
2582
2583         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2584         if (!bio)
2585                 return -ENOMEM;
2586
2587         bio_add_page(bio, page, page_size, offset);
2588         bio->bi_end_io = end_io_func;
2589         bio->bi_private = tree;
2590
2591         if (bio_ret)
2592                 *bio_ret = bio;
2593         else
2594                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2595
2596         return ret;
2597 }
2598
2599 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2600 {
2601         if (!PagePrivate(page)) {
2602                 SetPagePrivate(page);
2603                 page_cache_get(page);
2604                 set_page_private(page, (unsigned long)eb);
2605         } else {
2606                 WARN_ON(page->private != (unsigned long)eb);
2607         }
2608 }
2609
2610 void set_page_extent_mapped(struct page *page)
2611 {
2612         if (!PagePrivate(page)) {
2613                 SetPagePrivate(page);
2614                 page_cache_get(page);
2615                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2616         }
2617 }
2618
2619 /*
2620  * basic readpage implementation.  Locked extent state structs are inserted
2621  * into the tree that are removed when the IO is done (by the end_io
2622  * handlers)
2623  * XXX JDM: This needs looking at to ensure proper page locking
2624  */
2625 static int __extent_read_full_page(struct extent_io_tree *tree,
2626                                    struct page *page,
2627                                    get_extent_t *get_extent,
2628                                    struct bio **bio, int mirror_num,
2629                                    unsigned long *bio_flags)
2630 {
2631         struct inode *inode = page->mapping->host;
2632         u64 start = page_offset(page);
2633         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2634         u64 end;
2635         u64 cur = start;
2636         u64 extent_offset;
2637         u64 last_byte = i_size_read(inode);
2638         u64 block_start;
2639         u64 cur_end;
2640         sector_t sector;
2641         struct extent_map *em;
2642         struct block_device *bdev;
2643         struct btrfs_ordered_extent *ordered;
2644         int ret;
2645         int nr = 0;
2646         size_t pg_offset = 0;
2647         size_t iosize;
2648         size_t disk_io_size;
2649         size_t blocksize = inode->i_sb->s_blocksize;
2650         unsigned long this_bio_flag = 0;
2651
2652         set_page_extent_mapped(page);
2653
2654         if (!PageUptodate(page)) {
2655                 if (cleancache_get_page(page) == 0) {
2656                         BUG_ON(blocksize != PAGE_SIZE);
2657                         goto out;
2658                 }
2659         }
2660
2661         end = page_end;
2662         while (1) {
2663                 lock_extent(tree, start, end);
2664                 ordered = btrfs_lookup_ordered_extent(inode, start);
2665                 if (!ordered)
2666                         break;
2667                 unlock_extent(tree, start, end);
2668                 btrfs_start_ordered_extent(inode, ordered, 1);
2669                 btrfs_put_ordered_extent(ordered);
2670         }
2671
2672         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2673                 char *userpage;
2674                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2675
2676                 if (zero_offset) {
2677                         iosize = PAGE_CACHE_SIZE - zero_offset;
2678                         userpage = kmap_atomic(page);
2679                         memset(userpage + zero_offset, 0, iosize);
2680                         flush_dcache_page(page);
2681                         kunmap_atomic(userpage);
2682                 }
2683         }
2684         while (cur <= end) {
2685                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2686
2687                 if (cur >= last_byte) {
2688                         char *userpage;
2689                         struct extent_state *cached = NULL;
2690
2691                         iosize = PAGE_CACHE_SIZE - pg_offset;
2692                         userpage = kmap_atomic(page);
2693                         memset(userpage + pg_offset, 0, iosize);
2694                         flush_dcache_page(page);
2695                         kunmap_atomic(userpage);
2696                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2697                                             &cached, GFP_NOFS);
2698                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2699                                              &cached, GFP_NOFS);
2700                         break;
2701                 }
2702                 em = get_extent(inode, page, pg_offset, cur,
2703                                 end - cur + 1, 0);
2704                 if (IS_ERR_OR_NULL(em)) {
2705                         SetPageError(page);
2706                         unlock_extent(tree, cur, end);
2707                         break;
2708                 }
2709                 extent_offset = cur - em->start;
2710                 BUG_ON(extent_map_end(em) <= cur);
2711                 BUG_ON(end < cur);
2712
2713                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2714                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2715                         extent_set_compress_type(&this_bio_flag,
2716                                                  em->compress_type);
2717                 }
2718
2719                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2720                 cur_end = min(extent_map_end(em) - 1, end);
2721                 iosize = ALIGN(iosize, blocksize);
2722                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2723                         disk_io_size = em->block_len;
2724                         sector = em->block_start >> 9;
2725                 } else {
2726                         sector = (em->block_start + extent_offset) >> 9;
2727                         disk_io_size = iosize;
2728                 }
2729                 bdev = em->bdev;
2730                 block_start = em->block_start;
2731                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2732                         block_start = EXTENT_MAP_HOLE;
2733                 free_extent_map(em);
2734                 em = NULL;
2735
2736                 /* we've found a hole, just zero and go on */
2737                 if (block_start == EXTENT_MAP_HOLE) {
2738                         char *userpage;
2739                         struct extent_state *cached = NULL;
2740
2741                         userpage = kmap_atomic(page);
2742                         memset(userpage + pg_offset, 0, iosize);
2743                         flush_dcache_page(page);
2744                         kunmap_atomic(userpage);
2745
2746                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2747                                             &cached, GFP_NOFS);
2748                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2749                                              &cached, GFP_NOFS);
2750                         cur = cur + iosize;
2751                         pg_offset += iosize;
2752                         continue;
2753                 }
2754                 /* the get_extent function already copied into the page */
2755                 if (test_range_bit(tree, cur, cur_end,
2756                                    EXTENT_UPTODATE, 1, NULL)) {
2757                         check_page_uptodate(tree, page);
2758                         unlock_extent(tree, cur, cur + iosize - 1);
2759                         cur = cur + iosize;
2760                         pg_offset += iosize;
2761                         continue;
2762                 }
2763                 /* we have an inline extent but it didn't get marked up
2764                  * to date.  Error out
2765                  */
2766                 if (block_start == EXTENT_MAP_INLINE) {
2767                         SetPageError(page);
2768                         unlock_extent(tree, cur, cur + iosize - 1);
2769                         cur = cur + iosize;
2770                         pg_offset += iosize;
2771                         continue;
2772                 }
2773
2774                 pnr -= page->index;
2775                 ret = submit_extent_page(READ, tree, page,
2776                                          sector, disk_io_size, pg_offset,
2777                                          bdev, bio, pnr,
2778                                          end_bio_extent_readpage, mirror_num,
2779                                          *bio_flags,
2780                                          this_bio_flag);
2781                 if (!ret) {
2782                         nr++;
2783                         *bio_flags = this_bio_flag;
2784                 } else {
2785                         SetPageError(page);
2786                         unlock_extent(tree, cur, cur + iosize - 1);
2787                 }
2788                 cur = cur + iosize;
2789                 pg_offset += iosize;
2790         }
2791 out:
2792         if (!nr) {
2793                 if (!PageError(page))
2794                         SetPageUptodate(page);
2795                 unlock_page(page);
2796         }
2797         return 0;
2798 }
2799
2800 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2801                             get_extent_t *get_extent, int mirror_num)
2802 {
2803         struct bio *bio = NULL;
2804         unsigned long bio_flags = 0;
2805         int ret;
2806
2807         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2808                                       &bio_flags);
2809         if (bio)
2810                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2811         return ret;
2812 }
2813
2814 static noinline void update_nr_written(struct page *page,
2815                                       struct writeback_control *wbc,
2816                                       unsigned long nr_written)
2817 {
2818         wbc->nr_to_write -= nr_written;
2819         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2820             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2821                 page->mapping->writeback_index = page->index + nr_written;
2822 }
2823
2824 /*
2825  * the writepage semantics are similar to regular writepage.  extent
2826  * records are inserted to lock ranges in the tree, and as dirty areas
2827  * are found, they are marked writeback.  Then the lock bits are removed
2828  * and the end_io handler clears the writeback ranges
2829  */
2830 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2831                               void *data)
2832 {
2833         struct inode *inode = page->mapping->host;
2834         struct extent_page_data *epd = data;
2835         struct extent_io_tree *tree = epd->tree;
2836         u64 start = page_offset(page);
2837         u64 delalloc_start;
2838         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2839         u64 end;
2840         u64 cur = start;
2841         u64 extent_offset;
2842         u64 last_byte = i_size_read(inode);
2843         u64 block_start;
2844         u64 iosize;
2845         sector_t sector;
2846         struct extent_state *cached_state = NULL;
2847         struct extent_map *em;
2848         struct block_device *bdev;
2849         int ret;
2850         int nr = 0;
2851         size_t pg_offset = 0;
2852         size_t blocksize;
2853         loff_t i_size = i_size_read(inode);
2854         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2855         u64 nr_delalloc;
2856         u64 delalloc_end;
2857         int page_started;
2858         int compressed;
2859         int write_flags;
2860         unsigned long nr_written = 0;
2861         bool fill_delalloc = true;
2862
2863         if (wbc->sync_mode == WB_SYNC_ALL)
2864                 write_flags = WRITE_SYNC;
2865         else
2866                 write_flags = WRITE;
2867
2868         trace___extent_writepage(page, inode, wbc);
2869
2870         WARN_ON(!PageLocked(page));
2871
2872         ClearPageError(page);
2873
2874         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2875         if (page->index > end_index ||
2876            (page->index == end_index && !pg_offset)) {
2877                 page->mapping->a_ops->invalidatepage(page, 0);
2878                 unlock_page(page);
2879                 return 0;
2880         }
2881
2882         if (page->index == end_index) {
2883                 char *userpage;
2884
2885                 userpage = kmap_atomic(page);
2886                 memset(userpage + pg_offset, 0,
2887                        PAGE_CACHE_SIZE - pg_offset);
2888                 kunmap_atomic(userpage);
2889                 flush_dcache_page(page);
2890         }
2891         pg_offset = 0;
2892
2893         set_page_extent_mapped(page);
2894
2895         if (!tree->ops || !tree->ops->fill_delalloc)
2896                 fill_delalloc = false;
2897
2898         delalloc_start = start;
2899         delalloc_end = 0;
2900         page_started = 0;
2901         if (!epd->extent_locked && fill_delalloc) {
2902                 u64 delalloc_to_write = 0;
2903                 /*
2904                  * make sure the wbc mapping index is at least updated
2905                  * to this page.
2906                  */
2907                 update_nr_written(page, wbc, 0);
2908
2909                 while (delalloc_end < page_end) {
2910                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2911                                                        page,
2912                                                        &delalloc_start,
2913                                                        &delalloc_end,
2914                                                        128 * 1024 * 1024);
2915                         if (nr_delalloc == 0) {
2916                                 delalloc_start = delalloc_end + 1;
2917                                 continue;
2918                         }
2919                         ret = tree->ops->fill_delalloc(inode, page,
2920                                                        delalloc_start,
2921                                                        delalloc_end,
2922                                                        &page_started,
2923                                                        &nr_written);
2924                         /* File system has been set read-only */
2925                         if (ret) {
2926                                 SetPageError(page);
2927                                 goto done;
2928                         }
2929                         /*
2930                          * delalloc_end is already one less than the total
2931                          * length, so we don't subtract one from
2932                          * PAGE_CACHE_SIZE
2933                          */
2934                         delalloc_to_write += (delalloc_end - delalloc_start +
2935                                               PAGE_CACHE_SIZE) >>
2936                                               PAGE_CACHE_SHIFT;
2937                         delalloc_start = delalloc_end + 1;
2938                 }
2939                 if (wbc->nr_to_write < delalloc_to_write) {
2940                         int thresh = 8192;
2941
2942                         if (delalloc_to_write < thresh * 2)
2943                                 thresh = delalloc_to_write;
2944                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
2945                                                  thresh);
2946                 }
2947
2948                 /* did the fill delalloc function already unlock and start
2949                  * the IO?
2950                  */
2951                 if (page_started) {
2952                         ret = 0;
2953                         /*
2954                          * we've unlocked the page, so we can't update
2955                          * the mapping's writeback index, just update
2956                          * nr_to_write.
2957                          */
2958                         wbc->nr_to_write -= nr_written;
2959                         goto done_unlocked;
2960                 }
2961         }
2962         if (tree->ops && tree->ops->writepage_start_hook) {
2963                 ret = tree->ops->writepage_start_hook(page, start,
2964                                                       page_end);
2965                 if (ret) {
2966                         /* Fixup worker will requeue */
2967                         if (ret == -EBUSY)
2968                                 wbc->pages_skipped++;
2969                         else
2970                                 redirty_page_for_writepage(wbc, page);
2971                         update_nr_written(page, wbc, nr_written);
2972                         unlock_page(page);
2973                         ret = 0;
2974                         goto done_unlocked;
2975                 }
2976         }
2977
2978         /*
2979          * we don't want to touch the inode after unlocking the page,
2980          * so we update the mapping writeback index now
2981          */
2982         update_nr_written(page, wbc, nr_written + 1);
2983
2984         end = page_end;
2985         if (last_byte <= start) {
2986                 if (tree->ops && tree->ops->writepage_end_io_hook)
2987                         tree->ops->writepage_end_io_hook(page, start,
2988                                                          page_end, NULL, 1);
2989                 goto done;
2990         }
2991
2992         blocksize = inode->i_sb->s_blocksize;
2993
2994         while (cur <= end) {
2995                 if (cur >= last_byte) {
2996                         if (tree->ops && tree->ops->writepage_end_io_hook)
2997                                 tree->ops->writepage_end_io_hook(page, cur,
2998                                                          page_end, NULL, 1);
2999                         break;
3000                 }
3001                 em = epd->get_extent(inode, page, pg_offset, cur,
3002                                      end - cur + 1, 1);
3003                 if (IS_ERR_OR_NULL(em)) {
3004                         SetPageError(page);
3005                         break;
3006                 }
3007
3008                 extent_offset = cur - em->start;
3009                 BUG_ON(extent_map_end(em) <= cur);
3010                 BUG_ON(end < cur);
3011                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3012                 iosize = ALIGN(iosize, blocksize);
3013                 sector = (em->block_start + extent_offset) >> 9;
3014                 bdev = em->bdev;
3015                 block_start = em->block_start;
3016                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3017                 free_extent_map(em);
3018                 em = NULL;
3019
3020                 /*
3021                  * compressed and inline extents are written through other
3022                  * paths in the FS
3023                  */
3024                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3025                     block_start == EXTENT_MAP_INLINE) {
3026                         /*
3027                          * end_io notification does not happen here for
3028                          * compressed extents
3029                          */
3030                         if (!compressed && tree->ops &&
3031                             tree->ops->writepage_end_io_hook)
3032                                 tree->ops->writepage_end_io_hook(page, cur,
3033                                                          cur + iosize - 1,
3034                                                          NULL, 1);
3035                         else if (compressed) {
3036                                 /* we don't want to end_page_writeback on
3037                                  * a compressed extent.  this happens
3038                                  * elsewhere
3039                                  */
3040                                 nr++;
3041                         }
3042
3043                         cur += iosize;
3044                         pg_offset += iosize;
3045                         continue;
3046                 }
3047                 /* leave this out until we have a page_mkwrite call */
3048                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3049                                    EXTENT_DIRTY, 0, NULL)) {
3050                         cur = cur + iosize;
3051                         pg_offset += iosize;
3052                         continue;
3053                 }
3054
3055                 if (tree->ops && tree->ops->writepage_io_hook) {
3056                         ret = tree->ops->writepage_io_hook(page, cur,
3057                                                 cur + iosize - 1);
3058                 } else {
3059                         ret = 0;
3060                 }
3061                 if (ret) {
3062                         SetPageError(page);
3063                 } else {
3064                         unsigned long max_nr = end_index + 1;
3065
3066                         set_range_writeback(tree, cur, cur + iosize - 1);
3067                         if (!PageWriteback(page)) {
3068                                 printk(KERN_ERR "btrfs warning page %lu not "
3069                                        "writeback, cur %llu end %llu\n",
3070                                        page->index, (unsigned long long)cur,
3071                                        (unsigned long long)end);
3072                         }
3073
3074                         ret = submit_extent_page(write_flags, tree, page,
3075                                                  sector, iosize, pg_offset,
3076                                                  bdev, &epd->bio, max_nr,
3077                                                  end_bio_extent_writepage,
3078                                                  0, 0, 0);
3079                         if (ret)
3080                                 SetPageError(page);
3081                 }
3082                 cur = cur + iosize;
3083                 pg_offset += iosize;
3084                 nr++;
3085         }
3086 done:
3087         if (nr == 0) {
3088                 /* make sure the mapping tag for page dirty gets cleared */
3089                 set_page_writeback(page);
3090                 end_page_writeback(page);
3091         }
3092         unlock_page(page);
3093
3094 done_unlocked:
3095
3096         /* drop our reference on any cached states */
3097         free_extent_state(cached_state);
3098         return 0;
3099 }
3100
3101 static int eb_wait(void *word)
3102 {
3103         io_schedule();
3104         return 0;
3105 }
3106
3107 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3108 {
3109         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3110                     TASK_UNINTERRUPTIBLE);
3111 }
3112
3113 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3114                                      struct btrfs_fs_info *fs_info,
3115                                      struct extent_page_data *epd)
3116 {
3117         unsigned long i, num_pages;
3118         int flush = 0;
3119         int ret = 0;
3120
3121         if (!btrfs_try_tree_write_lock(eb)) {
3122                 flush = 1;
3123                 flush_write_bio(epd);
3124                 btrfs_tree_lock(eb);
3125         }
3126
3127         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3128                 btrfs_tree_unlock(eb);
3129                 if (!epd->sync_io)
3130                         return 0;
3131                 if (!flush) {
3132                         flush_write_bio(epd);
3133                         flush = 1;
3134                 }
3135                 while (1) {
3136                         wait_on_extent_buffer_writeback(eb);
3137                         btrfs_tree_lock(eb);
3138                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3139                                 break;
3140                         btrfs_tree_unlock(eb);
3141                 }
3142         }
3143
3144         /*
3145          * We need to do this to prevent races in people who check if the eb is
3146          * under IO since we can end up having no IO bits set for a short period
3147          * of time.
3148          */
3149         spin_lock(&eb->refs_lock);
3150         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3151                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3152                 spin_unlock(&eb->refs_lock);
3153                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3154                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3155                                      -eb->len,
3156                                      fs_info->dirty_metadata_batch);
3157                 ret = 1;
3158         } else {
3159                 spin_unlock(&eb->refs_lock);
3160         }
3161
3162         btrfs_tree_unlock(eb);
3163
3164         if (!ret)
3165                 return ret;
3166
3167         num_pages = num_extent_pages(eb->start, eb->len);
3168         for (i = 0; i < num_pages; i++) {
3169                 struct page *p = extent_buffer_page(eb, i);
3170
3171                 if (!trylock_page(p)) {
3172                         if (!flush) {
3173                                 flush_write_bio(epd);
3174                                 flush = 1;
3175                         }
3176                         lock_page(p);
3177                 }
3178         }
3179
3180         return ret;
3181 }
3182
3183 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3184 {
3185         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3186         smp_mb__after_clear_bit();
3187         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3188 }
3189
3190 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3191 {
3192         int uptodate = err == 0;
3193         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3194         struct extent_buffer *eb;
3195         int done;
3196
3197         do {
3198                 struct page *page = bvec->bv_page;
3199
3200                 bvec--;
3201                 eb = (struct extent_buffer *)page->private;
3202                 BUG_ON(!eb);
3203                 done = atomic_dec_and_test(&eb->io_pages);
3204
3205                 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3206                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3207                         ClearPageUptodate(page);
3208                         SetPageError(page);
3209                 }
3210
3211                 end_page_writeback(page);
3212
3213                 if (!done)
3214                         continue;
3215
3216                 end_extent_buffer_writeback(eb);
3217         } while (bvec >= bio->bi_io_vec);
3218
3219         bio_put(bio);
3220
3221 }
3222
3223 static int write_one_eb(struct extent_buffer *eb,
3224                         struct btrfs_fs_info *fs_info,
3225                         struct writeback_control *wbc,
3226                         struct extent_page_data *epd)
3227 {
3228         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3229         u64 offset = eb->start;
3230         unsigned long i, num_pages;
3231         unsigned long bio_flags = 0;
3232         int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3233         int ret = 0;
3234
3235         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3236         num_pages = num_extent_pages(eb->start, eb->len);
3237         atomic_set(&eb->io_pages, num_pages);
3238         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3239                 bio_flags = EXTENT_BIO_TREE_LOG;
3240
3241         for (i = 0; i < num_pages; i++) {
3242                 struct page *p = extent_buffer_page(eb, i);
3243
3244                 clear_page_dirty_for_io(p);
3245                 set_page_writeback(p);
3246                 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3247                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3248                                          -1, end_bio_extent_buffer_writepage,
3249                                          0, epd->bio_flags, bio_flags);
3250                 epd->bio_flags = bio_flags;
3251                 if (ret) {
3252                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3253                         SetPageError(p);
3254                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3255                                 end_extent_buffer_writeback(eb);
3256                         ret = -EIO;
3257                         break;
3258                 }
3259                 offset += PAGE_CACHE_SIZE;
3260                 update_nr_written(p, wbc, 1);
3261                 unlock_page(p);
3262         }
3263
3264         if (unlikely(ret)) {
3265                 for (; i < num_pages; i++) {
3266                         struct page *p = extent_buffer_page(eb, i);
3267                         unlock_page(p);
3268                 }
3269         }
3270
3271         return ret;
3272 }
3273
3274 int btree_write_cache_pages(struct address_space *mapping,
3275                                    struct writeback_control *wbc)
3276 {
3277         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3278         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3279         struct extent_buffer *eb, *prev_eb = NULL;
3280         struct extent_page_data epd = {
3281                 .bio = NULL,
3282                 .tree = tree,
3283                 .extent_locked = 0,
3284                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3285                 .bio_flags = 0,
3286         };
3287         int ret = 0;
3288         int done = 0;
3289         int nr_to_write_done = 0;
3290         struct pagevec pvec;
3291         int nr_pages;
3292         pgoff_t index;
3293         pgoff_t end;            /* Inclusive */
3294         int scanned = 0;
3295         int tag;
3296
3297         pagevec_init(&pvec, 0);
3298         if (wbc->range_cyclic) {
3299                 index = mapping->writeback_index; /* Start from prev offset */
3300                 end = -1;
3301         } else {
3302                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3303                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3304                 scanned = 1;
3305         }
3306         if (wbc->sync_mode == WB_SYNC_ALL)
3307                 tag = PAGECACHE_TAG_TOWRITE;
3308         else
3309                 tag = PAGECACHE_TAG_DIRTY;
3310 retry:
3311         if (wbc->sync_mode == WB_SYNC_ALL)
3312                 tag_pages_for_writeback(mapping, index, end);
3313         while (!done && !nr_to_write_done && (index <= end) &&
3314                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3315                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3316                 unsigned i;
3317
3318                 scanned = 1;
3319                 for (i = 0; i < nr_pages; i++) {
3320                         struct page *page = pvec.pages[i];
3321
3322                         if (!PagePrivate(page))
3323                                 continue;
3324
3325                         if (!wbc->range_cyclic && page->index > end) {
3326                                 done = 1;
3327                                 break;
3328                         }
3329
3330                         spin_lock(&mapping->private_lock);
3331                         if (!PagePrivate(page)) {
3332                                 spin_unlock(&mapping->private_lock);
3333                                 continue;
3334                         }
3335
3336                         eb = (struct extent_buffer *)page->private;
3337
3338                         /*
3339                          * Shouldn't happen and normally this would be a BUG_ON
3340                          * but no sense in crashing the users box for something
3341                          * we can survive anyway.
3342                          */
3343                         if (!eb) {
3344                                 spin_unlock(&mapping->private_lock);
3345                                 WARN_ON(1);
3346                                 continue;
3347                         }
3348
3349                         if (eb == prev_eb) {
3350                                 spin_unlock(&mapping->private_lock);
3351                                 continue;
3352                         }
3353
3354                         ret = atomic_inc_not_zero(&eb->refs);
3355                         spin_unlock(&mapping->private_lock);
3356                         if (!ret)
3357                                 continue;
3358
3359                         prev_eb = eb;
3360                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3361                         if (!ret) {
3362                                 free_extent_buffer(eb);
3363                                 continue;
3364                         }
3365
3366                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3367                         if (ret) {
3368                                 done = 1;
3369                                 free_extent_buffer(eb);
3370                                 break;
3371                         }
3372                         free_extent_buffer(eb);
3373
3374                         /*
3375                          * the filesystem may choose to bump up nr_to_write.
3376                          * We have to make sure to honor the new nr_to_write
3377                          * at any time
3378                          */
3379                         nr_to_write_done = wbc->nr_to_write <= 0;
3380                 }
3381                 pagevec_release(&pvec);
3382                 cond_resched();
3383         }
3384         if (!scanned && !done) {
3385                 /*
3386                  * We hit the last page and there is more work to be done: wrap
3387                  * back to the start of the file
3388                  */
3389                 scanned = 1;
3390                 index = 0;
3391                 goto retry;
3392         }
3393         flush_write_bio(&epd);
3394         return ret;
3395 }
3396
3397 /**
3398  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3399  * @mapping: address space structure to write
3400  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3401  * @writepage: function called for each page
3402  * @data: data passed to writepage function
3403  *
3404  * If a page is already under I/O, write_cache_pages() skips it, even
3405  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3406  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3407  * and msync() need to guarantee that all the data which was dirty at the time
3408  * the call was made get new I/O started against them.  If wbc->sync_mode is
3409  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3410  * existing IO to complete.
3411  */
3412 static int extent_write_cache_pages(struct extent_io_tree *tree,
3413                              struct address_space *mapping,
3414                              struct writeback_control *wbc,
3415                              writepage_t writepage, void *data,
3416                              void (*flush_fn)(void *))
3417 {
3418         struct inode *inode = mapping->host;
3419         int ret = 0;
3420         int done = 0;
3421         int nr_to_write_done = 0;
3422         struct pagevec pvec;
3423         int nr_pages;
3424         pgoff_t index;
3425         pgoff_t end;            /* Inclusive */
3426         int scanned = 0;
3427         int tag;
3428
3429         /*
3430          * We have to hold onto the inode so that ordered extents can do their
3431          * work when the IO finishes.  The alternative to this is failing to add
3432          * an ordered extent if the igrab() fails there and that is a huge pain
3433          * to deal with, so instead just hold onto the inode throughout the
3434          * writepages operation.  If it fails here we are freeing up the inode
3435          * anyway and we'd rather not waste our time writing out stuff that is
3436          * going to be truncated anyway.
3437          */
3438         if (!igrab(inode))
3439                 return 0;
3440
3441         pagevec_init(&pvec, 0);
3442         if (wbc->range_cyclic) {
3443                 index = mapping->writeback_index; /* Start from prev offset */
3444                 end = -1;
3445         } else {
3446                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3447                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3448                 scanned = 1;
3449         }
3450         if (wbc->sync_mode == WB_SYNC_ALL)
3451                 tag = PAGECACHE_TAG_TOWRITE;
3452         else
3453                 tag = PAGECACHE_TAG_DIRTY;
3454 retry:
3455         if (wbc->sync_mode == WB_SYNC_ALL)
3456                 tag_pages_for_writeback(mapping, index, end);
3457         while (!done && !nr_to_write_done && (index <= end) &&
3458                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3459                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3460                 unsigned i;
3461
3462                 scanned = 1;
3463                 for (i = 0; i < nr_pages; i++) {
3464                         struct page *page = pvec.pages[i];
3465
3466                         /*
3467                          * At this point we hold neither mapping->tree_lock nor
3468                          * lock on the page itself: the page may be truncated or
3469                          * invalidated (changing page->mapping to NULL), or even
3470                          * swizzled back from swapper_space to tmpfs file
3471                          * mapping
3472                          */
3473                         if (!trylock_page(page)) {
3474                                 flush_fn(data);
3475                                 lock_page(page);
3476                         }
3477
3478                         if (unlikely(page->mapping != mapping)) {
3479                                 unlock_page(page);
3480                                 continue;
3481                         }
3482
3483                         if (!wbc->range_cyclic && page->index > end) {
3484                                 done = 1;
3485                                 unlock_page(page);
3486                                 continue;
3487                         }
3488
3489                         if (wbc->sync_mode != WB_SYNC_NONE) {
3490                                 if (PageWriteback(page))
3491                                         flush_fn(data);
3492                                 wait_on_page_writeback(page);
3493                         }
3494
3495                         if (PageWriteback(page) ||
3496                             !clear_page_dirty_for_io(page)) {
3497                                 unlock_page(page);
3498                                 continue;
3499                         }
3500
3501                         ret = (*writepage)(page, wbc, data);
3502
3503                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3504                                 unlock_page(page);
3505                                 ret = 0;
3506                         }
3507                         if (ret)
3508                                 done = 1;
3509
3510                         /*
3511                          * the filesystem may choose to bump up nr_to_write.
3512                          * We have to make sure to honor the new nr_to_write
3513                          * at any time
3514                          */
3515                         nr_to_write_done = wbc->nr_to_write <= 0;
3516                 }
3517                 pagevec_release(&pvec);
3518                 cond_resched();
3519         }
3520         if (!scanned && !done) {
3521                 /*
3522                  * We hit the last page and there is more work to be done: wrap
3523                  * back to the start of the file
3524                  */
3525                 scanned = 1;
3526                 index = 0;
3527                 goto retry;
3528         }
3529         btrfs_add_delayed_iput(inode);
3530         return ret;
3531 }
3532
3533 static void flush_epd_write_bio(struct extent_page_data *epd)
3534 {
3535         if (epd->bio) {
3536                 int rw = WRITE;
3537                 int ret;
3538
3539                 if (epd->sync_io)
3540                         rw = WRITE_SYNC;
3541
3542                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3543                 BUG_ON(ret < 0); /* -ENOMEM */
3544                 epd->bio = NULL;
3545         }
3546 }
3547
3548 static noinline void flush_write_bio(void *data)
3549 {
3550         struct extent_page_data *epd = data;
3551         flush_epd_write_bio(epd);
3552 }
3553
3554 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3555                           get_extent_t *get_extent,
3556                           struct writeback_control *wbc)
3557 {
3558         int ret;
3559         struct extent_page_data epd = {
3560                 .bio = NULL,
3561                 .tree = tree,
3562                 .get_extent = get_extent,
3563                 .extent_locked = 0,
3564                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3565                 .bio_flags = 0,
3566         };
3567
3568         ret = __extent_writepage(page, wbc, &epd);
3569
3570         flush_epd_write_bio(&epd);
3571         return ret;
3572 }
3573
3574 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3575                               u64 start, u64 end, get_extent_t *get_extent,
3576                               int mode)
3577 {
3578         int ret = 0;
3579         struct address_space *mapping = inode->i_mapping;
3580         struct page *page;
3581         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3582                 PAGE_CACHE_SHIFT;
3583
3584         struct extent_page_data epd = {
3585                 .bio = NULL,
3586                 .tree = tree,
3587                 .get_extent = get_extent,
3588                 .extent_locked = 1,
3589                 .sync_io = mode == WB_SYNC_ALL,
3590                 .bio_flags = 0,
3591         };
3592         struct writeback_control wbc_writepages = {
3593                 .sync_mode      = mode,
3594                 .nr_to_write    = nr_pages * 2,
3595                 .range_start    = start,
3596                 .range_end      = end + 1,
3597         };
3598
3599         while (start <= end) {
3600                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3601                 if (clear_page_dirty_for_io(page))
3602                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3603                 else {
3604                         if (tree->ops && tree->ops->writepage_end_io_hook)
3605                                 tree->ops->writepage_end_io_hook(page, start,
3606                                                  start + PAGE_CACHE_SIZE - 1,
3607                                                  NULL, 1);
3608                         unlock_page(page);
3609                 }
3610                 page_cache_release(page);
3611                 start += PAGE_CACHE_SIZE;
3612         }
3613
3614         flush_epd_write_bio(&epd);
3615         return ret;
3616 }
3617
3618 int extent_writepages(struct extent_io_tree *tree,
3619                       struct address_space *mapping,
3620                       get_extent_t *get_extent,
3621                       struct writeback_control *wbc)
3622 {
3623         int ret = 0;
3624         struct extent_page_data epd = {
3625                 .bio = NULL,
3626                 .tree = tree,
3627                 .get_extent = get_extent,
3628                 .extent_locked = 0,
3629                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3630                 .bio_flags = 0,
3631         };
3632
3633         ret = extent_write_cache_pages(tree, mapping, wbc,
3634                                        __extent_writepage, &epd,
3635                                        flush_write_bio);
3636         flush_epd_write_bio(&epd);
3637         return ret;
3638 }
3639
3640 int extent_readpages(struct extent_io_tree *tree,
3641                      struct address_space *mapping,
3642                      struct list_head *pages, unsigned nr_pages,
3643                      get_extent_t get_extent)
3644 {
3645         struct bio *bio = NULL;
3646         unsigned page_idx;
3647         unsigned long bio_flags = 0;
3648         struct page *pagepool[16];
3649         struct page *page;
3650         int i = 0;
3651         int nr = 0;
3652
3653         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3654                 page = list_entry(pages->prev, struct page, lru);
3655
3656                 prefetchw(&page->flags);
3657                 list_del(&page->lru);
3658                 if (add_to_page_cache_lru(page, mapping,
3659                                         page->index, GFP_NOFS)) {
3660                         page_cache_release(page);
3661                         continue;
3662                 }
3663
3664                 pagepool[nr++] = page;
3665                 if (nr < ARRAY_SIZE(pagepool))
3666                         continue;
3667                 for (i = 0; i < nr; i++) {
3668                         __extent_read_full_page(tree, pagepool[i], get_extent,
3669                                         &bio, 0, &bio_flags);
3670                         page_cache_release(pagepool[i]);
3671                 }
3672                 nr = 0;
3673         }
3674         for (i = 0; i < nr; i++) {
3675                 __extent_read_full_page(tree, pagepool[i], get_extent,
3676                                         &bio, 0, &bio_flags);
3677                 page_cache_release(pagepool[i]);
3678         }
3679
3680         BUG_ON(!list_empty(pages));
3681         if (bio)
3682                 return submit_one_bio(READ, bio, 0, bio_flags);
3683         return 0;
3684 }
3685
3686 /*
3687  * basic invalidatepage code, this waits on any locked or writeback
3688  * ranges corresponding to the page, and then deletes any extent state
3689  * records from the tree
3690  */
3691 int extent_invalidatepage(struct extent_io_tree *tree,
3692                           struct page *page, unsigned long offset)
3693 {
3694         struct extent_state *cached_state = NULL;
3695         u64 start = page_offset(page);
3696         u64 end = start + PAGE_CACHE_SIZE - 1;
3697         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3698
3699         start += ALIGN(offset, blocksize);
3700         if (start > end)
3701                 return 0;
3702
3703         lock_extent_bits(tree, start, end, 0, &cached_state);
3704         wait_on_page_writeback(page);
3705         clear_extent_bit(tree, start, end,
3706                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3707                          EXTENT_DO_ACCOUNTING,
3708                          1, 1, &cached_state, GFP_NOFS);
3709         return 0;
3710 }
3711
3712 /*
3713  * a helper for releasepage, this tests for areas of the page that
3714  * are locked or under IO and drops the related state bits if it is safe
3715  * to drop the page.
3716  */
3717 int try_release_extent_state(struct extent_map_tree *map,
3718                              struct extent_io_tree *tree, struct page *page,
3719                              gfp_t mask)
3720 {
3721         u64 start = page_offset(page);
3722         u64 end = start + PAGE_CACHE_SIZE - 1;
3723         int ret = 1;
3724
3725         if (test_range_bit(tree, start, end,
3726                            EXTENT_IOBITS, 0, NULL))
3727                 ret = 0;
3728         else {
3729                 if ((mask & GFP_NOFS) == GFP_NOFS)
3730                         mask = GFP_NOFS;
3731                 /*
3732                  * at this point we can safely clear everything except the
3733                  * locked bit and the nodatasum bit
3734                  */
3735                 ret = clear_extent_bit(tree, start, end,
3736                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3737                                  0, 0, NULL, mask);
3738
3739                 /* if clear_extent_bit failed for enomem reasons,
3740                  * we can't allow the release to continue.
3741                  */
3742                 if (ret < 0)
3743                         ret = 0;
3744                 else
3745                         ret = 1;
3746         }
3747         return ret;
3748 }
3749
3750 /*
3751  * a helper for releasepage.  As long as there are no locked extents
3752  * in the range corresponding to the page, both state records and extent
3753  * map records are removed
3754  */
3755 int try_release_extent_mapping(struct extent_map_tree *map,
3756                                struct extent_io_tree *tree, struct page *page,
3757                                gfp_t mask)
3758 {
3759         struct extent_map *em;
3760         u64 start = page_offset(page);
3761         u64 end = start + PAGE_CACHE_SIZE - 1;
3762
3763         if ((mask & __GFP_WAIT) &&
3764             page->mapping->host->i_size > 16 * 1024 * 1024) {
3765                 u64 len;
3766                 while (start <= end) {
3767                         len = end - start + 1;
3768                         write_lock(&map->lock);
3769                         em = lookup_extent_mapping(map, start, len);
3770                         if (!em) {
3771                                 write_unlock(&map->lock);
3772                                 break;
3773                         }
3774                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3775                             em->start != start) {
3776                                 write_unlock(&map->lock);
3777                                 free_extent_map(em);
3778                                 break;
3779                         }
3780                         if (!test_range_bit(tree, em->start,
3781                                             extent_map_end(em) - 1,
3782                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
3783                                             0, NULL)) {
3784                                 remove_extent_mapping(map, em);
3785                                 /* once for the rb tree */
3786                                 free_extent_map(em);
3787                         }
3788                         start = extent_map_end(em);
3789                         write_unlock(&map->lock);
3790
3791                         /* once for us */
3792                         free_extent_map(em);
3793                 }
3794         }
3795         return try_release_extent_state(map, tree, page, mask);
3796 }
3797
3798 /*
3799  * helper function for fiemap, which doesn't want to see any holes.
3800  * This maps until we find something past 'last'
3801  */
3802 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3803                                                 u64 offset,
3804                                                 u64 last,
3805                                                 get_extent_t *get_extent)
3806 {
3807         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3808         struct extent_map *em;
3809         u64 len;
3810
3811         if (offset >= last)
3812                 return NULL;
3813
3814         while(1) {
3815                 len = last - offset;
3816                 if (len == 0)
3817                         break;
3818                 len = ALIGN(len, sectorsize);
3819                 em = get_extent(inode, NULL, 0, offset, len, 0);
3820                 if (IS_ERR_OR_NULL(em))
3821                         return em;
3822
3823                 /* if this isn't a hole return it */
3824                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3825                     em->block_start != EXTENT_MAP_HOLE) {
3826                         return em;
3827                 }
3828
3829                 /* this is a hole, advance to the next extent */
3830                 offset = extent_map_end(em);
3831                 free_extent_map(em);
3832                 if (offset >= last)
3833                         break;
3834         }
3835         return NULL;
3836 }
3837
3838 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3839                 __u64 start, __u64 len, get_extent_t *get_extent)
3840 {
3841         int ret = 0;
3842         u64 off = start;
3843         u64 max = start + len;
3844         u32 flags = 0;
3845         u32 found_type;
3846         u64 last;
3847         u64 last_for_get_extent = 0;
3848         u64 disko = 0;
3849         u64 isize = i_size_read(inode);
3850         struct btrfs_key found_key;
3851         struct extent_map *em = NULL;
3852         struct extent_state *cached_state = NULL;
3853         struct btrfs_path *path;
3854         struct btrfs_file_extent_item *item;
3855         int end = 0;
3856         u64 em_start = 0;
3857         u64 em_len = 0;
3858         u64 em_end = 0;
3859         unsigned long emflags;
3860
3861         if (len == 0)
3862                 return -EINVAL;
3863
3864         path = btrfs_alloc_path();
3865         if (!path)
3866                 return -ENOMEM;
3867         path->leave_spinning = 1;
3868
3869         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3870         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3871
3872         /*
3873          * lookup the last file extent.  We're not using i_size here
3874          * because there might be preallocation past i_size
3875          */
3876         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3877                                        path, btrfs_ino(inode), -1, 0);
3878         if (ret < 0) {
3879                 btrfs_free_path(path);
3880                 return ret;
3881         }
3882         WARN_ON(!ret);
3883         path->slots[0]--;
3884         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3885                               struct btrfs_file_extent_item);
3886         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3887         found_type = btrfs_key_type(&found_key);
3888
3889         /* No extents, but there might be delalloc bits */
3890         if (found_key.objectid != btrfs_ino(inode) ||
3891             found_type != BTRFS_EXTENT_DATA_KEY) {
3892                 /* have to trust i_size as the end */
3893                 last = (u64)-1;
3894                 last_for_get_extent = isize;
3895         } else {
3896                 /*
3897                  * remember the start of the last extent.  There are a
3898                  * bunch of different factors that go into the length of the
3899                  * extent, so its much less complex to remember where it started
3900                  */
3901                 last = found_key.offset;
3902                 last_for_get_extent = last + 1;
3903         }
3904         btrfs_free_path(path);
3905
3906         /*
3907          * we might have some extents allocated but more delalloc past those
3908          * extents.  so, we trust isize unless the start of the last extent is
3909          * beyond isize
3910          */
3911         if (last < isize) {
3912                 last = (u64)-1;
3913                 last_for_get_extent = isize;
3914         }
3915
3916         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3917                          &cached_state);
3918
3919         em = get_extent_skip_holes(inode, start, last_for_get_extent,
3920                                    get_extent);
3921         if (!em)
3922                 goto out;
3923         if (IS_ERR(em)) {
3924                 ret = PTR_ERR(em);
3925                 goto out;
3926         }
3927
3928         while (!end) {
3929                 u64 offset_in_extent;
3930
3931                 /* break if the extent we found is outside the range */
3932                 if (em->start >= max || extent_map_end(em) < off)
3933                         break;
3934
3935                 /*
3936                  * get_extent may return an extent that starts before our
3937                  * requested range.  We have to make sure the ranges
3938                  * we return to fiemap always move forward and don't
3939                  * overlap, so adjust the offsets here
3940                  */
3941                 em_start = max(em->start, off);
3942
3943                 /*
3944                  * record the offset from the start of the extent
3945                  * for adjusting the disk offset below
3946                  */
3947                 offset_in_extent = em_start - em->start;
3948                 em_end = extent_map_end(em);
3949                 em_len = em_end - em_start;
3950                 emflags = em->flags;
3951                 disko = 0;
3952                 flags = 0;
3953
3954                 /*
3955                  * bump off for our next call to get_extent
3956                  */
3957                 off = extent_map_end(em);
3958                 if (off >= max)
3959                         end = 1;
3960
3961                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3962                         end = 1;
3963                         flags |= FIEMAP_EXTENT_LAST;
3964                 } else if (em->block_start == EXTENT_MAP_INLINE) {
3965                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
3966                                   FIEMAP_EXTENT_NOT_ALIGNED);
3967                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3968                         flags |= (FIEMAP_EXTENT_DELALLOC |
3969                                   FIEMAP_EXTENT_UNKNOWN);
3970                 } else {
3971                         disko = em->block_start + offset_in_extent;
3972                 }
3973                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3974                         flags |= FIEMAP_EXTENT_ENCODED;
3975
3976                 free_extent_map(em);
3977                 em = NULL;
3978                 if ((em_start >= last) || em_len == (u64)-1 ||
3979                    (last == (u64)-1 && isize <= em_end)) {
3980                         flags |= FIEMAP_EXTENT_LAST;
3981                         end = 1;
3982                 }
3983
3984                 /* now scan forward to see if this is really the last extent. */
3985                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3986                                            get_extent);
3987                 if (IS_ERR(em)) {
3988                         ret = PTR_ERR(em);
3989                         goto out;
3990                 }
3991                 if (!em) {
3992                         flags |= FIEMAP_EXTENT_LAST;
3993                         end = 1;
3994                 }
3995                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3996                                               em_len, flags);
3997                 if (ret)
3998                         goto out_free;
3999         }
4000 out_free:
4001         free_extent_map(em);
4002 out:
4003         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
4004                              &cached_state, GFP_NOFS);
4005         return ret;
4006 }
4007
4008 static void __free_extent_buffer(struct extent_buffer *eb)
4009 {
4010 #if LEAK_DEBUG
4011         unsigned long flags;
4012         spin_lock_irqsave(&leak_lock, flags);
4013         list_del(&eb->leak_list);
4014         spin_unlock_irqrestore(&leak_lock, flags);
4015 #endif
4016         kmem_cache_free(extent_buffer_cache, eb);
4017 }
4018
4019 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4020                                                    u64 start,
4021                                                    unsigned long len,
4022                                                    gfp_t mask)
4023 {
4024         struct extent_buffer *eb = NULL;
4025 #if LEAK_DEBUG
4026         unsigned long flags;
4027 #endif
4028
4029         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4030         if (eb == NULL)
4031                 return NULL;
4032         eb->start = start;
4033         eb->len = len;
4034         eb->tree = tree;
4035         eb->bflags = 0;
4036         rwlock_init(&eb->lock);
4037         atomic_set(&eb->write_locks, 0);
4038         atomic_set(&eb->read_locks, 0);
4039         atomic_set(&eb->blocking_readers, 0);
4040         atomic_set(&eb->blocking_writers, 0);
4041         atomic_set(&eb->spinning_readers, 0);
4042         atomic_set(&eb->spinning_writers, 0);
4043         eb->lock_nested = 0;
4044         init_waitqueue_head(&eb->write_lock_wq);
4045         init_waitqueue_head(&eb->read_lock_wq);
4046
4047 #if LEAK_DEBUG
4048         spin_lock_irqsave(&leak_lock, flags);
4049         list_add(&eb->leak_list, &buffers);
4050         spin_unlock_irqrestore(&leak_lock, flags);
4051 #endif
4052         spin_lock_init(&eb->refs_lock);
4053         atomic_set(&eb->refs, 1);
4054         atomic_set(&eb->io_pages, 0);
4055
4056         /*
4057          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4058          */
4059         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4060                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4061         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4062
4063         return eb;
4064 }
4065
4066 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4067 {
4068         unsigned long i;
4069         struct page *p;
4070         struct extent_buffer *new;
4071         unsigned long num_pages = num_extent_pages(src->start, src->len);
4072
4073         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4074         if (new == NULL)
4075                 return NULL;
4076
4077         for (i = 0; i < num_pages; i++) {
4078                 p = alloc_page(GFP_ATOMIC);
4079                 BUG_ON(!p);
4080                 attach_extent_buffer_page(new, p);
4081                 WARN_ON(PageDirty(p));
4082                 SetPageUptodate(p);
4083                 new->pages[i] = p;
4084         }
4085
4086         copy_extent_buffer(new, src, 0, 0, src->len);
4087         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4088         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4089
4090         return new;
4091 }
4092
4093 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4094 {
4095         struct extent_buffer *eb;
4096         unsigned long num_pages = num_extent_pages(0, len);
4097         unsigned long i;
4098
4099         eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4100         if (!eb)
4101                 return NULL;
4102
4103         for (i = 0; i < num_pages; i++) {
4104                 eb->pages[i] = alloc_page(GFP_ATOMIC);
4105                 if (!eb->pages[i])
4106                         goto err;
4107         }
4108         set_extent_buffer_uptodate(eb);
4109         btrfs_set_header_nritems(eb, 0);
4110         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4111
4112         return eb;
4113 err:
4114         for (; i > 0; i--)
4115                 __free_page(eb->pages[i - 1]);
4116         __free_extent_buffer(eb);
4117         return NULL;
4118 }
4119
4120 static int extent_buffer_under_io(struct extent_buffer *eb)
4121 {
4122         return (atomic_read(&eb->io_pages) ||
4123                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4124                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4125 }
4126
4127 /*
4128  * Helper for releasing extent buffer page.
4129  */
4130 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4131                                                 unsigned long start_idx)
4132 {
4133         unsigned long index;
4134         unsigned long num_pages;
4135         struct page *page;
4136         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4137
4138         BUG_ON(extent_buffer_under_io(eb));
4139
4140         num_pages = num_extent_pages(eb->start, eb->len);
4141         index = start_idx + num_pages;
4142         if (start_idx >= index)
4143                 return;
4144
4145         do {
4146                 index--;
4147                 page = extent_buffer_page(eb, index);
4148                 if (page && mapped) {
4149                         spin_lock(&page->mapping->private_lock);
4150                         /*
4151                          * We do this since we'll remove the pages after we've
4152                          * removed the eb from the radix tree, so we could race
4153                          * and have this page now attached to the new eb.  So
4154                          * only clear page_private if it's still connected to
4155                          * this eb.
4156                          */
4157                         if (PagePrivate(page) &&
4158                             page->private == (unsigned long)eb) {
4159                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4160                                 BUG_ON(PageDirty(page));
4161                                 BUG_ON(PageWriteback(page));
4162                                 /*
4163                                  * We need to make sure we haven't be attached
4164                                  * to a new eb.
4165                                  */
4166                                 ClearPagePrivate(page);
4167                                 set_page_private(page, 0);
4168                                 /* One for the page private */
4169                                 page_cache_release(page);
4170                         }
4171                         spin_unlock(&page->mapping->private_lock);
4172
4173                 }
4174                 if (page) {
4175                         /* One for when we alloced the page */
4176                         page_cache_release(page);
4177                 }
4178         } while (index != start_idx);
4179 }
4180
4181 /*
4182  * Helper for releasing the extent buffer.
4183  */
4184 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4185 {
4186         btrfs_release_extent_buffer_page(eb, 0);
4187         __free_extent_buffer(eb);
4188 }
4189
4190 static void check_buffer_tree_ref(struct extent_buffer *eb)
4191 {
4192         int refs;
4193         /* the ref bit is tricky.  We have to make sure it is set
4194          * if we have the buffer dirty.   Otherwise the
4195          * code to free a buffer can end up dropping a dirty
4196          * page
4197          *
4198          * Once the ref bit is set, it won't go away while the
4199          * buffer is dirty or in writeback, and it also won't
4200          * go away while we have the reference count on the
4201          * eb bumped.
4202          *
4203          * We can't just set the ref bit without bumping the
4204          * ref on the eb because free_extent_buffer might
4205          * see the ref bit and try to clear it.  If this happens
4206          * free_extent_buffer might end up dropping our original
4207          * ref by mistake and freeing the page before we are able
4208          * to add one more ref.
4209          *
4210          * So bump the ref count first, then set the bit.  If someone
4211          * beat us to it, drop the ref we added.
4212          */
4213         refs = atomic_read(&eb->refs);
4214         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4215                 return;
4216
4217         spin_lock(&eb->refs_lock);
4218         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4219                 atomic_inc(&eb->refs);
4220         spin_unlock(&eb->refs_lock);
4221 }
4222
4223 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4224 {
4225         unsigned long num_pages, i;
4226
4227         check_buffer_tree_ref(eb);
4228
4229         num_pages = num_extent_pages(eb->start, eb->len);
4230         for (i = 0; i < num_pages; i++) {
4231                 struct page *p = extent_buffer_page(eb, i);
4232                 mark_page_accessed(p);
4233         }
4234 }
4235
4236 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4237                                           u64 start, unsigned long len)
4238 {
4239         unsigned long num_pages = num_extent_pages(start, len);
4240         unsigned long i;
4241         unsigned long index = start >> PAGE_CACHE_SHIFT;
4242         struct extent_buffer *eb;
4243         struct extent_buffer *exists = NULL;
4244         struct page *p;
4245         struct address_space *mapping = tree->mapping;
4246         int uptodate = 1;
4247         int ret;
4248
4249         rcu_read_lock();
4250         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4251         if (eb && atomic_inc_not_zero(&eb->refs)) {
4252                 rcu_read_unlock();
4253                 mark_extent_buffer_accessed(eb);
4254                 return eb;
4255         }
4256         rcu_read_unlock();
4257
4258         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4259         if (!eb)
4260                 return NULL;
4261
4262         for (i = 0; i < num_pages; i++, index++) {
4263                 p = find_or_create_page(mapping, index, GFP_NOFS);
4264                 if (!p)
4265                         goto free_eb;
4266
4267                 spin_lock(&mapping->private_lock);
4268                 if (PagePrivate(p)) {
4269                         /*
4270                          * We could have already allocated an eb for this page
4271                          * and attached one so lets see if we can get a ref on
4272                          * the existing eb, and if we can we know it's good and
4273                          * we can just return that one, else we know we can just
4274                          * overwrite page->private.
4275                          */
4276                         exists = (struct extent_buffer *)p->private;
4277                         if (atomic_inc_not_zero(&exists->refs)) {
4278                                 spin_unlock(&mapping->private_lock);
4279                                 unlock_page(p);
4280                                 page_cache_release(p);
4281                                 mark_extent_buffer_accessed(exists);
4282                                 goto free_eb;
4283                         }
4284
4285                         /*
4286                          * Do this so attach doesn't complain and we need to
4287                          * drop the ref the old guy had.
4288                          */
4289                         ClearPagePrivate(p);
4290                         WARN_ON(PageDirty(p));
4291                         page_cache_release(p);
4292                 }
4293                 attach_extent_buffer_page(eb, p);
4294                 spin_unlock(&mapping->private_lock);
4295                 WARN_ON(PageDirty(p));
4296                 mark_page_accessed(p);
4297                 eb->pages[i] = p;
4298                 if (!PageUptodate(p))
4299                         uptodate = 0;
4300
4301                 /*
4302                  * see below about how we avoid a nasty race with release page
4303                  * and why we unlock later
4304                  */
4305         }
4306         if (uptodate)
4307                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4308 again:
4309         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4310         if (ret)
4311                 goto free_eb;
4312
4313         spin_lock(&tree->buffer_lock);
4314         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4315         if (ret == -EEXIST) {
4316                 exists = radix_tree_lookup(&tree->buffer,
4317                                                 start >> PAGE_CACHE_SHIFT);
4318                 if (!atomic_inc_not_zero(&exists->refs)) {
4319                         spin_unlock(&tree->buffer_lock);
4320                         radix_tree_preload_end();
4321                         exists = NULL;
4322                         goto again;
4323                 }
4324                 spin_unlock(&tree->buffer_lock);
4325                 radix_tree_preload_end();
4326                 mark_extent_buffer_accessed(exists);
4327                 goto free_eb;
4328         }
4329         /* add one reference for the tree */
4330         check_buffer_tree_ref(eb);
4331         spin_unlock(&tree->buffer_lock);
4332         radix_tree_preload_end();
4333
4334         /*
4335          * there is a race where release page may have
4336          * tried to find this extent buffer in the radix
4337          * but failed.  It will tell the VM it is safe to
4338          * reclaim the, and it will clear the page private bit.
4339          * We must make sure to set the page private bit properly
4340          * after the extent buffer is in the radix tree so
4341          * it doesn't get lost
4342          */
4343         SetPageChecked(eb->pages[0]);
4344         for (i = 1; i < num_pages; i++) {
4345                 p = extent_buffer_page(eb, i);
4346                 ClearPageChecked(p);
4347                 unlock_page(p);
4348         }
4349         unlock_page(eb->pages[0]);
4350         return eb;
4351
4352 free_eb:
4353         for (i = 0; i < num_pages; i++) {
4354                 if (eb->pages[i])
4355                         unlock_page(eb->pages[i]);
4356         }
4357
4358         WARN_ON(!atomic_dec_and_test(&eb->refs));
4359         btrfs_release_extent_buffer(eb);
4360         return exists;
4361 }
4362
4363 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4364                                          u64 start, unsigned long len)
4365 {
4366         struct extent_buffer *eb;
4367
4368         rcu_read_lock();
4369         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4370         if (eb && atomic_inc_not_zero(&eb->refs)) {
4371                 rcu_read_unlock();
4372                 mark_extent_buffer_accessed(eb);
4373                 return eb;
4374         }
4375         rcu_read_unlock();
4376
4377         return NULL;
4378 }
4379
4380 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4381 {
4382         struct extent_buffer *eb =
4383                         container_of(head, struct extent_buffer, rcu_head);
4384
4385         __free_extent_buffer(eb);
4386 }
4387
4388 /* Expects to have eb->eb_lock already held */
4389 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4390 {
4391         WARN_ON(atomic_read(&eb->refs) == 0);
4392         if (atomic_dec_and_test(&eb->refs)) {
4393                 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4394                         spin_unlock(&eb->refs_lock);
4395                 } else {
4396                         struct extent_io_tree *tree = eb->tree;
4397
4398                         spin_unlock(&eb->refs_lock);
4399
4400                         spin_lock(&tree->buffer_lock);
4401                         radix_tree_delete(&tree->buffer,
4402                                           eb->start >> PAGE_CACHE_SHIFT);
4403                         spin_unlock(&tree->buffer_lock);
4404                 }
4405
4406                 /* Should be safe to release our pages at this point */
4407                 btrfs_release_extent_buffer_page(eb, 0);
4408                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4409                 return 1;
4410         }
4411         spin_unlock(&eb->refs_lock);
4412
4413         return 0;
4414 }
4415
4416 void free_extent_buffer(struct extent_buffer *eb)
4417 {
4418         int refs;
4419         int old;
4420         if (!eb)
4421                 return;
4422
4423         while (1) {
4424                 refs = atomic_read(&eb->refs);
4425                 if (refs <= 3)
4426                         break;
4427                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4428                 if (old == refs)
4429                         return;
4430         }
4431
4432         spin_lock(&eb->refs_lock);
4433         if (atomic_read(&eb->refs) == 2 &&
4434             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4435                 atomic_dec(&eb->refs);
4436
4437         if (atomic_read(&eb->refs) == 2 &&
4438             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4439             !extent_buffer_under_io(eb) &&
4440             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4441                 atomic_dec(&eb->refs);
4442
4443         /*
4444          * I know this is terrible, but it's temporary until we stop tracking
4445          * the uptodate bits and such for the extent buffers.
4446          */
4447         release_extent_buffer(eb, GFP_ATOMIC);
4448 }
4449
4450 void free_extent_buffer_stale(struct extent_buffer *eb)
4451 {
4452         if (!eb)
4453                 return;
4454
4455         spin_lock(&eb->refs_lock);
4456         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4457
4458         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4459             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4460                 atomic_dec(&eb->refs);
4461         release_extent_buffer(eb, GFP_NOFS);
4462 }
4463
4464 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4465 {
4466         unsigned long i;
4467         unsigned long num_pages;
4468         struct page *page;
4469
4470         num_pages = num_extent_pages(eb->start, eb->len);
4471
4472         for (i = 0; i < num_pages; i++) {
4473                 page = extent_buffer_page(eb, i);
4474                 if (!PageDirty(page))
4475                         continue;
4476
4477                 lock_page(page);
4478                 WARN_ON(!PagePrivate(page));
4479
4480                 clear_page_dirty_for_io(page);
4481                 spin_lock_irq(&page->mapping->tree_lock);
4482                 if (!PageDirty(page)) {
4483                         radix_tree_tag_clear(&page->mapping->page_tree,
4484                                                 page_index(page),
4485                                                 PAGECACHE_TAG_DIRTY);
4486                 }
4487                 spin_unlock_irq(&page->mapping->tree_lock);
4488                 ClearPageError(page);
4489                 unlock_page(page);
4490         }
4491         WARN_ON(atomic_read(&eb->refs) == 0);
4492 }
4493
4494 int set_extent_buffer_dirty(struct extent_buffer *eb)
4495 {
4496         unsigned long i;
4497         unsigned long num_pages;
4498         int was_dirty = 0;
4499
4500         check_buffer_tree_ref(eb);
4501
4502         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4503
4504         num_pages = num_extent_pages(eb->start, eb->len);
4505         WARN_ON(atomic_read(&eb->refs) == 0);
4506         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4507
4508         for (i = 0; i < num_pages; i++)
4509                 set_page_dirty(extent_buffer_page(eb, i));
4510         return was_dirty;
4511 }
4512
4513 static int range_straddles_pages(u64 start, u64 len)
4514 {
4515         if (len < PAGE_CACHE_SIZE)
4516                 return 1;
4517         if (start & (PAGE_CACHE_SIZE - 1))
4518                 return 1;
4519         if ((start + len) & (PAGE_CACHE_SIZE - 1))
4520                 return 1;
4521         return 0;
4522 }
4523
4524 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4525 {
4526         unsigned long i;
4527         struct page *page;
4528         unsigned long num_pages;
4529
4530         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4531         num_pages = num_extent_pages(eb->start, eb->len);
4532         for (i = 0; i < num_pages; i++) {
4533                 page = extent_buffer_page(eb, i);
4534                 if (page)
4535                         ClearPageUptodate(page);
4536         }
4537         return 0;
4538 }
4539
4540 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4541 {
4542         unsigned long i;
4543         struct page *page;
4544         unsigned long num_pages;
4545
4546         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4547         num_pages = num_extent_pages(eb->start, eb->len);
4548         for (i = 0; i < num_pages; i++) {
4549                 page = extent_buffer_page(eb, i);
4550                 SetPageUptodate(page);
4551         }
4552         return 0;
4553 }
4554
4555 int extent_range_uptodate(struct extent_io_tree *tree,
4556                           u64 start, u64 end)
4557 {
4558         struct page *page;
4559         int ret;
4560         int pg_uptodate = 1;
4561         int uptodate;
4562         unsigned long index;
4563
4564         if (range_straddles_pages(start, end - start + 1)) {
4565                 ret = test_range_bit(tree, start, end,
4566                                      EXTENT_UPTODATE, 1, NULL);
4567                 if (ret)
4568                         return 1;
4569         }
4570         while (start <= end) {
4571                 index = start >> PAGE_CACHE_SHIFT;
4572                 page = find_get_page(tree->mapping, index);
4573                 if (!page)
4574                         return 1;
4575                 uptodate = PageUptodate(page);
4576                 page_cache_release(page);
4577                 if (!uptodate) {
4578                         pg_uptodate = 0;
4579                         break;
4580                 }
4581                 start += PAGE_CACHE_SIZE;
4582         }
4583         return pg_uptodate;
4584 }
4585
4586 int extent_buffer_uptodate(struct extent_buffer *eb)
4587 {
4588         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4589 }
4590
4591 int read_extent_buffer_pages(struct extent_io_tree *tree,
4592                              struct extent_buffer *eb, u64 start, int wait,
4593                              get_extent_t *get_extent, int mirror_num)
4594 {
4595         unsigned long i;
4596         unsigned long start_i;
4597         struct page *page;
4598         int err;
4599         int ret = 0;
4600         int locked_pages = 0;
4601         int all_uptodate = 1;
4602         unsigned long num_pages;
4603         unsigned long num_reads = 0;
4604         struct bio *bio = NULL;
4605         unsigned long bio_flags = 0;
4606
4607         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4608                 return 0;
4609
4610         if (start) {
4611                 WARN_ON(start < eb->start);
4612                 start_i = (start >> PAGE_CACHE_SHIFT) -
4613                         (eb->start >> PAGE_CACHE_SHIFT);
4614         } else {
4615                 start_i = 0;
4616         }
4617
4618         num_pages = num_extent_pages(eb->start, eb->len);
4619         for (i = start_i; i < num_pages; i++) {
4620                 page = extent_buffer_page(eb, i);
4621                 if (wait == WAIT_NONE) {
4622                         if (!trylock_page(page))
4623                                 goto unlock_exit;
4624                 } else {
4625                         lock_page(page);
4626                 }
4627                 locked_pages++;
4628                 if (!PageUptodate(page)) {
4629                         num_reads++;
4630                         all_uptodate = 0;
4631                 }
4632         }
4633         if (all_uptodate) {
4634                 if (start_i == 0)
4635                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4636                 goto unlock_exit;
4637         }
4638
4639         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4640         eb->read_mirror = 0;
4641         atomic_set(&eb->io_pages, num_reads);
4642         for (i = start_i; i < num_pages; i++) {
4643                 page = extent_buffer_page(eb, i);
4644                 if (!PageUptodate(page)) {
4645                         ClearPageError(page);
4646                         err = __extent_read_full_page(tree, page,
4647                                                       get_extent, &bio,
4648                                                       mirror_num, &bio_flags);
4649                         if (err)
4650                                 ret = err;
4651                 } else {
4652                         unlock_page(page);
4653                 }
4654         }
4655
4656         if (bio) {
4657                 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4658                 if (err)
4659                         return err;
4660         }
4661
4662         if (ret || wait != WAIT_COMPLETE)
4663                 return ret;
4664
4665         for (i = start_i; i < num_pages; i++) {
4666                 page = extent_buffer_page(eb, i);
4667                 wait_on_page_locked(page);
4668                 if (!PageUptodate(page))
4669                         ret = -EIO;
4670         }
4671
4672         return ret;
4673
4674 unlock_exit:
4675         i = start_i;
4676         while (locked_pages > 0) {
4677                 page = extent_buffer_page(eb, i);
4678                 i++;
4679                 unlock_page(page);
4680                 locked_pages--;
4681         }
4682         return ret;
4683 }
4684
4685 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4686                         unsigned long start,
4687                         unsigned long len)
4688 {
4689         size_t cur;
4690         size_t offset;
4691         struct page *page;
4692         char *kaddr;
4693         char *dst = (char *)dstv;
4694         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4695         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4696
4697         WARN_ON(start > eb->len);
4698         WARN_ON(start + len > eb->start + eb->len);
4699
4700         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4701
4702         while (len > 0) {
4703                 page = extent_buffer_page(eb, i);
4704
4705                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4706                 kaddr = page_address(page);
4707                 memcpy(dst, kaddr + offset, cur);
4708
4709                 dst += cur;
4710                 len -= cur;
4711                 offset = 0;
4712                 i++;
4713         }
4714 }
4715
4716 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4717                                unsigned long min_len, char **map,
4718                                unsigned long *map_start,
4719                                unsigned long *map_len)
4720 {
4721         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4722         char *kaddr;
4723         struct page *p;
4724         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4725         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4726         unsigned long end_i = (start_offset + start + min_len - 1) >>
4727                 PAGE_CACHE_SHIFT;
4728
4729         if (i != end_i)
4730                 return -EINVAL;
4731
4732         if (i == 0) {
4733                 offset = start_offset;
4734                 *map_start = 0;
4735         } else {
4736                 offset = 0;
4737                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4738         }
4739
4740         if (start + min_len > eb->len) {
4741                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4742                        "wanted %lu %lu\n", (unsigned long long)eb->start,
4743                        eb->len, start, min_len);
4744                 return -EINVAL;
4745         }
4746
4747         p = extent_buffer_page(eb, i);
4748         kaddr = page_address(p);
4749         *map = kaddr + offset;
4750         *map_len = PAGE_CACHE_SIZE - offset;
4751         return 0;
4752 }
4753
4754 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4755                           unsigned long start,
4756                           unsigned long len)
4757 {
4758         size_t cur;
4759         size_t offset;
4760         struct page *page;
4761         char *kaddr;
4762         char *ptr = (char *)ptrv;
4763         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4764         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4765         int ret = 0;
4766
4767         WARN_ON(start > eb->len);
4768         WARN_ON(start + len > eb->start + eb->len);
4769
4770         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4771
4772         while (len > 0) {
4773                 page = extent_buffer_page(eb, i);
4774
4775                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4776
4777                 kaddr = page_address(page);
4778                 ret = memcmp(ptr, kaddr + offset, cur);
4779                 if (ret)
4780                         break;
4781
4782                 ptr += cur;
4783                 len -= cur;
4784                 offset = 0;
4785                 i++;
4786         }
4787         return ret;
4788 }
4789
4790 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4791                          unsigned long start, unsigned long len)
4792 {
4793         size_t cur;
4794         size_t offset;
4795         struct page *page;
4796         char *kaddr;
4797         char *src = (char *)srcv;
4798         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4799         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4800
4801         WARN_ON(start > eb->len);
4802         WARN_ON(start + len > eb->start + eb->len);
4803
4804         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4805
4806         while (len > 0) {
4807                 page = extent_buffer_page(eb, i);
4808                 WARN_ON(!PageUptodate(page));
4809
4810                 cur = min(len, PAGE_CACHE_SIZE - offset);
4811                 kaddr = page_address(page);
4812                 memcpy(kaddr + offset, src, cur);
4813
4814                 src += cur;
4815                 len -= cur;
4816                 offset = 0;
4817                 i++;
4818         }
4819 }
4820
4821 void memset_extent_buffer(struct extent_buffer *eb, char c,
4822                           unsigned long start, unsigned long len)
4823 {
4824         size_t cur;
4825         size_t offset;
4826         struct page *page;
4827         char *kaddr;
4828         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4829         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4830
4831         WARN_ON(start > eb->len);
4832         WARN_ON(start + len > eb->start + eb->len);
4833
4834         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4835
4836         while (len > 0) {
4837                 page = extent_buffer_page(eb, i);
4838                 WARN_ON(!PageUptodate(page));
4839
4840                 cur = min(len, PAGE_CACHE_SIZE - offset);
4841                 kaddr = page_address(page);
4842                 memset(kaddr + offset, c, cur);
4843
4844                 len -= cur;
4845                 offset = 0;
4846                 i++;
4847         }
4848 }
4849
4850 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4851                         unsigned long dst_offset, unsigned long src_offset,
4852                         unsigned long len)
4853 {
4854         u64 dst_len = dst->len;
4855         size_t cur;
4856         size_t offset;
4857         struct page *page;
4858         char *kaddr;
4859         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4860         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4861
4862         WARN_ON(src->len != dst_len);
4863
4864         offset = (start_offset + dst_offset) &
4865                 ((unsigned long)PAGE_CACHE_SIZE - 1);
4866
4867         while (len > 0) {
4868                 page = extent_buffer_page(dst, i);
4869                 WARN_ON(!PageUptodate(page));
4870
4871                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4872
4873                 kaddr = page_address(page);
4874                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4875
4876                 src_offset += cur;
4877                 len -= cur;
4878                 offset = 0;
4879                 i++;
4880         }
4881 }
4882
4883 static void move_pages(struct page *dst_page, struct page *src_page,
4884                        unsigned long dst_off, unsigned long src_off,
4885                        unsigned long len)
4886 {
4887         char *dst_kaddr = page_address(dst_page);
4888         if (dst_page == src_page) {
4889                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4890         } else {
4891                 char *src_kaddr = page_address(src_page);
4892                 char *p = dst_kaddr + dst_off + len;
4893                 char *s = src_kaddr + src_off + len;
4894
4895                 while (len--)
4896                         *--p = *--s;
4897         }
4898 }
4899
4900 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4901 {
4902         unsigned long distance = (src > dst) ? src - dst : dst - src;
4903         return distance < len;
4904 }
4905
4906 static void copy_pages(struct page *dst_page, struct page *src_page,
4907                        unsigned long dst_off, unsigned long src_off,
4908                        unsigned long len)
4909 {
4910         char *dst_kaddr = page_address(dst_page);
4911         char *src_kaddr;
4912         int must_memmove = 0;
4913
4914         if (dst_page != src_page) {
4915                 src_kaddr = page_address(src_page);
4916         } else {
4917                 src_kaddr = dst_kaddr;
4918                 if (areas_overlap(src_off, dst_off, len))
4919                         must_memmove = 1;
4920         }
4921
4922         if (must_memmove)
4923                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4924         else
4925                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4926 }
4927
4928 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4929                            unsigned long src_offset, unsigned long len)
4930 {
4931         size_t cur;
4932         size_t dst_off_in_page;
4933         size_t src_off_in_page;
4934         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4935         unsigned long dst_i;
4936         unsigned long src_i;
4937
4938         if (src_offset + len > dst->len) {
4939                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4940                        "len %lu dst len %lu\n", src_offset, len, dst->len);
4941                 BUG_ON(1);
4942         }
4943         if (dst_offset + len > dst->len) {
4944                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4945                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
4946                 BUG_ON(1);
4947         }
4948
4949         while (len > 0) {
4950                 dst_off_in_page = (start_offset + dst_offset) &
4951                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4952                 src_off_in_page = (start_offset + src_offset) &
4953                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4954
4955                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4956                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4957
4958                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4959                                                src_off_in_page));
4960                 cur = min_t(unsigned long, cur,
4961                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4962
4963                 copy_pages(extent_buffer_page(dst, dst_i),
4964                            extent_buffer_page(dst, src_i),
4965                            dst_off_in_page, src_off_in_page, cur);
4966
4967                 src_offset += cur;
4968                 dst_offset += cur;
4969                 len -= cur;
4970         }
4971 }
4972
4973 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4974                            unsigned long src_offset, unsigned long len)
4975 {
4976         size_t cur;
4977         size_t dst_off_in_page;
4978         size_t src_off_in_page;
4979         unsigned long dst_end = dst_offset + len - 1;
4980         unsigned long src_end = src_offset + len - 1;
4981         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4982         unsigned long dst_i;
4983         unsigned long src_i;
4984
4985         if (src_offset + len > dst->len) {
4986                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4987                        "len %lu len %lu\n", src_offset, len, dst->len);
4988                 BUG_ON(1);
4989         }
4990         if (dst_offset + len > dst->len) {
4991                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4992                        "len %lu len %lu\n", dst_offset, len, dst->len);
4993                 BUG_ON(1);
4994         }
4995         if (dst_offset < src_offset) {
4996                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4997                 return;
4998         }
4999         while (len > 0) {
5000                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5001                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5002
5003                 dst_off_in_page = (start_offset + dst_end) &
5004                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5005                 src_off_in_page = (start_offset + src_end) &
5006                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5007
5008                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5009                 cur = min(cur, dst_off_in_page + 1);
5010                 move_pages(extent_buffer_page(dst, dst_i),
5011                            extent_buffer_page(dst, src_i),
5012                            dst_off_in_page - cur + 1,
5013                            src_off_in_page - cur + 1, cur);
5014
5015                 dst_end -= cur;
5016                 src_end -= cur;
5017                 len -= cur;
5018         }
5019 }
5020
5021 int try_release_extent_buffer(struct page *page, gfp_t mask)
5022 {
5023         struct extent_buffer *eb;
5024
5025         /*
5026          * We need to make sure noboody is attaching this page to an eb right
5027          * now.
5028          */
5029         spin_lock(&page->mapping->private_lock);
5030         if (!PagePrivate(page)) {
5031                 spin_unlock(&page->mapping->private_lock);
5032                 return 1;
5033         }
5034
5035         eb = (struct extent_buffer *)page->private;
5036         BUG_ON(!eb);
5037
5038         /*
5039          * This is a little awful but should be ok, we need to make sure that
5040          * the eb doesn't disappear out from under us while we're looking at
5041          * this page.
5042          */
5043         spin_lock(&eb->refs_lock);
5044         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5045                 spin_unlock(&eb->refs_lock);
5046                 spin_unlock(&page->mapping->private_lock);
5047                 return 0;
5048         }
5049         spin_unlock(&page->mapping->private_lock);
5050
5051         if ((mask & GFP_NOFS) == GFP_NOFS)
5052                 mask = GFP_NOFS;
5053
5054         /*
5055          * If tree ref isn't set then we know the ref on this eb is a real ref,
5056          * so just return, this page will likely be freed soon anyway.
5057          */
5058         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5059                 spin_unlock(&eb->refs_lock);
5060                 return 0;
5061         }
5062
5063         return release_extent_buffer(eb, mask);
5064 }