2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
52 struct rb_node rb_node;
56 * transid where the defrag was added, we search for
57 * extents newer than this
64 /* last offset we were able to defrag */
67 /* if we've wrapped around back to zero once already */
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
74 if (defrag1->root > defrag2->root)
76 else if (defrag1->root < defrag2->root)
78 else if (defrag1->ino > defrag2->ino)
80 else if (defrag1->ino < defrag2->ino)
86 /* pop a record for an inode into the defrag tree. The lock
87 * must be held already
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
92 * If an existing record is found the defrag item you
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96 struct inode_defrag *defrag)
98 struct btrfs_root *root = BTRFS_I(inode)->root;
99 struct inode_defrag *entry;
101 struct rb_node *parent = NULL;
104 p = &root->fs_info->defrag_inodes.rb_node;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
109 ret = __compare_inode_defrag(defrag, entry);
111 p = &parent->rb_left;
113 p = &parent->rb_right;
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127 rb_link_node(&defrag->rb_node, parent, p);
128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
132 static inline int __need_auto_defrag(struct btrfs_root *root)
134 if (!btrfs_test_opt(root, AUTO_DEFRAG))
137 if (btrfs_fs_closing(root->fs_info))
144 * insert a defrag record for this inode if auto defrag is
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
150 struct btrfs_root *root = BTRFS_I(inode)->root;
151 struct inode_defrag *defrag;
155 if (!__need_auto_defrag(root))
158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
162 transid = trans->transid;
164 transid = BTRFS_I(inode)->root->last_trans;
166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
170 defrag->ino = btrfs_ino(inode);
171 defrag->transid = transid;
172 defrag->root = root->root_key.objectid;
174 spin_lock(&root->fs_info->defrag_inodes_lock);
175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
177 * If we set IN_DEFRAG flag and evict the inode from memory,
178 * and then re-read this inode, this new inode doesn't have
179 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 ret = __btrfs_add_inode_defrag(inode, defrag);
183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 spin_unlock(&root->fs_info->defrag_inodes_lock);
192 * Requeue the defrag object. If there is a defrag object that points to
193 * the same inode in the tree, we will merge them together (by
194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197 struct inode_defrag *defrag)
199 struct btrfs_root *root = BTRFS_I(inode)->root;
202 if (!__need_auto_defrag(root))
206 * Here we don't check the IN_DEFRAG flag, because we need merge
209 spin_lock(&root->fs_info->defrag_inodes_lock);
210 ret = __btrfs_add_inode_defrag(inode, defrag);
211 spin_unlock(&root->fs_info->defrag_inodes_lock);
216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
220 * pick the defragable inode that we want, if it doesn't exist, we will get
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 struct inode_defrag *entry = NULL;
227 struct inode_defrag tmp;
229 struct rb_node *parent = NULL;
235 spin_lock(&fs_info->defrag_inodes_lock);
236 p = fs_info->defrag_inodes.rb_node;
239 entry = rb_entry(parent, struct inode_defrag, rb_node);
241 ret = __compare_inode_defrag(&tmp, entry);
245 p = parent->rb_right;
250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 parent = rb_next(parent);
253 entry = rb_entry(parent, struct inode_defrag, rb_node);
259 rb_erase(parent, &fs_info->defrag_inodes);
260 spin_unlock(&fs_info->defrag_inodes_lock);
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 struct inode_defrag *defrag;
267 struct rb_node *node;
269 spin_lock(&fs_info->defrag_inodes_lock);
270 node = rb_first(&fs_info->defrag_inodes);
272 rb_erase(node, &fs_info->defrag_inodes);
273 defrag = rb_entry(node, struct inode_defrag, rb_node);
274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276 if (need_resched()) {
277 spin_unlock(&fs_info->defrag_inodes_lock);
279 spin_lock(&fs_info->defrag_inodes_lock);
282 node = rb_first(&fs_info->defrag_inodes);
284 spin_unlock(&fs_info->defrag_inodes_lock);
287 #define BTRFS_DEFRAG_BATCH 1024
289 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
290 struct inode_defrag *defrag)
292 struct btrfs_root *inode_root;
294 struct btrfs_key key;
295 struct btrfs_ioctl_defrag_range_args range;
301 key.objectid = defrag->root;
302 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
303 key.offset = (u64)-1;
305 index = srcu_read_lock(&fs_info->subvol_srcu);
307 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
308 if (IS_ERR(inode_root)) {
309 ret = PTR_ERR(inode_root);
313 key.objectid = defrag->ino;
314 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
316 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
318 ret = PTR_ERR(inode);
321 srcu_read_unlock(&fs_info->subvol_srcu, index);
323 /* do a chunk of defrag */
324 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
325 memset(&range, 0, sizeof(range));
327 range.start = defrag->last_offset;
329 sb_start_write(fs_info->sb);
330 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
332 sb_end_write(fs_info->sb);
334 * if we filled the whole defrag batch, there
335 * must be more work to do. Queue this defrag
338 if (num_defrag == BTRFS_DEFRAG_BATCH) {
339 defrag->last_offset = range.start;
340 btrfs_requeue_inode_defrag(inode, defrag);
341 } else if (defrag->last_offset && !defrag->cycled) {
343 * we didn't fill our defrag batch, but
344 * we didn't start at zero. Make sure we loop
345 * around to the start of the file.
347 defrag->last_offset = 0;
349 btrfs_requeue_inode_defrag(inode, defrag);
351 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
357 srcu_read_unlock(&fs_info->subvol_srcu, index);
358 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
363 * run through the list of inodes in the FS that need
366 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
368 struct inode_defrag *defrag;
370 u64 root_objectid = 0;
372 atomic_inc(&fs_info->defrag_running);
374 /* Pause the auto defragger. */
375 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
379 if (!__need_auto_defrag(fs_info->tree_root))
382 /* find an inode to defrag */
383 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
386 if (root_objectid || first_ino) {
395 first_ino = defrag->ino + 1;
396 root_objectid = defrag->root;
398 __btrfs_run_defrag_inode(fs_info, defrag);
400 atomic_dec(&fs_info->defrag_running);
403 * during unmount, we use the transaction_wait queue to
404 * wait for the defragger to stop
406 wake_up(&fs_info->transaction_wait);
410 /* simple helper to fault in pages and copy. This should go away
411 * and be replaced with calls into generic code.
413 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
415 struct page **prepared_pages,
419 size_t total_copied = 0;
421 int offset = pos & (PAGE_CACHE_SIZE - 1);
423 while (write_bytes > 0) {
424 size_t count = min_t(size_t,
425 PAGE_CACHE_SIZE - offset, write_bytes);
426 struct page *page = prepared_pages[pg];
428 * Copy data from userspace to the current page
430 * Disable pagefault to avoid recursive lock since
431 * the pages are already locked
434 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
437 /* Flush processor's dcache for this page */
438 flush_dcache_page(page);
441 * if we get a partial write, we can end up with
442 * partially up to date pages. These add
443 * a lot of complexity, so make sure they don't
444 * happen by forcing this copy to be retried.
446 * The rest of the btrfs_file_write code will fall
447 * back to page at a time copies after we return 0.
449 if (!PageUptodate(page) && copied < count)
452 iov_iter_advance(i, copied);
453 write_bytes -= copied;
454 total_copied += copied;
456 /* Return to btrfs_file_aio_write to fault page */
457 if (unlikely(copied == 0))
460 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
471 * unlocks pages after btrfs_file_write is done with them
473 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
476 for (i = 0; i < num_pages; i++) {
477 /* page checked is some magic around finding pages that
478 * have been modified without going through btrfs_set_page_dirty
481 ClearPageChecked(pages[i]);
482 unlock_page(pages[i]);
483 mark_page_accessed(pages[i]);
484 page_cache_release(pages[i]);
489 * after copy_from_user, pages need to be dirtied and we need to make
490 * sure holes are created between the current EOF and the start of
491 * any next extents (if required).
493 * this also makes the decision about creating an inline extent vs
494 * doing real data extents, marking pages dirty and delalloc as required.
496 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
497 struct page **pages, size_t num_pages,
498 loff_t pos, size_t write_bytes,
499 struct extent_state **cached)
505 u64 end_of_last_block;
506 u64 end_pos = pos + write_bytes;
507 loff_t isize = i_size_read(inode);
509 start_pos = pos & ~((u64)root->sectorsize - 1);
510 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
512 end_of_last_block = start_pos + num_bytes - 1;
513 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
518 for (i = 0; i < num_pages; i++) {
519 struct page *p = pages[i];
526 * we've only changed i_size in ram, and we haven't updated
527 * the disk i_size. There is no need to log the inode
531 i_size_write(inode, end_pos);
536 * this drops all the extents in the cache that intersect the range
537 * [start, end]. Existing extents are split as required.
539 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
542 struct extent_map *em;
543 struct extent_map *split = NULL;
544 struct extent_map *split2 = NULL;
545 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
546 u64 len = end - start + 1;
554 WARN_ON(end < start);
555 if (end == (u64)-1) {
564 split = alloc_extent_map();
566 split2 = alloc_extent_map();
567 if (!split || !split2)
570 write_lock(&em_tree->lock);
571 em = lookup_extent_mapping(em_tree, start, len);
573 write_unlock(&em_tree->lock);
577 gen = em->generation;
578 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
579 if (testend && em->start + em->len >= start + len) {
581 write_unlock(&em_tree->lock);
584 start = em->start + em->len;
586 len = start + len - (em->start + em->len);
588 write_unlock(&em_tree->lock);
591 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
592 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
593 clear_bit(EXTENT_FLAG_LOGGING, &flags);
594 modified = !list_empty(&em->list);
595 remove_extent_mapping(em_tree, em);
599 if (em->start < start) {
600 split->start = em->start;
601 split->len = start - em->start;
603 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
604 split->orig_start = em->orig_start;
605 split->block_start = em->block_start;
608 split->block_len = em->block_len;
610 split->block_len = split->len;
611 split->orig_block_len = max(split->block_len,
613 split->ram_bytes = em->ram_bytes;
615 split->orig_start = split->start;
616 split->block_len = 0;
617 split->block_start = em->block_start;
618 split->orig_block_len = 0;
619 split->ram_bytes = split->len;
622 split->generation = gen;
623 split->bdev = em->bdev;
624 split->flags = flags;
625 split->compress_type = em->compress_type;
626 ret = add_extent_mapping(em_tree, split, modified);
627 BUG_ON(ret); /* Logic error */
628 free_extent_map(split);
632 if (testend && em->start + em->len > start + len) {
633 u64 diff = start + len - em->start;
635 split->start = start + len;
636 split->len = em->start + em->len - (start + len);
637 split->bdev = em->bdev;
638 split->flags = flags;
639 split->compress_type = em->compress_type;
640 split->generation = gen;
642 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
643 split->orig_block_len = max(em->block_len,
646 split->ram_bytes = em->ram_bytes;
648 split->block_len = em->block_len;
649 split->block_start = em->block_start;
650 split->orig_start = em->orig_start;
652 split->block_len = split->len;
653 split->block_start = em->block_start
655 split->orig_start = em->orig_start;
658 split->ram_bytes = split->len;
659 split->orig_start = split->start;
660 split->block_len = 0;
661 split->block_start = em->block_start;
662 split->orig_block_len = 0;
665 ret = add_extent_mapping(em_tree, split, modified);
666 BUG_ON(ret); /* Logic error */
667 free_extent_map(split);
671 write_unlock(&em_tree->lock);
675 /* once for the tree*/
679 free_extent_map(split);
681 free_extent_map(split2);
685 * this is very complex, but the basic idea is to drop all extents
686 * in the range start - end. hint_block is filled in with a block number
687 * that would be a good hint to the block allocator for this file.
689 * If an extent intersects the range but is not entirely inside the range
690 * it is either truncated or split. Anything entirely inside the range
691 * is deleted from the tree.
693 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
694 struct btrfs_root *root, struct inode *inode,
695 struct btrfs_path *path, u64 start, u64 end,
696 u64 *drop_end, int drop_cache)
698 struct extent_buffer *leaf;
699 struct btrfs_file_extent_item *fi;
700 struct btrfs_key key;
701 struct btrfs_key new_key;
702 u64 ino = btrfs_ino(inode);
703 u64 search_start = start;
706 u64 extent_offset = 0;
713 int modify_tree = -1;
714 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
718 btrfs_drop_extent_cache(inode, start, end - 1, 0);
720 if (start >= BTRFS_I(inode)->disk_i_size)
725 ret = btrfs_lookup_file_extent(trans, root, path, ino,
726 search_start, modify_tree);
729 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
730 leaf = path->nodes[0];
731 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
732 if (key.objectid == ino &&
733 key.type == BTRFS_EXTENT_DATA_KEY)
738 leaf = path->nodes[0];
739 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
741 ret = btrfs_next_leaf(root, path);
748 leaf = path->nodes[0];
752 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
753 if (key.objectid > ino ||
754 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
757 fi = btrfs_item_ptr(leaf, path->slots[0],
758 struct btrfs_file_extent_item);
759 extent_type = btrfs_file_extent_type(leaf, fi);
761 if (extent_type == BTRFS_FILE_EXTENT_REG ||
762 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
763 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
764 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
765 extent_offset = btrfs_file_extent_offset(leaf, fi);
766 extent_end = key.offset +
767 btrfs_file_extent_num_bytes(leaf, fi);
768 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
769 extent_end = key.offset +
770 btrfs_file_extent_inline_len(leaf, fi);
773 extent_end = search_start;
776 if (extent_end <= search_start) {
782 search_start = max(key.offset, start);
783 if (recow || !modify_tree) {
785 btrfs_release_path(path);
790 * | - range to drop - |
791 * | -------- extent -------- |
793 if (start > key.offset && end < extent_end) {
795 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
797 memcpy(&new_key, &key, sizeof(new_key));
798 new_key.offset = start;
799 ret = btrfs_duplicate_item(trans, root, path,
801 if (ret == -EAGAIN) {
802 btrfs_release_path(path);
808 leaf = path->nodes[0];
809 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
810 struct btrfs_file_extent_item);
811 btrfs_set_file_extent_num_bytes(leaf, fi,
814 fi = btrfs_item_ptr(leaf, path->slots[0],
815 struct btrfs_file_extent_item);
817 extent_offset += start - key.offset;
818 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
819 btrfs_set_file_extent_num_bytes(leaf, fi,
821 btrfs_mark_buffer_dirty(leaf);
823 if (update_refs && disk_bytenr > 0) {
824 ret = btrfs_inc_extent_ref(trans, root,
825 disk_bytenr, num_bytes, 0,
826 root->root_key.objectid,
828 start - extent_offset, 0);
829 BUG_ON(ret); /* -ENOMEM */
834 * | ---- range to drop ----- |
835 * | -------- extent -------- |
837 if (start <= key.offset && end < extent_end) {
838 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
840 memcpy(&new_key, &key, sizeof(new_key));
841 new_key.offset = end;
842 btrfs_set_item_key_safe(root, path, &new_key);
844 extent_offset += end - key.offset;
845 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
846 btrfs_set_file_extent_num_bytes(leaf, fi,
848 btrfs_mark_buffer_dirty(leaf);
849 if (update_refs && disk_bytenr > 0)
850 inode_sub_bytes(inode, end - key.offset);
854 search_start = extent_end;
856 * | ---- range to drop ----- |
857 * | -------- extent -------- |
859 if (start > key.offset && end >= extent_end) {
861 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
863 btrfs_set_file_extent_num_bytes(leaf, fi,
865 btrfs_mark_buffer_dirty(leaf);
866 if (update_refs && disk_bytenr > 0)
867 inode_sub_bytes(inode, extent_end - start);
868 if (end == extent_end)
876 * | ---- range to drop ----- |
877 * | ------ extent ------ |
879 if (start <= key.offset && end >= extent_end) {
881 del_slot = path->slots[0];
884 BUG_ON(del_slot + del_nr != path->slots[0]);
889 extent_type == BTRFS_FILE_EXTENT_INLINE) {
890 inode_sub_bytes(inode,
891 extent_end - key.offset);
892 extent_end = ALIGN(extent_end,
894 } else if (update_refs && disk_bytenr > 0) {
895 ret = btrfs_free_extent(trans, root,
896 disk_bytenr, num_bytes, 0,
897 root->root_key.objectid,
898 key.objectid, key.offset -
900 BUG_ON(ret); /* -ENOMEM */
901 inode_sub_bytes(inode,
902 extent_end - key.offset);
905 if (end == extent_end)
908 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
913 ret = btrfs_del_items(trans, root, path, del_slot,
916 btrfs_abort_transaction(trans, root, ret);
923 btrfs_release_path(path);
930 if (!ret && del_nr > 0) {
931 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
933 btrfs_abort_transaction(trans, root, ret);
937 *drop_end = found ? min(end, extent_end) : end;
938 btrfs_release_path(path);
942 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
943 struct btrfs_root *root, struct inode *inode, u64 start,
944 u64 end, int drop_cache)
946 struct btrfs_path *path;
949 path = btrfs_alloc_path();
952 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
954 btrfs_free_path(path);
958 static int extent_mergeable(struct extent_buffer *leaf, int slot,
959 u64 objectid, u64 bytenr, u64 orig_offset,
960 u64 *start, u64 *end)
962 struct btrfs_file_extent_item *fi;
963 struct btrfs_key key;
966 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
969 btrfs_item_key_to_cpu(leaf, &key, slot);
970 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
973 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
974 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
975 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
976 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
977 btrfs_file_extent_compression(leaf, fi) ||
978 btrfs_file_extent_encryption(leaf, fi) ||
979 btrfs_file_extent_other_encoding(leaf, fi))
982 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
983 if ((*start && *start != key.offset) || (*end && *end != extent_end))
992 * Mark extent in the range start - end as written.
994 * This changes extent type from 'pre-allocated' to 'regular'. If only
995 * part of extent is marked as written, the extent will be split into
998 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
999 struct inode *inode, u64 start, u64 end)
1001 struct btrfs_root *root = BTRFS_I(inode)->root;
1002 struct extent_buffer *leaf;
1003 struct btrfs_path *path;
1004 struct btrfs_file_extent_item *fi;
1005 struct btrfs_key key;
1006 struct btrfs_key new_key;
1018 u64 ino = btrfs_ino(inode);
1020 path = btrfs_alloc_path();
1027 key.type = BTRFS_EXTENT_DATA_KEY;
1030 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1033 if (ret > 0 && path->slots[0] > 0)
1036 leaf = path->nodes[0];
1037 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1038 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1039 fi = btrfs_item_ptr(leaf, path->slots[0],
1040 struct btrfs_file_extent_item);
1041 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1042 BTRFS_FILE_EXTENT_PREALLOC);
1043 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1044 BUG_ON(key.offset > start || extent_end < end);
1046 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1047 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1048 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1049 memcpy(&new_key, &key, sizeof(new_key));
1051 if (start == key.offset && end < extent_end) {
1054 if (extent_mergeable(leaf, path->slots[0] - 1,
1055 ino, bytenr, orig_offset,
1056 &other_start, &other_end)) {
1057 new_key.offset = end;
1058 btrfs_set_item_key_safe(root, path, &new_key);
1059 fi = btrfs_item_ptr(leaf, path->slots[0],
1060 struct btrfs_file_extent_item);
1061 btrfs_set_file_extent_generation(leaf, fi,
1063 btrfs_set_file_extent_num_bytes(leaf, fi,
1065 btrfs_set_file_extent_offset(leaf, fi,
1067 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1068 struct btrfs_file_extent_item);
1069 btrfs_set_file_extent_generation(leaf, fi,
1071 btrfs_set_file_extent_num_bytes(leaf, fi,
1073 btrfs_mark_buffer_dirty(leaf);
1078 if (start > key.offset && end == extent_end) {
1081 if (extent_mergeable(leaf, path->slots[0] + 1,
1082 ino, bytenr, orig_offset,
1083 &other_start, &other_end)) {
1084 fi = btrfs_item_ptr(leaf, path->slots[0],
1085 struct btrfs_file_extent_item);
1086 btrfs_set_file_extent_num_bytes(leaf, fi,
1087 start - key.offset);
1088 btrfs_set_file_extent_generation(leaf, fi,
1091 new_key.offset = start;
1092 btrfs_set_item_key_safe(root, path, &new_key);
1094 fi = btrfs_item_ptr(leaf, path->slots[0],
1095 struct btrfs_file_extent_item);
1096 btrfs_set_file_extent_generation(leaf, fi,
1098 btrfs_set_file_extent_num_bytes(leaf, fi,
1100 btrfs_set_file_extent_offset(leaf, fi,
1101 start - orig_offset);
1102 btrfs_mark_buffer_dirty(leaf);
1107 while (start > key.offset || end < extent_end) {
1108 if (key.offset == start)
1111 new_key.offset = split;
1112 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1113 if (ret == -EAGAIN) {
1114 btrfs_release_path(path);
1118 btrfs_abort_transaction(trans, root, ret);
1122 leaf = path->nodes[0];
1123 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1124 struct btrfs_file_extent_item);
1125 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1126 btrfs_set_file_extent_num_bytes(leaf, fi,
1127 split - key.offset);
1129 fi = btrfs_item_ptr(leaf, path->slots[0],
1130 struct btrfs_file_extent_item);
1132 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1133 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1134 btrfs_set_file_extent_num_bytes(leaf, fi,
1135 extent_end - split);
1136 btrfs_mark_buffer_dirty(leaf);
1138 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1139 root->root_key.objectid,
1140 ino, orig_offset, 0);
1141 BUG_ON(ret); /* -ENOMEM */
1143 if (split == start) {
1146 BUG_ON(start != key.offset);
1155 if (extent_mergeable(leaf, path->slots[0] + 1,
1156 ino, bytenr, orig_offset,
1157 &other_start, &other_end)) {
1159 btrfs_release_path(path);
1162 extent_end = other_end;
1163 del_slot = path->slots[0] + 1;
1165 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1166 0, root->root_key.objectid,
1167 ino, orig_offset, 0);
1168 BUG_ON(ret); /* -ENOMEM */
1172 if (extent_mergeable(leaf, path->slots[0] - 1,
1173 ino, bytenr, orig_offset,
1174 &other_start, &other_end)) {
1176 btrfs_release_path(path);
1179 key.offset = other_start;
1180 del_slot = path->slots[0];
1182 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1183 0, root->root_key.objectid,
1184 ino, orig_offset, 0);
1185 BUG_ON(ret); /* -ENOMEM */
1188 fi = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_file_extent_item);
1190 btrfs_set_file_extent_type(leaf, fi,
1191 BTRFS_FILE_EXTENT_REG);
1192 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1193 btrfs_mark_buffer_dirty(leaf);
1195 fi = btrfs_item_ptr(leaf, del_slot - 1,
1196 struct btrfs_file_extent_item);
1197 btrfs_set_file_extent_type(leaf, fi,
1198 BTRFS_FILE_EXTENT_REG);
1199 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1200 btrfs_set_file_extent_num_bytes(leaf, fi,
1201 extent_end - key.offset);
1202 btrfs_mark_buffer_dirty(leaf);
1204 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1206 btrfs_abort_transaction(trans, root, ret);
1211 btrfs_free_path(path);
1216 * on error we return an unlocked page and the error value
1217 * on success we return a locked page and 0
1219 static int prepare_uptodate_page(struct page *page, u64 pos,
1220 bool force_uptodate)
1224 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1225 !PageUptodate(page)) {
1226 ret = btrfs_readpage(NULL, page);
1230 if (!PageUptodate(page)) {
1239 * this gets pages into the page cache and locks them down, it also properly
1240 * waits for data=ordered extents to finish before allowing the pages to be
1243 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1244 struct page **pages, size_t num_pages,
1245 loff_t pos, unsigned long first_index,
1246 size_t write_bytes, bool force_uptodate)
1248 struct extent_state *cached_state = NULL;
1250 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1251 struct inode *inode = file_inode(file);
1252 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1258 start_pos = pos & ~((u64)root->sectorsize - 1);
1259 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1262 for (i = 0; i < num_pages; i++) {
1263 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1264 mask | __GFP_WRITE);
1272 err = prepare_uptodate_page(pages[i], pos,
1274 if (i == num_pages - 1)
1275 err = prepare_uptodate_page(pages[i],
1276 pos + write_bytes, false);
1278 page_cache_release(pages[i]);
1282 wait_on_page_writeback(pages[i]);
1285 if (start_pos < inode->i_size) {
1286 struct btrfs_ordered_extent *ordered;
1287 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1288 start_pos, last_pos - 1, 0, &cached_state);
1289 ordered = btrfs_lookup_first_ordered_extent(inode,
1292 ordered->file_offset + ordered->len > start_pos &&
1293 ordered->file_offset < last_pos) {
1294 btrfs_put_ordered_extent(ordered);
1295 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1296 start_pos, last_pos - 1,
1297 &cached_state, GFP_NOFS);
1298 for (i = 0; i < num_pages; i++) {
1299 unlock_page(pages[i]);
1300 page_cache_release(pages[i]);
1302 btrfs_wait_ordered_range(inode, start_pos,
1303 last_pos - start_pos);
1307 btrfs_put_ordered_extent(ordered);
1309 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1310 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1311 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1312 0, 0, &cached_state, GFP_NOFS);
1313 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1314 start_pos, last_pos - 1, &cached_state,
1317 for (i = 0; i < num_pages; i++) {
1318 if (clear_page_dirty_for_io(pages[i]))
1319 account_page_redirty(pages[i]);
1320 set_page_extent_mapped(pages[i]);
1321 WARN_ON(!PageLocked(pages[i]));
1325 while (faili >= 0) {
1326 unlock_page(pages[faili]);
1327 page_cache_release(pages[faili]);
1334 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1335 size_t *write_bytes)
1337 struct btrfs_trans_handle *trans;
1338 struct btrfs_root *root = BTRFS_I(inode)->root;
1339 struct btrfs_ordered_extent *ordered;
1340 u64 lockstart, lockend;
1344 lockstart = round_down(pos, root->sectorsize);
1345 lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
1348 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1349 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1350 lockend - lockstart + 1);
1354 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1355 btrfs_start_ordered_extent(inode, ordered, 1);
1356 btrfs_put_ordered_extent(ordered);
1359 trans = btrfs_join_transaction(root);
1360 if (IS_ERR(trans)) {
1361 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1362 return PTR_ERR(trans);
1365 num_bytes = lockend - lockstart + 1;
1366 ret = can_nocow_extent(trans, inode, lockstart, &num_bytes, NULL, NULL,
1368 btrfs_end_transaction(trans, root);
1372 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1373 EXTENT_DIRTY | EXTENT_DELALLOC |
1374 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1376 *write_bytes = min_t(size_t, *write_bytes, num_bytes);
1379 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1384 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1388 struct inode *inode = file_inode(file);
1389 struct btrfs_root *root = BTRFS_I(inode)->root;
1390 struct page **pages = NULL;
1391 u64 release_bytes = 0;
1392 unsigned long first_index;
1393 size_t num_written = 0;
1396 bool only_release_metadata = false;
1397 bool force_page_uptodate = false;
1399 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1400 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1401 (sizeof(struct page *)));
1402 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1403 nrptrs = max(nrptrs, 8);
1404 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1408 first_index = pos >> PAGE_CACHE_SHIFT;
1410 while (iov_iter_count(i) > 0) {
1411 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1412 size_t write_bytes = min(iov_iter_count(i),
1413 nrptrs * (size_t)PAGE_CACHE_SIZE -
1415 size_t num_pages = (write_bytes + offset +
1416 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1417 size_t reserve_bytes;
1421 WARN_ON(num_pages > nrptrs);
1424 * Fault pages before locking them in prepare_pages
1425 * to avoid recursive lock
1427 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1432 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1433 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1434 if (ret == -ENOSPC &&
1435 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1436 BTRFS_INODE_PREALLOC))) {
1437 ret = check_can_nocow(inode, pos, &write_bytes);
1439 only_release_metadata = true;
1441 * our prealloc extent may be smaller than
1442 * write_bytes, so scale down.
1444 num_pages = (write_bytes + offset +
1445 PAGE_CACHE_SIZE - 1) >>
1447 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1457 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1459 if (!only_release_metadata)
1460 btrfs_free_reserved_data_space(inode,
1465 release_bytes = reserve_bytes;
1468 * This is going to setup the pages array with the number of
1469 * pages we want, so we don't really need to worry about the
1470 * contents of pages from loop to loop
1472 ret = prepare_pages(root, file, pages, num_pages,
1473 pos, first_index, write_bytes,
1474 force_page_uptodate);
1478 copied = btrfs_copy_from_user(pos, num_pages,
1479 write_bytes, pages, i);
1482 * if we have trouble faulting in the pages, fall
1483 * back to one page at a time
1485 if (copied < write_bytes)
1489 force_page_uptodate = true;
1492 force_page_uptodate = false;
1493 dirty_pages = (copied + offset +
1494 PAGE_CACHE_SIZE - 1) >>
1499 * If we had a short copy we need to release the excess delaloc
1500 * bytes we reserved. We need to increment outstanding_extents
1501 * because btrfs_delalloc_release_space will decrement it, but
1502 * we still have an outstanding extent for the chunk we actually
1505 if (num_pages > dirty_pages) {
1506 release_bytes = (num_pages - dirty_pages) <<
1509 spin_lock(&BTRFS_I(inode)->lock);
1510 BTRFS_I(inode)->outstanding_extents++;
1511 spin_unlock(&BTRFS_I(inode)->lock);
1513 if (only_release_metadata)
1514 btrfs_delalloc_release_metadata(inode,
1517 btrfs_delalloc_release_space(inode,
1521 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1523 ret = btrfs_dirty_pages(root, inode, pages,
1524 dirty_pages, pos, copied,
1527 btrfs_drop_pages(pages, num_pages);
1533 btrfs_drop_pages(pages, num_pages);
1535 if (only_release_metadata && copied > 0) {
1536 u64 lockstart = round_down(pos, root->sectorsize);
1537 u64 lockend = lockstart +
1538 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1540 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1541 lockend, EXTENT_NORESERVE, NULL,
1543 only_release_metadata = false;
1548 balance_dirty_pages_ratelimited(inode->i_mapping);
1549 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1550 btrfs_btree_balance_dirty(root);
1553 num_written += copied;
1558 if (release_bytes) {
1559 if (only_release_metadata)
1560 btrfs_delalloc_release_metadata(inode, release_bytes);
1562 btrfs_delalloc_release_space(inode, release_bytes);
1565 return num_written ? num_written : ret;
1568 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1569 const struct iovec *iov,
1570 unsigned long nr_segs, loff_t pos,
1571 loff_t *ppos, size_t count, size_t ocount)
1573 struct file *file = iocb->ki_filp;
1576 ssize_t written_buffered;
1580 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1583 if (written < 0 || written == count)
1588 iov_iter_init(&i, iov, nr_segs, count, written);
1589 written_buffered = __btrfs_buffered_write(file, &i, pos);
1590 if (written_buffered < 0) {
1591 err = written_buffered;
1594 endbyte = pos + written_buffered - 1;
1595 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1598 written += written_buffered;
1599 *ppos = pos + written_buffered;
1600 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1601 endbyte >> PAGE_CACHE_SHIFT);
1603 return written ? written : err;
1606 static void update_time_for_write(struct inode *inode)
1608 struct timespec now;
1610 if (IS_NOCMTIME(inode))
1613 now = current_fs_time(inode->i_sb);
1614 if (!timespec_equal(&inode->i_mtime, &now))
1615 inode->i_mtime = now;
1617 if (!timespec_equal(&inode->i_ctime, &now))
1618 inode->i_ctime = now;
1620 if (IS_I_VERSION(inode))
1621 inode_inc_iversion(inode);
1624 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1625 const struct iovec *iov,
1626 unsigned long nr_segs, loff_t pos)
1628 struct file *file = iocb->ki_filp;
1629 struct inode *inode = file_inode(file);
1630 struct btrfs_root *root = BTRFS_I(inode)->root;
1631 loff_t *ppos = &iocb->ki_pos;
1633 ssize_t num_written = 0;
1635 size_t count, ocount;
1636 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1638 mutex_lock(&inode->i_mutex);
1640 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1642 mutex_unlock(&inode->i_mutex);
1647 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1648 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1650 mutex_unlock(&inode->i_mutex);
1655 mutex_unlock(&inode->i_mutex);
1659 err = file_remove_suid(file);
1661 mutex_unlock(&inode->i_mutex);
1666 * If BTRFS flips readonly due to some impossible error
1667 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1668 * although we have opened a file as writable, we have
1669 * to stop this write operation to ensure FS consistency.
1671 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1672 mutex_unlock(&inode->i_mutex);
1678 * We reserve space for updating the inode when we reserve space for the
1679 * extent we are going to write, so we will enospc out there. We don't
1680 * need to start yet another transaction to update the inode as we will
1681 * update the inode when we finish writing whatever data we write.
1683 update_time_for_write(inode);
1685 start_pos = round_down(pos, root->sectorsize);
1686 if (start_pos > i_size_read(inode)) {
1687 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1689 mutex_unlock(&inode->i_mutex);
1695 atomic_inc(&BTRFS_I(inode)->sync_writers);
1697 if (unlikely(file->f_flags & O_DIRECT)) {
1698 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1699 pos, ppos, count, ocount);
1703 iov_iter_init(&i, iov, nr_segs, count, num_written);
1705 num_written = __btrfs_buffered_write(file, &i, pos);
1706 if (num_written > 0)
1707 *ppos = pos + num_written;
1710 mutex_unlock(&inode->i_mutex);
1713 * we want to make sure fsync finds this change
1714 * but we haven't joined a transaction running right now.
1716 * Later on, someone is sure to update the inode and get the
1717 * real transid recorded.
1719 * We set last_trans now to the fs_info generation + 1,
1720 * this will either be one more than the running transaction
1721 * or the generation used for the next transaction if there isn't
1722 * one running right now.
1724 * We also have to set last_sub_trans to the current log transid,
1725 * otherwise subsequent syncs to a file that's been synced in this
1726 * transaction will appear to have already occured.
1728 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1729 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1730 if (num_written > 0 || num_written == -EIOCBQUEUED) {
1731 err = generic_write_sync(file, pos, num_written);
1732 if (err < 0 && num_written > 0)
1737 atomic_dec(&BTRFS_I(inode)->sync_writers);
1739 current->backing_dev_info = NULL;
1740 return num_written ? num_written : err;
1743 int btrfs_release_file(struct inode *inode, struct file *filp)
1746 * ordered_data_close is set by settattr when we are about to truncate
1747 * a file from a non-zero size to a zero size. This tries to
1748 * flush down new bytes that may have been written if the
1749 * application were using truncate to replace a file in place.
1751 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1752 &BTRFS_I(inode)->runtime_flags)) {
1753 struct btrfs_trans_handle *trans;
1754 struct btrfs_root *root = BTRFS_I(inode)->root;
1757 * We need to block on a committing transaction to keep us from
1758 * throwing a ordered operation on to the list and causing
1759 * something like sync to deadlock trying to flush out this
1762 trans = btrfs_start_transaction(root, 0);
1764 return PTR_ERR(trans);
1765 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1766 btrfs_end_transaction(trans, root);
1767 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1768 filemap_flush(inode->i_mapping);
1770 if (filp->private_data)
1771 btrfs_ioctl_trans_end(filp);
1776 * fsync call for both files and directories. This logs the inode into
1777 * the tree log instead of forcing full commits whenever possible.
1779 * It needs to call filemap_fdatawait so that all ordered extent updates are
1780 * in the metadata btree are up to date for copying to the log.
1782 * It drops the inode mutex before doing the tree log commit. This is an
1783 * important optimization for directories because holding the mutex prevents
1784 * new operations on the dir while we write to disk.
1786 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1788 struct dentry *dentry = file->f_path.dentry;
1789 struct inode *inode = dentry->d_inode;
1790 struct btrfs_root *root = BTRFS_I(inode)->root;
1792 struct btrfs_trans_handle *trans;
1795 trace_btrfs_sync_file(file, datasync);
1798 * We write the dirty pages in the range and wait until they complete
1799 * out of the ->i_mutex. If so, we can flush the dirty pages by
1800 * multi-task, and make the performance up. See
1801 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1803 atomic_inc(&BTRFS_I(inode)->sync_writers);
1804 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1805 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1806 &BTRFS_I(inode)->runtime_flags))
1807 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1808 atomic_dec(&BTRFS_I(inode)->sync_writers);
1812 mutex_lock(&inode->i_mutex);
1815 * We flush the dirty pages again to avoid some dirty pages in the
1818 atomic_inc(&root->log_batch);
1819 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1820 &BTRFS_I(inode)->runtime_flags);
1822 btrfs_wait_ordered_range(inode, start, end - start + 1);
1823 atomic_inc(&root->log_batch);
1826 * check the transaction that last modified this inode
1827 * and see if its already been committed
1829 if (!BTRFS_I(inode)->last_trans) {
1830 mutex_unlock(&inode->i_mutex);
1835 * if the last transaction that changed this file was before
1836 * the current transaction, we can bail out now without any
1840 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1841 BTRFS_I(inode)->last_trans <=
1842 root->fs_info->last_trans_committed) {
1843 BTRFS_I(inode)->last_trans = 0;
1846 * We'v had everything committed since the last time we were
1847 * modified so clear this flag in case it was set for whatever
1848 * reason, it's no longer relevant.
1850 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1851 &BTRFS_I(inode)->runtime_flags);
1852 mutex_unlock(&inode->i_mutex);
1857 * ok we haven't committed the transaction yet, lets do a commit
1859 if (file->private_data)
1860 btrfs_ioctl_trans_end(file);
1862 trans = btrfs_start_transaction(root, 0);
1863 if (IS_ERR(trans)) {
1864 ret = PTR_ERR(trans);
1865 mutex_unlock(&inode->i_mutex);
1869 ret = btrfs_log_dentry_safe(trans, root, dentry);
1871 mutex_unlock(&inode->i_mutex);
1875 /* we've logged all the items and now have a consistent
1876 * version of the file in the log. It is possible that
1877 * someone will come in and modify the file, but that's
1878 * fine because the log is consistent on disk, and we
1879 * have references to all of the file's extents
1881 * It is possible that someone will come in and log the
1882 * file again, but that will end up using the synchronization
1883 * inside btrfs_sync_log to keep things safe.
1885 mutex_unlock(&inode->i_mutex);
1887 if (ret != BTRFS_NO_LOG_SYNC) {
1890 * If we didn't already wait for ordered extents we need
1894 btrfs_wait_ordered_range(inode, start,
1896 ret = btrfs_commit_transaction(trans, root);
1898 ret = btrfs_sync_log(trans, root);
1900 ret = btrfs_end_transaction(trans, root);
1903 btrfs_wait_ordered_range(inode, start,
1906 ret = btrfs_commit_transaction(trans, root);
1910 ret = btrfs_end_transaction(trans, root);
1913 return ret > 0 ? -EIO : ret;
1916 static const struct vm_operations_struct btrfs_file_vm_ops = {
1917 .fault = filemap_fault,
1918 .page_mkwrite = btrfs_page_mkwrite,
1919 .remap_pages = generic_file_remap_pages,
1922 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1924 struct address_space *mapping = filp->f_mapping;
1926 if (!mapping->a_ops->readpage)
1929 file_accessed(filp);
1930 vma->vm_ops = &btrfs_file_vm_ops;
1935 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1936 int slot, u64 start, u64 end)
1938 struct btrfs_file_extent_item *fi;
1939 struct btrfs_key key;
1941 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1944 btrfs_item_key_to_cpu(leaf, &key, slot);
1945 if (key.objectid != btrfs_ino(inode) ||
1946 key.type != BTRFS_EXTENT_DATA_KEY)
1949 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1951 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1954 if (btrfs_file_extent_disk_bytenr(leaf, fi))
1957 if (key.offset == end)
1959 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1964 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1965 struct btrfs_path *path, u64 offset, u64 end)
1967 struct btrfs_root *root = BTRFS_I(inode)->root;
1968 struct extent_buffer *leaf;
1969 struct btrfs_file_extent_item *fi;
1970 struct extent_map *hole_em;
1971 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1972 struct btrfs_key key;
1975 key.objectid = btrfs_ino(inode);
1976 key.type = BTRFS_EXTENT_DATA_KEY;
1977 key.offset = offset;
1980 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1985 leaf = path->nodes[0];
1986 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1990 fi = btrfs_item_ptr(leaf, path->slots[0],
1991 struct btrfs_file_extent_item);
1992 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1994 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1995 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1996 btrfs_set_file_extent_offset(leaf, fi, 0);
1997 btrfs_mark_buffer_dirty(leaf);
2001 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2005 key.offset = offset;
2006 btrfs_set_item_key_safe(root, path, &key);
2007 fi = btrfs_item_ptr(leaf, path->slots[0],
2008 struct btrfs_file_extent_item);
2009 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2011 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2012 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2013 btrfs_set_file_extent_offset(leaf, fi, 0);
2014 btrfs_mark_buffer_dirty(leaf);
2017 btrfs_release_path(path);
2019 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2020 0, 0, end - offset, 0, end - offset,
2026 btrfs_release_path(path);
2028 hole_em = alloc_extent_map();
2030 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2031 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2032 &BTRFS_I(inode)->runtime_flags);
2034 hole_em->start = offset;
2035 hole_em->len = end - offset;
2036 hole_em->ram_bytes = hole_em->len;
2037 hole_em->orig_start = offset;
2039 hole_em->block_start = EXTENT_MAP_HOLE;
2040 hole_em->block_len = 0;
2041 hole_em->orig_block_len = 0;
2042 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2043 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2044 hole_em->generation = trans->transid;
2047 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2048 write_lock(&em_tree->lock);
2049 ret = add_extent_mapping(em_tree, hole_em, 1);
2050 write_unlock(&em_tree->lock);
2051 } while (ret == -EEXIST);
2052 free_extent_map(hole_em);
2054 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2055 &BTRFS_I(inode)->runtime_flags);
2061 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2063 struct btrfs_root *root = BTRFS_I(inode)->root;
2064 struct extent_state *cached_state = NULL;
2065 struct btrfs_path *path;
2066 struct btrfs_block_rsv *rsv;
2067 struct btrfs_trans_handle *trans;
2068 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2069 u64 lockend = round_down(offset + len,
2070 BTRFS_I(inode)->root->sectorsize) - 1;
2071 u64 cur_offset = lockstart;
2072 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2076 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2077 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2079 btrfs_wait_ordered_range(inode, offset, len);
2081 mutex_lock(&inode->i_mutex);
2083 * We needn't truncate any page which is beyond the end of the file
2084 * because we are sure there is no data there.
2087 * Only do this if we are in the same page and we aren't doing the
2090 if (same_page && len < PAGE_CACHE_SIZE) {
2091 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
2092 ret = btrfs_truncate_page(inode, offset, len, 0);
2093 mutex_unlock(&inode->i_mutex);
2097 /* zero back part of the first page */
2098 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2099 ret = btrfs_truncate_page(inode, offset, 0, 0);
2101 mutex_unlock(&inode->i_mutex);
2106 /* zero the front end of the last page */
2107 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2108 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2110 mutex_unlock(&inode->i_mutex);
2115 if (lockend < lockstart) {
2116 mutex_unlock(&inode->i_mutex);
2121 struct btrfs_ordered_extent *ordered;
2123 truncate_pagecache_range(inode, lockstart, lockend);
2125 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2127 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2130 * We need to make sure we have no ordered extents in this range
2131 * and nobody raced in and read a page in this range, if we did
2132 * we need to try again.
2135 (ordered->file_offset + ordered->len < lockstart ||
2136 ordered->file_offset > lockend)) &&
2137 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2138 lockend, EXTENT_UPTODATE, 0,
2141 btrfs_put_ordered_extent(ordered);
2145 btrfs_put_ordered_extent(ordered);
2146 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2147 lockend, &cached_state, GFP_NOFS);
2148 btrfs_wait_ordered_range(inode, lockstart,
2149 lockend - lockstart + 1);
2152 path = btrfs_alloc_path();
2158 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2163 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2167 * 1 - update the inode
2168 * 1 - removing the extents in the range
2169 * 1 - adding the hole extent
2171 trans = btrfs_start_transaction(root, 3);
2172 if (IS_ERR(trans)) {
2173 err = PTR_ERR(trans);
2177 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2180 trans->block_rsv = rsv;
2182 while (cur_offset < lockend) {
2183 ret = __btrfs_drop_extents(trans, root, inode, path,
2184 cur_offset, lockend + 1,
2189 trans->block_rsv = &root->fs_info->trans_block_rsv;
2191 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2197 cur_offset = drop_end;
2199 ret = btrfs_update_inode(trans, root, inode);
2205 btrfs_end_transaction(trans, root);
2206 btrfs_btree_balance_dirty(root);
2208 trans = btrfs_start_transaction(root, 3);
2209 if (IS_ERR(trans)) {
2210 ret = PTR_ERR(trans);
2215 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2217 BUG_ON(ret); /* shouldn't happen */
2218 trans->block_rsv = rsv;
2226 trans->block_rsv = &root->fs_info->trans_block_rsv;
2227 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2237 inode_inc_iversion(inode);
2238 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2240 trans->block_rsv = &root->fs_info->trans_block_rsv;
2241 ret = btrfs_update_inode(trans, root, inode);
2242 btrfs_end_transaction(trans, root);
2243 btrfs_btree_balance_dirty(root);
2245 btrfs_free_path(path);
2246 btrfs_free_block_rsv(root, rsv);
2248 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2249 &cached_state, GFP_NOFS);
2250 mutex_unlock(&inode->i_mutex);
2256 static long btrfs_fallocate(struct file *file, int mode,
2257 loff_t offset, loff_t len)
2259 struct inode *inode = file_inode(file);
2260 struct extent_state *cached_state = NULL;
2261 struct btrfs_root *root = BTRFS_I(inode)->root;
2268 struct extent_map *em;
2269 int blocksize = BTRFS_I(inode)->root->sectorsize;
2272 alloc_start = round_down(offset, blocksize);
2273 alloc_end = round_up(offset + len, blocksize);
2275 /* Make sure we aren't being give some crap mode */
2276 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2279 if (mode & FALLOC_FL_PUNCH_HOLE)
2280 return btrfs_punch_hole(inode, offset, len);
2283 * Make sure we have enough space before we do the
2286 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2289 if (root->fs_info->quota_enabled) {
2290 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2292 goto out_reserve_fail;
2295 mutex_lock(&inode->i_mutex);
2296 ret = inode_newsize_ok(inode, alloc_end);
2300 if (alloc_start > inode->i_size) {
2301 ret = btrfs_cont_expand(inode, i_size_read(inode),
2307 * If we are fallocating from the end of the file onward we
2308 * need to zero out the end of the page if i_size lands in the
2311 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2317 * wait for ordered IO before we have any locks. We'll loop again
2318 * below with the locks held.
2320 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2322 locked_end = alloc_end - 1;
2324 struct btrfs_ordered_extent *ordered;
2326 /* the extent lock is ordered inside the running
2329 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2330 locked_end, 0, &cached_state);
2331 ordered = btrfs_lookup_first_ordered_extent(inode,
2334 ordered->file_offset + ordered->len > alloc_start &&
2335 ordered->file_offset < alloc_end) {
2336 btrfs_put_ordered_extent(ordered);
2337 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2338 alloc_start, locked_end,
2339 &cached_state, GFP_NOFS);
2341 * we can't wait on the range with the transaction
2342 * running or with the extent lock held
2344 btrfs_wait_ordered_range(inode, alloc_start,
2345 alloc_end - alloc_start);
2348 btrfs_put_ordered_extent(ordered);
2353 cur_offset = alloc_start;
2357 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2358 alloc_end - cur_offset, 0);
2359 if (IS_ERR_OR_NULL(em)) {
2366 last_byte = min(extent_map_end(em), alloc_end);
2367 actual_end = min_t(u64, extent_map_end(em), offset + len);
2368 last_byte = ALIGN(last_byte, blocksize);
2370 if (em->block_start == EXTENT_MAP_HOLE ||
2371 (cur_offset >= inode->i_size &&
2372 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2373 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2374 last_byte - cur_offset,
2375 1 << inode->i_blkbits,
2380 free_extent_map(em);
2383 } else if (actual_end > inode->i_size &&
2384 !(mode & FALLOC_FL_KEEP_SIZE)) {
2386 * We didn't need to allocate any more space, but we
2387 * still extended the size of the file so we need to
2390 inode->i_ctime = CURRENT_TIME;
2391 i_size_write(inode, actual_end);
2392 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2394 free_extent_map(em);
2396 cur_offset = last_byte;
2397 if (cur_offset >= alloc_end) {
2402 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2403 &cached_state, GFP_NOFS);
2405 mutex_unlock(&inode->i_mutex);
2406 if (root->fs_info->quota_enabled)
2407 btrfs_qgroup_free(root, alloc_end - alloc_start);
2409 /* Let go of our reservation. */
2410 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2414 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2416 struct btrfs_root *root = BTRFS_I(inode)->root;
2417 struct extent_map *em;
2418 struct extent_state *cached_state = NULL;
2419 u64 lockstart = *offset;
2420 u64 lockend = i_size_read(inode);
2421 u64 start = *offset;
2422 u64 orig_start = *offset;
2423 u64 len = i_size_read(inode);
2427 lockend = max_t(u64, root->sectorsize, lockend);
2428 if (lockend <= lockstart)
2429 lockend = lockstart + root->sectorsize;
2432 len = lockend - lockstart + 1;
2434 len = max_t(u64, len, root->sectorsize);
2435 if (inode->i_size == 0)
2438 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2442 * Delalloc is such a pain. If we have a hole and we have pending
2443 * delalloc for a portion of the hole we will get back a hole that
2444 * exists for the entire range since it hasn't been actually written
2445 * yet. So to take care of this case we need to look for an extent just
2446 * before the position we want in case there is outstanding delalloc
2449 if (whence == SEEK_HOLE && start != 0) {
2450 if (start <= root->sectorsize)
2451 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2452 root->sectorsize, 0);
2454 em = btrfs_get_extent_fiemap(inode, NULL, 0,
2455 start - root->sectorsize,
2456 root->sectorsize, 0);
2461 last_end = em->start + em->len;
2462 if (em->block_start == EXTENT_MAP_DELALLOC)
2463 last_end = min_t(u64, last_end, inode->i_size);
2464 free_extent_map(em);
2468 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2474 if (em->block_start == EXTENT_MAP_HOLE) {
2475 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2476 if (last_end <= orig_start) {
2477 free_extent_map(em);
2483 if (whence == SEEK_HOLE) {
2485 free_extent_map(em);
2489 if (whence == SEEK_DATA) {
2490 if (em->block_start == EXTENT_MAP_DELALLOC) {
2491 if (start >= inode->i_size) {
2492 free_extent_map(em);
2498 if (!test_bit(EXTENT_FLAG_PREALLOC,
2501 free_extent_map(em);
2507 start = em->start + em->len;
2508 last_end = em->start + em->len;
2510 if (em->block_start == EXTENT_MAP_DELALLOC)
2511 last_end = min_t(u64, last_end, inode->i_size);
2513 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2514 free_extent_map(em);
2518 free_extent_map(em);
2522 *offset = min(*offset, inode->i_size);
2524 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2525 &cached_state, GFP_NOFS);
2529 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2531 struct inode *inode = file->f_mapping->host;
2534 mutex_lock(&inode->i_mutex);
2538 offset = generic_file_llseek(file, offset, whence);
2542 if (offset >= i_size_read(inode)) {
2543 mutex_unlock(&inode->i_mutex);
2547 ret = find_desired_extent(inode, &offset, whence);
2549 mutex_unlock(&inode->i_mutex);
2554 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2556 mutex_unlock(&inode->i_mutex);
2560 const struct file_operations btrfs_file_operations = {
2561 .llseek = btrfs_file_llseek,
2562 .read = do_sync_read,
2563 .write = do_sync_write,
2564 .aio_read = generic_file_aio_read,
2565 .splice_read = generic_file_splice_read,
2566 .aio_write = btrfs_file_aio_write,
2567 .mmap = btrfs_file_mmap,
2568 .open = generic_file_open,
2569 .release = btrfs_release_file,
2570 .fsync = btrfs_sync_file,
2571 .fallocate = btrfs_fallocate,
2572 .unlocked_ioctl = btrfs_ioctl,
2573 #ifdef CONFIG_COMPAT
2574 .compat_ioctl = btrfs_ioctl,
2578 void btrfs_auto_defrag_exit(void)
2580 if (btrfs_inode_defrag_cachep)
2581 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2584 int btrfs_auto_defrag_init(void)
2586 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2587 sizeof(struct inode_defrag), 0,
2588 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2590 if (!btrfs_inode_defrag_cachep)