Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / file.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "compat.h"
43 #include "volumes.h"
44
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47  * when auto defrag is enabled we
48  * queue up these defrag structs to remember which
49  * inodes need defragging passes
50  */
51 struct inode_defrag {
52         struct rb_node rb_node;
53         /* objectid */
54         u64 ino;
55         /*
56          * transid where the defrag was added, we search for
57          * extents newer than this
58          */
59         u64 transid;
60
61         /* root objectid */
62         u64 root;
63
64         /* last offset we were able to defrag */
65         u64 last_offset;
66
67         /* if we've wrapped around back to zero once already */
68         int cycled;
69 };
70
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72                                   struct inode_defrag *defrag2)
73 {
74         if (defrag1->root > defrag2->root)
75                 return 1;
76         else if (defrag1->root < defrag2->root)
77                 return -1;
78         else if (defrag1->ino > defrag2->ino)
79                 return 1;
80         else if (defrag1->ino < defrag2->ino)
81                 return -1;
82         else
83                 return 0;
84 }
85
86 /* pop a record for an inode into the defrag tree.  The lock
87  * must be held already
88  *
89  * If you're inserting a record for an older transid than an
90  * existing record, the transid already in the tree is lowered
91  *
92  * If an existing record is found the defrag item you
93  * pass in is freed
94  */
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96                                     struct inode_defrag *defrag)
97 {
98         struct btrfs_root *root = BTRFS_I(inode)->root;
99         struct inode_defrag *entry;
100         struct rb_node **p;
101         struct rb_node *parent = NULL;
102         int ret;
103
104         p = &root->fs_info->defrag_inodes.rb_node;
105         while (*p) {
106                 parent = *p;
107                 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
109                 ret = __compare_inode_defrag(defrag, entry);
110                 if (ret < 0)
111                         p = &parent->rb_left;
112                 else if (ret > 0)
113                         p = &parent->rb_right;
114                 else {
115                         /* if we're reinserting an entry for
116                          * an old defrag run, make sure to
117                          * lower the transid of our existing record
118                          */
119                         if (defrag->transid < entry->transid)
120                                 entry->transid = defrag->transid;
121                         if (defrag->last_offset > entry->last_offset)
122                                 entry->last_offset = defrag->last_offset;
123                         return -EEXIST;
124                 }
125         }
126         set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127         rb_link_node(&defrag->rb_node, parent, p);
128         rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129         return 0;
130 }
131
132 static inline int __need_auto_defrag(struct btrfs_root *root)
133 {
134         if (!btrfs_test_opt(root, AUTO_DEFRAG))
135                 return 0;
136
137         if (btrfs_fs_closing(root->fs_info))
138                 return 0;
139
140         return 1;
141 }
142
143 /*
144  * insert a defrag record for this inode if auto defrag is
145  * enabled
146  */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148                            struct inode *inode)
149 {
150         struct btrfs_root *root = BTRFS_I(inode)->root;
151         struct inode_defrag *defrag;
152         u64 transid;
153         int ret;
154
155         if (!__need_auto_defrag(root))
156                 return 0;
157
158         if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159                 return 0;
160
161         if (trans)
162                 transid = trans->transid;
163         else
164                 transid = BTRFS_I(inode)->root->last_trans;
165
166         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167         if (!defrag)
168                 return -ENOMEM;
169
170         defrag->ino = btrfs_ino(inode);
171         defrag->transid = transid;
172         defrag->root = root->root_key.objectid;
173
174         spin_lock(&root->fs_info->defrag_inodes_lock);
175         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176                 /*
177                  * If we set IN_DEFRAG flag and evict the inode from memory,
178                  * and then re-read this inode, this new inode doesn't have
179                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
180                  */
181                 ret = __btrfs_add_inode_defrag(inode, defrag);
182                 if (ret)
183                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184         } else {
185                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186         }
187         spin_unlock(&root->fs_info->defrag_inodes_lock);
188         return 0;
189 }
190
191 /*
192  * Requeue the defrag object. If there is a defrag object that points to
193  * the same inode in the tree, we will merge them together (by
194  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195  */
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197                                        struct inode_defrag *defrag)
198 {
199         struct btrfs_root *root = BTRFS_I(inode)->root;
200         int ret;
201
202         if (!__need_auto_defrag(root))
203                 goto out;
204
205         /*
206          * Here we don't check the IN_DEFRAG flag, because we need merge
207          * them together.
208          */
209         spin_lock(&root->fs_info->defrag_inodes_lock);
210         ret = __btrfs_add_inode_defrag(inode, defrag);
211         spin_unlock(&root->fs_info->defrag_inodes_lock);
212         if (ret)
213                 goto out;
214         return;
215 out:
216         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217 }
218
219 /*
220  * pick the defragable inode that we want, if it doesn't exist, we will get
221  * the next one.
222  */
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 {
226         struct inode_defrag *entry = NULL;
227         struct inode_defrag tmp;
228         struct rb_node *p;
229         struct rb_node *parent = NULL;
230         int ret;
231
232         tmp.ino = ino;
233         tmp.root = root;
234
235         spin_lock(&fs_info->defrag_inodes_lock);
236         p = fs_info->defrag_inodes.rb_node;
237         while (p) {
238                 parent = p;
239                 entry = rb_entry(parent, struct inode_defrag, rb_node);
240
241                 ret = __compare_inode_defrag(&tmp, entry);
242                 if (ret < 0)
243                         p = parent->rb_left;
244                 else if (ret > 0)
245                         p = parent->rb_right;
246                 else
247                         goto out;
248         }
249
250         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251                 parent = rb_next(parent);
252                 if (parent)
253                         entry = rb_entry(parent, struct inode_defrag, rb_node);
254                 else
255                         entry = NULL;
256         }
257 out:
258         if (entry)
259                 rb_erase(parent, &fs_info->defrag_inodes);
260         spin_unlock(&fs_info->defrag_inodes_lock);
261         return entry;
262 }
263
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 {
266         struct inode_defrag *defrag;
267         struct rb_node *node;
268
269         spin_lock(&fs_info->defrag_inodes_lock);
270         node = rb_first(&fs_info->defrag_inodes);
271         while (node) {
272                 rb_erase(node, &fs_info->defrag_inodes);
273                 defrag = rb_entry(node, struct inode_defrag, rb_node);
274                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275
276                 if (need_resched()) {
277                         spin_unlock(&fs_info->defrag_inodes_lock);
278                         cond_resched();
279                         spin_lock(&fs_info->defrag_inodes_lock);
280                 }
281
282                 node = rb_first(&fs_info->defrag_inodes);
283         }
284         spin_unlock(&fs_info->defrag_inodes_lock);
285 }
286
287 #define BTRFS_DEFRAG_BATCH      1024
288
289 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
290                                     struct inode_defrag *defrag)
291 {
292         struct btrfs_root *inode_root;
293         struct inode *inode;
294         struct btrfs_key key;
295         struct btrfs_ioctl_defrag_range_args range;
296         int num_defrag;
297         int index;
298         int ret;
299
300         /* get the inode */
301         key.objectid = defrag->root;
302         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
303         key.offset = (u64)-1;
304
305         index = srcu_read_lock(&fs_info->subvol_srcu);
306
307         inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
308         if (IS_ERR(inode_root)) {
309                 ret = PTR_ERR(inode_root);
310                 goto cleanup;
311         }
312
313         key.objectid = defrag->ino;
314         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
315         key.offset = 0;
316         inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
317         if (IS_ERR(inode)) {
318                 ret = PTR_ERR(inode);
319                 goto cleanup;
320         }
321         srcu_read_unlock(&fs_info->subvol_srcu, index);
322
323         /* do a chunk of defrag */
324         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
325         memset(&range, 0, sizeof(range));
326         range.len = (u64)-1;
327         range.start = defrag->last_offset;
328
329         sb_start_write(fs_info->sb);
330         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
331                                        BTRFS_DEFRAG_BATCH);
332         sb_end_write(fs_info->sb);
333         /*
334          * if we filled the whole defrag batch, there
335          * must be more work to do.  Queue this defrag
336          * again
337          */
338         if (num_defrag == BTRFS_DEFRAG_BATCH) {
339                 defrag->last_offset = range.start;
340                 btrfs_requeue_inode_defrag(inode, defrag);
341         } else if (defrag->last_offset && !defrag->cycled) {
342                 /*
343                  * we didn't fill our defrag batch, but
344                  * we didn't start at zero.  Make sure we loop
345                  * around to the start of the file.
346                  */
347                 defrag->last_offset = 0;
348                 defrag->cycled = 1;
349                 btrfs_requeue_inode_defrag(inode, defrag);
350         } else {
351                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
352         }
353
354         iput(inode);
355         return 0;
356 cleanup:
357         srcu_read_unlock(&fs_info->subvol_srcu, index);
358         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
359         return ret;
360 }
361
362 /*
363  * run through the list of inodes in the FS that need
364  * defragging
365  */
366 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
367 {
368         struct inode_defrag *defrag;
369         u64 first_ino = 0;
370         u64 root_objectid = 0;
371
372         atomic_inc(&fs_info->defrag_running);
373         while(1) {
374                 /* Pause the auto defragger. */
375                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
376                              &fs_info->fs_state))
377                         break;
378
379                 if (!__need_auto_defrag(fs_info->tree_root))
380                         break;
381
382                 /* find an inode to defrag */
383                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
384                                                  first_ino);
385                 if (!defrag) {
386                         if (root_objectid || first_ino) {
387                                 root_objectid = 0;
388                                 first_ino = 0;
389                                 continue;
390                         } else {
391                                 break;
392                         }
393                 }
394
395                 first_ino = defrag->ino + 1;
396                 root_objectid = defrag->root;
397
398                 __btrfs_run_defrag_inode(fs_info, defrag);
399         }
400         atomic_dec(&fs_info->defrag_running);
401
402         /*
403          * during unmount, we use the transaction_wait queue to
404          * wait for the defragger to stop
405          */
406         wake_up(&fs_info->transaction_wait);
407         return 0;
408 }
409
410 /* simple helper to fault in pages and copy.  This should go away
411  * and be replaced with calls into generic code.
412  */
413 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
414                                          size_t write_bytes,
415                                          struct page **prepared_pages,
416                                          struct iov_iter *i)
417 {
418         size_t copied = 0;
419         size_t total_copied = 0;
420         int pg = 0;
421         int offset = pos & (PAGE_CACHE_SIZE - 1);
422
423         while (write_bytes > 0) {
424                 size_t count = min_t(size_t,
425                                      PAGE_CACHE_SIZE - offset, write_bytes);
426                 struct page *page = prepared_pages[pg];
427                 /*
428                  * Copy data from userspace to the current page
429                  *
430                  * Disable pagefault to avoid recursive lock since
431                  * the pages are already locked
432                  */
433                 pagefault_disable();
434                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
435                 pagefault_enable();
436
437                 /* Flush processor's dcache for this page */
438                 flush_dcache_page(page);
439
440                 /*
441                  * if we get a partial write, we can end up with
442                  * partially up to date pages.  These add
443                  * a lot of complexity, so make sure they don't
444                  * happen by forcing this copy to be retried.
445                  *
446                  * The rest of the btrfs_file_write code will fall
447                  * back to page at a time copies after we return 0.
448                  */
449                 if (!PageUptodate(page) && copied < count)
450                         copied = 0;
451
452                 iov_iter_advance(i, copied);
453                 write_bytes -= copied;
454                 total_copied += copied;
455
456                 /* Return to btrfs_file_aio_write to fault page */
457                 if (unlikely(copied == 0))
458                         break;
459
460                 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
461                         offset += copied;
462                 } else {
463                         pg++;
464                         offset = 0;
465                 }
466         }
467         return total_copied;
468 }
469
470 /*
471  * unlocks pages after btrfs_file_write is done with them
472  */
473 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
474 {
475         size_t i;
476         for (i = 0; i < num_pages; i++) {
477                 /* page checked is some magic around finding pages that
478                  * have been modified without going through btrfs_set_page_dirty
479                  * clear it here
480                  */
481                 ClearPageChecked(pages[i]);
482                 unlock_page(pages[i]);
483                 mark_page_accessed(pages[i]);
484                 page_cache_release(pages[i]);
485         }
486 }
487
488 /*
489  * after copy_from_user, pages need to be dirtied and we need to make
490  * sure holes are created between the current EOF and the start of
491  * any next extents (if required).
492  *
493  * this also makes the decision about creating an inline extent vs
494  * doing real data extents, marking pages dirty and delalloc as required.
495  */
496 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
497                              struct page **pages, size_t num_pages,
498                              loff_t pos, size_t write_bytes,
499                              struct extent_state **cached)
500 {
501         int err = 0;
502         int i;
503         u64 num_bytes;
504         u64 start_pos;
505         u64 end_of_last_block;
506         u64 end_pos = pos + write_bytes;
507         loff_t isize = i_size_read(inode);
508
509         start_pos = pos & ~((u64)root->sectorsize - 1);
510         num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
511
512         end_of_last_block = start_pos + num_bytes - 1;
513         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
514                                         cached);
515         if (err)
516                 return err;
517
518         for (i = 0; i < num_pages; i++) {
519                 struct page *p = pages[i];
520                 SetPageUptodate(p);
521                 ClearPageChecked(p);
522                 set_page_dirty(p);
523         }
524
525         /*
526          * we've only changed i_size in ram, and we haven't updated
527          * the disk i_size.  There is no need to log the inode
528          * at this time.
529          */
530         if (end_pos > isize)
531                 i_size_write(inode, end_pos);
532         return 0;
533 }
534
535 /*
536  * this drops all the extents in the cache that intersect the range
537  * [start, end].  Existing extents are split as required.
538  */
539 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
540                              int skip_pinned)
541 {
542         struct extent_map *em;
543         struct extent_map *split = NULL;
544         struct extent_map *split2 = NULL;
545         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
546         u64 len = end - start + 1;
547         u64 gen;
548         int ret;
549         int testend = 1;
550         unsigned long flags;
551         int compressed = 0;
552         bool modified;
553
554         WARN_ON(end < start);
555         if (end == (u64)-1) {
556                 len = (u64)-1;
557                 testend = 0;
558         }
559         while (1) {
560                 int no_splits = 0;
561
562                 modified = false;
563                 if (!split)
564                         split = alloc_extent_map();
565                 if (!split2)
566                         split2 = alloc_extent_map();
567                 if (!split || !split2)
568                         no_splits = 1;
569
570                 write_lock(&em_tree->lock);
571                 em = lookup_extent_mapping(em_tree, start, len);
572                 if (!em) {
573                         write_unlock(&em_tree->lock);
574                         break;
575                 }
576                 flags = em->flags;
577                 gen = em->generation;
578                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
579                         if (testend && em->start + em->len >= start + len) {
580                                 free_extent_map(em);
581                                 write_unlock(&em_tree->lock);
582                                 break;
583                         }
584                         start = em->start + em->len;
585                         if (testend)
586                                 len = start + len - (em->start + em->len);
587                         free_extent_map(em);
588                         write_unlock(&em_tree->lock);
589                         continue;
590                 }
591                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
592                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
593                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
594                 modified = !list_empty(&em->list);
595                 remove_extent_mapping(em_tree, em);
596                 if (no_splits)
597                         goto next;
598
599                 if (em->start < start) {
600                         split->start = em->start;
601                         split->len = start - em->start;
602
603                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
604                                 split->orig_start = em->orig_start;
605                                 split->block_start = em->block_start;
606
607                                 if (compressed)
608                                         split->block_len = em->block_len;
609                                 else
610                                         split->block_len = split->len;
611                                 split->orig_block_len = max(split->block_len,
612                                                 em->orig_block_len);
613                                 split->ram_bytes = em->ram_bytes;
614                         } else {
615                                 split->orig_start = split->start;
616                                 split->block_len = 0;
617                                 split->block_start = em->block_start;
618                                 split->orig_block_len = 0;
619                                 split->ram_bytes = split->len;
620                         }
621
622                         split->generation = gen;
623                         split->bdev = em->bdev;
624                         split->flags = flags;
625                         split->compress_type = em->compress_type;
626                         ret = add_extent_mapping(em_tree, split, modified);
627                         BUG_ON(ret); /* Logic error */
628                         free_extent_map(split);
629                         split = split2;
630                         split2 = NULL;
631                 }
632                 if (testend && em->start + em->len > start + len) {
633                         u64 diff = start + len - em->start;
634
635                         split->start = start + len;
636                         split->len = em->start + em->len - (start + len);
637                         split->bdev = em->bdev;
638                         split->flags = flags;
639                         split->compress_type = em->compress_type;
640                         split->generation = gen;
641
642                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
643                                 split->orig_block_len = max(em->block_len,
644                                                     em->orig_block_len);
645
646                                 split->ram_bytes = em->ram_bytes;
647                                 if (compressed) {
648                                         split->block_len = em->block_len;
649                                         split->block_start = em->block_start;
650                                         split->orig_start = em->orig_start;
651                                 } else {
652                                         split->block_len = split->len;
653                                         split->block_start = em->block_start
654                                                 + diff;
655                                         split->orig_start = em->orig_start;
656                                 }
657                         } else {
658                                 split->ram_bytes = split->len;
659                                 split->orig_start = split->start;
660                                 split->block_len = 0;
661                                 split->block_start = em->block_start;
662                                 split->orig_block_len = 0;
663                         }
664
665                         ret = add_extent_mapping(em_tree, split, modified);
666                         BUG_ON(ret); /* Logic error */
667                         free_extent_map(split);
668                         split = NULL;
669                 }
670 next:
671                 write_unlock(&em_tree->lock);
672
673                 /* once for us */
674                 free_extent_map(em);
675                 /* once for the tree*/
676                 free_extent_map(em);
677         }
678         if (split)
679                 free_extent_map(split);
680         if (split2)
681                 free_extent_map(split2);
682 }
683
684 /*
685  * this is very complex, but the basic idea is to drop all extents
686  * in the range start - end.  hint_block is filled in with a block number
687  * that would be a good hint to the block allocator for this file.
688  *
689  * If an extent intersects the range but is not entirely inside the range
690  * it is either truncated or split.  Anything entirely inside the range
691  * is deleted from the tree.
692  */
693 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
694                          struct btrfs_root *root, struct inode *inode,
695                          struct btrfs_path *path, u64 start, u64 end,
696                          u64 *drop_end, int drop_cache)
697 {
698         struct extent_buffer *leaf;
699         struct btrfs_file_extent_item *fi;
700         struct btrfs_key key;
701         struct btrfs_key new_key;
702         u64 ino = btrfs_ino(inode);
703         u64 search_start = start;
704         u64 disk_bytenr = 0;
705         u64 num_bytes = 0;
706         u64 extent_offset = 0;
707         u64 extent_end = 0;
708         int del_nr = 0;
709         int del_slot = 0;
710         int extent_type;
711         int recow;
712         int ret;
713         int modify_tree = -1;
714         int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
715         int found = 0;
716
717         if (drop_cache)
718                 btrfs_drop_extent_cache(inode, start, end - 1, 0);
719
720         if (start >= BTRFS_I(inode)->disk_i_size)
721                 modify_tree = 0;
722
723         while (1) {
724                 recow = 0;
725                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
726                                                search_start, modify_tree);
727                 if (ret < 0)
728                         break;
729                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
730                         leaf = path->nodes[0];
731                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
732                         if (key.objectid == ino &&
733                             key.type == BTRFS_EXTENT_DATA_KEY)
734                                 path->slots[0]--;
735                 }
736                 ret = 0;
737 next_slot:
738                 leaf = path->nodes[0];
739                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
740                         BUG_ON(del_nr > 0);
741                         ret = btrfs_next_leaf(root, path);
742                         if (ret < 0)
743                                 break;
744                         if (ret > 0) {
745                                 ret = 0;
746                                 break;
747                         }
748                         leaf = path->nodes[0];
749                         recow = 1;
750                 }
751
752                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
753                 if (key.objectid > ino ||
754                     key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
755                         break;
756
757                 fi = btrfs_item_ptr(leaf, path->slots[0],
758                                     struct btrfs_file_extent_item);
759                 extent_type = btrfs_file_extent_type(leaf, fi);
760
761                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
762                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
763                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
764                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
765                         extent_offset = btrfs_file_extent_offset(leaf, fi);
766                         extent_end = key.offset +
767                                 btrfs_file_extent_num_bytes(leaf, fi);
768                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
769                         extent_end = key.offset +
770                                 btrfs_file_extent_inline_len(leaf, fi);
771                 } else {
772                         WARN_ON(1);
773                         extent_end = search_start;
774                 }
775
776                 if (extent_end <= search_start) {
777                         path->slots[0]++;
778                         goto next_slot;
779                 }
780
781                 found = 1;
782                 search_start = max(key.offset, start);
783                 if (recow || !modify_tree) {
784                         modify_tree = -1;
785                         btrfs_release_path(path);
786                         continue;
787                 }
788
789                 /*
790                  *     | - range to drop - |
791                  *  | -------- extent -------- |
792                  */
793                 if (start > key.offset && end < extent_end) {
794                         BUG_ON(del_nr > 0);
795                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
796
797                         memcpy(&new_key, &key, sizeof(new_key));
798                         new_key.offset = start;
799                         ret = btrfs_duplicate_item(trans, root, path,
800                                                    &new_key);
801                         if (ret == -EAGAIN) {
802                                 btrfs_release_path(path);
803                                 continue;
804                         }
805                         if (ret < 0)
806                                 break;
807
808                         leaf = path->nodes[0];
809                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
810                                             struct btrfs_file_extent_item);
811                         btrfs_set_file_extent_num_bytes(leaf, fi,
812                                                         start - key.offset);
813
814                         fi = btrfs_item_ptr(leaf, path->slots[0],
815                                             struct btrfs_file_extent_item);
816
817                         extent_offset += start - key.offset;
818                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
819                         btrfs_set_file_extent_num_bytes(leaf, fi,
820                                                         extent_end - start);
821                         btrfs_mark_buffer_dirty(leaf);
822
823                         if (update_refs && disk_bytenr > 0) {
824                                 ret = btrfs_inc_extent_ref(trans, root,
825                                                 disk_bytenr, num_bytes, 0,
826                                                 root->root_key.objectid,
827                                                 new_key.objectid,
828                                                 start - extent_offset, 0);
829                                 BUG_ON(ret); /* -ENOMEM */
830                         }
831                         key.offset = start;
832                 }
833                 /*
834                  *  | ---- range to drop ----- |
835                  *      | -------- extent -------- |
836                  */
837                 if (start <= key.offset && end < extent_end) {
838                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
839
840                         memcpy(&new_key, &key, sizeof(new_key));
841                         new_key.offset = end;
842                         btrfs_set_item_key_safe(root, path, &new_key);
843
844                         extent_offset += end - key.offset;
845                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
846                         btrfs_set_file_extent_num_bytes(leaf, fi,
847                                                         extent_end - end);
848                         btrfs_mark_buffer_dirty(leaf);
849                         if (update_refs && disk_bytenr > 0)
850                                 inode_sub_bytes(inode, end - key.offset);
851                         break;
852                 }
853
854                 search_start = extent_end;
855                 /*
856                  *       | ---- range to drop ----- |
857                  *  | -------- extent -------- |
858                  */
859                 if (start > key.offset && end >= extent_end) {
860                         BUG_ON(del_nr > 0);
861                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
862
863                         btrfs_set_file_extent_num_bytes(leaf, fi,
864                                                         start - key.offset);
865                         btrfs_mark_buffer_dirty(leaf);
866                         if (update_refs && disk_bytenr > 0)
867                                 inode_sub_bytes(inode, extent_end - start);
868                         if (end == extent_end)
869                                 break;
870
871                         path->slots[0]++;
872                         goto next_slot;
873                 }
874
875                 /*
876                  *  | ---- range to drop ----- |
877                  *    | ------ extent ------ |
878                  */
879                 if (start <= key.offset && end >= extent_end) {
880                         if (del_nr == 0) {
881                                 del_slot = path->slots[0];
882                                 del_nr = 1;
883                         } else {
884                                 BUG_ON(del_slot + del_nr != path->slots[0]);
885                                 del_nr++;
886                         }
887
888                         if (update_refs &&
889                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
890                                 inode_sub_bytes(inode,
891                                                 extent_end - key.offset);
892                                 extent_end = ALIGN(extent_end,
893                                                    root->sectorsize);
894                         } else if (update_refs && disk_bytenr > 0) {
895                                 ret = btrfs_free_extent(trans, root,
896                                                 disk_bytenr, num_bytes, 0,
897                                                 root->root_key.objectid,
898                                                 key.objectid, key.offset -
899                                                 extent_offset, 0);
900                                 BUG_ON(ret); /* -ENOMEM */
901                                 inode_sub_bytes(inode,
902                                                 extent_end - key.offset);
903                         }
904
905                         if (end == extent_end)
906                                 break;
907
908                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
909                                 path->slots[0]++;
910                                 goto next_slot;
911                         }
912
913                         ret = btrfs_del_items(trans, root, path, del_slot,
914                                               del_nr);
915                         if (ret) {
916                                 btrfs_abort_transaction(trans, root, ret);
917                                 break;
918                         }
919
920                         del_nr = 0;
921                         del_slot = 0;
922
923                         btrfs_release_path(path);
924                         continue;
925                 }
926
927                 BUG_ON(1);
928         }
929
930         if (!ret && del_nr > 0) {
931                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
932                 if (ret)
933                         btrfs_abort_transaction(trans, root, ret);
934         }
935
936         if (drop_end)
937                 *drop_end = found ? min(end, extent_end) : end;
938         btrfs_release_path(path);
939         return ret;
940 }
941
942 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
943                        struct btrfs_root *root, struct inode *inode, u64 start,
944                        u64 end, int drop_cache)
945 {
946         struct btrfs_path *path;
947         int ret;
948
949         path = btrfs_alloc_path();
950         if (!path)
951                 return -ENOMEM;
952         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
953                                    drop_cache);
954         btrfs_free_path(path);
955         return ret;
956 }
957
958 static int extent_mergeable(struct extent_buffer *leaf, int slot,
959                             u64 objectid, u64 bytenr, u64 orig_offset,
960                             u64 *start, u64 *end)
961 {
962         struct btrfs_file_extent_item *fi;
963         struct btrfs_key key;
964         u64 extent_end;
965
966         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
967                 return 0;
968
969         btrfs_item_key_to_cpu(leaf, &key, slot);
970         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
971                 return 0;
972
973         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
974         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
975             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
976             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
977             btrfs_file_extent_compression(leaf, fi) ||
978             btrfs_file_extent_encryption(leaf, fi) ||
979             btrfs_file_extent_other_encoding(leaf, fi))
980                 return 0;
981
982         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
983         if ((*start && *start != key.offset) || (*end && *end != extent_end))
984                 return 0;
985
986         *start = key.offset;
987         *end = extent_end;
988         return 1;
989 }
990
991 /*
992  * Mark extent in the range start - end as written.
993  *
994  * This changes extent type from 'pre-allocated' to 'regular'. If only
995  * part of extent is marked as written, the extent will be split into
996  * two or three.
997  */
998 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
999                               struct inode *inode, u64 start, u64 end)
1000 {
1001         struct btrfs_root *root = BTRFS_I(inode)->root;
1002         struct extent_buffer *leaf;
1003         struct btrfs_path *path;
1004         struct btrfs_file_extent_item *fi;
1005         struct btrfs_key key;
1006         struct btrfs_key new_key;
1007         u64 bytenr;
1008         u64 num_bytes;
1009         u64 extent_end;
1010         u64 orig_offset;
1011         u64 other_start;
1012         u64 other_end;
1013         u64 split;
1014         int del_nr = 0;
1015         int del_slot = 0;
1016         int recow;
1017         int ret;
1018         u64 ino = btrfs_ino(inode);
1019
1020         path = btrfs_alloc_path();
1021         if (!path)
1022                 return -ENOMEM;
1023 again:
1024         recow = 0;
1025         split = start;
1026         key.objectid = ino;
1027         key.type = BTRFS_EXTENT_DATA_KEY;
1028         key.offset = split;
1029
1030         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1031         if (ret < 0)
1032                 goto out;
1033         if (ret > 0 && path->slots[0] > 0)
1034                 path->slots[0]--;
1035
1036         leaf = path->nodes[0];
1037         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1038         BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1039         fi = btrfs_item_ptr(leaf, path->slots[0],
1040                             struct btrfs_file_extent_item);
1041         BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1042                BTRFS_FILE_EXTENT_PREALLOC);
1043         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1044         BUG_ON(key.offset > start || extent_end < end);
1045
1046         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1047         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1048         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1049         memcpy(&new_key, &key, sizeof(new_key));
1050
1051         if (start == key.offset && end < extent_end) {
1052                 other_start = 0;
1053                 other_end = start;
1054                 if (extent_mergeable(leaf, path->slots[0] - 1,
1055                                      ino, bytenr, orig_offset,
1056                                      &other_start, &other_end)) {
1057                         new_key.offset = end;
1058                         btrfs_set_item_key_safe(root, path, &new_key);
1059                         fi = btrfs_item_ptr(leaf, path->slots[0],
1060                                             struct btrfs_file_extent_item);
1061                         btrfs_set_file_extent_generation(leaf, fi,
1062                                                          trans->transid);
1063                         btrfs_set_file_extent_num_bytes(leaf, fi,
1064                                                         extent_end - end);
1065                         btrfs_set_file_extent_offset(leaf, fi,
1066                                                      end - orig_offset);
1067                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1068                                             struct btrfs_file_extent_item);
1069                         btrfs_set_file_extent_generation(leaf, fi,
1070                                                          trans->transid);
1071                         btrfs_set_file_extent_num_bytes(leaf, fi,
1072                                                         end - other_start);
1073                         btrfs_mark_buffer_dirty(leaf);
1074                         goto out;
1075                 }
1076         }
1077
1078         if (start > key.offset && end == extent_end) {
1079                 other_start = end;
1080                 other_end = 0;
1081                 if (extent_mergeable(leaf, path->slots[0] + 1,
1082                                      ino, bytenr, orig_offset,
1083                                      &other_start, &other_end)) {
1084                         fi = btrfs_item_ptr(leaf, path->slots[0],
1085                                             struct btrfs_file_extent_item);
1086                         btrfs_set_file_extent_num_bytes(leaf, fi,
1087                                                         start - key.offset);
1088                         btrfs_set_file_extent_generation(leaf, fi,
1089                                                          trans->transid);
1090                         path->slots[0]++;
1091                         new_key.offset = start;
1092                         btrfs_set_item_key_safe(root, path, &new_key);
1093
1094                         fi = btrfs_item_ptr(leaf, path->slots[0],
1095                                             struct btrfs_file_extent_item);
1096                         btrfs_set_file_extent_generation(leaf, fi,
1097                                                          trans->transid);
1098                         btrfs_set_file_extent_num_bytes(leaf, fi,
1099                                                         other_end - start);
1100                         btrfs_set_file_extent_offset(leaf, fi,
1101                                                      start - orig_offset);
1102                         btrfs_mark_buffer_dirty(leaf);
1103                         goto out;
1104                 }
1105         }
1106
1107         while (start > key.offset || end < extent_end) {
1108                 if (key.offset == start)
1109                         split = end;
1110
1111                 new_key.offset = split;
1112                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1113                 if (ret == -EAGAIN) {
1114                         btrfs_release_path(path);
1115                         goto again;
1116                 }
1117                 if (ret < 0) {
1118                         btrfs_abort_transaction(trans, root, ret);
1119                         goto out;
1120                 }
1121
1122                 leaf = path->nodes[0];
1123                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1124                                     struct btrfs_file_extent_item);
1125                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1126                 btrfs_set_file_extent_num_bytes(leaf, fi,
1127                                                 split - key.offset);
1128
1129                 fi = btrfs_item_ptr(leaf, path->slots[0],
1130                                     struct btrfs_file_extent_item);
1131
1132                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1133                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1134                 btrfs_set_file_extent_num_bytes(leaf, fi,
1135                                                 extent_end - split);
1136                 btrfs_mark_buffer_dirty(leaf);
1137
1138                 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1139                                            root->root_key.objectid,
1140                                            ino, orig_offset, 0);
1141                 BUG_ON(ret); /* -ENOMEM */
1142
1143                 if (split == start) {
1144                         key.offset = start;
1145                 } else {
1146                         BUG_ON(start != key.offset);
1147                         path->slots[0]--;
1148                         extent_end = end;
1149                 }
1150                 recow = 1;
1151         }
1152
1153         other_start = end;
1154         other_end = 0;
1155         if (extent_mergeable(leaf, path->slots[0] + 1,
1156                              ino, bytenr, orig_offset,
1157                              &other_start, &other_end)) {
1158                 if (recow) {
1159                         btrfs_release_path(path);
1160                         goto again;
1161                 }
1162                 extent_end = other_end;
1163                 del_slot = path->slots[0] + 1;
1164                 del_nr++;
1165                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1166                                         0, root->root_key.objectid,
1167                                         ino, orig_offset, 0);
1168                 BUG_ON(ret); /* -ENOMEM */
1169         }
1170         other_start = 0;
1171         other_end = start;
1172         if (extent_mergeable(leaf, path->slots[0] - 1,
1173                              ino, bytenr, orig_offset,
1174                              &other_start, &other_end)) {
1175                 if (recow) {
1176                         btrfs_release_path(path);
1177                         goto again;
1178                 }
1179                 key.offset = other_start;
1180                 del_slot = path->slots[0];
1181                 del_nr++;
1182                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1183                                         0, root->root_key.objectid,
1184                                         ino, orig_offset, 0);
1185                 BUG_ON(ret); /* -ENOMEM */
1186         }
1187         if (del_nr == 0) {
1188                 fi = btrfs_item_ptr(leaf, path->slots[0],
1189                            struct btrfs_file_extent_item);
1190                 btrfs_set_file_extent_type(leaf, fi,
1191                                            BTRFS_FILE_EXTENT_REG);
1192                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1193                 btrfs_mark_buffer_dirty(leaf);
1194         } else {
1195                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1196                            struct btrfs_file_extent_item);
1197                 btrfs_set_file_extent_type(leaf, fi,
1198                                            BTRFS_FILE_EXTENT_REG);
1199                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1200                 btrfs_set_file_extent_num_bytes(leaf, fi,
1201                                                 extent_end - key.offset);
1202                 btrfs_mark_buffer_dirty(leaf);
1203
1204                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1205                 if (ret < 0) {
1206                         btrfs_abort_transaction(trans, root, ret);
1207                         goto out;
1208                 }
1209         }
1210 out:
1211         btrfs_free_path(path);
1212         return 0;
1213 }
1214
1215 /*
1216  * on error we return an unlocked page and the error value
1217  * on success we return a locked page and 0
1218  */
1219 static int prepare_uptodate_page(struct page *page, u64 pos,
1220                                  bool force_uptodate)
1221 {
1222         int ret = 0;
1223
1224         if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1225             !PageUptodate(page)) {
1226                 ret = btrfs_readpage(NULL, page);
1227                 if (ret)
1228                         return ret;
1229                 lock_page(page);
1230                 if (!PageUptodate(page)) {
1231                         unlock_page(page);
1232                         return -EIO;
1233                 }
1234         }
1235         return 0;
1236 }
1237
1238 /*
1239  * this gets pages into the page cache and locks them down, it also properly
1240  * waits for data=ordered extents to finish before allowing the pages to be
1241  * modified.
1242  */
1243 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1244                          struct page **pages, size_t num_pages,
1245                          loff_t pos, unsigned long first_index,
1246                          size_t write_bytes, bool force_uptodate)
1247 {
1248         struct extent_state *cached_state = NULL;
1249         int i;
1250         unsigned long index = pos >> PAGE_CACHE_SHIFT;
1251         struct inode *inode = file_inode(file);
1252         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1253         int err = 0;
1254         int faili = 0;
1255         u64 start_pos;
1256         u64 last_pos;
1257
1258         start_pos = pos & ~((u64)root->sectorsize - 1);
1259         last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1260
1261 again:
1262         for (i = 0; i < num_pages; i++) {
1263                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1264                                                mask | __GFP_WRITE);
1265                 if (!pages[i]) {
1266                         faili = i - 1;
1267                         err = -ENOMEM;
1268                         goto fail;
1269                 }
1270
1271                 if (i == 0)
1272                         err = prepare_uptodate_page(pages[i], pos,
1273                                                     force_uptodate);
1274                 if (i == num_pages - 1)
1275                         err = prepare_uptodate_page(pages[i],
1276                                                     pos + write_bytes, false);
1277                 if (err) {
1278                         page_cache_release(pages[i]);
1279                         faili = i - 1;
1280                         goto fail;
1281                 }
1282                 wait_on_page_writeback(pages[i]);
1283         }
1284         err = 0;
1285         if (start_pos < inode->i_size) {
1286                 struct btrfs_ordered_extent *ordered;
1287                 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1288                                  start_pos, last_pos - 1, 0, &cached_state);
1289                 ordered = btrfs_lookup_first_ordered_extent(inode,
1290                                                             last_pos - 1);
1291                 if (ordered &&
1292                     ordered->file_offset + ordered->len > start_pos &&
1293                     ordered->file_offset < last_pos) {
1294                         btrfs_put_ordered_extent(ordered);
1295                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1296                                              start_pos, last_pos - 1,
1297                                              &cached_state, GFP_NOFS);
1298                         for (i = 0; i < num_pages; i++) {
1299                                 unlock_page(pages[i]);
1300                                 page_cache_release(pages[i]);
1301                         }
1302                         btrfs_wait_ordered_range(inode, start_pos,
1303                                                  last_pos - start_pos);
1304                         goto again;
1305                 }
1306                 if (ordered)
1307                         btrfs_put_ordered_extent(ordered);
1308
1309                 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1310                                   last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1311                                   EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1312                                   0, 0, &cached_state, GFP_NOFS);
1313                 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1314                                      start_pos, last_pos - 1, &cached_state,
1315                                      GFP_NOFS);
1316         }
1317         for (i = 0; i < num_pages; i++) {
1318                 if (clear_page_dirty_for_io(pages[i]))
1319                         account_page_redirty(pages[i]);
1320                 set_page_extent_mapped(pages[i]);
1321                 WARN_ON(!PageLocked(pages[i]));
1322         }
1323         return 0;
1324 fail:
1325         while (faili >= 0) {
1326                 unlock_page(pages[faili]);
1327                 page_cache_release(pages[faili]);
1328                 faili--;
1329         }
1330         return err;
1331
1332 }
1333
1334 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1335                                     size_t *write_bytes)
1336 {
1337         struct btrfs_trans_handle *trans;
1338         struct btrfs_root *root = BTRFS_I(inode)->root;
1339         struct btrfs_ordered_extent *ordered;
1340         u64 lockstart, lockend;
1341         u64 num_bytes;
1342         int ret;
1343
1344         lockstart = round_down(pos, root->sectorsize);
1345         lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
1346
1347         while (1) {
1348                 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1349                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1350                                                      lockend - lockstart + 1);
1351                 if (!ordered) {
1352                         break;
1353                 }
1354                 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1355                 btrfs_start_ordered_extent(inode, ordered, 1);
1356                 btrfs_put_ordered_extent(ordered);
1357         }
1358
1359         trans = btrfs_join_transaction(root);
1360         if (IS_ERR(trans)) {
1361                 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1362                 return PTR_ERR(trans);
1363         }
1364
1365         num_bytes = lockend - lockstart + 1;
1366         ret = can_nocow_extent(trans, inode, lockstart, &num_bytes, NULL, NULL,
1367                                NULL);
1368         btrfs_end_transaction(trans, root);
1369         if (ret <= 0) {
1370                 ret = 0;
1371         } else {
1372                 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1373                                  EXTENT_DIRTY | EXTENT_DELALLOC |
1374                                  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1375                                  NULL, GFP_NOFS);
1376                 *write_bytes = min_t(size_t, *write_bytes, num_bytes);
1377         }
1378
1379         unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1380
1381         return ret;
1382 }
1383
1384 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1385                                                struct iov_iter *i,
1386                                                loff_t pos)
1387 {
1388         struct inode *inode = file_inode(file);
1389         struct btrfs_root *root = BTRFS_I(inode)->root;
1390         struct page **pages = NULL;
1391         u64 release_bytes = 0;
1392         unsigned long first_index;
1393         size_t num_written = 0;
1394         int nrptrs;
1395         int ret = 0;
1396         bool only_release_metadata = false;
1397         bool force_page_uptodate = false;
1398
1399         nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1400                      PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1401                      (sizeof(struct page *)));
1402         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1403         nrptrs = max(nrptrs, 8);
1404         pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1405         if (!pages)
1406                 return -ENOMEM;
1407
1408         first_index = pos >> PAGE_CACHE_SHIFT;
1409
1410         while (iov_iter_count(i) > 0) {
1411                 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1412                 size_t write_bytes = min(iov_iter_count(i),
1413                                          nrptrs * (size_t)PAGE_CACHE_SIZE -
1414                                          offset);
1415                 size_t num_pages = (write_bytes + offset +
1416                                     PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1417                 size_t reserve_bytes;
1418                 size_t dirty_pages;
1419                 size_t copied;
1420
1421                 WARN_ON(num_pages > nrptrs);
1422
1423                 /*
1424                  * Fault pages before locking them in prepare_pages
1425                  * to avoid recursive lock
1426                  */
1427                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1428                         ret = -EFAULT;
1429                         break;
1430                 }
1431
1432                 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1433                 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1434                 if (ret == -ENOSPC &&
1435                     (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1436                                               BTRFS_INODE_PREALLOC))) {
1437                         ret = check_can_nocow(inode, pos, &write_bytes);
1438                         if (ret > 0) {
1439                                 only_release_metadata = true;
1440                                 /*
1441                                  * our prealloc extent may be smaller than
1442                                  * write_bytes, so scale down.
1443                                  */
1444                                 num_pages = (write_bytes + offset +
1445                                              PAGE_CACHE_SIZE - 1) >>
1446                                         PAGE_CACHE_SHIFT;
1447                                 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1448                                 ret = 0;
1449                         } else {
1450                                 ret = -ENOSPC;
1451                         }
1452                 }
1453
1454                 if (ret)
1455                         break;
1456
1457                 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1458                 if (ret) {
1459                         if (!only_release_metadata)
1460                                 btrfs_free_reserved_data_space(inode,
1461                                                                reserve_bytes);
1462                         break;
1463                 }
1464
1465                 release_bytes = reserve_bytes;
1466
1467                 /*
1468                  * This is going to setup the pages array with the number of
1469                  * pages we want, so we don't really need to worry about the
1470                  * contents of pages from loop to loop
1471                  */
1472                 ret = prepare_pages(root, file, pages, num_pages,
1473                                     pos, first_index, write_bytes,
1474                                     force_page_uptodate);
1475                 if (ret)
1476                         break;
1477
1478                 copied = btrfs_copy_from_user(pos, num_pages,
1479                                            write_bytes, pages, i);
1480
1481                 /*
1482                  * if we have trouble faulting in the pages, fall
1483                  * back to one page at a time
1484                  */
1485                 if (copied < write_bytes)
1486                         nrptrs = 1;
1487
1488                 if (copied == 0) {
1489                         force_page_uptodate = true;
1490                         dirty_pages = 0;
1491                 } else {
1492                         force_page_uptodate = false;
1493                         dirty_pages = (copied + offset +
1494                                        PAGE_CACHE_SIZE - 1) >>
1495                                        PAGE_CACHE_SHIFT;
1496                 }
1497
1498                 /*
1499                  * If we had a short copy we need to release the excess delaloc
1500                  * bytes we reserved.  We need to increment outstanding_extents
1501                  * because btrfs_delalloc_release_space will decrement it, but
1502                  * we still have an outstanding extent for the chunk we actually
1503                  * managed to copy.
1504                  */
1505                 if (num_pages > dirty_pages) {
1506                         release_bytes = (num_pages - dirty_pages) <<
1507                                 PAGE_CACHE_SHIFT;
1508                         if (copied > 0) {
1509                                 spin_lock(&BTRFS_I(inode)->lock);
1510                                 BTRFS_I(inode)->outstanding_extents++;
1511                                 spin_unlock(&BTRFS_I(inode)->lock);
1512                         }
1513                         if (only_release_metadata)
1514                                 btrfs_delalloc_release_metadata(inode,
1515                                                                 release_bytes);
1516                         else
1517                                 btrfs_delalloc_release_space(inode,
1518                                                              release_bytes);
1519                 }
1520
1521                 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1522                 if (copied > 0) {
1523                         ret = btrfs_dirty_pages(root, inode, pages,
1524                                                 dirty_pages, pos, copied,
1525                                                 NULL);
1526                         if (ret) {
1527                                 btrfs_drop_pages(pages, num_pages);
1528                                 break;
1529                         }
1530                 }
1531
1532                 release_bytes = 0;
1533                 btrfs_drop_pages(pages, num_pages);
1534
1535                 if (only_release_metadata && copied > 0) {
1536                         u64 lockstart = round_down(pos, root->sectorsize);
1537                         u64 lockend = lockstart +
1538                                 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1539
1540                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1541                                        lockend, EXTENT_NORESERVE, NULL,
1542                                        NULL, GFP_NOFS);
1543                         only_release_metadata = false;
1544                 }
1545
1546                 cond_resched();
1547
1548                 balance_dirty_pages_ratelimited(inode->i_mapping);
1549                 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1550                         btrfs_btree_balance_dirty(root);
1551
1552                 pos += copied;
1553                 num_written += copied;
1554         }
1555
1556         kfree(pages);
1557
1558         if (release_bytes) {
1559                 if (only_release_metadata)
1560                         btrfs_delalloc_release_metadata(inode, release_bytes);
1561                 else
1562                         btrfs_delalloc_release_space(inode, release_bytes);
1563         }
1564
1565         return num_written ? num_written : ret;
1566 }
1567
1568 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1569                                     const struct iovec *iov,
1570                                     unsigned long nr_segs, loff_t pos,
1571                                     loff_t *ppos, size_t count, size_t ocount)
1572 {
1573         struct file *file = iocb->ki_filp;
1574         struct iov_iter i;
1575         ssize_t written;
1576         ssize_t written_buffered;
1577         loff_t endbyte;
1578         int err;
1579
1580         written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1581                                             count, ocount);
1582
1583         if (written < 0 || written == count)
1584                 return written;
1585
1586         pos += written;
1587         count -= written;
1588         iov_iter_init(&i, iov, nr_segs, count, written);
1589         written_buffered = __btrfs_buffered_write(file, &i, pos);
1590         if (written_buffered < 0) {
1591                 err = written_buffered;
1592                 goto out;
1593         }
1594         endbyte = pos + written_buffered - 1;
1595         err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1596         if (err)
1597                 goto out;
1598         written += written_buffered;
1599         *ppos = pos + written_buffered;
1600         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1601                                  endbyte >> PAGE_CACHE_SHIFT);
1602 out:
1603         return written ? written : err;
1604 }
1605
1606 static void update_time_for_write(struct inode *inode)
1607 {
1608         struct timespec now;
1609
1610         if (IS_NOCMTIME(inode))
1611                 return;
1612
1613         now = current_fs_time(inode->i_sb);
1614         if (!timespec_equal(&inode->i_mtime, &now))
1615                 inode->i_mtime = now;
1616
1617         if (!timespec_equal(&inode->i_ctime, &now))
1618                 inode->i_ctime = now;
1619
1620         if (IS_I_VERSION(inode))
1621                 inode_inc_iversion(inode);
1622 }
1623
1624 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1625                                     const struct iovec *iov,
1626                                     unsigned long nr_segs, loff_t pos)
1627 {
1628         struct file *file = iocb->ki_filp;
1629         struct inode *inode = file_inode(file);
1630         struct btrfs_root *root = BTRFS_I(inode)->root;
1631         loff_t *ppos = &iocb->ki_pos;
1632         u64 start_pos;
1633         ssize_t num_written = 0;
1634         ssize_t err = 0;
1635         size_t count, ocount;
1636         bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1637
1638         mutex_lock(&inode->i_mutex);
1639
1640         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1641         if (err) {
1642                 mutex_unlock(&inode->i_mutex);
1643                 goto out;
1644         }
1645         count = ocount;
1646
1647         current->backing_dev_info = inode->i_mapping->backing_dev_info;
1648         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1649         if (err) {
1650                 mutex_unlock(&inode->i_mutex);
1651                 goto out;
1652         }
1653
1654         if (count == 0) {
1655                 mutex_unlock(&inode->i_mutex);
1656                 goto out;
1657         }
1658
1659         err = file_remove_suid(file);
1660         if (err) {
1661                 mutex_unlock(&inode->i_mutex);
1662                 goto out;
1663         }
1664
1665         /*
1666          * If BTRFS flips readonly due to some impossible error
1667          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1668          * although we have opened a file as writable, we have
1669          * to stop this write operation to ensure FS consistency.
1670          */
1671         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1672                 mutex_unlock(&inode->i_mutex);
1673                 err = -EROFS;
1674                 goto out;
1675         }
1676
1677         /*
1678          * We reserve space for updating the inode when we reserve space for the
1679          * extent we are going to write, so we will enospc out there.  We don't
1680          * need to start yet another transaction to update the inode as we will
1681          * update the inode when we finish writing whatever data we write.
1682          */
1683         update_time_for_write(inode);
1684
1685         start_pos = round_down(pos, root->sectorsize);
1686         if (start_pos > i_size_read(inode)) {
1687                 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1688                 if (err) {
1689                         mutex_unlock(&inode->i_mutex);
1690                         goto out;
1691                 }
1692         }
1693
1694         if (sync)
1695                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1696
1697         if (unlikely(file->f_flags & O_DIRECT)) {
1698                 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1699                                                    pos, ppos, count, ocount);
1700         } else {
1701                 struct iov_iter i;
1702
1703                 iov_iter_init(&i, iov, nr_segs, count, num_written);
1704
1705                 num_written = __btrfs_buffered_write(file, &i, pos);
1706                 if (num_written > 0)
1707                         *ppos = pos + num_written;
1708         }
1709
1710         mutex_unlock(&inode->i_mutex);
1711
1712         /*
1713          * we want to make sure fsync finds this change
1714          * but we haven't joined a transaction running right now.
1715          *
1716          * Later on, someone is sure to update the inode and get the
1717          * real transid recorded.
1718          *
1719          * We set last_trans now to the fs_info generation + 1,
1720          * this will either be one more than the running transaction
1721          * or the generation used for the next transaction if there isn't
1722          * one running right now.
1723          *
1724          * We also have to set last_sub_trans to the current log transid,
1725          * otherwise subsequent syncs to a file that's been synced in this
1726          * transaction will appear to have already occured.
1727          */
1728         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1729         BTRFS_I(inode)->last_sub_trans = root->log_transid;
1730         if (num_written > 0 || num_written == -EIOCBQUEUED) {
1731                 err = generic_write_sync(file, pos, num_written);
1732                 if (err < 0 && num_written > 0)
1733                         num_written = err;
1734         }
1735
1736         if (sync)
1737                 atomic_dec(&BTRFS_I(inode)->sync_writers);
1738 out:
1739         current->backing_dev_info = NULL;
1740         return num_written ? num_written : err;
1741 }
1742
1743 int btrfs_release_file(struct inode *inode, struct file *filp)
1744 {
1745         /*
1746          * ordered_data_close is set by settattr when we are about to truncate
1747          * a file from a non-zero size to a zero size.  This tries to
1748          * flush down new bytes that may have been written if the
1749          * application were using truncate to replace a file in place.
1750          */
1751         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1752                                &BTRFS_I(inode)->runtime_flags)) {
1753                 struct btrfs_trans_handle *trans;
1754                 struct btrfs_root *root = BTRFS_I(inode)->root;
1755
1756                 /*
1757                  * We need to block on a committing transaction to keep us from
1758                  * throwing a ordered operation on to the list and causing
1759                  * something like sync to deadlock trying to flush out this
1760                  * inode.
1761                  */
1762                 trans = btrfs_start_transaction(root, 0);
1763                 if (IS_ERR(trans))
1764                         return PTR_ERR(trans);
1765                 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1766                 btrfs_end_transaction(trans, root);
1767                 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1768                         filemap_flush(inode->i_mapping);
1769         }
1770         if (filp->private_data)
1771                 btrfs_ioctl_trans_end(filp);
1772         return 0;
1773 }
1774
1775 /*
1776  * fsync call for both files and directories.  This logs the inode into
1777  * the tree log instead of forcing full commits whenever possible.
1778  *
1779  * It needs to call filemap_fdatawait so that all ordered extent updates are
1780  * in the metadata btree are up to date for copying to the log.
1781  *
1782  * It drops the inode mutex before doing the tree log commit.  This is an
1783  * important optimization for directories because holding the mutex prevents
1784  * new operations on the dir while we write to disk.
1785  */
1786 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1787 {
1788         struct dentry *dentry = file->f_path.dentry;
1789         struct inode *inode = dentry->d_inode;
1790         struct btrfs_root *root = BTRFS_I(inode)->root;
1791         int ret = 0;
1792         struct btrfs_trans_handle *trans;
1793         bool full_sync = 0;
1794
1795         trace_btrfs_sync_file(file, datasync);
1796
1797         /*
1798          * We write the dirty pages in the range and wait until they complete
1799          * out of the ->i_mutex. If so, we can flush the dirty pages by
1800          * multi-task, and make the performance up.  See
1801          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1802          */
1803         atomic_inc(&BTRFS_I(inode)->sync_writers);
1804         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1805         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1806                              &BTRFS_I(inode)->runtime_flags))
1807                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1808         atomic_dec(&BTRFS_I(inode)->sync_writers);
1809         if (ret)
1810                 return ret;
1811
1812         mutex_lock(&inode->i_mutex);
1813
1814         /*
1815          * We flush the dirty pages again to avoid some dirty pages in the
1816          * range being left.
1817          */
1818         atomic_inc(&root->log_batch);
1819         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1820                              &BTRFS_I(inode)->runtime_flags);
1821         if (full_sync)
1822                 btrfs_wait_ordered_range(inode, start, end - start + 1);
1823         atomic_inc(&root->log_batch);
1824
1825         /*
1826          * check the transaction that last modified this inode
1827          * and see if its already been committed
1828          */
1829         if (!BTRFS_I(inode)->last_trans) {
1830                 mutex_unlock(&inode->i_mutex);
1831                 goto out;
1832         }
1833
1834         /*
1835          * if the last transaction that changed this file was before
1836          * the current transaction, we can bail out now without any
1837          * syncing
1838          */
1839         smp_mb();
1840         if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1841             BTRFS_I(inode)->last_trans <=
1842             root->fs_info->last_trans_committed) {
1843                 BTRFS_I(inode)->last_trans = 0;
1844
1845                 /*
1846                  * We'v had everything committed since the last time we were
1847                  * modified so clear this flag in case it was set for whatever
1848                  * reason, it's no longer relevant.
1849                  */
1850                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1851                           &BTRFS_I(inode)->runtime_flags);
1852                 mutex_unlock(&inode->i_mutex);
1853                 goto out;
1854         }
1855
1856         /*
1857          * ok we haven't committed the transaction yet, lets do a commit
1858          */
1859         if (file->private_data)
1860                 btrfs_ioctl_trans_end(file);
1861
1862         trans = btrfs_start_transaction(root, 0);
1863         if (IS_ERR(trans)) {
1864                 ret = PTR_ERR(trans);
1865                 mutex_unlock(&inode->i_mutex);
1866                 goto out;
1867         }
1868
1869         ret = btrfs_log_dentry_safe(trans, root, dentry);
1870         if (ret < 0) {
1871                 mutex_unlock(&inode->i_mutex);
1872                 goto out;
1873         }
1874
1875         /* we've logged all the items and now have a consistent
1876          * version of the file in the log.  It is possible that
1877          * someone will come in and modify the file, but that's
1878          * fine because the log is consistent on disk, and we
1879          * have references to all of the file's extents
1880          *
1881          * It is possible that someone will come in and log the
1882          * file again, but that will end up using the synchronization
1883          * inside btrfs_sync_log to keep things safe.
1884          */
1885         mutex_unlock(&inode->i_mutex);
1886
1887         if (ret != BTRFS_NO_LOG_SYNC) {
1888                 if (ret > 0) {
1889                         /*
1890                          * If we didn't already wait for ordered extents we need
1891                          * to do that now.
1892                          */
1893                         if (!full_sync)
1894                                 btrfs_wait_ordered_range(inode, start,
1895                                                          end - start + 1);
1896                         ret = btrfs_commit_transaction(trans, root);
1897                 } else {
1898                         ret = btrfs_sync_log(trans, root);
1899                         if (ret == 0) {
1900                                 ret = btrfs_end_transaction(trans, root);
1901                         } else {
1902                                 if (!full_sync)
1903                                         btrfs_wait_ordered_range(inode, start,
1904                                                                  end -
1905                                                                  start + 1);
1906                                 ret = btrfs_commit_transaction(trans, root);
1907                         }
1908                 }
1909         } else {
1910                 ret = btrfs_end_transaction(trans, root);
1911         }
1912 out:
1913         return ret > 0 ? -EIO : ret;
1914 }
1915
1916 static const struct vm_operations_struct btrfs_file_vm_ops = {
1917         .fault          = filemap_fault,
1918         .page_mkwrite   = btrfs_page_mkwrite,
1919         .remap_pages    = generic_file_remap_pages,
1920 };
1921
1922 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
1923 {
1924         struct address_space *mapping = filp->f_mapping;
1925
1926         if (!mapping->a_ops->readpage)
1927                 return -ENOEXEC;
1928
1929         file_accessed(filp);
1930         vma->vm_ops = &btrfs_file_vm_ops;
1931
1932         return 0;
1933 }
1934
1935 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1936                           int slot, u64 start, u64 end)
1937 {
1938         struct btrfs_file_extent_item *fi;
1939         struct btrfs_key key;
1940
1941         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1942                 return 0;
1943
1944         btrfs_item_key_to_cpu(leaf, &key, slot);
1945         if (key.objectid != btrfs_ino(inode) ||
1946             key.type != BTRFS_EXTENT_DATA_KEY)
1947                 return 0;
1948
1949         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1950
1951         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1952                 return 0;
1953
1954         if (btrfs_file_extent_disk_bytenr(leaf, fi))
1955                 return 0;
1956
1957         if (key.offset == end)
1958                 return 1;
1959         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1960                 return 1;
1961         return 0;
1962 }
1963
1964 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1965                       struct btrfs_path *path, u64 offset, u64 end)
1966 {
1967         struct btrfs_root *root = BTRFS_I(inode)->root;
1968         struct extent_buffer *leaf;
1969         struct btrfs_file_extent_item *fi;
1970         struct extent_map *hole_em;
1971         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1972         struct btrfs_key key;
1973         int ret;
1974
1975         key.objectid = btrfs_ino(inode);
1976         key.type = BTRFS_EXTENT_DATA_KEY;
1977         key.offset = offset;
1978
1979
1980         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1981         if (ret < 0)
1982                 return ret;
1983         BUG_ON(!ret);
1984
1985         leaf = path->nodes[0];
1986         if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1987                 u64 num_bytes;
1988
1989                 path->slots[0]--;
1990                 fi = btrfs_item_ptr(leaf, path->slots[0],
1991                                     struct btrfs_file_extent_item);
1992                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1993                         end - offset;
1994                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1995                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1996                 btrfs_set_file_extent_offset(leaf, fi, 0);
1997                 btrfs_mark_buffer_dirty(leaf);
1998                 goto out;
1999         }
2000
2001         if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2002                 u64 num_bytes;
2003
2004                 path->slots[0]++;
2005                 key.offset = offset;
2006                 btrfs_set_item_key_safe(root, path, &key);
2007                 fi = btrfs_item_ptr(leaf, path->slots[0],
2008                                     struct btrfs_file_extent_item);
2009                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2010                         offset;
2011                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2012                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2013                 btrfs_set_file_extent_offset(leaf, fi, 0);
2014                 btrfs_mark_buffer_dirty(leaf);
2015                 goto out;
2016         }
2017         btrfs_release_path(path);
2018
2019         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2020                                        0, 0, end - offset, 0, end - offset,
2021                                        0, 0, 0);
2022         if (ret)
2023                 return ret;
2024
2025 out:
2026         btrfs_release_path(path);
2027
2028         hole_em = alloc_extent_map();
2029         if (!hole_em) {
2030                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2031                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2032                         &BTRFS_I(inode)->runtime_flags);
2033         } else {
2034                 hole_em->start = offset;
2035                 hole_em->len = end - offset;
2036                 hole_em->ram_bytes = hole_em->len;
2037                 hole_em->orig_start = offset;
2038
2039                 hole_em->block_start = EXTENT_MAP_HOLE;
2040                 hole_em->block_len = 0;
2041                 hole_em->orig_block_len = 0;
2042                 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2043                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2044                 hole_em->generation = trans->transid;
2045
2046                 do {
2047                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2048                         write_lock(&em_tree->lock);
2049                         ret = add_extent_mapping(em_tree, hole_em, 1);
2050                         write_unlock(&em_tree->lock);
2051                 } while (ret == -EEXIST);
2052                 free_extent_map(hole_em);
2053                 if (ret)
2054                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2055                                 &BTRFS_I(inode)->runtime_flags);
2056         }
2057
2058         return 0;
2059 }
2060
2061 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2062 {
2063         struct btrfs_root *root = BTRFS_I(inode)->root;
2064         struct extent_state *cached_state = NULL;
2065         struct btrfs_path *path;
2066         struct btrfs_block_rsv *rsv;
2067         struct btrfs_trans_handle *trans;
2068         u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2069         u64 lockend = round_down(offset + len,
2070                                  BTRFS_I(inode)->root->sectorsize) - 1;
2071         u64 cur_offset = lockstart;
2072         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2073         u64 drop_end;
2074         int ret = 0;
2075         int err = 0;
2076         bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2077                           ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2078
2079         btrfs_wait_ordered_range(inode, offset, len);
2080
2081         mutex_lock(&inode->i_mutex);
2082         /*
2083          * We needn't truncate any page which is beyond the end of the file
2084          * because we are sure there is no data there.
2085          */
2086         /*
2087          * Only do this if we are in the same page and we aren't doing the
2088          * entire page.
2089          */
2090         if (same_page && len < PAGE_CACHE_SIZE) {
2091                 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
2092                         ret = btrfs_truncate_page(inode, offset, len, 0);
2093                 mutex_unlock(&inode->i_mutex);
2094                 return ret;
2095         }
2096
2097         /* zero back part of the first page */
2098         if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2099                 ret = btrfs_truncate_page(inode, offset, 0, 0);
2100                 if (ret) {
2101                         mutex_unlock(&inode->i_mutex);
2102                         return ret;
2103                 }
2104         }
2105
2106         /* zero the front end of the last page */
2107         if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2108                 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2109                 if (ret) {
2110                         mutex_unlock(&inode->i_mutex);
2111                         return ret;
2112                 }
2113         }
2114
2115         if (lockend < lockstart) {
2116                 mutex_unlock(&inode->i_mutex);
2117                 return 0;
2118         }
2119
2120         while (1) {
2121                 struct btrfs_ordered_extent *ordered;
2122
2123                 truncate_pagecache_range(inode, lockstart, lockend);
2124
2125                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2126                                  0, &cached_state);
2127                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2128
2129                 /*
2130                  * We need to make sure we have no ordered extents in this range
2131                  * and nobody raced in and read a page in this range, if we did
2132                  * we need to try again.
2133                  */
2134                 if ((!ordered ||
2135                     (ordered->file_offset + ordered->len < lockstart ||
2136                      ordered->file_offset > lockend)) &&
2137                      !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2138                                      lockend, EXTENT_UPTODATE, 0,
2139                                      cached_state)) {
2140                         if (ordered)
2141                                 btrfs_put_ordered_extent(ordered);
2142                         break;
2143                 }
2144                 if (ordered)
2145                         btrfs_put_ordered_extent(ordered);
2146                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2147                                      lockend, &cached_state, GFP_NOFS);
2148                 btrfs_wait_ordered_range(inode, lockstart,
2149                                          lockend - lockstart + 1);
2150         }
2151
2152         path = btrfs_alloc_path();
2153         if (!path) {
2154                 ret = -ENOMEM;
2155                 goto out;
2156         }
2157
2158         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2159         if (!rsv) {
2160                 ret = -ENOMEM;
2161                 goto out_free;
2162         }
2163         rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2164         rsv->failfast = 1;
2165
2166         /*
2167          * 1 - update the inode
2168          * 1 - removing the extents in the range
2169          * 1 - adding the hole extent
2170          */
2171         trans = btrfs_start_transaction(root, 3);
2172         if (IS_ERR(trans)) {
2173                 err = PTR_ERR(trans);
2174                 goto out_free;
2175         }
2176
2177         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2178                                       min_size);
2179         BUG_ON(ret);
2180         trans->block_rsv = rsv;
2181
2182         while (cur_offset < lockend) {
2183                 ret = __btrfs_drop_extents(trans, root, inode, path,
2184                                            cur_offset, lockend + 1,
2185                                            &drop_end, 1);
2186                 if (ret != -ENOSPC)
2187                         break;
2188
2189                 trans->block_rsv = &root->fs_info->trans_block_rsv;
2190
2191                 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2192                 if (ret) {
2193                         err = ret;
2194                         break;
2195                 }
2196
2197                 cur_offset = drop_end;
2198
2199                 ret = btrfs_update_inode(trans, root, inode);
2200                 if (ret) {
2201                         err = ret;
2202                         break;
2203                 }
2204
2205                 btrfs_end_transaction(trans, root);
2206                 btrfs_btree_balance_dirty(root);
2207
2208                 trans = btrfs_start_transaction(root, 3);
2209                 if (IS_ERR(trans)) {
2210                         ret = PTR_ERR(trans);
2211                         trans = NULL;
2212                         break;
2213                 }
2214
2215                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2216                                               rsv, min_size);
2217                 BUG_ON(ret);    /* shouldn't happen */
2218                 trans->block_rsv = rsv;
2219         }
2220
2221         if (ret) {
2222                 err = ret;
2223                 goto out_trans;
2224         }
2225
2226         trans->block_rsv = &root->fs_info->trans_block_rsv;
2227         ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2228         if (ret) {
2229                 err = ret;
2230                 goto out_trans;
2231         }
2232
2233 out_trans:
2234         if (!trans)
2235                 goto out_free;
2236
2237         inode_inc_iversion(inode);
2238         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2239
2240         trans->block_rsv = &root->fs_info->trans_block_rsv;
2241         ret = btrfs_update_inode(trans, root, inode);
2242         btrfs_end_transaction(trans, root);
2243         btrfs_btree_balance_dirty(root);
2244 out_free:
2245         btrfs_free_path(path);
2246         btrfs_free_block_rsv(root, rsv);
2247 out:
2248         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2249                              &cached_state, GFP_NOFS);
2250         mutex_unlock(&inode->i_mutex);
2251         if (ret && !err)
2252                 err = ret;
2253         return err;
2254 }
2255
2256 static long btrfs_fallocate(struct file *file, int mode,
2257                             loff_t offset, loff_t len)
2258 {
2259         struct inode *inode = file_inode(file);
2260         struct extent_state *cached_state = NULL;
2261         struct btrfs_root *root = BTRFS_I(inode)->root;
2262         u64 cur_offset;
2263         u64 last_byte;
2264         u64 alloc_start;
2265         u64 alloc_end;
2266         u64 alloc_hint = 0;
2267         u64 locked_end;
2268         struct extent_map *em;
2269         int blocksize = BTRFS_I(inode)->root->sectorsize;
2270         int ret;
2271
2272         alloc_start = round_down(offset, blocksize);
2273         alloc_end = round_up(offset + len, blocksize);
2274
2275         /* Make sure we aren't being give some crap mode */
2276         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2277                 return -EOPNOTSUPP;
2278
2279         if (mode & FALLOC_FL_PUNCH_HOLE)
2280                 return btrfs_punch_hole(inode, offset, len);
2281
2282         /*
2283          * Make sure we have enough space before we do the
2284          * allocation.
2285          */
2286         ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2287         if (ret)
2288                 return ret;
2289         if (root->fs_info->quota_enabled) {
2290                 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2291                 if (ret)
2292                         goto out_reserve_fail;
2293         }
2294
2295         mutex_lock(&inode->i_mutex);
2296         ret = inode_newsize_ok(inode, alloc_end);
2297         if (ret)
2298                 goto out;
2299
2300         if (alloc_start > inode->i_size) {
2301                 ret = btrfs_cont_expand(inode, i_size_read(inode),
2302                                         alloc_start);
2303                 if (ret)
2304                         goto out;
2305         } else {
2306                 /*
2307                  * If we are fallocating from the end of the file onward we
2308                  * need to zero out the end of the page if i_size lands in the
2309                  * middle of a page.
2310                  */
2311                 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2312                 if (ret)
2313                         goto out;
2314         }
2315
2316         /*
2317          * wait for ordered IO before we have any locks.  We'll loop again
2318          * below with the locks held.
2319          */
2320         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2321
2322         locked_end = alloc_end - 1;
2323         while (1) {
2324                 struct btrfs_ordered_extent *ordered;
2325
2326                 /* the extent lock is ordered inside the running
2327                  * transaction
2328                  */
2329                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2330                                  locked_end, 0, &cached_state);
2331                 ordered = btrfs_lookup_first_ordered_extent(inode,
2332                                                             alloc_end - 1);
2333                 if (ordered &&
2334                     ordered->file_offset + ordered->len > alloc_start &&
2335                     ordered->file_offset < alloc_end) {
2336                         btrfs_put_ordered_extent(ordered);
2337                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2338                                              alloc_start, locked_end,
2339                                              &cached_state, GFP_NOFS);
2340                         /*
2341                          * we can't wait on the range with the transaction
2342                          * running or with the extent lock held
2343                          */
2344                         btrfs_wait_ordered_range(inode, alloc_start,
2345                                                  alloc_end - alloc_start);
2346                 } else {
2347                         if (ordered)
2348                                 btrfs_put_ordered_extent(ordered);
2349                         break;
2350                 }
2351         }
2352
2353         cur_offset = alloc_start;
2354         while (1) {
2355                 u64 actual_end;
2356
2357                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2358                                       alloc_end - cur_offset, 0);
2359                 if (IS_ERR_OR_NULL(em)) {
2360                         if (!em)
2361                                 ret = -ENOMEM;
2362                         else
2363                                 ret = PTR_ERR(em);
2364                         break;
2365                 }
2366                 last_byte = min(extent_map_end(em), alloc_end);
2367                 actual_end = min_t(u64, extent_map_end(em), offset + len);
2368                 last_byte = ALIGN(last_byte, blocksize);
2369
2370                 if (em->block_start == EXTENT_MAP_HOLE ||
2371                     (cur_offset >= inode->i_size &&
2372                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2373                         ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2374                                                         last_byte - cur_offset,
2375                                                         1 << inode->i_blkbits,
2376                                                         offset + len,
2377                                                         &alloc_hint);
2378
2379                         if (ret < 0) {
2380                                 free_extent_map(em);
2381                                 break;
2382                         }
2383                 } else if (actual_end > inode->i_size &&
2384                            !(mode & FALLOC_FL_KEEP_SIZE)) {
2385                         /*
2386                          * We didn't need to allocate any more space, but we
2387                          * still extended the size of the file so we need to
2388                          * update i_size.
2389                          */
2390                         inode->i_ctime = CURRENT_TIME;
2391                         i_size_write(inode, actual_end);
2392                         btrfs_ordered_update_i_size(inode, actual_end, NULL);
2393                 }
2394                 free_extent_map(em);
2395
2396                 cur_offset = last_byte;
2397                 if (cur_offset >= alloc_end) {
2398                         ret = 0;
2399                         break;
2400                 }
2401         }
2402         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2403                              &cached_state, GFP_NOFS);
2404 out:
2405         mutex_unlock(&inode->i_mutex);
2406         if (root->fs_info->quota_enabled)
2407                 btrfs_qgroup_free(root, alloc_end - alloc_start);
2408 out_reserve_fail:
2409         /* Let go of our reservation. */
2410         btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2411         return ret;
2412 }
2413
2414 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2415 {
2416         struct btrfs_root *root = BTRFS_I(inode)->root;
2417         struct extent_map *em;
2418         struct extent_state *cached_state = NULL;
2419         u64 lockstart = *offset;
2420         u64 lockend = i_size_read(inode);
2421         u64 start = *offset;
2422         u64 orig_start = *offset;
2423         u64 len = i_size_read(inode);
2424         u64 last_end = 0;
2425         int ret = 0;
2426
2427         lockend = max_t(u64, root->sectorsize, lockend);
2428         if (lockend <= lockstart)
2429                 lockend = lockstart + root->sectorsize;
2430
2431         lockend--;
2432         len = lockend - lockstart + 1;
2433
2434         len = max_t(u64, len, root->sectorsize);
2435         if (inode->i_size == 0)
2436                 return -ENXIO;
2437
2438         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2439                          &cached_state);
2440
2441         /*
2442          * Delalloc is such a pain.  If we have a hole and we have pending
2443          * delalloc for a portion of the hole we will get back a hole that
2444          * exists for the entire range since it hasn't been actually written
2445          * yet.  So to take care of this case we need to look for an extent just
2446          * before the position we want in case there is outstanding delalloc
2447          * going on here.
2448          */
2449         if (whence == SEEK_HOLE && start != 0) {
2450                 if (start <= root->sectorsize)
2451                         em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2452                                                      root->sectorsize, 0);
2453                 else
2454                         em = btrfs_get_extent_fiemap(inode, NULL, 0,
2455                                                      start - root->sectorsize,
2456                                                      root->sectorsize, 0);
2457                 if (IS_ERR(em)) {
2458                         ret = PTR_ERR(em);
2459                         goto out;
2460                 }
2461                 last_end = em->start + em->len;
2462                 if (em->block_start == EXTENT_MAP_DELALLOC)
2463                         last_end = min_t(u64, last_end, inode->i_size);
2464                 free_extent_map(em);
2465         }
2466
2467         while (1) {
2468                 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2469                 if (IS_ERR(em)) {
2470                         ret = PTR_ERR(em);
2471                         break;
2472                 }
2473
2474                 if (em->block_start == EXTENT_MAP_HOLE) {
2475                         if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2476                                 if (last_end <= orig_start) {
2477                                         free_extent_map(em);
2478                                         ret = -ENXIO;
2479                                         break;
2480                                 }
2481                         }
2482
2483                         if (whence == SEEK_HOLE) {
2484                                 *offset = start;
2485                                 free_extent_map(em);
2486                                 break;
2487                         }
2488                 } else {
2489                         if (whence == SEEK_DATA) {
2490                                 if (em->block_start == EXTENT_MAP_DELALLOC) {
2491                                         if (start >= inode->i_size) {
2492                                                 free_extent_map(em);
2493                                                 ret = -ENXIO;
2494                                                 break;
2495                                         }
2496                                 }
2497
2498                                 if (!test_bit(EXTENT_FLAG_PREALLOC,
2499                                               &em->flags)) {
2500                                         *offset = start;
2501                                         free_extent_map(em);
2502                                         break;
2503                                 }
2504                         }
2505                 }
2506
2507                 start = em->start + em->len;
2508                 last_end = em->start + em->len;
2509
2510                 if (em->block_start == EXTENT_MAP_DELALLOC)
2511                         last_end = min_t(u64, last_end, inode->i_size);
2512
2513                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2514                         free_extent_map(em);
2515                         ret = -ENXIO;
2516                         break;
2517                 }
2518                 free_extent_map(em);
2519                 cond_resched();
2520         }
2521         if (!ret)
2522                 *offset = min(*offset, inode->i_size);
2523 out:
2524         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2525                              &cached_state, GFP_NOFS);
2526         return ret;
2527 }
2528
2529 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2530 {
2531         struct inode *inode = file->f_mapping->host;
2532         int ret;
2533
2534         mutex_lock(&inode->i_mutex);
2535         switch (whence) {
2536         case SEEK_END:
2537         case SEEK_CUR:
2538                 offset = generic_file_llseek(file, offset, whence);
2539                 goto out;
2540         case SEEK_DATA:
2541         case SEEK_HOLE:
2542                 if (offset >= i_size_read(inode)) {
2543                         mutex_unlock(&inode->i_mutex);
2544                         return -ENXIO;
2545                 }
2546
2547                 ret = find_desired_extent(inode, &offset, whence);
2548                 if (ret) {
2549                         mutex_unlock(&inode->i_mutex);
2550                         return ret;
2551                 }
2552         }
2553
2554         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2555 out:
2556         mutex_unlock(&inode->i_mutex);
2557         return offset;
2558 }
2559
2560 const struct file_operations btrfs_file_operations = {
2561         .llseek         = btrfs_file_llseek,
2562         .read           = do_sync_read,
2563         .write          = do_sync_write,
2564         .aio_read       = generic_file_aio_read,
2565         .splice_read    = generic_file_splice_read,
2566         .aio_write      = btrfs_file_aio_write,
2567         .mmap           = btrfs_file_mmap,
2568         .open           = generic_file_open,
2569         .release        = btrfs_release_file,
2570         .fsync          = btrfs_sync_file,
2571         .fallocate      = btrfs_fallocate,
2572         .unlocked_ioctl = btrfs_ioctl,
2573 #ifdef CONFIG_COMPAT
2574         .compat_ioctl   = btrfs_ioctl,
2575 #endif
2576 };
2577
2578 void btrfs_auto_defrag_exit(void)
2579 {
2580         if (btrfs_inode_defrag_cachep)
2581                 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2582 }
2583
2584 int btrfs_auto_defrag_init(void)
2585 {
2586         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2587                                         sizeof(struct inode_defrag), 0,
2588                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2589                                         NULL);
2590         if (!btrfs_inode_defrag_cachep)
2591                 return -ENOMEM;
2592
2593         return 0;
2594 }