Btrfs: fix unprotected defragable inode insertion
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / file.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "ioctl.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "compat.h"
42 #include "volumes.h"
43
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46  * when auto defrag is enabled we
47  * queue up these defrag structs to remember which
48  * inodes need defragging passes
49  */
50 struct inode_defrag {
51         struct rb_node rb_node;
52         /* objectid */
53         u64 ino;
54         /*
55          * transid where the defrag was added, we search for
56          * extents newer than this
57          */
58         u64 transid;
59
60         /* root objectid */
61         u64 root;
62
63         /* last offset we were able to defrag */
64         u64 last_offset;
65
66         /* if we've wrapped around back to zero once already */
67         int cycled;
68 };
69
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71                                   struct inode_defrag *defrag2)
72 {
73         if (defrag1->root > defrag2->root)
74                 return 1;
75         else if (defrag1->root < defrag2->root)
76                 return -1;
77         else if (defrag1->ino > defrag2->ino)
78                 return 1;
79         else if (defrag1->ino < defrag2->ino)
80                 return -1;
81         else
82                 return 0;
83 }
84
85 /* pop a record for an inode into the defrag tree.  The lock
86  * must be held already
87  *
88  * If you're inserting a record for an older transid than an
89  * existing record, the transid already in the tree is lowered
90  *
91  * If an existing record is found the defrag item you
92  * pass in is freed
93  */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95                                     struct inode_defrag *defrag)
96 {
97         struct btrfs_root *root = BTRFS_I(inode)->root;
98         struct inode_defrag *entry;
99         struct rb_node **p;
100         struct rb_node *parent = NULL;
101         int ret;
102
103         p = &root->fs_info->defrag_inodes.rb_node;
104         while (*p) {
105                 parent = *p;
106                 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
108                 ret = __compare_inode_defrag(defrag, entry);
109                 if (ret < 0)
110                         p = &parent->rb_left;
111                 else if (ret > 0)
112                         p = &parent->rb_right;
113                 else {
114                         /* if we're reinserting an entry for
115                          * an old defrag run, make sure to
116                          * lower the transid of our existing record
117                          */
118                         if (defrag->transid < entry->transid)
119                                 entry->transid = defrag->transid;
120                         if (defrag->last_offset > entry->last_offset)
121                                 entry->last_offset = defrag->last_offset;
122                         return -EEXIST;
123                 }
124         }
125         set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126         rb_link_node(&defrag->rb_node, parent, p);
127         rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128         return 0;
129 }
130
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133         if (!btrfs_test_opt(root, AUTO_DEFRAG))
134                 return 0;
135
136         if (btrfs_fs_closing(root->fs_info))
137                 return 0;
138
139         return 1;
140 }
141
142 /*
143  * insert a defrag record for this inode if auto defrag is
144  * enabled
145  */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147                            struct inode *inode)
148 {
149         struct btrfs_root *root = BTRFS_I(inode)->root;
150         struct inode_defrag *defrag;
151         u64 transid;
152         int ret;
153
154         if (!__need_auto_defrag(root))
155                 return 0;
156
157         if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158                 return 0;
159
160         if (trans)
161                 transid = trans->transid;
162         else
163                 transid = BTRFS_I(inode)->root->last_trans;
164
165         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166         if (!defrag)
167                 return -ENOMEM;
168
169         defrag->ino = btrfs_ino(inode);
170         defrag->transid = transid;
171         defrag->root = root->root_key.objectid;
172
173         spin_lock(&root->fs_info->defrag_inodes_lock);
174         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175                 /*
176                  * If we set IN_DEFRAG flag and evict the inode from memory,
177                  * and then re-read this inode, this new inode doesn't have
178                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
179                  */
180                 ret = __btrfs_add_inode_defrag(inode, defrag);
181                 if (ret)
182                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183         } else {
184                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185         }
186         spin_unlock(&root->fs_info->defrag_inodes_lock);
187         return 0;
188 }
189
190 /*
191  * Requeue the defrag object. If there is a defrag object that points to
192  * the same inode in the tree, we will merge them together (by
193  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194  */
195 void btrfs_requeue_inode_defrag(struct inode *inode,
196                                 struct inode_defrag *defrag)
197 {
198         struct btrfs_root *root = BTRFS_I(inode)->root;
199         int ret;
200
201         if (!__need_auto_defrag(root))
202                 goto out;
203
204         /*
205          * Here we don't check the IN_DEFRAG flag, because we need merge
206          * them together.
207          */
208         spin_lock(&root->fs_info->defrag_inodes_lock);
209         ret = __btrfs_add_inode_defrag(inode, defrag);
210         spin_unlock(&root->fs_info->defrag_inodes_lock);
211         if (ret)
212                 goto out;
213         return;
214 out:
215         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217
218 /*
219  * must be called with the defrag_inodes lock held
220  */
221 struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info,
222                                              u64 root, u64 ino,
223                                              struct rb_node **next)
224 {
225         struct inode_defrag *entry = NULL;
226         struct inode_defrag tmp;
227         struct rb_node *p;
228         struct rb_node *parent = NULL;
229         int ret;
230
231         tmp.ino = ino;
232         tmp.root = root;
233
234         p = info->defrag_inodes.rb_node;
235         while (p) {
236                 parent = p;
237                 entry = rb_entry(parent, struct inode_defrag, rb_node);
238
239                 ret = __compare_inode_defrag(&tmp, entry);
240                 if (ret < 0)
241                         p = parent->rb_left;
242                 else if (ret > 0)
243                         p = parent->rb_right;
244                 else
245                         return entry;
246         }
247
248         if (next) {
249                 while (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250                         parent = rb_next(parent);
251                         entry = rb_entry(parent, struct inode_defrag, rb_node);
252                 }
253                 *next = parent;
254         }
255         return NULL;
256 }
257
258 /*
259  * run through the list of inodes in the FS that need
260  * defragging
261  */
262 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
263 {
264         struct inode_defrag *defrag;
265         struct btrfs_root *inode_root;
266         struct inode *inode;
267         struct rb_node *n;
268         struct btrfs_key key;
269         struct btrfs_ioctl_defrag_range_args range;
270         u64 first_ino = 0;
271         u64 root_objectid = 0;
272         int num_defrag;
273         int defrag_batch = 1024;
274
275         memset(&range, 0, sizeof(range));
276         range.len = (u64)-1;
277
278         atomic_inc(&fs_info->defrag_running);
279         spin_lock(&fs_info->defrag_inodes_lock);
280         while(1) {
281                 n = NULL;
282
283                 /* find an inode to defrag */
284                 defrag = btrfs_find_defrag_inode(fs_info, root_objectid,
285                                                  first_ino, &n);
286                 if (!defrag) {
287                         if (n) {
288                                 defrag = rb_entry(n, struct inode_defrag,
289                                                   rb_node);
290                         } else if (root_objectid || first_ino) {
291                                 root_objectid = 0;
292                                 first_ino = 0;
293                                 continue;
294                         } else {
295                                 break;
296                         }
297                 }
298
299                 /* remove it from the rbtree */
300                 first_ino = defrag->ino + 1;
301                 root_objectid = defrag->root;
302                 rb_erase(&defrag->rb_node, &fs_info->defrag_inodes);
303
304                 if (btrfs_fs_closing(fs_info))
305                         goto next_free;
306
307                 spin_unlock(&fs_info->defrag_inodes_lock);
308
309                 /* get the inode */
310                 key.objectid = defrag->root;
311                 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
312                 key.offset = (u64)-1;
313                 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
314                 if (IS_ERR(inode_root))
315                         goto next;
316
317                 key.objectid = defrag->ino;
318                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
319                 key.offset = 0;
320
321                 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
322                 if (IS_ERR(inode))
323                         goto next;
324
325                 /* do a chunk of defrag */
326                 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
327                 range.start = defrag->last_offset;
328                 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
329                                                defrag_batch);
330                 /*
331                  * if we filled the whole defrag batch, there
332                  * must be more work to do.  Queue this defrag
333                  * again
334                  */
335                 if (num_defrag == defrag_batch) {
336                         defrag->last_offset = range.start;
337                         btrfs_requeue_inode_defrag(inode, defrag);
338                         /*
339                          * we don't want to kfree defrag, we added it back to
340                          * the rbtree
341                          */
342                         defrag = NULL;
343                 } else if (defrag->last_offset && !defrag->cycled) {
344                         /*
345                          * we didn't fill our defrag batch, but
346                          * we didn't start at zero.  Make sure we loop
347                          * around to the start of the file.
348                          */
349                         defrag->last_offset = 0;
350                         defrag->cycled = 1;
351                         btrfs_requeue_inode_defrag(inode, defrag);
352                         defrag = NULL;
353                 }
354
355                 iput(inode);
356 next:
357                 spin_lock(&fs_info->defrag_inodes_lock);
358 next_free:
359                 if (defrag)
360                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
361         }
362         spin_unlock(&fs_info->defrag_inodes_lock);
363
364         atomic_dec(&fs_info->defrag_running);
365
366         /*
367          * during unmount, we use the transaction_wait queue to
368          * wait for the defragger to stop
369          */
370         wake_up(&fs_info->transaction_wait);
371         return 0;
372 }
373
374 /* simple helper to fault in pages and copy.  This should go away
375  * and be replaced with calls into generic code.
376  */
377 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
378                                          size_t write_bytes,
379                                          struct page **prepared_pages,
380                                          struct iov_iter *i)
381 {
382         size_t copied = 0;
383         size_t total_copied = 0;
384         int pg = 0;
385         int offset = pos & (PAGE_CACHE_SIZE - 1);
386
387         while (write_bytes > 0) {
388                 size_t count = min_t(size_t,
389                                      PAGE_CACHE_SIZE - offset, write_bytes);
390                 struct page *page = prepared_pages[pg];
391                 /*
392                  * Copy data from userspace to the current page
393                  *
394                  * Disable pagefault to avoid recursive lock since
395                  * the pages are already locked
396                  */
397                 pagefault_disable();
398                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
399                 pagefault_enable();
400
401                 /* Flush processor's dcache for this page */
402                 flush_dcache_page(page);
403
404                 /*
405                  * if we get a partial write, we can end up with
406                  * partially up to date pages.  These add
407                  * a lot of complexity, so make sure they don't
408                  * happen by forcing this copy to be retried.
409                  *
410                  * The rest of the btrfs_file_write code will fall
411                  * back to page at a time copies after we return 0.
412                  */
413                 if (!PageUptodate(page) && copied < count)
414                         copied = 0;
415
416                 iov_iter_advance(i, copied);
417                 write_bytes -= copied;
418                 total_copied += copied;
419
420                 /* Return to btrfs_file_aio_write to fault page */
421                 if (unlikely(copied == 0))
422                         break;
423
424                 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
425                         offset += copied;
426                 } else {
427                         pg++;
428                         offset = 0;
429                 }
430         }
431         return total_copied;
432 }
433
434 /*
435  * unlocks pages after btrfs_file_write is done with them
436  */
437 void btrfs_drop_pages(struct page **pages, size_t num_pages)
438 {
439         size_t i;
440         for (i = 0; i < num_pages; i++) {
441                 /* page checked is some magic around finding pages that
442                  * have been modified without going through btrfs_set_page_dirty
443                  * clear it here
444                  */
445                 ClearPageChecked(pages[i]);
446                 unlock_page(pages[i]);
447                 mark_page_accessed(pages[i]);
448                 page_cache_release(pages[i]);
449         }
450 }
451
452 /*
453  * after copy_from_user, pages need to be dirtied and we need to make
454  * sure holes are created between the current EOF and the start of
455  * any next extents (if required).
456  *
457  * this also makes the decision about creating an inline extent vs
458  * doing real data extents, marking pages dirty and delalloc as required.
459  */
460 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
461                       struct page **pages, size_t num_pages,
462                       loff_t pos, size_t write_bytes,
463                       struct extent_state **cached)
464 {
465         int err = 0;
466         int i;
467         u64 num_bytes;
468         u64 start_pos;
469         u64 end_of_last_block;
470         u64 end_pos = pos + write_bytes;
471         loff_t isize = i_size_read(inode);
472
473         start_pos = pos & ~((u64)root->sectorsize - 1);
474         num_bytes = (write_bytes + pos - start_pos +
475                     root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
476
477         end_of_last_block = start_pos + num_bytes - 1;
478         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
479                                         cached);
480         if (err)
481                 return err;
482
483         for (i = 0; i < num_pages; i++) {
484                 struct page *p = pages[i];
485                 SetPageUptodate(p);
486                 ClearPageChecked(p);
487                 set_page_dirty(p);
488         }
489
490         /*
491          * we've only changed i_size in ram, and we haven't updated
492          * the disk i_size.  There is no need to log the inode
493          * at this time.
494          */
495         if (end_pos > isize)
496                 i_size_write(inode, end_pos);
497         return 0;
498 }
499
500 /*
501  * this drops all the extents in the cache that intersect the range
502  * [start, end].  Existing extents are split as required.
503  */
504 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
505                              int skip_pinned)
506 {
507         struct extent_map *em;
508         struct extent_map *split = NULL;
509         struct extent_map *split2 = NULL;
510         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
511         u64 len = end - start + 1;
512         u64 gen;
513         int ret;
514         int testend = 1;
515         unsigned long flags;
516         int compressed = 0;
517
518         WARN_ON(end < start);
519         if (end == (u64)-1) {
520                 len = (u64)-1;
521                 testend = 0;
522         }
523         while (1) {
524                 int no_splits = 0;
525
526                 if (!split)
527                         split = alloc_extent_map();
528                 if (!split2)
529                         split2 = alloc_extent_map();
530                 if (!split || !split2)
531                         no_splits = 1;
532
533                 write_lock(&em_tree->lock);
534                 em = lookup_extent_mapping(em_tree, start, len);
535                 if (!em) {
536                         write_unlock(&em_tree->lock);
537                         break;
538                 }
539                 flags = em->flags;
540                 gen = em->generation;
541                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
542                         if (testend && em->start + em->len >= start + len) {
543                                 free_extent_map(em);
544                                 write_unlock(&em_tree->lock);
545                                 break;
546                         }
547                         start = em->start + em->len;
548                         if (testend)
549                                 len = start + len - (em->start + em->len);
550                         free_extent_map(em);
551                         write_unlock(&em_tree->lock);
552                         continue;
553                 }
554                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
555                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
556                 remove_extent_mapping(em_tree, em);
557                 if (no_splits)
558                         goto next;
559
560                 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
561                     em->start < start) {
562                         split->start = em->start;
563                         split->len = start - em->start;
564                         split->orig_start = em->orig_start;
565                         split->block_start = em->block_start;
566
567                         if (compressed)
568                                 split->block_len = em->block_len;
569                         else
570                                 split->block_len = split->len;
571                         split->generation = gen;
572                         split->bdev = em->bdev;
573                         split->flags = flags;
574                         split->compress_type = em->compress_type;
575                         ret = add_extent_mapping(em_tree, split);
576                         BUG_ON(ret); /* Logic error */
577                         list_move(&split->list, &em_tree->modified_extents);
578                         free_extent_map(split);
579                         split = split2;
580                         split2 = NULL;
581                 }
582                 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
583                     testend && em->start + em->len > start + len) {
584                         u64 diff = start + len - em->start;
585
586                         split->start = start + len;
587                         split->len = em->start + em->len - (start + len);
588                         split->bdev = em->bdev;
589                         split->flags = flags;
590                         split->compress_type = em->compress_type;
591                         split->generation = gen;
592
593                         if (compressed) {
594                                 split->block_len = em->block_len;
595                                 split->block_start = em->block_start;
596                                 split->orig_start = em->orig_start;
597                         } else {
598                                 split->block_len = split->len;
599                                 split->block_start = em->block_start + diff;
600                                 split->orig_start = split->start;
601                         }
602
603                         ret = add_extent_mapping(em_tree, split);
604                         BUG_ON(ret); /* Logic error */
605                         list_move(&split->list, &em_tree->modified_extents);
606                         free_extent_map(split);
607                         split = NULL;
608                 }
609 next:
610                 write_unlock(&em_tree->lock);
611
612                 /* once for us */
613                 free_extent_map(em);
614                 /* once for the tree*/
615                 free_extent_map(em);
616         }
617         if (split)
618                 free_extent_map(split);
619         if (split2)
620                 free_extent_map(split2);
621 }
622
623 /*
624  * this is very complex, but the basic idea is to drop all extents
625  * in the range start - end.  hint_block is filled in with a block number
626  * that would be a good hint to the block allocator for this file.
627  *
628  * If an extent intersects the range but is not entirely inside the range
629  * it is either truncated or split.  Anything entirely inside the range
630  * is deleted from the tree.
631  */
632 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
633                          struct btrfs_root *root, struct inode *inode,
634                          struct btrfs_path *path, u64 start, u64 end,
635                          u64 *drop_end, int drop_cache)
636 {
637         struct extent_buffer *leaf;
638         struct btrfs_file_extent_item *fi;
639         struct btrfs_key key;
640         struct btrfs_key new_key;
641         u64 ino = btrfs_ino(inode);
642         u64 search_start = start;
643         u64 disk_bytenr = 0;
644         u64 num_bytes = 0;
645         u64 extent_offset = 0;
646         u64 extent_end = 0;
647         int del_nr = 0;
648         int del_slot = 0;
649         int extent_type;
650         int recow;
651         int ret;
652         int modify_tree = -1;
653         int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
654         int found = 0;
655
656         if (drop_cache)
657                 btrfs_drop_extent_cache(inode, start, end - 1, 0);
658
659         if (start >= BTRFS_I(inode)->disk_i_size)
660                 modify_tree = 0;
661
662         while (1) {
663                 recow = 0;
664                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
665                                                search_start, modify_tree);
666                 if (ret < 0)
667                         break;
668                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
669                         leaf = path->nodes[0];
670                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
671                         if (key.objectid == ino &&
672                             key.type == BTRFS_EXTENT_DATA_KEY)
673                                 path->slots[0]--;
674                 }
675                 ret = 0;
676 next_slot:
677                 leaf = path->nodes[0];
678                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
679                         BUG_ON(del_nr > 0);
680                         ret = btrfs_next_leaf(root, path);
681                         if (ret < 0)
682                                 break;
683                         if (ret > 0) {
684                                 ret = 0;
685                                 break;
686                         }
687                         leaf = path->nodes[0];
688                         recow = 1;
689                 }
690
691                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
692                 if (key.objectid > ino ||
693                     key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
694                         break;
695
696                 fi = btrfs_item_ptr(leaf, path->slots[0],
697                                     struct btrfs_file_extent_item);
698                 extent_type = btrfs_file_extent_type(leaf, fi);
699
700                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
701                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
702                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
703                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
704                         extent_offset = btrfs_file_extent_offset(leaf, fi);
705                         extent_end = key.offset +
706                                 btrfs_file_extent_num_bytes(leaf, fi);
707                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
708                         extent_end = key.offset +
709                                 btrfs_file_extent_inline_len(leaf, fi);
710                 } else {
711                         WARN_ON(1);
712                         extent_end = search_start;
713                 }
714
715                 if (extent_end <= search_start) {
716                         path->slots[0]++;
717                         goto next_slot;
718                 }
719
720                 found = 1;
721                 search_start = max(key.offset, start);
722                 if (recow || !modify_tree) {
723                         modify_tree = -1;
724                         btrfs_release_path(path);
725                         continue;
726                 }
727
728                 /*
729                  *     | - range to drop - |
730                  *  | -------- extent -------- |
731                  */
732                 if (start > key.offset && end < extent_end) {
733                         BUG_ON(del_nr > 0);
734                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
735
736                         memcpy(&new_key, &key, sizeof(new_key));
737                         new_key.offset = start;
738                         ret = btrfs_duplicate_item(trans, root, path,
739                                                    &new_key);
740                         if (ret == -EAGAIN) {
741                                 btrfs_release_path(path);
742                                 continue;
743                         }
744                         if (ret < 0)
745                                 break;
746
747                         leaf = path->nodes[0];
748                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
749                                             struct btrfs_file_extent_item);
750                         btrfs_set_file_extent_num_bytes(leaf, fi,
751                                                         start - key.offset);
752
753                         fi = btrfs_item_ptr(leaf, path->slots[0],
754                                             struct btrfs_file_extent_item);
755
756                         extent_offset += start - key.offset;
757                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
758                         btrfs_set_file_extent_num_bytes(leaf, fi,
759                                                         extent_end - start);
760                         btrfs_mark_buffer_dirty(leaf);
761
762                         if (update_refs && disk_bytenr > 0) {
763                                 ret = btrfs_inc_extent_ref(trans, root,
764                                                 disk_bytenr, num_bytes, 0,
765                                                 root->root_key.objectid,
766                                                 new_key.objectid,
767                                                 start - extent_offset, 0);
768                                 BUG_ON(ret); /* -ENOMEM */
769                         }
770                         key.offset = start;
771                 }
772                 /*
773                  *  | ---- range to drop ----- |
774                  *      | -------- extent -------- |
775                  */
776                 if (start <= key.offset && end < extent_end) {
777                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
778
779                         memcpy(&new_key, &key, sizeof(new_key));
780                         new_key.offset = end;
781                         btrfs_set_item_key_safe(trans, root, path, &new_key);
782
783                         extent_offset += end - key.offset;
784                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
785                         btrfs_set_file_extent_num_bytes(leaf, fi,
786                                                         extent_end - end);
787                         btrfs_mark_buffer_dirty(leaf);
788                         if (update_refs && disk_bytenr > 0)
789                                 inode_sub_bytes(inode, end - key.offset);
790                         break;
791                 }
792
793                 search_start = extent_end;
794                 /*
795                  *       | ---- range to drop ----- |
796                  *  | -------- extent -------- |
797                  */
798                 if (start > key.offset && end >= extent_end) {
799                         BUG_ON(del_nr > 0);
800                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
801
802                         btrfs_set_file_extent_num_bytes(leaf, fi,
803                                                         start - key.offset);
804                         btrfs_mark_buffer_dirty(leaf);
805                         if (update_refs && disk_bytenr > 0)
806                                 inode_sub_bytes(inode, extent_end - start);
807                         if (end == extent_end)
808                                 break;
809
810                         path->slots[0]++;
811                         goto next_slot;
812                 }
813
814                 /*
815                  *  | ---- range to drop ----- |
816                  *    | ------ extent ------ |
817                  */
818                 if (start <= key.offset && end >= extent_end) {
819                         if (del_nr == 0) {
820                                 del_slot = path->slots[0];
821                                 del_nr = 1;
822                         } else {
823                                 BUG_ON(del_slot + del_nr != path->slots[0]);
824                                 del_nr++;
825                         }
826
827                         if (update_refs &&
828                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
829                                 inode_sub_bytes(inode,
830                                                 extent_end - key.offset);
831                                 extent_end = ALIGN(extent_end,
832                                                    root->sectorsize);
833                         } else if (update_refs && disk_bytenr > 0) {
834                                 ret = btrfs_free_extent(trans, root,
835                                                 disk_bytenr, num_bytes, 0,
836                                                 root->root_key.objectid,
837                                                 key.objectid, key.offset -
838                                                 extent_offset, 0);
839                                 BUG_ON(ret); /* -ENOMEM */
840                                 inode_sub_bytes(inode,
841                                                 extent_end - key.offset);
842                         }
843
844                         if (end == extent_end)
845                                 break;
846
847                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
848                                 path->slots[0]++;
849                                 goto next_slot;
850                         }
851
852                         ret = btrfs_del_items(trans, root, path, del_slot,
853                                               del_nr);
854                         if (ret) {
855                                 btrfs_abort_transaction(trans, root, ret);
856                                 break;
857                         }
858
859                         del_nr = 0;
860                         del_slot = 0;
861
862                         btrfs_release_path(path);
863                         continue;
864                 }
865
866                 BUG_ON(1);
867         }
868
869         if (!ret && del_nr > 0) {
870                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
871                 if (ret)
872                         btrfs_abort_transaction(trans, root, ret);
873         }
874
875         if (drop_end)
876                 *drop_end = found ? min(end, extent_end) : end;
877         btrfs_release_path(path);
878         return ret;
879 }
880
881 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
882                        struct btrfs_root *root, struct inode *inode, u64 start,
883                        u64 end, int drop_cache)
884 {
885         struct btrfs_path *path;
886         int ret;
887
888         path = btrfs_alloc_path();
889         if (!path)
890                 return -ENOMEM;
891         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
892                                    drop_cache);
893         btrfs_free_path(path);
894         return ret;
895 }
896
897 static int extent_mergeable(struct extent_buffer *leaf, int slot,
898                             u64 objectid, u64 bytenr, u64 orig_offset,
899                             u64 *start, u64 *end)
900 {
901         struct btrfs_file_extent_item *fi;
902         struct btrfs_key key;
903         u64 extent_end;
904
905         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
906                 return 0;
907
908         btrfs_item_key_to_cpu(leaf, &key, slot);
909         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
910                 return 0;
911
912         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
913         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
914             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
915             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
916             btrfs_file_extent_compression(leaf, fi) ||
917             btrfs_file_extent_encryption(leaf, fi) ||
918             btrfs_file_extent_other_encoding(leaf, fi))
919                 return 0;
920
921         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
922         if ((*start && *start != key.offset) || (*end && *end != extent_end))
923                 return 0;
924
925         *start = key.offset;
926         *end = extent_end;
927         return 1;
928 }
929
930 /*
931  * Mark extent in the range start - end as written.
932  *
933  * This changes extent type from 'pre-allocated' to 'regular'. If only
934  * part of extent is marked as written, the extent will be split into
935  * two or three.
936  */
937 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
938                               struct inode *inode, u64 start, u64 end)
939 {
940         struct btrfs_root *root = BTRFS_I(inode)->root;
941         struct extent_buffer *leaf;
942         struct btrfs_path *path;
943         struct btrfs_file_extent_item *fi;
944         struct btrfs_key key;
945         struct btrfs_key new_key;
946         u64 bytenr;
947         u64 num_bytes;
948         u64 extent_end;
949         u64 orig_offset;
950         u64 other_start;
951         u64 other_end;
952         u64 split;
953         int del_nr = 0;
954         int del_slot = 0;
955         int recow;
956         int ret;
957         u64 ino = btrfs_ino(inode);
958
959         path = btrfs_alloc_path();
960         if (!path)
961                 return -ENOMEM;
962 again:
963         recow = 0;
964         split = start;
965         key.objectid = ino;
966         key.type = BTRFS_EXTENT_DATA_KEY;
967         key.offset = split;
968
969         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
970         if (ret < 0)
971                 goto out;
972         if (ret > 0 && path->slots[0] > 0)
973                 path->slots[0]--;
974
975         leaf = path->nodes[0];
976         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
977         BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
978         fi = btrfs_item_ptr(leaf, path->slots[0],
979                             struct btrfs_file_extent_item);
980         BUG_ON(btrfs_file_extent_type(leaf, fi) !=
981                BTRFS_FILE_EXTENT_PREALLOC);
982         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
983         BUG_ON(key.offset > start || extent_end < end);
984
985         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
986         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
987         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
988         memcpy(&new_key, &key, sizeof(new_key));
989
990         if (start == key.offset && end < extent_end) {
991                 other_start = 0;
992                 other_end = start;
993                 if (extent_mergeable(leaf, path->slots[0] - 1,
994                                      ino, bytenr, orig_offset,
995                                      &other_start, &other_end)) {
996                         new_key.offset = end;
997                         btrfs_set_item_key_safe(trans, root, path, &new_key);
998                         fi = btrfs_item_ptr(leaf, path->slots[0],
999                                             struct btrfs_file_extent_item);
1000                         btrfs_set_file_extent_generation(leaf, fi,
1001                                                          trans->transid);
1002                         btrfs_set_file_extent_num_bytes(leaf, fi,
1003                                                         extent_end - end);
1004                         btrfs_set_file_extent_offset(leaf, fi,
1005                                                      end - orig_offset);
1006                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1007                                             struct btrfs_file_extent_item);
1008                         btrfs_set_file_extent_generation(leaf, fi,
1009                                                          trans->transid);
1010                         btrfs_set_file_extent_num_bytes(leaf, fi,
1011                                                         end - other_start);
1012                         btrfs_mark_buffer_dirty(leaf);
1013                         goto out;
1014                 }
1015         }
1016
1017         if (start > key.offset && end == extent_end) {
1018                 other_start = end;
1019                 other_end = 0;
1020                 if (extent_mergeable(leaf, path->slots[0] + 1,
1021                                      ino, bytenr, orig_offset,
1022                                      &other_start, &other_end)) {
1023                         fi = btrfs_item_ptr(leaf, path->slots[0],
1024                                             struct btrfs_file_extent_item);
1025                         btrfs_set_file_extent_num_bytes(leaf, fi,
1026                                                         start - key.offset);
1027                         btrfs_set_file_extent_generation(leaf, fi,
1028                                                          trans->transid);
1029                         path->slots[0]++;
1030                         new_key.offset = start;
1031                         btrfs_set_item_key_safe(trans, root, path, &new_key);
1032
1033                         fi = btrfs_item_ptr(leaf, path->slots[0],
1034                                             struct btrfs_file_extent_item);
1035                         btrfs_set_file_extent_generation(leaf, fi,
1036                                                          trans->transid);
1037                         btrfs_set_file_extent_num_bytes(leaf, fi,
1038                                                         other_end - start);
1039                         btrfs_set_file_extent_offset(leaf, fi,
1040                                                      start - orig_offset);
1041                         btrfs_mark_buffer_dirty(leaf);
1042                         goto out;
1043                 }
1044         }
1045
1046         while (start > key.offset || end < extent_end) {
1047                 if (key.offset == start)
1048                         split = end;
1049
1050                 new_key.offset = split;
1051                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1052                 if (ret == -EAGAIN) {
1053                         btrfs_release_path(path);
1054                         goto again;
1055                 }
1056                 if (ret < 0) {
1057                         btrfs_abort_transaction(trans, root, ret);
1058                         goto out;
1059                 }
1060
1061                 leaf = path->nodes[0];
1062                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1063                                     struct btrfs_file_extent_item);
1064                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1065                 btrfs_set_file_extent_num_bytes(leaf, fi,
1066                                                 split - key.offset);
1067
1068                 fi = btrfs_item_ptr(leaf, path->slots[0],
1069                                     struct btrfs_file_extent_item);
1070
1071                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1072                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1073                 btrfs_set_file_extent_num_bytes(leaf, fi,
1074                                                 extent_end - split);
1075                 btrfs_mark_buffer_dirty(leaf);
1076
1077                 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1078                                            root->root_key.objectid,
1079                                            ino, orig_offset, 0);
1080                 BUG_ON(ret); /* -ENOMEM */
1081
1082                 if (split == start) {
1083                         key.offset = start;
1084                 } else {
1085                         BUG_ON(start != key.offset);
1086                         path->slots[0]--;
1087                         extent_end = end;
1088                 }
1089                 recow = 1;
1090         }
1091
1092         other_start = end;
1093         other_end = 0;
1094         if (extent_mergeable(leaf, path->slots[0] + 1,
1095                              ino, bytenr, orig_offset,
1096                              &other_start, &other_end)) {
1097                 if (recow) {
1098                         btrfs_release_path(path);
1099                         goto again;
1100                 }
1101                 extent_end = other_end;
1102                 del_slot = path->slots[0] + 1;
1103                 del_nr++;
1104                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1105                                         0, root->root_key.objectid,
1106                                         ino, orig_offset, 0);
1107                 BUG_ON(ret); /* -ENOMEM */
1108         }
1109         other_start = 0;
1110         other_end = start;
1111         if (extent_mergeable(leaf, path->slots[0] - 1,
1112                              ino, bytenr, orig_offset,
1113                              &other_start, &other_end)) {
1114                 if (recow) {
1115                         btrfs_release_path(path);
1116                         goto again;
1117                 }
1118                 key.offset = other_start;
1119                 del_slot = path->slots[0];
1120                 del_nr++;
1121                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1122                                         0, root->root_key.objectid,
1123                                         ino, orig_offset, 0);
1124                 BUG_ON(ret); /* -ENOMEM */
1125         }
1126         if (del_nr == 0) {
1127                 fi = btrfs_item_ptr(leaf, path->slots[0],
1128                            struct btrfs_file_extent_item);
1129                 btrfs_set_file_extent_type(leaf, fi,
1130                                            BTRFS_FILE_EXTENT_REG);
1131                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1132                 btrfs_mark_buffer_dirty(leaf);
1133         } else {
1134                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1135                            struct btrfs_file_extent_item);
1136                 btrfs_set_file_extent_type(leaf, fi,
1137                                            BTRFS_FILE_EXTENT_REG);
1138                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1139                 btrfs_set_file_extent_num_bytes(leaf, fi,
1140                                                 extent_end - key.offset);
1141                 btrfs_mark_buffer_dirty(leaf);
1142
1143                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1144                 if (ret < 0) {
1145                         btrfs_abort_transaction(trans, root, ret);
1146                         goto out;
1147                 }
1148         }
1149 out:
1150         btrfs_free_path(path);
1151         return 0;
1152 }
1153
1154 /*
1155  * on error we return an unlocked page and the error value
1156  * on success we return a locked page and 0
1157  */
1158 static int prepare_uptodate_page(struct page *page, u64 pos,
1159                                  bool force_uptodate)
1160 {
1161         int ret = 0;
1162
1163         if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1164             !PageUptodate(page)) {
1165                 ret = btrfs_readpage(NULL, page);
1166                 if (ret)
1167                         return ret;
1168                 lock_page(page);
1169                 if (!PageUptodate(page)) {
1170                         unlock_page(page);
1171                         return -EIO;
1172                 }
1173         }
1174         return 0;
1175 }
1176
1177 /*
1178  * this gets pages into the page cache and locks them down, it also properly
1179  * waits for data=ordered extents to finish before allowing the pages to be
1180  * modified.
1181  */
1182 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1183                          struct page **pages, size_t num_pages,
1184                          loff_t pos, unsigned long first_index,
1185                          size_t write_bytes, bool force_uptodate)
1186 {
1187         struct extent_state *cached_state = NULL;
1188         int i;
1189         unsigned long index = pos >> PAGE_CACHE_SHIFT;
1190         struct inode *inode = fdentry(file)->d_inode;
1191         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1192         int err = 0;
1193         int faili = 0;
1194         u64 start_pos;
1195         u64 last_pos;
1196
1197         start_pos = pos & ~((u64)root->sectorsize - 1);
1198         last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1199
1200 again:
1201         for (i = 0; i < num_pages; i++) {
1202                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1203                                                mask | __GFP_WRITE);
1204                 if (!pages[i]) {
1205                         faili = i - 1;
1206                         err = -ENOMEM;
1207                         goto fail;
1208                 }
1209
1210                 if (i == 0)
1211                         err = prepare_uptodate_page(pages[i], pos,
1212                                                     force_uptodate);
1213                 if (i == num_pages - 1)
1214                         err = prepare_uptodate_page(pages[i],
1215                                                     pos + write_bytes, false);
1216                 if (err) {
1217                         page_cache_release(pages[i]);
1218                         faili = i - 1;
1219                         goto fail;
1220                 }
1221                 wait_on_page_writeback(pages[i]);
1222         }
1223         err = 0;
1224         if (start_pos < inode->i_size) {
1225                 struct btrfs_ordered_extent *ordered;
1226                 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1227                                  start_pos, last_pos - 1, 0, &cached_state);
1228                 ordered = btrfs_lookup_first_ordered_extent(inode,
1229                                                             last_pos - 1);
1230                 if (ordered &&
1231                     ordered->file_offset + ordered->len > start_pos &&
1232                     ordered->file_offset < last_pos) {
1233                         btrfs_put_ordered_extent(ordered);
1234                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1235                                              start_pos, last_pos - 1,
1236                                              &cached_state, GFP_NOFS);
1237                         for (i = 0; i < num_pages; i++) {
1238                                 unlock_page(pages[i]);
1239                                 page_cache_release(pages[i]);
1240                         }
1241                         btrfs_wait_ordered_range(inode, start_pos,
1242                                                  last_pos - start_pos);
1243                         goto again;
1244                 }
1245                 if (ordered)
1246                         btrfs_put_ordered_extent(ordered);
1247
1248                 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1249                                   last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1250                                   EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1251                                   0, 0, &cached_state, GFP_NOFS);
1252                 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1253                                      start_pos, last_pos - 1, &cached_state,
1254                                      GFP_NOFS);
1255         }
1256         for (i = 0; i < num_pages; i++) {
1257                 if (clear_page_dirty_for_io(pages[i]))
1258                         account_page_redirty(pages[i]);
1259                 set_page_extent_mapped(pages[i]);
1260                 WARN_ON(!PageLocked(pages[i]));
1261         }
1262         return 0;
1263 fail:
1264         while (faili >= 0) {
1265                 unlock_page(pages[faili]);
1266                 page_cache_release(pages[faili]);
1267                 faili--;
1268         }
1269         return err;
1270
1271 }
1272
1273 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1274                                                struct iov_iter *i,
1275                                                loff_t pos)
1276 {
1277         struct inode *inode = fdentry(file)->d_inode;
1278         struct btrfs_root *root = BTRFS_I(inode)->root;
1279         struct page **pages = NULL;
1280         unsigned long first_index;
1281         size_t num_written = 0;
1282         int nrptrs;
1283         int ret = 0;
1284         bool force_page_uptodate = false;
1285
1286         nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1287                      PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1288                      (sizeof(struct page *)));
1289         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1290         nrptrs = max(nrptrs, 8);
1291         pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1292         if (!pages)
1293                 return -ENOMEM;
1294
1295         first_index = pos >> PAGE_CACHE_SHIFT;
1296
1297         while (iov_iter_count(i) > 0) {
1298                 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1299                 size_t write_bytes = min(iov_iter_count(i),
1300                                          nrptrs * (size_t)PAGE_CACHE_SIZE -
1301                                          offset);
1302                 size_t num_pages = (write_bytes + offset +
1303                                     PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1304                 size_t dirty_pages;
1305                 size_t copied;
1306
1307                 WARN_ON(num_pages > nrptrs);
1308
1309                 /*
1310                  * Fault pages before locking them in prepare_pages
1311                  * to avoid recursive lock
1312                  */
1313                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1314                         ret = -EFAULT;
1315                         break;
1316                 }
1317
1318                 ret = btrfs_delalloc_reserve_space(inode,
1319                                         num_pages << PAGE_CACHE_SHIFT);
1320                 if (ret)
1321                         break;
1322
1323                 /*
1324                  * This is going to setup the pages array with the number of
1325                  * pages we want, so we don't really need to worry about the
1326                  * contents of pages from loop to loop
1327                  */
1328                 ret = prepare_pages(root, file, pages, num_pages,
1329                                     pos, first_index, write_bytes,
1330                                     force_page_uptodate);
1331                 if (ret) {
1332                         btrfs_delalloc_release_space(inode,
1333                                         num_pages << PAGE_CACHE_SHIFT);
1334                         break;
1335                 }
1336
1337                 copied = btrfs_copy_from_user(pos, num_pages,
1338                                            write_bytes, pages, i);
1339
1340                 /*
1341                  * if we have trouble faulting in the pages, fall
1342                  * back to one page at a time
1343                  */
1344                 if (copied < write_bytes)
1345                         nrptrs = 1;
1346
1347                 if (copied == 0) {
1348                         force_page_uptodate = true;
1349                         dirty_pages = 0;
1350                 } else {
1351                         force_page_uptodate = false;
1352                         dirty_pages = (copied + offset +
1353                                        PAGE_CACHE_SIZE - 1) >>
1354                                        PAGE_CACHE_SHIFT;
1355                 }
1356
1357                 /*
1358                  * If we had a short copy we need to release the excess delaloc
1359                  * bytes we reserved.  We need to increment outstanding_extents
1360                  * because btrfs_delalloc_release_space will decrement it, but
1361                  * we still have an outstanding extent for the chunk we actually
1362                  * managed to copy.
1363                  */
1364                 if (num_pages > dirty_pages) {
1365                         if (copied > 0) {
1366                                 spin_lock(&BTRFS_I(inode)->lock);
1367                                 BTRFS_I(inode)->outstanding_extents++;
1368                                 spin_unlock(&BTRFS_I(inode)->lock);
1369                         }
1370                         btrfs_delalloc_release_space(inode,
1371                                         (num_pages - dirty_pages) <<
1372                                         PAGE_CACHE_SHIFT);
1373                 }
1374
1375                 if (copied > 0) {
1376                         ret = btrfs_dirty_pages(root, inode, pages,
1377                                                 dirty_pages, pos, copied,
1378                                                 NULL);
1379                         if (ret) {
1380                                 btrfs_delalloc_release_space(inode,
1381                                         dirty_pages << PAGE_CACHE_SHIFT);
1382                                 btrfs_drop_pages(pages, num_pages);
1383                                 break;
1384                         }
1385                 }
1386
1387                 btrfs_drop_pages(pages, num_pages);
1388
1389                 cond_resched();
1390
1391                 balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1392                                                    dirty_pages);
1393                 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1394                         btrfs_btree_balance_dirty(root);
1395
1396                 pos += copied;
1397                 num_written += copied;
1398         }
1399
1400         kfree(pages);
1401
1402         return num_written ? num_written : ret;
1403 }
1404
1405 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1406                                     const struct iovec *iov,
1407                                     unsigned long nr_segs, loff_t pos,
1408                                     loff_t *ppos, size_t count, size_t ocount)
1409 {
1410         struct file *file = iocb->ki_filp;
1411         struct iov_iter i;
1412         ssize_t written;
1413         ssize_t written_buffered;
1414         loff_t endbyte;
1415         int err;
1416
1417         written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1418                                             count, ocount);
1419
1420         if (written < 0 || written == count)
1421                 return written;
1422
1423         pos += written;
1424         count -= written;
1425         iov_iter_init(&i, iov, nr_segs, count, written);
1426         written_buffered = __btrfs_buffered_write(file, &i, pos);
1427         if (written_buffered < 0) {
1428                 err = written_buffered;
1429                 goto out;
1430         }
1431         endbyte = pos + written_buffered - 1;
1432         err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1433         if (err)
1434                 goto out;
1435         written += written_buffered;
1436         *ppos = pos + written_buffered;
1437         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1438                                  endbyte >> PAGE_CACHE_SHIFT);
1439 out:
1440         return written ? written : err;
1441 }
1442
1443 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1444                                     const struct iovec *iov,
1445                                     unsigned long nr_segs, loff_t pos)
1446 {
1447         struct file *file = iocb->ki_filp;
1448         struct inode *inode = fdentry(file)->d_inode;
1449         struct btrfs_root *root = BTRFS_I(inode)->root;
1450         loff_t *ppos = &iocb->ki_pos;
1451         u64 start_pos;
1452         ssize_t num_written = 0;
1453         ssize_t err = 0;
1454         size_t count, ocount;
1455
1456         sb_start_write(inode->i_sb);
1457
1458         mutex_lock(&inode->i_mutex);
1459
1460         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1461         if (err) {
1462                 mutex_unlock(&inode->i_mutex);
1463                 goto out;
1464         }
1465         count = ocount;
1466
1467         current->backing_dev_info = inode->i_mapping->backing_dev_info;
1468         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1469         if (err) {
1470                 mutex_unlock(&inode->i_mutex);
1471                 goto out;
1472         }
1473
1474         if (count == 0) {
1475                 mutex_unlock(&inode->i_mutex);
1476                 goto out;
1477         }
1478
1479         err = file_remove_suid(file);
1480         if (err) {
1481                 mutex_unlock(&inode->i_mutex);
1482                 goto out;
1483         }
1484
1485         /*
1486          * If BTRFS flips readonly due to some impossible error
1487          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1488          * although we have opened a file as writable, we have
1489          * to stop this write operation to ensure FS consistency.
1490          */
1491         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1492                 mutex_unlock(&inode->i_mutex);
1493                 err = -EROFS;
1494                 goto out;
1495         }
1496
1497         err = file_update_time(file);
1498         if (err) {
1499                 mutex_unlock(&inode->i_mutex);
1500                 goto out;
1501         }
1502
1503         start_pos = round_down(pos, root->sectorsize);
1504         if (start_pos > i_size_read(inode)) {
1505                 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1506                 if (err) {
1507                         mutex_unlock(&inode->i_mutex);
1508                         goto out;
1509                 }
1510         }
1511
1512         if (unlikely(file->f_flags & O_DIRECT)) {
1513                 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1514                                                    pos, ppos, count, ocount);
1515         } else {
1516                 struct iov_iter i;
1517
1518                 iov_iter_init(&i, iov, nr_segs, count, num_written);
1519
1520                 num_written = __btrfs_buffered_write(file, &i, pos);
1521                 if (num_written > 0)
1522                         *ppos = pos + num_written;
1523         }
1524
1525         mutex_unlock(&inode->i_mutex);
1526
1527         /*
1528          * we want to make sure fsync finds this change
1529          * but we haven't joined a transaction running right now.
1530          *
1531          * Later on, someone is sure to update the inode and get the
1532          * real transid recorded.
1533          *
1534          * We set last_trans now to the fs_info generation + 1,
1535          * this will either be one more than the running transaction
1536          * or the generation used for the next transaction if there isn't
1537          * one running right now.
1538          */
1539         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1540         if (num_written > 0 || num_written == -EIOCBQUEUED) {
1541                 err = generic_write_sync(file, pos, num_written);
1542                 if (err < 0 && num_written > 0)
1543                         num_written = err;
1544         }
1545 out:
1546         sb_end_write(inode->i_sb);
1547         current->backing_dev_info = NULL;
1548         return num_written ? num_written : err;
1549 }
1550
1551 int btrfs_release_file(struct inode *inode, struct file *filp)
1552 {
1553         /*
1554          * ordered_data_close is set by settattr when we are about to truncate
1555          * a file from a non-zero size to a zero size.  This tries to
1556          * flush down new bytes that may have been written if the
1557          * application were using truncate to replace a file in place.
1558          */
1559         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1560                                &BTRFS_I(inode)->runtime_flags)) {
1561                 btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1562                 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1563                         filemap_flush(inode->i_mapping);
1564         }
1565         if (filp->private_data)
1566                 btrfs_ioctl_trans_end(filp);
1567         return 0;
1568 }
1569
1570 /*
1571  * fsync call for both files and directories.  This logs the inode into
1572  * the tree log instead of forcing full commits whenever possible.
1573  *
1574  * It needs to call filemap_fdatawait so that all ordered extent updates are
1575  * in the metadata btree are up to date for copying to the log.
1576  *
1577  * It drops the inode mutex before doing the tree log commit.  This is an
1578  * important optimization for directories because holding the mutex prevents
1579  * new operations on the dir while we write to disk.
1580  */
1581 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1582 {
1583         struct dentry *dentry = file->f_path.dentry;
1584         struct inode *inode = dentry->d_inode;
1585         struct btrfs_root *root = BTRFS_I(inode)->root;
1586         int ret = 0;
1587         struct btrfs_trans_handle *trans;
1588
1589         trace_btrfs_sync_file(file, datasync);
1590
1591         /*
1592          * We write the dirty pages in the range and wait until they complete
1593          * out of the ->i_mutex. If so, we can flush the dirty pages by
1594          * multi-task, and make the performance up.
1595          */
1596         ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1597         if (ret)
1598                 return ret;
1599
1600         mutex_lock(&inode->i_mutex);
1601
1602         /*
1603          * We flush the dirty pages again to avoid some dirty pages in the
1604          * range being left.
1605          */
1606         atomic_inc(&root->log_batch);
1607         btrfs_wait_ordered_range(inode, start, end - start + 1);
1608         atomic_inc(&root->log_batch);
1609
1610         /*
1611          * check the transaction that last modified this inode
1612          * and see if its already been committed
1613          */
1614         if (!BTRFS_I(inode)->last_trans) {
1615                 mutex_unlock(&inode->i_mutex);
1616                 goto out;
1617         }
1618
1619         /*
1620          * if the last transaction that changed this file was before
1621          * the current transaction, we can bail out now without any
1622          * syncing
1623          */
1624         smp_mb();
1625         if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1626             BTRFS_I(inode)->last_trans <=
1627             root->fs_info->last_trans_committed) {
1628                 BTRFS_I(inode)->last_trans = 0;
1629
1630                 /*
1631                  * We'v had everything committed since the last time we were
1632                  * modified so clear this flag in case it was set for whatever
1633                  * reason, it's no longer relevant.
1634                  */
1635                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1636                           &BTRFS_I(inode)->runtime_flags);
1637                 mutex_unlock(&inode->i_mutex);
1638                 goto out;
1639         }
1640
1641         /*
1642          * ok we haven't committed the transaction yet, lets do a commit
1643          */
1644         if (file->private_data)
1645                 btrfs_ioctl_trans_end(file);
1646
1647         trans = btrfs_start_transaction(root, 0);
1648         if (IS_ERR(trans)) {
1649                 ret = PTR_ERR(trans);
1650                 mutex_unlock(&inode->i_mutex);
1651                 goto out;
1652         }
1653
1654         ret = btrfs_log_dentry_safe(trans, root, dentry);
1655         if (ret < 0) {
1656                 mutex_unlock(&inode->i_mutex);
1657                 goto out;
1658         }
1659
1660         /* we've logged all the items and now have a consistent
1661          * version of the file in the log.  It is possible that
1662          * someone will come in and modify the file, but that's
1663          * fine because the log is consistent on disk, and we
1664          * have references to all of the file's extents
1665          *
1666          * It is possible that someone will come in and log the
1667          * file again, but that will end up using the synchronization
1668          * inside btrfs_sync_log to keep things safe.
1669          */
1670         mutex_unlock(&inode->i_mutex);
1671
1672         if (ret != BTRFS_NO_LOG_SYNC) {
1673                 if (ret > 0) {
1674                         ret = btrfs_commit_transaction(trans, root);
1675                 } else {
1676                         ret = btrfs_sync_log(trans, root);
1677                         if (ret == 0)
1678                                 ret = btrfs_end_transaction(trans, root);
1679                         else
1680                                 ret = btrfs_commit_transaction(trans, root);
1681                 }
1682         } else {
1683                 ret = btrfs_end_transaction(trans, root);
1684         }
1685 out:
1686         return ret > 0 ? -EIO : ret;
1687 }
1688
1689 static const struct vm_operations_struct btrfs_file_vm_ops = {
1690         .fault          = filemap_fault,
1691         .page_mkwrite   = btrfs_page_mkwrite,
1692         .remap_pages    = generic_file_remap_pages,
1693 };
1694
1695 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
1696 {
1697         struct address_space *mapping = filp->f_mapping;
1698
1699         if (!mapping->a_ops->readpage)
1700                 return -ENOEXEC;
1701
1702         file_accessed(filp);
1703         vma->vm_ops = &btrfs_file_vm_ops;
1704
1705         return 0;
1706 }
1707
1708 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1709                           int slot, u64 start, u64 end)
1710 {
1711         struct btrfs_file_extent_item *fi;
1712         struct btrfs_key key;
1713
1714         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1715                 return 0;
1716
1717         btrfs_item_key_to_cpu(leaf, &key, slot);
1718         if (key.objectid != btrfs_ino(inode) ||
1719             key.type != BTRFS_EXTENT_DATA_KEY)
1720                 return 0;
1721
1722         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1723
1724         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1725                 return 0;
1726
1727         if (btrfs_file_extent_disk_bytenr(leaf, fi))
1728                 return 0;
1729
1730         if (key.offset == end)
1731                 return 1;
1732         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1733                 return 1;
1734         return 0;
1735 }
1736
1737 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1738                       struct btrfs_path *path, u64 offset, u64 end)
1739 {
1740         struct btrfs_root *root = BTRFS_I(inode)->root;
1741         struct extent_buffer *leaf;
1742         struct btrfs_file_extent_item *fi;
1743         struct extent_map *hole_em;
1744         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1745         struct btrfs_key key;
1746         int ret;
1747
1748         key.objectid = btrfs_ino(inode);
1749         key.type = BTRFS_EXTENT_DATA_KEY;
1750         key.offset = offset;
1751
1752
1753         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1754         if (ret < 0)
1755                 return ret;
1756         BUG_ON(!ret);
1757
1758         leaf = path->nodes[0];
1759         if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1760                 u64 num_bytes;
1761
1762                 path->slots[0]--;
1763                 fi = btrfs_item_ptr(leaf, path->slots[0],
1764                                     struct btrfs_file_extent_item);
1765                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1766                         end - offset;
1767                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1768                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1769                 btrfs_set_file_extent_offset(leaf, fi, 0);
1770                 btrfs_mark_buffer_dirty(leaf);
1771                 goto out;
1772         }
1773
1774         if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
1775                 u64 num_bytes;
1776
1777                 path->slots[0]++;
1778                 key.offset = offset;
1779                 btrfs_set_item_key_safe(trans, root, path, &key);
1780                 fi = btrfs_item_ptr(leaf, path->slots[0],
1781                                     struct btrfs_file_extent_item);
1782                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
1783                         offset;
1784                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1785                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1786                 btrfs_set_file_extent_offset(leaf, fi, 0);
1787                 btrfs_mark_buffer_dirty(leaf);
1788                 goto out;
1789         }
1790         btrfs_release_path(path);
1791
1792         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
1793                                        0, 0, end - offset, 0, end - offset,
1794                                        0, 0, 0);
1795         if (ret)
1796                 return ret;
1797
1798 out:
1799         btrfs_release_path(path);
1800
1801         hole_em = alloc_extent_map();
1802         if (!hole_em) {
1803                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1804                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1805                         &BTRFS_I(inode)->runtime_flags);
1806         } else {
1807                 hole_em->start = offset;
1808                 hole_em->len = end - offset;
1809                 hole_em->orig_start = offset;
1810
1811                 hole_em->block_start = EXTENT_MAP_HOLE;
1812                 hole_em->block_len = 0;
1813                 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
1814                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
1815                 hole_em->generation = trans->transid;
1816
1817                 do {
1818                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1819                         write_lock(&em_tree->lock);
1820                         ret = add_extent_mapping(em_tree, hole_em);
1821                         if (!ret)
1822                                 list_move(&hole_em->list,
1823                                           &em_tree->modified_extents);
1824                         write_unlock(&em_tree->lock);
1825                 } while (ret == -EEXIST);
1826                 free_extent_map(hole_em);
1827                 if (ret)
1828                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1829                                 &BTRFS_I(inode)->runtime_flags);
1830         }
1831
1832         return 0;
1833 }
1834
1835 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1836 {
1837         struct btrfs_root *root = BTRFS_I(inode)->root;
1838         struct extent_state *cached_state = NULL;
1839         struct btrfs_path *path;
1840         struct btrfs_block_rsv *rsv;
1841         struct btrfs_trans_handle *trans;
1842         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1843         u64 lockstart = (offset + mask) & ~mask;
1844         u64 lockend = ((offset + len) & ~mask) - 1;
1845         u64 cur_offset = lockstart;
1846         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
1847         u64 drop_end;
1848         int ret = 0;
1849         int err = 0;
1850         bool same_page = (offset >> PAGE_CACHE_SHIFT) ==
1851                 ((offset + len) >> PAGE_CACHE_SHIFT);
1852
1853         btrfs_wait_ordered_range(inode, offset, len);
1854
1855         mutex_lock(&inode->i_mutex);
1856         if (offset >= inode->i_size) {
1857                 mutex_unlock(&inode->i_mutex);
1858                 return 0;
1859         }
1860
1861         /*
1862          * Only do this if we are in the same page and we aren't doing the
1863          * entire page.
1864          */
1865         if (same_page && len < PAGE_CACHE_SIZE) {
1866                 ret = btrfs_truncate_page(inode, offset, len, 0);
1867                 mutex_unlock(&inode->i_mutex);
1868                 return ret;
1869         }
1870
1871         /* zero back part of the first page */
1872         ret = btrfs_truncate_page(inode, offset, 0, 0);
1873         if (ret) {
1874                 mutex_unlock(&inode->i_mutex);
1875                 return ret;
1876         }
1877
1878         /* zero the front end of the last page */
1879         ret = btrfs_truncate_page(inode, offset + len, 0, 1);
1880         if (ret) {
1881                 mutex_unlock(&inode->i_mutex);
1882                 return ret;
1883         }
1884
1885         if (lockend < lockstart) {
1886                 mutex_unlock(&inode->i_mutex);
1887                 return 0;
1888         }
1889
1890         while (1) {
1891                 struct btrfs_ordered_extent *ordered;
1892
1893                 truncate_pagecache_range(inode, lockstart, lockend);
1894
1895                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1896                                  0, &cached_state);
1897                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
1898
1899                 /*
1900                  * We need to make sure we have no ordered extents in this range
1901                  * and nobody raced in and read a page in this range, if we did
1902                  * we need to try again.
1903                  */
1904                 if ((!ordered ||
1905                     (ordered->file_offset + ordered->len < lockstart ||
1906                      ordered->file_offset > lockend)) &&
1907                      !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
1908                                      lockend, EXTENT_UPTODATE, 0,
1909                                      cached_state)) {
1910                         if (ordered)
1911                                 btrfs_put_ordered_extent(ordered);
1912                         break;
1913                 }
1914                 if (ordered)
1915                         btrfs_put_ordered_extent(ordered);
1916                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
1917                                      lockend, &cached_state, GFP_NOFS);
1918                 btrfs_wait_ordered_range(inode, lockstart,
1919                                          lockend - lockstart + 1);
1920         }
1921
1922         path = btrfs_alloc_path();
1923         if (!path) {
1924                 ret = -ENOMEM;
1925                 goto out;
1926         }
1927
1928         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
1929         if (!rsv) {
1930                 ret = -ENOMEM;
1931                 goto out_free;
1932         }
1933         rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
1934         rsv->failfast = 1;
1935
1936         /*
1937          * 1 - update the inode
1938          * 1 - removing the extents in the range
1939          * 1 - adding the hole extent
1940          */
1941         trans = btrfs_start_transaction(root, 3);
1942         if (IS_ERR(trans)) {
1943                 err = PTR_ERR(trans);
1944                 goto out_free;
1945         }
1946
1947         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
1948                                       min_size);
1949         BUG_ON(ret);
1950         trans->block_rsv = rsv;
1951
1952         while (cur_offset < lockend) {
1953                 ret = __btrfs_drop_extents(trans, root, inode, path,
1954                                            cur_offset, lockend + 1,
1955                                            &drop_end, 1);
1956                 if (ret != -ENOSPC)
1957                         break;
1958
1959                 trans->block_rsv = &root->fs_info->trans_block_rsv;
1960
1961                 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
1962                 if (ret) {
1963                         err = ret;
1964                         break;
1965                 }
1966
1967                 cur_offset = drop_end;
1968
1969                 ret = btrfs_update_inode(trans, root, inode);
1970                 if (ret) {
1971                         err = ret;
1972                         break;
1973                 }
1974
1975                 btrfs_end_transaction(trans, root);
1976                 btrfs_btree_balance_dirty(root);
1977
1978                 trans = btrfs_start_transaction(root, 3);
1979                 if (IS_ERR(trans)) {
1980                         ret = PTR_ERR(trans);
1981                         trans = NULL;
1982                         break;
1983                 }
1984
1985                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
1986                                               rsv, min_size);
1987                 BUG_ON(ret);    /* shouldn't happen */
1988                 trans->block_rsv = rsv;
1989         }
1990
1991         if (ret) {
1992                 err = ret;
1993                 goto out_trans;
1994         }
1995
1996         trans->block_rsv = &root->fs_info->trans_block_rsv;
1997         ret = fill_holes(trans, inode, path, cur_offset, drop_end);
1998         if (ret) {
1999                 err = ret;
2000                 goto out_trans;
2001         }
2002
2003 out_trans:
2004         if (!trans)
2005                 goto out_free;
2006
2007         inode_inc_iversion(inode);
2008         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2009
2010         trans->block_rsv = &root->fs_info->trans_block_rsv;
2011         ret = btrfs_update_inode(trans, root, inode);
2012         btrfs_end_transaction(trans, root);
2013         btrfs_btree_balance_dirty(root);
2014 out_free:
2015         btrfs_free_path(path);
2016         btrfs_free_block_rsv(root, rsv);
2017 out:
2018         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2019                              &cached_state, GFP_NOFS);
2020         mutex_unlock(&inode->i_mutex);
2021         if (ret && !err)
2022                 err = ret;
2023         return err;
2024 }
2025
2026 static long btrfs_fallocate(struct file *file, int mode,
2027                             loff_t offset, loff_t len)
2028 {
2029         struct inode *inode = file->f_path.dentry->d_inode;
2030         struct extent_state *cached_state = NULL;
2031         u64 cur_offset;
2032         u64 last_byte;
2033         u64 alloc_start;
2034         u64 alloc_end;
2035         u64 alloc_hint = 0;
2036         u64 locked_end;
2037         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
2038         struct extent_map *em;
2039         int ret;
2040
2041         alloc_start = offset & ~mask;
2042         alloc_end =  (offset + len + mask) & ~mask;
2043
2044         /* Make sure we aren't being give some crap mode */
2045         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2046                 return -EOPNOTSUPP;
2047
2048         if (mode & FALLOC_FL_PUNCH_HOLE)
2049                 return btrfs_punch_hole(inode, offset, len);
2050
2051         /*
2052          * Make sure we have enough space before we do the
2053          * allocation.
2054          */
2055         ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start + 1);
2056         if (ret)
2057                 return ret;
2058
2059         /*
2060          * wait for ordered IO before we have any locks.  We'll loop again
2061          * below with the locks held.
2062          */
2063         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2064
2065         mutex_lock(&inode->i_mutex);
2066         ret = inode_newsize_ok(inode, alloc_end);
2067         if (ret)
2068                 goto out;
2069
2070         if (alloc_start > inode->i_size) {
2071                 ret = btrfs_cont_expand(inode, i_size_read(inode),
2072                                         alloc_start);
2073                 if (ret)
2074                         goto out;
2075         }
2076
2077         locked_end = alloc_end - 1;
2078         while (1) {
2079                 struct btrfs_ordered_extent *ordered;
2080
2081                 /* the extent lock is ordered inside the running
2082                  * transaction
2083                  */
2084                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2085                                  locked_end, 0, &cached_state);
2086                 ordered = btrfs_lookup_first_ordered_extent(inode,
2087                                                             alloc_end - 1);
2088                 if (ordered &&
2089                     ordered->file_offset + ordered->len > alloc_start &&
2090                     ordered->file_offset < alloc_end) {
2091                         btrfs_put_ordered_extent(ordered);
2092                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2093                                              alloc_start, locked_end,
2094                                              &cached_state, GFP_NOFS);
2095                         /*
2096                          * we can't wait on the range with the transaction
2097                          * running or with the extent lock held
2098                          */
2099                         btrfs_wait_ordered_range(inode, alloc_start,
2100                                                  alloc_end - alloc_start);
2101                 } else {
2102                         if (ordered)
2103                                 btrfs_put_ordered_extent(ordered);
2104                         break;
2105                 }
2106         }
2107
2108         cur_offset = alloc_start;
2109         while (1) {
2110                 u64 actual_end;
2111
2112                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2113                                       alloc_end - cur_offset, 0);
2114                 if (IS_ERR_OR_NULL(em)) {
2115                         if (!em)
2116                                 ret = -ENOMEM;
2117                         else
2118                                 ret = PTR_ERR(em);
2119                         break;
2120                 }
2121                 last_byte = min(extent_map_end(em), alloc_end);
2122                 actual_end = min_t(u64, extent_map_end(em), offset + len);
2123                 last_byte = (last_byte + mask) & ~mask;
2124
2125                 if (em->block_start == EXTENT_MAP_HOLE ||
2126                     (cur_offset >= inode->i_size &&
2127                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2128                         ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2129                                                         last_byte - cur_offset,
2130                                                         1 << inode->i_blkbits,
2131                                                         offset + len,
2132                                                         &alloc_hint);
2133
2134                         if (ret < 0) {
2135                                 free_extent_map(em);
2136                                 break;
2137                         }
2138                 } else if (actual_end > inode->i_size &&
2139                            !(mode & FALLOC_FL_KEEP_SIZE)) {
2140                         /*
2141                          * We didn't need to allocate any more space, but we
2142                          * still extended the size of the file so we need to
2143                          * update i_size.
2144                          */
2145                         inode->i_ctime = CURRENT_TIME;
2146                         i_size_write(inode, actual_end);
2147                         btrfs_ordered_update_i_size(inode, actual_end, NULL);
2148                 }
2149                 free_extent_map(em);
2150
2151                 cur_offset = last_byte;
2152                 if (cur_offset >= alloc_end) {
2153                         ret = 0;
2154                         break;
2155                 }
2156         }
2157         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2158                              &cached_state, GFP_NOFS);
2159 out:
2160         mutex_unlock(&inode->i_mutex);
2161         /* Let go of our reservation. */
2162         btrfs_free_reserved_data_space(inode, alloc_end - alloc_start + 1);
2163         return ret;
2164 }
2165
2166 static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
2167 {
2168         struct btrfs_root *root = BTRFS_I(inode)->root;
2169         struct extent_map *em;
2170         struct extent_state *cached_state = NULL;
2171         u64 lockstart = *offset;
2172         u64 lockend = i_size_read(inode);
2173         u64 start = *offset;
2174         u64 orig_start = *offset;
2175         u64 len = i_size_read(inode);
2176         u64 last_end = 0;
2177         int ret = 0;
2178
2179         lockend = max_t(u64, root->sectorsize, lockend);
2180         if (lockend <= lockstart)
2181                 lockend = lockstart + root->sectorsize;
2182
2183         len = lockend - lockstart + 1;
2184
2185         len = max_t(u64, len, root->sectorsize);
2186         if (inode->i_size == 0)
2187                 return -ENXIO;
2188
2189         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2190                          &cached_state);
2191
2192         /*
2193          * Delalloc is such a pain.  If we have a hole and we have pending
2194          * delalloc for a portion of the hole we will get back a hole that
2195          * exists for the entire range since it hasn't been actually written
2196          * yet.  So to take care of this case we need to look for an extent just
2197          * before the position we want in case there is outstanding delalloc
2198          * going on here.
2199          */
2200         if (origin == SEEK_HOLE && start != 0) {
2201                 if (start <= root->sectorsize)
2202                         em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2203                                                      root->sectorsize, 0);
2204                 else
2205                         em = btrfs_get_extent_fiemap(inode, NULL, 0,
2206                                                      start - root->sectorsize,
2207                                                      root->sectorsize, 0);
2208                 if (IS_ERR(em)) {
2209                         ret = PTR_ERR(em);
2210                         goto out;
2211                 }
2212                 last_end = em->start + em->len;
2213                 if (em->block_start == EXTENT_MAP_DELALLOC)
2214                         last_end = min_t(u64, last_end, inode->i_size);
2215                 free_extent_map(em);
2216         }
2217
2218         while (1) {
2219                 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2220                 if (IS_ERR(em)) {
2221                         ret = PTR_ERR(em);
2222                         break;
2223                 }
2224
2225                 if (em->block_start == EXTENT_MAP_HOLE) {
2226                         if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2227                                 if (last_end <= orig_start) {
2228                                         free_extent_map(em);
2229                                         ret = -ENXIO;
2230                                         break;
2231                                 }
2232                         }
2233
2234                         if (origin == SEEK_HOLE) {
2235                                 *offset = start;
2236                                 free_extent_map(em);
2237                                 break;
2238                         }
2239                 } else {
2240                         if (origin == SEEK_DATA) {
2241                                 if (em->block_start == EXTENT_MAP_DELALLOC) {
2242                                         if (start >= inode->i_size) {
2243                                                 free_extent_map(em);
2244                                                 ret = -ENXIO;
2245                                                 break;
2246                                         }
2247                                 }
2248
2249                                 *offset = start;
2250                                 free_extent_map(em);
2251                                 break;
2252                         }
2253                 }
2254
2255                 start = em->start + em->len;
2256                 last_end = em->start + em->len;
2257
2258                 if (em->block_start == EXTENT_MAP_DELALLOC)
2259                         last_end = min_t(u64, last_end, inode->i_size);
2260
2261                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2262                         free_extent_map(em);
2263                         ret = -ENXIO;
2264                         break;
2265                 }
2266                 free_extent_map(em);
2267                 cond_resched();
2268         }
2269         if (!ret)
2270                 *offset = min(*offset, inode->i_size);
2271 out:
2272         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2273                              &cached_state, GFP_NOFS);
2274         return ret;
2275 }
2276
2277 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
2278 {
2279         struct inode *inode = file->f_mapping->host;
2280         int ret;
2281
2282         mutex_lock(&inode->i_mutex);
2283         switch (origin) {
2284         case SEEK_END:
2285         case SEEK_CUR:
2286                 offset = generic_file_llseek(file, offset, origin);
2287                 goto out;
2288         case SEEK_DATA:
2289         case SEEK_HOLE:
2290                 if (offset >= i_size_read(inode)) {
2291                         mutex_unlock(&inode->i_mutex);
2292                         return -ENXIO;
2293                 }
2294
2295                 ret = find_desired_extent(inode, &offset, origin);
2296                 if (ret) {
2297                         mutex_unlock(&inode->i_mutex);
2298                         return ret;
2299                 }
2300         }
2301
2302         if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
2303                 offset = -EINVAL;
2304                 goto out;
2305         }
2306         if (offset > inode->i_sb->s_maxbytes) {
2307                 offset = -EINVAL;
2308                 goto out;
2309         }
2310
2311         /* Special lock needed here? */
2312         if (offset != file->f_pos) {
2313                 file->f_pos = offset;
2314                 file->f_version = 0;
2315         }
2316 out:
2317         mutex_unlock(&inode->i_mutex);
2318         return offset;
2319 }
2320
2321 const struct file_operations btrfs_file_operations = {
2322         .llseek         = btrfs_file_llseek,
2323         .read           = do_sync_read,
2324         .write          = do_sync_write,
2325         .aio_read       = generic_file_aio_read,
2326         .splice_read    = generic_file_splice_read,
2327         .aio_write      = btrfs_file_aio_write,
2328         .mmap           = btrfs_file_mmap,
2329         .open           = generic_file_open,
2330         .release        = btrfs_release_file,
2331         .fsync          = btrfs_sync_file,
2332         .fallocate      = btrfs_fallocate,
2333         .unlocked_ioctl = btrfs_ioctl,
2334 #ifdef CONFIG_COMPAT
2335         .compat_ioctl   = btrfs_ioctl,
2336 #endif
2337 };
2338
2339 void btrfs_auto_defrag_exit(void)
2340 {
2341         if (btrfs_inode_defrag_cachep)
2342                 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2343 }
2344
2345 int btrfs_auto_defrag_init(void)
2346 {
2347         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2348                                         sizeof(struct inode_defrag), 0,
2349                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2350                                         NULL);
2351         if (!btrfs_inode_defrag_cachep)
2352                 return -ENOMEM;
2353
2354         return 0;
2355 }