2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
54 #include "inode-map.h"
56 #include "rcu-string.h"
58 #include "dev-replace.h"
60 /* Mask out flags that are inappropriate for the given type of inode. */
61 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
65 else if (S_ISREG(mode))
66 return flags & ~FS_DIRSYNC_FL;
68 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
72 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
74 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
76 unsigned int iflags = 0;
78 if (flags & BTRFS_INODE_SYNC)
80 if (flags & BTRFS_INODE_IMMUTABLE)
81 iflags |= FS_IMMUTABLE_FL;
82 if (flags & BTRFS_INODE_APPEND)
83 iflags |= FS_APPEND_FL;
84 if (flags & BTRFS_INODE_NODUMP)
85 iflags |= FS_NODUMP_FL;
86 if (flags & BTRFS_INODE_NOATIME)
87 iflags |= FS_NOATIME_FL;
88 if (flags & BTRFS_INODE_DIRSYNC)
89 iflags |= FS_DIRSYNC_FL;
90 if (flags & BTRFS_INODE_NODATACOW)
91 iflags |= FS_NOCOW_FL;
93 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
94 iflags |= FS_COMPR_FL;
95 else if (flags & BTRFS_INODE_NOCOMPRESS)
96 iflags |= FS_NOCOMP_FL;
102 * Update inode->i_flags based on the btrfs internal flags.
104 void btrfs_update_iflags(struct inode *inode)
106 struct btrfs_inode *ip = BTRFS_I(inode);
108 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
110 if (ip->flags & BTRFS_INODE_SYNC)
111 inode->i_flags |= S_SYNC;
112 if (ip->flags & BTRFS_INODE_IMMUTABLE)
113 inode->i_flags |= S_IMMUTABLE;
114 if (ip->flags & BTRFS_INODE_APPEND)
115 inode->i_flags |= S_APPEND;
116 if (ip->flags & BTRFS_INODE_NOATIME)
117 inode->i_flags |= S_NOATIME;
118 if (ip->flags & BTRFS_INODE_DIRSYNC)
119 inode->i_flags |= S_DIRSYNC;
123 * Inherit flags from the parent inode.
125 * Currently only the compression flags and the cow flags are inherited.
127 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
134 flags = BTRFS_I(dir)->flags;
136 if (flags & BTRFS_INODE_NOCOMPRESS) {
137 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
138 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
139 } else if (flags & BTRFS_INODE_COMPRESS) {
140 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
141 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
144 if (flags & BTRFS_INODE_NODATACOW) {
145 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
146 if (S_ISREG(inode->i_mode))
147 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
150 btrfs_update_iflags(inode);
153 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
155 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
156 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
158 if (copy_to_user(arg, &flags, sizeof(flags)))
163 static int check_flags(unsigned int flags)
165 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
166 FS_NOATIME_FL | FS_NODUMP_FL | \
167 FS_SYNC_FL | FS_DIRSYNC_FL | \
168 FS_NOCOMP_FL | FS_COMPR_FL |
172 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
178 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
180 struct inode *inode = file_inode(file);
181 struct btrfs_inode *ip = BTRFS_I(inode);
182 struct btrfs_root *root = ip->root;
183 struct btrfs_trans_handle *trans;
184 unsigned int flags, oldflags;
187 unsigned int i_oldflags;
190 if (btrfs_root_readonly(root))
193 if (copy_from_user(&flags, arg, sizeof(flags)))
196 ret = check_flags(flags);
200 if (!inode_owner_or_capable(inode))
203 ret = mnt_want_write_file(file);
207 mutex_lock(&inode->i_mutex);
209 ip_oldflags = ip->flags;
210 i_oldflags = inode->i_flags;
211 mode = inode->i_mode;
213 flags = btrfs_mask_flags(inode->i_mode, flags);
214 oldflags = btrfs_flags_to_ioctl(ip->flags);
215 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
216 if (!capable(CAP_LINUX_IMMUTABLE)) {
222 if (flags & FS_SYNC_FL)
223 ip->flags |= BTRFS_INODE_SYNC;
225 ip->flags &= ~BTRFS_INODE_SYNC;
226 if (flags & FS_IMMUTABLE_FL)
227 ip->flags |= BTRFS_INODE_IMMUTABLE;
229 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
230 if (flags & FS_APPEND_FL)
231 ip->flags |= BTRFS_INODE_APPEND;
233 ip->flags &= ~BTRFS_INODE_APPEND;
234 if (flags & FS_NODUMP_FL)
235 ip->flags |= BTRFS_INODE_NODUMP;
237 ip->flags &= ~BTRFS_INODE_NODUMP;
238 if (flags & FS_NOATIME_FL)
239 ip->flags |= BTRFS_INODE_NOATIME;
241 ip->flags &= ~BTRFS_INODE_NOATIME;
242 if (flags & FS_DIRSYNC_FL)
243 ip->flags |= BTRFS_INODE_DIRSYNC;
245 ip->flags &= ~BTRFS_INODE_DIRSYNC;
246 if (flags & FS_NOCOW_FL) {
249 * It's safe to turn csums off here, no extents exist.
250 * Otherwise we want the flag to reflect the real COW
251 * status of the file and will not set it.
253 if (inode->i_size == 0)
254 ip->flags |= BTRFS_INODE_NODATACOW
255 | BTRFS_INODE_NODATASUM;
257 ip->flags |= BTRFS_INODE_NODATACOW;
261 * Revert back under same assuptions as above
264 if (inode->i_size == 0)
265 ip->flags &= ~(BTRFS_INODE_NODATACOW
266 | BTRFS_INODE_NODATASUM);
268 ip->flags &= ~BTRFS_INODE_NODATACOW;
273 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
274 * flag may be changed automatically if compression code won't make
277 if (flags & FS_NOCOMP_FL) {
278 ip->flags &= ~BTRFS_INODE_COMPRESS;
279 ip->flags |= BTRFS_INODE_NOCOMPRESS;
280 } else if (flags & FS_COMPR_FL) {
281 ip->flags |= BTRFS_INODE_COMPRESS;
282 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
284 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
287 trans = btrfs_start_transaction(root, 1);
289 ret = PTR_ERR(trans);
293 btrfs_update_iflags(inode);
294 inode_inc_iversion(inode);
295 inode->i_ctime = CURRENT_TIME;
296 ret = btrfs_update_inode(trans, root, inode);
298 btrfs_end_transaction(trans, root);
301 ip->flags = ip_oldflags;
302 inode->i_flags = i_oldflags;
306 mutex_unlock(&inode->i_mutex);
307 mnt_drop_write_file(file);
311 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
313 struct inode *inode = file_inode(file);
315 return put_user(inode->i_generation, arg);
318 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
320 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
321 struct btrfs_device *device;
322 struct request_queue *q;
323 struct fstrim_range range;
324 u64 minlen = ULLONG_MAX;
326 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
329 if (!capable(CAP_SYS_ADMIN))
333 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
337 q = bdev_get_queue(device->bdev);
338 if (blk_queue_discard(q)) {
340 minlen = min((u64)q->limits.discard_granularity,
348 if (copy_from_user(&range, arg, sizeof(range)))
350 if (range.start > total_bytes ||
351 range.len < fs_info->sb->s_blocksize)
354 range.len = min(range.len, total_bytes - range.start);
355 range.minlen = max(range.minlen, minlen);
356 ret = btrfs_trim_fs(fs_info->tree_root, &range);
360 if (copy_to_user(arg, &range, sizeof(range)))
366 static noinline int create_subvol(struct inode *dir,
367 struct dentry *dentry,
368 char *name, int namelen,
370 struct btrfs_qgroup_inherit *inherit)
372 struct btrfs_trans_handle *trans;
373 struct btrfs_key key;
374 struct btrfs_root_item root_item;
375 struct btrfs_inode_item *inode_item;
376 struct extent_buffer *leaf;
377 struct btrfs_root *root = BTRFS_I(dir)->root;
378 struct btrfs_root *new_root;
379 struct btrfs_block_rsv block_rsv;
380 struct timespec cur_time = CURRENT_TIME;
384 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
389 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
393 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
395 * The same as the snapshot creation, please see the comment
396 * of create_snapshot().
398 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
399 7, &qgroup_reserved);
403 trans = btrfs_start_transaction(root, 0);
405 ret = PTR_ERR(trans);
408 trans->block_rsv = &block_rsv;
409 trans->bytes_reserved = block_rsv.size;
411 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
415 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
416 0, objectid, NULL, 0, 0, 0);
422 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
423 btrfs_set_header_bytenr(leaf, leaf->start);
424 btrfs_set_header_generation(leaf, trans->transid);
425 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
426 btrfs_set_header_owner(leaf, objectid);
428 write_extent_buffer(leaf, root->fs_info->fsid,
429 (unsigned long)btrfs_header_fsid(leaf),
431 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
432 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
434 btrfs_mark_buffer_dirty(leaf);
436 memset(&root_item, 0, sizeof(root_item));
438 inode_item = &root_item.inode;
439 inode_item->generation = cpu_to_le64(1);
440 inode_item->size = cpu_to_le64(3);
441 inode_item->nlink = cpu_to_le32(1);
442 inode_item->nbytes = cpu_to_le64(root->leafsize);
443 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
446 root_item.byte_limit = 0;
447 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
449 btrfs_set_root_bytenr(&root_item, leaf->start);
450 btrfs_set_root_generation(&root_item, trans->transid);
451 btrfs_set_root_level(&root_item, 0);
452 btrfs_set_root_refs(&root_item, 1);
453 btrfs_set_root_used(&root_item, leaf->len);
454 btrfs_set_root_last_snapshot(&root_item, 0);
456 btrfs_set_root_generation_v2(&root_item,
457 btrfs_root_generation(&root_item));
458 uuid_le_gen(&new_uuid);
459 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
460 root_item.otime.sec = cpu_to_le64(cur_time.tv_sec);
461 root_item.otime.nsec = cpu_to_le32(cur_time.tv_nsec);
462 root_item.ctime = root_item.otime;
463 btrfs_set_root_ctransid(&root_item, trans->transid);
464 btrfs_set_root_otransid(&root_item, trans->transid);
466 btrfs_tree_unlock(leaf);
467 free_extent_buffer(leaf);
470 btrfs_set_root_dirid(&root_item, new_dirid);
472 key.objectid = objectid;
474 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
475 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
480 key.offset = (u64)-1;
481 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
482 if (IS_ERR(new_root)) {
483 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
484 ret = PTR_ERR(new_root);
488 btrfs_record_root_in_trans(trans, new_root);
490 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
492 /* We potentially lose an unused inode item here */
493 btrfs_abort_transaction(trans, root, ret);
498 * insert the directory item
500 ret = btrfs_set_inode_index(dir, &index);
502 btrfs_abort_transaction(trans, root, ret);
506 ret = btrfs_insert_dir_item(trans, root,
507 name, namelen, dir, &key,
508 BTRFS_FT_DIR, index);
510 btrfs_abort_transaction(trans, root, ret);
514 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
515 ret = btrfs_update_inode(trans, root, dir);
518 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
519 objectid, root->root_key.objectid,
520 btrfs_ino(dir), index, name, namelen);
525 trans->block_rsv = NULL;
526 trans->bytes_reserved = 0;
528 *async_transid = trans->transid;
529 err = btrfs_commit_transaction_async(trans, root, 1);
531 err = btrfs_commit_transaction(trans, root);
533 err = btrfs_commit_transaction(trans, root);
539 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
541 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
545 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
546 struct dentry *dentry, char *name, int namelen,
547 u64 *async_transid, bool readonly,
548 struct btrfs_qgroup_inherit *inherit)
551 struct btrfs_pending_snapshot *pending_snapshot;
552 struct btrfs_trans_handle *trans;
558 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
559 if (!pending_snapshot)
562 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
563 BTRFS_BLOCK_RSV_TEMP);
565 * 1 - parent dir inode
568 * 2 - root ref/backref
569 * 1 - root of snapshot
571 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
572 &pending_snapshot->block_rsv, 7,
573 &pending_snapshot->qgroup_reserved);
577 pending_snapshot->dentry = dentry;
578 pending_snapshot->root = root;
579 pending_snapshot->readonly = readonly;
580 pending_snapshot->dir = dir;
581 pending_snapshot->inherit = inherit;
583 trans = btrfs_start_transaction(root, 0);
585 ret = PTR_ERR(trans);
589 spin_lock(&root->fs_info->trans_lock);
590 list_add(&pending_snapshot->list,
591 &trans->transaction->pending_snapshots);
592 spin_unlock(&root->fs_info->trans_lock);
594 *async_transid = trans->transid;
595 ret = btrfs_commit_transaction_async(trans,
596 root->fs_info->extent_root, 1);
598 ret = btrfs_commit_transaction(trans, root);
600 ret = btrfs_commit_transaction(trans,
601 root->fs_info->extent_root);
606 ret = pending_snapshot->error;
610 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
614 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
616 ret = PTR_ERR(inode);
620 d_instantiate(dentry, inode);
623 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
624 &pending_snapshot->block_rsv,
625 pending_snapshot->qgroup_reserved);
627 kfree(pending_snapshot);
631 /* copy of check_sticky in fs/namei.c()
632 * It's inline, so penalty for filesystems that don't use sticky bit is
635 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
637 kuid_t fsuid = current_fsuid();
639 if (!(dir->i_mode & S_ISVTX))
641 if (uid_eq(inode->i_uid, fsuid))
643 if (uid_eq(dir->i_uid, fsuid))
645 return !capable(CAP_FOWNER);
648 /* copy of may_delete in fs/namei.c()
649 * Check whether we can remove a link victim from directory dir, check
650 * whether the type of victim is right.
651 * 1. We can't do it if dir is read-only (done in permission())
652 * 2. We should have write and exec permissions on dir
653 * 3. We can't remove anything from append-only dir
654 * 4. We can't do anything with immutable dir (done in permission())
655 * 5. If the sticky bit on dir is set we should either
656 * a. be owner of dir, or
657 * b. be owner of victim, or
658 * c. have CAP_FOWNER capability
659 * 6. If the victim is append-only or immutable we can't do antyhing with
660 * links pointing to it.
661 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
662 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
663 * 9. We can't remove a root or mountpoint.
664 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
665 * nfs_async_unlink().
668 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
672 if (!victim->d_inode)
675 BUG_ON(victim->d_parent->d_inode != dir);
676 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
678 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
683 if (btrfs_check_sticky(dir, victim->d_inode)||
684 IS_APPEND(victim->d_inode)||
685 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
688 if (!S_ISDIR(victim->d_inode->i_mode))
692 } else if (S_ISDIR(victim->d_inode->i_mode))
696 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
701 /* copy of may_create in fs/namei.c() */
702 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
708 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
712 * Create a new subvolume below @parent. This is largely modeled after
713 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
714 * inside this filesystem so it's quite a bit simpler.
716 static noinline int btrfs_mksubvol(struct path *parent,
717 char *name, int namelen,
718 struct btrfs_root *snap_src,
719 u64 *async_transid, bool readonly,
720 struct btrfs_qgroup_inherit *inherit)
722 struct inode *dir = parent->dentry->d_inode;
723 struct dentry *dentry;
726 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
730 dentry = lookup_one_len(name, parent->dentry, namelen);
731 error = PTR_ERR(dentry);
739 error = btrfs_may_create(dir, dentry);
744 * even if this name doesn't exist, we may get hash collisions.
745 * check for them now when we can safely fail
747 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
753 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
755 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
759 error = create_snapshot(snap_src, dir, dentry, name, namelen,
760 async_transid, readonly, inherit);
762 error = create_subvol(dir, dentry, name, namelen,
763 async_transid, inherit);
766 fsnotify_mkdir(dir, dentry);
768 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
772 mutex_unlock(&dir->i_mutex);
777 * When we're defragging a range, we don't want to kick it off again
778 * if it is really just waiting for delalloc to send it down.
779 * If we find a nice big extent or delalloc range for the bytes in the
780 * file you want to defrag, we return 0 to let you know to skip this
783 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
785 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
786 struct extent_map *em = NULL;
787 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
790 read_lock(&em_tree->lock);
791 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
792 read_unlock(&em_tree->lock);
795 end = extent_map_end(em);
797 if (end - offset > thresh)
800 /* if we already have a nice delalloc here, just stop */
802 end = count_range_bits(io_tree, &offset, offset + thresh,
803 thresh, EXTENT_DELALLOC, 1);
810 * helper function to walk through a file and find extents
811 * newer than a specific transid, and smaller than thresh.
813 * This is used by the defragging code to find new and small
816 static int find_new_extents(struct btrfs_root *root,
817 struct inode *inode, u64 newer_than,
818 u64 *off, int thresh)
820 struct btrfs_path *path;
821 struct btrfs_key min_key;
822 struct btrfs_key max_key;
823 struct extent_buffer *leaf;
824 struct btrfs_file_extent_item *extent;
827 u64 ino = btrfs_ino(inode);
829 path = btrfs_alloc_path();
833 min_key.objectid = ino;
834 min_key.type = BTRFS_EXTENT_DATA_KEY;
835 min_key.offset = *off;
837 max_key.objectid = ino;
838 max_key.type = (u8)-1;
839 max_key.offset = (u64)-1;
841 path->keep_locks = 1;
844 ret = btrfs_search_forward(root, &min_key, &max_key,
848 if (min_key.objectid != ino)
850 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
853 leaf = path->nodes[0];
854 extent = btrfs_item_ptr(leaf, path->slots[0],
855 struct btrfs_file_extent_item);
857 type = btrfs_file_extent_type(leaf, extent);
858 if (type == BTRFS_FILE_EXTENT_REG &&
859 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
860 check_defrag_in_cache(inode, min_key.offset, thresh)) {
861 *off = min_key.offset;
862 btrfs_free_path(path);
866 if (min_key.offset == (u64)-1)
870 btrfs_release_path(path);
873 btrfs_free_path(path);
877 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
879 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
880 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
881 struct extent_map *em;
882 u64 len = PAGE_CACHE_SIZE;
885 * hopefully we have this extent in the tree already, try without
886 * the full extent lock
888 read_lock(&em_tree->lock);
889 em = lookup_extent_mapping(em_tree, start, len);
890 read_unlock(&em_tree->lock);
893 /* get the big lock and read metadata off disk */
894 lock_extent(io_tree, start, start + len - 1);
895 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
896 unlock_extent(io_tree, start, start + len - 1);
905 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
907 struct extent_map *next;
910 /* this is the last extent */
911 if (em->start + em->len >= i_size_read(inode))
914 next = defrag_lookup_extent(inode, em->start + em->len);
915 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
918 free_extent_map(next);
922 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
923 u64 *last_len, u64 *skip, u64 *defrag_end,
926 struct extent_map *em;
928 bool next_mergeable = true;
931 * make sure that once we start defragging an extent, we keep on
934 if (start < *defrag_end)
939 em = defrag_lookup_extent(inode, start);
943 /* this will cover holes, and inline extents */
944 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
949 next_mergeable = defrag_check_next_extent(inode, em);
952 * we hit a real extent, if it is big or the next extent is not a
953 * real extent, don't bother defragging it
955 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
956 (em->len >= thresh || !next_mergeable))
960 * last_len ends up being a counter of how many bytes we've defragged.
961 * every time we choose not to defrag an extent, we reset *last_len
962 * so that the next tiny extent will force a defrag.
964 * The end result of this is that tiny extents before a single big
965 * extent will force at least part of that big extent to be defragged.
968 *defrag_end = extent_map_end(em);
971 *skip = extent_map_end(em);
980 * it doesn't do much good to defrag one or two pages
981 * at a time. This pulls in a nice chunk of pages
984 * It also makes sure the delalloc code has enough
985 * dirty data to avoid making new small extents as part
988 * It's a good idea to start RA on this range
989 * before calling this.
991 static int cluster_pages_for_defrag(struct inode *inode,
993 unsigned long start_index,
996 unsigned long file_end;
997 u64 isize = i_size_read(inode);
1004 struct btrfs_ordered_extent *ordered;
1005 struct extent_state *cached_state = NULL;
1006 struct extent_io_tree *tree;
1007 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1009 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1010 if (!isize || start_index > file_end)
1013 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1015 ret = btrfs_delalloc_reserve_space(inode,
1016 page_cnt << PAGE_CACHE_SHIFT);
1020 tree = &BTRFS_I(inode)->io_tree;
1022 /* step one, lock all the pages */
1023 for (i = 0; i < page_cnt; i++) {
1026 page = find_or_create_page(inode->i_mapping,
1027 start_index + i, mask);
1031 page_start = page_offset(page);
1032 page_end = page_start + PAGE_CACHE_SIZE - 1;
1034 lock_extent(tree, page_start, page_end);
1035 ordered = btrfs_lookup_ordered_extent(inode,
1037 unlock_extent(tree, page_start, page_end);
1042 btrfs_start_ordered_extent(inode, ordered, 1);
1043 btrfs_put_ordered_extent(ordered);
1046 * we unlocked the page above, so we need check if
1047 * it was released or not.
1049 if (page->mapping != inode->i_mapping) {
1051 page_cache_release(page);
1056 if (!PageUptodate(page)) {
1057 btrfs_readpage(NULL, page);
1059 if (!PageUptodate(page)) {
1061 page_cache_release(page);
1067 if (page->mapping != inode->i_mapping) {
1069 page_cache_release(page);
1079 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1083 * so now we have a nice long stream of locked
1084 * and up to date pages, lets wait on them
1086 for (i = 0; i < i_done; i++)
1087 wait_on_page_writeback(pages[i]);
1089 page_start = page_offset(pages[0]);
1090 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1092 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1093 page_start, page_end - 1, 0, &cached_state);
1094 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1095 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1096 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1097 &cached_state, GFP_NOFS);
1099 if (i_done != page_cnt) {
1100 spin_lock(&BTRFS_I(inode)->lock);
1101 BTRFS_I(inode)->outstanding_extents++;
1102 spin_unlock(&BTRFS_I(inode)->lock);
1103 btrfs_delalloc_release_space(inode,
1104 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1108 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1109 &cached_state, GFP_NOFS);
1111 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1112 page_start, page_end - 1, &cached_state,
1115 for (i = 0; i < i_done; i++) {
1116 clear_page_dirty_for_io(pages[i]);
1117 ClearPageChecked(pages[i]);
1118 set_page_extent_mapped(pages[i]);
1119 set_page_dirty(pages[i]);
1120 unlock_page(pages[i]);
1121 page_cache_release(pages[i]);
1125 for (i = 0; i < i_done; i++) {
1126 unlock_page(pages[i]);
1127 page_cache_release(pages[i]);
1129 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1134 int btrfs_defrag_file(struct inode *inode, struct file *file,
1135 struct btrfs_ioctl_defrag_range_args *range,
1136 u64 newer_than, unsigned long max_to_defrag)
1138 struct btrfs_root *root = BTRFS_I(inode)->root;
1139 struct file_ra_state *ra = NULL;
1140 unsigned long last_index;
1141 u64 isize = i_size_read(inode);
1145 u64 newer_off = range->start;
1147 unsigned long ra_index = 0;
1149 int defrag_count = 0;
1150 int compress_type = BTRFS_COMPRESS_ZLIB;
1151 int extent_thresh = range->extent_thresh;
1152 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1153 int cluster = max_cluster;
1154 u64 new_align = ~((u64)128 * 1024 - 1);
1155 struct page **pages = NULL;
1160 if (range->start >= isize)
1163 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1164 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1166 if (range->compress_type)
1167 compress_type = range->compress_type;
1170 if (extent_thresh == 0)
1171 extent_thresh = 256 * 1024;
1174 * if we were not given a file, allocate a readahead
1178 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1181 file_ra_state_init(ra, inode->i_mapping);
1186 pages = kmalloc(sizeof(struct page *) * max_cluster,
1193 /* find the last page to defrag */
1194 if (range->start + range->len > range->start) {
1195 last_index = min_t(u64, isize - 1,
1196 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1198 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1202 ret = find_new_extents(root, inode, newer_than,
1203 &newer_off, 64 * 1024);
1205 range->start = newer_off;
1207 * we always align our defrag to help keep
1208 * the extents in the file evenly spaced
1210 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1214 i = range->start >> PAGE_CACHE_SHIFT;
1217 max_to_defrag = last_index + 1;
1220 * make writeback starts from i, so the defrag range can be
1221 * written sequentially.
1223 if (i < inode->i_mapping->writeback_index)
1224 inode->i_mapping->writeback_index = i;
1226 while (i <= last_index && defrag_count < max_to_defrag &&
1227 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1228 PAGE_CACHE_SHIFT)) {
1230 * make sure we stop running if someone unmounts
1233 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1236 if (btrfs_defrag_cancelled(root->fs_info)) {
1237 printk(KERN_DEBUG "btrfs: defrag_file cancelled\n");
1242 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1243 extent_thresh, &last_len, &skip,
1244 &defrag_end, range->flags &
1245 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1248 * the should_defrag function tells us how much to skip
1249 * bump our counter by the suggested amount
1251 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1252 i = max(i + 1, next);
1257 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1258 PAGE_CACHE_SHIFT) - i;
1259 cluster = min(cluster, max_cluster);
1261 cluster = max_cluster;
1264 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1265 BTRFS_I(inode)->force_compress = compress_type;
1267 if (i + cluster > ra_index) {
1268 ra_index = max(i, ra_index);
1269 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1271 ra_index += max_cluster;
1274 mutex_lock(&inode->i_mutex);
1275 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1277 mutex_unlock(&inode->i_mutex);
1281 defrag_count += ret;
1282 balance_dirty_pages_ratelimited(inode->i_mapping);
1283 mutex_unlock(&inode->i_mutex);
1286 if (newer_off == (u64)-1)
1292 newer_off = max(newer_off + 1,
1293 (u64)i << PAGE_CACHE_SHIFT);
1295 ret = find_new_extents(root, inode,
1296 newer_than, &newer_off,
1299 range->start = newer_off;
1300 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1307 last_len += ret << PAGE_CACHE_SHIFT;
1315 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1316 filemap_flush(inode->i_mapping);
1318 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1319 /* the filemap_flush will queue IO into the worker threads, but
1320 * we have to make sure the IO is actually started and that
1321 * ordered extents get created before we return
1323 atomic_inc(&root->fs_info->async_submit_draining);
1324 while (atomic_read(&root->fs_info->nr_async_submits) ||
1325 atomic_read(&root->fs_info->async_delalloc_pages)) {
1326 wait_event(root->fs_info->async_submit_wait,
1327 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1328 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1330 atomic_dec(&root->fs_info->async_submit_draining);
1332 mutex_lock(&inode->i_mutex);
1333 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1334 mutex_unlock(&inode->i_mutex);
1337 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1338 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1350 static noinline int btrfs_ioctl_resize(struct file *file,
1356 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1357 struct btrfs_ioctl_vol_args *vol_args;
1358 struct btrfs_trans_handle *trans;
1359 struct btrfs_device *device = NULL;
1361 char *devstr = NULL;
1365 if (!capable(CAP_SYS_ADMIN))
1368 ret = mnt_want_write_file(file);
1372 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1374 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
1375 mnt_drop_write_file(file);
1379 mutex_lock(&root->fs_info->volume_mutex);
1380 vol_args = memdup_user(arg, sizeof(*vol_args));
1381 if (IS_ERR(vol_args)) {
1382 ret = PTR_ERR(vol_args);
1386 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1388 sizestr = vol_args->name;
1389 devstr = strchr(sizestr, ':');
1392 sizestr = devstr + 1;
1394 devstr = vol_args->name;
1395 devid = simple_strtoull(devstr, &end, 10);
1400 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1401 (unsigned long long)devid);
1404 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1406 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1407 (unsigned long long)devid);
1412 if (!device->writeable) {
1413 printk(KERN_INFO "btrfs: resizer unable to apply on "
1414 "readonly device %llu\n",
1415 (unsigned long long)devid);
1420 if (!strcmp(sizestr, "max"))
1421 new_size = device->bdev->bd_inode->i_size;
1423 if (sizestr[0] == '-') {
1426 } else if (sizestr[0] == '+') {
1430 new_size = memparse(sizestr, NULL);
1431 if (new_size == 0) {
1437 if (device->is_tgtdev_for_dev_replace) {
1442 old_size = device->total_bytes;
1445 if (new_size > old_size) {
1449 new_size = old_size - new_size;
1450 } else if (mod > 0) {
1451 new_size = old_size + new_size;
1454 if (new_size < 256 * 1024 * 1024) {
1458 if (new_size > device->bdev->bd_inode->i_size) {
1463 do_div(new_size, root->sectorsize);
1464 new_size *= root->sectorsize;
1466 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1467 rcu_str_deref(device->name),
1468 (unsigned long long)new_size);
1470 if (new_size > old_size) {
1471 trans = btrfs_start_transaction(root, 0);
1472 if (IS_ERR(trans)) {
1473 ret = PTR_ERR(trans);
1476 ret = btrfs_grow_device(trans, device, new_size);
1477 btrfs_commit_transaction(trans, root);
1478 } else if (new_size < old_size) {
1479 ret = btrfs_shrink_device(device, new_size);
1480 } /* equal, nothing need to do */
1485 mutex_unlock(&root->fs_info->volume_mutex);
1486 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1487 mnt_drop_write_file(file);
1491 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1492 char *name, unsigned long fd, int subvol,
1493 u64 *transid, bool readonly,
1494 struct btrfs_qgroup_inherit *inherit)
1499 ret = mnt_want_write_file(file);
1503 namelen = strlen(name);
1504 if (strchr(name, '/')) {
1506 goto out_drop_write;
1509 if (name[0] == '.' &&
1510 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1512 goto out_drop_write;
1516 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1517 NULL, transid, readonly, inherit);
1519 struct fd src = fdget(fd);
1520 struct inode *src_inode;
1523 goto out_drop_write;
1526 src_inode = file_inode(src.file);
1527 if (src_inode->i_sb != file_inode(file)->i_sb) {
1528 printk(KERN_INFO "btrfs: Snapshot src from "
1532 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1533 BTRFS_I(src_inode)->root,
1534 transid, readonly, inherit);
1539 mnt_drop_write_file(file);
1544 static noinline int btrfs_ioctl_snap_create(struct file *file,
1545 void __user *arg, int subvol)
1547 struct btrfs_ioctl_vol_args *vol_args;
1550 vol_args = memdup_user(arg, sizeof(*vol_args));
1551 if (IS_ERR(vol_args))
1552 return PTR_ERR(vol_args);
1553 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1555 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1556 vol_args->fd, subvol,
1563 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1564 void __user *arg, int subvol)
1566 struct btrfs_ioctl_vol_args_v2 *vol_args;
1570 bool readonly = false;
1571 struct btrfs_qgroup_inherit *inherit = NULL;
1573 vol_args = memdup_user(arg, sizeof(*vol_args));
1574 if (IS_ERR(vol_args))
1575 return PTR_ERR(vol_args);
1576 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1578 if (vol_args->flags &
1579 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1580 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1585 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1587 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1589 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1590 if (vol_args->size > PAGE_CACHE_SIZE) {
1594 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1595 if (IS_ERR(inherit)) {
1596 ret = PTR_ERR(inherit);
1601 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1602 vol_args->fd, subvol, ptr,
1605 if (ret == 0 && ptr &&
1607 offsetof(struct btrfs_ioctl_vol_args_v2,
1608 transid), ptr, sizeof(*ptr)))
1616 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1619 struct inode *inode = file_inode(file);
1620 struct btrfs_root *root = BTRFS_I(inode)->root;
1624 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1627 down_read(&root->fs_info->subvol_sem);
1628 if (btrfs_root_readonly(root))
1629 flags |= BTRFS_SUBVOL_RDONLY;
1630 up_read(&root->fs_info->subvol_sem);
1632 if (copy_to_user(arg, &flags, sizeof(flags)))
1638 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1641 struct inode *inode = file_inode(file);
1642 struct btrfs_root *root = BTRFS_I(inode)->root;
1643 struct btrfs_trans_handle *trans;
1648 ret = mnt_want_write_file(file);
1652 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1654 goto out_drop_write;
1657 if (copy_from_user(&flags, arg, sizeof(flags))) {
1659 goto out_drop_write;
1662 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1664 goto out_drop_write;
1667 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1669 goto out_drop_write;
1672 if (!inode_owner_or_capable(inode)) {
1674 goto out_drop_write;
1677 down_write(&root->fs_info->subvol_sem);
1680 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1683 root_flags = btrfs_root_flags(&root->root_item);
1684 if (flags & BTRFS_SUBVOL_RDONLY)
1685 btrfs_set_root_flags(&root->root_item,
1686 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1688 btrfs_set_root_flags(&root->root_item,
1689 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1691 trans = btrfs_start_transaction(root, 1);
1692 if (IS_ERR(trans)) {
1693 ret = PTR_ERR(trans);
1697 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1698 &root->root_key, &root->root_item);
1700 btrfs_commit_transaction(trans, root);
1703 btrfs_set_root_flags(&root->root_item, root_flags);
1705 up_write(&root->fs_info->subvol_sem);
1707 mnt_drop_write_file(file);
1713 * helper to check if the subvolume references other subvolumes
1715 static noinline int may_destroy_subvol(struct btrfs_root *root)
1717 struct btrfs_path *path;
1718 struct btrfs_key key;
1721 path = btrfs_alloc_path();
1725 key.objectid = root->root_key.objectid;
1726 key.type = BTRFS_ROOT_REF_KEY;
1727 key.offset = (u64)-1;
1729 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1736 if (path->slots[0] > 0) {
1738 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1739 if (key.objectid == root->root_key.objectid &&
1740 key.type == BTRFS_ROOT_REF_KEY)
1744 btrfs_free_path(path);
1748 static noinline int key_in_sk(struct btrfs_key *key,
1749 struct btrfs_ioctl_search_key *sk)
1751 struct btrfs_key test;
1754 test.objectid = sk->min_objectid;
1755 test.type = sk->min_type;
1756 test.offset = sk->min_offset;
1758 ret = btrfs_comp_cpu_keys(key, &test);
1762 test.objectid = sk->max_objectid;
1763 test.type = sk->max_type;
1764 test.offset = sk->max_offset;
1766 ret = btrfs_comp_cpu_keys(key, &test);
1772 static noinline int copy_to_sk(struct btrfs_root *root,
1773 struct btrfs_path *path,
1774 struct btrfs_key *key,
1775 struct btrfs_ioctl_search_key *sk,
1777 unsigned long *sk_offset,
1781 struct extent_buffer *leaf;
1782 struct btrfs_ioctl_search_header sh;
1783 unsigned long item_off;
1784 unsigned long item_len;
1790 leaf = path->nodes[0];
1791 slot = path->slots[0];
1792 nritems = btrfs_header_nritems(leaf);
1794 if (btrfs_header_generation(leaf) > sk->max_transid) {
1798 found_transid = btrfs_header_generation(leaf);
1800 for (i = slot; i < nritems; i++) {
1801 item_off = btrfs_item_ptr_offset(leaf, i);
1802 item_len = btrfs_item_size_nr(leaf, i);
1804 btrfs_item_key_to_cpu(leaf, key, i);
1805 if (!key_in_sk(key, sk))
1808 if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1811 if (sizeof(sh) + item_len + *sk_offset >
1812 BTRFS_SEARCH_ARGS_BUFSIZE) {
1817 sh.objectid = key->objectid;
1818 sh.offset = key->offset;
1819 sh.type = key->type;
1821 sh.transid = found_transid;
1823 /* copy search result header */
1824 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1825 *sk_offset += sizeof(sh);
1828 char *p = buf + *sk_offset;
1830 read_extent_buffer(leaf, p,
1831 item_off, item_len);
1832 *sk_offset += item_len;
1836 if (*num_found >= sk->nr_items)
1841 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1843 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1846 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1856 static noinline int search_ioctl(struct inode *inode,
1857 struct btrfs_ioctl_search_args *args)
1859 struct btrfs_root *root;
1860 struct btrfs_key key;
1861 struct btrfs_key max_key;
1862 struct btrfs_path *path;
1863 struct btrfs_ioctl_search_key *sk = &args->key;
1864 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1867 unsigned long sk_offset = 0;
1869 path = btrfs_alloc_path();
1873 if (sk->tree_id == 0) {
1874 /* search the root of the inode that was passed */
1875 root = BTRFS_I(inode)->root;
1877 key.objectid = sk->tree_id;
1878 key.type = BTRFS_ROOT_ITEM_KEY;
1879 key.offset = (u64)-1;
1880 root = btrfs_read_fs_root_no_name(info, &key);
1882 printk(KERN_ERR "could not find root %llu\n",
1884 btrfs_free_path(path);
1889 key.objectid = sk->min_objectid;
1890 key.type = sk->min_type;
1891 key.offset = sk->min_offset;
1893 max_key.objectid = sk->max_objectid;
1894 max_key.type = sk->max_type;
1895 max_key.offset = sk->max_offset;
1897 path->keep_locks = 1;
1900 ret = btrfs_search_forward(root, &key, &max_key, path,
1907 ret = copy_to_sk(root, path, &key, sk, args->buf,
1908 &sk_offset, &num_found);
1909 btrfs_release_path(path);
1910 if (ret || num_found >= sk->nr_items)
1916 sk->nr_items = num_found;
1917 btrfs_free_path(path);
1921 static noinline int btrfs_ioctl_tree_search(struct file *file,
1924 struct btrfs_ioctl_search_args *args;
1925 struct inode *inode;
1928 if (!capable(CAP_SYS_ADMIN))
1931 args = memdup_user(argp, sizeof(*args));
1933 return PTR_ERR(args);
1935 inode = file_inode(file);
1936 ret = search_ioctl(inode, args);
1937 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1944 * Search INODE_REFs to identify path name of 'dirid' directory
1945 * in a 'tree_id' tree. and sets path name to 'name'.
1947 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1948 u64 tree_id, u64 dirid, char *name)
1950 struct btrfs_root *root;
1951 struct btrfs_key key;
1957 struct btrfs_inode_ref *iref;
1958 struct extent_buffer *l;
1959 struct btrfs_path *path;
1961 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1966 path = btrfs_alloc_path();
1970 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1972 key.objectid = tree_id;
1973 key.type = BTRFS_ROOT_ITEM_KEY;
1974 key.offset = (u64)-1;
1975 root = btrfs_read_fs_root_no_name(info, &key);
1977 printk(KERN_ERR "could not find root %llu\n", tree_id);
1982 key.objectid = dirid;
1983 key.type = BTRFS_INODE_REF_KEY;
1984 key.offset = (u64)-1;
1987 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1992 slot = path->slots[0];
1993 if (ret > 0 && slot > 0)
1995 btrfs_item_key_to_cpu(l, &key, slot);
1997 if (ret > 0 && (key.objectid != dirid ||
1998 key.type != BTRFS_INODE_REF_KEY)) {
2003 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2004 len = btrfs_inode_ref_name_len(l, iref);
2006 total_len += len + 1;
2011 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
2013 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2016 btrfs_release_path(path);
2017 key.objectid = key.offset;
2018 key.offset = (u64)-1;
2019 dirid = key.objectid;
2023 memmove(name, ptr, total_len);
2024 name[total_len]='\0';
2027 btrfs_free_path(path);
2031 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2034 struct btrfs_ioctl_ino_lookup_args *args;
2035 struct inode *inode;
2038 if (!capable(CAP_SYS_ADMIN))
2041 args = memdup_user(argp, sizeof(*args));
2043 return PTR_ERR(args);
2045 inode = file_inode(file);
2047 if (args->treeid == 0)
2048 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2050 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2051 args->treeid, args->objectid,
2054 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2061 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2064 struct dentry *parent = fdentry(file);
2065 struct dentry *dentry;
2066 struct inode *dir = parent->d_inode;
2067 struct inode *inode;
2068 struct btrfs_root *root = BTRFS_I(dir)->root;
2069 struct btrfs_root *dest = NULL;
2070 struct btrfs_ioctl_vol_args *vol_args;
2071 struct btrfs_trans_handle *trans;
2072 struct btrfs_block_rsv block_rsv;
2073 u64 qgroup_reserved;
2078 vol_args = memdup_user(arg, sizeof(*vol_args));
2079 if (IS_ERR(vol_args))
2080 return PTR_ERR(vol_args);
2082 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2083 namelen = strlen(vol_args->name);
2084 if (strchr(vol_args->name, '/') ||
2085 strncmp(vol_args->name, "..", namelen) == 0) {
2090 err = mnt_want_write_file(file);
2094 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2097 dentry = lookup_one_len(vol_args->name, parent, namelen);
2098 if (IS_ERR(dentry)) {
2099 err = PTR_ERR(dentry);
2100 goto out_unlock_dir;
2103 if (!dentry->d_inode) {
2108 inode = dentry->d_inode;
2109 dest = BTRFS_I(inode)->root;
2110 if (!capable(CAP_SYS_ADMIN)){
2112 * Regular user. Only allow this with a special mount
2113 * option, when the user has write+exec access to the
2114 * subvol root, and when rmdir(2) would have been
2117 * Note that this is _not_ check that the subvol is
2118 * empty or doesn't contain data that we wouldn't
2119 * otherwise be able to delete.
2121 * Users who want to delete empty subvols should try
2125 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2129 * Do not allow deletion if the parent dir is the same
2130 * as the dir to be deleted. That means the ioctl
2131 * must be called on the dentry referencing the root
2132 * of the subvol, not a random directory contained
2139 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2144 /* check if subvolume may be deleted by a user */
2145 err = btrfs_may_delete(dir, dentry, 1);
2149 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2154 mutex_lock(&inode->i_mutex);
2155 err = d_invalidate(dentry);
2159 down_write(&root->fs_info->subvol_sem);
2161 err = may_destroy_subvol(dest);
2165 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2167 * One for dir inode, two for dir entries, two for root
2170 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2171 5, &qgroup_reserved);
2175 trans = btrfs_start_transaction(root, 0);
2176 if (IS_ERR(trans)) {
2177 err = PTR_ERR(trans);
2180 trans->block_rsv = &block_rsv;
2181 trans->bytes_reserved = block_rsv.size;
2183 ret = btrfs_unlink_subvol(trans, root, dir,
2184 dest->root_key.objectid,
2185 dentry->d_name.name,
2186 dentry->d_name.len);
2189 btrfs_abort_transaction(trans, root, ret);
2193 btrfs_record_root_in_trans(trans, dest);
2195 memset(&dest->root_item.drop_progress, 0,
2196 sizeof(dest->root_item.drop_progress));
2197 dest->root_item.drop_level = 0;
2198 btrfs_set_root_refs(&dest->root_item, 0);
2200 if (!xchg(&dest->orphan_item_inserted, 1)) {
2201 ret = btrfs_insert_orphan_item(trans,
2202 root->fs_info->tree_root,
2203 dest->root_key.objectid);
2205 btrfs_abort_transaction(trans, root, ret);
2211 trans->block_rsv = NULL;
2212 trans->bytes_reserved = 0;
2213 ret = btrfs_end_transaction(trans, root);
2216 inode->i_flags |= S_DEAD;
2218 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2220 up_write(&root->fs_info->subvol_sem);
2222 mutex_unlock(&inode->i_mutex);
2224 shrink_dcache_sb(root->fs_info->sb);
2225 btrfs_invalidate_inodes(dest);
2229 if (dest->cache_inode) {
2230 iput(dest->cache_inode);
2231 dest->cache_inode = NULL;
2237 mutex_unlock(&dir->i_mutex);
2238 mnt_drop_write_file(file);
2244 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2246 struct inode *inode = file_inode(file);
2247 struct btrfs_root *root = BTRFS_I(inode)->root;
2248 struct btrfs_ioctl_defrag_range_args *range;
2251 ret = mnt_want_write_file(file);
2255 if (btrfs_root_readonly(root)) {
2260 switch (inode->i_mode & S_IFMT) {
2262 if (!capable(CAP_SYS_ADMIN)) {
2266 ret = btrfs_defrag_root(root);
2269 ret = btrfs_defrag_root(root->fs_info->extent_root);
2272 if (!(file->f_mode & FMODE_WRITE)) {
2277 range = kzalloc(sizeof(*range), GFP_KERNEL);
2284 if (copy_from_user(range, argp,
2290 /* compression requires us to start the IO */
2291 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2292 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2293 range->extent_thresh = (u32)-1;
2296 /* the rest are all set to zero by kzalloc */
2297 range->len = (u64)-1;
2299 ret = btrfs_defrag_file(file_inode(file), file,
2309 mnt_drop_write_file(file);
2313 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2315 struct btrfs_ioctl_vol_args *vol_args;
2318 if (!capable(CAP_SYS_ADMIN))
2321 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2323 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2327 mutex_lock(&root->fs_info->volume_mutex);
2328 vol_args = memdup_user(arg, sizeof(*vol_args));
2329 if (IS_ERR(vol_args)) {
2330 ret = PTR_ERR(vol_args);
2334 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2335 ret = btrfs_init_new_device(root, vol_args->name);
2339 mutex_unlock(&root->fs_info->volume_mutex);
2340 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2344 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2346 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2347 struct btrfs_ioctl_vol_args *vol_args;
2350 if (!capable(CAP_SYS_ADMIN))
2353 ret = mnt_want_write_file(file);
2357 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2359 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2360 mnt_drop_write_file(file);
2364 mutex_lock(&root->fs_info->volume_mutex);
2365 vol_args = memdup_user(arg, sizeof(*vol_args));
2366 if (IS_ERR(vol_args)) {
2367 ret = PTR_ERR(vol_args);
2371 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2372 ret = btrfs_rm_device(root, vol_args->name);
2376 mutex_unlock(&root->fs_info->volume_mutex);
2377 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2378 mnt_drop_write_file(file);
2382 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2384 struct btrfs_ioctl_fs_info_args *fi_args;
2385 struct btrfs_device *device;
2386 struct btrfs_device *next;
2387 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2390 if (!capable(CAP_SYS_ADMIN))
2393 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2397 fi_args->num_devices = fs_devices->num_devices;
2398 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2400 mutex_lock(&fs_devices->device_list_mutex);
2401 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2402 if (device->devid > fi_args->max_id)
2403 fi_args->max_id = device->devid;
2405 mutex_unlock(&fs_devices->device_list_mutex);
2407 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2414 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2416 struct btrfs_ioctl_dev_info_args *di_args;
2417 struct btrfs_device *dev;
2418 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2420 char *s_uuid = NULL;
2421 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2423 if (!capable(CAP_SYS_ADMIN))
2426 di_args = memdup_user(arg, sizeof(*di_args));
2427 if (IS_ERR(di_args))
2428 return PTR_ERR(di_args);
2430 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2431 s_uuid = di_args->uuid;
2433 mutex_lock(&fs_devices->device_list_mutex);
2434 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2441 di_args->devid = dev->devid;
2442 di_args->bytes_used = dev->bytes_used;
2443 di_args->total_bytes = dev->total_bytes;
2444 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2446 struct rcu_string *name;
2449 name = rcu_dereference(dev->name);
2450 strncpy(di_args->path, name->str, sizeof(di_args->path));
2452 di_args->path[sizeof(di_args->path) - 1] = 0;
2454 di_args->path[0] = '\0';
2458 mutex_unlock(&fs_devices->device_list_mutex);
2459 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2466 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2467 u64 off, u64 olen, u64 destoff)
2469 struct inode *inode = file_inode(file);
2470 struct btrfs_root *root = BTRFS_I(inode)->root;
2473 struct btrfs_trans_handle *trans;
2474 struct btrfs_path *path;
2475 struct extent_buffer *leaf;
2477 struct btrfs_key key;
2482 u64 bs = root->fs_info->sb->s_blocksize;
2486 * - split compressed inline extents. annoying: we need to
2487 * decompress into destination's address_space (the file offset
2488 * may change, so source mapping won't do), then recompress (or
2489 * otherwise reinsert) a subrange.
2490 * - allow ranges within the same file to be cloned (provided
2491 * they don't overlap)?
2494 /* the destination must be opened for writing */
2495 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2498 if (btrfs_root_readonly(root))
2501 ret = mnt_want_write_file(file);
2505 src_file = fdget(srcfd);
2506 if (!src_file.file) {
2508 goto out_drop_write;
2512 if (src_file.file->f_path.mnt != file->f_path.mnt)
2515 src = file_inode(src_file.file);
2521 /* the src must be open for reading */
2522 if (!(src_file.file->f_mode & FMODE_READ))
2525 /* don't make the dst file partly checksummed */
2526 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2527 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2531 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2535 if (src->i_sb != inode->i_sb)
2539 buf = vmalloc(btrfs_level_size(root, 0));
2543 path = btrfs_alloc_path();
2551 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2552 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2554 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2555 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2558 /* determine range to clone */
2560 if (off + len > src->i_size || off + len < off)
2563 olen = len = src->i_size - off;
2564 /* if we extend to eof, continue to block boundary */
2565 if (off + len == src->i_size)
2566 len = ALIGN(src->i_size, bs) - off;
2568 /* verify the end result is block aligned */
2569 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2570 !IS_ALIGNED(destoff, bs))
2573 if (destoff > inode->i_size) {
2574 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2579 /* truncate page cache pages from target inode range */
2580 truncate_inode_pages_range(&inode->i_data, destoff,
2581 PAGE_CACHE_ALIGN(destoff + len) - 1);
2583 /* do any pending delalloc/csum calc on src, one way or
2584 another, and lock file content */
2586 struct btrfs_ordered_extent *ordered;
2587 lock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2588 ordered = btrfs_lookup_first_ordered_extent(src, off + len - 1);
2590 !test_range_bit(&BTRFS_I(src)->io_tree, off, off + len - 1,
2591 EXTENT_DELALLOC, 0, NULL))
2593 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2595 btrfs_put_ordered_extent(ordered);
2596 btrfs_wait_ordered_range(src, off, len);
2600 key.objectid = btrfs_ino(src);
2601 key.type = BTRFS_EXTENT_DATA_KEY;
2606 * note the key will change type as we walk through the
2609 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2614 nritems = btrfs_header_nritems(path->nodes[0]);
2615 if (path->slots[0] >= nritems) {
2616 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2621 nritems = btrfs_header_nritems(path->nodes[0]);
2623 leaf = path->nodes[0];
2624 slot = path->slots[0];
2626 btrfs_item_key_to_cpu(leaf, &key, slot);
2627 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2628 key.objectid != btrfs_ino(src))
2631 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2632 struct btrfs_file_extent_item *extent;
2635 struct btrfs_key new_key;
2636 u64 disko = 0, diskl = 0;
2637 u64 datao = 0, datal = 0;
2641 size = btrfs_item_size_nr(leaf, slot);
2642 read_extent_buffer(leaf, buf,
2643 btrfs_item_ptr_offset(leaf, slot),
2646 extent = btrfs_item_ptr(leaf, slot,
2647 struct btrfs_file_extent_item);
2648 comp = btrfs_file_extent_compression(leaf, extent);
2649 type = btrfs_file_extent_type(leaf, extent);
2650 if (type == BTRFS_FILE_EXTENT_REG ||
2651 type == BTRFS_FILE_EXTENT_PREALLOC) {
2652 disko = btrfs_file_extent_disk_bytenr(leaf,
2654 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2656 datao = btrfs_file_extent_offset(leaf, extent);
2657 datal = btrfs_file_extent_num_bytes(leaf,
2659 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2660 /* take upper bound, may be compressed */
2661 datal = btrfs_file_extent_ram_bytes(leaf,
2664 btrfs_release_path(path);
2666 if (key.offset + datal <= off ||
2667 key.offset >= off + len - 1)
2670 memcpy(&new_key, &key, sizeof(new_key));
2671 new_key.objectid = btrfs_ino(inode);
2672 if (off <= key.offset)
2673 new_key.offset = key.offset + destoff - off;
2675 new_key.offset = destoff;
2678 * 1 - adjusting old extent (we may have to split it)
2679 * 1 - add new extent
2682 trans = btrfs_start_transaction(root, 3);
2683 if (IS_ERR(trans)) {
2684 ret = PTR_ERR(trans);
2688 if (type == BTRFS_FILE_EXTENT_REG ||
2689 type == BTRFS_FILE_EXTENT_PREALLOC) {
2691 * a | --- range to clone ---| b
2692 * | ------------- extent ------------- |
2695 /* substract range b */
2696 if (key.offset + datal > off + len)
2697 datal = off + len - key.offset;
2699 /* substract range a */
2700 if (off > key.offset) {
2701 datao += off - key.offset;
2702 datal -= off - key.offset;
2705 ret = btrfs_drop_extents(trans, root, inode,
2707 new_key.offset + datal,
2710 btrfs_abort_transaction(trans, root,
2712 btrfs_end_transaction(trans, root);
2716 ret = btrfs_insert_empty_item(trans, root, path,
2719 btrfs_abort_transaction(trans, root,
2721 btrfs_end_transaction(trans, root);
2725 leaf = path->nodes[0];
2726 slot = path->slots[0];
2727 write_extent_buffer(leaf, buf,
2728 btrfs_item_ptr_offset(leaf, slot),
2731 extent = btrfs_item_ptr(leaf, slot,
2732 struct btrfs_file_extent_item);
2734 /* disko == 0 means it's a hole */
2738 btrfs_set_file_extent_offset(leaf, extent,
2740 btrfs_set_file_extent_num_bytes(leaf, extent,
2743 inode_add_bytes(inode, datal);
2744 ret = btrfs_inc_extent_ref(trans, root,
2746 root->root_key.objectid,
2748 new_key.offset - datao,
2751 btrfs_abort_transaction(trans,
2754 btrfs_end_transaction(trans,
2760 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2763 if (off > key.offset) {
2764 skip = off - key.offset;
2765 new_key.offset += skip;
2768 if (key.offset + datal > off + len)
2769 trim = key.offset + datal - (off + len);
2771 if (comp && (skip || trim)) {
2773 btrfs_end_transaction(trans, root);
2776 size -= skip + trim;
2777 datal -= skip + trim;
2779 ret = btrfs_drop_extents(trans, root, inode,
2781 new_key.offset + datal,
2784 btrfs_abort_transaction(trans, root,
2786 btrfs_end_transaction(trans, root);
2790 ret = btrfs_insert_empty_item(trans, root, path,
2793 btrfs_abort_transaction(trans, root,
2795 btrfs_end_transaction(trans, root);
2801 btrfs_file_extent_calc_inline_size(0);
2802 memmove(buf+start, buf+start+skip,
2806 leaf = path->nodes[0];
2807 slot = path->slots[0];
2808 write_extent_buffer(leaf, buf,
2809 btrfs_item_ptr_offset(leaf, slot),
2811 inode_add_bytes(inode, datal);
2814 btrfs_mark_buffer_dirty(leaf);
2815 btrfs_release_path(path);
2817 inode_inc_iversion(inode);
2818 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2821 * we round up to the block size at eof when
2822 * determining which extents to clone above,
2823 * but shouldn't round up the file size
2825 endoff = new_key.offset + datal;
2826 if (endoff > destoff+olen)
2827 endoff = destoff+olen;
2828 if (endoff > inode->i_size)
2829 btrfs_i_size_write(inode, endoff);
2831 ret = btrfs_update_inode(trans, root, inode);
2833 btrfs_abort_transaction(trans, root, ret);
2834 btrfs_end_transaction(trans, root);
2837 ret = btrfs_end_transaction(trans, root);
2840 btrfs_release_path(path);
2845 btrfs_release_path(path);
2846 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2848 mutex_unlock(&src->i_mutex);
2849 mutex_unlock(&inode->i_mutex);
2851 btrfs_free_path(path);
2855 mnt_drop_write_file(file);
2859 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2861 struct btrfs_ioctl_clone_range_args args;
2863 if (copy_from_user(&args, argp, sizeof(args)))
2865 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2866 args.src_length, args.dest_offset);
2870 * there are many ways the trans_start and trans_end ioctls can lead
2871 * to deadlocks. They should only be used by applications that
2872 * basically own the machine, and have a very in depth understanding
2873 * of all the possible deadlocks and enospc problems.
2875 static long btrfs_ioctl_trans_start(struct file *file)
2877 struct inode *inode = file_inode(file);
2878 struct btrfs_root *root = BTRFS_I(inode)->root;
2879 struct btrfs_trans_handle *trans;
2883 if (!capable(CAP_SYS_ADMIN))
2887 if (file->private_data)
2891 if (btrfs_root_readonly(root))
2894 ret = mnt_want_write_file(file);
2898 atomic_inc(&root->fs_info->open_ioctl_trans);
2901 trans = btrfs_start_ioctl_transaction(root);
2905 file->private_data = trans;
2909 atomic_dec(&root->fs_info->open_ioctl_trans);
2910 mnt_drop_write_file(file);
2915 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2917 struct inode *inode = file_inode(file);
2918 struct btrfs_root *root = BTRFS_I(inode)->root;
2919 struct btrfs_root *new_root;
2920 struct btrfs_dir_item *di;
2921 struct btrfs_trans_handle *trans;
2922 struct btrfs_path *path;
2923 struct btrfs_key location;
2924 struct btrfs_disk_key disk_key;
2929 if (!capable(CAP_SYS_ADMIN))
2932 ret = mnt_want_write_file(file);
2936 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2942 objectid = root->root_key.objectid;
2944 location.objectid = objectid;
2945 location.type = BTRFS_ROOT_ITEM_KEY;
2946 location.offset = (u64)-1;
2948 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2949 if (IS_ERR(new_root)) {
2950 ret = PTR_ERR(new_root);
2954 if (btrfs_root_refs(&new_root->root_item) == 0) {
2959 path = btrfs_alloc_path();
2964 path->leave_spinning = 1;
2966 trans = btrfs_start_transaction(root, 1);
2967 if (IS_ERR(trans)) {
2968 btrfs_free_path(path);
2969 ret = PTR_ERR(trans);
2973 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2974 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2975 dir_id, "default", 7, 1);
2976 if (IS_ERR_OR_NULL(di)) {
2977 btrfs_free_path(path);
2978 btrfs_end_transaction(trans, root);
2979 printk(KERN_ERR "Umm, you don't have the default dir item, "
2980 "this isn't going to work\n");
2985 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2986 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2987 btrfs_mark_buffer_dirty(path->nodes[0]);
2988 btrfs_free_path(path);
2990 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
2991 btrfs_end_transaction(trans, root);
2993 mnt_drop_write_file(file);
2997 void btrfs_get_block_group_info(struct list_head *groups_list,
2998 struct btrfs_ioctl_space_info *space)
3000 struct btrfs_block_group_cache *block_group;
3002 space->total_bytes = 0;
3003 space->used_bytes = 0;
3005 list_for_each_entry(block_group, groups_list, list) {
3006 space->flags = block_group->flags;
3007 space->total_bytes += block_group->key.offset;
3008 space->used_bytes +=
3009 btrfs_block_group_used(&block_group->item);
3013 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3015 struct btrfs_ioctl_space_args space_args;
3016 struct btrfs_ioctl_space_info space;
3017 struct btrfs_ioctl_space_info *dest;
3018 struct btrfs_ioctl_space_info *dest_orig;
3019 struct btrfs_ioctl_space_info __user *user_dest;
3020 struct btrfs_space_info *info;
3021 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3022 BTRFS_BLOCK_GROUP_SYSTEM,
3023 BTRFS_BLOCK_GROUP_METADATA,
3024 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3031 if (copy_from_user(&space_args,
3032 (struct btrfs_ioctl_space_args __user *)arg,
3033 sizeof(space_args)))
3036 for (i = 0; i < num_types; i++) {
3037 struct btrfs_space_info *tmp;
3041 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3043 if (tmp->flags == types[i]) {
3053 down_read(&info->groups_sem);
3054 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3055 if (!list_empty(&info->block_groups[c]))
3058 up_read(&info->groups_sem);
3061 /* space_slots == 0 means they are asking for a count */
3062 if (space_args.space_slots == 0) {
3063 space_args.total_spaces = slot_count;
3067 slot_count = min_t(u64, space_args.space_slots, slot_count);
3069 alloc_size = sizeof(*dest) * slot_count;
3071 /* we generally have at most 6 or so space infos, one for each raid
3072 * level. So, a whole page should be more than enough for everyone
3074 if (alloc_size > PAGE_CACHE_SIZE)
3077 space_args.total_spaces = 0;
3078 dest = kmalloc(alloc_size, GFP_NOFS);
3083 /* now we have a buffer to copy into */
3084 for (i = 0; i < num_types; i++) {
3085 struct btrfs_space_info *tmp;
3092 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3094 if (tmp->flags == types[i]) {
3103 down_read(&info->groups_sem);
3104 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3105 if (!list_empty(&info->block_groups[c])) {
3106 btrfs_get_block_group_info(
3107 &info->block_groups[c], &space);
3108 memcpy(dest, &space, sizeof(space));
3110 space_args.total_spaces++;
3116 up_read(&info->groups_sem);
3119 user_dest = (struct btrfs_ioctl_space_info __user *)
3120 (arg + sizeof(struct btrfs_ioctl_space_args));
3122 if (copy_to_user(user_dest, dest_orig, alloc_size))
3127 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3134 * there are many ways the trans_start and trans_end ioctls can lead
3135 * to deadlocks. They should only be used by applications that
3136 * basically own the machine, and have a very in depth understanding
3137 * of all the possible deadlocks and enospc problems.
3139 long btrfs_ioctl_trans_end(struct file *file)
3141 struct inode *inode = file_inode(file);
3142 struct btrfs_root *root = BTRFS_I(inode)->root;
3143 struct btrfs_trans_handle *trans;
3145 trans = file->private_data;
3148 file->private_data = NULL;
3150 btrfs_end_transaction(trans, root);
3152 atomic_dec(&root->fs_info->open_ioctl_trans);
3154 mnt_drop_write_file(file);
3158 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3161 struct btrfs_trans_handle *trans;
3165 trans = btrfs_attach_transaction_barrier(root);
3166 if (IS_ERR(trans)) {
3167 if (PTR_ERR(trans) != -ENOENT)
3168 return PTR_ERR(trans);
3170 /* No running transaction, don't bother */
3171 transid = root->fs_info->last_trans_committed;
3174 transid = trans->transid;
3175 ret = btrfs_commit_transaction_async(trans, root, 0);
3177 btrfs_end_transaction(trans, root);
3182 if (copy_to_user(argp, &transid, sizeof(transid)))
3187 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3193 if (copy_from_user(&transid, argp, sizeof(transid)))
3196 transid = 0; /* current trans */
3198 return btrfs_wait_for_commit(root, transid);
3201 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3203 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3204 struct btrfs_ioctl_scrub_args *sa;
3207 if (!capable(CAP_SYS_ADMIN))
3210 sa = memdup_user(arg, sizeof(*sa));
3214 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3215 ret = mnt_want_write_file(file);
3220 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3221 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3224 if (copy_to_user(arg, sa, sizeof(*sa)))
3227 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3228 mnt_drop_write_file(file);
3234 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3236 if (!capable(CAP_SYS_ADMIN))
3239 return btrfs_scrub_cancel(root->fs_info);
3242 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3245 struct btrfs_ioctl_scrub_args *sa;
3248 if (!capable(CAP_SYS_ADMIN))
3251 sa = memdup_user(arg, sizeof(*sa));
3255 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3257 if (copy_to_user(arg, sa, sizeof(*sa)))
3264 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3267 struct btrfs_ioctl_get_dev_stats *sa;
3270 sa = memdup_user(arg, sizeof(*sa));
3274 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3279 ret = btrfs_get_dev_stats(root, sa);
3281 if (copy_to_user(arg, sa, sizeof(*sa)))
3288 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3290 struct btrfs_ioctl_dev_replace_args *p;
3293 if (!capable(CAP_SYS_ADMIN))
3296 p = memdup_user(arg, sizeof(*p));
3301 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3303 &root->fs_info->mutually_exclusive_operation_running,
3305 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3308 ret = btrfs_dev_replace_start(root, p);
3310 &root->fs_info->mutually_exclusive_operation_running,
3314 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3315 btrfs_dev_replace_status(root->fs_info, p);
3318 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3319 ret = btrfs_dev_replace_cancel(root->fs_info, p);
3326 if (copy_to_user(arg, p, sizeof(*p)))
3333 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3339 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3340 struct inode_fs_paths *ipath = NULL;
3341 struct btrfs_path *path;
3343 if (!capable(CAP_DAC_READ_SEARCH))
3346 path = btrfs_alloc_path();
3352 ipa = memdup_user(arg, sizeof(*ipa));
3359 size = min_t(u32, ipa->size, 4096);
3360 ipath = init_ipath(size, root, path);
3361 if (IS_ERR(ipath)) {
3362 ret = PTR_ERR(ipath);
3367 ret = paths_from_inode(ipa->inum, ipath);
3371 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3372 rel_ptr = ipath->fspath->val[i] -
3373 (u64)(unsigned long)ipath->fspath->val;
3374 ipath->fspath->val[i] = rel_ptr;
3377 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3378 (void *)(unsigned long)ipath->fspath, size);
3385 btrfs_free_path(path);
3392 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3394 struct btrfs_data_container *inodes = ctx;
3395 const size_t c = 3 * sizeof(u64);
3397 if (inodes->bytes_left >= c) {
3398 inodes->bytes_left -= c;
3399 inodes->val[inodes->elem_cnt] = inum;
3400 inodes->val[inodes->elem_cnt + 1] = offset;
3401 inodes->val[inodes->elem_cnt + 2] = root;
3402 inodes->elem_cnt += 3;
3404 inodes->bytes_missing += c - inodes->bytes_left;
3405 inodes->bytes_left = 0;
3406 inodes->elem_missed += 3;
3412 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3417 struct btrfs_ioctl_logical_ino_args *loi;
3418 struct btrfs_data_container *inodes = NULL;
3419 struct btrfs_path *path = NULL;
3421 if (!capable(CAP_SYS_ADMIN))
3424 loi = memdup_user(arg, sizeof(*loi));
3431 path = btrfs_alloc_path();
3437 size = min_t(u32, loi->size, 64 * 1024);
3438 inodes = init_data_container(size);
3439 if (IS_ERR(inodes)) {
3440 ret = PTR_ERR(inodes);
3445 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3446 build_ino_list, inodes);
3452 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3453 (void *)(unsigned long)inodes, size);
3458 btrfs_free_path(path);
3465 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3466 struct btrfs_ioctl_balance_args *bargs)
3468 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3470 bargs->flags = bctl->flags;
3472 if (atomic_read(&fs_info->balance_running))
3473 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3474 if (atomic_read(&fs_info->balance_pause_req))
3475 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3476 if (atomic_read(&fs_info->balance_cancel_req))
3477 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3479 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3480 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3481 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3484 spin_lock(&fs_info->balance_lock);
3485 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3486 spin_unlock(&fs_info->balance_lock);
3488 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3492 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3494 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3495 struct btrfs_fs_info *fs_info = root->fs_info;
3496 struct btrfs_ioctl_balance_args *bargs;
3497 struct btrfs_balance_control *bctl;
3498 bool need_unlock; /* for mut. excl. ops lock */
3501 if (!capable(CAP_SYS_ADMIN))
3504 ret = mnt_want_write_file(file);
3509 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
3510 mutex_lock(&fs_info->volume_mutex);
3511 mutex_lock(&fs_info->balance_mutex);
3517 * mut. excl. ops lock is locked. Three possibilites:
3518 * (1) some other op is running
3519 * (2) balance is running
3520 * (3) balance is paused -- special case (think resume)
3522 mutex_lock(&fs_info->balance_mutex);
3523 if (fs_info->balance_ctl) {
3524 /* this is either (2) or (3) */
3525 if (!atomic_read(&fs_info->balance_running)) {
3526 mutex_unlock(&fs_info->balance_mutex);
3527 if (!mutex_trylock(&fs_info->volume_mutex))
3529 mutex_lock(&fs_info->balance_mutex);
3531 if (fs_info->balance_ctl &&
3532 !atomic_read(&fs_info->balance_running)) {
3534 need_unlock = false;
3538 mutex_unlock(&fs_info->balance_mutex);
3539 mutex_unlock(&fs_info->volume_mutex);
3543 mutex_unlock(&fs_info->balance_mutex);
3549 mutex_unlock(&fs_info->balance_mutex);
3550 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3556 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
3559 bargs = memdup_user(arg, sizeof(*bargs));
3560 if (IS_ERR(bargs)) {
3561 ret = PTR_ERR(bargs);
3565 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3566 if (!fs_info->balance_ctl) {
3571 bctl = fs_info->balance_ctl;
3572 spin_lock(&fs_info->balance_lock);
3573 bctl->flags |= BTRFS_BALANCE_RESUME;
3574 spin_unlock(&fs_info->balance_lock);
3582 if (fs_info->balance_ctl) {
3587 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3593 bctl->fs_info = fs_info;
3595 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3596 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3597 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3599 bctl->flags = bargs->flags;
3601 /* balance everything - no filters */
3602 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3607 * Ownership of bctl and mutually_exclusive_operation_running
3608 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
3609 * or, if restriper was paused all the way until unmount, in
3610 * free_fs_info. mutually_exclusive_operation_running is
3611 * cleared in __cancel_balance.
3613 need_unlock = false;
3615 ret = btrfs_balance(bctl, bargs);
3618 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3625 mutex_unlock(&fs_info->balance_mutex);
3626 mutex_unlock(&fs_info->volume_mutex);
3628 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3630 mnt_drop_write_file(file);
3634 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3636 if (!capable(CAP_SYS_ADMIN))
3640 case BTRFS_BALANCE_CTL_PAUSE:
3641 return btrfs_pause_balance(root->fs_info);
3642 case BTRFS_BALANCE_CTL_CANCEL:
3643 return btrfs_cancel_balance(root->fs_info);
3649 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3652 struct btrfs_fs_info *fs_info = root->fs_info;
3653 struct btrfs_ioctl_balance_args *bargs;
3656 if (!capable(CAP_SYS_ADMIN))
3659 mutex_lock(&fs_info->balance_mutex);
3660 if (!fs_info->balance_ctl) {
3665 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3671 update_ioctl_balance_args(fs_info, 1, bargs);
3673 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3678 mutex_unlock(&fs_info->balance_mutex);
3682 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3684 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3685 struct btrfs_ioctl_quota_ctl_args *sa;
3686 struct btrfs_trans_handle *trans = NULL;
3690 if (!capable(CAP_SYS_ADMIN))
3693 ret = mnt_want_write_file(file);
3697 sa = memdup_user(arg, sizeof(*sa));
3703 down_write(&root->fs_info->subvol_sem);
3704 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
3705 if (IS_ERR(trans)) {
3706 ret = PTR_ERR(trans);
3711 case BTRFS_QUOTA_CTL_ENABLE:
3712 ret = btrfs_quota_enable(trans, root->fs_info);
3714 case BTRFS_QUOTA_CTL_DISABLE:
3715 ret = btrfs_quota_disable(trans, root->fs_info);
3722 if (copy_to_user(arg, sa, sizeof(*sa)))
3725 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
3730 up_write(&root->fs_info->subvol_sem);
3732 mnt_drop_write_file(file);
3736 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3738 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3739 struct btrfs_ioctl_qgroup_assign_args *sa;
3740 struct btrfs_trans_handle *trans;
3744 if (!capable(CAP_SYS_ADMIN))
3747 ret = mnt_want_write_file(file);
3751 sa = memdup_user(arg, sizeof(*sa));
3757 trans = btrfs_join_transaction(root);
3758 if (IS_ERR(trans)) {
3759 ret = PTR_ERR(trans);
3763 /* FIXME: check if the IDs really exist */
3765 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
3768 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
3772 err = btrfs_end_transaction(trans, root);
3779 mnt_drop_write_file(file);
3783 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3785 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3786 struct btrfs_ioctl_qgroup_create_args *sa;
3787 struct btrfs_trans_handle *trans;
3791 if (!capable(CAP_SYS_ADMIN))
3794 ret = mnt_want_write_file(file);
3798 sa = memdup_user(arg, sizeof(*sa));
3804 if (!sa->qgroupid) {
3809 trans = btrfs_join_transaction(root);
3810 if (IS_ERR(trans)) {
3811 ret = PTR_ERR(trans);
3815 /* FIXME: check if the IDs really exist */
3817 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
3820 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
3823 err = btrfs_end_transaction(trans, root);
3830 mnt_drop_write_file(file);
3834 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3836 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3837 struct btrfs_ioctl_qgroup_limit_args *sa;
3838 struct btrfs_trans_handle *trans;
3843 if (!capable(CAP_SYS_ADMIN))
3846 ret = mnt_want_write_file(file);
3850 sa = memdup_user(arg, sizeof(*sa));
3856 trans = btrfs_join_transaction(root);
3857 if (IS_ERR(trans)) {
3858 ret = PTR_ERR(trans);
3862 qgroupid = sa->qgroupid;
3864 /* take the current subvol as qgroup */
3865 qgroupid = root->root_key.objectid;
3868 /* FIXME: check if the IDs really exist */
3869 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
3871 err = btrfs_end_transaction(trans, root);
3878 mnt_drop_write_file(file);
3882 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3884 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3885 struct btrfs_ioctl_quota_rescan_args *qsa;
3888 if (!capable(CAP_SYS_ADMIN))
3891 ret = mnt_want_write_file(file);
3895 qsa = memdup_user(arg, sizeof(*qsa));
3906 ret = btrfs_qgroup_rescan(root->fs_info);
3911 mnt_drop_write_file(file);
3915 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
3917 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3918 struct btrfs_ioctl_quota_rescan_args *qsa;
3921 if (!capable(CAP_SYS_ADMIN))
3924 qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
3928 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3930 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
3933 if (copy_to_user(arg, qsa, sizeof(*qsa)))
3940 static long btrfs_ioctl_set_received_subvol(struct file *file,
3943 struct btrfs_ioctl_received_subvol_args *sa = NULL;
3944 struct inode *inode = file_inode(file);
3945 struct btrfs_root *root = BTRFS_I(inode)->root;
3946 struct btrfs_root_item *root_item = &root->root_item;
3947 struct btrfs_trans_handle *trans;
3948 struct timespec ct = CURRENT_TIME;
3951 ret = mnt_want_write_file(file);
3955 down_write(&root->fs_info->subvol_sem);
3957 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
3962 if (btrfs_root_readonly(root)) {
3967 if (!inode_owner_or_capable(inode)) {
3972 sa = memdup_user(arg, sizeof(*sa));
3979 trans = btrfs_start_transaction(root, 1);
3980 if (IS_ERR(trans)) {
3981 ret = PTR_ERR(trans);
3986 sa->rtransid = trans->transid;
3987 sa->rtime.sec = ct.tv_sec;
3988 sa->rtime.nsec = ct.tv_nsec;
3990 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3991 btrfs_set_root_stransid(root_item, sa->stransid);
3992 btrfs_set_root_rtransid(root_item, sa->rtransid);
3993 root_item->stime.sec = cpu_to_le64(sa->stime.sec);
3994 root_item->stime.nsec = cpu_to_le32(sa->stime.nsec);
3995 root_item->rtime.sec = cpu_to_le64(sa->rtime.sec);
3996 root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec);
3998 ret = btrfs_update_root(trans, root->fs_info->tree_root,
3999 &root->root_key, &root->root_item);
4001 btrfs_end_transaction(trans, root);
4005 ret = btrfs_commit_transaction(trans, root);
4010 ret = copy_to_user(arg, sa, sizeof(*sa));
4016 up_write(&root->fs_info->subvol_sem);
4017 mnt_drop_write_file(file);
4021 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4023 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
4024 const char *label = root->fs_info->super_copy->label;
4025 size_t len = strnlen(label, BTRFS_LABEL_SIZE);
4028 if (len == BTRFS_LABEL_SIZE) {
4029 pr_warn("btrfs: label is too long, return the first %zu bytes\n",
4033 mutex_lock(&root->fs_info->volume_mutex);
4034 ret = copy_to_user(arg, label, len);
4035 mutex_unlock(&root->fs_info->volume_mutex);
4037 return ret ? -EFAULT : 0;
4040 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4042 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
4043 struct btrfs_super_block *super_block = root->fs_info->super_copy;
4044 struct btrfs_trans_handle *trans;
4045 char label[BTRFS_LABEL_SIZE];
4048 if (!capable(CAP_SYS_ADMIN))
4051 if (copy_from_user(label, arg, sizeof(label)))
4054 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4055 pr_err("btrfs: unable to set label with more than %d bytes\n",
4056 BTRFS_LABEL_SIZE - 1);
4060 ret = mnt_want_write_file(file);
4064 mutex_lock(&root->fs_info->volume_mutex);
4065 trans = btrfs_start_transaction(root, 0);
4066 if (IS_ERR(trans)) {
4067 ret = PTR_ERR(trans);
4071 strcpy(super_block->label, label);
4072 ret = btrfs_end_transaction(trans, root);
4075 mutex_unlock(&root->fs_info->volume_mutex);
4076 mnt_drop_write_file(file);
4080 long btrfs_ioctl(struct file *file, unsigned int
4081 cmd, unsigned long arg)
4083 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4084 void __user *argp = (void __user *)arg;
4087 case FS_IOC_GETFLAGS:
4088 return btrfs_ioctl_getflags(file, argp);
4089 case FS_IOC_SETFLAGS:
4090 return btrfs_ioctl_setflags(file, argp);
4091 case FS_IOC_GETVERSION:
4092 return btrfs_ioctl_getversion(file, argp);
4094 return btrfs_ioctl_fitrim(file, argp);
4095 case BTRFS_IOC_SNAP_CREATE:
4096 return btrfs_ioctl_snap_create(file, argp, 0);
4097 case BTRFS_IOC_SNAP_CREATE_V2:
4098 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4099 case BTRFS_IOC_SUBVOL_CREATE:
4100 return btrfs_ioctl_snap_create(file, argp, 1);
4101 case BTRFS_IOC_SUBVOL_CREATE_V2:
4102 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4103 case BTRFS_IOC_SNAP_DESTROY:
4104 return btrfs_ioctl_snap_destroy(file, argp);
4105 case BTRFS_IOC_SUBVOL_GETFLAGS:
4106 return btrfs_ioctl_subvol_getflags(file, argp);
4107 case BTRFS_IOC_SUBVOL_SETFLAGS:
4108 return btrfs_ioctl_subvol_setflags(file, argp);
4109 case BTRFS_IOC_DEFAULT_SUBVOL:
4110 return btrfs_ioctl_default_subvol(file, argp);
4111 case BTRFS_IOC_DEFRAG:
4112 return btrfs_ioctl_defrag(file, NULL);
4113 case BTRFS_IOC_DEFRAG_RANGE:
4114 return btrfs_ioctl_defrag(file, argp);
4115 case BTRFS_IOC_RESIZE:
4116 return btrfs_ioctl_resize(file, argp);
4117 case BTRFS_IOC_ADD_DEV:
4118 return btrfs_ioctl_add_dev(root, argp);
4119 case BTRFS_IOC_RM_DEV:
4120 return btrfs_ioctl_rm_dev(file, argp);
4121 case BTRFS_IOC_FS_INFO:
4122 return btrfs_ioctl_fs_info(root, argp);
4123 case BTRFS_IOC_DEV_INFO:
4124 return btrfs_ioctl_dev_info(root, argp);
4125 case BTRFS_IOC_BALANCE:
4126 return btrfs_ioctl_balance(file, NULL);
4127 case BTRFS_IOC_CLONE:
4128 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
4129 case BTRFS_IOC_CLONE_RANGE:
4130 return btrfs_ioctl_clone_range(file, argp);
4131 case BTRFS_IOC_TRANS_START:
4132 return btrfs_ioctl_trans_start(file);
4133 case BTRFS_IOC_TRANS_END:
4134 return btrfs_ioctl_trans_end(file);
4135 case BTRFS_IOC_TREE_SEARCH:
4136 return btrfs_ioctl_tree_search(file, argp);
4137 case BTRFS_IOC_INO_LOOKUP:
4138 return btrfs_ioctl_ino_lookup(file, argp);
4139 case BTRFS_IOC_INO_PATHS:
4140 return btrfs_ioctl_ino_to_path(root, argp);
4141 case BTRFS_IOC_LOGICAL_INO:
4142 return btrfs_ioctl_logical_to_ino(root, argp);
4143 case BTRFS_IOC_SPACE_INFO:
4144 return btrfs_ioctl_space_info(root, argp);
4145 case BTRFS_IOC_SYNC:
4146 btrfs_sync_fs(file->f_dentry->d_sb, 1);
4148 case BTRFS_IOC_START_SYNC:
4149 return btrfs_ioctl_start_sync(root, argp);
4150 case BTRFS_IOC_WAIT_SYNC:
4151 return btrfs_ioctl_wait_sync(root, argp);
4152 case BTRFS_IOC_SCRUB:
4153 return btrfs_ioctl_scrub(file, argp);
4154 case BTRFS_IOC_SCRUB_CANCEL:
4155 return btrfs_ioctl_scrub_cancel(root, argp);
4156 case BTRFS_IOC_SCRUB_PROGRESS:
4157 return btrfs_ioctl_scrub_progress(root, argp);
4158 case BTRFS_IOC_BALANCE_V2:
4159 return btrfs_ioctl_balance(file, argp);
4160 case BTRFS_IOC_BALANCE_CTL:
4161 return btrfs_ioctl_balance_ctl(root, arg);
4162 case BTRFS_IOC_BALANCE_PROGRESS:
4163 return btrfs_ioctl_balance_progress(root, argp);
4164 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4165 return btrfs_ioctl_set_received_subvol(file, argp);
4166 case BTRFS_IOC_SEND:
4167 return btrfs_ioctl_send(file, argp);
4168 case BTRFS_IOC_GET_DEV_STATS:
4169 return btrfs_ioctl_get_dev_stats(root, argp);
4170 case BTRFS_IOC_QUOTA_CTL:
4171 return btrfs_ioctl_quota_ctl(file, argp);
4172 case BTRFS_IOC_QGROUP_ASSIGN:
4173 return btrfs_ioctl_qgroup_assign(file, argp);
4174 case BTRFS_IOC_QGROUP_CREATE:
4175 return btrfs_ioctl_qgroup_create(file, argp);
4176 case BTRFS_IOC_QGROUP_LIMIT:
4177 return btrfs_ioctl_qgroup_limit(file, argp);
4178 case BTRFS_IOC_QUOTA_RESCAN:
4179 return btrfs_ioctl_quota_rescan(file, argp);
4180 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4181 return btrfs_ioctl_quota_rescan_status(file, argp);
4182 case BTRFS_IOC_DEV_REPLACE:
4183 return btrfs_ioctl_dev_replace(root, argp);
4184 case BTRFS_IOC_GET_FSLABEL:
4185 return btrfs_ioctl_get_fslabel(file, argp);
4186 case BTRFS_IOC_SET_FSLABEL:
4187 return btrfs_ioctl_set_fslabel(file, argp);