Merge tag 'kvm-3.10-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / scrub.c
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45
46 struct scrub_block;
47 struct scrub_ctx;
48
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO  32      /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO  32      /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX     64      /* 8MB per device in flight */
58
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
65
66 struct scrub_page {
67         struct scrub_block      *sblock;
68         struct page             *page;
69         struct btrfs_device     *dev;
70         u64                     flags;  /* extent flags */
71         u64                     generation;
72         u64                     logical;
73         u64                     physical;
74         u64                     physical_for_dev_replace;
75         atomic_t                ref_count;
76         struct {
77                 unsigned int    mirror_num:8;
78                 unsigned int    have_csum:1;
79                 unsigned int    io_error:1;
80         };
81         u8                      csum[BTRFS_CSUM_SIZE];
82 };
83
84 struct scrub_bio {
85         int                     index;
86         struct scrub_ctx        *sctx;
87         struct btrfs_device     *dev;
88         struct bio              *bio;
89         int                     err;
90         u64                     logical;
91         u64                     physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93         struct scrub_page       *pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95         struct scrub_page       *pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97         int                     page_count;
98         int                     next_free;
99         struct btrfs_work       work;
100 };
101
102 struct scrub_block {
103         struct scrub_page       *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104         int                     page_count;
105         atomic_t                outstanding_pages;
106         atomic_t                ref_count; /* free mem on transition to zero */
107         struct scrub_ctx        *sctx;
108         struct {
109                 unsigned int    header_error:1;
110                 unsigned int    checksum_error:1;
111                 unsigned int    no_io_error_seen:1;
112                 unsigned int    generation_error:1; /* also sets header_error */
113         };
114 };
115
116 struct scrub_wr_ctx {
117         struct scrub_bio *wr_curr_bio;
118         struct btrfs_device *tgtdev;
119         int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120         atomic_t flush_all_writes;
121         struct mutex wr_lock;
122 };
123
124 struct scrub_ctx {
125         struct scrub_bio        *bios[SCRUB_BIOS_PER_SCTX];
126         struct btrfs_root       *dev_root;
127         int                     first_free;
128         int                     curr;
129         atomic_t                bios_in_flight;
130         atomic_t                workers_pending;
131         spinlock_t              list_lock;
132         wait_queue_head_t       list_wait;
133         u16                     csum_size;
134         struct list_head        csum_list;
135         atomic_t                cancel_req;
136         int                     readonly;
137         int                     pages_per_rd_bio;
138         u32                     sectorsize;
139         u32                     nodesize;
140         u32                     leafsize;
141
142         int                     is_dev_replace;
143         struct scrub_wr_ctx     wr_ctx;
144
145         /*
146          * statistics
147          */
148         struct btrfs_scrub_progress stat;
149         spinlock_t              stat_lock;
150 };
151
152 struct scrub_fixup_nodatasum {
153         struct scrub_ctx        *sctx;
154         struct btrfs_device     *dev;
155         u64                     logical;
156         struct btrfs_root       *root;
157         struct btrfs_work       work;
158         int                     mirror_num;
159 };
160
161 struct scrub_copy_nocow_ctx {
162         struct scrub_ctx        *sctx;
163         u64                     logical;
164         u64                     len;
165         int                     mirror_num;
166         u64                     physical_for_dev_replace;
167         struct btrfs_work       work;
168 };
169
170 struct scrub_warning {
171         struct btrfs_path       *path;
172         u64                     extent_item_size;
173         char                    *scratch_buf;
174         char                    *msg_buf;
175         const char              *errstr;
176         sector_t                sector;
177         u64                     logical;
178         struct btrfs_device     *dev;
179         int                     msg_bufsize;
180         int                     scratch_bufsize;
181 };
182
183
184 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
185 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
186 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
187 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
188 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
189 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
190                                      struct btrfs_fs_info *fs_info,
191                                      struct scrub_block *original_sblock,
192                                      u64 length, u64 logical,
193                                      struct scrub_block *sblocks_for_recheck);
194 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
195                                 struct scrub_block *sblock, int is_metadata,
196                                 int have_csum, u8 *csum, u64 generation,
197                                 u16 csum_size);
198 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
199                                          struct scrub_block *sblock,
200                                          int is_metadata, int have_csum,
201                                          const u8 *csum, u64 generation,
202                                          u16 csum_size);
203 static void scrub_complete_bio_end_io(struct bio *bio, int err);
204 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
205                                              struct scrub_block *sblock_good,
206                                              int force_write);
207 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
208                                             struct scrub_block *sblock_good,
209                                             int page_num, int force_write);
210 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
211 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
212                                            int page_num);
213 static int scrub_checksum_data(struct scrub_block *sblock);
214 static int scrub_checksum_tree_block(struct scrub_block *sblock);
215 static int scrub_checksum_super(struct scrub_block *sblock);
216 static void scrub_block_get(struct scrub_block *sblock);
217 static void scrub_block_put(struct scrub_block *sblock);
218 static void scrub_page_get(struct scrub_page *spage);
219 static void scrub_page_put(struct scrub_page *spage);
220 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
221                                     struct scrub_page *spage);
222 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
223                        u64 physical, struct btrfs_device *dev, u64 flags,
224                        u64 gen, int mirror_num, u8 *csum, int force,
225                        u64 physical_for_dev_replace);
226 static void scrub_bio_end_io(struct bio *bio, int err);
227 static void scrub_bio_end_io_worker(struct btrfs_work *work);
228 static void scrub_block_complete(struct scrub_block *sblock);
229 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
230                                u64 extent_logical, u64 extent_len,
231                                u64 *extent_physical,
232                                struct btrfs_device **extent_dev,
233                                int *extent_mirror_num);
234 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
235                               struct scrub_wr_ctx *wr_ctx,
236                               struct btrfs_fs_info *fs_info,
237                               struct btrfs_device *dev,
238                               int is_dev_replace);
239 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
240 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
241                                     struct scrub_page *spage);
242 static void scrub_wr_submit(struct scrub_ctx *sctx);
243 static void scrub_wr_bio_end_io(struct bio *bio, int err);
244 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
245 static int write_page_nocow(struct scrub_ctx *sctx,
246                             u64 physical_for_dev_replace, struct page *page);
247 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
248                                       void *ctx);
249 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
250                             int mirror_num, u64 physical_for_dev_replace);
251 static void copy_nocow_pages_worker(struct btrfs_work *work);
252
253
254 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
255 {
256         atomic_inc(&sctx->bios_in_flight);
257 }
258
259 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
260 {
261         atomic_dec(&sctx->bios_in_flight);
262         wake_up(&sctx->list_wait);
263 }
264
265 /*
266  * used for workers that require transaction commits (i.e., for the
267  * NOCOW case)
268  */
269 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
270 {
271         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
272
273         /*
274          * increment scrubs_running to prevent cancel requests from
275          * completing as long as a worker is running. we must also
276          * increment scrubs_paused to prevent deadlocking on pause
277          * requests used for transactions commits (as the worker uses a
278          * transaction context). it is safe to regard the worker
279          * as paused for all matters practical. effectively, we only
280          * avoid cancellation requests from completing.
281          */
282         mutex_lock(&fs_info->scrub_lock);
283         atomic_inc(&fs_info->scrubs_running);
284         atomic_inc(&fs_info->scrubs_paused);
285         mutex_unlock(&fs_info->scrub_lock);
286         atomic_inc(&sctx->workers_pending);
287 }
288
289 /* used for workers that require transaction commits */
290 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
291 {
292         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
293
294         /*
295          * see scrub_pending_trans_workers_inc() why we're pretending
296          * to be paused in the scrub counters
297          */
298         mutex_lock(&fs_info->scrub_lock);
299         atomic_dec(&fs_info->scrubs_running);
300         atomic_dec(&fs_info->scrubs_paused);
301         mutex_unlock(&fs_info->scrub_lock);
302         atomic_dec(&sctx->workers_pending);
303         wake_up(&fs_info->scrub_pause_wait);
304         wake_up(&sctx->list_wait);
305 }
306
307 static void scrub_free_csums(struct scrub_ctx *sctx)
308 {
309         while (!list_empty(&sctx->csum_list)) {
310                 struct btrfs_ordered_sum *sum;
311                 sum = list_first_entry(&sctx->csum_list,
312                                        struct btrfs_ordered_sum, list);
313                 list_del(&sum->list);
314                 kfree(sum);
315         }
316 }
317
318 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
319 {
320         int i;
321
322         if (!sctx)
323                 return;
324
325         scrub_free_wr_ctx(&sctx->wr_ctx);
326
327         /* this can happen when scrub is cancelled */
328         if (sctx->curr != -1) {
329                 struct scrub_bio *sbio = sctx->bios[sctx->curr];
330
331                 for (i = 0; i < sbio->page_count; i++) {
332                         WARN_ON(!sbio->pagev[i]->page);
333                         scrub_block_put(sbio->pagev[i]->sblock);
334                 }
335                 bio_put(sbio->bio);
336         }
337
338         for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
339                 struct scrub_bio *sbio = sctx->bios[i];
340
341                 if (!sbio)
342                         break;
343                 kfree(sbio);
344         }
345
346         scrub_free_csums(sctx);
347         kfree(sctx);
348 }
349
350 static noinline_for_stack
351 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
352 {
353         struct scrub_ctx *sctx;
354         int             i;
355         struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
356         int pages_per_rd_bio;
357         int ret;
358
359         /*
360          * the setting of pages_per_rd_bio is correct for scrub but might
361          * be wrong for the dev_replace code where we might read from
362          * different devices in the initial huge bios. However, that
363          * code is able to correctly handle the case when adding a page
364          * to a bio fails.
365          */
366         if (dev->bdev)
367                 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
368                                          bio_get_nr_vecs(dev->bdev));
369         else
370                 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
371         sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
372         if (!sctx)
373                 goto nomem;
374         sctx->is_dev_replace = is_dev_replace;
375         sctx->pages_per_rd_bio = pages_per_rd_bio;
376         sctx->curr = -1;
377         sctx->dev_root = dev->dev_root;
378         for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
379                 struct scrub_bio *sbio;
380
381                 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
382                 if (!sbio)
383                         goto nomem;
384                 sctx->bios[i] = sbio;
385
386                 sbio->index = i;
387                 sbio->sctx = sctx;
388                 sbio->page_count = 0;
389                 sbio->work.func = scrub_bio_end_io_worker;
390
391                 if (i != SCRUB_BIOS_PER_SCTX - 1)
392                         sctx->bios[i]->next_free = i + 1;
393                 else
394                         sctx->bios[i]->next_free = -1;
395         }
396         sctx->first_free = 0;
397         sctx->nodesize = dev->dev_root->nodesize;
398         sctx->leafsize = dev->dev_root->leafsize;
399         sctx->sectorsize = dev->dev_root->sectorsize;
400         atomic_set(&sctx->bios_in_flight, 0);
401         atomic_set(&sctx->workers_pending, 0);
402         atomic_set(&sctx->cancel_req, 0);
403         sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
404         INIT_LIST_HEAD(&sctx->csum_list);
405
406         spin_lock_init(&sctx->list_lock);
407         spin_lock_init(&sctx->stat_lock);
408         init_waitqueue_head(&sctx->list_wait);
409
410         ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
411                                  fs_info->dev_replace.tgtdev, is_dev_replace);
412         if (ret) {
413                 scrub_free_ctx(sctx);
414                 return ERR_PTR(ret);
415         }
416         return sctx;
417
418 nomem:
419         scrub_free_ctx(sctx);
420         return ERR_PTR(-ENOMEM);
421 }
422
423 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
424                                      void *warn_ctx)
425 {
426         u64 isize;
427         u32 nlink;
428         int ret;
429         int i;
430         struct extent_buffer *eb;
431         struct btrfs_inode_item *inode_item;
432         struct scrub_warning *swarn = warn_ctx;
433         struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
434         struct inode_fs_paths *ipath = NULL;
435         struct btrfs_root *local_root;
436         struct btrfs_key root_key;
437
438         root_key.objectid = root;
439         root_key.type = BTRFS_ROOT_ITEM_KEY;
440         root_key.offset = (u64)-1;
441         local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
442         if (IS_ERR(local_root)) {
443                 ret = PTR_ERR(local_root);
444                 goto err;
445         }
446
447         ret = inode_item_info(inum, 0, local_root, swarn->path);
448         if (ret) {
449                 btrfs_release_path(swarn->path);
450                 goto err;
451         }
452
453         eb = swarn->path->nodes[0];
454         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
455                                         struct btrfs_inode_item);
456         isize = btrfs_inode_size(eb, inode_item);
457         nlink = btrfs_inode_nlink(eb, inode_item);
458         btrfs_release_path(swarn->path);
459
460         ipath = init_ipath(4096, local_root, swarn->path);
461         if (IS_ERR(ipath)) {
462                 ret = PTR_ERR(ipath);
463                 ipath = NULL;
464                 goto err;
465         }
466         ret = paths_from_inode(inum, ipath);
467
468         if (ret < 0)
469                 goto err;
470
471         /*
472          * we deliberately ignore the bit ipath might have been too small to
473          * hold all of the paths here
474          */
475         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
476                 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
477                         "%s, sector %llu, root %llu, inode %llu, offset %llu, "
478                         "length %llu, links %u (path: %s)\n", swarn->errstr,
479                         swarn->logical, rcu_str_deref(swarn->dev->name),
480                         (unsigned long long)swarn->sector, root, inum, offset,
481                         min(isize - offset, (u64)PAGE_SIZE), nlink,
482                         (char *)(unsigned long)ipath->fspath->val[i]);
483
484         free_ipath(ipath);
485         return 0;
486
487 err:
488         printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
489                 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
490                 "resolving failed with ret=%d\n", swarn->errstr,
491                 swarn->logical, rcu_str_deref(swarn->dev->name),
492                 (unsigned long long)swarn->sector, root, inum, offset, ret);
493
494         free_ipath(ipath);
495         return 0;
496 }
497
498 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
499 {
500         struct btrfs_device *dev;
501         struct btrfs_fs_info *fs_info;
502         struct btrfs_path *path;
503         struct btrfs_key found_key;
504         struct extent_buffer *eb;
505         struct btrfs_extent_item *ei;
506         struct scrub_warning swarn;
507         unsigned long ptr = 0;
508         u64 extent_item_pos;
509         u64 flags = 0;
510         u64 ref_root;
511         u32 item_size;
512         u8 ref_level;
513         const int bufsize = 4096;
514         int ret;
515
516         WARN_ON(sblock->page_count < 1);
517         dev = sblock->pagev[0]->dev;
518         fs_info = sblock->sctx->dev_root->fs_info;
519
520         path = btrfs_alloc_path();
521
522         swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
523         swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
524         swarn.sector = (sblock->pagev[0]->physical) >> 9;
525         swarn.logical = sblock->pagev[0]->logical;
526         swarn.errstr = errstr;
527         swarn.dev = NULL;
528         swarn.msg_bufsize = bufsize;
529         swarn.scratch_bufsize = bufsize;
530
531         if (!path || !swarn.scratch_buf || !swarn.msg_buf)
532                 goto out;
533
534         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
535                                   &flags);
536         if (ret < 0)
537                 goto out;
538
539         extent_item_pos = swarn.logical - found_key.objectid;
540         swarn.extent_item_size = found_key.offset;
541
542         eb = path->nodes[0];
543         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
544         item_size = btrfs_item_size_nr(eb, path->slots[0]);
545
546         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
547                 do {
548                         ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
549                                                         &ref_root, &ref_level);
550                         printk_in_rcu(KERN_WARNING
551                                 "btrfs: %s at logical %llu on dev %s, "
552                                 "sector %llu: metadata %s (level %d) in tree "
553                                 "%llu\n", errstr, swarn.logical,
554                                 rcu_str_deref(dev->name),
555                                 (unsigned long long)swarn.sector,
556                                 ref_level ? "node" : "leaf",
557                                 ret < 0 ? -1 : ref_level,
558                                 ret < 0 ? -1 : ref_root);
559                 } while (ret != 1);
560                 btrfs_release_path(path);
561         } else {
562                 btrfs_release_path(path);
563                 swarn.path = path;
564                 swarn.dev = dev;
565                 iterate_extent_inodes(fs_info, found_key.objectid,
566                                         extent_item_pos, 1,
567                                         scrub_print_warning_inode, &swarn);
568         }
569
570 out:
571         btrfs_free_path(path);
572         kfree(swarn.scratch_buf);
573         kfree(swarn.msg_buf);
574 }
575
576 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
577 {
578         struct page *page = NULL;
579         unsigned long index;
580         struct scrub_fixup_nodatasum *fixup = fixup_ctx;
581         int ret;
582         int corrected = 0;
583         struct btrfs_key key;
584         struct inode *inode = NULL;
585         struct btrfs_fs_info *fs_info;
586         u64 end = offset + PAGE_SIZE - 1;
587         struct btrfs_root *local_root;
588         int srcu_index;
589
590         key.objectid = root;
591         key.type = BTRFS_ROOT_ITEM_KEY;
592         key.offset = (u64)-1;
593
594         fs_info = fixup->root->fs_info;
595         srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
596
597         local_root = btrfs_read_fs_root_no_name(fs_info, &key);
598         if (IS_ERR(local_root)) {
599                 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
600                 return PTR_ERR(local_root);
601         }
602
603         key.type = BTRFS_INODE_ITEM_KEY;
604         key.objectid = inum;
605         key.offset = 0;
606         inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
607         srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
608         if (IS_ERR(inode))
609                 return PTR_ERR(inode);
610
611         index = offset >> PAGE_CACHE_SHIFT;
612
613         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
614         if (!page) {
615                 ret = -ENOMEM;
616                 goto out;
617         }
618
619         if (PageUptodate(page)) {
620                 if (PageDirty(page)) {
621                         /*
622                          * we need to write the data to the defect sector. the
623                          * data that was in that sector is not in memory,
624                          * because the page was modified. we must not write the
625                          * modified page to that sector.
626                          *
627                          * TODO: what could be done here: wait for the delalloc
628                          *       runner to write out that page (might involve
629                          *       COW) and see whether the sector is still
630                          *       referenced afterwards.
631                          *
632                          * For the meantime, we'll treat this error
633                          * incorrectable, although there is a chance that a
634                          * later scrub will find the bad sector again and that
635                          * there's no dirty page in memory, then.
636                          */
637                         ret = -EIO;
638                         goto out;
639                 }
640                 fs_info = BTRFS_I(inode)->root->fs_info;
641                 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
642                                         fixup->logical, page,
643                                         fixup->mirror_num);
644                 unlock_page(page);
645                 corrected = !ret;
646         } else {
647                 /*
648                  * we need to get good data first. the general readpage path
649                  * will call repair_io_failure for us, we just have to make
650                  * sure we read the bad mirror.
651                  */
652                 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
653                                         EXTENT_DAMAGED, GFP_NOFS);
654                 if (ret) {
655                         /* set_extent_bits should give proper error */
656                         WARN_ON(ret > 0);
657                         if (ret > 0)
658                                 ret = -EFAULT;
659                         goto out;
660                 }
661
662                 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
663                                                 btrfs_get_extent,
664                                                 fixup->mirror_num);
665                 wait_on_page_locked(page);
666
667                 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
668                                                 end, EXTENT_DAMAGED, 0, NULL);
669                 if (!corrected)
670                         clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
671                                                 EXTENT_DAMAGED, GFP_NOFS);
672         }
673
674 out:
675         if (page)
676                 put_page(page);
677         if (inode)
678                 iput(inode);
679
680         if (ret < 0)
681                 return ret;
682
683         if (ret == 0 && corrected) {
684                 /*
685                  * we only need to call readpage for one of the inodes belonging
686                  * to this extent. so make iterate_extent_inodes stop
687                  */
688                 return 1;
689         }
690
691         return -EIO;
692 }
693
694 static void scrub_fixup_nodatasum(struct btrfs_work *work)
695 {
696         int ret;
697         struct scrub_fixup_nodatasum *fixup;
698         struct scrub_ctx *sctx;
699         struct btrfs_trans_handle *trans = NULL;
700         struct btrfs_fs_info *fs_info;
701         struct btrfs_path *path;
702         int uncorrectable = 0;
703
704         fixup = container_of(work, struct scrub_fixup_nodatasum, work);
705         sctx = fixup->sctx;
706         fs_info = fixup->root->fs_info;
707
708         path = btrfs_alloc_path();
709         if (!path) {
710                 spin_lock(&sctx->stat_lock);
711                 ++sctx->stat.malloc_errors;
712                 spin_unlock(&sctx->stat_lock);
713                 uncorrectable = 1;
714                 goto out;
715         }
716
717         trans = btrfs_join_transaction(fixup->root);
718         if (IS_ERR(trans)) {
719                 uncorrectable = 1;
720                 goto out;
721         }
722
723         /*
724          * the idea is to trigger a regular read through the standard path. we
725          * read a page from the (failed) logical address by specifying the
726          * corresponding copynum of the failed sector. thus, that readpage is
727          * expected to fail.
728          * that is the point where on-the-fly error correction will kick in
729          * (once it's finished) and rewrite the failed sector if a good copy
730          * can be found.
731          */
732         ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
733                                                 path, scrub_fixup_readpage,
734                                                 fixup);
735         if (ret < 0) {
736                 uncorrectable = 1;
737                 goto out;
738         }
739         WARN_ON(ret != 1);
740
741         spin_lock(&sctx->stat_lock);
742         ++sctx->stat.corrected_errors;
743         spin_unlock(&sctx->stat_lock);
744
745 out:
746         if (trans && !IS_ERR(trans))
747                 btrfs_end_transaction(trans, fixup->root);
748         if (uncorrectable) {
749                 spin_lock(&sctx->stat_lock);
750                 ++sctx->stat.uncorrectable_errors;
751                 spin_unlock(&sctx->stat_lock);
752                 btrfs_dev_replace_stats_inc(
753                         &sctx->dev_root->fs_info->dev_replace.
754                         num_uncorrectable_read_errors);
755                 printk_ratelimited_in_rcu(KERN_ERR
756                         "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
757                         (unsigned long long)fixup->logical,
758                         rcu_str_deref(fixup->dev->name));
759         }
760
761         btrfs_free_path(path);
762         kfree(fixup);
763
764         scrub_pending_trans_workers_dec(sctx);
765 }
766
767 /*
768  * scrub_handle_errored_block gets called when either verification of the
769  * pages failed or the bio failed to read, e.g. with EIO. In the latter
770  * case, this function handles all pages in the bio, even though only one
771  * may be bad.
772  * The goal of this function is to repair the errored block by using the
773  * contents of one of the mirrors.
774  */
775 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
776 {
777         struct scrub_ctx *sctx = sblock_to_check->sctx;
778         struct btrfs_device *dev;
779         struct btrfs_fs_info *fs_info;
780         u64 length;
781         u64 logical;
782         u64 generation;
783         unsigned int failed_mirror_index;
784         unsigned int is_metadata;
785         unsigned int have_csum;
786         u8 *csum;
787         struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
788         struct scrub_block *sblock_bad;
789         int ret;
790         int mirror_index;
791         int page_num;
792         int success;
793         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
794                                       DEFAULT_RATELIMIT_BURST);
795
796         BUG_ON(sblock_to_check->page_count < 1);
797         fs_info = sctx->dev_root->fs_info;
798         if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
799                 /*
800                  * if we find an error in a super block, we just report it.
801                  * They will get written with the next transaction commit
802                  * anyway
803                  */
804                 spin_lock(&sctx->stat_lock);
805                 ++sctx->stat.super_errors;
806                 spin_unlock(&sctx->stat_lock);
807                 return 0;
808         }
809         length = sblock_to_check->page_count * PAGE_SIZE;
810         logical = sblock_to_check->pagev[0]->logical;
811         generation = sblock_to_check->pagev[0]->generation;
812         BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
813         failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
814         is_metadata = !(sblock_to_check->pagev[0]->flags &
815                         BTRFS_EXTENT_FLAG_DATA);
816         have_csum = sblock_to_check->pagev[0]->have_csum;
817         csum = sblock_to_check->pagev[0]->csum;
818         dev = sblock_to_check->pagev[0]->dev;
819
820         if (sctx->is_dev_replace && !is_metadata && !have_csum) {
821                 sblocks_for_recheck = NULL;
822                 goto nodatasum_case;
823         }
824
825         /*
826          * read all mirrors one after the other. This includes to
827          * re-read the extent or metadata block that failed (that was
828          * the cause that this fixup code is called) another time,
829          * page by page this time in order to know which pages
830          * caused I/O errors and which ones are good (for all mirrors).
831          * It is the goal to handle the situation when more than one
832          * mirror contains I/O errors, but the errors do not
833          * overlap, i.e. the data can be repaired by selecting the
834          * pages from those mirrors without I/O error on the
835          * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
836          * would be that mirror #1 has an I/O error on the first page,
837          * the second page is good, and mirror #2 has an I/O error on
838          * the second page, but the first page is good.
839          * Then the first page of the first mirror can be repaired by
840          * taking the first page of the second mirror, and the
841          * second page of the second mirror can be repaired by
842          * copying the contents of the 2nd page of the 1st mirror.
843          * One more note: if the pages of one mirror contain I/O
844          * errors, the checksum cannot be verified. In order to get
845          * the best data for repairing, the first attempt is to find
846          * a mirror without I/O errors and with a validated checksum.
847          * Only if this is not possible, the pages are picked from
848          * mirrors with I/O errors without considering the checksum.
849          * If the latter is the case, at the end, the checksum of the
850          * repaired area is verified in order to correctly maintain
851          * the statistics.
852          */
853
854         sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
855                                      sizeof(*sblocks_for_recheck),
856                                      GFP_NOFS);
857         if (!sblocks_for_recheck) {
858                 spin_lock(&sctx->stat_lock);
859                 sctx->stat.malloc_errors++;
860                 sctx->stat.read_errors++;
861                 sctx->stat.uncorrectable_errors++;
862                 spin_unlock(&sctx->stat_lock);
863                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
864                 goto out;
865         }
866
867         /* setup the context, map the logical blocks and alloc the pages */
868         ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
869                                         logical, sblocks_for_recheck);
870         if (ret) {
871                 spin_lock(&sctx->stat_lock);
872                 sctx->stat.read_errors++;
873                 sctx->stat.uncorrectable_errors++;
874                 spin_unlock(&sctx->stat_lock);
875                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
876                 goto out;
877         }
878         BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
879         sblock_bad = sblocks_for_recheck + failed_mirror_index;
880
881         /* build and submit the bios for the failed mirror, check checksums */
882         scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
883                             csum, generation, sctx->csum_size);
884
885         if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
886             sblock_bad->no_io_error_seen) {
887                 /*
888                  * the error disappeared after reading page by page, or
889                  * the area was part of a huge bio and other parts of the
890                  * bio caused I/O errors, or the block layer merged several
891                  * read requests into one and the error is caused by a
892                  * different bio (usually one of the two latter cases is
893                  * the cause)
894                  */
895                 spin_lock(&sctx->stat_lock);
896                 sctx->stat.unverified_errors++;
897                 spin_unlock(&sctx->stat_lock);
898
899                 if (sctx->is_dev_replace)
900                         scrub_write_block_to_dev_replace(sblock_bad);
901                 goto out;
902         }
903
904         if (!sblock_bad->no_io_error_seen) {
905                 spin_lock(&sctx->stat_lock);
906                 sctx->stat.read_errors++;
907                 spin_unlock(&sctx->stat_lock);
908                 if (__ratelimit(&_rs))
909                         scrub_print_warning("i/o error", sblock_to_check);
910                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
911         } else if (sblock_bad->checksum_error) {
912                 spin_lock(&sctx->stat_lock);
913                 sctx->stat.csum_errors++;
914                 spin_unlock(&sctx->stat_lock);
915                 if (__ratelimit(&_rs))
916                         scrub_print_warning("checksum error", sblock_to_check);
917                 btrfs_dev_stat_inc_and_print(dev,
918                                              BTRFS_DEV_STAT_CORRUPTION_ERRS);
919         } else if (sblock_bad->header_error) {
920                 spin_lock(&sctx->stat_lock);
921                 sctx->stat.verify_errors++;
922                 spin_unlock(&sctx->stat_lock);
923                 if (__ratelimit(&_rs))
924                         scrub_print_warning("checksum/header error",
925                                             sblock_to_check);
926                 if (sblock_bad->generation_error)
927                         btrfs_dev_stat_inc_and_print(dev,
928                                 BTRFS_DEV_STAT_GENERATION_ERRS);
929                 else
930                         btrfs_dev_stat_inc_and_print(dev,
931                                 BTRFS_DEV_STAT_CORRUPTION_ERRS);
932         }
933
934         if (sctx->readonly && !sctx->is_dev_replace)
935                 goto did_not_correct_error;
936
937         if (!is_metadata && !have_csum) {
938                 struct scrub_fixup_nodatasum *fixup_nodatasum;
939
940 nodatasum_case:
941                 WARN_ON(sctx->is_dev_replace);
942
943                 /*
944                  * !is_metadata and !have_csum, this means that the data
945                  * might not be COW'ed, that it might be modified
946                  * concurrently. The general strategy to work on the
947                  * commit root does not help in the case when COW is not
948                  * used.
949                  */
950                 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
951                 if (!fixup_nodatasum)
952                         goto did_not_correct_error;
953                 fixup_nodatasum->sctx = sctx;
954                 fixup_nodatasum->dev = dev;
955                 fixup_nodatasum->logical = logical;
956                 fixup_nodatasum->root = fs_info->extent_root;
957                 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
958                 scrub_pending_trans_workers_inc(sctx);
959                 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
960                 btrfs_queue_worker(&fs_info->scrub_workers,
961                                    &fixup_nodatasum->work);
962                 goto out;
963         }
964
965         /*
966          * now build and submit the bios for the other mirrors, check
967          * checksums.
968          * First try to pick the mirror which is completely without I/O
969          * errors and also does not have a checksum error.
970          * If one is found, and if a checksum is present, the full block
971          * that is known to contain an error is rewritten. Afterwards
972          * the block is known to be corrected.
973          * If a mirror is found which is completely correct, and no
974          * checksum is present, only those pages are rewritten that had
975          * an I/O error in the block to be repaired, since it cannot be
976          * determined, which copy of the other pages is better (and it
977          * could happen otherwise that a correct page would be
978          * overwritten by a bad one).
979          */
980         for (mirror_index = 0;
981              mirror_index < BTRFS_MAX_MIRRORS &&
982              sblocks_for_recheck[mirror_index].page_count > 0;
983              mirror_index++) {
984                 struct scrub_block *sblock_other;
985
986                 if (mirror_index == failed_mirror_index)
987                         continue;
988                 sblock_other = sblocks_for_recheck + mirror_index;
989
990                 /* build and submit the bios, check checksums */
991                 scrub_recheck_block(fs_info, sblock_other, is_metadata,
992                                     have_csum, csum, generation,
993                                     sctx->csum_size);
994
995                 if (!sblock_other->header_error &&
996                     !sblock_other->checksum_error &&
997                     sblock_other->no_io_error_seen) {
998                         if (sctx->is_dev_replace) {
999                                 scrub_write_block_to_dev_replace(sblock_other);
1000                         } else {
1001                                 int force_write = is_metadata || have_csum;
1002
1003                                 ret = scrub_repair_block_from_good_copy(
1004                                                 sblock_bad, sblock_other,
1005                                                 force_write);
1006                         }
1007                         if (0 == ret)
1008                                 goto corrected_error;
1009                 }
1010         }
1011
1012         /*
1013          * for dev_replace, pick good pages and write to the target device.
1014          */
1015         if (sctx->is_dev_replace) {
1016                 success = 1;
1017                 for (page_num = 0; page_num < sblock_bad->page_count;
1018                      page_num++) {
1019                         int sub_success;
1020
1021                         sub_success = 0;
1022                         for (mirror_index = 0;
1023                              mirror_index < BTRFS_MAX_MIRRORS &&
1024                              sblocks_for_recheck[mirror_index].page_count > 0;
1025                              mirror_index++) {
1026                                 struct scrub_block *sblock_other =
1027                                         sblocks_for_recheck + mirror_index;
1028                                 struct scrub_page *page_other =
1029                                         sblock_other->pagev[page_num];
1030
1031                                 if (!page_other->io_error) {
1032                                         ret = scrub_write_page_to_dev_replace(
1033                                                         sblock_other, page_num);
1034                                         if (ret == 0) {
1035                                                 /* succeeded for this page */
1036                                                 sub_success = 1;
1037                                                 break;
1038                                         } else {
1039                                                 btrfs_dev_replace_stats_inc(
1040                                                         &sctx->dev_root->
1041                                                         fs_info->dev_replace.
1042                                                         num_write_errors);
1043                                         }
1044                                 }
1045                         }
1046
1047                         if (!sub_success) {
1048                                 /*
1049                                  * did not find a mirror to fetch the page
1050                                  * from. scrub_write_page_to_dev_replace()
1051                                  * handles this case (page->io_error), by
1052                                  * filling the block with zeros before
1053                                  * submitting the write request
1054                                  */
1055                                 success = 0;
1056                                 ret = scrub_write_page_to_dev_replace(
1057                                                 sblock_bad, page_num);
1058                                 if (ret)
1059                                         btrfs_dev_replace_stats_inc(
1060                                                 &sctx->dev_root->fs_info->
1061                                                 dev_replace.num_write_errors);
1062                         }
1063                 }
1064
1065                 goto out;
1066         }
1067
1068         /*
1069          * for regular scrub, repair those pages that are errored.
1070          * In case of I/O errors in the area that is supposed to be
1071          * repaired, continue by picking good copies of those pages.
1072          * Select the good pages from mirrors to rewrite bad pages from
1073          * the area to fix. Afterwards verify the checksum of the block
1074          * that is supposed to be repaired. This verification step is
1075          * only done for the purpose of statistic counting and for the
1076          * final scrub report, whether errors remain.
1077          * A perfect algorithm could make use of the checksum and try
1078          * all possible combinations of pages from the different mirrors
1079          * until the checksum verification succeeds. For example, when
1080          * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1081          * of mirror #2 is readable but the final checksum test fails,
1082          * then the 2nd page of mirror #3 could be tried, whether now
1083          * the final checksum succeedes. But this would be a rare
1084          * exception and is therefore not implemented. At least it is
1085          * avoided that the good copy is overwritten.
1086          * A more useful improvement would be to pick the sectors
1087          * without I/O error based on sector sizes (512 bytes on legacy
1088          * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1089          * mirror could be repaired by taking 512 byte of a different
1090          * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1091          * area are unreadable.
1092          */
1093
1094         /* can only fix I/O errors from here on */
1095         if (sblock_bad->no_io_error_seen)
1096                 goto did_not_correct_error;
1097
1098         success = 1;
1099         for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1100                 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1101
1102                 if (!page_bad->io_error)
1103                         continue;
1104
1105                 for (mirror_index = 0;
1106                      mirror_index < BTRFS_MAX_MIRRORS &&
1107                      sblocks_for_recheck[mirror_index].page_count > 0;
1108                      mirror_index++) {
1109                         struct scrub_block *sblock_other = sblocks_for_recheck +
1110                                                            mirror_index;
1111                         struct scrub_page *page_other = sblock_other->pagev[
1112                                                         page_num];
1113
1114                         if (!page_other->io_error) {
1115                                 ret = scrub_repair_page_from_good_copy(
1116                                         sblock_bad, sblock_other, page_num, 0);
1117                                 if (0 == ret) {
1118                                         page_bad->io_error = 0;
1119                                         break; /* succeeded for this page */
1120                                 }
1121                         }
1122                 }
1123
1124                 if (page_bad->io_error) {
1125                         /* did not find a mirror to copy the page from */
1126                         success = 0;
1127                 }
1128         }
1129
1130         if (success) {
1131                 if (is_metadata || have_csum) {
1132                         /*
1133                          * need to verify the checksum now that all
1134                          * sectors on disk are repaired (the write
1135                          * request for data to be repaired is on its way).
1136                          * Just be lazy and use scrub_recheck_block()
1137                          * which re-reads the data before the checksum
1138                          * is verified, but most likely the data comes out
1139                          * of the page cache.
1140                          */
1141                         scrub_recheck_block(fs_info, sblock_bad,
1142                                             is_metadata, have_csum, csum,
1143                                             generation, sctx->csum_size);
1144                         if (!sblock_bad->header_error &&
1145                             !sblock_bad->checksum_error &&
1146                             sblock_bad->no_io_error_seen)
1147                                 goto corrected_error;
1148                         else
1149                                 goto did_not_correct_error;
1150                 } else {
1151 corrected_error:
1152                         spin_lock(&sctx->stat_lock);
1153                         sctx->stat.corrected_errors++;
1154                         spin_unlock(&sctx->stat_lock);
1155                         printk_ratelimited_in_rcu(KERN_ERR
1156                                 "btrfs: fixed up error at logical %llu on dev %s\n",
1157                                 (unsigned long long)logical,
1158                                 rcu_str_deref(dev->name));
1159                 }
1160         } else {
1161 did_not_correct_error:
1162                 spin_lock(&sctx->stat_lock);
1163                 sctx->stat.uncorrectable_errors++;
1164                 spin_unlock(&sctx->stat_lock);
1165                 printk_ratelimited_in_rcu(KERN_ERR
1166                         "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1167                         (unsigned long long)logical,
1168                         rcu_str_deref(dev->name));
1169         }
1170
1171 out:
1172         if (sblocks_for_recheck) {
1173                 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1174                      mirror_index++) {
1175                         struct scrub_block *sblock = sblocks_for_recheck +
1176                                                      mirror_index;
1177                         int page_index;
1178
1179                         for (page_index = 0; page_index < sblock->page_count;
1180                              page_index++) {
1181                                 sblock->pagev[page_index]->sblock = NULL;
1182                                 scrub_page_put(sblock->pagev[page_index]);
1183                         }
1184                 }
1185                 kfree(sblocks_for_recheck);
1186         }
1187
1188         return 0;
1189 }
1190
1191 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1192                                      struct btrfs_fs_info *fs_info,
1193                                      struct scrub_block *original_sblock,
1194                                      u64 length, u64 logical,
1195                                      struct scrub_block *sblocks_for_recheck)
1196 {
1197         int page_index;
1198         int mirror_index;
1199         int ret;
1200
1201         /*
1202          * note: the two members ref_count and outstanding_pages
1203          * are not used (and not set) in the blocks that are used for
1204          * the recheck procedure
1205          */
1206
1207         page_index = 0;
1208         while (length > 0) {
1209                 u64 sublen = min_t(u64, length, PAGE_SIZE);
1210                 u64 mapped_length = sublen;
1211                 struct btrfs_bio *bbio = NULL;
1212
1213                 /*
1214                  * with a length of PAGE_SIZE, each returned stripe
1215                  * represents one mirror
1216                  */
1217                 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1218                                       &mapped_length, &bbio, 0);
1219                 if (ret || !bbio || mapped_length < sublen) {
1220                         kfree(bbio);
1221                         return -EIO;
1222                 }
1223
1224                 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1225                 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1226                      mirror_index++) {
1227                         struct scrub_block *sblock;
1228                         struct scrub_page *page;
1229
1230                         if (mirror_index >= BTRFS_MAX_MIRRORS)
1231                                 continue;
1232
1233                         sblock = sblocks_for_recheck + mirror_index;
1234                         sblock->sctx = sctx;
1235                         page = kzalloc(sizeof(*page), GFP_NOFS);
1236                         if (!page) {
1237 leave_nomem:
1238                                 spin_lock(&sctx->stat_lock);
1239                                 sctx->stat.malloc_errors++;
1240                                 spin_unlock(&sctx->stat_lock);
1241                                 kfree(bbio);
1242                                 return -ENOMEM;
1243                         }
1244                         scrub_page_get(page);
1245                         sblock->pagev[page_index] = page;
1246                         page->logical = logical;
1247                         page->physical = bbio->stripes[mirror_index].physical;
1248                         BUG_ON(page_index >= original_sblock->page_count);
1249                         page->physical_for_dev_replace =
1250                                 original_sblock->pagev[page_index]->
1251                                 physical_for_dev_replace;
1252                         /* for missing devices, dev->bdev is NULL */
1253                         page->dev = bbio->stripes[mirror_index].dev;
1254                         page->mirror_num = mirror_index + 1;
1255                         sblock->page_count++;
1256                         page->page = alloc_page(GFP_NOFS);
1257                         if (!page->page)
1258                                 goto leave_nomem;
1259                 }
1260                 kfree(bbio);
1261                 length -= sublen;
1262                 logical += sublen;
1263                 page_index++;
1264         }
1265
1266         return 0;
1267 }
1268
1269 /*
1270  * this function will check the on disk data for checksum errors, header
1271  * errors and read I/O errors. If any I/O errors happen, the exact pages
1272  * which are errored are marked as being bad. The goal is to enable scrub
1273  * to take those pages that are not errored from all the mirrors so that
1274  * the pages that are errored in the just handled mirror can be repaired.
1275  */
1276 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1277                                 struct scrub_block *sblock, int is_metadata,
1278                                 int have_csum, u8 *csum, u64 generation,
1279                                 u16 csum_size)
1280 {
1281         int page_num;
1282
1283         sblock->no_io_error_seen = 1;
1284         sblock->header_error = 0;
1285         sblock->checksum_error = 0;
1286
1287         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1288                 struct bio *bio;
1289                 struct scrub_page *page = sblock->pagev[page_num];
1290                 DECLARE_COMPLETION_ONSTACK(complete);
1291
1292                 if (page->dev->bdev == NULL) {
1293                         page->io_error = 1;
1294                         sblock->no_io_error_seen = 0;
1295                         continue;
1296                 }
1297
1298                 WARN_ON(!page->page);
1299                 bio = bio_alloc(GFP_NOFS, 1);
1300                 if (!bio) {
1301                         page->io_error = 1;
1302                         sblock->no_io_error_seen = 0;
1303                         continue;
1304                 }
1305                 bio->bi_bdev = page->dev->bdev;
1306                 bio->bi_sector = page->physical >> 9;
1307                 bio->bi_end_io = scrub_complete_bio_end_io;
1308                 bio->bi_private = &complete;
1309
1310                 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1311                 btrfsic_submit_bio(READ, bio);
1312
1313                 /* this will also unplug the queue */
1314                 wait_for_completion(&complete);
1315
1316                 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1317                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1318                         sblock->no_io_error_seen = 0;
1319                 bio_put(bio);
1320         }
1321
1322         if (sblock->no_io_error_seen)
1323                 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1324                                              have_csum, csum, generation,
1325                                              csum_size);
1326
1327         return;
1328 }
1329
1330 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1331                                          struct scrub_block *sblock,
1332                                          int is_metadata, int have_csum,
1333                                          const u8 *csum, u64 generation,
1334                                          u16 csum_size)
1335 {
1336         int page_num;
1337         u8 calculated_csum[BTRFS_CSUM_SIZE];
1338         u32 crc = ~(u32)0;
1339         void *mapped_buffer;
1340
1341         WARN_ON(!sblock->pagev[0]->page);
1342         if (is_metadata) {
1343                 struct btrfs_header *h;
1344
1345                 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1346                 h = (struct btrfs_header *)mapped_buffer;
1347
1348                 if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr) ||
1349                     memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1350                     memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1351                            BTRFS_UUID_SIZE)) {
1352                         sblock->header_error = 1;
1353                 } else if (generation != le64_to_cpu(h->generation)) {
1354                         sblock->header_error = 1;
1355                         sblock->generation_error = 1;
1356                 }
1357                 csum = h->csum;
1358         } else {
1359                 if (!have_csum)
1360                         return;
1361
1362                 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1363         }
1364
1365         for (page_num = 0;;) {
1366                 if (page_num == 0 && is_metadata)
1367                         crc = btrfs_csum_data(
1368                                 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1369                                 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1370                 else
1371                         crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1372
1373                 kunmap_atomic(mapped_buffer);
1374                 page_num++;
1375                 if (page_num >= sblock->page_count)
1376                         break;
1377                 WARN_ON(!sblock->pagev[page_num]->page);
1378
1379                 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1380         }
1381
1382         btrfs_csum_final(crc, calculated_csum);
1383         if (memcmp(calculated_csum, csum, csum_size))
1384                 sblock->checksum_error = 1;
1385 }
1386
1387 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1388 {
1389         complete((struct completion *)bio->bi_private);
1390 }
1391
1392 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1393                                              struct scrub_block *sblock_good,
1394                                              int force_write)
1395 {
1396         int page_num;
1397         int ret = 0;
1398
1399         for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1400                 int ret_sub;
1401
1402                 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1403                                                            sblock_good,
1404                                                            page_num,
1405                                                            force_write);
1406                 if (ret_sub)
1407                         ret = ret_sub;
1408         }
1409
1410         return ret;
1411 }
1412
1413 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1414                                             struct scrub_block *sblock_good,
1415                                             int page_num, int force_write)
1416 {
1417         struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1418         struct scrub_page *page_good = sblock_good->pagev[page_num];
1419
1420         BUG_ON(page_bad->page == NULL);
1421         BUG_ON(page_good->page == NULL);
1422         if (force_write || sblock_bad->header_error ||
1423             sblock_bad->checksum_error || page_bad->io_error) {
1424                 struct bio *bio;
1425                 int ret;
1426                 DECLARE_COMPLETION_ONSTACK(complete);
1427
1428                 if (!page_bad->dev->bdev) {
1429                         printk_ratelimited(KERN_WARNING
1430                                 "btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1431                         return -EIO;
1432                 }
1433
1434                 bio = bio_alloc(GFP_NOFS, 1);
1435                 if (!bio)
1436                         return -EIO;
1437                 bio->bi_bdev = page_bad->dev->bdev;
1438                 bio->bi_sector = page_bad->physical >> 9;
1439                 bio->bi_end_io = scrub_complete_bio_end_io;
1440                 bio->bi_private = &complete;
1441
1442                 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1443                 if (PAGE_SIZE != ret) {
1444                         bio_put(bio);
1445                         return -EIO;
1446                 }
1447                 btrfsic_submit_bio(WRITE, bio);
1448
1449                 /* this will also unplug the queue */
1450                 wait_for_completion(&complete);
1451                 if (!bio_flagged(bio, BIO_UPTODATE)) {
1452                         btrfs_dev_stat_inc_and_print(page_bad->dev,
1453                                 BTRFS_DEV_STAT_WRITE_ERRS);
1454                         btrfs_dev_replace_stats_inc(
1455                                 &sblock_bad->sctx->dev_root->fs_info->
1456                                 dev_replace.num_write_errors);
1457                         bio_put(bio);
1458                         return -EIO;
1459                 }
1460                 bio_put(bio);
1461         }
1462
1463         return 0;
1464 }
1465
1466 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1467 {
1468         int page_num;
1469
1470         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1471                 int ret;
1472
1473                 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1474                 if (ret)
1475                         btrfs_dev_replace_stats_inc(
1476                                 &sblock->sctx->dev_root->fs_info->dev_replace.
1477                                 num_write_errors);
1478         }
1479 }
1480
1481 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1482                                            int page_num)
1483 {
1484         struct scrub_page *spage = sblock->pagev[page_num];
1485
1486         BUG_ON(spage->page == NULL);
1487         if (spage->io_error) {
1488                 void *mapped_buffer = kmap_atomic(spage->page);
1489
1490                 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1491                 flush_dcache_page(spage->page);
1492                 kunmap_atomic(mapped_buffer);
1493         }
1494         return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1495 }
1496
1497 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1498                                     struct scrub_page *spage)
1499 {
1500         struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1501         struct scrub_bio *sbio;
1502         int ret;
1503
1504         mutex_lock(&wr_ctx->wr_lock);
1505 again:
1506         if (!wr_ctx->wr_curr_bio) {
1507                 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1508                                               GFP_NOFS);
1509                 if (!wr_ctx->wr_curr_bio) {
1510                         mutex_unlock(&wr_ctx->wr_lock);
1511                         return -ENOMEM;
1512                 }
1513                 wr_ctx->wr_curr_bio->sctx = sctx;
1514                 wr_ctx->wr_curr_bio->page_count = 0;
1515         }
1516         sbio = wr_ctx->wr_curr_bio;
1517         if (sbio->page_count == 0) {
1518                 struct bio *bio;
1519
1520                 sbio->physical = spage->physical_for_dev_replace;
1521                 sbio->logical = spage->logical;
1522                 sbio->dev = wr_ctx->tgtdev;
1523                 bio = sbio->bio;
1524                 if (!bio) {
1525                         bio = bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1526                         if (!bio) {
1527                                 mutex_unlock(&wr_ctx->wr_lock);
1528                                 return -ENOMEM;
1529                         }
1530                         sbio->bio = bio;
1531                 }
1532
1533                 bio->bi_private = sbio;
1534                 bio->bi_end_io = scrub_wr_bio_end_io;
1535                 bio->bi_bdev = sbio->dev->bdev;
1536                 bio->bi_sector = sbio->physical >> 9;
1537                 sbio->err = 0;
1538         } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1539                    spage->physical_for_dev_replace ||
1540                    sbio->logical + sbio->page_count * PAGE_SIZE !=
1541                    spage->logical) {
1542                 scrub_wr_submit(sctx);
1543                 goto again;
1544         }
1545
1546         ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1547         if (ret != PAGE_SIZE) {
1548                 if (sbio->page_count < 1) {
1549                         bio_put(sbio->bio);
1550                         sbio->bio = NULL;
1551                         mutex_unlock(&wr_ctx->wr_lock);
1552                         return -EIO;
1553                 }
1554                 scrub_wr_submit(sctx);
1555                 goto again;
1556         }
1557
1558         sbio->pagev[sbio->page_count] = spage;
1559         scrub_page_get(spage);
1560         sbio->page_count++;
1561         if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1562                 scrub_wr_submit(sctx);
1563         mutex_unlock(&wr_ctx->wr_lock);
1564
1565         return 0;
1566 }
1567
1568 static void scrub_wr_submit(struct scrub_ctx *sctx)
1569 {
1570         struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1571         struct scrub_bio *sbio;
1572
1573         if (!wr_ctx->wr_curr_bio)
1574                 return;
1575
1576         sbio = wr_ctx->wr_curr_bio;
1577         wr_ctx->wr_curr_bio = NULL;
1578         WARN_ON(!sbio->bio->bi_bdev);
1579         scrub_pending_bio_inc(sctx);
1580         /* process all writes in a single worker thread. Then the block layer
1581          * orders the requests before sending them to the driver which
1582          * doubled the write performance on spinning disks when measured
1583          * with Linux 3.5 */
1584         btrfsic_submit_bio(WRITE, sbio->bio);
1585 }
1586
1587 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1588 {
1589         struct scrub_bio *sbio = bio->bi_private;
1590         struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1591
1592         sbio->err = err;
1593         sbio->bio = bio;
1594
1595         sbio->work.func = scrub_wr_bio_end_io_worker;
1596         btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1597 }
1598
1599 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1600 {
1601         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1602         struct scrub_ctx *sctx = sbio->sctx;
1603         int i;
1604
1605         WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1606         if (sbio->err) {
1607                 struct btrfs_dev_replace *dev_replace =
1608                         &sbio->sctx->dev_root->fs_info->dev_replace;
1609
1610                 for (i = 0; i < sbio->page_count; i++) {
1611                         struct scrub_page *spage = sbio->pagev[i];
1612
1613                         spage->io_error = 1;
1614                         btrfs_dev_replace_stats_inc(&dev_replace->
1615                                                     num_write_errors);
1616                 }
1617         }
1618
1619         for (i = 0; i < sbio->page_count; i++)
1620                 scrub_page_put(sbio->pagev[i]);
1621
1622         bio_put(sbio->bio);
1623         kfree(sbio);
1624         scrub_pending_bio_dec(sctx);
1625 }
1626
1627 static int scrub_checksum(struct scrub_block *sblock)
1628 {
1629         u64 flags;
1630         int ret;
1631
1632         WARN_ON(sblock->page_count < 1);
1633         flags = sblock->pagev[0]->flags;
1634         ret = 0;
1635         if (flags & BTRFS_EXTENT_FLAG_DATA)
1636                 ret = scrub_checksum_data(sblock);
1637         else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1638                 ret = scrub_checksum_tree_block(sblock);
1639         else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1640                 (void)scrub_checksum_super(sblock);
1641         else
1642                 WARN_ON(1);
1643         if (ret)
1644                 scrub_handle_errored_block(sblock);
1645
1646         return ret;
1647 }
1648
1649 static int scrub_checksum_data(struct scrub_block *sblock)
1650 {
1651         struct scrub_ctx *sctx = sblock->sctx;
1652         u8 csum[BTRFS_CSUM_SIZE];
1653         u8 *on_disk_csum;
1654         struct page *page;
1655         void *buffer;
1656         u32 crc = ~(u32)0;
1657         int fail = 0;
1658         u64 len;
1659         int index;
1660
1661         BUG_ON(sblock->page_count < 1);
1662         if (!sblock->pagev[0]->have_csum)
1663                 return 0;
1664
1665         on_disk_csum = sblock->pagev[0]->csum;
1666         page = sblock->pagev[0]->page;
1667         buffer = kmap_atomic(page);
1668
1669         len = sctx->sectorsize;
1670         index = 0;
1671         for (;;) {
1672                 u64 l = min_t(u64, len, PAGE_SIZE);
1673
1674                 crc = btrfs_csum_data(buffer, crc, l);
1675                 kunmap_atomic(buffer);
1676                 len -= l;
1677                 if (len == 0)
1678                         break;
1679                 index++;
1680                 BUG_ON(index >= sblock->page_count);
1681                 BUG_ON(!sblock->pagev[index]->page);
1682                 page = sblock->pagev[index]->page;
1683                 buffer = kmap_atomic(page);
1684         }
1685
1686         btrfs_csum_final(crc, csum);
1687         if (memcmp(csum, on_disk_csum, sctx->csum_size))
1688                 fail = 1;
1689
1690         return fail;
1691 }
1692
1693 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1694 {
1695         struct scrub_ctx *sctx = sblock->sctx;
1696         struct btrfs_header *h;
1697         struct btrfs_root *root = sctx->dev_root;
1698         struct btrfs_fs_info *fs_info = root->fs_info;
1699         u8 calculated_csum[BTRFS_CSUM_SIZE];
1700         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1701         struct page *page;
1702         void *mapped_buffer;
1703         u64 mapped_size;
1704         void *p;
1705         u32 crc = ~(u32)0;
1706         int fail = 0;
1707         int crc_fail = 0;
1708         u64 len;
1709         int index;
1710
1711         BUG_ON(sblock->page_count < 1);
1712         page = sblock->pagev[0]->page;
1713         mapped_buffer = kmap_atomic(page);
1714         h = (struct btrfs_header *)mapped_buffer;
1715         memcpy(on_disk_csum, h->csum, sctx->csum_size);
1716
1717         /*
1718          * we don't use the getter functions here, as we
1719          * a) don't have an extent buffer and
1720          * b) the page is already kmapped
1721          */
1722
1723         if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr))
1724                 ++fail;
1725
1726         if (sblock->pagev[0]->generation != le64_to_cpu(h->generation))
1727                 ++fail;
1728
1729         if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1730                 ++fail;
1731
1732         if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1733                    BTRFS_UUID_SIZE))
1734                 ++fail;
1735
1736         WARN_ON(sctx->nodesize != sctx->leafsize);
1737         len = sctx->nodesize - BTRFS_CSUM_SIZE;
1738         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1739         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1740         index = 0;
1741         for (;;) {
1742                 u64 l = min_t(u64, len, mapped_size);
1743
1744                 crc = btrfs_csum_data(p, crc, l);
1745                 kunmap_atomic(mapped_buffer);
1746                 len -= l;
1747                 if (len == 0)
1748                         break;
1749                 index++;
1750                 BUG_ON(index >= sblock->page_count);
1751                 BUG_ON(!sblock->pagev[index]->page);
1752                 page = sblock->pagev[index]->page;
1753                 mapped_buffer = kmap_atomic(page);
1754                 mapped_size = PAGE_SIZE;
1755                 p = mapped_buffer;
1756         }
1757
1758         btrfs_csum_final(crc, calculated_csum);
1759         if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1760                 ++crc_fail;
1761
1762         return fail || crc_fail;
1763 }
1764
1765 static int scrub_checksum_super(struct scrub_block *sblock)
1766 {
1767         struct btrfs_super_block *s;
1768         struct scrub_ctx *sctx = sblock->sctx;
1769         struct btrfs_root *root = sctx->dev_root;
1770         struct btrfs_fs_info *fs_info = root->fs_info;
1771         u8 calculated_csum[BTRFS_CSUM_SIZE];
1772         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1773         struct page *page;
1774         void *mapped_buffer;
1775         u64 mapped_size;
1776         void *p;
1777         u32 crc = ~(u32)0;
1778         int fail_gen = 0;
1779         int fail_cor = 0;
1780         u64 len;
1781         int index;
1782
1783         BUG_ON(sblock->page_count < 1);
1784         page = sblock->pagev[0]->page;
1785         mapped_buffer = kmap_atomic(page);
1786         s = (struct btrfs_super_block *)mapped_buffer;
1787         memcpy(on_disk_csum, s->csum, sctx->csum_size);
1788
1789         if (sblock->pagev[0]->logical != le64_to_cpu(s->bytenr))
1790                 ++fail_cor;
1791
1792         if (sblock->pagev[0]->generation != le64_to_cpu(s->generation))
1793                 ++fail_gen;
1794
1795         if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1796                 ++fail_cor;
1797
1798         len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1799         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1800         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1801         index = 0;
1802         for (;;) {
1803                 u64 l = min_t(u64, len, mapped_size);
1804
1805                 crc = btrfs_csum_data(p, crc, l);
1806                 kunmap_atomic(mapped_buffer);
1807                 len -= l;
1808                 if (len == 0)
1809                         break;
1810                 index++;
1811                 BUG_ON(index >= sblock->page_count);
1812                 BUG_ON(!sblock->pagev[index]->page);
1813                 page = sblock->pagev[index]->page;
1814                 mapped_buffer = kmap_atomic(page);
1815                 mapped_size = PAGE_SIZE;
1816                 p = mapped_buffer;
1817         }
1818
1819         btrfs_csum_final(crc, calculated_csum);
1820         if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1821                 ++fail_cor;
1822
1823         if (fail_cor + fail_gen) {
1824                 /*
1825                  * if we find an error in a super block, we just report it.
1826                  * They will get written with the next transaction commit
1827                  * anyway
1828                  */
1829                 spin_lock(&sctx->stat_lock);
1830                 ++sctx->stat.super_errors;
1831                 spin_unlock(&sctx->stat_lock);
1832                 if (fail_cor)
1833                         btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1834                                 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1835                 else
1836                         btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1837                                 BTRFS_DEV_STAT_GENERATION_ERRS);
1838         }
1839
1840         return fail_cor + fail_gen;
1841 }
1842
1843 static void scrub_block_get(struct scrub_block *sblock)
1844 {
1845         atomic_inc(&sblock->ref_count);
1846 }
1847
1848 static void scrub_block_put(struct scrub_block *sblock)
1849 {
1850         if (atomic_dec_and_test(&sblock->ref_count)) {
1851                 int i;
1852
1853                 for (i = 0; i < sblock->page_count; i++)
1854                         scrub_page_put(sblock->pagev[i]);
1855                 kfree(sblock);
1856         }
1857 }
1858
1859 static void scrub_page_get(struct scrub_page *spage)
1860 {
1861         atomic_inc(&spage->ref_count);
1862 }
1863
1864 static void scrub_page_put(struct scrub_page *spage)
1865 {
1866         if (atomic_dec_and_test(&spage->ref_count)) {
1867                 if (spage->page)
1868                         __free_page(spage->page);
1869                 kfree(spage);
1870         }
1871 }
1872
1873 static void scrub_submit(struct scrub_ctx *sctx)
1874 {
1875         struct scrub_bio *sbio;
1876
1877         if (sctx->curr == -1)
1878                 return;
1879
1880         sbio = sctx->bios[sctx->curr];
1881         sctx->curr = -1;
1882         scrub_pending_bio_inc(sctx);
1883
1884         if (!sbio->bio->bi_bdev) {
1885                 /*
1886                  * this case should not happen. If btrfs_map_block() is
1887                  * wrong, it could happen for dev-replace operations on
1888                  * missing devices when no mirrors are available, but in
1889                  * this case it should already fail the mount.
1890                  * This case is handled correctly (but _very_ slowly).
1891                  */
1892                 printk_ratelimited(KERN_WARNING
1893                         "btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1894                 bio_endio(sbio->bio, -EIO);
1895         } else {
1896                 btrfsic_submit_bio(READ, sbio->bio);
1897         }
1898 }
1899
1900 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1901                                     struct scrub_page *spage)
1902 {
1903         struct scrub_block *sblock = spage->sblock;
1904         struct scrub_bio *sbio;
1905         int ret;
1906
1907 again:
1908         /*
1909          * grab a fresh bio or wait for one to become available
1910          */
1911         while (sctx->curr == -1) {
1912                 spin_lock(&sctx->list_lock);
1913                 sctx->curr = sctx->first_free;
1914                 if (sctx->curr != -1) {
1915                         sctx->first_free = sctx->bios[sctx->curr]->next_free;
1916                         sctx->bios[sctx->curr]->next_free = -1;
1917                         sctx->bios[sctx->curr]->page_count = 0;
1918                         spin_unlock(&sctx->list_lock);
1919                 } else {
1920                         spin_unlock(&sctx->list_lock);
1921                         wait_event(sctx->list_wait, sctx->first_free != -1);
1922                 }
1923         }
1924         sbio = sctx->bios[sctx->curr];
1925         if (sbio->page_count == 0) {
1926                 struct bio *bio;
1927
1928                 sbio->physical = spage->physical;
1929                 sbio->logical = spage->logical;
1930                 sbio->dev = spage->dev;
1931                 bio = sbio->bio;
1932                 if (!bio) {
1933                         bio = bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1934                         if (!bio)
1935                                 return -ENOMEM;
1936                         sbio->bio = bio;
1937                 }
1938
1939                 bio->bi_private = sbio;
1940                 bio->bi_end_io = scrub_bio_end_io;
1941                 bio->bi_bdev = sbio->dev->bdev;
1942                 bio->bi_sector = sbio->physical >> 9;
1943                 sbio->err = 0;
1944         } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1945                    spage->physical ||
1946                    sbio->logical + sbio->page_count * PAGE_SIZE !=
1947                    spage->logical ||
1948                    sbio->dev != spage->dev) {
1949                 scrub_submit(sctx);
1950                 goto again;
1951         }
1952
1953         sbio->pagev[sbio->page_count] = spage;
1954         ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1955         if (ret != PAGE_SIZE) {
1956                 if (sbio->page_count < 1) {
1957                         bio_put(sbio->bio);
1958                         sbio->bio = NULL;
1959                         return -EIO;
1960                 }
1961                 scrub_submit(sctx);
1962                 goto again;
1963         }
1964
1965         scrub_block_get(sblock); /* one for the page added to the bio */
1966         atomic_inc(&sblock->outstanding_pages);
1967         sbio->page_count++;
1968         if (sbio->page_count == sctx->pages_per_rd_bio)
1969                 scrub_submit(sctx);
1970
1971         return 0;
1972 }
1973
1974 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1975                        u64 physical, struct btrfs_device *dev, u64 flags,
1976                        u64 gen, int mirror_num, u8 *csum, int force,
1977                        u64 physical_for_dev_replace)
1978 {
1979         struct scrub_block *sblock;
1980         int index;
1981
1982         sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1983         if (!sblock) {
1984                 spin_lock(&sctx->stat_lock);
1985                 sctx->stat.malloc_errors++;
1986                 spin_unlock(&sctx->stat_lock);
1987                 return -ENOMEM;
1988         }
1989
1990         /* one ref inside this function, plus one for each page added to
1991          * a bio later on */
1992         atomic_set(&sblock->ref_count, 1);
1993         sblock->sctx = sctx;
1994         sblock->no_io_error_seen = 1;
1995
1996         for (index = 0; len > 0; index++) {
1997                 struct scrub_page *spage;
1998                 u64 l = min_t(u64, len, PAGE_SIZE);
1999
2000                 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2001                 if (!spage) {
2002 leave_nomem:
2003                         spin_lock(&sctx->stat_lock);
2004                         sctx->stat.malloc_errors++;
2005                         spin_unlock(&sctx->stat_lock);
2006                         scrub_block_put(sblock);
2007                         return -ENOMEM;
2008                 }
2009                 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2010                 scrub_page_get(spage);
2011                 sblock->pagev[index] = spage;
2012                 spage->sblock = sblock;
2013                 spage->dev = dev;
2014                 spage->flags = flags;
2015                 spage->generation = gen;
2016                 spage->logical = logical;
2017                 spage->physical = physical;
2018                 spage->physical_for_dev_replace = physical_for_dev_replace;
2019                 spage->mirror_num = mirror_num;
2020                 if (csum) {
2021                         spage->have_csum = 1;
2022                         memcpy(spage->csum, csum, sctx->csum_size);
2023                 } else {
2024                         spage->have_csum = 0;
2025                 }
2026                 sblock->page_count++;
2027                 spage->page = alloc_page(GFP_NOFS);
2028                 if (!spage->page)
2029                         goto leave_nomem;
2030                 len -= l;
2031                 logical += l;
2032                 physical += l;
2033                 physical_for_dev_replace += l;
2034         }
2035
2036         WARN_ON(sblock->page_count == 0);
2037         for (index = 0; index < sblock->page_count; index++) {
2038                 struct scrub_page *spage = sblock->pagev[index];
2039                 int ret;
2040
2041                 ret = scrub_add_page_to_rd_bio(sctx, spage);
2042                 if (ret) {
2043                         scrub_block_put(sblock);
2044                         return ret;
2045                 }
2046         }
2047
2048         if (force)
2049                 scrub_submit(sctx);
2050
2051         /* last one frees, either here or in bio completion for last page */
2052         scrub_block_put(sblock);
2053         return 0;
2054 }
2055
2056 static void scrub_bio_end_io(struct bio *bio, int err)
2057 {
2058         struct scrub_bio *sbio = bio->bi_private;
2059         struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2060
2061         sbio->err = err;
2062         sbio->bio = bio;
2063
2064         btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2065 }
2066
2067 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2068 {
2069         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2070         struct scrub_ctx *sctx = sbio->sctx;
2071         int i;
2072
2073         BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2074         if (sbio->err) {
2075                 for (i = 0; i < sbio->page_count; i++) {
2076                         struct scrub_page *spage = sbio->pagev[i];
2077
2078                         spage->io_error = 1;
2079                         spage->sblock->no_io_error_seen = 0;
2080                 }
2081         }
2082
2083         /* now complete the scrub_block items that have all pages completed */
2084         for (i = 0; i < sbio->page_count; i++) {
2085                 struct scrub_page *spage = sbio->pagev[i];
2086                 struct scrub_block *sblock = spage->sblock;
2087
2088                 if (atomic_dec_and_test(&sblock->outstanding_pages))
2089                         scrub_block_complete(sblock);
2090                 scrub_block_put(sblock);
2091         }
2092
2093         bio_put(sbio->bio);
2094         sbio->bio = NULL;
2095         spin_lock(&sctx->list_lock);
2096         sbio->next_free = sctx->first_free;
2097         sctx->first_free = sbio->index;
2098         spin_unlock(&sctx->list_lock);
2099
2100         if (sctx->is_dev_replace &&
2101             atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2102                 mutex_lock(&sctx->wr_ctx.wr_lock);
2103                 scrub_wr_submit(sctx);
2104                 mutex_unlock(&sctx->wr_ctx.wr_lock);
2105         }
2106
2107         scrub_pending_bio_dec(sctx);
2108 }
2109
2110 static void scrub_block_complete(struct scrub_block *sblock)
2111 {
2112         if (!sblock->no_io_error_seen) {
2113                 scrub_handle_errored_block(sblock);
2114         } else {
2115                 /*
2116                  * if has checksum error, write via repair mechanism in
2117                  * dev replace case, otherwise write here in dev replace
2118                  * case.
2119                  */
2120                 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2121                         scrub_write_block_to_dev_replace(sblock);
2122         }
2123 }
2124
2125 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2126                            u8 *csum)
2127 {
2128         struct btrfs_ordered_sum *sum = NULL;
2129         int ret = 0;
2130         unsigned long i;
2131         unsigned long num_sectors;
2132
2133         while (!list_empty(&sctx->csum_list)) {
2134                 sum = list_first_entry(&sctx->csum_list,
2135                                        struct btrfs_ordered_sum, list);
2136                 if (sum->bytenr > logical)
2137                         return 0;
2138                 if (sum->bytenr + sum->len > logical)
2139                         break;
2140
2141                 ++sctx->stat.csum_discards;
2142                 list_del(&sum->list);
2143                 kfree(sum);
2144                 sum = NULL;
2145         }
2146         if (!sum)
2147                 return 0;
2148
2149         num_sectors = sum->len / sctx->sectorsize;
2150         for (i = 0; i < num_sectors; ++i) {
2151                 if (sum->sums[i].bytenr == logical) {
2152                         memcpy(csum, &sum->sums[i].sum, sctx->csum_size);
2153                         ret = 1;
2154                         break;
2155                 }
2156         }
2157         if (ret && i == num_sectors - 1) {
2158                 list_del(&sum->list);
2159                 kfree(sum);
2160         }
2161         return ret;
2162 }
2163
2164 /* scrub extent tries to collect up to 64 kB for each bio */
2165 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2166                         u64 physical, struct btrfs_device *dev, u64 flags,
2167                         u64 gen, int mirror_num, u64 physical_for_dev_replace)
2168 {
2169         int ret;
2170         u8 csum[BTRFS_CSUM_SIZE];
2171         u32 blocksize;
2172
2173         if (flags & BTRFS_EXTENT_FLAG_DATA) {
2174                 blocksize = sctx->sectorsize;
2175                 spin_lock(&sctx->stat_lock);
2176                 sctx->stat.data_extents_scrubbed++;
2177                 sctx->stat.data_bytes_scrubbed += len;
2178                 spin_unlock(&sctx->stat_lock);
2179         } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2180                 WARN_ON(sctx->nodesize != sctx->leafsize);
2181                 blocksize = sctx->nodesize;
2182                 spin_lock(&sctx->stat_lock);
2183                 sctx->stat.tree_extents_scrubbed++;
2184                 sctx->stat.tree_bytes_scrubbed += len;
2185                 spin_unlock(&sctx->stat_lock);
2186         } else {
2187                 blocksize = sctx->sectorsize;
2188                 WARN_ON(1);
2189         }
2190
2191         while (len) {
2192                 u64 l = min_t(u64, len, blocksize);
2193                 int have_csum = 0;
2194
2195                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2196                         /* push csums to sbio */
2197                         have_csum = scrub_find_csum(sctx, logical, l, csum);
2198                         if (have_csum == 0)
2199                                 ++sctx->stat.no_csum;
2200                         if (sctx->is_dev_replace && !have_csum) {
2201                                 ret = copy_nocow_pages(sctx, logical, l,
2202                                                        mirror_num,
2203                                                       physical_for_dev_replace);
2204                                 goto behind_scrub_pages;
2205                         }
2206                 }
2207                 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2208                                   mirror_num, have_csum ? csum : NULL, 0,
2209                                   physical_for_dev_replace);
2210 behind_scrub_pages:
2211                 if (ret)
2212                         return ret;
2213                 len -= l;
2214                 logical += l;
2215                 physical += l;
2216                 physical_for_dev_replace += l;
2217         }
2218         return 0;
2219 }
2220
2221 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2222                                            struct map_lookup *map,
2223                                            struct btrfs_device *scrub_dev,
2224                                            int num, u64 base, u64 length,
2225                                            int is_dev_replace)
2226 {
2227         struct btrfs_path *path;
2228         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2229         struct btrfs_root *root = fs_info->extent_root;
2230         struct btrfs_root *csum_root = fs_info->csum_root;
2231         struct btrfs_extent_item *extent;
2232         struct blk_plug plug;
2233         u64 flags;
2234         int ret;
2235         int slot;
2236         u64 nstripes;
2237         struct extent_buffer *l;
2238         struct btrfs_key key;
2239         u64 physical;
2240         u64 logical;
2241         u64 logic_end;
2242         u64 generation;
2243         int mirror_num;
2244         struct reada_control *reada1;
2245         struct reada_control *reada2;
2246         struct btrfs_key key_start;
2247         struct btrfs_key key_end;
2248         u64 increment = map->stripe_len;
2249         u64 offset;
2250         u64 extent_logical;
2251         u64 extent_physical;
2252         u64 extent_len;
2253         struct btrfs_device *extent_dev;
2254         int extent_mirror_num;
2255         int stop_loop;
2256
2257         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2258                          BTRFS_BLOCK_GROUP_RAID6)) {
2259                 if (num >= nr_data_stripes(map)) {
2260                         return 0;
2261                 }
2262         }
2263
2264         nstripes = length;
2265         offset = 0;
2266         do_div(nstripes, map->stripe_len);
2267         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2268                 offset = map->stripe_len * num;
2269                 increment = map->stripe_len * map->num_stripes;
2270                 mirror_num = 1;
2271         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2272                 int factor = map->num_stripes / map->sub_stripes;
2273                 offset = map->stripe_len * (num / map->sub_stripes);
2274                 increment = map->stripe_len * factor;
2275                 mirror_num = num % map->sub_stripes + 1;
2276         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2277                 increment = map->stripe_len;
2278                 mirror_num = num % map->num_stripes + 1;
2279         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2280                 increment = map->stripe_len;
2281                 mirror_num = num % map->num_stripes + 1;
2282         } else {
2283                 increment = map->stripe_len;
2284                 mirror_num = 1;
2285         }
2286
2287         path = btrfs_alloc_path();
2288         if (!path)
2289                 return -ENOMEM;
2290
2291         /*
2292          * work on commit root. The related disk blocks are static as
2293          * long as COW is applied. This means, it is save to rewrite
2294          * them to repair disk errors without any race conditions
2295          */
2296         path->search_commit_root = 1;
2297         path->skip_locking = 1;
2298
2299         /*
2300          * trigger the readahead for extent tree csum tree and wait for
2301          * completion. During readahead, the scrub is officially paused
2302          * to not hold off transaction commits
2303          */
2304         logical = base + offset;
2305
2306         wait_event(sctx->list_wait,
2307                    atomic_read(&sctx->bios_in_flight) == 0);
2308         atomic_inc(&fs_info->scrubs_paused);
2309         wake_up(&fs_info->scrub_pause_wait);
2310
2311         /* FIXME it might be better to start readahead at commit root */
2312         key_start.objectid = logical;
2313         key_start.type = BTRFS_EXTENT_ITEM_KEY;
2314         key_start.offset = (u64)0;
2315         key_end.objectid = base + offset + nstripes * increment;
2316         key_end.type = BTRFS_METADATA_ITEM_KEY;
2317         key_end.offset = (u64)-1;
2318         reada1 = btrfs_reada_add(root, &key_start, &key_end);
2319
2320         key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2321         key_start.type = BTRFS_EXTENT_CSUM_KEY;
2322         key_start.offset = logical;
2323         key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2324         key_end.type = BTRFS_EXTENT_CSUM_KEY;
2325         key_end.offset = base + offset + nstripes * increment;
2326         reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2327
2328         if (!IS_ERR(reada1))
2329                 btrfs_reada_wait(reada1);
2330         if (!IS_ERR(reada2))
2331                 btrfs_reada_wait(reada2);
2332
2333         mutex_lock(&fs_info->scrub_lock);
2334         while (atomic_read(&fs_info->scrub_pause_req)) {
2335                 mutex_unlock(&fs_info->scrub_lock);
2336                 wait_event(fs_info->scrub_pause_wait,
2337                    atomic_read(&fs_info->scrub_pause_req) == 0);
2338                 mutex_lock(&fs_info->scrub_lock);
2339         }
2340         atomic_dec(&fs_info->scrubs_paused);
2341         mutex_unlock(&fs_info->scrub_lock);
2342         wake_up(&fs_info->scrub_pause_wait);
2343
2344         /*
2345          * collect all data csums for the stripe to avoid seeking during
2346          * the scrub. This might currently (crc32) end up to be about 1MB
2347          */
2348         blk_start_plug(&plug);
2349
2350         /*
2351          * now find all extents for each stripe and scrub them
2352          */
2353         logical = base + offset;
2354         physical = map->stripes[num].physical;
2355         logic_end = logical + increment * nstripes;
2356         ret = 0;
2357         while (logical < logic_end) {
2358                 /*
2359                  * canceled?
2360                  */
2361                 if (atomic_read(&fs_info->scrub_cancel_req) ||
2362                     atomic_read(&sctx->cancel_req)) {
2363                         ret = -ECANCELED;
2364                         goto out;
2365                 }
2366                 /*
2367                  * check to see if we have to pause
2368                  */
2369                 if (atomic_read(&fs_info->scrub_pause_req)) {
2370                         /* push queued extents */
2371                         atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2372                         scrub_submit(sctx);
2373                         mutex_lock(&sctx->wr_ctx.wr_lock);
2374                         scrub_wr_submit(sctx);
2375                         mutex_unlock(&sctx->wr_ctx.wr_lock);
2376                         wait_event(sctx->list_wait,
2377                                    atomic_read(&sctx->bios_in_flight) == 0);
2378                         atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2379                         atomic_inc(&fs_info->scrubs_paused);
2380                         wake_up(&fs_info->scrub_pause_wait);
2381                         mutex_lock(&fs_info->scrub_lock);
2382                         while (atomic_read(&fs_info->scrub_pause_req)) {
2383                                 mutex_unlock(&fs_info->scrub_lock);
2384                                 wait_event(fs_info->scrub_pause_wait,
2385                                    atomic_read(&fs_info->scrub_pause_req) == 0);
2386                                 mutex_lock(&fs_info->scrub_lock);
2387                         }
2388                         atomic_dec(&fs_info->scrubs_paused);
2389                         mutex_unlock(&fs_info->scrub_lock);
2390                         wake_up(&fs_info->scrub_pause_wait);
2391                 }
2392
2393                 key.objectid = logical;
2394                 key.type = BTRFS_EXTENT_ITEM_KEY;
2395                 key.offset = (u64)-1;
2396
2397                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2398                 if (ret < 0)
2399                         goto out;
2400
2401                 if (ret > 0) {
2402                         ret = btrfs_previous_item(root, path, 0,
2403                                                   BTRFS_EXTENT_ITEM_KEY);
2404                         if (ret < 0)
2405                                 goto out;
2406                         if (ret > 0) {
2407                                 /* there's no smaller item, so stick with the
2408                                  * larger one */
2409                                 btrfs_release_path(path);
2410                                 ret = btrfs_search_slot(NULL, root, &key,
2411                                                         path, 0, 0);
2412                                 if (ret < 0)
2413                                         goto out;
2414                         }
2415                 }
2416
2417                 stop_loop = 0;
2418                 while (1) {
2419                         u64 bytes;
2420
2421                         l = path->nodes[0];
2422                         slot = path->slots[0];
2423                         if (slot >= btrfs_header_nritems(l)) {
2424                                 ret = btrfs_next_leaf(root, path);
2425                                 if (ret == 0)
2426                                         continue;
2427                                 if (ret < 0)
2428                                         goto out;
2429
2430                                 stop_loop = 1;
2431                                 break;
2432                         }
2433                         btrfs_item_key_to_cpu(l, &key, slot);
2434
2435                         if (key.type == BTRFS_METADATA_ITEM_KEY)
2436                                 bytes = root->leafsize;
2437                         else
2438                                 bytes = key.offset;
2439
2440                         if (key.objectid + bytes <= logical)
2441                                 goto next;
2442
2443                         if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2444                             key.type != BTRFS_METADATA_ITEM_KEY)
2445                                 goto next;
2446
2447                         if (key.objectid >= logical + map->stripe_len) {
2448                                 /* out of this device extent */
2449                                 if (key.objectid >= logic_end)
2450                                         stop_loop = 1;
2451                                 break;
2452                         }
2453
2454                         extent = btrfs_item_ptr(l, slot,
2455                                                 struct btrfs_extent_item);
2456                         flags = btrfs_extent_flags(l, extent);
2457                         generation = btrfs_extent_generation(l, extent);
2458
2459                         if (key.objectid < logical &&
2460                             (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2461                                 printk(KERN_ERR
2462                                        "btrfs scrub: tree block %llu spanning "
2463                                        "stripes, ignored. logical=%llu\n",
2464                                        (unsigned long long)key.objectid,
2465                                        (unsigned long long)logical);
2466                                 goto next;
2467                         }
2468
2469 again:
2470                         extent_logical = key.objectid;
2471                         extent_len = bytes;
2472
2473                         /*
2474                          * trim extent to this stripe
2475                          */
2476                         if (extent_logical < logical) {
2477                                 extent_len -= logical - extent_logical;
2478                                 extent_logical = logical;
2479                         }
2480                         if (extent_logical + extent_len >
2481                             logical + map->stripe_len) {
2482                                 extent_len = logical + map->stripe_len -
2483                                              extent_logical;
2484                         }
2485
2486                         extent_physical = extent_logical - logical + physical;
2487                         extent_dev = scrub_dev;
2488                         extent_mirror_num = mirror_num;
2489                         if (is_dev_replace)
2490                                 scrub_remap_extent(fs_info, extent_logical,
2491                                                    extent_len, &extent_physical,
2492                                                    &extent_dev,
2493                                                    &extent_mirror_num);
2494
2495                         ret = btrfs_lookup_csums_range(csum_root, logical,
2496                                                 logical + map->stripe_len - 1,
2497                                                 &sctx->csum_list, 1);
2498                         if (ret)
2499                                 goto out;
2500
2501                         ret = scrub_extent(sctx, extent_logical, extent_len,
2502                                            extent_physical, extent_dev, flags,
2503                                            generation, extent_mirror_num,
2504                                            extent_physical);
2505                         if (ret)
2506                                 goto out;
2507
2508                         if (extent_logical + extent_len <
2509                             key.objectid + bytes) {
2510                                 logical += increment;
2511                                 physical += map->stripe_len;
2512
2513                                 if (logical < key.objectid + bytes) {
2514                                         cond_resched();
2515                                         goto again;
2516                                 }
2517
2518                                 if (logical >= logic_end) {
2519                                         stop_loop = 1;
2520                                         break;
2521                                 }
2522                         }
2523 next:
2524                         path->slots[0]++;
2525                 }
2526                 btrfs_release_path(path);
2527                 logical += increment;
2528                 physical += map->stripe_len;
2529                 spin_lock(&sctx->stat_lock);
2530                 if (stop_loop)
2531                         sctx->stat.last_physical = map->stripes[num].physical +
2532                                                    length;
2533                 else
2534                         sctx->stat.last_physical = physical;
2535                 spin_unlock(&sctx->stat_lock);
2536                 if (stop_loop)
2537                         break;
2538         }
2539 out:
2540         /* push queued extents */
2541         scrub_submit(sctx);
2542         mutex_lock(&sctx->wr_ctx.wr_lock);
2543         scrub_wr_submit(sctx);
2544         mutex_unlock(&sctx->wr_ctx.wr_lock);
2545
2546         blk_finish_plug(&plug);
2547         btrfs_free_path(path);
2548         return ret < 0 ? ret : 0;
2549 }
2550
2551 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2552                                           struct btrfs_device *scrub_dev,
2553                                           u64 chunk_tree, u64 chunk_objectid,
2554                                           u64 chunk_offset, u64 length,
2555                                           u64 dev_offset, int is_dev_replace)
2556 {
2557         struct btrfs_mapping_tree *map_tree =
2558                 &sctx->dev_root->fs_info->mapping_tree;
2559         struct map_lookup *map;
2560         struct extent_map *em;
2561         int i;
2562         int ret = 0;
2563
2564         read_lock(&map_tree->map_tree.lock);
2565         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2566         read_unlock(&map_tree->map_tree.lock);
2567
2568         if (!em)
2569                 return -EINVAL;
2570
2571         map = (struct map_lookup *)em->bdev;
2572         if (em->start != chunk_offset)
2573                 goto out;
2574
2575         if (em->len < length)
2576                 goto out;
2577
2578         for (i = 0; i < map->num_stripes; ++i) {
2579                 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2580                     map->stripes[i].physical == dev_offset) {
2581                         ret = scrub_stripe(sctx, map, scrub_dev, i,
2582                                            chunk_offset, length,
2583                                            is_dev_replace);
2584                         if (ret)
2585                                 goto out;
2586                 }
2587         }
2588 out:
2589         free_extent_map(em);
2590
2591         return ret;
2592 }
2593
2594 static noinline_for_stack
2595 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2596                            struct btrfs_device *scrub_dev, u64 start, u64 end,
2597                            int is_dev_replace)
2598 {
2599         struct btrfs_dev_extent *dev_extent = NULL;
2600         struct btrfs_path *path;
2601         struct btrfs_root *root = sctx->dev_root;
2602         struct btrfs_fs_info *fs_info = root->fs_info;
2603         u64 length;
2604         u64 chunk_tree;
2605         u64 chunk_objectid;
2606         u64 chunk_offset;
2607         int ret;
2608         int slot;
2609         struct extent_buffer *l;
2610         struct btrfs_key key;
2611         struct btrfs_key found_key;
2612         struct btrfs_block_group_cache *cache;
2613         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2614
2615         path = btrfs_alloc_path();
2616         if (!path)
2617                 return -ENOMEM;
2618
2619         path->reada = 2;
2620         path->search_commit_root = 1;
2621         path->skip_locking = 1;
2622
2623         key.objectid = scrub_dev->devid;
2624         key.offset = 0ull;
2625         key.type = BTRFS_DEV_EXTENT_KEY;
2626
2627         while (1) {
2628                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2629                 if (ret < 0)
2630                         break;
2631                 if (ret > 0) {
2632                         if (path->slots[0] >=
2633                             btrfs_header_nritems(path->nodes[0])) {
2634                                 ret = btrfs_next_leaf(root, path);
2635                                 if (ret)
2636                                         break;
2637                         }
2638                 }
2639
2640                 l = path->nodes[0];
2641                 slot = path->slots[0];
2642
2643                 btrfs_item_key_to_cpu(l, &found_key, slot);
2644
2645                 if (found_key.objectid != scrub_dev->devid)
2646                         break;
2647
2648                 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2649                         break;
2650
2651                 if (found_key.offset >= end)
2652                         break;
2653
2654                 if (found_key.offset < key.offset)
2655                         break;
2656
2657                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2658                 length = btrfs_dev_extent_length(l, dev_extent);
2659
2660                 if (found_key.offset + length <= start) {
2661                         key.offset = found_key.offset + length;
2662                         btrfs_release_path(path);
2663                         continue;
2664                 }
2665
2666                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2667                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2668                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2669
2670                 /*
2671                  * get a reference on the corresponding block group to prevent
2672                  * the chunk from going away while we scrub it
2673                  */
2674                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2675                 if (!cache) {
2676                         ret = -ENOENT;
2677                         break;
2678                 }
2679                 dev_replace->cursor_right = found_key.offset + length;
2680                 dev_replace->cursor_left = found_key.offset;
2681                 dev_replace->item_needs_writeback = 1;
2682                 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2683                                   chunk_offset, length, found_key.offset,
2684                                   is_dev_replace);
2685
2686                 /*
2687                  * flush, submit all pending read and write bios, afterwards
2688                  * wait for them.
2689                  * Note that in the dev replace case, a read request causes
2690                  * write requests that are submitted in the read completion
2691                  * worker. Therefore in the current situation, it is required
2692                  * that all write requests are flushed, so that all read and
2693                  * write requests are really completed when bios_in_flight
2694                  * changes to 0.
2695                  */
2696                 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2697                 scrub_submit(sctx);
2698                 mutex_lock(&sctx->wr_ctx.wr_lock);
2699                 scrub_wr_submit(sctx);
2700                 mutex_unlock(&sctx->wr_ctx.wr_lock);
2701
2702                 wait_event(sctx->list_wait,
2703                            atomic_read(&sctx->bios_in_flight) == 0);
2704                 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2705                 atomic_inc(&fs_info->scrubs_paused);
2706                 wake_up(&fs_info->scrub_pause_wait);
2707                 wait_event(sctx->list_wait,
2708                            atomic_read(&sctx->workers_pending) == 0);
2709
2710                 mutex_lock(&fs_info->scrub_lock);
2711                 while (atomic_read(&fs_info->scrub_pause_req)) {
2712                         mutex_unlock(&fs_info->scrub_lock);
2713                         wait_event(fs_info->scrub_pause_wait,
2714                            atomic_read(&fs_info->scrub_pause_req) == 0);
2715                         mutex_lock(&fs_info->scrub_lock);
2716                 }
2717                 atomic_dec(&fs_info->scrubs_paused);
2718                 mutex_unlock(&fs_info->scrub_lock);
2719                 wake_up(&fs_info->scrub_pause_wait);
2720
2721                 dev_replace->cursor_left = dev_replace->cursor_right;
2722                 dev_replace->item_needs_writeback = 1;
2723                 btrfs_put_block_group(cache);
2724                 if (ret)
2725                         break;
2726                 if (is_dev_replace &&
2727                     atomic64_read(&dev_replace->num_write_errors) > 0) {
2728                         ret = -EIO;
2729                         break;
2730                 }
2731                 if (sctx->stat.malloc_errors > 0) {
2732                         ret = -ENOMEM;
2733                         break;
2734                 }
2735
2736                 key.offset = found_key.offset + length;
2737                 btrfs_release_path(path);
2738         }
2739
2740         btrfs_free_path(path);
2741
2742         /*
2743          * ret can still be 1 from search_slot or next_leaf,
2744          * that's not an error
2745          */
2746         return ret < 0 ? ret : 0;
2747 }
2748
2749 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2750                                            struct btrfs_device *scrub_dev)
2751 {
2752         int     i;
2753         u64     bytenr;
2754         u64     gen;
2755         int     ret;
2756         struct btrfs_root *root = sctx->dev_root;
2757
2758         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2759                 return -EIO;
2760
2761         gen = root->fs_info->last_trans_committed;
2762
2763         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2764                 bytenr = btrfs_sb_offset(i);
2765                 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2766                         break;
2767
2768                 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2769                                   scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2770                                   NULL, 1, bytenr);
2771                 if (ret)
2772                         return ret;
2773         }
2774         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2775
2776         return 0;
2777 }
2778
2779 /*
2780  * get a reference count on fs_info->scrub_workers. start worker if necessary
2781  */
2782 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2783                                                 int is_dev_replace)
2784 {
2785         int ret = 0;
2786
2787         mutex_lock(&fs_info->scrub_lock);
2788         if (fs_info->scrub_workers_refcnt == 0) {
2789                 if (is_dev_replace)
2790                         btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2791                                         &fs_info->generic_worker);
2792                 else
2793                         btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2794                                         fs_info->thread_pool_size,
2795                                         &fs_info->generic_worker);
2796                 fs_info->scrub_workers.idle_thresh = 4;
2797                 ret = btrfs_start_workers(&fs_info->scrub_workers);
2798                 if (ret)
2799                         goto out;
2800                 btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2801                                    "scrubwrc",
2802                                    fs_info->thread_pool_size,
2803                                    &fs_info->generic_worker);
2804                 fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2805                 ret = btrfs_start_workers(
2806                                 &fs_info->scrub_wr_completion_workers);
2807                 if (ret)
2808                         goto out;
2809                 btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2810                                    &fs_info->generic_worker);
2811                 ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2812                 if (ret)
2813                         goto out;
2814         }
2815         ++fs_info->scrub_workers_refcnt;
2816 out:
2817         mutex_unlock(&fs_info->scrub_lock);
2818
2819         return ret;
2820 }
2821
2822 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2823 {
2824         mutex_lock(&fs_info->scrub_lock);
2825         if (--fs_info->scrub_workers_refcnt == 0) {
2826                 btrfs_stop_workers(&fs_info->scrub_workers);
2827                 btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2828                 btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2829         }
2830         WARN_ON(fs_info->scrub_workers_refcnt < 0);
2831         mutex_unlock(&fs_info->scrub_lock);
2832 }
2833
2834 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2835                     u64 end, struct btrfs_scrub_progress *progress,
2836                     int readonly, int is_dev_replace)
2837 {
2838         struct scrub_ctx *sctx;
2839         int ret;
2840         struct btrfs_device *dev;
2841
2842         if (btrfs_fs_closing(fs_info))
2843                 return -EINVAL;
2844
2845         /*
2846          * check some assumptions
2847          */
2848         if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2849                 printk(KERN_ERR
2850                        "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2851                        fs_info->chunk_root->nodesize,
2852                        fs_info->chunk_root->leafsize);
2853                 return -EINVAL;
2854         }
2855
2856         if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2857                 /*
2858                  * in this case scrub is unable to calculate the checksum
2859                  * the way scrub is implemented. Do not handle this
2860                  * situation at all because it won't ever happen.
2861                  */
2862                 printk(KERN_ERR
2863                        "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2864                        fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2865                 return -EINVAL;
2866         }
2867
2868         if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2869                 /* not supported for data w/o checksums */
2870                 printk(KERN_ERR
2871                        "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2872                        fs_info->chunk_root->sectorsize,
2873                        (unsigned long long)PAGE_SIZE);
2874                 return -EINVAL;
2875         }
2876
2877         if (fs_info->chunk_root->nodesize >
2878             PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2879             fs_info->chunk_root->sectorsize >
2880             PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2881                 /*
2882                  * would exhaust the array bounds of pagev member in
2883                  * struct scrub_block
2884                  */
2885                 pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2886                        fs_info->chunk_root->nodesize,
2887                        SCRUB_MAX_PAGES_PER_BLOCK,
2888                        fs_info->chunk_root->sectorsize,
2889                        SCRUB_MAX_PAGES_PER_BLOCK);
2890                 return -EINVAL;
2891         }
2892
2893         ret = scrub_workers_get(fs_info, is_dev_replace);
2894         if (ret)
2895                 return ret;
2896
2897         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2898         dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2899         if (!dev || (dev->missing && !is_dev_replace)) {
2900                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2901                 scrub_workers_put(fs_info);
2902                 return -ENODEV;
2903         }
2904         mutex_lock(&fs_info->scrub_lock);
2905
2906         if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2907                 mutex_unlock(&fs_info->scrub_lock);
2908                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2909                 scrub_workers_put(fs_info);
2910                 return -EIO;
2911         }
2912
2913         btrfs_dev_replace_lock(&fs_info->dev_replace);
2914         if (dev->scrub_device ||
2915             (!is_dev_replace &&
2916              btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2917                 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2918                 mutex_unlock(&fs_info->scrub_lock);
2919                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2920                 scrub_workers_put(fs_info);
2921                 return -EINPROGRESS;
2922         }
2923         btrfs_dev_replace_unlock(&fs_info->dev_replace);
2924         sctx = scrub_setup_ctx(dev, is_dev_replace);
2925         if (IS_ERR(sctx)) {
2926                 mutex_unlock(&fs_info->scrub_lock);
2927                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2928                 scrub_workers_put(fs_info);
2929                 return PTR_ERR(sctx);
2930         }
2931         sctx->readonly = readonly;
2932         dev->scrub_device = sctx;
2933
2934         atomic_inc(&fs_info->scrubs_running);
2935         mutex_unlock(&fs_info->scrub_lock);
2936         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2937
2938         if (!is_dev_replace) {
2939                 down_read(&fs_info->scrub_super_lock);
2940                 ret = scrub_supers(sctx, dev);
2941                 up_read(&fs_info->scrub_super_lock);
2942         }
2943
2944         if (!ret)
2945                 ret = scrub_enumerate_chunks(sctx, dev, start, end,
2946                                              is_dev_replace);
2947
2948         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2949         atomic_dec(&fs_info->scrubs_running);
2950         wake_up(&fs_info->scrub_pause_wait);
2951
2952         wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2953
2954         if (progress)
2955                 memcpy(progress, &sctx->stat, sizeof(*progress));
2956
2957         mutex_lock(&fs_info->scrub_lock);
2958         dev->scrub_device = NULL;
2959         mutex_unlock(&fs_info->scrub_lock);
2960
2961         scrub_free_ctx(sctx);
2962         scrub_workers_put(fs_info);
2963
2964         return ret;
2965 }
2966
2967 void btrfs_scrub_pause(struct btrfs_root *root)
2968 {
2969         struct btrfs_fs_info *fs_info = root->fs_info;
2970
2971         mutex_lock(&fs_info->scrub_lock);
2972         atomic_inc(&fs_info->scrub_pause_req);
2973         while (atomic_read(&fs_info->scrubs_paused) !=
2974                atomic_read(&fs_info->scrubs_running)) {
2975                 mutex_unlock(&fs_info->scrub_lock);
2976                 wait_event(fs_info->scrub_pause_wait,
2977                            atomic_read(&fs_info->scrubs_paused) ==
2978                            atomic_read(&fs_info->scrubs_running));
2979                 mutex_lock(&fs_info->scrub_lock);
2980         }
2981         mutex_unlock(&fs_info->scrub_lock);
2982 }
2983
2984 void btrfs_scrub_continue(struct btrfs_root *root)
2985 {
2986         struct btrfs_fs_info *fs_info = root->fs_info;
2987
2988         atomic_dec(&fs_info->scrub_pause_req);
2989         wake_up(&fs_info->scrub_pause_wait);
2990 }
2991
2992 void btrfs_scrub_pause_super(struct btrfs_root *root)
2993 {
2994         down_write(&root->fs_info->scrub_super_lock);
2995 }
2996
2997 void btrfs_scrub_continue_super(struct btrfs_root *root)
2998 {
2999         up_write(&root->fs_info->scrub_super_lock);
3000 }
3001
3002 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3003 {
3004         mutex_lock(&fs_info->scrub_lock);
3005         if (!atomic_read(&fs_info->scrubs_running)) {
3006                 mutex_unlock(&fs_info->scrub_lock);
3007                 return -ENOTCONN;
3008         }
3009
3010         atomic_inc(&fs_info->scrub_cancel_req);
3011         while (atomic_read(&fs_info->scrubs_running)) {
3012                 mutex_unlock(&fs_info->scrub_lock);
3013                 wait_event(fs_info->scrub_pause_wait,
3014                            atomic_read(&fs_info->scrubs_running) == 0);
3015                 mutex_lock(&fs_info->scrub_lock);
3016         }
3017         atomic_dec(&fs_info->scrub_cancel_req);
3018         mutex_unlock(&fs_info->scrub_lock);
3019
3020         return 0;
3021 }
3022
3023 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3024                            struct btrfs_device *dev)
3025 {
3026         struct scrub_ctx *sctx;
3027
3028         mutex_lock(&fs_info->scrub_lock);
3029         sctx = dev->scrub_device;
3030         if (!sctx) {
3031                 mutex_unlock(&fs_info->scrub_lock);
3032                 return -ENOTCONN;
3033         }
3034         atomic_inc(&sctx->cancel_req);
3035         while (dev->scrub_device) {
3036                 mutex_unlock(&fs_info->scrub_lock);
3037                 wait_event(fs_info->scrub_pause_wait,
3038                            dev->scrub_device == NULL);
3039                 mutex_lock(&fs_info->scrub_lock);
3040         }
3041         mutex_unlock(&fs_info->scrub_lock);
3042
3043         return 0;
3044 }
3045
3046 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3047                          struct btrfs_scrub_progress *progress)
3048 {
3049         struct btrfs_device *dev;
3050         struct scrub_ctx *sctx = NULL;
3051
3052         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3053         dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3054         if (dev)
3055                 sctx = dev->scrub_device;
3056         if (sctx)
3057                 memcpy(progress, &sctx->stat, sizeof(*progress));
3058         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3059
3060         return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3061 }
3062
3063 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3064                                u64 extent_logical, u64 extent_len,
3065                                u64 *extent_physical,
3066                                struct btrfs_device **extent_dev,
3067                                int *extent_mirror_num)
3068 {
3069         u64 mapped_length;
3070         struct btrfs_bio *bbio = NULL;
3071         int ret;
3072
3073         mapped_length = extent_len;
3074         ret = btrfs_map_block(fs_info, READ, extent_logical,
3075                               &mapped_length, &bbio, 0);
3076         if (ret || !bbio || mapped_length < extent_len ||
3077             !bbio->stripes[0].dev->bdev) {
3078                 kfree(bbio);
3079                 return;
3080         }
3081
3082         *extent_physical = bbio->stripes[0].physical;
3083         *extent_mirror_num = bbio->mirror_num;
3084         *extent_dev = bbio->stripes[0].dev;
3085         kfree(bbio);
3086 }
3087
3088 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3089                               struct scrub_wr_ctx *wr_ctx,
3090                               struct btrfs_fs_info *fs_info,
3091                               struct btrfs_device *dev,
3092                               int is_dev_replace)
3093 {
3094         WARN_ON(wr_ctx->wr_curr_bio != NULL);
3095
3096         mutex_init(&wr_ctx->wr_lock);
3097         wr_ctx->wr_curr_bio = NULL;
3098         if (!is_dev_replace)
3099                 return 0;
3100
3101         WARN_ON(!dev->bdev);
3102         wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3103                                          bio_get_nr_vecs(dev->bdev));
3104         wr_ctx->tgtdev = dev;
3105         atomic_set(&wr_ctx->flush_all_writes, 0);
3106         return 0;
3107 }
3108
3109 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3110 {
3111         mutex_lock(&wr_ctx->wr_lock);
3112         kfree(wr_ctx->wr_curr_bio);
3113         wr_ctx->wr_curr_bio = NULL;
3114         mutex_unlock(&wr_ctx->wr_lock);
3115 }
3116
3117 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3118                             int mirror_num, u64 physical_for_dev_replace)
3119 {
3120         struct scrub_copy_nocow_ctx *nocow_ctx;
3121         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3122
3123         nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3124         if (!nocow_ctx) {
3125                 spin_lock(&sctx->stat_lock);
3126                 sctx->stat.malloc_errors++;
3127                 spin_unlock(&sctx->stat_lock);
3128                 return -ENOMEM;
3129         }
3130
3131         scrub_pending_trans_workers_inc(sctx);
3132
3133         nocow_ctx->sctx = sctx;
3134         nocow_ctx->logical = logical;
3135         nocow_ctx->len = len;
3136         nocow_ctx->mirror_num = mirror_num;
3137         nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3138         nocow_ctx->work.func = copy_nocow_pages_worker;
3139         btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3140                            &nocow_ctx->work);
3141
3142         return 0;
3143 }
3144
3145 static void copy_nocow_pages_worker(struct btrfs_work *work)
3146 {
3147         struct scrub_copy_nocow_ctx *nocow_ctx =
3148                 container_of(work, struct scrub_copy_nocow_ctx, work);
3149         struct scrub_ctx *sctx = nocow_ctx->sctx;
3150         u64 logical = nocow_ctx->logical;
3151         u64 len = nocow_ctx->len;
3152         int mirror_num = nocow_ctx->mirror_num;
3153         u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3154         int ret;
3155         struct btrfs_trans_handle *trans = NULL;
3156         struct btrfs_fs_info *fs_info;
3157         struct btrfs_path *path;
3158         struct btrfs_root *root;
3159         int not_written = 0;
3160
3161         fs_info = sctx->dev_root->fs_info;
3162         root = fs_info->extent_root;
3163
3164         path = btrfs_alloc_path();
3165         if (!path) {
3166                 spin_lock(&sctx->stat_lock);
3167                 sctx->stat.malloc_errors++;
3168                 spin_unlock(&sctx->stat_lock);
3169                 not_written = 1;
3170                 goto out;
3171         }
3172
3173         trans = btrfs_join_transaction(root);
3174         if (IS_ERR(trans)) {
3175                 not_written = 1;
3176                 goto out;
3177         }
3178
3179         ret = iterate_inodes_from_logical(logical, fs_info, path,
3180                                           copy_nocow_pages_for_inode,
3181                                           nocow_ctx);
3182         if (ret != 0 && ret != -ENOENT) {
3183                 pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %llu, ret %d\n",
3184                         (unsigned long long)logical,
3185                         (unsigned long long)physical_for_dev_replace,
3186                         (unsigned long long)len,
3187                         (unsigned long long)mirror_num, ret);
3188                 not_written = 1;
3189                 goto out;
3190         }
3191
3192 out:
3193         if (trans && !IS_ERR(trans))
3194                 btrfs_end_transaction(trans, root);
3195         if (not_written)
3196                 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3197                                             num_uncorrectable_read_errors);
3198
3199         btrfs_free_path(path);
3200         kfree(nocow_ctx);
3201
3202         scrub_pending_trans_workers_dec(sctx);
3203 }
3204
3205 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, void *ctx)
3206 {
3207         unsigned long index;
3208         struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3209         int ret = 0;
3210         struct btrfs_key key;
3211         struct inode *inode = NULL;
3212         struct btrfs_root *local_root;
3213         u64 physical_for_dev_replace;
3214         u64 len;
3215         struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3216         int srcu_index;
3217
3218         key.objectid = root;
3219         key.type = BTRFS_ROOT_ITEM_KEY;
3220         key.offset = (u64)-1;
3221
3222         srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3223
3224         local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3225         if (IS_ERR(local_root)) {
3226                 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3227                 return PTR_ERR(local_root);
3228         }
3229
3230         key.type = BTRFS_INODE_ITEM_KEY;
3231         key.objectid = inum;
3232         key.offset = 0;
3233         inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3234         srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3235         if (IS_ERR(inode))
3236                 return PTR_ERR(inode);
3237
3238         physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3239         len = nocow_ctx->len;
3240         while (len >= PAGE_CACHE_SIZE) {
3241                 struct page *page = NULL;
3242                 int ret_sub;
3243
3244                 index = offset >> PAGE_CACHE_SHIFT;
3245
3246                 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3247                 if (!page) {
3248                         pr_err("find_or_create_page() failed\n");
3249                         ret = -ENOMEM;
3250                         goto next_page;
3251                 }
3252
3253                 if (PageUptodate(page)) {
3254                         if (PageDirty(page))
3255                                 goto next_page;
3256                 } else {
3257                         ClearPageError(page);
3258                         ret_sub = extent_read_full_page(&BTRFS_I(inode)->
3259                                                          io_tree,
3260                                                         page, btrfs_get_extent,
3261                                                         nocow_ctx->mirror_num);
3262                         if (ret_sub) {
3263                                 ret = ret_sub;
3264                                 goto next_page;
3265                         }
3266                         wait_on_page_locked(page);
3267                         if (!PageUptodate(page)) {
3268                                 ret = -EIO;
3269                                 goto next_page;
3270                         }
3271                 }
3272                 ret_sub = write_page_nocow(nocow_ctx->sctx,
3273                                            physical_for_dev_replace, page);
3274                 if (ret_sub) {
3275                         ret = ret_sub;
3276                         goto next_page;
3277                 }
3278
3279 next_page:
3280                 if (page) {
3281                         unlock_page(page);
3282                         put_page(page);
3283                 }
3284                 offset += PAGE_CACHE_SIZE;
3285                 physical_for_dev_replace += PAGE_CACHE_SIZE;
3286                 len -= PAGE_CACHE_SIZE;
3287         }
3288
3289         if (inode)
3290                 iput(inode);
3291         return ret;
3292 }
3293
3294 static int write_page_nocow(struct scrub_ctx *sctx,
3295                             u64 physical_for_dev_replace, struct page *page)
3296 {
3297         struct bio *bio;
3298         struct btrfs_device *dev;
3299         int ret;
3300         DECLARE_COMPLETION_ONSTACK(compl);
3301
3302         dev = sctx->wr_ctx.tgtdev;
3303         if (!dev)
3304                 return -EIO;
3305         if (!dev->bdev) {
3306                 printk_ratelimited(KERN_WARNING
3307                         "btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3308                 return -EIO;
3309         }
3310         bio = bio_alloc(GFP_NOFS, 1);
3311         if (!bio) {
3312                 spin_lock(&sctx->stat_lock);
3313                 sctx->stat.malloc_errors++;
3314                 spin_unlock(&sctx->stat_lock);
3315                 return -ENOMEM;
3316         }
3317         bio->bi_private = &compl;
3318         bio->bi_end_io = scrub_complete_bio_end_io;
3319         bio->bi_size = 0;
3320         bio->bi_sector = physical_for_dev_replace >> 9;
3321         bio->bi_bdev = dev->bdev;
3322         ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3323         if (ret != PAGE_CACHE_SIZE) {
3324 leave_with_eio:
3325                 bio_put(bio);
3326                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3327                 return -EIO;
3328         }
3329         btrfsic_submit_bio(WRITE_SYNC, bio);
3330         wait_for_completion(&compl);
3331
3332         if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
3333                 goto leave_with_eio;
3334
3335         bio_put(bio);
3336         return 0;
3337 }