Btrfs: remove all subvol options before mounting top-level
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69
70 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71
72 static const char *btrfs_decode_error(int errno)
73 {
74         char *errstr = "unknown";
75
76         switch (errno) {
77         case -EIO:
78                 errstr = "IO failure";
79                 break;
80         case -ENOMEM:
81                 errstr = "Out of memory";
82                 break;
83         case -EROFS:
84                 errstr = "Readonly filesystem";
85                 break;
86         case -EEXIST:
87                 errstr = "Object already exists";
88                 break;
89         case -ENOSPC:
90                 errstr = "No space left";
91                 break;
92         case -ENOENT:
93                 errstr = "No such entry";
94                 break;
95         }
96
97         return errstr;
98 }
99
100 static void save_error_info(struct btrfs_fs_info *fs_info)
101 {
102         /*
103          * today we only save the error info into ram.  Long term we'll
104          * also send it down to the disk
105          */
106         set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
107 }
108
109 /* btrfs handle error by forcing the filesystem readonly */
110 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 {
112         struct super_block *sb = fs_info->sb;
113
114         if (sb->s_flags & MS_RDONLY)
115                 return;
116
117         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
118                 sb->s_flags |= MS_RDONLY;
119                 btrfs_info(fs_info, "forced readonly");
120                 /*
121                  * Note that a running device replace operation is not
122                  * canceled here although there is no way to update
123                  * the progress. It would add the risk of a deadlock,
124                  * therefore the canceling is ommited. The only penalty
125                  * is that some I/O remains active until the procedure
126                  * completes. The next time when the filesystem is
127                  * mounted writeable again, the device replace
128                  * operation continues.
129                  */
130         }
131 }
132
133 #ifdef CONFIG_PRINTK
134 /*
135  * __btrfs_std_error decodes expected errors from the caller and
136  * invokes the approciate error response.
137  */
138 __cold
139 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
140                        unsigned int line, int errno, const char *fmt, ...)
141 {
142         struct super_block *sb = fs_info->sb;
143         const char *errstr;
144
145         /*
146          * Special case: if the error is EROFS, and we're already
147          * under MS_RDONLY, then it is safe here.
148          */
149         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
150                 return;
151
152         errstr = btrfs_decode_error(errno);
153         if (fmt) {
154                 struct va_format vaf;
155                 va_list args;
156
157                 va_start(args, fmt);
158                 vaf.fmt = fmt;
159                 vaf.va = &args;
160
161                 printk(KERN_CRIT
162                         "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
163                         sb->s_id, function, line, errno, errstr, &vaf);
164                 va_end(args);
165         } else {
166                 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
167                         sb->s_id, function, line, errno, errstr);
168         }
169
170         /* Don't go through full error handling during mount */
171         save_error_info(fs_info);
172         if (sb->s_flags & MS_BORN)
173                 btrfs_handle_error(fs_info);
174 }
175
176 static const char * const logtypes[] = {
177         "emergency",
178         "alert",
179         "critical",
180         "error",
181         "warning",
182         "notice",
183         "info",
184         "debug",
185 };
186
187 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
188 {
189         struct super_block *sb = fs_info->sb;
190         char lvl[4];
191         struct va_format vaf;
192         va_list args;
193         const char *type = logtypes[4];
194         int kern_level;
195
196         va_start(args, fmt);
197
198         kern_level = printk_get_level(fmt);
199         if (kern_level) {
200                 size_t size = printk_skip_level(fmt) - fmt;
201                 memcpy(lvl, fmt,  size);
202                 lvl[size] = '\0';
203                 fmt += size;
204                 type = logtypes[kern_level - '0'];
205         } else
206                 *lvl = '\0';
207
208         vaf.fmt = fmt;
209         vaf.va = &args;
210
211         printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
212
213         va_end(args);
214 }
215
216 #else
217
218 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
219                        unsigned int line, int errno, const char *fmt, ...)
220 {
221         struct super_block *sb = fs_info->sb;
222
223         /*
224          * Special case: if the error is EROFS, and we're already
225          * under MS_RDONLY, then it is safe here.
226          */
227         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
228                 return;
229
230         /* Don't go through full error handling during mount */
231         if (sb->s_flags & MS_BORN) {
232                 save_error_info(fs_info);
233                 btrfs_handle_error(fs_info);
234         }
235 }
236 #endif
237
238 /*
239  * We only mark the transaction aborted and then set the file system read-only.
240  * This will prevent new transactions from starting or trying to join this
241  * one.
242  *
243  * This means that error recovery at the call site is limited to freeing
244  * any local memory allocations and passing the error code up without
245  * further cleanup. The transaction should complete as it normally would
246  * in the call path but will return -EIO.
247  *
248  * We'll complete the cleanup in btrfs_end_transaction and
249  * btrfs_commit_transaction.
250  */
251 __cold
252 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
253                                struct btrfs_root *root, const char *function,
254                                unsigned int line, int errno)
255 {
256         trans->aborted = errno;
257         /* Nothing used. The other threads that have joined this
258          * transaction may be able to continue. */
259         if (!trans->blocks_used && list_empty(&trans->new_bgs)) {
260                 const char *errstr;
261
262                 errstr = btrfs_decode_error(errno);
263                 btrfs_warn(root->fs_info,
264                            "%s:%d: Aborting unused transaction(%s).",
265                            function, line, errstr);
266                 return;
267         }
268         ACCESS_ONCE(trans->transaction->aborted) = errno;
269         /* Wake up anybody who may be waiting on this transaction */
270         wake_up(&root->fs_info->transaction_wait);
271         wake_up(&root->fs_info->transaction_blocked_wait);
272         __btrfs_std_error(root->fs_info, function, line, errno, NULL);
273 }
274 /*
275  * __btrfs_panic decodes unexpected, fatal errors from the caller,
276  * issues an alert, and either panics or BUGs, depending on mount options.
277  */
278 __cold
279 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
280                    unsigned int line, int errno, const char *fmt, ...)
281 {
282         char *s_id = "<unknown>";
283         const char *errstr;
284         struct va_format vaf = { .fmt = fmt };
285         va_list args;
286
287         if (fs_info)
288                 s_id = fs_info->sb->s_id;
289
290         va_start(args, fmt);
291         vaf.va = &args;
292
293         errstr = btrfs_decode_error(errno);
294         if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
295                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
296                         s_id, function, line, &vaf, errno, errstr);
297
298         btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
299                    function, line, &vaf, errno, errstr);
300         va_end(args);
301         /* Caller calls BUG() */
302 }
303
304 static void btrfs_put_super(struct super_block *sb)
305 {
306         close_ctree(btrfs_sb(sb)->tree_root);
307 }
308
309 enum {
310         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
311         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
312         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
313         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
314         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
315         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
316         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
317         Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
318         Opt_check_integrity, Opt_check_integrity_including_extent_data,
319         Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
320         Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
321         Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
322         Opt_datasum, Opt_treelog, Opt_noinode_cache,
323         Opt_err,
324 };
325
326 static match_table_t tokens = {
327         {Opt_degraded, "degraded"},
328         {Opt_subvol, "subvol=%s"},
329         {Opt_subvolid, "subvolid=%s"},
330         {Opt_device, "device=%s"},
331         {Opt_nodatasum, "nodatasum"},
332         {Opt_datasum, "datasum"},
333         {Opt_nodatacow, "nodatacow"},
334         {Opt_datacow, "datacow"},
335         {Opt_nobarrier, "nobarrier"},
336         {Opt_barrier, "barrier"},
337         {Opt_max_inline, "max_inline=%s"},
338         {Opt_alloc_start, "alloc_start=%s"},
339         {Opt_thread_pool, "thread_pool=%d"},
340         {Opt_compress, "compress"},
341         {Opt_compress_type, "compress=%s"},
342         {Opt_compress_force, "compress-force"},
343         {Opt_compress_force_type, "compress-force=%s"},
344         {Opt_ssd, "ssd"},
345         {Opt_ssd_spread, "ssd_spread"},
346         {Opt_nossd, "nossd"},
347         {Opt_acl, "acl"},
348         {Opt_noacl, "noacl"},
349         {Opt_notreelog, "notreelog"},
350         {Opt_treelog, "treelog"},
351         {Opt_flushoncommit, "flushoncommit"},
352         {Opt_noflushoncommit, "noflushoncommit"},
353         {Opt_ratio, "metadata_ratio=%d"},
354         {Opt_discard, "discard"},
355         {Opt_nodiscard, "nodiscard"},
356         {Opt_space_cache, "space_cache"},
357         {Opt_clear_cache, "clear_cache"},
358         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
359         {Opt_enospc_debug, "enospc_debug"},
360         {Opt_noenospc_debug, "noenospc_debug"},
361         {Opt_subvolrootid, "subvolrootid=%d"},
362         {Opt_defrag, "autodefrag"},
363         {Opt_nodefrag, "noautodefrag"},
364         {Opt_inode_cache, "inode_cache"},
365         {Opt_noinode_cache, "noinode_cache"},
366         {Opt_no_space_cache, "nospace_cache"},
367         {Opt_recovery, "recovery"},
368         {Opt_skip_balance, "skip_balance"},
369         {Opt_check_integrity, "check_int"},
370         {Opt_check_integrity_including_extent_data, "check_int_data"},
371         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
372         {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
373         {Opt_fatal_errors, "fatal_errors=%s"},
374         {Opt_commit_interval, "commit=%d"},
375         {Opt_err, NULL},
376 };
377
378 /*
379  * Regular mount options parser.  Everything that is needed only when
380  * reading in a new superblock is parsed here.
381  * XXX JDM: This needs to be cleaned up for remount.
382  */
383 int btrfs_parse_options(struct btrfs_root *root, char *options)
384 {
385         struct btrfs_fs_info *info = root->fs_info;
386         substring_t args[MAX_OPT_ARGS];
387         char *p, *num, *orig = NULL;
388         u64 cache_gen;
389         int intarg;
390         int ret = 0;
391         char *compress_type;
392         bool compress_force = false;
393
394         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
395         if (cache_gen)
396                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
397
398         if (!options)
399                 goto out;
400
401         /*
402          * strsep changes the string, duplicate it because parse_options
403          * gets called twice
404          */
405         options = kstrdup(options, GFP_NOFS);
406         if (!options)
407                 return -ENOMEM;
408
409         orig = options;
410
411         while ((p = strsep(&options, ",")) != NULL) {
412                 int token;
413                 if (!*p)
414                         continue;
415
416                 token = match_token(p, tokens, args);
417                 switch (token) {
418                 case Opt_degraded:
419                         btrfs_info(root->fs_info, "allowing degraded mounts");
420                         btrfs_set_opt(info->mount_opt, DEGRADED);
421                         break;
422                 case Opt_subvol:
423                 case Opt_subvolid:
424                 case Opt_subvolrootid:
425                 case Opt_device:
426                         /*
427                          * These are parsed by btrfs_parse_early_options
428                          * and can be happily ignored here.
429                          */
430                         break;
431                 case Opt_nodatasum:
432                         btrfs_set_and_info(root, NODATASUM,
433                                            "setting nodatasum");
434                         break;
435                 case Opt_datasum:
436                         if (btrfs_test_opt(root, NODATASUM)) {
437                                 if (btrfs_test_opt(root, NODATACOW))
438                                         btrfs_info(root->fs_info, "setting datasum, datacow enabled");
439                                 else
440                                         btrfs_info(root->fs_info, "setting datasum");
441                         }
442                         btrfs_clear_opt(info->mount_opt, NODATACOW);
443                         btrfs_clear_opt(info->mount_opt, NODATASUM);
444                         break;
445                 case Opt_nodatacow:
446                         if (!btrfs_test_opt(root, NODATACOW)) {
447                                 if (!btrfs_test_opt(root, COMPRESS) ||
448                                     !btrfs_test_opt(root, FORCE_COMPRESS)) {
449                                         btrfs_info(root->fs_info,
450                                                    "setting nodatacow, compression disabled");
451                                 } else {
452                                         btrfs_info(root->fs_info, "setting nodatacow");
453                                 }
454                         }
455                         btrfs_clear_opt(info->mount_opt, COMPRESS);
456                         btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
457                         btrfs_set_opt(info->mount_opt, NODATACOW);
458                         btrfs_set_opt(info->mount_opt, NODATASUM);
459                         break;
460                 case Opt_datacow:
461                         btrfs_clear_and_info(root, NODATACOW,
462                                              "setting datacow");
463                         break;
464                 case Opt_compress_force:
465                 case Opt_compress_force_type:
466                         compress_force = true;
467                         /* Fallthrough */
468                 case Opt_compress:
469                 case Opt_compress_type:
470                         if (token == Opt_compress ||
471                             token == Opt_compress_force ||
472                             strcmp(args[0].from, "zlib") == 0) {
473                                 compress_type = "zlib";
474                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
475                                 btrfs_set_opt(info->mount_opt, COMPRESS);
476                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
477                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
478                         } else if (strcmp(args[0].from, "lzo") == 0) {
479                                 compress_type = "lzo";
480                                 info->compress_type = BTRFS_COMPRESS_LZO;
481                                 btrfs_set_opt(info->mount_opt, COMPRESS);
482                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
483                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
484                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
485                         } else if (strncmp(args[0].from, "no", 2) == 0) {
486                                 compress_type = "no";
487                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
488                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
489                                 compress_force = false;
490                         } else {
491                                 ret = -EINVAL;
492                                 goto out;
493                         }
494
495                         if (compress_force) {
496                                 btrfs_set_and_info(root, FORCE_COMPRESS,
497                                                    "force %s compression",
498                                                    compress_type);
499                         } else {
500                                 if (!btrfs_test_opt(root, COMPRESS))
501                                         btrfs_info(root->fs_info,
502                                                    "btrfs: use %s compression",
503                                                    compress_type);
504                                 /*
505                                  * If we remount from compress-force=xxx to
506                                  * compress=xxx, we need clear FORCE_COMPRESS
507                                  * flag, otherwise, there is no way for users
508                                  * to disable forcible compression separately.
509                                  */
510                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
511                         }
512                         break;
513                 case Opt_ssd:
514                         btrfs_set_and_info(root, SSD,
515                                            "use ssd allocation scheme");
516                         break;
517                 case Opt_ssd_spread:
518                         btrfs_set_and_info(root, SSD_SPREAD,
519                                            "use spread ssd allocation scheme");
520                         btrfs_set_opt(info->mount_opt, SSD);
521                         break;
522                 case Opt_nossd:
523                         btrfs_set_and_info(root, NOSSD,
524                                              "not using ssd allocation scheme");
525                         btrfs_clear_opt(info->mount_opt, SSD);
526                         break;
527                 case Opt_barrier:
528                         btrfs_clear_and_info(root, NOBARRIER,
529                                              "turning on barriers");
530                         break;
531                 case Opt_nobarrier:
532                         btrfs_set_and_info(root, NOBARRIER,
533                                            "turning off barriers");
534                         break;
535                 case Opt_thread_pool:
536                         ret = match_int(&args[0], &intarg);
537                         if (ret) {
538                                 goto out;
539                         } else if (intarg > 0) {
540                                 info->thread_pool_size = intarg;
541                         } else {
542                                 ret = -EINVAL;
543                                 goto out;
544                         }
545                         break;
546                 case Opt_max_inline:
547                         num = match_strdup(&args[0]);
548                         if (num) {
549                                 info->max_inline = memparse(num, NULL);
550                                 kfree(num);
551
552                                 if (info->max_inline) {
553                                         info->max_inline = min_t(u64,
554                                                 info->max_inline,
555                                                 root->sectorsize);
556                                 }
557                                 btrfs_info(root->fs_info, "max_inline at %llu",
558                                         info->max_inline);
559                         } else {
560                                 ret = -ENOMEM;
561                                 goto out;
562                         }
563                         break;
564                 case Opt_alloc_start:
565                         num = match_strdup(&args[0]);
566                         if (num) {
567                                 mutex_lock(&info->chunk_mutex);
568                                 info->alloc_start = memparse(num, NULL);
569                                 mutex_unlock(&info->chunk_mutex);
570                                 kfree(num);
571                                 btrfs_info(root->fs_info, "allocations start at %llu",
572                                         info->alloc_start);
573                         } else {
574                                 ret = -ENOMEM;
575                                 goto out;
576                         }
577                         break;
578                 case Opt_acl:
579 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
580                         root->fs_info->sb->s_flags |= MS_POSIXACL;
581                         break;
582 #else
583                         btrfs_err(root->fs_info,
584                                 "support for ACL not compiled in!");
585                         ret = -EINVAL;
586                         goto out;
587 #endif
588                 case Opt_noacl:
589                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
590                         break;
591                 case Opt_notreelog:
592                         btrfs_set_and_info(root, NOTREELOG,
593                                            "disabling tree log");
594                         break;
595                 case Opt_treelog:
596                         btrfs_clear_and_info(root, NOTREELOG,
597                                              "enabling tree log");
598                         break;
599                 case Opt_flushoncommit:
600                         btrfs_set_and_info(root, FLUSHONCOMMIT,
601                                            "turning on flush-on-commit");
602                         break;
603                 case Opt_noflushoncommit:
604                         btrfs_clear_and_info(root, FLUSHONCOMMIT,
605                                              "turning off flush-on-commit");
606                         break;
607                 case Opt_ratio:
608                         ret = match_int(&args[0], &intarg);
609                         if (ret) {
610                                 goto out;
611                         } else if (intarg >= 0) {
612                                 info->metadata_ratio = intarg;
613                                 btrfs_info(root->fs_info, "metadata ratio %d",
614                                        info->metadata_ratio);
615                         } else {
616                                 ret = -EINVAL;
617                                 goto out;
618                         }
619                         break;
620                 case Opt_discard:
621                         btrfs_set_and_info(root, DISCARD,
622                                            "turning on discard");
623                         break;
624                 case Opt_nodiscard:
625                         btrfs_clear_and_info(root, DISCARD,
626                                              "turning off discard");
627                         break;
628                 case Opt_space_cache:
629                         btrfs_set_and_info(root, SPACE_CACHE,
630                                            "enabling disk space caching");
631                         break;
632                 case Opt_rescan_uuid_tree:
633                         btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
634                         break;
635                 case Opt_no_space_cache:
636                         btrfs_clear_and_info(root, SPACE_CACHE,
637                                              "disabling disk space caching");
638                         break;
639                 case Opt_inode_cache:
640                         btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
641                                            "enabling inode map caching");
642                         break;
643                 case Opt_noinode_cache:
644                         btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
645                                              "disabling inode map caching");
646                         break;
647                 case Opt_clear_cache:
648                         btrfs_set_and_info(root, CLEAR_CACHE,
649                                            "force clearing of disk cache");
650                         break;
651                 case Opt_user_subvol_rm_allowed:
652                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
653                         break;
654                 case Opt_enospc_debug:
655                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
656                         break;
657                 case Opt_noenospc_debug:
658                         btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
659                         break;
660                 case Opt_defrag:
661                         btrfs_set_and_info(root, AUTO_DEFRAG,
662                                            "enabling auto defrag");
663                         break;
664                 case Opt_nodefrag:
665                         btrfs_clear_and_info(root, AUTO_DEFRAG,
666                                              "disabling auto defrag");
667                         break;
668                 case Opt_recovery:
669                         btrfs_info(root->fs_info, "enabling auto recovery");
670                         btrfs_set_opt(info->mount_opt, RECOVERY);
671                         break;
672                 case Opt_skip_balance:
673                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
674                         break;
675 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
676                 case Opt_check_integrity_including_extent_data:
677                         btrfs_info(root->fs_info,
678                                    "enabling check integrity including extent data");
679                         btrfs_set_opt(info->mount_opt,
680                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
681                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
682                         break;
683                 case Opt_check_integrity:
684                         btrfs_info(root->fs_info, "enabling check integrity");
685                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
686                         break;
687                 case Opt_check_integrity_print_mask:
688                         ret = match_int(&args[0], &intarg);
689                         if (ret) {
690                                 goto out;
691                         } else if (intarg >= 0) {
692                                 info->check_integrity_print_mask = intarg;
693                                 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
694                                        info->check_integrity_print_mask);
695                         } else {
696                                 ret = -EINVAL;
697                                 goto out;
698                         }
699                         break;
700 #else
701                 case Opt_check_integrity_including_extent_data:
702                 case Opt_check_integrity:
703                 case Opt_check_integrity_print_mask:
704                         btrfs_err(root->fs_info,
705                                 "support for check_integrity* not compiled in!");
706                         ret = -EINVAL;
707                         goto out;
708 #endif
709                 case Opt_fatal_errors:
710                         if (strcmp(args[0].from, "panic") == 0)
711                                 btrfs_set_opt(info->mount_opt,
712                                               PANIC_ON_FATAL_ERROR);
713                         else if (strcmp(args[0].from, "bug") == 0)
714                                 btrfs_clear_opt(info->mount_opt,
715                                               PANIC_ON_FATAL_ERROR);
716                         else {
717                                 ret = -EINVAL;
718                                 goto out;
719                         }
720                         break;
721                 case Opt_commit_interval:
722                         intarg = 0;
723                         ret = match_int(&args[0], &intarg);
724                         if (ret < 0) {
725                                 btrfs_err(root->fs_info, "invalid commit interval");
726                                 ret = -EINVAL;
727                                 goto out;
728                         }
729                         if (intarg > 0) {
730                                 if (intarg > 300) {
731                                         btrfs_warn(root->fs_info, "excessive commit interval %d",
732                                                         intarg);
733                                 }
734                                 info->commit_interval = intarg;
735                         } else {
736                                 btrfs_info(root->fs_info, "using default commit interval %ds",
737                                     BTRFS_DEFAULT_COMMIT_INTERVAL);
738                                 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
739                         }
740                         break;
741                 case Opt_err:
742                         btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
743                         ret = -EINVAL;
744                         goto out;
745                 default:
746                         break;
747                 }
748         }
749 out:
750         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
751                 btrfs_info(root->fs_info, "disk space caching is enabled");
752         kfree(orig);
753         return ret;
754 }
755
756 /*
757  * Parse mount options that are required early in the mount process.
758  *
759  * All other options will be parsed on much later in the mount process and
760  * only when we need to allocate a new super block.
761  */
762 static int btrfs_parse_early_options(const char *options, fmode_t flags,
763                 void *holder, char **subvol_name, u64 *subvol_objectid,
764                 struct btrfs_fs_devices **fs_devices)
765 {
766         substring_t args[MAX_OPT_ARGS];
767         char *device_name, *opts, *orig, *p;
768         char *num = NULL;
769         int error = 0;
770
771         if (!options)
772                 return 0;
773
774         /*
775          * strsep changes the string, duplicate it because parse_options
776          * gets called twice
777          */
778         opts = kstrdup(options, GFP_KERNEL);
779         if (!opts)
780                 return -ENOMEM;
781         orig = opts;
782
783         while ((p = strsep(&opts, ",")) != NULL) {
784                 int token;
785                 if (!*p)
786                         continue;
787
788                 token = match_token(p, tokens, args);
789                 switch (token) {
790                 case Opt_subvol:
791                         kfree(*subvol_name);
792                         *subvol_name = match_strdup(&args[0]);
793                         if (!*subvol_name) {
794                                 error = -ENOMEM;
795                                 goto out;
796                         }
797                         break;
798                 case Opt_subvolid:
799                         num = match_strdup(&args[0]);
800                         if (num) {
801                                 *subvol_objectid = memparse(num, NULL);
802                                 kfree(num);
803                                 /* we want the original fs_tree */
804                                 if (!*subvol_objectid)
805                                         *subvol_objectid =
806                                                 BTRFS_FS_TREE_OBJECTID;
807                         } else {
808                                 error = -EINVAL;
809                                 goto out;
810                         }
811                         break;
812                 case Opt_subvolrootid:
813                         printk(KERN_WARNING
814                                 "BTRFS: 'subvolrootid' mount option is deprecated and has "
815                                 "no effect\n");
816                         break;
817                 case Opt_device:
818                         device_name = match_strdup(&args[0]);
819                         if (!device_name) {
820                                 error = -ENOMEM;
821                                 goto out;
822                         }
823                         error = btrfs_scan_one_device(device_name,
824                                         flags, holder, fs_devices);
825                         kfree(device_name);
826                         if (error)
827                                 goto out;
828                         break;
829                 default:
830                         break;
831                 }
832         }
833
834 out:
835         kfree(orig);
836         return error;
837 }
838
839 static struct dentry *get_default_root(struct super_block *sb,
840                                        u64 subvol_objectid)
841 {
842         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
843         struct btrfs_root *root = fs_info->tree_root;
844         struct btrfs_root *new_root;
845         struct btrfs_dir_item *di;
846         struct btrfs_path *path;
847         struct btrfs_key location;
848         struct inode *inode;
849         u64 dir_id;
850         int new = 0;
851
852         /*
853          * We have a specific subvol we want to mount, just setup location and
854          * go look up the root.
855          */
856         if (subvol_objectid) {
857                 location.objectid = subvol_objectid;
858                 location.type = BTRFS_ROOT_ITEM_KEY;
859                 location.offset = (u64)-1;
860                 goto find_root;
861         }
862
863         path = btrfs_alloc_path();
864         if (!path)
865                 return ERR_PTR(-ENOMEM);
866         path->leave_spinning = 1;
867
868         /*
869          * Find the "default" dir item which points to the root item that we
870          * will mount by default if we haven't been given a specific subvolume
871          * to mount.
872          */
873         dir_id = btrfs_super_root_dir(fs_info->super_copy);
874         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
875         if (IS_ERR(di)) {
876                 btrfs_free_path(path);
877                 return ERR_CAST(di);
878         }
879         if (!di) {
880                 /*
881                  * Ok the default dir item isn't there.  This is weird since
882                  * it's always been there, but don't freak out, just try and
883                  * mount to root most subvolume.
884                  */
885                 btrfs_free_path(path);
886                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
887                 new_root = fs_info->fs_root;
888                 goto setup_root;
889         }
890
891         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
892         btrfs_free_path(path);
893
894 find_root:
895         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
896         if (IS_ERR(new_root))
897                 return ERR_CAST(new_root);
898
899         if (!(sb->s_flags & MS_RDONLY)) {
900                 int ret;
901                 down_read(&fs_info->cleanup_work_sem);
902                 ret = btrfs_orphan_cleanup(new_root);
903                 up_read(&fs_info->cleanup_work_sem);
904                 if (ret)
905                         return ERR_PTR(ret);
906         }
907
908         dir_id = btrfs_root_dirid(&new_root->root_item);
909 setup_root:
910         location.objectid = dir_id;
911         location.type = BTRFS_INODE_ITEM_KEY;
912         location.offset = 0;
913
914         inode = btrfs_iget(sb, &location, new_root, &new);
915         if (IS_ERR(inode))
916                 return ERR_CAST(inode);
917
918         /*
919          * If we're just mounting the root most subvol put the inode and return
920          * a reference to the dentry.  We will have already gotten a reference
921          * to the inode in btrfs_fill_super so we're good to go.
922          */
923         if (!new && d_inode(sb->s_root) == inode) {
924                 iput(inode);
925                 return dget(sb->s_root);
926         }
927
928         return d_obtain_root(inode);
929 }
930
931 static int btrfs_fill_super(struct super_block *sb,
932                             struct btrfs_fs_devices *fs_devices,
933                             void *data, int silent)
934 {
935         struct inode *inode;
936         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
937         struct btrfs_key key;
938         int err;
939
940         sb->s_maxbytes = MAX_LFS_FILESIZE;
941         sb->s_magic = BTRFS_SUPER_MAGIC;
942         sb->s_op = &btrfs_super_ops;
943         sb->s_d_op = &btrfs_dentry_operations;
944         sb->s_export_op = &btrfs_export_ops;
945         sb->s_xattr = btrfs_xattr_handlers;
946         sb->s_time_gran = 1;
947 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
948         sb->s_flags |= MS_POSIXACL;
949 #endif
950         sb->s_flags |= MS_I_VERSION;
951         err = open_ctree(sb, fs_devices, (char *)data);
952         if (err) {
953                 printk(KERN_ERR "BTRFS: open_ctree failed\n");
954                 return err;
955         }
956
957         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
958         key.type = BTRFS_INODE_ITEM_KEY;
959         key.offset = 0;
960         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
961         if (IS_ERR(inode)) {
962                 err = PTR_ERR(inode);
963                 goto fail_close;
964         }
965
966         sb->s_root = d_make_root(inode);
967         if (!sb->s_root) {
968                 err = -ENOMEM;
969                 goto fail_close;
970         }
971
972         save_mount_options(sb, data);
973         cleancache_init_fs(sb);
974         sb->s_flags |= MS_ACTIVE;
975         return 0;
976
977 fail_close:
978         close_ctree(fs_info->tree_root);
979         return err;
980 }
981
982 int btrfs_sync_fs(struct super_block *sb, int wait)
983 {
984         struct btrfs_trans_handle *trans;
985         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
986         struct btrfs_root *root = fs_info->tree_root;
987
988         trace_btrfs_sync_fs(wait);
989
990         if (!wait) {
991                 filemap_flush(fs_info->btree_inode->i_mapping);
992                 return 0;
993         }
994
995         btrfs_wait_ordered_roots(fs_info, -1);
996
997         trans = btrfs_attach_transaction_barrier(root);
998         if (IS_ERR(trans)) {
999                 /* no transaction, don't bother */
1000                 if (PTR_ERR(trans) == -ENOENT) {
1001                         /*
1002                          * Exit unless we have some pending changes
1003                          * that need to go through commit
1004                          */
1005                         if (fs_info->pending_changes == 0)
1006                                 return 0;
1007                         /*
1008                          * A non-blocking test if the fs is frozen. We must not
1009                          * start a new transaction here otherwise a deadlock
1010                          * happens. The pending operations are delayed to the
1011                          * next commit after thawing.
1012                          */
1013                         if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1014                                 __sb_end_write(sb, SB_FREEZE_WRITE);
1015                         else
1016                                 return 0;
1017                         trans = btrfs_start_transaction(root, 0);
1018                 }
1019                 if (IS_ERR(trans))
1020                         return PTR_ERR(trans);
1021         }
1022         return btrfs_commit_transaction(trans, root);
1023 }
1024
1025 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1026 {
1027         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1028         struct btrfs_root *root = info->tree_root;
1029         char *compress_type;
1030
1031         if (btrfs_test_opt(root, DEGRADED))
1032                 seq_puts(seq, ",degraded");
1033         if (btrfs_test_opt(root, NODATASUM))
1034                 seq_puts(seq, ",nodatasum");
1035         if (btrfs_test_opt(root, NODATACOW))
1036                 seq_puts(seq, ",nodatacow");
1037         if (btrfs_test_opt(root, NOBARRIER))
1038                 seq_puts(seq, ",nobarrier");
1039         if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1040                 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1041         if (info->alloc_start != 0)
1042                 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1043         if (info->thread_pool_size !=  min_t(unsigned long,
1044                                              num_online_cpus() + 2, 8))
1045                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1046         if (btrfs_test_opt(root, COMPRESS)) {
1047                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1048                         compress_type = "zlib";
1049                 else
1050                         compress_type = "lzo";
1051                 if (btrfs_test_opt(root, FORCE_COMPRESS))
1052                         seq_printf(seq, ",compress-force=%s", compress_type);
1053                 else
1054                         seq_printf(seq, ",compress=%s", compress_type);
1055         }
1056         if (btrfs_test_opt(root, NOSSD))
1057                 seq_puts(seq, ",nossd");
1058         if (btrfs_test_opt(root, SSD_SPREAD))
1059                 seq_puts(seq, ",ssd_spread");
1060         else if (btrfs_test_opt(root, SSD))
1061                 seq_puts(seq, ",ssd");
1062         if (btrfs_test_opt(root, NOTREELOG))
1063                 seq_puts(seq, ",notreelog");
1064         if (btrfs_test_opt(root, FLUSHONCOMMIT))
1065                 seq_puts(seq, ",flushoncommit");
1066         if (btrfs_test_opt(root, DISCARD))
1067                 seq_puts(seq, ",discard");
1068         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1069                 seq_puts(seq, ",noacl");
1070         if (btrfs_test_opt(root, SPACE_CACHE))
1071                 seq_puts(seq, ",space_cache");
1072         else
1073                 seq_puts(seq, ",nospace_cache");
1074         if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1075                 seq_puts(seq, ",rescan_uuid_tree");
1076         if (btrfs_test_opt(root, CLEAR_CACHE))
1077                 seq_puts(seq, ",clear_cache");
1078         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1079                 seq_puts(seq, ",user_subvol_rm_allowed");
1080         if (btrfs_test_opt(root, ENOSPC_DEBUG))
1081                 seq_puts(seq, ",enospc_debug");
1082         if (btrfs_test_opt(root, AUTO_DEFRAG))
1083                 seq_puts(seq, ",autodefrag");
1084         if (btrfs_test_opt(root, INODE_MAP_CACHE))
1085                 seq_puts(seq, ",inode_cache");
1086         if (btrfs_test_opt(root, SKIP_BALANCE))
1087                 seq_puts(seq, ",skip_balance");
1088         if (btrfs_test_opt(root, RECOVERY))
1089                 seq_puts(seq, ",recovery");
1090 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1091         if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1092                 seq_puts(seq, ",check_int_data");
1093         else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1094                 seq_puts(seq, ",check_int");
1095         if (info->check_integrity_print_mask)
1096                 seq_printf(seq, ",check_int_print_mask=%d",
1097                                 info->check_integrity_print_mask);
1098 #endif
1099         if (info->metadata_ratio)
1100                 seq_printf(seq, ",metadata_ratio=%d",
1101                                 info->metadata_ratio);
1102         if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1103                 seq_puts(seq, ",fatal_errors=panic");
1104         if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1105                 seq_printf(seq, ",commit=%d", info->commit_interval);
1106         return 0;
1107 }
1108
1109 static int btrfs_test_super(struct super_block *s, void *data)
1110 {
1111         struct btrfs_fs_info *p = data;
1112         struct btrfs_fs_info *fs_info = btrfs_sb(s);
1113
1114         return fs_info->fs_devices == p->fs_devices;
1115 }
1116
1117 static int btrfs_set_super(struct super_block *s, void *data)
1118 {
1119         int err = set_anon_super(s, data);
1120         if (!err)
1121                 s->s_fs_info = data;
1122         return err;
1123 }
1124
1125 /*
1126  * subvolumes are identified by ino 256
1127  */
1128 static inline int is_subvolume_inode(struct inode *inode)
1129 {
1130         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1131                 return 1;
1132         return 0;
1133 }
1134
1135 /*
1136  * This will add subvolid=0 to the argument string while removing any subvol=
1137  * and subvolid= arguments to make sure we get the top-level root for path
1138  * walking to the subvol we want.
1139  */
1140 static char *setup_root_args(char *args)
1141 {
1142         char *buf, *dst, *sep;
1143
1144         if (!args)
1145                 return kstrdup("subvolid=0", GFP_NOFS);
1146
1147         /* The worst case is that we add ",subvolid=0" to the end. */
1148         buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1149         if (!buf)
1150                 return NULL;
1151
1152         while (1) {
1153                 sep = strchrnul(args, ',');
1154                 if (!strstarts(args, "subvol=") &&
1155                     !strstarts(args, "subvolid=")) {
1156                         memcpy(dst, args, sep - args);
1157                         dst += sep - args;
1158                         *dst++ = ',';
1159                 }
1160                 if (*sep)
1161                         args = sep + 1;
1162                 else
1163                         break;
1164         }
1165         strcpy(dst, "subvolid=0");
1166
1167         return buf;
1168 }
1169
1170 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1171                                    const char *device_name, char *data)
1172 {
1173         struct dentry *root;
1174         struct vfsmount *mnt;
1175         char *newargs;
1176
1177         newargs = setup_root_args(data);
1178         if (!newargs)
1179                 return ERR_PTR(-ENOMEM);
1180         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1181                              newargs);
1182
1183         if (PTR_RET(mnt) == -EBUSY) {
1184                 if (flags & MS_RDONLY) {
1185                         mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1186                                              newargs);
1187                 } else {
1188                         int r;
1189                         mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1190                                              newargs);
1191                         if (IS_ERR(mnt)) {
1192                                 kfree(newargs);
1193                                 return ERR_CAST(mnt);
1194                         }
1195
1196                         down_write(&mnt->mnt_sb->s_umount);
1197                         r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1198                         up_write(&mnt->mnt_sb->s_umount);
1199                         if (r < 0) {
1200                                 /* FIXME: release vfsmount mnt ??*/
1201                                 kfree(newargs);
1202                                 return ERR_PTR(r);
1203                         }
1204                 }
1205         }
1206
1207         kfree(newargs);
1208
1209         if (IS_ERR(mnt))
1210                 return ERR_CAST(mnt);
1211
1212         root = mount_subtree(mnt, subvol_name);
1213
1214         if (!IS_ERR(root) && !is_subvolume_inode(d_inode(root))) {
1215                 struct super_block *s = root->d_sb;
1216                 dput(root);
1217                 root = ERR_PTR(-EINVAL);
1218                 deactivate_locked_super(s);
1219                 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1220                                 subvol_name);
1221         }
1222
1223         return root;
1224 }
1225
1226 static int parse_security_options(char *orig_opts,
1227                                   struct security_mnt_opts *sec_opts)
1228 {
1229         char *secdata = NULL;
1230         int ret = 0;
1231
1232         secdata = alloc_secdata();
1233         if (!secdata)
1234                 return -ENOMEM;
1235         ret = security_sb_copy_data(orig_opts, secdata);
1236         if (ret) {
1237                 free_secdata(secdata);
1238                 return ret;
1239         }
1240         ret = security_sb_parse_opts_str(secdata, sec_opts);
1241         free_secdata(secdata);
1242         return ret;
1243 }
1244
1245 static int setup_security_options(struct btrfs_fs_info *fs_info,
1246                                   struct super_block *sb,
1247                                   struct security_mnt_opts *sec_opts)
1248 {
1249         int ret = 0;
1250
1251         /*
1252          * Call security_sb_set_mnt_opts() to check whether new sec_opts
1253          * is valid.
1254          */
1255         ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1256         if (ret)
1257                 return ret;
1258
1259 #ifdef CONFIG_SECURITY
1260         if (!fs_info->security_opts.num_mnt_opts) {
1261                 /* first time security setup, copy sec_opts to fs_info */
1262                 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1263         } else {
1264                 /*
1265                  * Since SELinux(the only one supports security_mnt_opts) does
1266                  * NOT support changing context during remount/mount same sb,
1267                  * This must be the same or part of the same security options,
1268                  * just free it.
1269                  */
1270                 security_free_mnt_opts(sec_opts);
1271         }
1272 #endif
1273         return ret;
1274 }
1275
1276 /*
1277  * Find a superblock for the given device / mount point.
1278  *
1279  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1280  *        for multiple device setup.  Make sure to keep it in sync.
1281  */
1282 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1283                 const char *device_name, void *data)
1284 {
1285         struct block_device *bdev = NULL;
1286         struct super_block *s;
1287         struct dentry *root;
1288         struct btrfs_fs_devices *fs_devices = NULL;
1289         struct btrfs_fs_info *fs_info = NULL;
1290         struct security_mnt_opts new_sec_opts;
1291         fmode_t mode = FMODE_READ;
1292         char *subvol_name = NULL;
1293         u64 subvol_objectid = 0;
1294         int error = 0;
1295
1296         if (!(flags & MS_RDONLY))
1297                 mode |= FMODE_WRITE;
1298
1299         error = btrfs_parse_early_options(data, mode, fs_type,
1300                                           &subvol_name, &subvol_objectid,
1301                                           &fs_devices);
1302         if (error) {
1303                 kfree(subvol_name);
1304                 return ERR_PTR(error);
1305         }
1306
1307         if (subvol_name) {
1308                 root = mount_subvol(subvol_name, flags, device_name, data);
1309                 kfree(subvol_name);
1310                 return root;
1311         }
1312
1313         security_init_mnt_opts(&new_sec_opts);
1314         if (data) {
1315                 error = parse_security_options(data, &new_sec_opts);
1316                 if (error)
1317                         return ERR_PTR(error);
1318         }
1319
1320         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1321         if (error)
1322                 goto error_sec_opts;
1323
1324         /*
1325          * Setup a dummy root and fs_info for test/set super.  This is because
1326          * we don't actually fill this stuff out until open_ctree, but we need
1327          * it for searching for existing supers, so this lets us do that and
1328          * then open_ctree will properly initialize everything later.
1329          */
1330         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1331         if (!fs_info) {
1332                 error = -ENOMEM;
1333                 goto error_sec_opts;
1334         }
1335
1336         fs_info->fs_devices = fs_devices;
1337
1338         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1339         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1340         security_init_mnt_opts(&fs_info->security_opts);
1341         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1342                 error = -ENOMEM;
1343                 goto error_fs_info;
1344         }
1345
1346         error = btrfs_open_devices(fs_devices, mode, fs_type);
1347         if (error)
1348                 goto error_fs_info;
1349
1350         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1351                 error = -EACCES;
1352                 goto error_close_devices;
1353         }
1354
1355         bdev = fs_devices->latest_bdev;
1356         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1357                  fs_info);
1358         if (IS_ERR(s)) {
1359                 error = PTR_ERR(s);
1360                 goto error_close_devices;
1361         }
1362
1363         if (s->s_root) {
1364                 btrfs_close_devices(fs_devices);
1365                 free_fs_info(fs_info);
1366                 if ((flags ^ s->s_flags) & MS_RDONLY)
1367                         error = -EBUSY;
1368         } else {
1369                 char b[BDEVNAME_SIZE];
1370
1371                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1372                 btrfs_sb(s)->bdev_holder = fs_type;
1373                 error = btrfs_fill_super(s, fs_devices, data,
1374                                          flags & MS_SILENT ? 1 : 0);
1375         }
1376
1377         root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1378         if (IS_ERR(root)) {
1379                 deactivate_locked_super(s);
1380                 error = PTR_ERR(root);
1381                 goto error_sec_opts;
1382         }
1383
1384         fs_info = btrfs_sb(s);
1385         error = setup_security_options(fs_info, s, &new_sec_opts);
1386         if (error) {
1387                 dput(root);
1388                 deactivate_locked_super(s);
1389                 goto error_sec_opts;
1390         }
1391
1392         return root;
1393
1394 error_close_devices:
1395         btrfs_close_devices(fs_devices);
1396 error_fs_info:
1397         free_fs_info(fs_info);
1398 error_sec_opts:
1399         security_free_mnt_opts(&new_sec_opts);
1400         return ERR_PTR(error);
1401 }
1402
1403 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1404                                      int new_pool_size, int old_pool_size)
1405 {
1406         if (new_pool_size == old_pool_size)
1407                 return;
1408
1409         fs_info->thread_pool_size = new_pool_size;
1410
1411         btrfs_info(fs_info, "resize thread pool %d -> %d",
1412                old_pool_size, new_pool_size);
1413
1414         btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1415         btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1416         btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1417         btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1418         btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1419         btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1420         btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1421                                 new_pool_size);
1422         btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1423         btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1424         btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1425         btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1426         btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1427                                 new_pool_size);
1428 }
1429
1430 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1431 {
1432         set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1433 }
1434
1435 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1436                                        unsigned long old_opts, int flags)
1437 {
1438         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1439             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1440              (flags & MS_RDONLY))) {
1441                 /* wait for any defraggers to finish */
1442                 wait_event(fs_info->transaction_wait,
1443                            (atomic_read(&fs_info->defrag_running) == 0));
1444                 if (flags & MS_RDONLY)
1445                         sync_filesystem(fs_info->sb);
1446         }
1447 }
1448
1449 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1450                                          unsigned long old_opts)
1451 {
1452         /*
1453          * We need cleanup all defragable inodes if the autodefragment is
1454          * close or the fs is R/O.
1455          */
1456         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1457             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1458              (fs_info->sb->s_flags & MS_RDONLY))) {
1459                 btrfs_cleanup_defrag_inodes(fs_info);
1460         }
1461
1462         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1463 }
1464
1465 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1466 {
1467         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1468         struct btrfs_root *root = fs_info->tree_root;
1469         unsigned old_flags = sb->s_flags;
1470         unsigned long old_opts = fs_info->mount_opt;
1471         unsigned long old_compress_type = fs_info->compress_type;
1472         u64 old_max_inline = fs_info->max_inline;
1473         u64 old_alloc_start = fs_info->alloc_start;
1474         int old_thread_pool_size = fs_info->thread_pool_size;
1475         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1476         int ret;
1477
1478         sync_filesystem(sb);
1479         btrfs_remount_prepare(fs_info);
1480
1481         if (data) {
1482                 struct security_mnt_opts new_sec_opts;
1483
1484                 security_init_mnt_opts(&new_sec_opts);
1485                 ret = parse_security_options(data, &new_sec_opts);
1486                 if (ret)
1487                         goto restore;
1488                 ret = setup_security_options(fs_info, sb,
1489                                              &new_sec_opts);
1490                 if (ret) {
1491                         security_free_mnt_opts(&new_sec_opts);
1492                         goto restore;
1493                 }
1494         }
1495
1496         ret = btrfs_parse_options(root, data);
1497         if (ret) {
1498                 ret = -EINVAL;
1499                 goto restore;
1500         }
1501
1502         btrfs_remount_begin(fs_info, old_opts, *flags);
1503         btrfs_resize_thread_pool(fs_info,
1504                 fs_info->thread_pool_size, old_thread_pool_size);
1505
1506         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1507                 goto out;
1508
1509         if (*flags & MS_RDONLY) {
1510                 /*
1511                  * this also happens on 'umount -rf' or on shutdown, when
1512                  * the filesystem is busy.
1513                  */
1514                 cancel_work_sync(&fs_info->async_reclaim_work);
1515
1516                 /* wait for the uuid_scan task to finish */
1517                 down(&fs_info->uuid_tree_rescan_sem);
1518                 /* avoid complains from lockdep et al. */
1519                 up(&fs_info->uuid_tree_rescan_sem);
1520
1521                 sb->s_flags |= MS_RDONLY;
1522
1523                 btrfs_dev_replace_suspend_for_unmount(fs_info);
1524                 btrfs_scrub_cancel(fs_info);
1525                 btrfs_pause_balance(fs_info);
1526
1527                 ret = btrfs_commit_super(root);
1528                 if (ret)
1529                         goto restore;
1530         } else {
1531                 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1532                         btrfs_err(fs_info,
1533                                 "Remounting read-write after error is not allowed");
1534                         ret = -EINVAL;
1535                         goto restore;
1536                 }
1537                 if (fs_info->fs_devices->rw_devices == 0) {
1538                         ret = -EACCES;
1539                         goto restore;
1540                 }
1541
1542                 if (fs_info->fs_devices->missing_devices >
1543                      fs_info->num_tolerated_disk_barrier_failures &&
1544                     !(*flags & MS_RDONLY)) {
1545                         btrfs_warn(fs_info,
1546                                 "too many missing devices, writeable remount is not allowed");
1547                         ret = -EACCES;
1548                         goto restore;
1549                 }
1550
1551                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1552                         ret = -EINVAL;
1553                         goto restore;
1554                 }
1555
1556                 ret = btrfs_cleanup_fs_roots(fs_info);
1557                 if (ret)
1558                         goto restore;
1559
1560                 /* recover relocation */
1561                 mutex_lock(&fs_info->cleaner_mutex);
1562                 ret = btrfs_recover_relocation(root);
1563                 mutex_unlock(&fs_info->cleaner_mutex);
1564                 if (ret)
1565                         goto restore;
1566
1567                 ret = btrfs_resume_balance_async(fs_info);
1568                 if (ret)
1569                         goto restore;
1570
1571                 ret = btrfs_resume_dev_replace_async(fs_info);
1572                 if (ret) {
1573                         btrfs_warn(fs_info, "failed to resume dev_replace");
1574                         goto restore;
1575                 }
1576
1577                 if (!fs_info->uuid_root) {
1578                         btrfs_info(fs_info, "creating UUID tree");
1579                         ret = btrfs_create_uuid_tree(fs_info);
1580                         if (ret) {
1581                                 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1582                                 goto restore;
1583                         }
1584                 }
1585                 sb->s_flags &= ~MS_RDONLY;
1586         }
1587 out:
1588         wake_up_process(fs_info->transaction_kthread);
1589         btrfs_remount_cleanup(fs_info, old_opts);
1590         return 0;
1591
1592 restore:
1593         /* We've hit an error - don't reset MS_RDONLY */
1594         if (sb->s_flags & MS_RDONLY)
1595                 old_flags |= MS_RDONLY;
1596         sb->s_flags = old_flags;
1597         fs_info->mount_opt = old_opts;
1598         fs_info->compress_type = old_compress_type;
1599         fs_info->max_inline = old_max_inline;
1600         mutex_lock(&fs_info->chunk_mutex);
1601         fs_info->alloc_start = old_alloc_start;
1602         mutex_unlock(&fs_info->chunk_mutex);
1603         btrfs_resize_thread_pool(fs_info,
1604                 old_thread_pool_size, fs_info->thread_pool_size);
1605         fs_info->metadata_ratio = old_metadata_ratio;
1606         btrfs_remount_cleanup(fs_info, old_opts);
1607         return ret;
1608 }
1609
1610 /* Used to sort the devices by max_avail(descending sort) */
1611 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1612                                        const void *dev_info2)
1613 {
1614         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1615             ((struct btrfs_device_info *)dev_info2)->max_avail)
1616                 return -1;
1617         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1618                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1619                 return 1;
1620         else
1621         return 0;
1622 }
1623
1624 /*
1625  * sort the devices by max_avail, in which max free extent size of each device
1626  * is stored.(Descending Sort)
1627  */
1628 static inline void btrfs_descending_sort_devices(
1629                                         struct btrfs_device_info *devices,
1630                                         size_t nr_devices)
1631 {
1632         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1633              btrfs_cmp_device_free_bytes, NULL);
1634 }
1635
1636 /*
1637  * The helper to calc the free space on the devices that can be used to store
1638  * file data.
1639  */
1640 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1641 {
1642         struct btrfs_fs_info *fs_info = root->fs_info;
1643         struct btrfs_device_info *devices_info;
1644         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1645         struct btrfs_device *device;
1646         u64 skip_space;
1647         u64 type;
1648         u64 avail_space;
1649         u64 used_space;
1650         u64 min_stripe_size;
1651         int min_stripes = 1, num_stripes = 1;
1652         int i = 0, nr_devices;
1653         int ret;
1654
1655         /*
1656          * We aren't under the device list lock, so this is racey-ish, but good
1657          * enough for our purposes.
1658          */
1659         nr_devices = fs_info->fs_devices->open_devices;
1660         if (!nr_devices) {
1661                 smp_mb();
1662                 nr_devices = fs_info->fs_devices->open_devices;
1663                 ASSERT(nr_devices);
1664                 if (!nr_devices) {
1665                         *free_bytes = 0;
1666                         return 0;
1667                 }
1668         }
1669
1670         devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1671                                GFP_NOFS);
1672         if (!devices_info)
1673                 return -ENOMEM;
1674
1675         /* calc min stripe number for data space alloction */
1676         type = btrfs_get_alloc_profile(root, 1);
1677         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1678                 min_stripes = 2;
1679                 num_stripes = nr_devices;
1680         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1681                 min_stripes = 2;
1682                 num_stripes = 2;
1683         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1684                 min_stripes = 4;
1685                 num_stripes = 4;
1686         }
1687
1688         if (type & BTRFS_BLOCK_GROUP_DUP)
1689                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1690         else
1691                 min_stripe_size = BTRFS_STRIPE_LEN;
1692
1693         if (fs_info->alloc_start)
1694                 mutex_lock(&fs_devices->device_list_mutex);
1695         rcu_read_lock();
1696         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1697                 if (!device->in_fs_metadata || !device->bdev ||
1698                     device->is_tgtdev_for_dev_replace)
1699                         continue;
1700
1701                 if (i >= nr_devices)
1702                         break;
1703
1704                 avail_space = device->total_bytes - device->bytes_used;
1705
1706                 /* align with stripe_len */
1707                 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1708                 avail_space *= BTRFS_STRIPE_LEN;
1709
1710                 /*
1711                  * In order to avoid overwritting the superblock on the drive,
1712                  * btrfs starts at an offset of at least 1MB when doing chunk
1713                  * allocation.
1714                  */
1715                 skip_space = 1024 * 1024;
1716
1717                 /* user can set the offset in fs_info->alloc_start. */
1718                 if (fs_info->alloc_start &&
1719                     fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1720                     device->total_bytes) {
1721                         rcu_read_unlock();
1722                         skip_space = max(fs_info->alloc_start, skip_space);
1723
1724                         /*
1725                          * btrfs can not use the free space in
1726                          * [0, skip_space - 1], we must subtract it from the
1727                          * total. In order to implement it, we account the used
1728                          * space in this range first.
1729                          */
1730                         ret = btrfs_account_dev_extents_size(device, 0,
1731                                                              skip_space - 1,
1732                                                              &used_space);
1733                         if (ret) {
1734                                 kfree(devices_info);
1735                                 mutex_unlock(&fs_devices->device_list_mutex);
1736                                 return ret;
1737                         }
1738
1739                         rcu_read_lock();
1740
1741                         /* calc the free space in [0, skip_space - 1] */
1742                         skip_space -= used_space;
1743                 }
1744
1745                 /*
1746                  * we can use the free space in [0, skip_space - 1], subtract
1747                  * it from the total.
1748                  */
1749                 if (avail_space && avail_space >= skip_space)
1750                         avail_space -= skip_space;
1751                 else
1752                         avail_space = 0;
1753
1754                 if (avail_space < min_stripe_size)
1755                         continue;
1756
1757                 devices_info[i].dev = device;
1758                 devices_info[i].max_avail = avail_space;
1759
1760                 i++;
1761         }
1762         rcu_read_unlock();
1763         if (fs_info->alloc_start)
1764                 mutex_unlock(&fs_devices->device_list_mutex);
1765
1766         nr_devices = i;
1767
1768         btrfs_descending_sort_devices(devices_info, nr_devices);
1769
1770         i = nr_devices - 1;
1771         avail_space = 0;
1772         while (nr_devices >= min_stripes) {
1773                 if (num_stripes > nr_devices)
1774                         num_stripes = nr_devices;
1775
1776                 if (devices_info[i].max_avail >= min_stripe_size) {
1777                         int j;
1778                         u64 alloc_size;
1779
1780                         avail_space += devices_info[i].max_avail * num_stripes;
1781                         alloc_size = devices_info[i].max_avail;
1782                         for (j = i + 1 - num_stripes; j <= i; j++)
1783                                 devices_info[j].max_avail -= alloc_size;
1784                 }
1785                 i--;
1786                 nr_devices--;
1787         }
1788
1789         kfree(devices_info);
1790         *free_bytes = avail_space;
1791         return 0;
1792 }
1793
1794 /*
1795  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1796  *
1797  * If there's a redundant raid level at DATA block groups, use the respective
1798  * multiplier to scale the sizes.
1799  *
1800  * Unused device space usage is based on simulating the chunk allocator
1801  * algorithm that respects the device sizes, order of allocations and the
1802  * 'alloc_start' value, this is a close approximation of the actual use but
1803  * there are other factors that may change the result (like a new metadata
1804  * chunk).
1805  *
1806  * FIXME: not accurate for mixed block groups, total and free/used are ok,
1807  * available appears slightly larger.
1808  */
1809 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1810 {
1811         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1812         struct btrfs_super_block *disk_super = fs_info->super_copy;
1813         struct list_head *head = &fs_info->space_info;
1814         struct btrfs_space_info *found;
1815         u64 total_used = 0;
1816         u64 total_free_data = 0;
1817         int bits = dentry->d_sb->s_blocksize_bits;
1818         __be32 *fsid = (__be32 *)fs_info->fsid;
1819         unsigned factor = 1;
1820         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1821         int ret;
1822
1823         /*
1824          * holding chunk_muext to avoid allocating new chunks, holding
1825          * device_list_mutex to avoid the device being removed
1826          */
1827         rcu_read_lock();
1828         list_for_each_entry_rcu(found, head, list) {
1829                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1830                         int i;
1831
1832                         total_free_data += found->disk_total - found->disk_used;
1833                         total_free_data -=
1834                                 btrfs_account_ro_block_groups_free_space(found);
1835
1836                         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1837                                 if (!list_empty(&found->block_groups[i])) {
1838                                         switch (i) {
1839                                         case BTRFS_RAID_DUP:
1840                                         case BTRFS_RAID_RAID1:
1841                                         case BTRFS_RAID_RAID10:
1842                                                 factor = 2;
1843                                         }
1844                                 }
1845                         }
1846                 }
1847
1848                 total_used += found->disk_used;
1849         }
1850
1851         rcu_read_unlock();
1852
1853         buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1854         buf->f_blocks >>= bits;
1855         buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1856
1857         /* Account global block reserve as used, it's in logical size already */
1858         spin_lock(&block_rsv->lock);
1859         buf->f_bfree -= block_rsv->size >> bits;
1860         spin_unlock(&block_rsv->lock);
1861
1862         buf->f_bavail = div_u64(total_free_data, factor);
1863         ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1864         if (ret)
1865                 return ret;
1866         buf->f_bavail += div_u64(total_free_data, factor);
1867         buf->f_bavail = buf->f_bavail >> bits;
1868
1869         buf->f_type = BTRFS_SUPER_MAGIC;
1870         buf->f_bsize = dentry->d_sb->s_blocksize;
1871         buf->f_namelen = BTRFS_NAME_LEN;
1872
1873         /* We treat it as constant endianness (it doesn't matter _which_)
1874            because we want the fsid to come out the same whether mounted
1875            on a big-endian or little-endian host */
1876         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1877         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1878         /* Mask in the root object ID too, to disambiguate subvols */
1879         buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
1880         buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
1881
1882         return 0;
1883 }
1884
1885 static void btrfs_kill_super(struct super_block *sb)
1886 {
1887         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1888         kill_anon_super(sb);
1889         free_fs_info(fs_info);
1890 }
1891
1892 static struct file_system_type btrfs_fs_type = {
1893         .owner          = THIS_MODULE,
1894         .name           = "btrfs",
1895         .mount          = btrfs_mount,
1896         .kill_sb        = btrfs_kill_super,
1897         .fs_flags       = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
1898 };
1899 MODULE_ALIAS_FS("btrfs");
1900
1901 static int btrfs_control_open(struct inode *inode, struct file *file)
1902 {
1903         /*
1904          * The control file's private_data is used to hold the
1905          * transaction when it is started and is used to keep
1906          * track of whether a transaction is already in progress.
1907          */
1908         file->private_data = NULL;
1909         return 0;
1910 }
1911
1912 /*
1913  * used by btrfsctl to scan devices when no FS is mounted
1914  */
1915 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1916                                 unsigned long arg)
1917 {
1918         struct btrfs_ioctl_vol_args *vol;
1919         struct btrfs_fs_devices *fs_devices;
1920         int ret = -ENOTTY;
1921
1922         if (!capable(CAP_SYS_ADMIN))
1923                 return -EPERM;
1924
1925         vol = memdup_user((void __user *)arg, sizeof(*vol));
1926         if (IS_ERR(vol))
1927                 return PTR_ERR(vol);
1928
1929         switch (cmd) {
1930         case BTRFS_IOC_SCAN_DEV:
1931                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1932                                             &btrfs_fs_type, &fs_devices);
1933                 break;
1934         case BTRFS_IOC_DEVICES_READY:
1935                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1936                                             &btrfs_fs_type, &fs_devices);
1937                 if (ret)
1938                         break;
1939                 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1940                 break;
1941         }
1942
1943         kfree(vol);
1944         return ret;
1945 }
1946
1947 static int btrfs_freeze(struct super_block *sb)
1948 {
1949         struct btrfs_trans_handle *trans;
1950         struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1951
1952         trans = btrfs_attach_transaction_barrier(root);
1953         if (IS_ERR(trans)) {
1954                 /* no transaction, don't bother */
1955                 if (PTR_ERR(trans) == -ENOENT)
1956                         return 0;
1957                 return PTR_ERR(trans);
1958         }
1959         return btrfs_commit_transaction(trans, root);
1960 }
1961
1962 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1963 {
1964         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1965         struct btrfs_fs_devices *cur_devices;
1966         struct btrfs_device *dev, *first_dev = NULL;
1967         struct list_head *head;
1968         struct rcu_string *name;
1969
1970         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1971         cur_devices = fs_info->fs_devices;
1972         while (cur_devices) {
1973                 head = &cur_devices->devices;
1974                 list_for_each_entry(dev, head, dev_list) {
1975                         if (dev->missing)
1976                                 continue;
1977                         if (!dev->name)
1978                                 continue;
1979                         if (!first_dev || dev->devid < first_dev->devid)
1980                                 first_dev = dev;
1981                 }
1982                 cur_devices = cur_devices->seed;
1983         }
1984
1985         if (first_dev) {
1986                 rcu_read_lock();
1987                 name = rcu_dereference(first_dev->name);
1988                 seq_escape(m, name->str, " \t\n\\");
1989                 rcu_read_unlock();
1990         } else {
1991                 WARN_ON(1);
1992         }
1993         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1994         return 0;
1995 }
1996
1997 static const struct super_operations btrfs_super_ops = {
1998         .drop_inode     = btrfs_drop_inode,
1999         .evict_inode    = btrfs_evict_inode,
2000         .put_super      = btrfs_put_super,
2001         .sync_fs        = btrfs_sync_fs,
2002         .show_options   = btrfs_show_options,
2003         .show_devname   = btrfs_show_devname,
2004         .write_inode    = btrfs_write_inode,
2005         .alloc_inode    = btrfs_alloc_inode,
2006         .destroy_inode  = btrfs_destroy_inode,
2007         .statfs         = btrfs_statfs,
2008         .remount_fs     = btrfs_remount,
2009         .freeze_fs      = btrfs_freeze,
2010 };
2011
2012 static const struct file_operations btrfs_ctl_fops = {
2013         .open = btrfs_control_open,
2014         .unlocked_ioctl  = btrfs_control_ioctl,
2015         .compat_ioctl = btrfs_control_ioctl,
2016         .owner   = THIS_MODULE,
2017         .llseek = noop_llseek,
2018 };
2019
2020 static struct miscdevice btrfs_misc = {
2021         .minor          = BTRFS_MINOR,
2022         .name           = "btrfs-control",
2023         .fops           = &btrfs_ctl_fops
2024 };
2025
2026 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2027 MODULE_ALIAS("devname:btrfs-control");
2028
2029 static int btrfs_interface_init(void)
2030 {
2031         return misc_register(&btrfs_misc);
2032 }
2033
2034 static void btrfs_interface_exit(void)
2035 {
2036         if (misc_deregister(&btrfs_misc) < 0)
2037                 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
2038 }
2039
2040 static void btrfs_print_info(void)
2041 {
2042         printk(KERN_INFO "Btrfs loaded"
2043 #ifdef CONFIG_BTRFS_DEBUG
2044                         ", debug=on"
2045 #endif
2046 #ifdef CONFIG_BTRFS_ASSERT
2047                         ", assert=on"
2048 #endif
2049 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2050                         ", integrity-checker=on"
2051 #endif
2052                         "\n");
2053 }
2054
2055 static int btrfs_run_sanity_tests(void)
2056 {
2057         int ret;
2058
2059         ret = btrfs_init_test_fs();
2060         if (ret)
2061                 return ret;
2062
2063         ret = btrfs_test_free_space_cache();
2064         if (ret)
2065                 goto out;
2066         ret = btrfs_test_extent_buffer_operations();
2067         if (ret)
2068                 goto out;
2069         ret = btrfs_test_extent_io();
2070         if (ret)
2071                 goto out;
2072         ret = btrfs_test_inodes();
2073         if (ret)
2074                 goto out;
2075         ret = btrfs_test_qgroups();
2076 out:
2077         btrfs_destroy_test_fs();
2078         return ret;
2079 }
2080
2081 static int __init init_btrfs_fs(void)
2082 {
2083         int err;
2084
2085         err = btrfs_hash_init();
2086         if (err)
2087                 return err;
2088
2089         btrfs_props_init();
2090
2091         err = btrfs_init_sysfs();
2092         if (err)
2093                 goto free_hash;
2094
2095         btrfs_init_compress();
2096
2097         err = btrfs_init_cachep();
2098         if (err)
2099                 goto free_compress;
2100
2101         err = extent_io_init();
2102         if (err)
2103                 goto free_cachep;
2104
2105         err = extent_map_init();
2106         if (err)
2107                 goto free_extent_io;
2108
2109         err = ordered_data_init();
2110         if (err)
2111                 goto free_extent_map;
2112
2113         err = btrfs_delayed_inode_init();
2114         if (err)
2115                 goto free_ordered_data;
2116
2117         err = btrfs_auto_defrag_init();
2118         if (err)
2119                 goto free_delayed_inode;
2120
2121         err = btrfs_delayed_ref_init();
2122         if (err)
2123                 goto free_auto_defrag;
2124
2125         err = btrfs_prelim_ref_init();
2126         if (err)
2127                 goto free_delayed_ref;
2128
2129         err = btrfs_end_io_wq_init();
2130         if (err)
2131                 goto free_prelim_ref;
2132
2133         err = btrfs_interface_init();
2134         if (err)
2135                 goto free_end_io_wq;
2136
2137         btrfs_init_lockdep();
2138
2139         btrfs_print_info();
2140
2141         err = btrfs_run_sanity_tests();
2142         if (err)
2143                 goto unregister_ioctl;
2144
2145         err = register_filesystem(&btrfs_fs_type);
2146         if (err)
2147                 goto unregister_ioctl;
2148
2149         return 0;
2150
2151 unregister_ioctl:
2152         btrfs_interface_exit();
2153 free_end_io_wq:
2154         btrfs_end_io_wq_exit();
2155 free_prelim_ref:
2156         btrfs_prelim_ref_exit();
2157 free_delayed_ref:
2158         btrfs_delayed_ref_exit();
2159 free_auto_defrag:
2160         btrfs_auto_defrag_exit();
2161 free_delayed_inode:
2162         btrfs_delayed_inode_exit();
2163 free_ordered_data:
2164         ordered_data_exit();
2165 free_extent_map:
2166         extent_map_exit();
2167 free_extent_io:
2168         extent_io_exit();
2169 free_cachep:
2170         btrfs_destroy_cachep();
2171 free_compress:
2172         btrfs_exit_compress();
2173         btrfs_exit_sysfs();
2174 free_hash:
2175         btrfs_hash_exit();
2176         return err;
2177 }
2178
2179 static void __exit exit_btrfs_fs(void)
2180 {
2181         btrfs_destroy_cachep();
2182         btrfs_delayed_ref_exit();
2183         btrfs_auto_defrag_exit();
2184         btrfs_delayed_inode_exit();
2185         btrfs_prelim_ref_exit();
2186         ordered_data_exit();
2187         extent_map_exit();
2188         extent_io_exit();
2189         btrfs_interface_exit();
2190         btrfs_end_io_wq_exit();
2191         unregister_filesystem(&btrfs_fs_type);
2192         btrfs_exit_sysfs();
2193         btrfs_cleanup_fs_uuids();
2194         btrfs_exit_compress();
2195         btrfs_hash_exit();
2196 }
2197
2198 late_initcall(init_btrfs_fs);
2199 module_exit(exit_btrfs_fs)
2200
2201 MODULE_LICENSE("GPL");