Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "compat.h"
46 #include "delayed-inode.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/btrfs.h>
63
64 static const struct super_operations btrfs_super_ops;
65 static struct file_system_type btrfs_fs_type;
66
67 static const char *btrfs_decode_error(int errno)
68 {
69         char *errstr = "unknown";
70
71         switch (errno) {
72         case -EIO:
73                 errstr = "IO failure";
74                 break;
75         case -ENOMEM:
76                 errstr = "Out of memory";
77                 break;
78         case -EROFS:
79                 errstr = "Readonly filesystem";
80                 break;
81         case -EEXIST:
82                 errstr = "Object already exists";
83                 break;
84         case -ENOSPC:
85                 errstr = "No space left";
86                 break;
87         case -ENOENT:
88                 errstr = "No such entry";
89                 break;
90         }
91
92         return errstr;
93 }
94
95 static void save_error_info(struct btrfs_fs_info *fs_info)
96 {
97         /*
98          * today we only save the error info into ram.  Long term we'll
99          * also send it down to the disk
100          */
101         set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
102 }
103
104 /* btrfs handle error by forcing the filesystem readonly */
105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
106 {
107         struct super_block *sb = fs_info->sb;
108
109         if (sb->s_flags & MS_RDONLY)
110                 return;
111
112         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
113                 sb->s_flags |= MS_RDONLY;
114                 btrfs_info(fs_info, "forced readonly");
115                 /*
116                  * Note that a running device replace operation is not
117                  * canceled here although there is no way to update
118                  * the progress. It would add the risk of a deadlock,
119                  * therefore the canceling is ommited. The only penalty
120                  * is that some I/O remains active until the procedure
121                  * completes. The next time when the filesystem is
122                  * mounted writeable again, the device replace
123                  * operation continues.
124                  */
125         }
126 }
127
128 #ifdef CONFIG_PRINTK
129 /*
130  * __btrfs_std_error decodes expected errors from the caller and
131  * invokes the approciate error response.
132  */
133 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
134                        unsigned int line, int errno, const char *fmt, ...)
135 {
136         struct super_block *sb = fs_info->sb;
137         const char *errstr;
138
139         /*
140          * Special case: if the error is EROFS, and we're already
141          * under MS_RDONLY, then it is safe here.
142          */
143         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
144                 return;
145
146         errstr = btrfs_decode_error(errno);
147         if (fmt) {
148                 struct va_format vaf;
149                 va_list args;
150
151                 va_start(args, fmt);
152                 vaf.fmt = fmt;
153                 vaf.va = &args;
154
155                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n",
156                         sb->s_id, function, line, errno, errstr, &vaf);
157                 va_end(args);
158         } else {
159                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n",
160                         sb->s_id, function, line, errno, errstr);
161         }
162
163         /* Don't go through full error handling during mount */
164         save_error_info(fs_info);
165         if (sb->s_flags & MS_BORN)
166                 btrfs_handle_error(fs_info);
167 }
168
169 static const char * const logtypes[] = {
170         "emergency",
171         "alert",
172         "critical",
173         "error",
174         "warning",
175         "notice",
176         "info",
177         "debug",
178 };
179
180 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
181 {
182         struct super_block *sb = fs_info->sb;
183         char lvl[4];
184         struct va_format vaf;
185         va_list args;
186         const char *type = logtypes[4];
187         int kern_level;
188
189         va_start(args, fmt);
190
191         kern_level = printk_get_level(fmt);
192         if (kern_level) {
193                 size_t size = printk_skip_level(fmt) - fmt;
194                 memcpy(lvl, fmt,  size);
195                 lvl[size] = '\0';
196                 fmt += size;
197                 type = logtypes[kern_level - '0'];
198         } else
199                 *lvl = '\0';
200
201         vaf.fmt = fmt;
202         vaf.va = &args;
203
204         printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
205
206         va_end(args);
207 }
208
209 #else
210
211 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
212                        unsigned int line, int errno, const char *fmt, ...)
213 {
214         struct super_block *sb = fs_info->sb;
215
216         /*
217          * Special case: if the error is EROFS, and we're already
218          * under MS_RDONLY, then it is safe here.
219          */
220         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
221                 return;
222
223         /* Don't go through full error handling during mount */
224         if (sb->s_flags & MS_BORN) {
225                 save_error_info(fs_info);
226                 btrfs_handle_error(fs_info);
227         }
228 }
229 #endif
230
231 /*
232  * We only mark the transaction aborted and then set the file system read-only.
233  * This will prevent new transactions from starting or trying to join this
234  * one.
235  *
236  * This means that error recovery at the call site is limited to freeing
237  * any local memory allocations and passing the error code up without
238  * further cleanup. The transaction should complete as it normally would
239  * in the call path but will return -EIO.
240  *
241  * We'll complete the cleanup in btrfs_end_transaction and
242  * btrfs_commit_transaction.
243  */
244 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
245                                struct btrfs_root *root, const char *function,
246                                unsigned int line, int errno)
247 {
248         /*
249          * Report first abort since mount
250          */
251         if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
252                                 &root->fs_info->fs_state)) {
253                 WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n",
254                                 errno);
255         }
256         trans->aborted = errno;
257         /* Nothing used. The other threads that have joined this
258          * transaction may be able to continue. */
259         if (!trans->blocks_used) {
260                 const char *errstr;
261
262                 errstr = btrfs_decode_error(errno);
263                 btrfs_warn(root->fs_info,
264                            "%s:%d: Aborting unused transaction(%s).",
265                            function, line, errstr);
266                 return;
267         }
268         ACCESS_ONCE(trans->transaction->aborted) = errno;
269         __btrfs_std_error(root->fs_info, function, line, errno, NULL);
270 }
271 /*
272  * __btrfs_panic decodes unexpected, fatal errors from the caller,
273  * issues an alert, and either panics or BUGs, depending on mount options.
274  */
275 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
276                    unsigned int line, int errno, const char *fmt, ...)
277 {
278         char *s_id = "<unknown>";
279         const char *errstr;
280         struct va_format vaf = { .fmt = fmt };
281         va_list args;
282
283         if (fs_info)
284                 s_id = fs_info->sb->s_id;
285
286         va_start(args, fmt);
287         vaf.va = &args;
288
289         errstr = btrfs_decode_error(errno);
290         if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
291                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
292                         s_id, function, line, &vaf, errno, errstr);
293
294         printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
295                s_id, function, line, &vaf, errno, errstr);
296         va_end(args);
297         /* Caller calls BUG() */
298 }
299
300 static void btrfs_put_super(struct super_block *sb)
301 {
302         (void)close_ctree(btrfs_sb(sb)->tree_root);
303         /* FIXME: need to fix VFS to return error? */
304         /* AV: return it _where_?  ->put_super() can be triggered by any number
305          * of async events, up to and including delivery of SIGKILL to the
306          * last process that kept it busy.  Or segfault in the aforementioned
307          * process...  Whom would you report that to?
308          */
309 }
310
311 enum {
312         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
313         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
314         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
315         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
316         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
317         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
318         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
319         Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
320         Opt_check_integrity, Opt_check_integrity_including_extent_data,
321         Opt_check_integrity_print_mask, Opt_fatal_errors,
322         Opt_err,
323 };
324
325 static match_table_t tokens = {
326         {Opt_degraded, "degraded"},
327         {Opt_subvol, "subvol=%s"},
328         {Opt_subvolid, "subvolid=%d"},
329         {Opt_device, "device=%s"},
330         {Opt_nodatasum, "nodatasum"},
331         {Opt_nodatacow, "nodatacow"},
332         {Opt_nobarrier, "nobarrier"},
333         {Opt_max_inline, "max_inline=%s"},
334         {Opt_alloc_start, "alloc_start=%s"},
335         {Opt_thread_pool, "thread_pool=%d"},
336         {Opt_compress, "compress"},
337         {Opt_compress_type, "compress=%s"},
338         {Opt_compress_force, "compress-force"},
339         {Opt_compress_force_type, "compress-force=%s"},
340         {Opt_ssd, "ssd"},
341         {Opt_ssd_spread, "ssd_spread"},
342         {Opt_nossd, "nossd"},
343         {Opt_noacl, "noacl"},
344         {Opt_notreelog, "notreelog"},
345         {Opt_flushoncommit, "flushoncommit"},
346         {Opt_ratio, "metadata_ratio=%d"},
347         {Opt_discard, "discard"},
348         {Opt_space_cache, "space_cache"},
349         {Opt_clear_cache, "clear_cache"},
350         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
351         {Opt_enospc_debug, "enospc_debug"},
352         {Opt_subvolrootid, "subvolrootid=%d"},
353         {Opt_defrag, "autodefrag"},
354         {Opt_inode_cache, "inode_cache"},
355         {Opt_no_space_cache, "nospace_cache"},
356         {Opt_recovery, "recovery"},
357         {Opt_skip_balance, "skip_balance"},
358         {Opt_check_integrity, "check_int"},
359         {Opt_check_integrity_including_extent_data, "check_int_data"},
360         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
361         {Opt_fatal_errors, "fatal_errors=%s"},
362         {Opt_err, NULL},
363 };
364
365 /*
366  * Regular mount options parser.  Everything that is needed only when
367  * reading in a new superblock is parsed here.
368  * XXX JDM: This needs to be cleaned up for remount.
369  */
370 int btrfs_parse_options(struct btrfs_root *root, char *options)
371 {
372         struct btrfs_fs_info *info = root->fs_info;
373         substring_t args[MAX_OPT_ARGS];
374         char *p, *num, *orig = NULL;
375         u64 cache_gen;
376         int intarg;
377         int ret = 0;
378         char *compress_type;
379         bool compress_force = false;
380
381         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
382         if (cache_gen)
383                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
384
385         if (!options)
386                 goto out;
387
388         /*
389          * strsep changes the string, duplicate it because parse_options
390          * gets called twice
391          */
392         options = kstrdup(options, GFP_NOFS);
393         if (!options)
394                 return -ENOMEM;
395
396         orig = options;
397
398         while ((p = strsep(&options, ",")) != NULL) {
399                 int token;
400                 if (!*p)
401                         continue;
402
403                 token = match_token(p, tokens, args);
404                 switch (token) {
405                 case Opt_degraded:
406                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
407                         btrfs_set_opt(info->mount_opt, DEGRADED);
408                         break;
409                 case Opt_subvol:
410                 case Opt_subvolid:
411                 case Opt_subvolrootid:
412                 case Opt_device:
413                         /*
414                          * These are parsed by btrfs_parse_early_options
415                          * and can be happily ignored here.
416                          */
417                         break;
418                 case Opt_nodatasum:
419                         printk(KERN_INFO "btrfs: setting nodatasum\n");
420                         btrfs_set_opt(info->mount_opt, NODATASUM);
421                         break;
422                 case Opt_nodatacow:
423                         if (!btrfs_test_opt(root, COMPRESS) ||
424                                 !btrfs_test_opt(root, FORCE_COMPRESS)) {
425                                         printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
426                         } else {
427                                 printk(KERN_INFO "btrfs: setting nodatacow\n");
428                         }
429                         info->compress_type = BTRFS_COMPRESS_NONE;
430                         btrfs_clear_opt(info->mount_opt, COMPRESS);
431                         btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
432                         btrfs_set_opt(info->mount_opt, NODATACOW);
433                         btrfs_set_opt(info->mount_opt, NODATASUM);
434                         break;
435                 case Opt_compress_force:
436                 case Opt_compress_force_type:
437                         compress_force = true;
438                         /* Fallthrough */
439                 case Opt_compress:
440                 case Opt_compress_type:
441                         if (token == Opt_compress ||
442                             token == Opt_compress_force ||
443                             strcmp(args[0].from, "zlib") == 0) {
444                                 compress_type = "zlib";
445                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
446                                 btrfs_set_opt(info->mount_opt, COMPRESS);
447                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
448                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
449                         } else if (strcmp(args[0].from, "lzo") == 0) {
450                                 compress_type = "lzo";
451                                 info->compress_type = BTRFS_COMPRESS_LZO;
452                                 btrfs_set_opt(info->mount_opt, COMPRESS);
453                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
454                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
455                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
456                         } else if (strncmp(args[0].from, "no", 2) == 0) {
457                                 compress_type = "no";
458                                 info->compress_type = BTRFS_COMPRESS_NONE;
459                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
460                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
461                                 compress_force = false;
462                         } else {
463                                 ret = -EINVAL;
464                                 goto out;
465                         }
466
467                         if (compress_force) {
468                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
469                                 pr_info("btrfs: force %s compression\n",
470                                         compress_type);
471                         } else
472                                 pr_info("btrfs: use %s compression\n",
473                                         compress_type);
474                         break;
475                 case Opt_ssd:
476                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
477                         btrfs_set_opt(info->mount_opt, SSD);
478                         break;
479                 case Opt_ssd_spread:
480                         printk(KERN_INFO "btrfs: use spread ssd "
481                                "allocation scheme\n");
482                         btrfs_set_opt(info->mount_opt, SSD);
483                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
484                         break;
485                 case Opt_nossd:
486                         printk(KERN_INFO "btrfs: not using ssd allocation "
487                                "scheme\n");
488                         btrfs_set_opt(info->mount_opt, NOSSD);
489                         btrfs_clear_opt(info->mount_opt, SSD);
490                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
491                         break;
492                 case Opt_nobarrier:
493                         printk(KERN_INFO "btrfs: turning off barriers\n");
494                         btrfs_set_opt(info->mount_opt, NOBARRIER);
495                         break;
496                 case Opt_thread_pool:
497                         intarg = 0;
498                         match_int(&args[0], &intarg);
499                         if (intarg)
500                                 info->thread_pool_size = intarg;
501                         break;
502                 case Opt_max_inline:
503                         num = match_strdup(&args[0]);
504                         if (num) {
505                                 info->max_inline = memparse(num, NULL);
506                                 kfree(num);
507
508                                 if (info->max_inline) {
509                                         info->max_inline = max_t(u64,
510                                                 info->max_inline,
511                                                 root->sectorsize);
512                                 }
513                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
514                                         (unsigned long long)info->max_inline);
515                         }
516                         break;
517                 case Opt_alloc_start:
518                         num = match_strdup(&args[0]);
519                         if (num) {
520                                 mutex_lock(&info->chunk_mutex);
521                                 info->alloc_start = memparse(num, NULL);
522                                 mutex_unlock(&info->chunk_mutex);
523                                 kfree(num);
524                                 printk(KERN_INFO
525                                         "btrfs: allocations start at %llu\n",
526                                         (unsigned long long)info->alloc_start);
527                         }
528                         break;
529                 case Opt_noacl:
530                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
531                         break;
532                 case Opt_notreelog:
533                         printk(KERN_INFO "btrfs: disabling tree log\n");
534                         btrfs_set_opt(info->mount_opt, NOTREELOG);
535                         break;
536                 case Opt_flushoncommit:
537                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
538                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
539                         break;
540                 case Opt_ratio:
541                         intarg = 0;
542                         match_int(&args[0], &intarg);
543                         if (intarg) {
544                                 info->metadata_ratio = intarg;
545                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
546                                        info->metadata_ratio);
547                         }
548                         break;
549                 case Opt_discard:
550                         btrfs_set_opt(info->mount_opt, DISCARD);
551                         break;
552                 case Opt_space_cache:
553                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
554                         break;
555                 case Opt_no_space_cache:
556                         printk(KERN_INFO "btrfs: disabling disk space caching\n");
557                         btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
558                         break;
559                 case Opt_inode_cache:
560                         printk(KERN_INFO "btrfs: enabling inode map caching\n");
561                         btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
562                         break;
563                 case Opt_clear_cache:
564                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
565                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
566                         break;
567                 case Opt_user_subvol_rm_allowed:
568                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
569                         break;
570                 case Opt_enospc_debug:
571                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
572                         break;
573                 case Opt_defrag:
574                         printk(KERN_INFO "btrfs: enabling auto defrag\n");
575                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
576                         break;
577                 case Opt_recovery:
578                         printk(KERN_INFO "btrfs: enabling auto recovery\n");
579                         btrfs_set_opt(info->mount_opt, RECOVERY);
580                         break;
581                 case Opt_skip_balance:
582                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
583                         break;
584 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
585                 case Opt_check_integrity_including_extent_data:
586                         printk(KERN_INFO "btrfs: enabling check integrity"
587                                " including extent data\n");
588                         btrfs_set_opt(info->mount_opt,
589                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
590                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
591                         break;
592                 case Opt_check_integrity:
593                         printk(KERN_INFO "btrfs: enabling check integrity\n");
594                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
595                         break;
596                 case Opt_check_integrity_print_mask:
597                         intarg = 0;
598                         match_int(&args[0], &intarg);
599                         if (intarg) {
600                                 info->check_integrity_print_mask = intarg;
601                                 printk(KERN_INFO "btrfs:"
602                                        " check_integrity_print_mask 0x%x\n",
603                                        info->check_integrity_print_mask);
604                         }
605                         break;
606 #else
607                 case Opt_check_integrity_including_extent_data:
608                 case Opt_check_integrity:
609                 case Opt_check_integrity_print_mask:
610                         printk(KERN_ERR "btrfs: support for check_integrity*"
611                                " not compiled in!\n");
612                         ret = -EINVAL;
613                         goto out;
614 #endif
615                 case Opt_fatal_errors:
616                         if (strcmp(args[0].from, "panic") == 0)
617                                 btrfs_set_opt(info->mount_opt,
618                                               PANIC_ON_FATAL_ERROR);
619                         else if (strcmp(args[0].from, "bug") == 0)
620                                 btrfs_clear_opt(info->mount_opt,
621                                               PANIC_ON_FATAL_ERROR);
622                         else {
623                                 ret = -EINVAL;
624                                 goto out;
625                         }
626                         break;
627                 case Opt_err:
628                         printk(KERN_INFO "btrfs: unrecognized mount option "
629                                "'%s'\n", p);
630                         ret = -EINVAL;
631                         goto out;
632                 default:
633                         break;
634                 }
635         }
636 out:
637         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
638                 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
639         kfree(orig);
640         return ret;
641 }
642
643 /*
644  * Parse mount options that are required early in the mount process.
645  *
646  * All other options will be parsed on much later in the mount process and
647  * only when we need to allocate a new super block.
648  */
649 static int btrfs_parse_early_options(const char *options, fmode_t flags,
650                 void *holder, char **subvol_name, u64 *subvol_objectid,
651                 struct btrfs_fs_devices **fs_devices)
652 {
653         substring_t args[MAX_OPT_ARGS];
654         char *device_name, *opts, *orig, *p;
655         int error = 0;
656         int intarg;
657
658         if (!options)
659                 return 0;
660
661         /*
662          * strsep changes the string, duplicate it because parse_options
663          * gets called twice
664          */
665         opts = kstrdup(options, GFP_KERNEL);
666         if (!opts)
667                 return -ENOMEM;
668         orig = opts;
669
670         while ((p = strsep(&opts, ",")) != NULL) {
671                 int token;
672                 if (!*p)
673                         continue;
674
675                 token = match_token(p, tokens, args);
676                 switch (token) {
677                 case Opt_subvol:
678                         kfree(*subvol_name);
679                         *subvol_name = match_strdup(&args[0]);
680                         break;
681                 case Opt_subvolid:
682                         intarg = 0;
683                         error = match_int(&args[0], &intarg);
684                         if (!error) {
685                                 /* we want the original fs_tree */
686                                 if (!intarg)
687                                         *subvol_objectid =
688                                                 BTRFS_FS_TREE_OBJECTID;
689                                 else
690                                         *subvol_objectid = intarg;
691                         }
692                         break;
693                 case Opt_subvolrootid:
694                         printk(KERN_WARNING
695                                 "btrfs: 'subvolrootid' mount option is deprecated and has no effect\n");
696                         break;
697                 case Opt_device:
698                         device_name = match_strdup(&args[0]);
699                         if (!device_name) {
700                                 error = -ENOMEM;
701                                 goto out;
702                         }
703                         error = btrfs_scan_one_device(device_name,
704                                         flags, holder, fs_devices);
705                         kfree(device_name);
706                         if (error)
707                                 goto out;
708                         break;
709                 default:
710                         break;
711                 }
712         }
713
714 out:
715         kfree(orig);
716         return error;
717 }
718
719 static struct dentry *get_default_root(struct super_block *sb,
720                                        u64 subvol_objectid)
721 {
722         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
723         struct btrfs_root *root = fs_info->tree_root;
724         struct btrfs_root *new_root;
725         struct btrfs_dir_item *di;
726         struct btrfs_path *path;
727         struct btrfs_key location;
728         struct inode *inode;
729         u64 dir_id;
730         int new = 0;
731
732         /*
733          * We have a specific subvol we want to mount, just setup location and
734          * go look up the root.
735          */
736         if (subvol_objectid) {
737                 location.objectid = subvol_objectid;
738                 location.type = BTRFS_ROOT_ITEM_KEY;
739                 location.offset = (u64)-1;
740                 goto find_root;
741         }
742
743         path = btrfs_alloc_path();
744         if (!path)
745                 return ERR_PTR(-ENOMEM);
746         path->leave_spinning = 1;
747
748         /*
749          * Find the "default" dir item which points to the root item that we
750          * will mount by default if we haven't been given a specific subvolume
751          * to mount.
752          */
753         dir_id = btrfs_super_root_dir(fs_info->super_copy);
754         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
755         if (IS_ERR(di)) {
756                 btrfs_free_path(path);
757                 return ERR_CAST(di);
758         }
759         if (!di) {
760                 /*
761                  * Ok the default dir item isn't there.  This is weird since
762                  * it's always been there, but don't freak out, just try and
763                  * mount to root most subvolume.
764                  */
765                 btrfs_free_path(path);
766                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
767                 new_root = fs_info->fs_root;
768                 goto setup_root;
769         }
770
771         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
772         btrfs_free_path(path);
773
774 find_root:
775         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
776         if (IS_ERR(new_root))
777                 return ERR_CAST(new_root);
778
779         if (btrfs_root_refs(&new_root->root_item) == 0)
780                 return ERR_PTR(-ENOENT);
781
782         dir_id = btrfs_root_dirid(&new_root->root_item);
783 setup_root:
784         location.objectid = dir_id;
785         location.type = BTRFS_INODE_ITEM_KEY;
786         location.offset = 0;
787
788         inode = btrfs_iget(sb, &location, new_root, &new);
789         if (IS_ERR(inode))
790                 return ERR_CAST(inode);
791
792         /*
793          * If we're just mounting the root most subvol put the inode and return
794          * a reference to the dentry.  We will have already gotten a reference
795          * to the inode in btrfs_fill_super so we're good to go.
796          */
797         if (!new && sb->s_root->d_inode == inode) {
798                 iput(inode);
799                 return dget(sb->s_root);
800         }
801
802         return d_obtain_alias(inode);
803 }
804
805 static int btrfs_fill_super(struct super_block *sb,
806                             struct btrfs_fs_devices *fs_devices,
807                             void *data, int silent)
808 {
809         struct inode *inode;
810         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
811         struct btrfs_key key;
812         int err;
813
814         sb->s_maxbytes = MAX_LFS_FILESIZE;
815         sb->s_magic = BTRFS_SUPER_MAGIC;
816         sb->s_op = &btrfs_super_ops;
817         sb->s_d_op = &btrfs_dentry_operations;
818         sb->s_export_op = &btrfs_export_ops;
819         sb->s_xattr = btrfs_xattr_handlers;
820         sb->s_time_gran = 1;
821 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
822         sb->s_flags |= MS_POSIXACL;
823 #endif
824         sb->s_flags |= MS_I_VERSION;
825         err = open_ctree(sb, fs_devices, (char *)data);
826         if (err) {
827                 printk("btrfs: open_ctree failed\n");
828                 return err;
829         }
830
831         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
832         key.type = BTRFS_INODE_ITEM_KEY;
833         key.offset = 0;
834         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
835         if (IS_ERR(inode)) {
836                 err = PTR_ERR(inode);
837                 goto fail_close;
838         }
839
840         sb->s_root = d_make_root(inode);
841         if (!sb->s_root) {
842                 err = -ENOMEM;
843                 goto fail_close;
844         }
845
846         save_mount_options(sb, data);
847         cleancache_init_fs(sb);
848         sb->s_flags |= MS_ACTIVE;
849         return 0;
850
851 fail_close:
852         close_ctree(fs_info->tree_root);
853         return err;
854 }
855
856 int btrfs_sync_fs(struct super_block *sb, int wait)
857 {
858         struct btrfs_trans_handle *trans;
859         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
860         struct btrfs_root *root = fs_info->tree_root;
861
862         trace_btrfs_sync_fs(wait);
863
864         if (!wait) {
865                 filemap_flush(fs_info->btree_inode->i_mapping);
866                 return 0;
867         }
868
869         btrfs_wait_ordered_extents(root, 1);
870
871         trans = btrfs_attach_transaction_barrier(root);
872         if (IS_ERR(trans)) {
873                 /* no transaction, don't bother */
874                 if (PTR_ERR(trans) == -ENOENT)
875                         return 0;
876                 return PTR_ERR(trans);
877         }
878         return btrfs_commit_transaction(trans, root);
879 }
880
881 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
882 {
883         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
884         struct btrfs_root *root = info->tree_root;
885         char *compress_type;
886
887         if (btrfs_test_opt(root, DEGRADED))
888                 seq_puts(seq, ",degraded");
889         if (btrfs_test_opt(root, NODATASUM))
890                 seq_puts(seq, ",nodatasum");
891         if (btrfs_test_opt(root, NODATACOW))
892                 seq_puts(seq, ",nodatacow");
893         if (btrfs_test_opt(root, NOBARRIER))
894                 seq_puts(seq, ",nobarrier");
895         if (info->max_inline != 8192 * 1024)
896                 seq_printf(seq, ",max_inline=%llu",
897                            (unsigned long long)info->max_inline);
898         if (info->alloc_start != 0)
899                 seq_printf(seq, ",alloc_start=%llu",
900                            (unsigned long long)info->alloc_start);
901         if (info->thread_pool_size !=  min_t(unsigned long,
902                                              num_online_cpus() + 2, 8))
903                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
904         if (btrfs_test_opt(root, COMPRESS)) {
905                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
906                         compress_type = "zlib";
907                 else
908                         compress_type = "lzo";
909                 if (btrfs_test_opt(root, FORCE_COMPRESS))
910                         seq_printf(seq, ",compress-force=%s", compress_type);
911                 else
912                         seq_printf(seq, ",compress=%s", compress_type);
913         }
914         if (btrfs_test_opt(root, NOSSD))
915                 seq_puts(seq, ",nossd");
916         if (btrfs_test_opt(root, SSD_SPREAD))
917                 seq_puts(seq, ",ssd_spread");
918         else if (btrfs_test_opt(root, SSD))
919                 seq_puts(seq, ",ssd");
920         if (btrfs_test_opt(root, NOTREELOG))
921                 seq_puts(seq, ",notreelog");
922         if (btrfs_test_opt(root, FLUSHONCOMMIT))
923                 seq_puts(seq, ",flushoncommit");
924         if (btrfs_test_opt(root, DISCARD))
925                 seq_puts(seq, ",discard");
926         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
927                 seq_puts(seq, ",noacl");
928         if (btrfs_test_opt(root, SPACE_CACHE))
929                 seq_puts(seq, ",space_cache");
930         else
931                 seq_puts(seq, ",nospace_cache");
932         if (btrfs_test_opt(root, CLEAR_CACHE))
933                 seq_puts(seq, ",clear_cache");
934         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
935                 seq_puts(seq, ",user_subvol_rm_allowed");
936         if (btrfs_test_opt(root, ENOSPC_DEBUG))
937                 seq_puts(seq, ",enospc_debug");
938         if (btrfs_test_opt(root, AUTO_DEFRAG))
939                 seq_puts(seq, ",autodefrag");
940         if (btrfs_test_opt(root, INODE_MAP_CACHE))
941                 seq_puts(seq, ",inode_cache");
942         if (btrfs_test_opt(root, SKIP_BALANCE))
943                 seq_puts(seq, ",skip_balance");
944         if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
945                 seq_puts(seq, ",fatal_errors=panic");
946         return 0;
947 }
948
949 static int btrfs_test_super(struct super_block *s, void *data)
950 {
951         struct btrfs_fs_info *p = data;
952         struct btrfs_fs_info *fs_info = btrfs_sb(s);
953
954         return fs_info->fs_devices == p->fs_devices;
955 }
956
957 static int btrfs_set_super(struct super_block *s, void *data)
958 {
959         int err = set_anon_super(s, data);
960         if (!err)
961                 s->s_fs_info = data;
962         return err;
963 }
964
965 /*
966  * subvolumes are identified by ino 256
967  */
968 static inline int is_subvolume_inode(struct inode *inode)
969 {
970         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
971                 return 1;
972         return 0;
973 }
974
975 /*
976  * This will strip out the subvol=%s argument for an argument string and add
977  * subvolid=0 to make sure we get the actual tree root for path walking to the
978  * subvol we want.
979  */
980 static char *setup_root_args(char *args)
981 {
982         unsigned len = strlen(args) + 2 + 1;
983         char *src, *dst, *buf;
984
985         /*
986          * We need the same args as before, but with this substitution:
987          * s!subvol=[^,]+!subvolid=0!
988          *
989          * Since the replacement string is up to 2 bytes longer than the
990          * original, allocate strlen(args) + 2 + 1 bytes.
991          */
992
993         src = strstr(args, "subvol=");
994         /* This shouldn't happen, but just in case.. */
995         if (!src)
996                 return NULL;
997
998         buf = dst = kmalloc(len, GFP_NOFS);
999         if (!buf)
1000                 return NULL;
1001
1002         /*
1003          * If the subvol= arg is not at the start of the string,
1004          * copy whatever precedes it into buf.
1005          */
1006         if (src != args) {
1007                 *src++ = '\0';
1008                 strcpy(buf, args);
1009                 dst += strlen(args);
1010         }
1011
1012         strcpy(dst, "subvolid=0");
1013         dst += strlen("subvolid=0");
1014
1015         /*
1016          * If there is a "," after the original subvol=... string,
1017          * copy that suffix into our buffer.  Otherwise, we're done.
1018          */
1019         src = strchr(src, ',');
1020         if (src)
1021                 strcpy(dst, src);
1022
1023         return buf;
1024 }
1025
1026 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1027                                    const char *device_name, char *data)
1028 {
1029         struct dentry *root;
1030         struct vfsmount *mnt;
1031         char *newargs;
1032
1033         newargs = setup_root_args(data);
1034         if (!newargs)
1035                 return ERR_PTR(-ENOMEM);
1036         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1037                              newargs);
1038         kfree(newargs);
1039         if (IS_ERR(mnt))
1040                 return ERR_CAST(mnt);
1041
1042         root = mount_subtree(mnt, subvol_name);
1043
1044         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1045                 struct super_block *s = root->d_sb;
1046                 dput(root);
1047                 root = ERR_PTR(-EINVAL);
1048                 deactivate_locked_super(s);
1049                 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1050                                 subvol_name);
1051         }
1052
1053         return root;
1054 }
1055
1056 /*
1057  * Find a superblock for the given device / mount point.
1058  *
1059  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1060  *        for multiple device setup.  Make sure to keep it in sync.
1061  */
1062 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1063                 const char *device_name, void *data)
1064 {
1065         struct block_device *bdev = NULL;
1066         struct super_block *s;
1067         struct dentry *root;
1068         struct btrfs_fs_devices *fs_devices = NULL;
1069         struct btrfs_fs_info *fs_info = NULL;
1070         fmode_t mode = FMODE_READ;
1071         char *subvol_name = NULL;
1072         u64 subvol_objectid = 0;
1073         int error = 0;
1074
1075         if (!(flags & MS_RDONLY))
1076                 mode |= FMODE_WRITE;
1077
1078         error = btrfs_parse_early_options(data, mode, fs_type,
1079                                           &subvol_name, &subvol_objectid,
1080                                           &fs_devices);
1081         if (error) {
1082                 kfree(subvol_name);
1083                 return ERR_PTR(error);
1084         }
1085
1086         if (subvol_name) {
1087                 root = mount_subvol(subvol_name, flags, device_name, data);
1088                 kfree(subvol_name);
1089                 return root;
1090         }
1091
1092         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1093         if (error)
1094                 return ERR_PTR(error);
1095
1096         /*
1097          * Setup a dummy root and fs_info for test/set super.  This is because
1098          * we don't actually fill this stuff out until open_ctree, but we need
1099          * it for searching for existing supers, so this lets us do that and
1100          * then open_ctree will properly initialize everything later.
1101          */
1102         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1103         if (!fs_info)
1104                 return ERR_PTR(-ENOMEM);
1105
1106         fs_info->fs_devices = fs_devices;
1107
1108         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1109         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1110         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1111                 error = -ENOMEM;
1112                 goto error_fs_info;
1113         }
1114
1115         error = btrfs_open_devices(fs_devices, mode, fs_type);
1116         if (error)
1117                 goto error_fs_info;
1118
1119         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1120                 error = -EACCES;
1121                 goto error_close_devices;
1122         }
1123
1124         bdev = fs_devices->latest_bdev;
1125         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1126                  fs_info);
1127         if (IS_ERR(s)) {
1128                 error = PTR_ERR(s);
1129                 goto error_close_devices;
1130         }
1131
1132         if (s->s_root) {
1133                 btrfs_close_devices(fs_devices);
1134                 free_fs_info(fs_info);
1135                 if ((flags ^ s->s_flags) & MS_RDONLY)
1136                         error = -EBUSY;
1137         } else {
1138                 char b[BDEVNAME_SIZE];
1139
1140                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1141                 btrfs_sb(s)->bdev_holder = fs_type;
1142                 error = btrfs_fill_super(s, fs_devices, data,
1143                                          flags & MS_SILENT ? 1 : 0);
1144         }
1145
1146         root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1147         if (IS_ERR(root))
1148                 deactivate_locked_super(s);
1149
1150         return root;
1151
1152 error_close_devices:
1153         btrfs_close_devices(fs_devices);
1154 error_fs_info:
1155         free_fs_info(fs_info);
1156         return ERR_PTR(error);
1157 }
1158
1159 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1160 {
1161         spin_lock_irq(&workers->lock);
1162         workers->max_workers = new_limit;
1163         spin_unlock_irq(&workers->lock);
1164 }
1165
1166 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1167                                      int new_pool_size, int old_pool_size)
1168 {
1169         if (new_pool_size == old_pool_size)
1170                 return;
1171
1172         fs_info->thread_pool_size = new_pool_size;
1173
1174         printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1175                old_pool_size, new_pool_size);
1176
1177         btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1178         btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1179         btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1180         btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1181         btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1182         btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1183         btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1184         btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1185         btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1186         btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1187         btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1188         btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1189         btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1190         btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1191                               new_pool_size);
1192 }
1193
1194 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1195 {
1196         set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1197 }
1198
1199 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1200                                        unsigned long old_opts, int flags)
1201 {
1202         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1203             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1204              (flags & MS_RDONLY))) {
1205                 /* wait for any defraggers to finish */
1206                 wait_event(fs_info->transaction_wait,
1207                            (atomic_read(&fs_info->defrag_running) == 0));
1208                 if (flags & MS_RDONLY)
1209                         sync_filesystem(fs_info->sb);
1210         }
1211 }
1212
1213 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1214                                          unsigned long old_opts)
1215 {
1216         /*
1217          * We need cleanup all defragable inodes if the autodefragment is
1218          * close or the fs is R/O.
1219          */
1220         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1221             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1222              (fs_info->sb->s_flags & MS_RDONLY))) {
1223                 btrfs_cleanup_defrag_inodes(fs_info);
1224         }
1225
1226         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1227 }
1228
1229 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1230 {
1231         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1232         struct btrfs_root *root = fs_info->tree_root;
1233         unsigned old_flags = sb->s_flags;
1234         unsigned long old_opts = fs_info->mount_opt;
1235         unsigned long old_compress_type = fs_info->compress_type;
1236         u64 old_max_inline = fs_info->max_inline;
1237         u64 old_alloc_start = fs_info->alloc_start;
1238         int old_thread_pool_size = fs_info->thread_pool_size;
1239         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1240         int ret;
1241
1242         btrfs_remount_prepare(fs_info);
1243
1244         ret = btrfs_parse_options(root, data);
1245         if (ret) {
1246                 ret = -EINVAL;
1247                 goto restore;
1248         }
1249
1250         btrfs_remount_begin(fs_info, old_opts, *flags);
1251         btrfs_resize_thread_pool(fs_info,
1252                 fs_info->thread_pool_size, old_thread_pool_size);
1253
1254         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1255                 goto out;
1256
1257         if (*flags & MS_RDONLY) {
1258                 /*
1259                  * this also happens on 'umount -rf' or on shutdown, when
1260                  * the filesystem is busy.
1261                  */
1262                 sb->s_flags |= MS_RDONLY;
1263
1264                 btrfs_dev_replace_suspend_for_unmount(fs_info);
1265                 btrfs_scrub_cancel(fs_info);
1266                 btrfs_pause_balance(fs_info);
1267
1268                 ret = btrfs_commit_super(root);
1269                 if (ret)
1270                         goto restore;
1271         } else {
1272                 if (fs_info->fs_devices->rw_devices == 0) {
1273                         ret = -EACCES;
1274                         goto restore;
1275                 }
1276
1277                 if (fs_info->fs_devices->missing_devices >
1278                      fs_info->num_tolerated_disk_barrier_failures &&
1279                     !(*flags & MS_RDONLY)) {
1280                         printk(KERN_WARNING
1281                                "Btrfs: too many missing devices, writeable remount is not allowed\n");
1282                         ret = -EACCES;
1283                         goto restore;
1284                 }
1285
1286                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1287                         ret = -EINVAL;
1288                         goto restore;
1289                 }
1290
1291                 ret = btrfs_cleanup_fs_roots(fs_info);
1292                 if (ret)
1293                         goto restore;
1294
1295                 /* recover relocation */
1296                 ret = btrfs_recover_relocation(root);
1297                 if (ret)
1298                         goto restore;
1299
1300                 ret = btrfs_resume_balance_async(fs_info);
1301                 if (ret)
1302                         goto restore;
1303
1304                 ret = btrfs_resume_dev_replace_async(fs_info);
1305                 if (ret) {
1306                         pr_warn("btrfs: failed to resume dev_replace\n");
1307                         goto restore;
1308                 }
1309                 sb->s_flags &= ~MS_RDONLY;
1310         }
1311 out:
1312         btrfs_remount_cleanup(fs_info, old_opts);
1313         return 0;
1314
1315 restore:
1316         /* We've hit an error - don't reset MS_RDONLY */
1317         if (sb->s_flags & MS_RDONLY)
1318                 old_flags |= MS_RDONLY;
1319         sb->s_flags = old_flags;
1320         fs_info->mount_opt = old_opts;
1321         fs_info->compress_type = old_compress_type;
1322         fs_info->max_inline = old_max_inline;
1323         mutex_lock(&fs_info->chunk_mutex);
1324         fs_info->alloc_start = old_alloc_start;
1325         mutex_unlock(&fs_info->chunk_mutex);
1326         btrfs_resize_thread_pool(fs_info,
1327                 old_thread_pool_size, fs_info->thread_pool_size);
1328         fs_info->metadata_ratio = old_metadata_ratio;
1329         btrfs_remount_cleanup(fs_info, old_opts);
1330         return ret;
1331 }
1332
1333 /* Used to sort the devices by max_avail(descending sort) */
1334 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1335                                        const void *dev_info2)
1336 {
1337         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1338             ((struct btrfs_device_info *)dev_info2)->max_avail)
1339                 return -1;
1340         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1341                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1342                 return 1;
1343         else
1344         return 0;
1345 }
1346
1347 /*
1348  * sort the devices by max_avail, in which max free extent size of each device
1349  * is stored.(Descending Sort)
1350  */
1351 static inline void btrfs_descending_sort_devices(
1352                                         struct btrfs_device_info *devices,
1353                                         size_t nr_devices)
1354 {
1355         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1356              btrfs_cmp_device_free_bytes, NULL);
1357 }
1358
1359 /*
1360  * The helper to calc the free space on the devices that can be used to store
1361  * file data.
1362  */
1363 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1364 {
1365         struct btrfs_fs_info *fs_info = root->fs_info;
1366         struct btrfs_device_info *devices_info;
1367         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1368         struct btrfs_device *device;
1369         u64 skip_space;
1370         u64 type;
1371         u64 avail_space;
1372         u64 used_space;
1373         u64 min_stripe_size;
1374         int min_stripes = 1, num_stripes = 1;
1375         int i = 0, nr_devices;
1376         int ret;
1377
1378         nr_devices = fs_info->fs_devices->open_devices;
1379         BUG_ON(!nr_devices);
1380
1381         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1382                                GFP_NOFS);
1383         if (!devices_info)
1384                 return -ENOMEM;
1385
1386         /* calc min stripe number for data space alloction */
1387         type = btrfs_get_alloc_profile(root, 1);
1388         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1389                 min_stripes = 2;
1390                 num_stripes = nr_devices;
1391         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1392                 min_stripes = 2;
1393                 num_stripes = 2;
1394         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1395                 min_stripes = 4;
1396                 num_stripes = 4;
1397         }
1398
1399         if (type & BTRFS_BLOCK_GROUP_DUP)
1400                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1401         else
1402                 min_stripe_size = BTRFS_STRIPE_LEN;
1403
1404         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1405                 if (!device->in_fs_metadata || !device->bdev ||
1406                     device->is_tgtdev_for_dev_replace)
1407                         continue;
1408
1409                 avail_space = device->total_bytes - device->bytes_used;
1410
1411                 /* align with stripe_len */
1412                 do_div(avail_space, BTRFS_STRIPE_LEN);
1413                 avail_space *= BTRFS_STRIPE_LEN;
1414
1415                 /*
1416                  * In order to avoid overwritting the superblock on the drive,
1417                  * btrfs starts at an offset of at least 1MB when doing chunk
1418                  * allocation.
1419                  */
1420                 skip_space = 1024 * 1024;
1421
1422                 /* user can set the offset in fs_info->alloc_start. */
1423                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1424                     device->total_bytes)
1425                         skip_space = max(fs_info->alloc_start, skip_space);
1426
1427                 /*
1428                  * btrfs can not use the free space in [0, skip_space - 1],
1429                  * we must subtract it from the total. In order to implement
1430                  * it, we account the used space in this range first.
1431                  */
1432                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1433                                                      &used_space);
1434                 if (ret) {
1435                         kfree(devices_info);
1436                         return ret;
1437                 }
1438
1439                 /* calc the free space in [0, skip_space - 1] */
1440                 skip_space -= used_space;
1441
1442                 /*
1443                  * we can use the free space in [0, skip_space - 1], subtract
1444                  * it from the total.
1445                  */
1446                 if (avail_space && avail_space >= skip_space)
1447                         avail_space -= skip_space;
1448                 else
1449                         avail_space = 0;
1450
1451                 if (avail_space < min_stripe_size)
1452                         continue;
1453
1454                 devices_info[i].dev = device;
1455                 devices_info[i].max_avail = avail_space;
1456
1457                 i++;
1458         }
1459
1460         nr_devices = i;
1461
1462         btrfs_descending_sort_devices(devices_info, nr_devices);
1463
1464         i = nr_devices - 1;
1465         avail_space = 0;
1466         while (nr_devices >= min_stripes) {
1467                 if (num_stripes > nr_devices)
1468                         num_stripes = nr_devices;
1469
1470                 if (devices_info[i].max_avail >= min_stripe_size) {
1471                         int j;
1472                         u64 alloc_size;
1473
1474                         avail_space += devices_info[i].max_avail * num_stripes;
1475                         alloc_size = devices_info[i].max_avail;
1476                         for (j = i + 1 - num_stripes; j <= i; j++)
1477                                 devices_info[j].max_avail -= alloc_size;
1478                 }
1479                 i--;
1480                 nr_devices--;
1481         }
1482
1483         kfree(devices_info);
1484         *free_bytes = avail_space;
1485         return 0;
1486 }
1487
1488 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1489 {
1490         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1491         struct btrfs_super_block *disk_super = fs_info->super_copy;
1492         struct list_head *head = &fs_info->space_info;
1493         struct btrfs_space_info *found;
1494         u64 total_used = 0;
1495         u64 total_free_data = 0;
1496         int bits = dentry->d_sb->s_blocksize_bits;
1497         __be32 *fsid = (__be32 *)fs_info->fsid;
1498         int ret;
1499
1500         /* holding chunk_muext to avoid allocating new chunks */
1501         mutex_lock(&fs_info->chunk_mutex);
1502         rcu_read_lock();
1503         list_for_each_entry_rcu(found, head, list) {
1504                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1505                         total_free_data += found->disk_total - found->disk_used;
1506                         total_free_data -=
1507                                 btrfs_account_ro_block_groups_free_space(found);
1508                 }
1509
1510                 total_used += found->disk_used;
1511         }
1512         rcu_read_unlock();
1513
1514         buf->f_namelen = BTRFS_NAME_LEN;
1515         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1516         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1517         buf->f_bsize = dentry->d_sb->s_blocksize;
1518         buf->f_type = BTRFS_SUPER_MAGIC;
1519         buf->f_bavail = total_free_data;
1520         ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1521         if (ret) {
1522                 mutex_unlock(&fs_info->chunk_mutex);
1523                 return ret;
1524         }
1525         buf->f_bavail += total_free_data;
1526         buf->f_bavail = buf->f_bavail >> bits;
1527         mutex_unlock(&fs_info->chunk_mutex);
1528
1529         /* We treat it as constant endianness (it doesn't matter _which_)
1530            because we want the fsid to come out the same whether mounted
1531            on a big-endian or little-endian host */
1532         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1533         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1534         /* Mask in the root object ID too, to disambiguate subvols */
1535         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1536         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1537
1538         return 0;
1539 }
1540
1541 static void btrfs_kill_super(struct super_block *sb)
1542 {
1543         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1544         kill_anon_super(sb);
1545         free_fs_info(fs_info);
1546 }
1547
1548 static struct file_system_type btrfs_fs_type = {
1549         .owner          = THIS_MODULE,
1550         .name           = "btrfs",
1551         .mount          = btrfs_mount,
1552         .kill_sb        = btrfs_kill_super,
1553         .fs_flags       = FS_REQUIRES_DEV,
1554 };
1555 MODULE_ALIAS_FS("btrfs");
1556
1557 /*
1558  * used by btrfsctl to scan devices when no FS is mounted
1559  */
1560 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1561                                 unsigned long arg)
1562 {
1563         struct btrfs_ioctl_vol_args *vol;
1564         struct btrfs_fs_devices *fs_devices;
1565         int ret = -ENOTTY;
1566
1567         if (!capable(CAP_SYS_ADMIN))
1568                 return -EPERM;
1569
1570         vol = memdup_user((void __user *)arg, sizeof(*vol));
1571         if (IS_ERR(vol))
1572                 return PTR_ERR(vol);
1573
1574         switch (cmd) {
1575         case BTRFS_IOC_SCAN_DEV:
1576                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1577                                             &btrfs_fs_type, &fs_devices);
1578                 break;
1579         case BTRFS_IOC_DEVICES_READY:
1580                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1581                                             &btrfs_fs_type, &fs_devices);
1582                 if (ret)
1583                         break;
1584                 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1585                 break;
1586         }
1587
1588         kfree(vol);
1589         return ret;
1590 }
1591
1592 static int btrfs_freeze(struct super_block *sb)
1593 {
1594         struct btrfs_trans_handle *trans;
1595         struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1596
1597         trans = btrfs_attach_transaction_barrier(root);
1598         if (IS_ERR(trans)) {
1599                 /* no transaction, don't bother */
1600                 if (PTR_ERR(trans) == -ENOENT)
1601                         return 0;
1602                 return PTR_ERR(trans);
1603         }
1604         return btrfs_commit_transaction(trans, root);
1605 }
1606
1607 static int btrfs_unfreeze(struct super_block *sb)
1608 {
1609         return 0;
1610 }
1611
1612 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1613 {
1614         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1615         struct btrfs_fs_devices *cur_devices;
1616         struct btrfs_device *dev, *first_dev = NULL;
1617         struct list_head *head;
1618         struct rcu_string *name;
1619
1620         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1621         cur_devices = fs_info->fs_devices;
1622         while (cur_devices) {
1623                 head = &cur_devices->devices;
1624                 list_for_each_entry(dev, head, dev_list) {
1625                         if (dev->missing)
1626                                 continue;
1627                         if (!first_dev || dev->devid < first_dev->devid)
1628                                 first_dev = dev;
1629                 }
1630                 cur_devices = cur_devices->seed;
1631         }
1632
1633         if (first_dev) {
1634                 rcu_read_lock();
1635                 name = rcu_dereference(first_dev->name);
1636                 seq_escape(m, name->str, " \t\n\\");
1637                 rcu_read_unlock();
1638         } else {
1639                 WARN_ON(1);
1640         }
1641         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1642         return 0;
1643 }
1644
1645 static const struct super_operations btrfs_super_ops = {
1646         .drop_inode     = btrfs_drop_inode,
1647         .evict_inode    = btrfs_evict_inode,
1648         .put_super      = btrfs_put_super,
1649         .sync_fs        = btrfs_sync_fs,
1650         .show_options   = btrfs_show_options,
1651         .show_devname   = btrfs_show_devname,
1652         .write_inode    = btrfs_write_inode,
1653         .alloc_inode    = btrfs_alloc_inode,
1654         .destroy_inode  = btrfs_destroy_inode,
1655         .statfs         = btrfs_statfs,
1656         .remount_fs     = btrfs_remount,
1657         .freeze_fs      = btrfs_freeze,
1658         .unfreeze_fs    = btrfs_unfreeze,
1659 };
1660
1661 static const struct file_operations btrfs_ctl_fops = {
1662         .unlocked_ioctl  = btrfs_control_ioctl,
1663         .compat_ioctl = btrfs_control_ioctl,
1664         .owner   = THIS_MODULE,
1665         .llseek = noop_llseek,
1666 };
1667
1668 static struct miscdevice btrfs_misc = {
1669         .minor          = BTRFS_MINOR,
1670         .name           = "btrfs-control",
1671         .fops           = &btrfs_ctl_fops
1672 };
1673
1674 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1675 MODULE_ALIAS("devname:btrfs-control");
1676
1677 static int btrfs_interface_init(void)
1678 {
1679         return misc_register(&btrfs_misc);
1680 }
1681
1682 static void btrfs_interface_exit(void)
1683 {
1684         if (misc_deregister(&btrfs_misc) < 0)
1685                 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1686 }
1687
1688 static int __init init_btrfs_fs(void)
1689 {
1690         int err;
1691
1692         err = btrfs_init_sysfs();
1693         if (err)
1694                 return err;
1695
1696         btrfs_init_compress();
1697
1698         err = btrfs_init_cachep();
1699         if (err)
1700                 goto free_compress;
1701
1702         err = extent_io_init();
1703         if (err)
1704                 goto free_cachep;
1705
1706         err = extent_map_init();
1707         if (err)
1708                 goto free_extent_io;
1709
1710         err = ordered_data_init();
1711         if (err)
1712                 goto free_extent_map;
1713
1714         err = btrfs_delayed_inode_init();
1715         if (err)
1716                 goto free_ordered_data;
1717
1718         err = btrfs_auto_defrag_init();
1719         if (err)
1720                 goto free_delayed_inode;
1721
1722         err = btrfs_delayed_ref_init();
1723         if (err)
1724                 goto free_auto_defrag;
1725
1726         err = btrfs_interface_init();
1727         if (err)
1728                 goto free_delayed_ref;
1729
1730         err = register_filesystem(&btrfs_fs_type);
1731         if (err)
1732                 goto unregister_ioctl;
1733
1734         btrfs_init_lockdep();
1735
1736 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1737         btrfs_test_free_space_cache();
1738 #endif
1739
1740         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1741         return 0;
1742
1743 unregister_ioctl:
1744         btrfs_interface_exit();
1745 free_delayed_ref:
1746         btrfs_delayed_ref_exit();
1747 free_auto_defrag:
1748         btrfs_auto_defrag_exit();
1749 free_delayed_inode:
1750         btrfs_delayed_inode_exit();
1751 free_ordered_data:
1752         ordered_data_exit();
1753 free_extent_map:
1754         extent_map_exit();
1755 free_extent_io:
1756         extent_io_exit();
1757 free_cachep:
1758         btrfs_destroy_cachep();
1759 free_compress:
1760         btrfs_exit_compress();
1761         btrfs_exit_sysfs();
1762         return err;
1763 }
1764
1765 static void __exit exit_btrfs_fs(void)
1766 {
1767         btrfs_destroy_cachep();
1768         btrfs_delayed_ref_exit();
1769         btrfs_auto_defrag_exit();
1770         btrfs_delayed_inode_exit();
1771         ordered_data_exit();
1772         extent_map_exit();
1773         extent_io_exit();
1774         btrfs_interface_exit();
1775         unregister_filesystem(&btrfs_fs_type);
1776         btrfs_exit_sysfs();
1777         btrfs_cleanup_fs_uuids();
1778         btrfs_exit_compress();
1779 }
1780
1781 module_init(init_btrfs_fs)
1782 module_exit(exit_btrfs_fs)
1783
1784 MODULE_LICENSE("GPL");