btrfs: deprecate subvolrootid mount option
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "compat.h"
46 #include "delayed-inode.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/btrfs.h>
63
64 static const struct super_operations btrfs_super_ops;
65 static struct file_system_type btrfs_fs_type;
66
67 static const char *btrfs_decode_error(int errno)
68 {
69         char *errstr = "unknown";
70
71         switch (errno) {
72         case -EIO:
73                 errstr = "IO failure";
74                 break;
75         case -ENOMEM:
76                 errstr = "Out of memory";
77                 break;
78         case -EROFS:
79                 errstr = "Readonly filesystem";
80                 break;
81         case -EEXIST:
82                 errstr = "Object already exists";
83                 break;
84         }
85
86         return errstr;
87 }
88
89 static void save_error_info(struct btrfs_fs_info *fs_info)
90 {
91         /*
92          * today we only save the error info into ram.  Long term we'll
93          * also send it down to the disk
94          */
95         set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
96 }
97
98 /* btrfs handle error by forcing the filesystem readonly */
99 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
100 {
101         struct super_block *sb = fs_info->sb;
102
103         if (sb->s_flags & MS_RDONLY)
104                 return;
105
106         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
107                 sb->s_flags |= MS_RDONLY;
108                 btrfs_info(fs_info, "forced readonly");
109                 /*
110                  * Note that a running device replace operation is not
111                  * canceled here although there is no way to update
112                  * the progress. It would add the risk of a deadlock,
113                  * therefore the canceling is ommited. The only penalty
114                  * is that some I/O remains active until the procedure
115                  * completes. The next time when the filesystem is
116                  * mounted writeable again, the device replace
117                  * operation continues.
118                  */
119         }
120 }
121
122 #ifdef CONFIG_PRINTK
123 /*
124  * __btrfs_std_error decodes expected errors from the caller and
125  * invokes the approciate error response.
126  */
127 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
128                        unsigned int line, int errno, const char *fmt, ...)
129 {
130         struct super_block *sb = fs_info->sb;
131         const char *errstr;
132
133         /*
134          * Special case: if the error is EROFS, and we're already
135          * under MS_RDONLY, then it is safe here.
136          */
137         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
138                 return;
139
140         errstr = btrfs_decode_error(errno);
141         if (fmt) {
142                 struct va_format vaf;
143                 va_list args;
144
145                 va_start(args, fmt);
146                 vaf.fmt = fmt;
147                 vaf.va = &args;
148
149                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n",
150                         sb->s_id, function, line, errno, errstr, &vaf);
151                 va_end(args);
152         } else {
153                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n",
154                         sb->s_id, function, line, errno, errstr);
155         }
156
157         /* Don't go through full error handling during mount */
158         if (sb->s_flags & MS_BORN) {
159                 save_error_info(fs_info);
160                 btrfs_handle_error(fs_info);
161         }
162 }
163
164 static const char * const logtypes[] = {
165         "emergency",
166         "alert",
167         "critical",
168         "error",
169         "warning",
170         "notice",
171         "info",
172         "debug",
173 };
174
175 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
176 {
177         struct super_block *sb = fs_info->sb;
178         char lvl[4];
179         struct va_format vaf;
180         va_list args;
181         const char *type = logtypes[4];
182         int kern_level;
183
184         va_start(args, fmt);
185
186         kern_level = printk_get_level(fmt);
187         if (kern_level) {
188                 size_t size = printk_skip_level(fmt) - fmt;
189                 memcpy(lvl, fmt,  size);
190                 lvl[size] = '\0';
191                 fmt += size;
192                 type = logtypes[kern_level - '0'];
193         } else
194                 *lvl = '\0';
195
196         vaf.fmt = fmt;
197         vaf.va = &args;
198
199         printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
200
201         va_end(args);
202 }
203
204 #else
205
206 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
207                        unsigned int line, int errno, const char *fmt, ...)
208 {
209         struct super_block *sb = fs_info->sb;
210
211         /*
212          * Special case: if the error is EROFS, and we're already
213          * under MS_RDONLY, then it is safe here.
214          */
215         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
216                 return;
217
218         /* Don't go through full error handling during mount */
219         if (sb->s_flags & MS_BORN) {
220                 save_error_info(fs_info);
221                 btrfs_handle_error(fs_info);
222         }
223 }
224 #endif
225
226 /*
227  * We only mark the transaction aborted and then set the file system read-only.
228  * This will prevent new transactions from starting or trying to join this
229  * one.
230  *
231  * This means that error recovery at the call site is limited to freeing
232  * any local memory allocations and passing the error code up without
233  * further cleanup. The transaction should complete as it normally would
234  * in the call path but will return -EIO.
235  *
236  * We'll complete the cleanup in btrfs_end_transaction and
237  * btrfs_commit_transaction.
238  */
239 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
240                                struct btrfs_root *root, const char *function,
241                                unsigned int line, int errno)
242 {
243         /*
244          * Report first abort since mount
245          */
246         if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
247                                 &root->fs_info->fs_state)) {
248                 WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n",
249                                 errno);
250         }
251         trans->aborted = errno;
252         /* Nothing used. The other threads that have joined this
253          * transaction may be able to continue. */
254         if (!trans->blocks_used) {
255                 const char *errstr;
256
257                 errstr = btrfs_decode_error(errno);
258                 btrfs_warn(root->fs_info,
259                            "%s:%d: Aborting unused transaction(%s).",
260                            function, line, errstr);
261                 return;
262         }
263         ACCESS_ONCE(trans->transaction->aborted) = errno;
264         __btrfs_std_error(root->fs_info, function, line, errno, NULL);
265 }
266 /*
267  * __btrfs_panic decodes unexpected, fatal errors from the caller,
268  * issues an alert, and either panics or BUGs, depending on mount options.
269  */
270 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
271                    unsigned int line, int errno, const char *fmt, ...)
272 {
273         char *s_id = "<unknown>";
274         const char *errstr;
275         struct va_format vaf = { .fmt = fmt };
276         va_list args;
277
278         if (fs_info)
279                 s_id = fs_info->sb->s_id;
280
281         va_start(args, fmt);
282         vaf.va = &args;
283
284         errstr = btrfs_decode_error(errno);
285         if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
286                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
287                         s_id, function, line, &vaf, errno, errstr);
288
289         printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
290                s_id, function, line, &vaf, errno, errstr);
291         va_end(args);
292         /* Caller calls BUG() */
293 }
294
295 static void btrfs_put_super(struct super_block *sb)
296 {
297         (void)close_ctree(btrfs_sb(sb)->tree_root);
298         /* FIXME: need to fix VFS to return error? */
299         /* AV: return it _where_?  ->put_super() can be triggered by any number
300          * of async events, up to and including delivery of SIGKILL to the
301          * last process that kept it busy.  Or segfault in the aforementioned
302          * process...  Whom would you report that to?
303          */
304 }
305
306 enum {
307         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
308         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
309         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
310         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
311         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
312         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
313         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
314         Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
315         Opt_check_integrity, Opt_check_integrity_including_extent_data,
316         Opt_check_integrity_print_mask, Opt_fatal_errors,
317         Opt_err,
318 };
319
320 static match_table_t tokens = {
321         {Opt_degraded, "degraded"},
322         {Opt_subvol, "subvol=%s"},
323         {Opt_subvolid, "subvolid=%d"},
324         {Opt_device, "device=%s"},
325         {Opt_nodatasum, "nodatasum"},
326         {Opt_nodatacow, "nodatacow"},
327         {Opt_nobarrier, "nobarrier"},
328         {Opt_max_inline, "max_inline=%s"},
329         {Opt_alloc_start, "alloc_start=%s"},
330         {Opt_thread_pool, "thread_pool=%d"},
331         {Opt_compress, "compress"},
332         {Opt_compress_type, "compress=%s"},
333         {Opt_compress_force, "compress-force"},
334         {Opt_compress_force_type, "compress-force=%s"},
335         {Opt_ssd, "ssd"},
336         {Opt_ssd_spread, "ssd_spread"},
337         {Opt_nossd, "nossd"},
338         {Opt_noacl, "noacl"},
339         {Opt_notreelog, "notreelog"},
340         {Opt_flushoncommit, "flushoncommit"},
341         {Opt_ratio, "metadata_ratio=%d"},
342         {Opt_discard, "discard"},
343         {Opt_space_cache, "space_cache"},
344         {Opt_clear_cache, "clear_cache"},
345         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
346         {Opt_enospc_debug, "enospc_debug"},
347         {Opt_subvolrootid, "subvolrootid=%d"},
348         {Opt_defrag, "autodefrag"},
349         {Opt_inode_cache, "inode_cache"},
350         {Opt_no_space_cache, "nospace_cache"},
351         {Opt_recovery, "recovery"},
352         {Opt_skip_balance, "skip_balance"},
353         {Opt_check_integrity, "check_int"},
354         {Opt_check_integrity_including_extent_data, "check_int_data"},
355         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
356         {Opt_fatal_errors, "fatal_errors=%s"},
357         {Opt_err, NULL},
358 };
359
360 /*
361  * Regular mount options parser.  Everything that is needed only when
362  * reading in a new superblock is parsed here.
363  * XXX JDM: This needs to be cleaned up for remount.
364  */
365 int btrfs_parse_options(struct btrfs_root *root, char *options)
366 {
367         struct btrfs_fs_info *info = root->fs_info;
368         substring_t args[MAX_OPT_ARGS];
369         char *p, *num, *orig = NULL;
370         u64 cache_gen;
371         int intarg;
372         int ret = 0;
373         char *compress_type;
374         bool compress_force = false;
375
376         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
377         if (cache_gen)
378                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
379
380         if (!options)
381                 goto out;
382
383         /*
384          * strsep changes the string, duplicate it because parse_options
385          * gets called twice
386          */
387         options = kstrdup(options, GFP_NOFS);
388         if (!options)
389                 return -ENOMEM;
390
391         orig = options;
392
393         while ((p = strsep(&options, ",")) != NULL) {
394                 int token;
395                 if (!*p)
396                         continue;
397
398                 token = match_token(p, tokens, args);
399                 switch (token) {
400                 case Opt_degraded:
401                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
402                         btrfs_set_opt(info->mount_opt, DEGRADED);
403                         break;
404                 case Opt_subvol:
405                 case Opt_subvolid:
406                 case Opt_subvolrootid:
407                 case Opt_device:
408                         /*
409                          * These are parsed by btrfs_parse_early_options
410                          * and can be happily ignored here.
411                          */
412                         break;
413                 case Opt_nodatasum:
414                         printk(KERN_INFO "btrfs: setting nodatasum\n");
415                         btrfs_set_opt(info->mount_opt, NODATASUM);
416                         break;
417                 case Opt_nodatacow:
418                         if (!btrfs_test_opt(root, COMPRESS) ||
419                                 !btrfs_test_opt(root, FORCE_COMPRESS)) {
420                                         printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
421                         } else {
422                                 printk(KERN_INFO "btrfs: setting nodatacow\n");
423                         }
424                         info->compress_type = BTRFS_COMPRESS_NONE;
425                         btrfs_clear_opt(info->mount_opt, COMPRESS);
426                         btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
427                         btrfs_set_opt(info->mount_opt, NODATACOW);
428                         btrfs_set_opt(info->mount_opt, NODATASUM);
429                         break;
430                 case Opt_compress_force:
431                 case Opt_compress_force_type:
432                         compress_force = true;
433                         /* Fallthrough */
434                 case Opt_compress:
435                 case Opt_compress_type:
436                         if (token == Opt_compress ||
437                             token == Opt_compress_force ||
438                             strcmp(args[0].from, "zlib") == 0) {
439                                 compress_type = "zlib";
440                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
441                                 btrfs_set_opt(info->mount_opt, COMPRESS);
442                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
443                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
444                         } else if (strcmp(args[0].from, "lzo") == 0) {
445                                 compress_type = "lzo";
446                                 info->compress_type = BTRFS_COMPRESS_LZO;
447                                 btrfs_set_opt(info->mount_opt, COMPRESS);
448                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
449                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
450                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
451                         } else if (strncmp(args[0].from, "no", 2) == 0) {
452                                 compress_type = "no";
453                                 info->compress_type = BTRFS_COMPRESS_NONE;
454                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
455                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
456                                 compress_force = false;
457                         } else {
458                                 ret = -EINVAL;
459                                 goto out;
460                         }
461
462                         if (compress_force) {
463                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
464                                 pr_info("btrfs: force %s compression\n",
465                                         compress_type);
466                         } else
467                                 pr_info("btrfs: use %s compression\n",
468                                         compress_type);
469                         break;
470                 case Opt_ssd:
471                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
472                         btrfs_set_opt(info->mount_opt, SSD);
473                         break;
474                 case Opt_ssd_spread:
475                         printk(KERN_INFO "btrfs: use spread ssd "
476                                "allocation scheme\n");
477                         btrfs_set_opt(info->mount_opt, SSD);
478                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
479                         break;
480                 case Opt_nossd:
481                         printk(KERN_INFO "btrfs: not using ssd allocation "
482                                "scheme\n");
483                         btrfs_set_opt(info->mount_opt, NOSSD);
484                         btrfs_clear_opt(info->mount_opt, SSD);
485                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
486                         break;
487                 case Opt_nobarrier:
488                         printk(KERN_INFO "btrfs: turning off barriers\n");
489                         btrfs_set_opt(info->mount_opt, NOBARRIER);
490                         break;
491                 case Opt_thread_pool:
492                         intarg = 0;
493                         match_int(&args[0], &intarg);
494                         if (intarg)
495                                 info->thread_pool_size = intarg;
496                         break;
497                 case Opt_max_inline:
498                         num = match_strdup(&args[0]);
499                         if (num) {
500                                 info->max_inline = memparse(num, NULL);
501                                 kfree(num);
502
503                                 if (info->max_inline) {
504                                         info->max_inline = max_t(u64,
505                                                 info->max_inline,
506                                                 root->sectorsize);
507                                 }
508                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
509                                         (unsigned long long)info->max_inline);
510                         }
511                         break;
512                 case Opt_alloc_start:
513                         num = match_strdup(&args[0]);
514                         if (num) {
515                                 mutex_lock(&info->chunk_mutex);
516                                 info->alloc_start = memparse(num, NULL);
517                                 mutex_unlock(&info->chunk_mutex);
518                                 kfree(num);
519                                 printk(KERN_INFO
520                                         "btrfs: allocations start at %llu\n",
521                                         (unsigned long long)info->alloc_start);
522                         }
523                         break;
524                 case Opt_noacl:
525                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
526                         break;
527                 case Opt_notreelog:
528                         printk(KERN_INFO "btrfs: disabling tree log\n");
529                         btrfs_set_opt(info->mount_opt, NOTREELOG);
530                         break;
531                 case Opt_flushoncommit:
532                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
533                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
534                         break;
535                 case Opt_ratio:
536                         intarg = 0;
537                         match_int(&args[0], &intarg);
538                         if (intarg) {
539                                 info->metadata_ratio = intarg;
540                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
541                                        info->metadata_ratio);
542                         }
543                         break;
544                 case Opt_discard:
545                         btrfs_set_opt(info->mount_opt, DISCARD);
546                         break;
547                 case Opt_space_cache:
548                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
549                         break;
550                 case Opt_no_space_cache:
551                         printk(KERN_INFO "btrfs: disabling disk space caching\n");
552                         btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
553                         break;
554                 case Opt_inode_cache:
555                         printk(KERN_INFO "btrfs: enabling inode map caching\n");
556                         btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
557                         break;
558                 case Opt_clear_cache:
559                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
560                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
561                         break;
562                 case Opt_user_subvol_rm_allowed:
563                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
564                         break;
565                 case Opt_enospc_debug:
566                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
567                         break;
568                 case Opt_defrag:
569                         printk(KERN_INFO "btrfs: enabling auto defrag\n");
570                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
571                         break;
572                 case Opt_recovery:
573                         printk(KERN_INFO "btrfs: enabling auto recovery\n");
574                         btrfs_set_opt(info->mount_opt, RECOVERY);
575                         break;
576                 case Opt_skip_balance:
577                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
578                         break;
579 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
580                 case Opt_check_integrity_including_extent_data:
581                         printk(KERN_INFO "btrfs: enabling check integrity"
582                                " including extent data\n");
583                         btrfs_set_opt(info->mount_opt,
584                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
585                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
586                         break;
587                 case Opt_check_integrity:
588                         printk(KERN_INFO "btrfs: enabling check integrity\n");
589                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
590                         break;
591                 case Opt_check_integrity_print_mask:
592                         intarg = 0;
593                         match_int(&args[0], &intarg);
594                         if (intarg) {
595                                 info->check_integrity_print_mask = intarg;
596                                 printk(KERN_INFO "btrfs:"
597                                        " check_integrity_print_mask 0x%x\n",
598                                        info->check_integrity_print_mask);
599                         }
600                         break;
601 #else
602                 case Opt_check_integrity_including_extent_data:
603                 case Opt_check_integrity:
604                 case Opt_check_integrity_print_mask:
605                         printk(KERN_ERR "btrfs: support for check_integrity*"
606                                " not compiled in!\n");
607                         ret = -EINVAL;
608                         goto out;
609 #endif
610                 case Opt_fatal_errors:
611                         if (strcmp(args[0].from, "panic") == 0)
612                                 btrfs_set_opt(info->mount_opt,
613                                               PANIC_ON_FATAL_ERROR);
614                         else if (strcmp(args[0].from, "bug") == 0)
615                                 btrfs_clear_opt(info->mount_opt,
616                                               PANIC_ON_FATAL_ERROR);
617                         else {
618                                 ret = -EINVAL;
619                                 goto out;
620                         }
621                         break;
622                 case Opt_err:
623                         printk(KERN_INFO "btrfs: unrecognized mount option "
624                                "'%s'\n", p);
625                         ret = -EINVAL;
626                         goto out;
627                 default:
628                         break;
629                 }
630         }
631 out:
632         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
633                 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
634         kfree(orig);
635         return ret;
636 }
637
638 /*
639  * Parse mount options that are required early in the mount process.
640  *
641  * All other options will be parsed on much later in the mount process and
642  * only when we need to allocate a new super block.
643  */
644 static int btrfs_parse_early_options(const char *options, fmode_t flags,
645                 void *holder, char **subvol_name, u64 *subvol_objectid,
646                 struct btrfs_fs_devices **fs_devices)
647 {
648         substring_t args[MAX_OPT_ARGS];
649         char *device_name, *opts, *orig, *p;
650         int error = 0;
651         int intarg;
652
653         if (!options)
654                 return 0;
655
656         /*
657          * strsep changes the string, duplicate it because parse_options
658          * gets called twice
659          */
660         opts = kstrdup(options, GFP_KERNEL);
661         if (!opts)
662                 return -ENOMEM;
663         orig = opts;
664
665         while ((p = strsep(&opts, ",")) != NULL) {
666                 int token;
667                 if (!*p)
668                         continue;
669
670                 token = match_token(p, tokens, args);
671                 switch (token) {
672                 case Opt_subvol:
673                         kfree(*subvol_name);
674                         *subvol_name = match_strdup(&args[0]);
675                         break;
676                 case Opt_subvolid:
677                         intarg = 0;
678                         error = match_int(&args[0], &intarg);
679                         if (!error) {
680                                 /* we want the original fs_tree */
681                                 if (!intarg)
682                                         *subvol_objectid =
683                                                 BTRFS_FS_TREE_OBJECTID;
684                                 else
685                                         *subvol_objectid = intarg;
686                         }
687                         break;
688                 case Opt_subvolrootid:
689                         printk(KERN_WARNING
690                                 "btrfs: 'subvolrootid' mount option is deprecated and has no effect\n");
691                         break;
692                 case Opt_device:
693                         device_name = match_strdup(&args[0]);
694                         if (!device_name) {
695                                 error = -ENOMEM;
696                                 goto out;
697                         }
698                         error = btrfs_scan_one_device(device_name,
699                                         flags, holder, fs_devices);
700                         kfree(device_name);
701                         if (error)
702                                 goto out;
703                         break;
704                 default:
705                         break;
706                 }
707         }
708
709 out:
710         kfree(orig);
711         return error;
712 }
713
714 static struct dentry *get_default_root(struct super_block *sb,
715                                        u64 subvol_objectid)
716 {
717         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
718         struct btrfs_root *root = fs_info->tree_root;
719         struct btrfs_root *new_root;
720         struct btrfs_dir_item *di;
721         struct btrfs_path *path;
722         struct btrfs_key location;
723         struct inode *inode;
724         u64 dir_id;
725         int new = 0;
726
727         /*
728          * We have a specific subvol we want to mount, just setup location and
729          * go look up the root.
730          */
731         if (subvol_objectid) {
732                 location.objectid = subvol_objectid;
733                 location.type = BTRFS_ROOT_ITEM_KEY;
734                 location.offset = (u64)-1;
735                 goto find_root;
736         }
737
738         path = btrfs_alloc_path();
739         if (!path)
740                 return ERR_PTR(-ENOMEM);
741         path->leave_spinning = 1;
742
743         /*
744          * Find the "default" dir item which points to the root item that we
745          * will mount by default if we haven't been given a specific subvolume
746          * to mount.
747          */
748         dir_id = btrfs_super_root_dir(fs_info->super_copy);
749         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
750         if (IS_ERR(di)) {
751                 btrfs_free_path(path);
752                 return ERR_CAST(di);
753         }
754         if (!di) {
755                 /*
756                  * Ok the default dir item isn't there.  This is weird since
757                  * it's always been there, but don't freak out, just try and
758                  * mount to root most subvolume.
759                  */
760                 btrfs_free_path(path);
761                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
762                 new_root = fs_info->fs_root;
763                 goto setup_root;
764         }
765
766         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
767         btrfs_free_path(path);
768
769 find_root:
770         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
771         if (IS_ERR(new_root))
772                 return ERR_CAST(new_root);
773
774         if (btrfs_root_refs(&new_root->root_item) == 0)
775                 return ERR_PTR(-ENOENT);
776
777         dir_id = btrfs_root_dirid(&new_root->root_item);
778 setup_root:
779         location.objectid = dir_id;
780         location.type = BTRFS_INODE_ITEM_KEY;
781         location.offset = 0;
782
783         inode = btrfs_iget(sb, &location, new_root, &new);
784         if (IS_ERR(inode))
785                 return ERR_CAST(inode);
786
787         /*
788          * If we're just mounting the root most subvol put the inode and return
789          * a reference to the dentry.  We will have already gotten a reference
790          * to the inode in btrfs_fill_super so we're good to go.
791          */
792         if (!new && sb->s_root->d_inode == inode) {
793                 iput(inode);
794                 return dget(sb->s_root);
795         }
796
797         return d_obtain_alias(inode);
798 }
799
800 static int btrfs_fill_super(struct super_block *sb,
801                             struct btrfs_fs_devices *fs_devices,
802                             void *data, int silent)
803 {
804         struct inode *inode;
805         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
806         struct btrfs_key key;
807         int err;
808
809         sb->s_maxbytes = MAX_LFS_FILESIZE;
810         sb->s_magic = BTRFS_SUPER_MAGIC;
811         sb->s_op = &btrfs_super_ops;
812         sb->s_d_op = &btrfs_dentry_operations;
813         sb->s_export_op = &btrfs_export_ops;
814         sb->s_xattr = btrfs_xattr_handlers;
815         sb->s_time_gran = 1;
816 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
817         sb->s_flags |= MS_POSIXACL;
818 #endif
819         sb->s_flags |= MS_I_VERSION;
820         err = open_ctree(sb, fs_devices, (char *)data);
821         if (err) {
822                 printk("btrfs: open_ctree failed\n");
823                 return err;
824         }
825
826         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
827         key.type = BTRFS_INODE_ITEM_KEY;
828         key.offset = 0;
829         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
830         if (IS_ERR(inode)) {
831                 err = PTR_ERR(inode);
832                 goto fail_close;
833         }
834
835         sb->s_root = d_make_root(inode);
836         if (!sb->s_root) {
837                 err = -ENOMEM;
838                 goto fail_close;
839         }
840
841         save_mount_options(sb, data);
842         cleancache_init_fs(sb);
843         sb->s_flags |= MS_ACTIVE;
844         return 0;
845
846 fail_close:
847         close_ctree(fs_info->tree_root);
848         return err;
849 }
850
851 int btrfs_sync_fs(struct super_block *sb, int wait)
852 {
853         struct btrfs_trans_handle *trans;
854         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
855         struct btrfs_root *root = fs_info->tree_root;
856
857         trace_btrfs_sync_fs(wait);
858
859         if (!wait) {
860                 filemap_flush(fs_info->btree_inode->i_mapping);
861                 return 0;
862         }
863
864         btrfs_wait_ordered_extents(root, 0);
865
866         trans = btrfs_attach_transaction_barrier(root);
867         if (IS_ERR(trans)) {
868                 /* no transaction, don't bother */
869                 if (PTR_ERR(trans) == -ENOENT)
870                         return 0;
871                 return PTR_ERR(trans);
872         }
873         return btrfs_commit_transaction(trans, root);
874 }
875
876 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
877 {
878         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
879         struct btrfs_root *root = info->tree_root;
880         char *compress_type;
881
882         if (btrfs_test_opt(root, DEGRADED))
883                 seq_puts(seq, ",degraded");
884         if (btrfs_test_opt(root, NODATASUM))
885                 seq_puts(seq, ",nodatasum");
886         if (btrfs_test_opt(root, NODATACOW))
887                 seq_puts(seq, ",nodatacow");
888         if (btrfs_test_opt(root, NOBARRIER))
889                 seq_puts(seq, ",nobarrier");
890         if (info->max_inline != 8192 * 1024)
891                 seq_printf(seq, ",max_inline=%llu",
892                            (unsigned long long)info->max_inline);
893         if (info->alloc_start != 0)
894                 seq_printf(seq, ",alloc_start=%llu",
895                            (unsigned long long)info->alloc_start);
896         if (info->thread_pool_size !=  min_t(unsigned long,
897                                              num_online_cpus() + 2, 8))
898                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
899         if (btrfs_test_opt(root, COMPRESS)) {
900                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
901                         compress_type = "zlib";
902                 else
903                         compress_type = "lzo";
904                 if (btrfs_test_opt(root, FORCE_COMPRESS))
905                         seq_printf(seq, ",compress-force=%s", compress_type);
906                 else
907                         seq_printf(seq, ",compress=%s", compress_type);
908         }
909         if (btrfs_test_opt(root, NOSSD))
910                 seq_puts(seq, ",nossd");
911         if (btrfs_test_opt(root, SSD_SPREAD))
912                 seq_puts(seq, ",ssd_spread");
913         else if (btrfs_test_opt(root, SSD))
914                 seq_puts(seq, ",ssd");
915         if (btrfs_test_opt(root, NOTREELOG))
916                 seq_puts(seq, ",notreelog");
917         if (btrfs_test_opt(root, FLUSHONCOMMIT))
918                 seq_puts(seq, ",flushoncommit");
919         if (btrfs_test_opt(root, DISCARD))
920                 seq_puts(seq, ",discard");
921         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
922                 seq_puts(seq, ",noacl");
923         if (btrfs_test_opt(root, SPACE_CACHE))
924                 seq_puts(seq, ",space_cache");
925         else
926                 seq_puts(seq, ",nospace_cache");
927         if (btrfs_test_opt(root, CLEAR_CACHE))
928                 seq_puts(seq, ",clear_cache");
929         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
930                 seq_puts(seq, ",user_subvol_rm_allowed");
931         if (btrfs_test_opt(root, ENOSPC_DEBUG))
932                 seq_puts(seq, ",enospc_debug");
933         if (btrfs_test_opt(root, AUTO_DEFRAG))
934                 seq_puts(seq, ",autodefrag");
935         if (btrfs_test_opt(root, INODE_MAP_CACHE))
936                 seq_puts(seq, ",inode_cache");
937         if (btrfs_test_opt(root, SKIP_BALANCE))
938                 seq_puts(seq, ",skip_balance");
939         if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
940                 seq_puts(seq, ",fatal_errors=panic");
941         return 0;
942 }
943
944 static int btrfs_test_super(struct super_block *s, void *data)
945 {
946         struct btrfs_fs_info *p = data;
947         struct btrfs_fs_info *fs_info = btrfs_sb(s);
948
949         return fs_info->fs_devices == p->fs_devices;
950 }
951
952 static int btrfs_set_super(struct super_block *s, void *data)
953 {
954         int err = set_anon_super(s, data);
955         if (!err)
956                 s->s_fs_info = data;
957         return err;
958 }
959
960 /*
961  * subvolumes are identified by ino 256
962  */
963 static inline int is_subvolume_inode(struct inode *inode)
964 {
965         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
966                 return 1;
967         return 0;
968 }
969
970 /*
971  * This will strip out the subvol=%s argument for an argument string and add
972  * subvolid=0 to make sure we get the actual tree root for path walking to the
973  * subvol we want.
974  */
975 static char *setup_root_args(char *args)
976 {
977         unsigned len = strlen(args) + 2 + 1;
978         char *src, *dst, *buf;
979
980         /*
981          * We need the same args as before, but with this substitution:
982          * s!subvol=[^,]+!subvolid=0!
983          *
984          * Since the replacement string is up to 2 bytes longer than the
985          * original, allocate strlen(args) + 2 + 1 bytes.
986          */
987
988         src = strstr(args, "subvol=");
989         /* This shouldn't happen, but just in case.. */
990         if (!src)
991                 return NULL;
992
993         buf = dst = kmalloc(len, GFP_NOFS);
994         if (!buf)
995                 return NULL;
996
997         /*
998          * If the subvol= arg is not at the start of the string,
999          * copy whatever precedes it into buf.
1000          */
1001         if (src != args) {
1002                 *src++ = '\0';
1003                 strcpy(buf, args);
1004                 dst += strlen(args);
1005         }
1006
1007         strcpy(dst, "subvolid=0");
1008         dst += strlen("subvolid=0");
1009
1010         /*
1011          * If there is a "," after the original subvol=... string,
1012          * copy that suffix into our buffer.  Otherwise, we're done.
1013          */
1014         src = strchr(src, ',');
1015         if (src)
1016                 strcpy(dst, src);
1017
1018         return buf;
1019 }
1020
1021 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1022                                    const char *device_name, char *data)
1023 {
1024         struct dentry *root;
1025         struct vfsmount *mnt;
1026         char *newargs;
1027
1028         newargs = setup_root_args(data);
1029         if (!newargs)
1030                 return ERR_PTR(-ENOMEM);
1031         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1032                              newargs);
1033         kfree(newargs);
1034         if (IS_ERR(mnt))
1035                 return ERR_CAST(mnt);
1036
1037         root = mount_subtree(mnt, subvol_name);
1038
1039         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1040                 struct super_block *s = root->d_sb;
1041                 dput(root);
1042                 root = ERR_PTR(-EINVAL);
1043                 deactivate_locked_super(s);
1044                 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1045                                 subvol_name);
1046         }
1047
1048         return root;
1049 }
1050
1051 /*
1052  * Find a superblock for the given device / mount point.
1053  *
1054  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1055  *        for multiple device setup.  Make sure to keep it in sync.
1056  */
1057 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1058                 const char *device_name, void *data)
1059 {
1060         struct block_device *bdev = NULL;
1061         struct super_block *s;
1062         struct dentry *root;
1063         struct btrfs_fs_devices *fs_devices = NULL;
1064         struct btrfs_fs_info *fs_info = NULL;
1065         fmode_t mode = FMODE_READ;
1066         char *subvol_name = NULL;
1067         u64 subvol_objectid = 0;
1068         int error = 0;
1069
1070         if (!(flags & MS_RDONLY))
1071                 mode |= FMODE_WRITE;
1072
1073         error = btrfs_parse_early_options(data, mode, fs_type,
1074                                           &subvol_name, &subvol_objectid,
1075                                           &fs_devices);
1076         if (error) {
1077                 kfree(subvol_name);
1078                 return ERR_PTR(error);
1079         }
1080
1081         if (subvol_name) {
1082                 root = mount_subvol(subvol_name, flags, device_name, data);
1083                 kfree(subvol_name);
1084                 return root;
1085         }
1086
1087         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1088         if (error)
1089                 return ERR_PTR(error);
1090
1091         /*
1092          * Setup a dummy root and fs_info for test/set super.  This is because
1093          * we don't actually fill this stuff out until open_ctree, but we need
1094          * it for searching for existing supers, so this lets us do that and
1095          * then open_ctree will properly initialize everything later.
1096          */
1097         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1098         if (!fs_info)
1099                 return ERR_PTR(-ENOMEM);
1100
1101         fs_info->fs_devices = fs_devices;
1102
1103         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1104         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1105         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1106                 error = -ENOMEM;
1107                 goto error_fs_info;
1108         }
1109
1110         error = btrfs_open_devices(fs_devices, mode, fs_type);
1111         if (error)
1112                 goto error_fs_info;
1113
1114         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1115                 error = -EACCES;
1116                 goto error_close_devices;
1117         }
1118
1119         bdev = fs_devices->latest_bdev;
1120         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1121                  fs_info);
1122         if (IS_ERR(s)) {
1123                 error = PTR_ERR(s);
1124                 goto error_close_devices;
1125         }
1126
1127         if (s->s_root) {
1128                 btrfs_close_devices(fs_devices);
1129                 free_fs_info(fs_info);
1130                 if ((flags ^ s->s_flags) & MS_RDONLY)
1131                         error = -EBUSY;
1132         } else {
1133                 char b[BDEVNAME_SIZE];
1134
1135                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1136                 btrfs_sb(s)->bdev_holder = fs_type;
1137                 error = btrfs_fill_super(s, fs_devices, data,
1138                                          flags & MS_SILENT ? 1 : 0);
1139         }
1140
1141         root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1142         if (IS_ERR(root))
1143                 deactivate_locked_super(s);
1144
1145         return root;
1146
1147 error_close_devices:
1148         btrfs_close_devices(fs_devices);
1149 error_fs_info:
1150         free_fs_info(fs_info);
1151         return ERR_PTR(error);
1152 }
1153
1154 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1155 {
1156         spin_lock_irq(&workers->lock);
1157         workers->max_workers = new_limit;
1158         spin_unlock_irq(&workers->lock);
1159 }
1160
1161 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1162                                      int new_pool_size, int old_pool_size)
1163 {
1164         if (new_pool_size == old_pool_size)
1165                 return;
1166
1167         fs_info->thread_pool_size = new_pool_size;
1168
1169         printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1170                old_pool_size, new_pool_size);
1171
1172         btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1173         btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1174         btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1175         btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1176         btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1177         btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1178         btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1179         btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1180         btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1181         btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1182         btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1183         btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1184         btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1185         btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1186                               new_pool_size);
1187 }
1188
1189 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info,
1190                                          unsigned long old_opts, int flags)
1191 {
1192         set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1193
1194         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1195             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1196              (flags & MS_RDONLY))) {
1197                 /* wait for any defraggers to finish */
1198                 wait_event(fs_info->transaction_wait,
1199                            (atomic_read(&fs_info->defrag_running) == 0));
1200                 if (flags & MS_RDONLY)
1201                         sync_filesystem(fs_info->sb);
1202         }
1203 }
1204
1205 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1206                                          unsigned long old_opts)
1207 {
1208         /*
1209          * We need cleanup all defragable inodes if the autodefragment is
1210          * close or the fs is R/O.
1211          */
1212         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1213             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1214              (fs_info->sb->s_flags & MS_RDONLY))) {
1215                 btrfs_cleanup_defrag_inodes(fs_info);
1216         }
1217
1218         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1219 }
1220
1221 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1222 {
1223         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1224         struct btrfs_root *root = fs_info->tree_root;
1225         unsigned old_flags = sb->s_flags;
1226         unsigned long old_opts = fs_info->mount_opt;
1227         unsigned long old_compress_type = fs_info->compress_type;
1228         u64 old_max_inline = fs_info->max_inline;
1229         u64 old_alloc_start = fs_info->alloc_start;
1230         int old_thread_pool_size = fs_info->thread_pool_size;
1231         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1232         int ret;
1233
1234         btrfs_remount_prepare(fs_info, old_opts, *flags);
1235
1236         ret = btrfs_parse_options(root, data);
1237         if (ret) {
1238                 ret = -EINVAL;
1239                 goto restore;
1240         }
1241
1242         btrfs_resize_thread_pool(fs_info,
1243                 fs_info->thread_pool_size, old_thread_pool_size);
1244
1245         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1246                 goto out;
1247
1248         if (*flags & MS_RDONLY) {
1249                 /*
1250                  * this also happens on 'umount -rf' or on shutdown, when
1251                  * the filesystem is busy.
1252                  */
1253                 sb->s_flags |= MS_RDONLY;
1254
1255                 btrfs_dev_replace_suspend_for_unmount(fs_info);
1256                 btrfs_scrub_cancel(fs_info);
1257
1258                 ret = btrfs_commit_super(root);
1259                 if (ret)
1260                         goto restore;
1261         } else {
1262                 if (fs_info->fs_devices->rw_devices == 0) {
1263                         ret = -EACCES;
1264                         goto restore;
1265                 }
1266
1267                 if (fs_info->fs_devices->missing_devices >
1268                      fs_info->num_tolerated_disk_barrier_failures &&
1269                     !(*flags & MS_RDONLY)) {
1270                         printk(KERN_WARNING
1271                                "Btrfs: too many missing devices, writeable remount is not allowed\n");
1272                         ret = -EACCES;
1273                         goto restore;
1274                 }
1275
1276                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1277                         ret = -EINVAL;
1278                         goto restore;
1279                 }
1280
1281                 ret = btrfs_cleanup_fs_roots(fs_info);
1282                 if (ret)
1283                         goto restore;
1284
1285                 /* recover relocation */
1286                 ret = btrfs_recover_relocation(root);
1287                 if (ret)
1288                         goto restore;
1289
1290                 ret = btrfs_resume_balance_async(fs_info);
1291                 if (ret)
1292                         goto restore;
1293
1294                 ret = btrfs_resume_dev_replace_async(fs_info);
1295                 if (ret) {
1296                         pr_warn("btrfs: failed to resume dev_replace\n");
1297                         goto restore;
1298                 }
1299                 sb->s_flags &= ~MS_RDONLY;
1300         }
1301 out:
1302         btrfs_remount_cleanup(fs_info, old_opts);
1303         return 0;
1304
1305 restore:
1306         /* We've hit an error - don't reset MS_RDONLY */
1307         if (sb->s_flags & MS_RDONLY)
1308                 old_flags |= MS_RDONLY;
1309         sb->s_flags = old_flags;
1310         fs_info->mount_opt = old_opts;
1311         fs_info->compress_type = old_compress_type;
1312         fs_info->max_inline = old_max_inline;
1313         mutex_lock(&fs_info->chunk_mutex);
1314         fs_info->alloc_start = old_alloc_start;
1315         mutex_unlock(&fs_info->chunk_mutex);
1316         btrfs_resize_thread_pool(fs_info,
1317                 old_thread_pool_size, fs_info->thread_pool_size);
1318         fs_info->metadata_ratio = old_metadata_ratio;
1319         btrfs_remount_cleanup(fs_info, old_opts);
1320         return ret;
1321 }
1322
1323 /* Used to sort the devices by max_avail(descending sort) */
1324 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1325                                        const void *dev_info2)
1326 {
1327         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1328             ((struct btrfs_device_info *)dev_info2)->max_avail)
1329                 return -1;
1330         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1331                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1332                 return 1;
1333         else
1334         return 0;
1335 }
1336
1337 /*
1338  * sort the devices by max_avail, in which max free extent size of each device
1339  * is stored.(Descending Sort)
1340  */
1341 static inline void btrfs_descending_sort_devices(
1342                                         struct btrfs_device_info *devices,
1343                                         size_t nr_devices)
1344 {
1345         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1346              btrfs_cmp_device_free_bytes, NULL);
1347 }
1348
1349 /*
1350  * The helper to calc the free space on the devices that can be used to store
1351  * file data.
1352  */
1353 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1354 {
1355         struct btrfs_fs_info *fs_info = root->fs_info;
1356         struct btrfs_device_info *devices_info;
1357         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1358         struct btrfs_device *device;
1359         u64 skip_space;
1360         u64 type;
1361         u64 avail_space;
1362         u64 used_space;
1363         u64 min_stripe_size;
1364         int min_stripes = 1, num_stripes = 1;
1365         int i = 0, nr_devices;
1366         int ret;
1367
1368         nr_devices = fs_info->fs_devices->open_devices;
1369         BUG_ON(!nr_devices);
1370
1371         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1372                                GFP_NOFS);
1373         if (!devices_info)
1374                 return -ENOMEM;
1375
1376         /* calc min stripe number for data space alloction */
1377         type = btrfs_get_alloc_profile(root, 1);
1378         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1379                 min_stripes = 2;
1380                 num_stripes = nr_devices;
1381         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1382                 min_stripes = 2;
1383                 num_stripes = 2;
1384         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1385                 min_stripes = 4;
1386                 num_stripes = 4;
1387         }
1388
1389         if (type & BTRFS_BLOCK_GROUP_DUP)
1390                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1391         else
1392                 min_stripe_size = BTRFS_STRIPE_LEN;
1393
1394         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1395                 if (!device->in_fs_metadata || !device->bdev ||
1396                     device->is_tgtdev_for_dev_replace)
1397                         continue;
1398
1399                 avail_space = device->total_bytes - device->bytes_used;
1400
1401                 /* align with stripe_len */
1402                 do_div(avail_space, BTRFS_STRIPE_LEN);
1403                 avail_space *= BTRFS_STRIPE_LEN;
1404
1405                 /*
1406                  * In order to avoid overwritting the superblock on the drive,
1407                  * btrfs starts at an offset of at least 1MB when doing chunk
1408                  * allocation.
1409                  */
1410                 skip_space = 1024 * 1024;
1411
1412                 /* user can set the offset in fs_info->alloc_start. */
1413                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1414                     device->total_bytes)
1415                         skip_space = max(fs_info->alloc_start, skip_space);
1416
1417                 /*
1418                  * btrfs can not use the free space in [0, skip_space - 1],
1419                  * we must subtract it from the total. In order to implement
1420                  * it, we account the used space in this range first.
1421                  */
1422                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1423                                                      &used_space);
1424                 if (ret) {
1425                         kfree(devices_info);
1426                         return ret;
1427                 }
1428
1429                 /* calc the free space in [0, skip_space - 1] */
1430                 skip_space -= used_space;
1431
1432                 /*
1433                  * we can use the free space in [0, skip_space - 1], subtract
1434                  * it from the total.
1435                  */
1436                 if (avail_space && avail_space >= skip_space)
1437                         avail_space -= skip_space;
1438                 else
1439                         avail_space = 0;
1440
1441                 if (avail_space < min_stripe_size)
1442                         continue;
1443
1444                 devices_info[i].dev = device;
1445                 devices_info[i].max_avail = avail_space;
1446
1447                 i++;
1448         }
1449
1450         nr_devices = i;
1451
1452         btrfs_descending_sort_devices(devices_info, nr_devices);
1453
1454         i = nr_devices - 1;
1455         avail_space = 0;
1456         while (nr_devices >= min_stripes) {
1457                 if (num_stripes > nr_devices)
1458                         num_stripes = nr_devices;
1459
1460                 if (devices_info[i].max_avail >= min_stripe_size) {
1461                         int j;
1462                         u64 alloc_size;
1463
1464                         avail_space += devices_info[i].max_avail * num_stripes;
1465                         alloc_size = devices_info[i].max_avail;
1466                         for (j = i + 1 - num_stripes; j <= i; j++)
1467                                 devices_info[j].max_avail -= alloc_size;
1468                 }
1469                 i--;
1470                 nr_devices--;
1471         }
1472
1473         kfree(devices_info);
1474         *free_bytes = avail_space;
1475         return 0;
1476 }
1477
1478 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1479 {
1480         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1481         struct btrfs_super_block *disk_super = fs_info->super_copy;
1482         struct list_head *head = &fs_info->space_info;
1483         struct btrfs_space_info *found;
1484         u64 total_used = 0;
1485         u64 total_free_data = 0;
1486         int bits = dentry->d_sb->s_blocksize_bits;
1487         __be32 *fsid = (__be32 *)fs_info->fsid;
1488         int ret;
1489
1490         /* holding chunk_muext to avoid allocating new chunks */
1491         mutex_lock(&fs_info->chunk_mutex);
1492         rcu_read_lock();
1493         list_for_each_entry_rcu(found, head, list) {
1494                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1495                         total_free_data += found->disk_total - found->disk_used;
1496                         total_free_data -=
1497                                 btrfs_account_ro_block_groups_free_space(found);
1498                 }
1499
1500                 total_used += found->disk_used;
1501         }
1502         rcu_read_unlock();
1503
1504         buf->f_namelen = BTRFS_NAME_LEN;
1505         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1506         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1507         buf->f_bsize = dentry->d_sb->s_blocksize;
1508         buf->f_type = BTRFS_SUPER_MAGIC;
1509         buf->f_bavail = total_free_data;
1510         ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1511         if (ret) {
1512                 mutex_unlock(&fs_info->chunk_mutex);
1513                 return ret;
1514         }
1515         buf->f_bavail += total_free_data;
1516         buf->f_bavail = buf->f_bavail >> bits;
1517         mutex_unlock(&fs_info->chunk_mutex);
1518
1519         /* We treat it as constant endianness (it doesn't matter _which_)
1520            because we want the fsid to come out the same whether mounted
1521            on a big-endian or little-endian host */
1522         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1523         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1524         /* Mask in the root object ID too, to disambiguate subvols */
1525         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1526         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1527
1528         return 0;
1529 }
1530
1531 static void btrfs_kill_super(struct super_block *sb)
1532 {
1533         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1534         kill_anon_super(sb);
1535         free_fs_info(fs_info);
1536 }
1537
1538 static struct file_system_type btrfs_fs_type = {
1539         .owner          = THIS_MODULE,
1540         .name           = "btrfs",
1541         .mount          = btrfs_mount,
1542         .kill_sb        = btrfs_kill_super,
1543         .fs_flags       = FS_REQUIRES_DEV,
1544 };
1545 MODULE_ALIAS_FS("btrfs");
1546
1547 /*
1548  * used by btrfsctl to scan devices when no FS is mounted
1549  */
1550 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1551                                 unsigned long arg)
1552 {
1553         struct btrfs_ioctl_vol_args *vol;
1554         struct btrfs_fs_devices *fs_devices;
1555         int ret = -ENOTTY;
1556
1557         if (!capable(CAP_SYS_ADMIN))
1558                 return -EPERM;
1559
1560         vol = memdup_user((void __user *)arg, sizeof(*vol));
1561         if (IS_ERR(vol))
1562                 return PTR_ERR(vol);
1563
1564         switch (cmd) {
1565         case BTRFS_IOC_SCAN_DEV:
1566                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1567                                             &btrfs_fs_type, &fs_devices);
1568                 break;
1569         case BTRFS_IOC_DEVICES_READY:
1570                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1571                                             &btrfs_fs_type, &fs_devices);
1572                 if (ret)
1573                         break;
1574                 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1575                 break;
1576         }
1577
1578         kfree(vol);
1579         return ret;
1580 }
1581
1582 static int btrfs_freeze(struct super_block *sb)
1583 {
1584         struct btrfs_trans_handle *trans;
1585         struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1586
1587         trans = btrfs_attach_transaction_barrier(root);
1588         if (IS_ERR(trans)) {
1589                 /* no transaction, don't bother */
1590                 if (PTR_ERR(trans) == -ENOENT)
1591                         return 0;
1592                 return PTR_ERR(trans);
1593         }
1594         return btrfs_commit_transaction(trans, root);
1595 }
1596
1597 static int btrfs_unfreeze(struct super_block *sb)
1598 {
1599         return 0;
1600 }
1601
1602 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1603 {
1604         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1605         struct btrfs_fs_devices *cur_devices;
1606         struct btrfs_device *dev, *first_dev = NULL;
1607         struct list_head *head;
1608         struct rcu_string *name;
1609
1610         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1611         cur_devices = fs_info->fs_devices;
1612         while (cur_devices) {
1613                 head = &cur_devices->devices;
1614                 list_for_each_entry(dev, head, dev_list) {
1615                         if (dev->missing)
1616                                 continue;
1617                         if (!first_dev || dev->devid < first_dev->devid)
1618                                 first_dev = dev;
1619                 }
1620                 cur_devices = cur_devices->seed;
1621         }
1622
1623         if (first_dev) {
1624                 rcu_read_lock();
1625                 name = rcu_dereference(first_dev->name);
1626                 seq_escape(m, name->str, " \t\n\\");
1627                 rcu_read_unlock();
1628         } else {
1629                 WARN_ON(1);
1630         }
1631         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1632         return 0;
1633 }
1634
1635 static const struct super_operations btrfs_super_ops = {
1636         .drop_inode     = btrfs_drop_inode,
1637         .evict_inode    = btrfs_evict_inode,
1638         .put_super      = btrfs_put_super,
1639         .sync_fs        = btrfs_sync_fs,
1640         .show_options   = btrfs_show_options,
1641         .show_devname   = btrfs_show_devname,
1642         .write_inode    = btrfs_write_inode,
1643         .alloc_inode    = btrfs_alloc_inode,
1644         .destroy_inode  = btrfs_destroy_inode,
1645         .statfs         = btrfs_statfs,
1646         .remount_fs     = btrfs_remount,
1647         .freeze_fs      = btrfs_freeze,
1648         .unfreeze_fs    = btrfs_unfreeze,
1649 };
1650
1651 static const struct file_operations btrfs_ctl_fops = {
1652         .unlocked_ioctl  = btrfs_control_ioctl,
1653         .compat_ioctl = btrfs_control_ioctl,
1654         .owner   = THIS_MODULE,
1655         .llseek = noop_llseek,
1656 };
1657
1658 static struct miscdevice btrfs_misc = {
1659         .minor          = BTRFS_MINOR,
1660         .name           = "btrfs-control",
1661         .fops           = &btrfs_ctl_fops
1662 };
1663
1664 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1665 MODULE_ALIAS("devname:btrfs-control");
1666
1667 static int btrfs_interface_init(void)
1668 {
1669         return misc_register(&btrfs_misc);
1670 }
1671
1672 static void btrfs_interface_exit(void)
1673 {
1674         if (misc_deregister(&btrfs_misc) < 0)
1675                 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1676 }
1677
1678 static int __init init_btrfs_fs(void)
1679 {
1680         int err;
1681
1682         err = btrfs_init_sysfs();
1683         if (err)
1684                 return err;
1685
1686         btrfs_init_compress();
1687
1688         err = btrfs_init_cachep();
1689         if (err)
1690                 goto free_compress;
1691
1692         err = extent_io_init();
1693         if (err)
1694                 goto free_cachep;
1695
1696         err = extent_map_init();
1697         if (err)
1698                 goto free_extent_io;
1699
1700         err = ordered_data_init();
1701         if (err)
1702                 goto free_extent_map;
1703
1704         err = btrfs_delayed_inode_init();
1705         if (err)
1706                 goto free_ordered_data;
1707
1708         err = btrfs_auto_defrag_init();
1709         if (err)
1710                 goto free_delayed_inode;
1711
1712         err = btrfs_delayed_ref_init();
1713         if (err)
1714                 goto free_auto_defrag;
1715
1716         err = btrfs_interface_init();
1717         if (err)
1718                 goto free_delayed_ref;
1719
1720         err = register_filesystem(&btrfs_fs_type);
1721         if (err)
1722                 goto unregister_ioctl;
1723
1724         btrfs_init_lockdep();
1725
1726 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1727         btrfs_test_free_space_cache();
1728 #endif
1729
1730         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1731         return 0;
1732
1733 unregister_ioctl:
1734         btrfs_interface_exit();
1735 free_delayed_ref:
1736         btrfs_delayed_ref_exit();
1737 free_auto_defrag:
1738         btrfs_auto_defrag_exit();
1739 free_delayed_inode:
1740         btrfs_delayed_inode_exit();
1741 free_ordered_data:
1742         ordered_data_exit();
1743 free_extent_map:
1744         extent_map_exit();
1745 free_extent_io:
1746         extent_io_exit();
1747 free_cachep:
1748         btrfs_destroy_cachep();
1749 free_compress:
1750         btrfs_exit_compress();
1751         btrfs_exit_sysfs();
1752         return err;
1753 }
1754
1755 static void __exit exit_btrfs_fs(void)
1756 {
1757         btrfs_destroy_cachep();
1758         btrfs_delayed_ref_exit();
1759         btrfs_auto_defrag_exit();
1760         btrfs_delayed_inode_exit();
1761         ordered_data_exit();
1762         extent_map_exit();
1763         extent_io_exit();
1764         btrfs_interface_exit();
1765         unregister_filesystem(&btrfs_fs_type);
1766         btrfs_exit_sysfs();
1767         btrfs_cleanup_fs_uuids();
1768         btrfs_exit_compress();
1769 }
1770
1771 module_init(init_btrfs_fs)
1772 module_exit(exit_btrfs_fs)
1773
1774 MODULE_LICENSE("GPL");