2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
35 #define BTRFS_ROOT_TRANS_TAG 0
37 static void put_transaction(struct btrfs_transaction *transaction)
39 WARN_ON(atomic_read(&transaction->use_count) == 0);
40 if (atomic_dec_and_test(&transaction->use_count)) {
41 BUG_ON(!list_empty(&transaction->list));
42 WARN_ON(transaction->delayed_refs.root.rb_node);
43 kmem_cache_free(btrfs_transaction_cachep, transaction);
47 static noinline void switch_commit_root(struct btrfs_root *root)
49 free_extent_buffer(root->commit_root);
50 root->commit_root = btrfs_root_node(root);
53 static inline int can_join_transaction(struct btrfs_transaction *trans,
56 return !(trans->in_commit &&
58 type != TRANS_JOIN_NOLOCK);
62 * either allocate a new transaction or hop into the existing one
64 static noinline int join_transaction(struct btrfs_root *root, int type)
66 struct btrfs_transaction *cur_trans;
67 struct btrfs_fs_info *fs_info = root->fs_info;
69 spin_lock(&fs_info->trans_lock);
71 /* The file system has been taken offline. No new transactions. */
72 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
73 spin_unlock(&fs_info->trans_lock);
77 if (fs_info->trans_no_join) {
79 * If we are JOIN_NOLOCK we're already committing a current
80 * transaction, we just need a handle to deal with something
81 * when committing the transaction, such as inode cache and
82 * space cache. It is a special case.
84 if (type != TRANS_JOIN_NOLOCK) {
85 spin_unlock(&fs_info->trans_lock);
90 cur_trans = fs_info->running_transaction;
92 if (cur_trans->aborted) {
93 spin_unlock(&fs_info->trans_lock);
94 return cur_trans->aborted;
96 if (!can_join_transaction(cur_trans, type)) {
97 spin_unlock(&fs_info->trans_lock);
100 atomic_inc(&cur_trans->use_count);
101 atomic_inc(&cur_trans->num_writers);
102 cur_trans->num_joined++;
103 spin_unlock(&fs_info->trans_lock);
106 spin_unlock(&fs_info->trans_lock);
109 * If we are ATTACH, we just want to catch the current transaction,
110 * and commit it. If there is no transaction, just return ENOENT.
112 if (type == TRANS_ATTACH)
115 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
119 spin_lock(&fs_info->trans_lock);
120 if (fs_info->running_transaction) {
122 * someone started a transaction after we unlocked. Make sure
123 * to redo the trans_no_join checks above
125 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
127 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
128 spin_unlock(&fs_info->trans_lock);
129 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
133 atomic_set(&cur_trans->num_writers, 1);
134 cur_trans->num_joined = 0;
135 init_waitqueue_head(&cur_trans->writer_wait);
136 init_waitqueue_head(&cur_trans->commit_wait);
137 cur_trans->in_commit = 0;
138 cur_trans->blocked = 0;
140 * One for this trans handle, one so it will live on until we
141 * commit the transaction.
143 atomic_set(&cur_trans->use_count, 2);
144 cur_trans->commit_done = 0;
145 cur_trans->start_time = get_seconds();
147 cur_trans->delayed_refs.root = RB_ROOT;
148 cur_trans->delayed_refs.num_entries = 0;
149 cur_trans->delayed_refs.num_heads_ready = 0;
150 cur_trans->delayed_refs.num_heads = 0;
151 cur_trans->delayed_refs.flushing = 0;
152 cur_trans->delayed_refs.run_delayed_start = 0;
155 * although the tree mod log is per file system and not per transaction,
156 * the log must never go across transaction boundaries.
159 if (!list_empty(&fs_info->tree_mod_seq_list))
160 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
161 "creating a fresh transaction\n");
162 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
163 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
164 "creating a fresh transaction\n");
165 atomic64_set(&fs_info->tree_mod_seq, 0);
167 spin_lock_init(&cur_trans->commit_lock);
168 spin_lock_init(&cur_trans->delayed_refs.lock);
169 atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
170 atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
171 init_waitqueue_head(&cur_trans->delayed_refs.wait);
173 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
174 INIT_LIST_HEAD(&cur_trans->ordered_operations);
175 list_add_tail(&cur_trans->list, &fs_info->trans_list);
176 extent_io_tree_init(&cur_trans->dirty_pages,
177 fs_info->btree_inode->i_mapping);
178 fs_info->generation++;
179 cur_trans->transid = fs_info->generation;
180 fs_info->running_transaction = cur_trans;
181 cur_trans->aborted = 0;
182 spin_unlock(&fs_info->trans_lock);
188 * this does all the record keeping required to make sure that a reference
189 * counted root is properly recorded in a given transaction. This is required
190 * to make sure the old root from before we joined the transaction is deleted
191 * when the transaction commits
193 static int record_root_in_trans(struct btrfs_trans_handle *trans,
194 struct btrfs_root *root)
196 if (root->ref_cows && root->last_trans < trans->transid) {
197 WARN_ON(root == root->fs_info->extent_root);
198 WARN_ON(root->commit_root != root->node);
201 * see below for in_trans_setup usage rules
202 * we have the reloc mutex held now, so there
203 * is only one writer in this function
205 root->in_trans_setup = 1;
207 /* make sure readers find in_trans_setup before
208 * they find our root->last_trans update
212 spin_lock(&root->fs_info->fs_roots_radix_lock);
213 if (root->last_trans == trans->transid) {
214 spin_unlock(&root->fs_info->fs_roots_radix_lock);
217 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
218 (unsigned long)root->root_key.objectid,
219 BTRFS_ROOT_TRANS_TAG);
220 spin_unlock(&root->fs_info->fs_roots_radix_lock);
221 root->last_trans = trans->transid;
223 /* this is pretty tricky. We don't want to
224 * take the relocation lock in btrfs_record_root_in_trans
225 * unless we're really doing the first setup for this root in
228 * Normally we'd use root->last_trans as a flag to decide
229 * if we want to take the expensive mutex.
231 * But, we have to set root->last_trans before we
232 * init the relocation root, otherwise, we trip over warnings
233 * in ctree.c. The solution used here is to flag ourselves
234 * with root->in_trans_setup. When this is 1, we're still
235 * fixing up the reloc trees and everyone must wait.
237 * When this is zero, they can trust root->last_trans and fly
238 * through btrfs_record_root_in_trans without having to take the
239 * lock. smp_wmb() makes sure that all the writes above are
240 * done before we pop in the zero below
242 btrfs_init_reloc_root(trans, root);
244 root->in_trans_setup = 0;
250 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
251 struct btrfs_root *root)
257 * see record_root_in_trans for comments about in_trans_setup usage
261 if (root->last_trans == trans->transid &&
262 !root->in_trans_setup)
265 mutex_lock(&root->fs_info->reloc_mutex);
266 record_root_in_trans(trans, root);
267 mutex_unlock(&root->fs_info->reloc_mutex);
272 /* wait for commit against the current transaction to become unblocked
273 * when this is done, it is safe to start a new transaction, but the current
274 * transaction might not be fully on disk.
276 static void wait_current_trans(struct btrfs_root *root)
278 struct btrfs_transaction *cur_trans;
280 spin_lock(&root->fs_info->trans_lock);
281 cur_trans = root->fs_info->running_transaction;
282 if (cur_trans && cur_trans->blocked) {
283 atomic_inc(&cur_trans->use_count);
284 spin_unlock(&root->fs_info->trans_lock);
286 wait_event(root->fs_info->transaction_wait,
287 !cur_trans->blocked);
288 put_transaction(cur_trans);
290 spin_unlock(&root->fs_info->trans_lock);
294 static int may_wait_transaction(struct btrfs_root *root, int type)
296 if (root->fs_info->log_root_recovering)
299 if (type == TRANS_USERSPACE)
302 if (type == TRANS_START &&
303 !atomic_read(&root->fs_info->open_ioctl_trans))
309 static struct btrfs_trans_handle *
310 start_transaction(struct btrfs_root *root, u64 num_items, int type,
311 enum btrfs_reserve_flush_enum flush)
313 struct btrfs_trans_handle *h;
314 struct btrfs_transaction *cur_trans;
317 u64 qgroup_reserved = 0;
319 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
320 return ERR_PTR(-EROFS);
322 if (current->journal_info) {
323 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
324 h = current->journal_info;
326 WARN_ON(h->use_count > 2);
327 h->orig_rsv = h->block_rsv;
333 * Do the reservation before we join the transaction so we can do all
334 * the appropriate flushing if need be.
336 if (num_items > 0 && root != root->fs_info->chunk_root) {
337 if (root->fs_info->quota_enabled &&
338 is_fstree(root->root_key.objectid)) {
339 qgroup_reserved = num_items * root->leafsize;
340 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
345 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
346 ret = btrfs_block_rsv_add(root,
347 &root->fs_info->trans_block_rsv,
353 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
360 * If we are JOIN_NOLOCK we're already committing a transaction and
361 * waiting on this guy, so we don't need to do the sb_start_intwrite
362 * because we're already holding a ref. We need this because we could
363 * have raced in and did an fsync() on a file which can kick a commit
364 * and then we deadlock with somebody doing a freeze.
366 * If we are ATTACH, it means we just want to catch the current
367 * transaction and commit it, so we needn't do sb_start_intwrite().
369 if (type < TRANS_JOIN_NOLOCK)
370 sb_start_intwrite(root->fs_info->sb);
372 if (may_wait_transaction(root, type))
373 wait_current_trans(root);
376 ret = join_transaction(root, type);
378 wait_current_trans(root);
379 if (unlikely(type == TRANS_ATTACH))
382 } while (ret == -EBUSY);
385 /* We must get the transaction if we are JOIN_NOLOCK. */
386 BUG_ON(type == TRANS_JOIN_NOLOCK);
390 cur_trans = root->fs_info->running_transaction;
392 h->transid = cur_trans->transid;
393 h->transaction = cur_trans;
395 h->bytes_reserved = 0;
397 h->delayed_ref_updates = 0;
403 h->qgroup_reserved = 0;
404 h->delayed_ref_elem.seq = 0;
406 h->allocating_chunk = false;
407 INIT_LIST_HEAD(&h->qgroup_ref_list);
408 INIT_LIST_HEAD(&h->new_bgs);
411 if (cur_trans->blocked && may_wait_transaction(root, type)) {
412 btrfs_commit_transaction(h, root);
417 trace_btrfs_space_reservation(root->fs_info, "transaction",
418 h->transid, num_bytes, 1);
419 h->block_rsv = &root->fs_info->trans_block_rsv;
420 h->bytes_reserved = num_bytes;
422 h->qgroup_reserved = qgroup_reserved;
425 btrfs_record_root_in_trans(h, root);
427 if (!current->journal_info && type != TRANS_USERSPACE)
428 current->journal_info = h;
432 if (type < TRANS_JOIN_NOLOCK)
433 sb_end_intwrite(root->fs_info->sb);
434 kmem_cache_free(btrfs_trans_handle_cachep, h);
437 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
441 btrfs_qgroup_free(root, qgroup_reserved);
445 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
448 return start_transaction(root, num_items, TRANS_START,
449 BTRFS_RESERVE_FLUSH_ALL);
452 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
453 struct btrfs_root *root, int num_items)
455 return start_transaction(root, num_items, TRANS_START,
456 BTRFS_RESERVE_FLUSH_LIMIT);
459 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
461 return start_transaction(root, 0, TRANS_JOIN, 0);
464 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
466 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
469 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
471 return start_transaction(root, 0, TRANS_USERSPACE, 0);
475 * btrfs_attach_transaction() - catch the running transaction
477 * It is used when we want to commit the current the transaction, but
478 * don't want to start a new one.
480 * Note: If this function return -ENOENT, it just means there is no
481 * running transaction. But it is possible that the inactive transaction
482 * is still in the memory, not fully on disk. If you hope there is no
483 * inactive transaction in the fs when -ENOENT is returned, you should
485 * btrfs_attach_transaction_barrier()
487 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
489 return start_transaction(root, 0, TRANS_ATTACH, 0);
493 * btrfs_attach_transaction() - catch the running transaction
495 * It is similar to the above function, the differentia is this one
496 * will wait for all the inactive transactions until they fully
499 struct btrfs_trans_handle *
500 btrfs_attach_transaction_barrier(struct btrfs_root *root)
502 struct btrfs_trans_handle *trans;
504 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
505 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
506 btrfs_wait_for_commit(root, 0);
511 /* wait for a transaction commit to be fully complete */
512 static noinline void wait_for_commit(struct btrfs_root *root,
513 struct btrfs_transaction *commit)
515 wait_event(commit->commit_wait, commit->commit_done);
518 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
520 struct btrfs_transaction *cur_trans = NULL, *t;
524 if (transid <= root->fs_info->last_trans_committed)
528 /* find specified transaction */
529 spin_lock(&root->fs_info->trans_lock);
530 list_for_each_entry(t, &root->fs_info->trans_list, list) {
531 if (t->transid == transid) {
533 atomic_inc(&cur_trans->use_count);
537 if (t->transid > transid) {
542 spin_unlock(&root->fs_info->trans_lock);
543 /* The specified transaction doesn't exist */
547 /* find newest transaction that is committing | committed */
548 spin_lock(&root->fs_info->trans_lock);
549 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
555 atomic_inc(&cur_trans->use_count);
559 spin_unlock(&root->fs_info->trans_lock);
561 goto out; /* nothing committing|committed */
564 wait_for_commit(root, cur_trans);
565 put_transaction(cur_trans);
570 void btrfs_throttle(struct btrfs_root *root)
572 if (!atomic_read(&root->fs_info->open_ioctl_trans))
573 wait_current_trans(root);
576 static int should_end_transaction(struct btrfs_trans_handle *trans,
577 struct btrfs_root *root)
581 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
585 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
586 struct btrfs_root *root)
588 struct btrfs_transaction *cur_trans = trans->transaction;
593 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
596 updates = trans->delayed_ref_updates;
597 trans->delayed_ref_updates = 0;
599 err = btrfs_run_delayed_refs(trans, root, updates);
600 if (err) /* Error code will also eval true */
604 return should_end_transaction(trans, root);
607 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
608 struct btrfs_root *root, int throttle)
610 struct btrfs_transaction *cur_trans = trans->transaction;
611 struct btrfs_fs_info *info = root->fs_info;
613 int lock = (trans->type != TRANS_JOIN_NOLOCK);
616 if (--trans->use_count) {
617 trans->block_rsv = trans->orig_rsv;
622 * do the qgroup accounting as early as possible
624 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
626 btrfs_trans_release_metadata(trans, root);
627 trans->block_rsv = NULL;
629 if (trans->qgroup_reserved) {
631 * the same root has to be passed here between start_transaction
632 * and end_transaction. Subvolume quota depends on this.
634 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
635 trans->qgroup_reserved = 0;
638 if (!list_empty(&trans->new_bgs))
639 btrfs_create_pending_block_groups(trans, root);
642 unsigned long cur = trans->delayed_ref_updates;
643 trans->delayed_ref_updates = 0;
645 trans->transaction->delayed_refs.num_heads_ready > 64) {
646 trans->delayed_ref_updates = 0;
647 btrfs_run_delayed_refs(trans, root, cur);
654 btrfs_trans_release_metadata(trans, root);
655 trans->block_rsv = NULL;
657 if (!list_empty(&trans->new_bgs))
658 btrfs_create_pending_block_groups(trans, root);
660 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
661 should_end_transaction(trans, root)) {
662 trans->transaction->blocked = 1;
666 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
669 * We may race with somebody else here so end up having
670 * to call end_transaction on ourselves again, so inc
674 return btrfs_commit_transaction(trans, root);
676 wake_up_process(info->transaction_kthread);
680 if (trans->type < TRANS_JOIN_NOLOCK)
681 sb_end_intwrite(root->fs_info->sb);
683 WARN_ON(cur_trans != info->running_transaction);
684 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
685 atomic_dec(&cur_trans->num_writers);
688 if (waitqueue_active(&cur_trans->writer_wait))
689 wake_up(&cur_trans->writer_wait);
690 put_transaction(cur_trans);
692 if (current->journal_info == trans)
693 current->journal_info = NULL;
696 btrfs_run_delayed_iputs(root);
698 if (trans->aborted ||
699 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
701 assert_qgroups_uptodate(trans);
703 kmem_cache_free(btrfs_trans_handle_cachep, trans);
707 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
708 struct btrfs_root *root)
710 return __btrfs_end_transaction(trans, root, 0);
713 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
714 struct btrfs_root *root)
716 return __btrfs_end_transaction(trans, root, 1);
719 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
720 struct btrfs_root *root)
722 return __btrfs_end_transaction(trans, root, 1);
726 * when btree blocks are allocated, they have some corresponding bits set for
727 * them in one of two extent_io trees. This is used to make sure all of
728 * those extents are sent to disk but does not wait on them
730 int btrfs_write_marked_extents(struct btrfs_root *root,
731 struct extent_io_tree *dirty_pages, int mark)
735 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
736 struct extent_state *cached_state = NULL;
739 struct blk_plug plug;
741 blk_start_plug(&plug);
742 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
743 mark, &cached_state)) {
744 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
745 mark, &cached_state, GFP_NOFS);
747 err = filemap_fdatawrite_range(mapping, start, end);
755 blk_finish_plug(&plug);
760 * when btree blocks are allocated, they have some corresponding bits set for
761 * them in one of two extent_io trees. This is used to make sure all of
762 * those extents are on disk for transaction or log commit. We wait
763 * on all the pages and clear them from the dirty pages state tree
765 int btrfs_wait_marked_extents(struct btrfs_root *root,
766 struct extent_io_tree *dirty_pages, int mark)
770 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
771 struct extent_state *cached_state = NULL;
775 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
776 EXTENT_NEED_WAIT, &cached_state)) {
777 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
778 0, 0, &cached_state, GFP_NOFS);
779 err = filemap_fdatawait_range(mapping, start, end);
791 * when btree blocks are allocated, they have some corresponding bits set for
792 * them in one of two extent_io trees. This is used to make sure all of
793 * those extents are on disk for transaction or log commit
795 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
796 struct extent_io_tree *dirty_pages, int mark)
801 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
802 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
811 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
812 struct btrfs_root *root)
814 if (!trans || !trans->transaction) {
815 struct inode *btree_inode;
816 btree_inode = root->fs_info->btree_inode;
817 return filemap_write_and_wait(btree_inode->i_mapping);
819 return btrfs_write_and_wait_marked_extents(root,
820 &trans->transaction->dirty_pages,
825 * this is used to update the root pointer in the tree of tree roots.
827 * But, in the case of the extent allocation tree, updating the root
828 * pointer may allocate blocks which may change the root of the extent
831 * So, this loops and repeats and makes sure the cowonly root didn't
832 * change while the root pointer was being updated in the metadata.
834 static int update_cowonly_root(struct btrfs_trans_handle *trans,
835 struct btrfs_root *root)
840 struct btrfs_root *tree_root = root->fs_info->tree_root;
842 old_root_used = btrfs_root_used(&root->root_item);
843 btrfs_write_dirty_block_groups(trans, root);
846 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
847 if (old_root_bytenr == root->node->start &&
848 old_root_used == btrfs_root_used(&root->root_item))
851 btrfs_set_root_node(&root->root_item, root->node);
852 ret = btrfs_update_root(trans, tree_root,
858 old_root_used = btrfs_root_used(&root->root_item);
859 ret = btrfs_write_dirty_block_groups(trans, root);
864 if (root != root->fs_info->extent_root)
865 switch_commit_root(root);
871 * update all the cowonly tree roots on disk
873 * The error handling in this function may not be obvious. Any of the
874 * failures will cause the file system to go offline. We still need
875 * to clean up the delayed refs.
877 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
878 struct btrfs_root *root)
880 struct btrfs_fs_info *fs_info = root->fs_info;
881 struct list_head *next;
882 struct extent_buffer *eb;
885 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
889 eb = btrfs_lock_root_node(fs_info->tree_root);
890 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
892 btrfs_tree_unlock(eb);
893 free_extent_buffer(eb);
898 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
902 ret = btrfs_run_dev_stats(trans, root->fs_info);
904 ret = btrfs_run_dev_replace(trans, root->fs_info);
907 ret = btrfs_run_qgroups(trans, root->fs_info);
910 /* run_qgroups might have added some more refs */
911 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
914 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
915 next = fs_info->dirty_cowonly_roots.next;
917 root = list_entry(next, struct btrfs_root, dirty_list);
919 ret = update_cowonly_root(trans, root);
924 down_write(&fs_info->extent_commit_sem);
925 switch_commit_root(fs_info->extent_root);
926 up_write(&fs_info->extent_commit_sem);
928 btrfs_after_dev_replace_commit(fs_info);
934 * dead roots are old snapshots that need to be deleted. This allocates
935 * a dirty root struct and adds it into the list of dead roots that need to
938 int btrfs_add_dead_root(struct btrfs_root *root)
940 spin_lock(&root->fs_info->trans_lock);
941 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
942 spin_unlock(&root->fs_info->trans_lock);
947 * update all the cowonly tree roots on disk
949 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
950 struct btrfs_root *root)
952 struct btrfs_root *gang[8];
953 struct btrfs_fs_info *fs_info = root->fs_info;
958 spin_lock(&fs_info->fs_roots_radix_lock);
960 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
963 BTRFS_ROOT_TRANS_TAG);
966 for (i = 0; i < ret; i++) {
968 radix_tree_tag_clear(&fs_info->fs_roots_radix,
969 (unsigned long)root->root_key.objectid,
970 BTRFS_ROOT_TRANS_TAG);
971 spin_unlock(&fs_info->fs_roots_radix_lock);
973 btrfs_free_log(trans, root);
974 btrfs_update_reloc_root(trans, root);
975 btrfs_orphan_commit_root(trans, root);
977 btrfs_save_ino_cache(root, trans);
979 /* see comments in should_cow_block() */
983 if (root->commit_root != root->node) {
984 mutex_lock(&root->fs_commit_mutex);
985 switch_commit_root(root);
986 btrfs_unpin_free_ino(root);
987 mutex_unlock(&root->fs_commit_mutex);
989 btrfs_set_root_node(&root->root_item,
993 err = btrfs_update_root(trans, fs_info->tree_root,
996 spin_lock(&fs_info->fs_roots_radix_lock);
1001 spin_unlock(&fs_info->fs_roots_radix_lock);
1006 * defrag a given btree.
1007 * Every leaf in the btree is read and defragged.
1009 int btrfs_defrag_root(struct btrfs_root *root)
1011 struct btrfs_fs_info *info = root->fs_info;
1012 struct btrfs_trans_handle *trans;
1015 if (xchg(&root->defrag_running, 1))
1019 trans = btrfs_start_transaction(root, 0);
1021 return PTR_ERR(trans);
1023 ret = btrfs_defrag_leaves(trans, root);
1025 btrfs_end_transaction(trans, root);
1026 btrfs_btree_balance_dirty(info->tree_root);
1029 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1032 if (btrfs_defrag_cancelled(root->fs_info)) {
1033 printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1038 root->defrag_running = 0;
1043 * new snapshots need to be created at a very specific time in the
1044 * transaction commit. This does the actual creation.
1047 * If the error which may affect the commitment of the current transaction
1048 * happens, we should return the error number. If the error which just affect
1049 * the creation of the pending snapshots, just return 0.
1051 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1052 struct btrfs_fs_info *fs_info,
1053 struct btrfs_pending_snapshot *pending)
1055 struct btrfs_key key;
1056 struct btrfs_root_item *new_root_item;
1057 struct btrfs_root *tree_root = fs_info->tree_root;
1058 struct btrfs_root *root = pending->root;
1059 struct btrfs_root *parent_root;
1060 struct btrfs_block_rsv *rsv;
1061 struct inode *parent_inode;
1062 struct btrfs_path *path;
1063 struct btrfs_dir_item *dir_item;
1064 struct dentry *dentry;
1065 struct extent_buffer *tmp;
1066 struct extent_buffer *old;
1067 struct timespec cur_time = CURRENT_TIME;
1075 path = btrfs_alloc_path();
1077 pending->error = -ENOMEM;
1081 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1082 if (!new_root_item) {
1083 pending->error = -ENOMEM;
1084 goto root_item_alloc_fail;
1087 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1089 goto no_free_objectid;
1091 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1093 if (to_reserve > 0) {
1094 pending->error = btrfs_block_rsv_add(root,
1095 &pending->block_rsv,
1097 BTRFS_RESERVE_NO_FLUSH);
1099 goto no_free_objectid;
1102 pending->error = btrfs_qgroup_inherit(trans, fs_info,
1103 root->root_key.objectid,
1104 objectid, pending->inherit);
1106 goto no_free_objectid;
1108 key.objectid = objectid;
1109 key.offset = (u64)-1;
1110 key.type = BTRFS_ROOT_ITEM_KEY;
1112 rsv = trans->block_rsv;
1113 trans->block_rsv = &pending->block_rsv;
1114 trans->bytes_reserved = trans->block_rsv->reserved;
1116 dentry = pending->dentry;
1117 parent_inode = pending->dir;
1118 parent_root = BTRFS_I(parent_inode)->root;
1119 record_root_in_trans(trans, parent_root);
1122 * insert the directory item
1124 ret = btrfs_set_inode_index(parent_inode, &index);
1125 BUG_ON(ret); /* -ENOMEM */
1127 /* check if there is a file/dir which has the same name. */
1128 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1129 btrfs_ino(parent_inode),
1130 dentry->d_name.name,
1131 dentry->d_name.len, 0);
1132 if (dir_item != NULL && !IS_ERR(dir_item)) {
1133 pending->error = -EEXIST;
1134 goto dir_item_existed;
1135 } else if (IS_ERR(dir_item)) {
1136 ret = PTR_ERR(dir_item);
1137 btrfs_abort_transaction(trans, root, ret);
1140 btrfs_release_path(path);
1143 * pull in the delayed directory update
1144 * and the delayed inode item
1145 * otherwise we corrupt the FS during
1148 ret = btrfs_run_delayed_items(trans, root);
1149 if (ret) { /* Transaction aborted */
1150 btrfs_abort_transaction(trans, root, ret);
1154 record_root_in_trans(trans, root);
1155 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1156 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1157 btrfs_check_and_init_root_item(new_root_item);
1159 root_flags = btrfs_root_flags(new_root_item);
1160 if (pending->readonly)
1161 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1163 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1164 btrfs_set_root_flags(new_root_item, root_flags);
1166 btrfs_set_root_generation_v2(new_root_item,
1168 uuid_le_gen(&new_uuid);
1169 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1170 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1172 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1173 memset(new_root_item->received_uuid, 0,
1174 sizeof(new_root_item->received_uuid));
1175 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1176 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1177 btrfs_set_root_stransid(new_root_item, 0);
1178 btrfs_set_root_rtransid(new_root_item, 0);
1180 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1181 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1182 btrfs_set_root_otransid(new_root_item, trans->transid);
1184 old = btrfs_lock_root_node(root);
1185 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1187 btrfs_tree_unlock(old);
1188 free_extent_buffer(old);
1189 btrfs_abort_transaction(trans, root, ret);
1193 btrfs_set_lock_blocking(old);
1195 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1196 /* clean up in any case */
1197 btrfs_tree_unlock(old);
1198 free_extent_buffer(old);
1200 btrfs_abort_transaction(trans, root, ret);
1204 /* see comments in should_cow_block() */
1205 root->force_cow = 1;
1208 btrfs_set_root_node(new_root_item, tmp);
1209 /* record when the snapshot was created in key.offset */
1210 key.offset = trans->transid;
1211 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1212 btrfs_tree_unlock(tmp);
1213 free_extent_buffer(tmp);
1215 btrfs_abort_transaction(trans, root, ret);
1220 * insert root back/forward references
1222 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1223 parent_root->root_key.objectid,
1224 btrfs_ino(parent_inode), index,
1225 dentry->d_name.name, dentry->d_name.len);
1227 btrfs_abort_transaction(trans, root, ret);
1231 key.offset = (u64)-1;
1232 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1233 if (IS_ERR(pending->snap)) {
1234 ret = PTR_ERR(pending->snap);
1235 btrfs_abort_transaction(trans, root, ret);
1239 ret = btrfs_reloc_post_snapshot(trans, pending);
1241 btrfs_abort_transaction(trans, root, ret);
1245 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1247 btrfs_abort_transaction(trans, root, ret);
1251 ret = btrfs_insert_dir_item(trans, parent_root,
1252 dentry->d_name.name, dentry->d_name.len,
1254 BTRFS_FT_DIR, index);
1255 /* We have check then name at the beginning, so it is impossible. */
1256 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1258 btrfs_abort_transaction(trans, root, ret);
1262 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1263 dentry->d_name.len * 2);
1264 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1265 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1267 btrfs_abort_transaction(trans, root, ret);
1269 pending->error = ret;
1271 trans->block_rsv = rsv;
1272 trans->bytes_reserved = 0;
1274 kfree(new_root_item);
1275 root_item_alloc_fail:
1276 btrfs_free_path(path);
1281 * create all the snapshots we've scheduled for creation
1283 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1284 struct btrfs_fs_info *fs_info)
1286 struct btrfs_pending_snapshot *pending, *next;
1287 struct list_head *head = &trans->transaction->pending_snapshots;
1290 list_for_each_entry_safe(pending, next, head, list) {
1291 list_del(&pending->list);
1292 ret = create_pending_snapshot(trans, fs_info, pending);
1299 static void update_super_roots(struct btrfs_root *root)
1301 struct btrfs_root_item *root_item;
1302 struct btrfs_super_block *super;
1304 super = root->fs_info->super_copy;
1306 root_item = &root->fs_info->chunk_root->root_item;
1307 super->chunk_root = root_item->bytenr;
1308 super->chunk_root_generation = root_item->generation;
1309 super->chunk_root_level = root_item->level;
1311 root_item = &root->fs_info->tree_root->root_item;
1312 super->root = root_item->bytenr;
1313 super->generation = root_item->generation;
1314 super->root_level = root_item->level;
1315 if (btrfs_test_opt(root, SPACE_CACHE))
1316 super->cache_generation = root_item->generation;
1319 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1322 spin_lock(&info->trans_lock);
1323 if (info->running_transaction)
1324 ret = info->running_transaction->in_commit;
1325 spin_unlock(&info->trans_lock);
1329 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1332 spin_lock(&info->trans_lock);
1333 if (info->running_transaction)
1334 ret = info->running_transaction->blocked;
1335 spin_unlock(&info->trans_lock);
1340 * wait for the current transaction commit to start and block subsequent
1343 static void wait_current_trans_commit_start(struct btrfs_root *root,
1344 struct btrfs_transaction *trans)
1346 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1350 * wait for the current transaction to start and then become unblocked.
1353 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1354 struct btrfs_transaction *trans)
1356 wait_event(root->fs_info->transaction_wait,
1357 trans->commit_done || (trans->in_commit && !trans->blocked));
1361 * commit transactions asynchronously. once btrfs_commit_transaction_async
1362 * returns, any subsequent transaction will not be allowed to join.
1364 struct btrfs_async_commit {
1365 struct btrfs_trans_handle *newtrans;
1366 struct btrfs_root *root;
1367 struct work_struct work;
1370 static void do_async_commit(struct work_struct *work)
1372 struct btrfs_async_commit *ac =
1373 container_of(work, struct btrfs_async_commit, work);
1376 * We've got freeze protection passed with the transaction.
1377 * Tell lockdep about it.
1379 if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1381 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1384 current->journal_info = ac->newtrans;
1386 btrfs_commit_transaction(ac->newtrans, ac->root);
1390 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1391 struct btrfs_root *root,
1392 int wait_for_unblock)
1394 struct btrfs_async_commit *ac;
1395 struct btrfs_transaction *cur_trans;
1397 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1401 INIT_WORK(&ac->work, do_async_commit);
1403 ac->newtrans = btrfs_join_transaction(root);
1404 if (IS_ERR(ac->newtrans)) {
1405 int err = PTR_ERR(ac->newtrans);
1410 /* take transaction reference */
1411 cur_trans = trans->transaction;
1412 atomic_inc(&cur_trans->use_count);
1414 btrfs_end_transaction(trans, root);
1417 * Tell lockdep we've released the freeze rwsem, since the
1418 * async commit thread will be the one to unlock it.
1420 if (trans->type < TRANS_JOIN_NOLOCK)
1422 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1425 schedule_work(&ac->work);
1427 /* wait for transaction to start and unblock */
1428 if (wait_for_unblock)
1429 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1431 wait_current_trans_commit_start(root, cur_trans);
1433 if (current->journal_info == trans)
1434 current->journal_info = NULL;
1436 put_transaction(cur_trans);
1441 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1442 struct btrfs_root *root, int err)
1444 struct btrfs_transaction *cur_trans = trans->transaction;
1447 WARN_ON(trans->use_count > 1);
1449 btrfs_abort_transaction(trans, root, err);
1451 spin_lock(&root->fs_info->trans_lock);
1453 if (list_empty(&cur_trans->list)) {
1454 spin_unlock(&root->fs_info->trans_lock);
1455 btrfs_end_transaction(trans, root);
1459 list_del_init(&cur_trans->list);
1460 if (cur_trans == root->fs_info->running_transaction) {
1461 root->fs_info->trans_no_join = 1;
1462 spin_unlock(&root->fs_info->trans_lock);
1463 wait_event(cur_trans->writer_wait,
1464 atomic_read(&cur_trans->num_writers) == 1);
1466 spin_lock(&root->fs_info->trans_lock);
1467 root->fs_info->running_transaction = NULL;
1469 spin_unlock(&root->fs_info->trans_lock);
1471 btrfs_cleanup_one_transaction(trans->transaction, root);
1473 put_transaction(cur_trans);
1474 put_transaction(cur_trans);
1476 trace_btrfs_transaction_commit(root);
1478 btrfs_scrub_continue(root);
1480 if (current->journal_info == trans)
1481 current->journal_info = NULL;
1483 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1485 spin_lock(&root->fs_info->trans_lock);
1486 root->fs_info->trans_no_join = 0;
1487 spin_unlock(&root->fs_info->trans_lock);
1490 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1491 struct btrfs_root *root)
1493 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1494 int snap_pending = 0;
1497 if (!flush_on_commit) {
1498 spin_lock(&root->fs_info->trans_lock);
1499 if (!list_empty(&trans->transaction->pending_snapshots))
1501 spin_unlock(&root->fs_info->trans_lock);
1504 if (flush_on_commit || snap_pending) {
1505 ret = btrfs_start_delalloc_inodes(root, 1);
1508 btrfs_wait_ordered_extents(root, 1);
1511 ret = btrfs_run_delayed_items(trans, root);
1516 * running the delayed items may have added new refs. account
1517 * them now so that they hinder processing of more delayed refs
1518 * as little as possible.
1520 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1523 * rename don't use btrfs_join_transaction, so, once we
1524 * set the transaction to blocked above, we aren't going
1525 * to get any new ordered operations. We can safely run
1526 * it here and no for sure that nothing new will be added
1529 ret = btrfs_run_ordered_operations(trans, root, 1);
1535 * btrfs_transaction state sequence:
1536 * in_commit = 0, blocked = 0 (initial)
1537 * in_commit = 1, blocked = 1
1541 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1542 struct btrfs_root *root)
1544 unsigned long joined = 0;
1545 struct btrfs_transaction *cur_trans = trans->transaction;
1546 struct btrfs_transaction *prev_trans = NULL;
1549 int should_grow = 0;
1550 unsigned long now = get_seconds();
1552 ret = btrfs_run_ordered_operations(trans, root, 0);
1554 btrfs_abort_transaction(trans, root, ret);
1555 btrfs_end_transaction(trans, root);
1559 /* Stop the commit early if ->aborted is set */
1560 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1561 ret = cur_trans->aborted;
1562 btrfs_end_transaction(trans, root);
1566 /* make a pass through all the delayed refs we have so far
1567 * any runnings procs may add more while we are here
1569 ret = btrfs_run_delayed_refs(trans, root, 0);
1571 btrfs_end_transaction(trans, root);
1575 btrfs_trans_release_metadata(trans, root);
1576 trans->block_rsv = NULL;
1577 if (trans->qgroup_reserved) {
1578 btrfs_qgroup_free(root, trans->qgroup_reserved);
1579 trans->qgroup_reserved = 0;
1582 cur_trans = trans->transaction;
1585 * set the flushing flag so procs in this transaction have to
1586 * start sending their work down.
1588 cur_trans->delayed_refs.flushing = 1;
1590 if (!list_empty(&trans->new_bgs))
1591 btrfs_create_pending_block_groups(trans, root);
1593 ret = btrfs_run_delayed_refs(trans, root, 0);
1595 btrfs_end_transaction(trans, root);
1599 spin_lock(&cur_trans->commit_lock);
1600 if (cur_trans->in_commit) {
1601 spin_unlock(&cur_trans->commit_lock);
1602 atomic_inc(&cur_trans->use_count);
1603 ret = btrfs_end_transaction(trans, root);
1605 wait_for_commit(root, cur_trans);
1607 put_transaction(cur_trans);
1612 trans->transaction->in_commit = 1;
1613 trans->transaction->blocked = 1;
1614 spin_unlock(&cur_trans->commit_lock);
1615 wake_up(&root->fs_info->transaction_blocked_wait);
1617 spin_lock(&root->fs_info->trans_lock);
1618 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1619 prev_trans = list_entry(cur_trans->list.prev,
1620 struct btrfs_transaction, list);
1621 if (!prev_trans->commit_done) {
1622 atomic_inc(&prev_trans->use_count);
1623 spin_unlock(&root->fs_info->trans_lock);
1625 wait_for_commit(root, prev_trans);
1627 put_transaction(prev_trans);
1629 spin_unlock(&root->fs_info->trans_lock);
1632 spin_unlock(&root->fs_info->trans_lock);
1635 if (!btrfs_test_opt(root, SSD) &&
1636 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1640 joined = cur_trans->num_joined;
1642 WARN_ON(cur_trans != trans->transaction);
1644 ret = btrfs_flush_all_pending_stuffs(trans, root);
1646 goto cleanup_transaction;
1648 prepare_to_wait(&cur_trans->writer_wait, &wait,
1649 TASK_UNINTERRUPTIBLE);
1651 if (atomic_read(&cur_trans->num_writers) > 1)
1652 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1653 else if (should_grow)
1654 schedule_timeout(1);
1656 finish_wait(&cur_trans->writer_wait, &wait);
1657 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1658 (should_grow && cur_trans->num_joined != joined));
1660 ret = btrfs_flush_all_pending_stuffs(trans, root);
1662 goto cleanup_transaction;
1665 * Ok now we need to make sure to block out any other joins while we
1666 * commit the transaction. We could have started a join before setting
1667 * no_join so make sure to wait for num_writers to == 1 again.
1669 spin_lock(&root->fs_info->trans_lock);
1670 root->fs_info->trans_no_join = 1;
1671 spin_unlock(&root->fs_info->trans_lock);
1672 wait_event(cur_trans->writer_wait,
1673 atomic_read(&cur_trans->num_writers) == 1);
1675 /* ->aborted might be set after the previous check, so check it */
1676 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1677 ret = cur_trans->aborted;
1678 goto cleanup_transaction;
1681 * the reloc mutex makes sure that we stop
1682 * the balancing code from coming in and moving
1683 * extents around in the middle of the commit
1685 mutex_lock(&root->fs_info->reloc_mutex);
1688 * We needn't worry about the delayed items because we will
1689 * deal with them in create_pending_snapshot(), which is the
1690 * core function of the snapshot creation.
1692 ret = create_pending_snapshots(trans, root->fs_info);
1694 mutex_unlock(&root->fs_info->reloc_mutex);
1695 goto cleanup_transaction;
1699 * We insert the dir indexes of the snapshots and update the inode
1700 * of the snapshots' parents after the snapshot creation, so there
1701 * are some delayed items which are not dealt with. Now deal with
1704 * We needn't worry that this operation will corrupt the snapshots,
1705 * because all the tree which are snapshoted will be forced to COW
1706 * the nodes and leaves.
1708 ret = btrfs_run_delayed_items(trans, root);
1710 mutex_unlock(&root->fs_info->reloc_mutex);
1711 goto cleanup_transaction;
1714 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1716 mutex_unlock(&root->fs_info->reloc_mutex);
1717 goto cleanup_transaction;
1721 * make sure none of the code above managed to slip in a
1724 btrfs_assert_delayed_root_empty(root);
1726 WARN_ON(cur_trans != trans->transaction);
1728 btrfs_scrub_pause(root);
1729 /* btrfs_commit_tree_roots is responsible for getting the
1730 * various roots consistent with each other. Every pointer
1731 * in the tree of tree roots has to point to the most up to date
1732 * root for every subvolume and other tree. So, we have to keep
1733 * the tree logging code from jumping in and changing any
1736 * At this point in the commit, there can't be any tree-log
1737 * writers, but a little lower down we drop the trans mutex
1738 * and let new people in. By holding the tree_log_mutex
1739 * from now until after the super is written, we avoid races
1740 * with the tree-log code.
1742 mutex_lock(&root->fs_info->tree_log_mutex);
1744 ret = commit_fs_roots(trans, root);
1746 mutex_unlock(&root->fs_info->tree_log_mutex);
1747 mutex_unlock(&root->fs_info->reloc_mutex);
1748 goto cleanup_transaction;
1751 /* commit_fs_roots gets rid of all the tree log roots, it is now
1752 * safe to free the root of tree log roots
1754 btrfs_free_log_root_tree(trans, root->fs_info);
1756 ret = commit_cowonly_roots(trans, root);
1758 mutex_unlock(&root->fs_info->tree_log_mutex);
1759 mutex_unlock(&root->fs_info->reloc_mutex);
1760 goto cleanup_transaction;
1764 * The tasks which save the space cache and inode cache may also
1765 * update ->aborted, check it.
1767 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1768 ret = cur_trans->aborted;
1769 mutex_unlock(&root->fs_info->tree_log_mutex);
1770 mutex_unlock(&root->fs_info->reloc_mutex);
1771 goto cleanup_transaction;
1774 btrfs_prepare_extent_commit(trans, root);
1776 cur_trans = root->fs_info->running_transaction;
1778 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1779 root->fs_info->tree_root->node);
1780 switch_commit_root(root->fs_info->tree_root);
1782 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1783 root->fs_info->chunk_root->node);
1784 switch_commit_root(root->fs_info->chunk_root);
1786 assert_qgroups_uptodate(trans);
1787 update_super_roots(root);
1789 if (!root->fs_info->log_root_recovering) {
1790 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1791 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1794 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1795 sizeof(*root->fs_info->super_copy));
1797 trans->transaction->blocked = 0;
1798 spin_lock(&root->fs_info->trans_lock);
1799 root->fs_info->running_transaction = NULL;
1800 root->fs_info->trans_no_join = 0;
1801 spin_unlock(&root->fs_info->trans_lock);
1802 mutex_unlock(&root->fs_info->reloc_mutex);
1804 wake_up(&root->fs_info->transaction_wait);
1806 ret = btrfs_write_and_wait_transaction(trans, root);
1808 btrfs_error(root->fs_info, ret,
1809 "Error while writing out transaction");
1810 mutex_unlock(&root->fs_info->tree_log_mutex);
1811 goto cleanup_transaction;
1814 ret = write_ctree_super(trans, root, 0);
1816 mutex_unlock(&root->fs_info->tree_log_mutex);
1817 goto cleanup_transaction;
1821 * the super is written, we can safely allow the tree-loggers
1822 * to go about their business
1824 mutex_unlock(&root->fs_info->tree_log_mutex);
1826 btrfs_finish_extent_commit(trans, root);
1828 cur_trans->commit_done = 1;
1830 root->fs_info->last_trans_committed = cur_trans->transid;
1832 wake_up(&cur_trans->commit_wait);
1834 spin_lock(&root->fs_info->trans_lock);
1835 list_del_init(&cur_trans->list);
1836 spin_unlock(&root->fs_info->trans_lock);
1838 put_transaction(cur_trans);
1839 put_transaction(cur_trans);
1841 if (trans->type < TRANS_JOIN_NOLOCK)
1842 sb_end_intwrite(root->fs_info->sb);
1844 trace_btrfs_transaction_commit(root);
1846 btrfs_scrub_continue(root);
1848 if (current->journal_info == trans)
1849 current->journal_info = NULL;
1851 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1853 if (current != root->fs_info->transaction_kthread)
1854 btrfs_run_delayed_iputs(root);
1858 cleanup_transaction:
1859 btrfs_trans_release_metadata(trans, root);
1860 trans->block_rsv = NULL;
1861 if (trans->qgroup_reserved) {
1862 btrfs_qgroup_free(root, trans->qgroup_reserved);
1863 trans->qgroup_reserved = 0;
1865 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1866 if (current->journal_info == trans)
1867 current->journal_info = NULL;
1868 cleanup_transaction(trans, root, ret);
1874 * return < 0 if error
1875 * 0 if there are no more dead_roots at the time of call
1876 * 1 there are more to be processed, call me again
1878 * The return value indicates there are certainly more snapshots to delete, but
1879 * if there comes a new one during processing, it may return 0. We don't mind,
1880 * because btrfs_commit_super will poke cleaner thread and it will process it a
1881 * few seconds later.
1883 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1886 struct btrfs_fs_info *fs_info = root->fs_info;
1888 if (fs_info->sb->s_flags & MS_RDONLY) {
1889 pr_debug("btrfs: cleaner called for RO fs!\n");
1893 spin_lock(&fs_info->trans_lock);
1894 if (list_empty(&fs_info->dead_roots)) {
1895 spin_unlock(&fs_info->trans_lock);
1898 root = list_first_entry(&fs_info->dead_roots,
1899 struct btrfs_root, root_list);
1900 list_del(&root->root_list);
1901 spin_unlock(&fs_info->trans_lock);
1903 pr_debug("btrfs: cleaner removing %llu\n",
1904 (unsigned long long)root->objectid);
1906 btrfs_kill_all_delayed_nodes(root);
1908 if (btrfs_header_backref_rev(root->node) <
1909 BTRFS_MIXED_BACKREF_REV)
1910 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1912 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1914 * If we encounter a transaction abort during snapshot cleaning, we
1915 * don't want to crash here
1917 BUG_ON(ret < 0 && ret != -EAGAIN && ret != -EROFS);