2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
44 static int init_first_rw_device(struct btrfs_trans_handle *trans,
45 struct btrfs_root *root,
46 struct btrfs_device *device);
47 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
48 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
49 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52 static DEFINE_MUTEX(uuid_mutex);
53 static LIST_HEAD(fs_uuids);
55 static void lock_chunks(struct btrfs_root *root)
57 mutex_lock(&root->fs_info->chunk_mutex);
60 static void unlock_chunks(struct btrfs_root *root)
62 mutex_unlock(&root->fs_info->chunk_mutex);
65 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
67 struct btrfs_device *device;
68 WARN_ON(fs_devices->opened);
69 while (!list_empty(&fs_devices->devices)) {
70 device = list_entry(fs_devices->devices.next,
71 struct btrfs_device, dev_list);
72 list_del(&device->dev_list);
73 rcu_string_free(device->name);
79 static void btrfs_kobject_uevent(struct block_device *bdev,
80 enum kobject_action action)
84 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
86 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
88 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
89 &disk_to_dev(bdev->bd_disk)->kobj);
92 void btrfs_cleanup_fs_uuids(void)
94 struct btrfs_fs_devices *fs_devices;
96 while (!list_empty(&fs_uuids)) {
97 fs_devices = list_entry(fs_uuids.next,
98 struct btrfs_fs_devices, list);
99 list_del(&fs_devices->list);
100 free_fs_devices(fs_devices);
104 static noinline struct btrfs_device *__find_device(struct list_head *head,
107 struct btrfs_device *dev;
109 list_for_each_entry(dev, head, dev_list) {
110 if (dev->devid == devid &&
111 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
118 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
120 struct btrfs_fs_devices *fs_devices;
122 list_for_each_entry(fs_devices, &fs_uuids, list) {
123 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
130 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
131 int flush, struct block_device **bdev,
132 struct buffer_head **bh)
136 *bdev = blkdev_get_by_path(device_path, flags, holder);
139 ret = PTR_ERR(*bdev);
140 printk(KERN_INFO "btrfs: open %s failed\n", device_path);
145 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
146 ret = set_blocksize(*bdev, 4096);
148 blkdev_put(*bdev, flags);
151 invalidate_bdev(*bdev);
152 *bh = btrfs_read_dev_super(*bdev);
155 blkdev_put(*bdev, flags);
167 static void requeue_list(struct btrfs_pending_bios *pending_bios,
168 struct bio *head, struct bio *tail)
171 struct bio *old_head;
173 old_head = pending_bios->head;
174 pending_bios->head = head;
175 if (pending_bios->tail)
176 tail->bi_next = old_head;
178 pending_bios->tail = tail;
182 * we try to collect pending bios for a device so we don't get a large
183 * number of procs sending bios down to the same device. This greatly
184 * improves the schedulers ability to collect and merge the bios.
186 * But, it also turns into a long list of bios to process and that is sure
187 * to eventually make the worker thread block. The solution here is to
188 * make some progress and then put this work struct back at the end of
189 * the list if the block device is congested. This way, multiple devices
190 * can make progress from a single worker thread.
192 static noinline void run_scheduled_bios(struct btrfs_device *device)
195 struct backing_dev_info *bdi;
196 struct btrfs_fs_info *fs_info;
197 struct btrfs_pending_bios *pending_bios;
201 unsigned long num_run;
202 unsigned long batch_run = 0;
204 unsigned long last_waited = 0;
206 int sync_pending = 0;
207 struct blk_plug plug;
210 * this function runs all the bios we've collected for
211 * a particular device. We don't want to wander off to
212 * another device without first sending all of these down.
213 * So, setup a plug here and finish it off before we return
215 blk_start_plug(&plug);
217 bdi = blk_get_backing_dev_info(device->bdev);
218 fs_info = device->dev_root->fs_info;
219 limit = btrfs_async_submit_limit(fs_info);
220 limit = limit * 2 / 3;
223 spin_lock(&device->io_lock);
228 /* take all the bios off the list at once and process them
229 * later on (without the lock held). But, remember the
230 * tail and other pointers so the bios can be properly reinserted
231 * into the list if we hit congestion
233 if (!force_reg && device->pending_sync_bios.head) {
234 pending_bios = &device->pending_sync_bios;
237 pending_bios = &device->pending_bios;
241 pending = pending_bios->head;
242 tail = pending_bios->tail;
243 WARN_ON(pending && !tail);
246 * if pending was null this time around, no bios need processing
247 * at all and we can stop. Otherwise it'll loop back up again
248 * and do an additional check so no bios are missed.
250 * device->running_pending is used to synchronize with the
253 if (device->pending_sync_bios.head == NULL &&
254 device->pending_bios.head == NULL) {
256 device->running_pending = 0;
259 device->running_pending = 1;
262 pending_bios->head = NULL;
263 pending_bios->tail = NULL;
265 spin_unlock(&device->io_lock);
270 /* we want to work on both lists, but do more bios on the
271 * sync list than the regular list
274 pending_bios != &device->pending_sync_bios &&
275 device->pending_sync_bios.head) ||
276 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
277 device->pending_bios.head)) {
278 spin_lock(&device->io_lock);
279 requeue_list(pending_bios, pending, tail);
284 pending = pending->bi_next;
287 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
288 waitqueue_active(&fs_info->async_submit_wait))
289 wake_up(&fs_info->async_submit_wait);
291 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
294 * if we're doing the sync list, record that our
295 * plug has some sync requests on it
297 * If we're doing the regular list and there are
298 * sync requests sitting around, unplug before
301 if (pending_bios == &device->pending_sync_bios) {
303 } else if (sync_pending) {
304 blk_finish_plug(&plug);
305 blk_start_plug(&plug);
309 btrfsic_submit_bio(cur->bi_rw, cur);
316 * we made progress, there is more work to do and the bdi
317 * is now congested. Back off and let other work structs
320 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
321 fs_info->fs_devices->open_devices > 1) {
322 struct io_context *ioc;
324 ioc = current->io_context;
327 * the main goal here is that we don't want to
328 * block if we're going to be able to submit
329 * more requests without blocking.
331 * This code does two great things, it pokes into
332 * the elevator code from a filesystem _and_
333 * it makes assumptions about how batching works.
335 if (ioc && ioc->nr_batch_requests > 0 &&
336 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
338 ioc->last_waited == last_waited)) {
340 * we want to go through our batch of
341 * requests and stop. So, we copy out
342 * the ioc->last_waited time and test
343 * against it before looping
345 last_waited = ioc->last_waited;
350 spin_lock(&device->io_lock);
351 requeue_list(pending_bios, pending, tail);
352 device->running_pending = 1;
354 spin_unlock(&device->io_lock);
355 btrfs_requeue_work(&device->work);
358 /* unplug every 64 requests just for good measure */
359 if (batch_run % 64 == 0) {
360 blk_finish_plug(&plug);
361 blk_start_plug(&plug);
370 spin_lock(&device->io_lock);
371 if (device->pending_bios.head || device->pending_sync_bios.head)
373 spin_unlock(&device->io_lock);
376 blk_finish_plug(&plug);
379 static void pending_bios_fn(struct btrfs_work *work)
381 struct btrfs_device *device;
383 device = container_of(work, struct btrfs_device, work);
384 run_scheduled_bios(device);
387 static noinline int device_list_add(const char *path,
388 struct btrfs_super_block *disk_super,
389 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
391 struct btrfs_device *device;
392 struct btrfs_fs_devices *fs_devices;
393 struct rcu_string *name;
394 u64 found_transid = btrfs_super_generation(disk_super);
396 fs_devices = find_fsid(disk_super->fsid);
398 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
401 INIT_LIST_HEAD(&fs_devices->devices);
402 INIT_LIST_HEAD(&fs_devices->alloc_list);
403 list_add(&fs_devices->list, &fs_uuids);
404 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
405 fs_devices->latest_devid = devid;
406 fs_devices->latest_trans = found_transid;
407 mutex_init(&fs_devices->device_list_mutex);
410 device = __find_device(&fs_devices->devices, devid,
411 disk_super->dev_item.uuid);
414 if (fs_devices->opened)
417 device = kzalloc(sizeof(*device), GFP_NOFS);
419 /* we can safely leave the fs_devices entry around */
422 device->devid = devid;
423 device->dev_stats_valid = 0;
424 device->work.func = pending_bios_fn;
425 memcpy(device->uuid, disk_super->dev_item.uuid,
427 spin_lock_init(&device->io_lock);
429 name = rcu_string_strdup(path, GFP_NOFS);
434 rcu_assign_pointer(device->name, name);
435 INIT_LIST_HEAD(&device->dev_alloc_list);
437 /* init readahead state */
438 spin_lock_init(&device->reada_lock);
439 device->reada_curr_zone = NULL;
440 atomic_set(&device->reada_in_flight, 0);
441 device->reada_next = 0;
442 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
443 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
445 mutex_lock(&fs_devices->device_list_mutex);
446 list_add_rcu(&device->dev_list, &fs_devices->devices);
447 mutex_unlock(&fs_devices->device_list_mutex);
449 device->fs_devices = fs_devices;
450 fs_devices->num_devices++;
451 } else if (!device->name || strcmp(device->name->str, path)) {
452 name = rcu_string_strdup(path, GFP_NOFS);
455 rcu_string_free(device->name);
456 rcu_assign_pointer(device->name, name);
457 if (device->missing) {
458 fs_devices->missing_devices--;
463 if (found_transid > fs_devices->latest_trans) {
464 fs_devices->latest_devid = devid;
465 fs_devices->latest_trans = found_transid;
467 *fs_devices_ret = fs_devices;
471 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
473 struct btrfs_fs_devices *fs_devices;
474 struct btrfs_device *device;
475 struct btrfs_device *orig_dev;
477 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
479 return ERR_PTR(-ENOMEM);
481 INIT_LIST_HEAD(&fs_devices->devices);
482 INIT_LIST_HEAD(&fs_devices->alloc_list);
483 INIT_LIST_HEAD(&fs_devices->list);
484 mutex_init(&fs_devices->device_list_mutex);
485 fs_devices->latest_devid = orig->latest_devid;
486 fs_devices->latest_trans = orig->latest_trans;
487 fs_devices->total_devices = orig->total_devices;
488 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
490 /* We have held the volume lock, it is safe to get the devices. */
491 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
492 struct rcu_string *name;
494 device = kzalloc(sizeof(*device), GFP_NOFS);
499 * This is ok to do without rcu read locked because we hold the
500 * uuid mutex so nothing we touch in here is going to disappear.
502 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
507 rcu_assign_pointer(device->name, name);
509 device->devid = orig_dev->devid;
510 device->work.func = pending_bios_fn;
511 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
512 spin_lock_init(&device->io_lock);
513 INIT_LIST_HEAD(&device->dev_list);
514 INIT_LIST_HEAD(&device->dev_alloc_list);
516 list_add(&device->dev_list, &fs_devices->devices);
517 device->fs_devices = fs_devices;
518 fs_devices->num_devices++;
522 free_fs_devices(fs_devices);
523 return ERR_PTR(-ENOMEM);
526 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
527 struct btrfs_fs_devices *fs_devices, int step)
529 struct btrfs_device *device, *next;
531 struct block_device *latest_bdev = NULL;
532 u64 latest_devid = 0;
533 u64 latest_transid = 0;
535 mutex_lock(&uuid_mutex);
537 /* This is the initialized path, it is safe to release the devices. */
538 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
539 if (device->in_fs_metadata) {
540 if (!device->is_tgtdev_for_dev_replace &&
542 device->generation > latest_transid)) {
543 latest_devid = device->devid;
544 latest_transid = device->generation;
545 latest_bdev = device->bdev;
550 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
552 * In the first step, keep the device which has
553 * the correct fsid and the devid that is used
554 * for the dev_replace procedure.
555 * In the second step, the dev_replace state is
556 * read from the device tree and it is known
557 * whether the procedure is really active or
558 * not, which means whether this device is
559 * used or whether it should be removed.
561 if (step == 0 || device->is_tgtdev_for_dev_replace) {
566 blkdev_put(device->bdev, device->mode);
568 fs_devices->open_devices--;
570 if (device->writeable) {
571 list_del_init(&device->dev_alloc_list);
572 device->writeable = 0;
573 if (!device->is_tgtdev_for_dev_replace)
574 fs_devices->rw_devices--;
576 list_del_init(&device->dev_list);
577 fs_devices->num_devices--;
578 rcu_string_free(device->name);
582 if (fs_devices->seed) {
583 fs_devices = fs_devices->seed;
587 fs_devices->latest_bdev = latest_bdev;
588 fs_devices->latest_devid = latest_devid;
589 fs_devices->latest_trans = latest_transid;
591 mutex_unlock(&uuid_mutex);
594 static void __free_device(struct work_struct *work)
596 struct btrfs_device *device;
598 device = container_of(work, struct btrfs_device, rcu_work);
601 blkdev_put(device->bdev, device->mode);
603 rcu_string_free(device->name);
607 static void free_device(struct rcu_head *head)
609 struct btrfs_device *device;
611 device = container_of(head, struct btrfs_device, rcu);
613 INIT_WORK(&device->rcu_work, __free_device);
614 schedule_work(&device->rcu_work);
617 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
619 struct btrfs_device *device;
621 if (--fs_devices->opened > 0)
624 mutex_lock(&fs_devices->device_list_mutex);
625 list_for_each_entry(device, &fs_devices->devices, dev_list) {
626 struct btrfs_device *new_device;
627 struct rcu_string *name;
630 fs_devices->open_devices--;
632 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
633 list_del_init(&device->dev_alloc_list);
634 fs_devices->rw_devices--;
637 if (device->can_discard)
638 fs_devices->num_can_discard--;
640 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
641 BUG_ON(!new_device); /* -ENOMEM */
642 memcpy(new_device, device, sizeof(*new_device));
644 /* Safe because we are under uuid_mutex */
646 name = rcu_string_strdup(device->name->str, GFP_NOFS);
647 BUG_ON(device->name && !name); /* -ENOMEM */
648 rcu_assign_pointer(new_device->name, name);
650 new_device->bdev = NULL;
651 new_device->writeable = 0;
652 new_device->in_fs_metadata = 0;
653 new_device->can_discard = 0;
654 spin_lock_init(&new_device->io_lock);
655 list_replace_rcu(&device->dev_list, &new_device->dev_list);
657 call_rcu(&device->rcu, free_device);
659 mutex_unlock(&fs_devices->device_list_mutex);
661 WARN_ON(fs_devices->open_devices);
662 WARN_ON(fs_devices->rw_devices);
663 fs_devices->opened = 0;
664 fs_devices->seeding = 0;
669 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
671 struct btrfs_fs_devices *seed_devices = NULL;
674 mutex_lock(&uuid_mutex);
675 ret = __btrfs_close_devices(fs_devices);
676 if (!fs_devices->opened) {
677 seed_devices = fs_devices->seed;
678 fs_devices->seed = NULL;
680 mutex_unlock(&uuid_mutex);
682 while (seed_devices) {
683 fs_devices = seed_devices;
684 seed_devices = fs_devices->seed;
685 __btrfs_close_devices(fs_devices);
686 free_fs_devices(fs_devices);
689 * Wait for rcu kworkers under __btrfs_close_devices
690 * to finish all blkdev_puts so device is really
691 * free when umount is done.
697 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
698 fmode_t flags, void *holder)
700 struct request_queue *q;
701 struct block_device *bdev;
702 struct list_head *head = &fs_devices->devices;
703 struct btrfs_device *device;
704 struct block_device *latest_bdev = NULL;
705 struct buffer_head *bh;
706 struct btrfs_super_block *disk_super;
707 u64 latest_devid = 0;
708 u64 latest_transid = 0;
715 list_for_each_entry(device, head, dev_list) {
721 /* Just open everything we can; ignore failures here */
722 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
726 disk_super = (struct btrfs_super_block *)bh->b_data;
727 devid = btrfs_stack_device_id(&disk_super->dev_item);
728 if (devid != device->devid)
731 if (memcmp(device->uuid, disk_super->dev_item.uuid,
735 device->generation = btrfs_super_generation(disk_super);
736 if (!latest_transid || device->generation > latest_transid) {
737 latest_devid = devid;
738 latest_transid = device->generation;
742 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
743 device->writeable = 0;
745 device->writeable = !bdev_read_only(bdev);
749 q = bdev_get_queue(bdev);
750 if (blk_queue_discard(q)) {
751 device->can_discard = 1;
752 fs_devices->num_can_discard++;
756 device->in_fs_metadata = 0;
757 device->mode = flags;
759 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
760 fs_devices->rotating = 1;
762 fs_devices->open_devices++;
763 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
764 fs_devices->rw_devices++;
765 list_add(&device->dev_alloc_list,
766 &fs_devices->alloc_list);
773 blkdev_put(bdev, flags);
776 if (fs_devices->open_devices == 0) {
780 fs_devices->seeding = seeding;
781 fs_devices->opened = 1;
782 fs_devices->latest_bdev = latest_bdev;
783 fs_devices->latest_devid = latest_devid;
784 fs_devices->latest_trans = latest_transid;
785 fs_devices->total_rw_bytes = 0;
790 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
791 fmode_t flags, void *holder)
795 mutex_lock(&uuid_mutex);
796 if (fs_devices->opened) {
797 fs_devices->opened++;
800 ret = __btrfs_open_devices(fs_devices, flags, holder);
802 mutex_unlock(&uuid_mutex);
807 * Look for a btrfs signature on a device. This may be called out of the mount path
808 * and we are not allowed to call set_blocksize during the scan. The superblock
809 * is read via pagecache
811 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
812 struct btrfs_fs_devices **fs_devices_ret)
814 struct btrfs_super_block *disk_super;
815 struct block_device *bdev;
826 * we would like to check all the supers, but that would make
827 * a btrfs mount succeed after a mkfs from a different FS.
828 * So, we need to add a special mount option to scan for
829 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
831 bytenr = btrfs_sb_offset(0);
833 mutex_lock(&uuid_mutex);
835 bdev = blkdev_get_by_path(path, flags, holder);
842 /* make sure our super fits in the device */
843 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
846 /* make sure our super fits in the page */
847 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
850 /* make sure our super doesn't straddle pages on disk */
851 index = bytenr >> PAGE_CACHE_SHIFT;
852 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
855 /* pull in the page with our super */
856 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
859 if (IS_ERR_OR_NULL(page))
864 /* align our pointer to the offset of the super block */
865 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
867 if (btrfs_super_bytenr(disk_super) != bytenr ||
868 disk_super->magic != cpu_to_le64(BTRFS_MAGIC))
871 devid = btrfs_stack_device_id(&disk_super->dev_item);
872 transid = btrfs_super_generation(disk_super);
873 total_devices = btrfs_super_num_devices(disk_super);
875 if (disk_super->label[0]) {
876 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
877 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
878 printk(KERN_INFO "device label %s ", disk_super->label);
880 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
883 printk(KERN_CONT "devid %llu transid %llu %s\n",
884 (unsigned long long)devid, (unsigned long long)transid, path);
886 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
887 if (!ret && fs_devices_ret)
888 (*fs_devices_ret)->total_devices = total_devices;
892 page_cache_release(page);
895 blkdev_put(bdev, flags);
897 mutex_unlock(&uuid_mutex);
901 /* helper to account the used device space in the range */
902 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
903 u64 end, u64 *length)
905 struct btrfs_key key;
906 struct btrfs_root *root = device->dev_root;
907 struct btrfs_dev_extent *dev_extent;
908 struct btrfs_path *path;
912 struct extent_buffer *l;
916 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
919 path = btrfs_alloc_path();
924 key.objectid = device->devid;
926 key.type = BTRFS_DEV_EXTENT_KEY;
928 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
932 ret = btrfs_previous_item(root, path, key.objectid, key.type);
939 slot = path->slots[0];
940 if (slot >= btrfs_header_nritems(l)) {
941 ret = btrfs_next_leaf(root, path);
949 btrfs_item_key_to_cpu(l, &key, slot);
951 if (key.objectid < device->devid)
954 if (key.objectid > device->devid)
957 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
960 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
961 extent_end = key.offset + btrfs_dev_extent_length(l,
963 if (key.offset <= start && extent_end > end) {
964 *length = end - start + 1;
966 } else if (key.offset <= start && extent_end > start)
967 *length += extent_end - start;
968 else if (key.offset > start && extent_end <= end)
969 *length += extent_end - key.offset;
970 else if (key.offset > start && key.offset <= end) {
971 *length += end - key.offset + 1;
973 } else if (key.offset > end)
981 btrfs_free_path(path);
986 * find_free_dev_extent - find free space in the specified device
987 * @device: the device which we search the free space in
988 * @num_bytes: the size of the free space that we need
989 * @start: store the start of the free space.
990 * @len: the size of the free space. that we find, or the size of the max
991 * free space if we don't find suitable free space
993 * this uses a pretty simple search, the expectation is that it is
994 * called very infrequently and that a given device has a small number
997 * @start is used to store the start of the free space if we find. But if we
998 * don't find suitable free space, it will be used to store the start position
999 * of the max free space.
1001 * @len is used to store the size of the free space that we find.
1002 * But if we don't find suitable free space, it is used to store the size of
1003 * the max free space.
1005 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1006 u64 *start, u64 *len)
1008 struct btrfs_key key;
1009 struct btrfs_root *root = device->dev_root;
1010 struct btrfs_dev_extent *dev_extent;
1011 struct btrfs_path *path;
1017 u64 search_end = device->total_bytes;
1020 struct extent_buffer *l;
1022 /* FIXME use last free of some kind */
1024 /* we don't want to overwrite the superblock on the drive,
1025 * so we make sure to start at an offset of at least 1MB
1027 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1029 max_hole_start = search_start;
1033 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1038 path = btrfs_alloc_path();
1045 key.objectid = device->devid;
1046 key.offset = search_start;
1047 key.type = BTRFS_DEV_EXTENT_KEY;
1049 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1053 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1060 slot = path->slots[0];
1061 if (slot >= btrfs_header_nritems(l)) {
1062 ret = btrfs_next_leaf(root, path);
1070 btrfs_item_key_to_cpu(l, &key, slot);
1072 if (key.objectid < device->devid)
1075 if (key.objectid > device->devid)
1078 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1081 if (key.offset > search_start) {
1082 hole_size = key.offset - search_start;
1084 if (hole_size > max_hole_size) {
1085 max_hole_start = search_start;
1086 max_hole_size = hole_size;
1090 * If this free space is greater than which we need,
1091 * it must be the max free space that we have found
1092 * until now, so max_hole_start must point to the start
1093 * of this free space and the length of this free space
1094 * is stored in max_hole_size. Thus, we return
1095 * max_hole_start and max_hole_size and go back to the
1098 if (hole_size >= num_bytes) {
1104 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1105 extent_end = key.offset + btrfs_dev_extent_length(l,
1107 if (extent_end > search_start)
1108 search_start = extent_end;
1115 * At this point, search_start should be the end of
1116 * allocated dev extents, and when shrinking the device,
1117 * search_end may be smaller than search_start.
1119 if (search_end > search_start)
1120 hole_size = search_end - search_start;
1122 if (hole_size > max_hole_size) {
1123 max_hole_start = search_start;
1124 max_hole_size = hole_size;
1128 if (hole_size < num_bytes)
1134 btrfs_free_path(path);
1136 *start = max_hole_start;
1138 *len = max_hole_size;
1142 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1143 struct btrfs_device *device,
1147 struct btrfs_path *path;
1148 struct btrfs_root *root = device->dev_root;
1149 struct btrfs_key key;
1150 struct btrfs_key found_key;
1151 struct extent_buffer *leaf = NULL;
1152 struct btrfs_dev_extent *extent = NULL;
1154 path = btrfs_alloc_path();
1158 key.objectid = device->devid;
1160 key.type = BTRFS_DEV_EXTENT_KEY;
1162 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1164 ret = btrfs_previous_item(root, path, key.objectid,
1165 BTRFS_DEV_EXTENT_KEY);
1168 leaf = path->nodes[0];
1169 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1170 extent = btrfs_item_ptr(leaf, path->slots[0],
1171 struct btrfs_dev_extent);
1172 BUG_ON(found_key.offset > start || found_key.offset +
1173 btrfs_dev_extent_length(leaf, extent) < start);
1175 btrfs_release_path(path);
1177 } else if (ret == 0) {
1178 leaf = path->nodes[0];
1179 extent = btrfs_item_ptr(leaf, path->slots[0],
1180 struct btrfs_dev_extent);
1182 btrfs_error(root->fs_info, ret, "Slot search failed");
1186 if (device->bytes_used > 0) {
1187 u64 len = btrfs_dev_extent_length(leaf, extent);
1188 device->bytes_used -= len;
1189 spin_lock(&root->fs_info->free_chunk_lock);
1190 root->fs_info->free_chunk_space += len;
1191 spin_unlock(&root->fs_info->free_chunk_lock);
1193 ret = btrfs_del_item(trans, root, path);
1195 btrfs_error(root->fs_info, ret,
1196 "Failed to remove dev extent item");
1199 btrfs_free_path(path);
1203 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1204 struct btrfs_device *device,
1205 u64 chunk_tree, u64 chunk_objectid,
1206 u64 chunk_offset, u64 start, u64 num_bytes)
1209 struct btrfs_path *path;
1210 struct btrfs_root *root = device->dev_root;
1211 struct btrfs_dev_extent *extent;
1212 struct extent_buffer *leaf;
1213 struct btrfs_key key;
1215 WARN_ON(!device->in_fs_metadata);
1216 WARN_ON(device->is_tgtdev_for_dev_replace);
1217 path = btrfs_alloc_path();
1221 key.objectid = device->devid;
1223 key.type = BTRFS_DEV_EXTENT_KEY;
1224 ret = btrfs_insert_empty_item(trans, root, path, &key,
1229 leaf = path->nodes[0];
1230 extent = btrfs_item_ptr(leaf, path->slots[0],
1231 struct btrfs_dev_extent);
1232 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1233 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1234 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1236 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1237 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1240 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1241 btrfs_mark_buffer_dirty(leaf);
1243 btrfs_free_path(path);
1247 static noinline int find_next_chunk(struct btrfs_root *root,
1248 u64 objectid, u64 *offset)
1250 struct btrfs_path *path;
1252 struct btrfs_key key;
1253 struct btrfs_chunk *chunk;
1254 struct btrfs_key found_key;
1256 path = btrfs_alloc_path();
1260 key.objectid = objectid;
1261 key.offset = (u64)-1;
1262 key.type = BTRFS_CHUNK_ITEM_KEY;
1264 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1268 BUG_ON(ret == 0); /* Corruption */
1270 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1274 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1276 if (found_key.objectid != objectid)
1279 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1280 struct btrfs_chunk);
1281 *offset = found_key.offset +
1282 btrfs_chunk_length(path->nodes[0], chunk);
1287 btrfs_free_path(path);
1291 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1294 struct btrfs_key key;
1295 struct btrfs_key found_key;
1296 struct btrfs_path *path;
1298 root = root->fs_info->chunk_root;
1300 path = btrfs_alloc_path();
1304 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1305 key.type = BTRFS_DEV_ITEM_KEY;
1306 key.offset = (u64)-1;
1308 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1312 BUG_ON(ret == 0); /* Corruption */
1314 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1315 BTRFS_DEV_ITEM_KEY);
1319 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1321 *objectid = found_key.offset + 1;
1325 btrfs_free_path(path);
1330 * the device information is stored in the chunk root
1331 * the btrfs_device struct should be fully filled in
1333 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1334 struct btrfs_root *root,
1335 struct btrfs_device *device)
1338 struct btrfs_path *path;
1339 struct btrfs_dev_item *dev_item;
1340 struct extent_buffer *leaf;
1341 struct btrfs_key key;
1344 root = root->fs_info->chunk_root;
1346 path = btrfs_alloc_path();
1350 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1351 key.type = BTRFS_DEV_ITEM_KEY;
1352 key.offset = device->devid;
1354 ret = btrfs_insert_empty_item(trans, root, path, &key,
1359 leaf = path->nodes[0];
1360 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1362 btrfs_set_device_id(leaf, dev_item, device->devid);
1363 btrfs_set_device_generation(leaf, dev_item, 0);
1364 btrfs_set_device_type(leaf, dev_item, device->type);
1365 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1366 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1367 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1368 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1369 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1370 btrfs_set_device_group(leaf, dev_item, 0);
1371 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1372 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1373 btrfs_set_device_start_offset(leaf, dev_item, 0);
1375 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1376 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1377 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1378 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1379 btrfs_mark_buffer_dirty(leaf);
1383 btrfs_free_path(path);
1387 static int btrfs_rm_dev_item(struct btrfs_root *root,
1388 struct btrfs_device *device)
1391 struct btrfs_path *path;
1392 struct btrfs_key key;
1393 struct btrfs_trans_handle *trans;
1395 root = root->fs_info->chunk_root;
1397 path = btrfs_alloc_path();
1401 trans = btrfs_start_transaction(root, 0);
1402 if (IS_ERR(trans)) {
1403 btrfs_free_path(path);
1404 return PTR_ERR(trans);
1406 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1407 key.type = BTRFS_DEV_ITEM_KEY;
1408 key.offset = device->devid;
1411 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1420 ret = btrfs_del_item(trans, root, path);
1424 btrfs_free_path(path);
1425 unlock_chunks(root);
1426 btrfs_commit_transaction(trans, root);
1430 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1432 struct btrfs_device *device;
1433 struct btrfs_device *next_device;
1434 struct block_device *bdev;
1435 struct buffer_head *bh = NULL;
1436 struct btrfs_super_block *disk_super;
1437 struct btrfs_fs_devices *cur_devices;
1444 bool clear_super = false;
1446 mutex_lock(&uuid_mutex);
1449 seq = read_seqbegin(&root->fs_info->profiles_lock);
1451 all_avail = root->fs_info->avail_data_alloc_bits |
1452 root->fs_info->avail_system_alloc_bits |
1453 root->fs_info->avail_metadata_alloc_bits;
1454 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1456 num_devices = root->fs_info->fs_devices->num_devices;
1457 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1458 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1459 WARN_ON(num_devices < 1);
1462 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1464 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1465 printk(KERN_ERR "btrfs: unable to go below four devices "
1471 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1472 printk(KERN_ERR "btrfs: unable to go below two "
1473 "devices on raid1\n");
1478 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1479 root->fs_info->fs_devices->rw_devices <= 2) {
1480 printk(KERN_ERR "btrfs: unable to go below two "
1481 "devices on raid5\n");
1485 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1486 root->fs_info->fs_devices->rw_devices <= 3) {
1487 printk(KERN_ERR "btrfs: unable to go below three "
1488 "devices on raid6\n");
1493 if (strcmp(device_path, "missing") == 0) {
1494 struct list_head *devices;
1495 struct btrfs_device *tmp;
1498 devices = &root->fs_info->fs_devices->devices;
1500 * It is safe to read the devices since the volume_mutex
1503 list_for_each_entry(tmp, devices, dev_list) {
1504 if (tmp->in_fs_metadata &&
1505 !tmp->is_tgtdev_for_dev_replace &&
1515 printk(KERN_ERR "btrfs: no missing devices found to "
1520 ret = btrfs_get_bdev_and_sb(device_path,
1521 FMODE_WRITE | FMODE_EXCL,
1522 root->fs_info->bdev_holder, 0,
1526 disk_super = (struct btrfs_super_block *)bh->b_data;
1527 devid = btrfs_stack_device_id(&disk_super->dev_item);
1528 dev_uuid = disk_super->dev_item.uuid;
1529 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1537 if (device->is_tgtdev_for_dev_replace) {
1538 pr_err("btrfs: unable to remove the dev_replace target dev\n");
1543 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1544 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1550 if (device->writeable) {
1552 list_del_init(&device->dev_alloc_list);
1553 unlock_chunks(root);
1554 root->fs_info->fs_devices->rw_devices--;
1558 ret = btrfs_shrink_device(device, 0);
1563 * TODO: the superblock still includes this device in its num_devices
1564 * counter although write_all_supers() is not locked out. This
1565 * could give a filesystem state which requires a degraded mount.
1567 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1571 spin_lock(&root->fs_info->free_chunk_lock);
1572 root->fs_info->free_chunk_space = device->total_bytes -
1574 spin_unlock(&root->fs_info->free_chunk_lock);
1576 device->in_fs_metadata = 0;
1577 btrfs_scrub_cancel_dev(root->fs_info, device);
1580 * the device list mutex makes sure that we don't change
1581 * the device list while someone else is writing out all
1582 * the device supers.
1585 cur_devices = device->fs_devices;
1586 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1587 list_del_rcu(&device->dev_list);
1589 device->fs_devices->num_devices--;
1590 device->fs_devices->total_devices--;
1592 if (device->missing)
1593 root->fs_info->fs_devices->missing_devices--;
1595 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1596 struct btrfs_device, dev_list);
1597 if (device->bdev == root->fs_info->sb->s_bdev)
1598 root->fs_info->sb->s_bdev = next_device->bdev;
1599 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1600 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1603 device->fs_devices->open_devices--;
1605 call_rcu(&device->rcu, free_device);
1606 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1608 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1609 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1611 if (cur_devices->open_devices == 0) {
1612 struct btrfs_fs_devices *fs_devices;
1613 fs_devices = root->fs_info->fs_devices;
1614 while (fs_devices) {
1615 if (fs_devices->seed == cur_devices)
1617 fs_devices = fs_devices->seed;
1619 fs_devices->seed = cur_devices->seed;
1620 cur_devices->seed = NULL;
1622 __btrfs_close_devices(cur_devices);
1623 unlock_chunks(root);
1624 free_fs_devices(cur_devices);
1627 root->fs_info->num_tolerated_disk_barrier_failures =
1628 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1631 * at this point, the device is zero sized. We want to
1632 * remove it from the devices list and zero out the old super
1634 if (clear_super && disk_super) {
1635 /* make sure this device isn't detected as part of
1638 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1639 set_buffer_dirty(bh);
1640 sync_dirty_buffer(bh);
1645 /* Notify udev that device has changed */
1647 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1652 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1654 mutex_unlock(&uuid_mutex);
1657 if (device->writeable) {
1659 list_add(&device->dev_alloc_list,
1660 &root->fs_info->fs_devices->alloc_list);
1661 unlock_chunks(root);
1662 root->fs_info->fs_devices->rw_devices++;
1667 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1668 struct btrfs_device *srcdev)
1670 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1671 list_del_rcu(&srcdev->dev_list);
1672 list_del_rcu(&srcdev->dev_alloc_list);
1673 fs_info->fs_devices->num_devices--;
1674 if (srcdev->missing) {
1675 fs_info->fs_devices->missing_devices--;
1676 fs_info->fs_devices->rw_devices++;
1678 if (srcdev->can_discard)
1679 fs_info->fs_devices->num_can_discard--;
1681 fs_info->fs_devices->open_devices--;
1683 call_rcu(&srcdev->rcu, free_device);
1686 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1687 struct btrfs_device *tgtdev)
1689 struct btrfs_device *next_device;
1692 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1694 btrfs_scratch_superblock(tgtdev);
1695 fs_info->fs_devices->open_devices--;
1697 fs_info->fs_devices->num_devices--;
1698 if (tgtdev->can_discard)
1699 fs_info->fs_devices->num_can_discard++;
1701 next_device = list_entry(fs_info->fs_devices->devices.next,
1702 struct btrfs_device, dev_list);
1703 if (tgtdev->bdev == fs_info->sb->s_bdev)
1704 fs_info->sb->s_bdev = next_device->bdev;
1705 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1706 fs_info->fs_devices->latest_bdev = next_device->bdev;
1707 list_del_rcu(&tgtdev->dev_list);
1709 call_rcu(&tgtdev->rcu, free_device);
1711 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1714 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1715 struct btrfs_device **device)
1718 struct btrfs_super_block *disk_super;
1721 struct block_device *bdev;
1722 struct buffer_head *bh;
1725 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1726 root->fs_info->bdev_holder, 0, &bdev, &bh);
1729 disk_super = (struct btrfs_super_block *)bh->b_data;
1730 devid = btrfs_stack_device_id(&disk_super->dev_item);
1731 dev_uuid = disk_super->dev_item.uuid;
1732 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1737 blkdev_put(bdev, FMODE_READ);
1741 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1743 struct btrfs_device **device)
1746 if (strcmp(device_path, "missing") == 0) {
1747 struct list_head *devices;
1748 struct btrfs_device *tmp;
1750 devices = &root->fs_info->fs_devices->devices;
1752 * It is safe to read the devices since the volume_mutex
1753 * is held by the caller.
1755 list_for_each_entry(tmp, devices, dev_list) {
1756 if (tmp->in_fs_metadata && !tmp->bdev) {
1763 pr_err("btrfs: no missing device found\n");
1769 return btrfs_find_device_by_path(root, device_path, device);
1774 * does all the dirty work required for changing file system's UUID.
1776 static int btrfs_prepare_sprout(struct btrfs_root *root)
1778 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1779 struct btrfs_fs_devices *old_devices;
1780 struct btrfs_fs_devices *seed_devices;
1781 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1782 struct btrfs_device *device;
1785 BUG_ON(!mutex_is_locked(&uuid_mutex));
1786 if (!fs_devices->seeding)
1789 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1793 old_devices = clone_fs_devices(fs_devices);
1794 if (IS_ERR(old_devices)) {
1795 kfree(seed_devices);
1796 return PTR_ERR(old_devices);
1799 list_add(&old_devices->list, &fs_uuids);
1801 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1802 seed_devices->opened = 1;
1803 INIT_LIST_HEAD(&seed_devices->devices);
1804 INIT_LIST_HEAD(&seed_devices->alloc_list);
1805 mutex_init(&seed_devices->device_list_mutex);
1807 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1808 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1810 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1812 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1813 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1814 device->fs_devices = seed_devices;
1817 fs_devices->seeding = 0;
1818 fs_devices->num_devices = 0;
1819 fs_devices->open_devices = 0;
1820 fs_devices->total_devices = 0;
1821 fs_devices->seed = seed_devices;
1823 generate_random_uuid(fs_devices->fsid);
1824 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1825 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1826 super_flags = btrfs_super_flags(disk_super) &
1827 ~BTRFS_SUPER_FLAG_SEEDING;
1828 btrfs_set_super_flags(disk_super, super_flags);
1834 * strore the expected generation for seed devices in device items.
1836 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1837 struct btrfs_root *root)
1839 struct btrfs_path *path;
1840 struct extent_buffer *leaf;
1841 struct btrfs_dev_item *dev_item;
1842 struct btrfs_device *device;
1843 struct btrfs_key key;
1844 u8 fs_uuid[BTRFS_UUID_SIZE];
1845 u8 dev_uuid[BTRFS_UUID_SIZE];
1849 path = btrfs_alloc_path();
1853 root = root->fs_info->chunk_root;
1854 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1856 key.type = BTRFS_DEV_ITEM_KEY;
1859 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1863 leaf = path->nodes[0];
1865 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1866 ret = btrfs_next_leaf(root, path);
1871 leaf = path->nodes[0];
1872 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1873 btrfs_release_path(path);
1877 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1878 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1879 key.type != BTRFS_DEV_ITEM_KEY)
1882 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1883 struct btrfs_dev_item);
1884 devid = btrfs_device_id(leaf, dev_item);
1885 read_extent_buffer(leaf, dev_uuid,
1886 (unsigned long)btrfs_device_uuid(dev_item),
1888 read_extent_buffer(leaf, fs_uuid,
1889 (unsigned long)btrfs_device_fsid(dev_item),
1891 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1893 BUG_ON(!device); /* Logic error */
1895 if (device->fs_devices->seeding) {
1896 btrfs_set_device_generation(leaf, dev_item,
1897 device->generation);
1898 btrfs_mark_buffer_dirty(leaf);
1906 btrfs_free_path(path);
1910 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1912 struct request_queue *q;
1913 struct btrfs_trans_handle *trans;
1914 struct btrfs_device *device;
1915 struct block_device *bdev;
1916 struct list_head *devices;
1917 struct super_block *sb = root->fs_info->sb;
1918 struct rcu_string *name;
1920 int seeding_dev = 0;
1923 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1926 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1927 root->fs_info->bdev_holder);
1929 return PTR_ERR(bdev);
1931 if (root->fs_info->fs_devices->seeding) {
1933 down_write(&sb->s_umount);
1934 mutex_lock(&uuid_mutex);
1937 filemap_write_and_wait(bdev->bd_inode->i_mapping);
1939 devices = &root->fs_info->fs_devices->devices;
1941 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1942 list_for_each_entry(device, devices, dev_list) {
1943 if (device->bdev == bdev) {
1946 &root->fs_info->fs_devices->device_list_mutex);
1950 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1952 device = kzalloc(sizeof(*device), GFP_NOFS);
1954 /* we can safely leave the fs_devices entry around */
1959 name = rcu_string_strdup(device_path, GFP_NOFS);
1965 rcu_assign_pointer(device->name, name);
1967 ret = find_next_devid(root, &device->devid);
1969 rcu_string_free(device->name);
1974 trans = btrfs_start_transaction(root, 0);
1975 if (IS_ERR(trans)) {
1976 rcu_string_free(device->name);
1978 ret = PTR_ERR(trans);
1984 q = bdev_get_queue(bdev);
1985 if (blk_queue_discard(q))
1986 device->can_discard = 1;
1987 device->writeable = 1;
1988 device->work.func = pending_bios_fn;
1989 generate_random_uuid(device->uuid);
1990 spin_lock_init(&device->io_lock);
1991 device->generation = trans->transid;
1992 device->io_width = root->sectorsize;
1993 device->io_align = root->sectorsize;
1994 device->sector_size = root->sectorsize;
1995 device->total_bytes = i_size_read(bdev->bd_inode);
1996 device->disk_total_bytes = device->total_bytes;
1997 device->dev_root = root->fs_info->dev_root;
1998 device->bdev = bdev;
1999 device->in_fs_metadata = 1;
2000 device->is_tgtdev_for_dev_replace = 0;
2001 device->mode = FMODE_EXCL;
2002 set_blocksize(device->bdev, 4096);
2005 sb->s_flags &= ~MS_RDONLY;
2006 ret = btrfs_prepare_sprout(root);
2007 BUG_ON(ret); /* -ENOMEM */
2010 device->fs_devices = root->fs_info->fs_devices;
2012 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2013 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2014 list_add(&device->dev_alloc_list,
2015 &root->fs_info->fs_devices->alloc_list);
2016 root->fs_info->fs_devices->num_devices++;
2017 root->fs_info->fs_devices->open_devices++;
2018 root->fs_info->fs_devices->rw_devices++;
2019 root->fs_info->fs_devices->total_devices++;
2020 if (device->can_discard)
2021 root->fs_info->fs_devices->num_can_discard++;
2022 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2024 spin_lock(&root->fs_info->free_chunk_lock);
2025 root->fs_info->free_chunk_space += device->total_bytes;
2026 spin_unlock(&root->fs_info->free_chunk_lock);
2028 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2029 root->fs_info->fs_devices->rotating = 1;
2031 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2032 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2033 total_bytes + device->total_bytes);
2035 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2036 btrfs_set_super_num_devices(root->fs_info->super_copy,
2038 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2041 ret = init_first_rw_device(trans, root, device);
2043 btrfs_abort_transaction(trans, root, ret);
2046 ret = btrfs_finish_sprout(trans, root);
2048 btrfs_abort_transaction(trans, root, ret);
2052 ret = btrfs_add_device(trans, root, device);
2054 btrfs_abort_transaction(trans, root, ret);
2060 * we've got more storage, clear any full flags on the space
2063 btrfs_clear_space_info_full(root->fs_info);
2065 unlock_chunks(root);
2066 root->fs_info->num_tolerated_disk_barrier_failures =
2067 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2068 ret = btrfs_commit_transaction(trans, root);
2071 mutex_unlock(&uuid_mutex);
2072 up_write(&sb->s_umount);
2074 if (ret) /* transaction commit */
2077 ret = btrfs_relocate_sys_chunks(root);
2079 btrfs_error(root->fs_info, ret,
2080 "Failed to relocate sys chunks after "
2081 "device initialization. This can be fixed "
2082 "using the \"btrfs balance\" command.");
2083 trans = btrfs_attach_transaction(root);
2084 if (IS_ERR(trans)) {
2085 if (PTR_ERR(trans) == -ENOENT)
2087 return PTR_ERR(trans);
2089 ret = btrfs_commit_transaction(trans, root);
2095 unlock_chunks(root);
2096 btrfs_end_transaction(trans, root);
2097 rcu_string_free(device->name);
2100 blkdev_put(bdev, FMODE_EXCL);
2102 mutex_unlock(&uuid_mutex);
2103 up_write(&sb->s_umount);
2108 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2109 struct btrfs_device **device_out)
2111 struct request_queue *q;
2112 struct btrfs_device *device;
2113 struct block_device *bdev;
2114 struct btrfs_fs_info *fs_info = root->fs_info;
2115 struct list_head *devices;
2116 struct rcu_string *name;
2120 if (fs_info->fs_devices->seeding)
2123 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2124 fs_info->bdev_holder);
2126 return PTR_ERR(bdev);
2128 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2130 devices = &fs_info->fs_devices->devices;
2131 list_for_each_entry(device, devices, dev_list) {
2132 if (device->bdev == bdev) {
2138 device = kzalloc(sizeof(*device), GFP_NOFS);
2144 name = rcu_string_strdup(device_path, GFP_NOFS);
2150 rcu_assign_pointer(device->name, name);
2152 q = bdev_get_queue(bdev);
2153 if (blk_queue_discard(q))
2154 device->can_discard = 1;
2155 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2156 device->writeable = 1;
2157 device->work.func = pending_bios_fn;
2158 generate_random_uuid(device->uuid);
2159 device->devid = BTRFS_DEV_REPLACE_DEVID;
2160 spin_lock_init(&device->io_lock);
2161 device->generation = 0;
2162 device->io_width = root->sectorsize;
2163 device->io_align = root->sectorsize;
2164 device->sector_size = root->sectorsize;
2165 device->total_bytes = i_size_read(bdev->bd_inode);
2166 device->disk_total_bytes = device->total_bytes;
2167 device->dev_root = fs_info->dev_root;
2168 device->bdev = bdev;
2169 device->in_fs_metadata = 1;
2170 device->is_tgtdev_for_dev_replace = 1;
2171 device->mode = FMODE_EXCL;
2172 set_blocksize(device->bdev, 4096);
2173 device->fs_devices = fs_info->fs_devices;
2174 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2175 fs_info->fs_devices->num_devices++;
2176 fs_info->fs_devices->open_devices++;
2177 if (device->can_discard)
2178 fs_info->fs_devices->num_can_discard++;
2179 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2181 *device_out = device;
2185 blkdev_put(bdev, FMODE_EXCL);
2189 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2190 struct btrfs_device *tgtdev)
2192 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2193 tgtdev->io_width = fs_info->dev_root->sectorsize;
2194 tgtdev->io_align = fs_info->dev_root->sectorsize;
2195 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2196 tgtdev->dev_root = fs_info->dev_root;
2197 tgtdev->in_fs_metadata = 1;
2200 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2201 struct btrfs_device *device)
2204 struct btrfs_path *path;
2205 struct btrfs_root *root;
2206 struct btrfs_dev_item *dev_item;
2207 struct extent_buffer *leaf;
2208 struct btrfs_key key;
2210 root = device->dev_root->fs_info->chunk_root;
2212 path = btrfs_alloc_path();
2216 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2217 key.type = BTRFS_DEV_ITEM_KEY;
2218 key.offset = device->devid;
2220 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2229 leaf = path->nodes[0];
2230 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2232 btrfs_set_device_id(leaf, dev_item, device->devid);
2233 btrfs_set_device_type(leaf, dev_item, device->type);
2234 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2235 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2236 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2237 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2238 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2239 btrfs_mark_buffer_dirty(leaf);
2242 btrfs_free_path(path);
2246 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2247 struct btrfs_device *device, u64 new_size)
2249 struct btrfs_super_block *super_copy =
2250 device->dev_root->fs_info->super_copy;
2251 u64 old_total = btrfs_super_total_bytes(super_copy);
2252 u64 diff = new_size - device->total_bytes;
2254 if (!device->writeable)
2256 if (new_size <= device->total_bytes ||
2257 device->is_tgtdev_for_dev_replace)
2260 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2261 device->fs_devices->total_rw_bytes += diff;
2263 device->total_bytes = new_size;
2264 device->disk_total_bytes = new_size;
2265 btrfs_clear_space_info_full(device->dev_root->fs_info);
2267 return btrfs_update_device(trans, device);
2270 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2271 struct btrfs_device *device, u64 new_size)
2274 lock_chunks(device->dev_root);
2275 ret = __btrfs_grow_device(trans, device, new_size);
2276 unlock_chunks(device->dev_root);
2280 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2281 struct btrfs_root *root,
2282 u64 chunk_tree, u64 chunk_objectid,
2286 struct btrfs_path *path;
2287 struct btrfs_key key;
2289 root = root->fs_info->chunk_root;
2290 path = btrfs_alloc_path();
2294 key.objectid = chunk_objectid;
2295 key.offset = chunk_offset;
2296 key.type = BTRFS_CHUNK_ITEM_KEY;
2298 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2301 else if (ret > 0) { /* Logic error or corruption */
2302 btrfs_error(root->fs_info, -ENOENT,
2303 "Failed lookup while freeing chunk.");
2308 ret = btrfs_del_item(trans, root, path);
2310 btrfs_error(root->fs_info, ret,
2311 "Failed to delete chunk item.");
2313 btrfs_free_path(path);
2317 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2320 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2321 struct btrfs_disk_key *disk_key;
2322 struct btrfs_chunk *chunk;
2329 struct btrfs_key key;
2331 array_size = btrfs_super_sys_array_size(super_copy);
2333 ptr = super_copy->sys_chunk_array;
2336 while (cur < array_size) {
2337 disk_key = (struct btrfs_disk_key *)ptr;
2338 btrfs_disk_key_to_cpu(&key, disk_key);
2340 len = sizeof(*disk_key);
2342 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2343 chunk = (struct btrfs_chunk *)(ptr + len);
2344 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2345 len += btrfs_chunk_item_size(num_stripes);
2350 if (key.objectid == chunk_objectid &&
2351 key.offset == chunk_offset) {
2352 memmove(ptr, ptr + len, array_size - (cur + len));
2354 btrfs_set_super_sys_array_size(super_copy, array_size);
2363 static int btrfs_relocate_chunk(struct btrfs_root *root,
2364 u64 chunk_tree, u64 chunk_objectid,
2367 struct extent_map_tree *em_tree;
2368 struct btrfs_root *extent_root;
2369 struct btrfs_trans_handle *trans;
2370 struct extent_map *em;
2371 struct map_lookup *map;
2375 root = root->fs_info->chunk_root;
2376 extent_root = root->fs_info->extent_root;
2377 em_tree = &root->fs_info->mapping_tree.map_tree;
2379 ret = btrfs_can_relocate(extent_root, chunk_offset);
2383 /* step one, relocate all the extents inside this chunk */
2384 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2388 trans = btrfs_start_transaction(root, 0);
2389 if (IS_ERR(trans)) {
2390 ret = PTR_ERR(trans);
2391 btrfs_std_error(root->fs_info, ret);
2398 * step two, delete the device extents and the
2399 * chunk tree entries
2401 read_lock(&em_tree->lock);
2402 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2403 read_unlock(&em_tree->lock);
2405 BUG_ON(!em || em->start > chunk_offset ||
2406 em->start + em->len < chunk_offset);
2407 map = (struct map_lookup *)em->bdev;
2409 for (i = 0; i < map->num_stripes; i++) {
2410 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2411 map->stripes[i].physical);
2414 if (map->stripes[i].dev) {
2415 ret = btrfs_update_device(trans, map->stripes[i].dev);
2419 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2424 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2426 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2427 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2431 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2434 write_lock(&em_tree->lock);
2435 remove_extent_mapping(em_tree, em);
2436 write_unlock(&em_tree->lock);
2441 /* once for the tree */
2442 free_extent_map(em);
2444 free_extent_map(em);
2446 unlock_chunks(root);
2447 btrfs_end_transaction(trans, root);
2451 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2453 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2454 struct btrfs_path *path;
2455 struct extent_buffer *leaf;
2456 struct btrfs_chunk *chunk;
2457 struct btrfs_key key;
2458 struct btrfs_key found_key;
2459 u64 chunk_tree = chunk_root->root_key.objectid;
2461 bool retried = false;
2465 path = btrfs_alloc_path();
2470 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2471 key.offset = (u64)-1;
2472 key.type = BTRFS_CHUNK_ITEM_KEY;
2475 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2478 BUG_ON(ret == 0); /* Corruption */
2480 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2487 leaf = path->nodes[0];
2488 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2490 chunk = btrfs_item_ptr(leaf, path->slots[0],
2491 struct btrfs_chunk);
2492 chunk_type = btrfs_chunk_type(leaf, chunk);
2493 btrfs_release_path(path);
2495 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2496 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2505 if (found_key.offset == 0)
2507 key.offset = found_key.offset - 1;
2510 if (failed && !retried) {
2514 } else if (failed && retried) {
2519 btrfs_free_path(path);
2523 static int insert_balance_item(struct btrfs_root *root,
2524 struct btrfs_balance_control *bctl)
2526 struct btrfs_trans_handle *trans;
2527 struct btrfs_balance_item *item;
2528 struct btrfs_disk_balance_args disk_bargs;
2529 struct btrfs_path *path;
2530 struct extent_buffer *leaf;
2531 struct btrfs_key key;
2534 path = btrfs_alloc_path();
2538 trans = btrfs_start_transaction(root, 0);
2539 if (IS_ERR(trans)) {
2540 btrfs_free_path(path);
2541 return PTR_ERR(trans);
2544 key.objectid = BTRFS_BALANCE_OBJECTID;
2545 key.type = BTRFS_BALANCE_ITEM_KEY;
2548 ret = btrfs_insert_empty_item(trans, root, path, &key,
2553 leaf = path->nodes[0];
2554 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2556 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2558 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2559 btrfs_set_balance_data(leaf, item, &disk_bargs);
2560 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2561 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2562 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2563 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2565 btrfs_set_balance_flags(leaf, item, bctl->flags);
2567 btrfs_mark_buffer_dirty(leaf);
2569 btrfs_free_path(path);
2570 err = btrfs_commit_transaction(trans, root);
2576 static int del_balance_item(struct btrfs_root *root)
2578 struct btrfs_trans_handle *trans;
2579 struct btrfs_path *path;
2580 struct btrfs_key key;
2583 path = btrfs_alloc_path();
2587 trans = btrfs_start_transaction(root, 0);
2588 if (IS_ERR(trans)) {
2589 btrfs_free_path(path);
2590 return PTR_ERR(trans);
2593 key.objectid = BTRFS_BALANCE_OBJECTID;
2594 key.type = BTRFS_BALANCE_ITEM_KEY;
2597 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2605 ret = btrfs_del_item(trans, root, path);
2607 btrfs_free_path(path);
2608 err = btrfs_commit_transaction(trans, root);
2615 * This is a heuristic used to reduce the number of chunks balanced on
2616 * resume after balance was interrupted.
2618 static void update_balance_args(struct btrfs_balance_control *bctl)
2621 * Turn on soft mode for chunk types that were being converted.
2623 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2624 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2625 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2626 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2627 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2628 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2631 * Turn on usage filter if is not already used. The idea is
2632 * that chunks that we have already balanced should be
2633 * reasonably full. Don't do it for chunks that are being
2634 * converted - that will keep us from relocating unconverted
2635 * (albeit full) chunks.
2637 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2638 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2639 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2640 bctl->data.usage = 90;
2642 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2643 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2644 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2645 bctl->sys.usage = 90;
2647 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2648 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2649 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2650 bctl->meta.usage = 90;
2655 * Should be called with both balance and volume mutexes held to
2656 * serialize other volume operations (add_dev/rm_dev/resize) with
2657 * restriper. Same goes for unset_balance_control.
2659 static void set_balance_control(struct btrfs_balance_control *bctl)
2661 struct btrfs_fs_info *fs_info = bctl->fs_info;
2663 BUG_ON(fs_info->balance_ctl);
2665 spin_lock(&fs_info->balance_lock);
2666 fs_info->balance_ctl = bctl;
2667 spin_unlock(&fs_info->balance_lock);
2670 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2672 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2674 BUG_ON(!fs_info->balance_ctl);
2676 spin_lock(&fs_info->balance_lock);
2677 fs_info->balance_ctl = NULL;
2678 spin_unlock(&fs_info->balance_lock);
2684 * Balance filters. Return 1 if chunk should be filtered out
2685 * (should not be balanced).
2687 static int chunk_profiles_filter(u64 chunk_type,
2688 struct btrfs_balance_args *bargs)
2690 chunk_type = chunk_to_extended(chunk_type) &
2691 BTRFS_EXTENDED_PROFILE_MASK;
2693 if (bargs->profiles & chunk_type)
2699 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2700 struct btrfs_balance_args *bargs)
2702 struct btrfs_block_group_cache *cache;
2703 u64 chunk_used, user_thresh;
2706 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2707 chunk_used = btrfs_block_group_used(&cache->item);
2709 if (bargs->usage == 0)
2711 else if (bargs->usage > 100)
2712 user_thresh = cache->key.offset;
2714 user_thresh = div_factor_fine(cache->key.offset,
2717 if (chunk_used < user_thresh)
2720 btrfs_put_block_group(cache);
2724 static int chunk_devid_filter(struct extent_buffer *leaf,
2725 struct btrfs_chunk *chunk,
2726 struct btrfs_balance_args *bargs)
2728 struct btrfs_stripe *stripe;
2729 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2732 for (i = 0; i < num_stripes; i++) {
2733 stripe = btrfs_stripe_nr(chunk, i);
2734 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2741 /* [pstart, pend) */
2742 static int chunk_drange_filter(struct extent_buffer *leaf,
2743 struct btrfs_chunk *chunk,
2745 struct btrfs_balance_args *bargs)
2747 struct btrfs_stripe *stripe;
2748 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2754 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2757 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2758 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2759 factor = num_stripes / 2;
2760 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2761 factor = num_stripes - 1;
2762 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2763 factor = num_stripes - 2;
2765 factor = num_stripes;
2768 for (i = 0; i < num_stripes; i++) {
2769 stripe = btrfs_stripe_nr(chunk, i);
2770 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2773 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2774 stripe_length = btrfs_chunk_length(leaf, chunk);
2775 do_div(stripe_length, factor);
2777 if (stripe_offset < bargs->pend &&
2778 stripe_offset + stripe_length > bargs->pstart)
2785 /* [vstart, vend) */
2786 static int chunk_vrange_filter(struct extent_buffer *leaf,
2787 struct btrfs_chunk *chunk,
2789 struct btrfs_balance_args *bargs)
2791 if (chunk_offset < bargs->vend &&
2792 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2793 /* at least part of the chunk is inside this vrange */
2799 static int chunk_soft_convert_filter(u64 chunk_type,
2800 struct btrfs_balance_args *bargs)
2802 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2805 chunk_type = chunk_to_extended(chunk_type) &
2806 BTRFS_EXTENDED_PROFILE_MASK;
2808 if (bargs->target == chunk_type)
2814 static int should_balance_chunk(struct btrfs_root *root,
2815 struct extent_buffer *leaf,
2816 struct btrfs_chunk *chunk, u64 chunk_offset)
2818 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2819 struct btrfs_balance_args *bargs = NULL;
2820 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2823 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2824 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2828 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2829 bargs = &bctl->data;
2830 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2832 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2833 bargs = &bctl->meta;
2835 /* profiles filter */
2836 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2837 chunk_profiles_filter(chunk_type, bargs)) {
2842 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2843 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2848 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2849 chunk_devid_filter(leaf, chunk, bargs)) {
2853 /* drange filter, makes sense only with devid filter */
2854 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2855 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2860 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2861 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2865 /* soft profile changing mode */
2866 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2867 chunk_soft_convert_filter(chunk_type, bargs)) {
2874 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2876 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2877 struct btrfs_root *chunk_root = fs_info->chunk_root;
2878 struct btrfs_root *dev_root = fs_info->dev_root;
2879 struct list_head *devices;
2880 struct btrfs_device *device;
2883 struct btrfs_chunk *chunk;
2884 struct btrfs_path *path;
2885 struct btrfs_key key;
2886 struct btrfs_key found_key;
2887 struct btrfs_trans_handle *trans;
2888 struct extent_buffer *leaf;
2891 int enospc_errors = 0;
2892 bool counting = true;
2894 /* step one make some room on all the devices */
2895 devices = &fs_info->fs_devices->devices;
2896 list_for_each_entry(device, devices, dev_list) {
2897 old_size = device->total_bytes;
2898 size_to_free = div_factor(old_size, 1);
2899 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2900 if (!device->writeable ||
2901 device->total_bytes - device->bytes_used > size_to_free ||
2902 device->is_tgtdev_for_dev_replace)
2905 ret = btrfs_shrink_device(device, old_size - size_to_free);
2910 trans = btrfs_start_transaction(dev_root, 0);
2911 BUG_ON(IS_ERR(trans));
2913 ret = btrfs_grow_device(trans, device, old_size);
2916 btrfs_end_transaction(trans, dev_root);
2919 /* step two, relocate all the chunks */
2920 path = btrfs_alloc_path();
2926 /* zero out stat counters */
2927 spin_lock(&fs_info->balance_lock);
2928 memset(&bctl->stat, 0, sizeof(bctl->stat));
2929 spin_unlock(&fs_info->balance_lock);
2931 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2932 key.offset = (u64)-1;
2933 key.type = BTRFS_CHUNK_ITEM_KEY;
2936 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2937 atomic_read(&fs_info->balance_cancel_req)) {
2942 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2947 * this shouldn't happen, it means the last relocate
2951 BUG(); /* FIXME break ? */
2953 ret = btrfs_previous_item(chunk_root, path, 0,
2954 BTRFS_CHUNK_ITEM_KEY);
2960 leaf = path->nodes[0];
2961 slot = path->slots[0];
2962 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2964 if (found_key.objectid != key.objectid)
2967 /* chunk zero is special */
2968 if (found_key.offset == 0)
2971 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2974 spin_lock(&fs_info->balance_lock);
2975 bctl->stat.considered++;
2976 spin_unlock(&fs_info->balance_lock);
2979 ret = should_balance_chunk(chunk_root, leaf, chunk,
2981 btrfs_release_path(path);
2986 spin_lock(&fs_info->balance_lock);
2987 bctl->stat.expected++;
2988 spin_unlock(&fs_info->balance_lock);
2992 ret = btrfs_relocate_chunk(chunk_root,
2993 chunk_root->root_key.objectid,
2996 if (ret && ret != -ENOSPC)
2998 if (ret == -ENOSPC) {
3001 spin_lock(&fs_info->balance_lock);
3002 bctl->stat.completed++;
3003 spin_unlock(&fs_info->balance_lock);
3006 key.offset = found_key.offset - 1;
3010 btrfs_release_path(path);
3015 btrfs_free_path(path);
3016 if (enospc_errors) {
3017 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
3027 * alloc_profile_is_valid - see if a given profile is valid and reduced
3028 * @flags: profile to validate
3029 * @extended: if true @flags is treated as an extended profile
3031 static int alloc_profile_is_valid(u64 flags, int extended)
3033 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3034 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3036 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3038 /* 1) check that all other bits are zeroed */
3042 /* 2) see if profile is reduced */
3044 return !extended; /* "0" is valid for usual profiles */
3046 /* true if exactly one bit set */
3047 return (flags & (flags - 1)) == 0;
3050 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3052 /* cancel requested || normal exit path */
3053 return atomic_read(&fs_info->balance_cancel_req) ||
3054 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3055 atomic_read(&fs_info->balance_cancel_req) == 0);
3058 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3062 unset_balance_control(fs_info);
3063 ret = del_balance_item(fs_info->tree_root);
3065 btrfs_std_error(fs_info, ret);
3067 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3070 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3071 struct btrfs_ioctl_balance_args *bargs);
3074 * Should be called with both balance and volume mutexes held
3076 int btrfs_balance(struct btrfs_balance_control *bctl,
3077 struct btrfs_ioctl_balance_args *bargs)
3079 struct btrfs_fs_info *fs_info = bctl->fs_info;
3086 if (btrfs_fs_closing(fs_info) ||
3087 atomic_read(&fs_info->balance_pause_req) ||
3088 atomic_read(&fs_info->balance_cancel_req)) {
3093 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3094 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3098 * In case of mixed groups both data and meta should be picked,
3099 * and identical options should be given for both of them.
3101 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3102 if (mixed && (bctl->flags & allowed)) {
3103 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3104 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3105 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3106 printk(KERN_ERR "btrfs: with mixed groups data and "
3107 "metadata balance options must be the same\n");
3113 num_devices = fs_info->fs_devices->num_devices;
3114 btrfs_dev_replace_lock(&fs_info->dev_replace);
3115 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3116 BUG_ON(num_devices < 1);
3119 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3120 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3121 if (num_devices == 1)
3122 allowed |= BTRFS_BLOCK_GROUP_DUP;
3123 else if (num_devices > 1)
3124 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3125 if (num_devices > 2)
3126 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3127 if (num_devices > 3)
3128 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3129 BTRFS_BLOCK_GROUP_RAID6);
3130 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3131 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3132 (bctl->data.target & ~allowed))) {
3133 printk(KERN_ERR "btrfs: unable to start balance with target "
3134 "data profile %llu\n",
3135 (unsigned long long)bctl->data.target);
3139 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3140 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3141 (bctl->meta.target & ~allowed))) {
3142 printk(KERN_ERR "btrfs: unable to start balance with target "
3143 "metadata profile %llu\n",
3144 (unsigned long long)bctl->meta.target);
3148 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3149 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3150 (bctl->sys.target & ~allowed))) {
3151 printk(KERN_ERR "btrfs: unable to start balance with target "
3152 "system profile %llu\n",
3153 (unsigned long long)bctl->sys.target);
3158 /* allow dup'ed data chunks only in mixed mode */
3159 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3160 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3161 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3166 /* allow to reduce meta or sys integrity only if force set */
3167 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3168 BTRFS_BLOCK_GROUP_RAID10 |
3169 BTRFS_BLOCK_GROUP_RAID5 |
3170 BTRFS_BLOCK_GROUP_RAID6;
3172 seq = read_seqbegin(&fs_info->profiles_lock);
3174 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3175 (fs_info->avail_system_alloc_bits & allowed) &&
3176 !(bctl->sys.target & allowed)) ||
3177 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3178 (fs_info->avail_metadata_alloc_bits & allowed) &&
3179 !(bctl->meta.target & allowed))) {
3180 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3181 printk(KERN_INFO "btrfs: force reducing metadata "
3184 printk(KERN_ERR "btrfs: balance will reduce metadata "
3185 "integrity, use force if you want this\n");
3190 } while (read_seqretry(&fs_info->profiles_lock, seq));
3192 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3193 int num_tolerated_disk_barrier_failures;
3194 u64 target = bctl->sys.target;
3196 num_tolerated_disk_barrier_failures =
3197 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3198 if (num_tolerated_disk_barrier_failures > 0 &&
3200 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3201 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3202 num_tolerated_disk_barrier_failures = 0;
3203 else if (num_tolerated_disk_barrier_failures > 1 &&
3205 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3206 num_tolerated_disk_barrier_failures = 1;
3208 fs_info->num_tolerated_disk_barrier_failures =
3209 num_tolerated_disk_barrier_failures;
3212 ret = insert_balance_item(fs_info->tree_root, bctl);
3213 if (ret && ret != -EEXIST)
3216 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3217 BUG_ON(ret == -EEXIST);
3218 set_balance_control(bctl);
3220 BUG_ON(ret != -EEXIST);
3221 spin_lock(&fs_info->balance_lock);
3222 update_balance_args(bctl);
3223 spin_unlock(&fs_info->balance_lock);
3226 atomic_inc(&fs_info->balance_running);
3227 mutex_unlock(&fs_info->balance_mutex);
3229 ret = __btrfs_balance(fs_info);
3231 mutex_lock(&fs_info->balance_mutex);
3232 atomic_dec(&fs_info->balance_running);
3234 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3235 fs_info->num_tolerated_disk_barrier_failures =
3236 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3240 memset(bargs, 0, sizeof(*bargs));
3241 update_ioctl_balance_args(fs_info, 0, bargs);
3244 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3245 balance_need_close(fs_info)) {
3246 __cancel_balance(fs_info);
3249 wake_up(&fs_info->balance_wait_q);
3253 if (bctl->flags & BTRFS_BALANCE_RESUME)
3254 __cancel_balance(fs_info);
3257 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3262 static int balance_kthread(void *data)
3264 struct btrfs_fs_info *fs_info = data;
3267 mutex_lock(&fs_info->volume_mutex);
3268 mutex_lock(&fs_info->balance_mutex);
3270 if (fs_info->balance_ctl) {
3271 printk(KERN_INFO "btrfs: continuing balance\n");
3272 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3275 mutex_unlock(&fs_info->balance_mutex);
3276 mutex_unlock(&fs_info->volume_mutex);
3281 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3283 struct task_struct *tsk;
3285 spin_lock(&fs_info->balance_lock);
3286 if (!fs_info->balance_ctl) {
3287 spin_unlock(&fs_info->balance_lock);
3290 spin_unlock(&fs_info->balance_lock);
3292 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3293 printk(KERN_INFO "btrfs: force skipping balance\n");
3297 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3299 return PTR_ERR(tsk);
3304 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3306 struct btrfs_balance_control *bctl;
3307 struct btrfs_balance_item *item;
3308 struct btrfs_disk_balance_args disk_bargs;
3309 struct btrfs_path *path;
3310 struct extent_buffer *leaf;
3311 struct btrfs_key key;
3314 path = btrfs_alloc_path();
3318 key.objectid = BTRFS_BALANCE_OBJECTID;
3319 key.type = BTRFS_BALANCE_ITEM_KEY;
3322 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3325 if (ret > 0) { /* ret = -ENOENT; */
3330 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3336 leaf = path->nodes[0];
3337 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3339 bctl->fs_info = fs_info;
3340 bctl->flags = btrfs_balance_flags(leaf, item);
3341 bctl->flags |= BTRFS_BALANCE_RESUME;
3343 btrfs_balance_data(leaf, item, &disk_bargs);
3344 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3345 btrfs_balance_meta(leaf, item, &disk_bargs);
3346 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3347 btrfs_balance_sys(leaf, item, &disk_bargs);
3348 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3350 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3352 mutex_lock(&fs_info->volume_mutex);
3353 mutex_lock(&fs_info->balance_mutex);
3355 set_balance_control(bctl);
3357 mutex_unlock(&fs_info->balance_mutex);
3358 mutex_unlock(&fs_info->volume_mutex);
3360 btrfs_free_path(path);
3364 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3368 mutex_lock(&fs_info->balance_mutex);
3369 if (!fs_info->balance_ctl) {
3370 mutex_unlock(&fs_info->balance_mutex);
3374 if (atomic_read(&fs_info->balance_running)) {
3375 atomic_inc(&fs_info->balance_pause_req);
3376 mutex_unlock(&fs_info->balance_mutex);
3378 wait_event(fs_info->balance_wait_q,
3379 atomic_read(&fs_info->balance_running) == 0);
3381 mutex_lock(&fs_info->balance_mutex);
3382 /* we are good with balance_ctl ripped off from under us */
3383 BUG_ON(atomic_read(&fs_info->balance_running));
3384 atomic_dec(&fs_info->balance_pause_req);
3389 mutex_unlock(&fs_info->balance_mutex);
3393 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3395 mutex_lock(&fs_info->balance_mutex);
3396 if (!fs_info->balance_ctl) {
3397 mutex_unlock(&fs_info->balance_mutex);
3401 atomic_inc(&fs_info->balance_cancel_req);
3403 * if we are running just wait and return, balance item is
3404 * deleted in btrfs_balance in this case
3406 if (atomic_read(&fs_info->balance_running)) {
3407 mutex_unlock(&fs_info->balance_mutex);
3408 wait_event(fs_info->balance_wait_q,
3409 atomic_read(&fs_info->balance_running) == 0);
3410 mutex_lock(&fs_info->balance_mutex);
3412 /* __cancel_balance needs volume_mutex */
3413 mutex_unlock(&fs_info->balance_mutex);
3414 mutex_lock(&fs_info->volume_mutex);
3415 mutex_lock(&fs_info->balance_mutex);
3417 if (fs_info->balance_ctl)
3418 __cancel_balance(fs_info);
3420 mutex_unlock(&fs_info->volume_mutex);
3423 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3424 atomic_dec(&fs_info->balance_cancel_req);
3425 mutex_unlock(&fs_info->balance_mutex);
3430 * shrinking a device means finding all of the device extents past
3431 * the new size, and then following the back refs to the chunks.
3432 * The chunk relocation code actually frees the device extent
3434 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3436 struct btrfs_trans_handle *trans;
3437 struct btrfs_root *root = device->dev_root;
3438 struct btrfs_dev_extent *dev_extent = NULL;
3439 struct btrfs_path *path;
3447 bool retried = false;
3448 struct extent_buffer *l;
3449 struct btrfs_key key;
3450 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3451 u64 old_total = btrfs_super_total_bytes(super_copy);
3452 u64 old_size = device->total_bytes;
3453 u64 diff = device->total_bytes - new_size;
3455 if (device->is_tgtdev_for_dev_replace)
3458 path = btrfs_alloc_path();
3466 device->total_bytes = new_size;
3467 if (device->writeable) {
3468 device->fs_devices->total_rw_bytes -= diff;
3469 spin_lock(&root->fs_info->free_chunk_lock);
3470 root->fs_info->free_chunk_space -= diff;
3471 spin_unlock(&root->fs_info->free_chunk_lock);
3473 unlock_chunks(root);
3476 key.objectid = device->devid;
3477 key.offset = (u64)-1;
3478 key.type = BTRFS_DEV_EXTENT_KEY;
3481 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3485 ret = btrfs_previous_item(root, path, 0, key.type);
3490 btrfs_release_path(path);
3495 slot = path->slots[0];
3496 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3498 if (key.objectid != device->devid) {
3499 btrfs_release_path(path);
3503 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3504 length = btrfs_dev_extent_length(l, dev_extent);
3506 if (key.offset + length <= new_size) {
3507 btrfs_release_path(path);
3511 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3512 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3513 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3514 btrfs_release_path(path);
3516 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3518 if (ret && ret != -ENOSPC)
3522 } while (key.offset-- > 0);
3524 if (failed && !retried) {
3528 } else if (failed && retried) {
3532 device->total_bytes = old_size;
3533 if (device->writeable)
3534 device->fs_devices->total_rw_bytes += diff;
3535 spin_lock(&root->fs_info->free_chunk_lock);
3536 root->fs_info->free_chunk_space += diff;
3537 spin_unlock(&root->fs_info->free_chunk_lock);
3538 unlock_chunks(root);
3542 /* Shrinking succeeded, else we would be at "done". */
3543 trans = btrfs_start_transaction(root, 0);
3544 if (IS_ERR(trans)) {
3545 ret = PTR_ERR(trans);
3551 device->disk_total_bytes = new_size;
3552 /* Now btrfs_update_device() will change the on-disk size. */
3553 ret = btrfs_update_device(trans, device);
3555 unlock_chunks(root);
3556 btrfs_end_transaction(trans, root);
3559 WARN_ON(diff > old_total);
3560 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3561 unlock_chunks(root);
3562 btrfs_end_transaction(trans, root);
3564 btrfs_free_path(path);
3568 static int btrfs_add_system_chunk(struct btrfs_root *root,
3569 struct btrfs_key *key,
3570 struct btrfs_chunk *chunk, int item_size)
3572 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3573 struct btrfs_disk_key disk_key;
3577 array_size = btrfs_super_sys_array_size(super_copy);
3578 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3581 ptr = super_copy->sys_chunk_array + array_size;
3582 btrfs_cpu_key_to_disk(&disk_key, key);
3583 memcpy(ptr, &disk_key, sizeof(disk_key));
3584 ptr += sizeof(disk_key);
3585 memcpy(ptr, chunk, item_size);
3586 item_size += sizeof(disk_key);
3587 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3592 * sort the devices in descending order by max_avail, total_avail
3594 static int btrfs_cmp_device_info(const void *a, const void *b)
3596 const struct btrfs_device_info *di_a = a;
3597 const struct btrfs_device_info *di_b = b;
3599 if (di_a->max_avail > di_b->max_avail)
3601 if (di_a->max_avail < di_b->max_avail)
3603 if (di_a->total_avail > di_b->total_avail)
3605 if (di_a->total_avail < di_b->total_avail)
3610 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
3611 [BTRFS_RAID_RAID10] = {
3614 .devs_max = 0, /* 0 == as many as possible */
3616 .devs_increment = 2,
3619 [BTRFS_RAID_RAID1] = {
3624 .devs_increment = 2,
3627 [BTRFS_RAID_DUP] = {
3632 .devs_increment = 1,
3635 [BTRFS_RAID_RAID0] = {
3640 .devs_increment = 1,
3643 [BTRFS_RAID_SINGLE] = {
3648 .devs_increment = 1,
3651 [BTRFS_RAID_RAID5] = {
3656 .devs_increment = 1,
3659 [BTRFS_RAID_RAID6] = {
3664 .devs_increment = 1,
3669 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3671 /* TODO allow them to set a preferred stripe size */
3675 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3677 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3680 btrfs_set_fs_incompat(info, RAID56);
3683 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3684 struct btrfs_root *extent_root,
3685 struct map_lookup **map_ret,
3686 u64 *num_bytes_out, u64 *stripe_size_out,
3687 u64 start, u64 type)
3689 struct btrfs_fs_info *info = extent_root->fs_info;
3690 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3691 struct list_head *cur;
3692 struct map_lookup *map = NULL;
3693 struct extent_map_tree *em_tree;
3694 struct extent_map *em;
3695 struct btrfs_device_info *devices_info = NULL;
3697 int num_stripes; /* total number of stripes to allocate */
3698 int data_stripes; /* number of stripes that count for
3700 int sub_stripes; /* sub_stripes info for map */
3701 int dev_stripes; /* stripes per dev */
3702 int devs_max; /* max devs to use */
3703 int devs_min; /* min devs needed */
3704 int devs_increment; /* ndevs has to be a multiple of this */
3705 int ncopies; /* how many copies to data has */
3707 u64 max_stripe_size;
3711 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
3717 BUG_ON(!alloc_profile_is_valid(type, 0));
3719 if (list_empty(&fs_devices->alloc_list))
3722 index = __get_raid_index(type);
3724 sub_stripes = btrfs_raid_array[index].sub_stripes;
3725 dev_stripes = btrfs_raid_array[index].dev_stripes;
3726 devs_max = btrfs_raid_array[index].devs_max;
3727 devs_min = btrfs_raid_array[index].devs_min;
3728 devs_increment = btrfs_raid_array[index].devs_increment;
3729 ncopies = btrfs_raid_array[index].ncopies;
3731 if (type & BTRFS_BLOCK_GROUP_DATA) {
3732 max_stripe_size = 1024 * 1024 * 1024;
3733 max_chunk_size = 10 * max_stripe_size;
3734 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
3735 /* for larger filesystems, use larger metadata chunks */
3736 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3737 max_stripe_size = 1024 * 1024 * 1024;
3739 max_stripe_size = 256 * 1024 * 1024;
3740 max_chunk_size = max_stripe_size;
3741 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
3742 max_stripe_size = 32 * 1024 * 1024;
3743 max_chunk_size = 2 * max_stripe_size;
3745 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3750 /* we don't want a chunk larger than 10% of writeable space */
3751 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3754 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3759 cur = fs_devices->alloc_list.next;
3762 * in the first pass through the devices list, we gather information
3763 * about the available holes on each device.
3766 while (cur != &fs_devices->alloc_list) {
3767 struct btrfs_device *device;
3771 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
3775 if (!device->writeable) {
3777 "btrfs: read-only device in alloc_list\n");
3781 if (!device->in_fs_metadata ||
3782 device->is_tgtdev_for_dev_replace)
3785 if (device->total_bytes > device->bytes_used)
3786 total_avail = device->total_bytes - device->bytes_used;
3790 /* If there is no space on this device, skip it. */
3791 if (total_avail == 0)
3794 ret = find_free_dev_extent(device,
3795 max_stripe_size * dev_stripes,
3796 &dev_offset, &max_avail);
3797 if (ret && ret != -ENOSPC)
3801 max_avail = max_stripe_size * dev_stripes;
3803 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3806 if (ndevs == fs_devices->rw_devices) {
3807 WARN(1, "%s: found more than %llu devices\n",
3808 __func__, fs_devices->rw_devices);
3811 devices_info[ndevs].dev_offset = dev_offset;
3812 devices_info[ndevs].max_avail = max_avail;
3813 devices_info[ndevs].total_avail = total_avail;
3814 devices_info[ndevs].dev = device;
3819 * now sort the devices by hole size / available space
3821 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3822 btrfs_cmp_device_info, NULL);
3824 /* round down to number of usable stripes */
3825 ndevs -= ndevs % devs_increment;
3827 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3832 if (devs_max && ndevs > devs_max)
3835 * the primary goal is to maximize the number of stripes, so use as many
3836 * devices as possible, even if the stripes are not maximum sized.
3838 stripe_size = devices_info[ndevs-1].max_avail;
3839 num_stripes = ndevs * dev_stripes;
3842 * this will have to be fixed for RAID1 and RAID10 over
3845 data_stripes = num_stripes / ncopies;
3847 if (type & BTRFS_BLOCK_GROUP_RAID5) {
3848 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
3849 btrfs_super_stripesize(info->super_copy));
3850 data_stripes = num_stripes - 1;
3852 if (type & BTRFS_BLOCK_GROUP_RAID6) {
3853 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
3854 btrfs_super_stripesize(info->super_copy));
3855 data_stripes = num_stripes - 2;
3859 * Use the number of data stripes to figure out how big this chunk
3860 * is really going to be in terms of logical address space,
3861 * and compare that answer with the max chunk size
3863 if (stripe_size * data_stripes > max_chunk_size) {
3864 u64 mask = (1ULL << 24) - 1;
3865 stripe_size = max_chunk_size;
3866 do_div(stripe_size, data_stripes);
3868 /* bump the answer up to a 16MB boundary */
3869 stripe_size = (stripe_size + mask) & ~mask;
3871 /* but don't go higher than the limits we found
3872 * while searching for free extents
3874 if (stripe_size > devices_info[ndevs-1].max_avail)
3875 stripe_size = devices_info[ndevs-1].max_avail;
3878 do_div(stripe_size, dev_stripes);
3880 /* align to BTRFS_STRIPE_LEN */
3881 do_div(stripe_size, raid_stripe_len);
3882 stripe_size *= raid_stripe_len;
3884 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3889 map->num_stripes = num_stripes;
3891 for (i = 0; i < ndevs; ++i) {
3892 for (j = 0; j < dev_stripes; ++j) {
3893 int s = i * dev_stripes + j;
3894 map->stripes[s].dev = devices_info[i].dev;
3895 map->stripes[s].physical = devices_info[i].dev_offset +
3899 map->sector_size = extent_root->sectorsize;
3900 map->stripe_len = raid_stripe_len;
3901 map->io_align = raid_stripe_len;
3902 map->io_width = raid_stripe_len;
3904 map->sub_stripes = sub_stripes;
3907 num_bytes = stripe_size * data_stripes;
3909 *stripe_size_out = stripe_size;
3910 *num_bytes_out = num_bytes;
3912 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
3914 em = alloc_extent_map();
3919 em->bdev = (struct block_device *)map;
3921 em->len = num_bytes;
3922 em->block_start = 0;
3923 em->block_len = em->len;
3925 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
3926 write_lock(&em_tree->lock);
3927 ret = add_extent_mapping(em_tree, em, 0);
3928 write_unlock(&em_tree->lock);
3930 free_extent_map(em);
3934 for (i = 0; i < map->num_stripes; ++i) {
3935 struct btrfs_device *device;
3938 device = map->stripes[i].dev;
3939 dev_offset = map->stripes[i].physical;
3941 ret = btrfs_alloc_dev_extent(trans, device,
3942 info->chunk_root->root_key.objectid,
3943 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3944 start, dev_offset, stripe_size);
3946 goto error_dev_extent;
3949 ret = btrfs_make_block_group(trans, extent_root, 0, type,
3950 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3953 i = map->num_stripes - 1;
3954 goto error_dev_extent;
3957 free_extent_map(em);
3958 check_raid56_incompat_flag(extent_root->fs_info, type);
3960 kfree(devices_info);
3964 for (; i >= 0; i--) {
3965 struct btrfs_device *device;
3968 device = map->stripes[i].dev;
3969 err = btrfs_free_dev_extent(trans, device, start);
3971 btrfs_abort_transaction(trans, extent_root, err);
3975 write_lock(&em_tree->lock);
3976 remove_extent_mapping(em_tree, em);
3977 write_unlock(&em_tree->lock);
3979 /* One for our allocation */
3980 free_extent_map(em);
3981 /* One for the tree reference */
3982 free_extent_map(em);
3985 kfree(devices_info);
3989 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3990 struct btrfs_root *extent_root,
3991 struct map_lookup *map, u64 chunk_offset,
3992 u64 chunk_size, u64 stripe_size)
3995 struct btrfs_key key;
3996 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3997 struct btrfs_device *device;
3998 struct btrfs_chunk *chunk;
3999 struct btrfs_stripe *stripe;
4000 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
4004 chunk = kzalloc(item_size, GFP_NOFS);
4009 while (index < map->num_stripes) {
4010 device = map->stripes[index].dev;
4011 device->bytes_used += stripe_size;
4012 ret = btrfs_update_device(trans, device);
4018 spin_lock(&extent_root->fs_info->free_chunk_lock);
4019 extent_root->fs_info->free_chunk_space -= (stripe_size *
4021 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4024 stripe = &chunk->stripe;
4025 while (index < map->num_stripes) {
4026 device = map->stripes[index].dev;
4027 dev_offset = map->stripes[index].physical;
4029 btrfs_set_stack_stripe_devid(stripe, device->devid);
4030 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4031 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4036 btrfs_set_stack_chunk_length(chunk, chunk_size);
4037 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4038 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4039 btrfs_set_stack_chunk_type(chunk, map->type);
4040 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4041 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4042 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4043 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4044 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4046 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4047 key.type = BTRFS_CHUNK_ITEM_KEY;
4048 key.offset = chunk_offset;
4050 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4052 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4054 * TODO: Cleanup of inserted chunk root in case of
4057 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4067 * Chunk allocation falls into two parts. The first part does works
4068 * that make the new allocated chunk useable, but not do any operation
4069 * that modifies the chunk tree. The second part does the works that
4070 * require modifying the chunk tree. This division is important for the
4071 * bootstrap process of adding storage to a seed btrfs.
4073 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4074 struct btrfs_root *extent_root, u64 type)
4079 struct map_lookup *map;
4080 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4083 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4088 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
4089 &stripe_size, chunk_offset, type);
4093 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
4094 chunk_size, stripe_size);
4100 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4101 struct btrfs_root *root,
4102 struct btrfs_device *device)
4105 u64 sys_chunk_offset;
4109 u64 sys_stripe_size;
4111 struct map_lookup *map;
4112 struct map_lookup *sys_map;
4113 struct btrfs_fs_info *fs_info = root->fs_info;
4114 struct btrfs_root *extent_root = fs_info->extent_root;
4117 ret = find_next_chunk(fs_info->chunk_root,
4118 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
4122 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4123 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
4124 &stripe_size, chunk_offset, alloc_profile);
4128 sys_chunk_offset = chunk_offset + chunk_size;
4130 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4131 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
4132 &sys_chunk_size, &sys_stripe_size,
4133 sys_chunk_offset, alloc_profile);
4135 btrfs_abort_transaction(trans, root, ret);
4139 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
4141 btrfs_abort_transaction(trans, root, ret);
4146 * Modifying chunk tree needs allocating new blocks from both
4147 * system block group and metadata block group. So we only can
4148 * do operations require modifying the chunk tree after both
4149 * block groups were created.
4151 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
4152 chunk_size, stripe_size);
4154 btrfs_abort_transaction(trans, root, ret);
4158 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
4159 sys_chunk_offset, sys_chunk_size,
4162 btrfs_abort_transaction(trans, root, ret);
4169 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4171 struct extent_map *em;
4172 struct map_lookup *map;
4173 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4177 read_lock(&map_tree->map_tree.lock);
4178 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4179 read_unlock(&map_tree->map_tree.lock);
4183 if (btrfs_test_opt(root, DEGRADED)) {
4184 free_extent_map(em);
4188 map = (struct map_lookup *)em->bdev;
4189 for (i = 0; i < map->num_stripes; i++) {
4190 if (!map->stripes[i].dev->writeable) {
4195 free_extent_map(em);
4199 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4201 extent_map_tree_init(&tree->map_tree);
4204 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4206 struct extent_map *em;
4209 write_lock(&tree->map_tree.lock);
4210 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4212 remove_extent_mapping(&tree->map_tree, em);
4213 write_unlock(&tree->map_tree.lock);
4218 free_extent_map(em);
4219 /* once for the tree */
4220 free_extent_map(em);
4224 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4226 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4227 struct extent_map *em;
4228 struct map_lookup *map;
4229 struct extent_map_tree *em_tree = &map_tree->map_tree;
4232 read_lock(&em_tree->lock);
4233 em = lookup_extent_mapping(em_tree, logical, len);
4234 read_unlock(&em_tree->lock);
4237 * We could return errors for these cases, but that could get ugly and
4238 * we'd probably do the same thing which is just not do anything else
4239 * and exit, so return 1 so the callers don't try to use other copies.
4242 btrfs_emerg(fs_info, "No mapping for %Lu-%Lu\n", logical,
4247 if (em->start > logical || em->start + em->len < logical) {
4248 btrfs_emerg(fs_info, "Invalid mapping for %Lu-%Lu, got "
4249 "%Lu-%Lu\n", logical, logical+len, em->start,
4250 em->start + em->len);
4254 map = (struct map_lookup *)em->bdev;
4255 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4256 ret = map->num_stripes;
4257 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4258 ret = map->sub_stripes;
4259 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4261 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4265 free_extent_map(em);
4267 btrfs_dev_replace_lock(&fs_info->dev_replace);
4268 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4270 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4275 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4276 struct btrfs_mapping_tree *map_tree,
4279 struct extent_map *em;
4280 struct map_lookup *map;
4281 struct extent_map_tree *em_tree = &map_tree->map_tree;
4282 unsigned long len = root->sectorsize;
4284 read_lock(&em_tree->lock);
4285 em = lookup_extent_mapping(em_tree, logical, len);
4286 read_unlock(&em_tree->lock);
4289 BUG_ON(em->start > logical || em->start + em->len < logical);
4290 map = (struct map_lookup *)em->bdev;
4291 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4292 BTRFS_BLOCK_GROUP_RAID6)) {
4293 len = map->stripe_len * nr_data_stripes(map);
4295 free_extent_map(em);
4299 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4300 u64 logical, u64 len, int mirror_num)
4302 struct extent_map *em;
4303 struct map_lookup *map;
4304 struct extent_map_tree *em_tree = &map_tree->map_tree;
4307 read_lock(&em_tree->lock);
4308 em = lookup_extent_mapping(em_tree, logical, len);
4309 read_unlock(&em_tree->lock);
4312 BUG_ON(em->start > logical || em->start + em->len < logical);
4313 map = (struct map_lookup *)em->bdev;
4314 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4315 BTRFS_BLOCK_GROUP_RAID6))
4317 free_extent_map(em);
4321 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4322 struct map_lookup *map, int first, int num,
4323 int optimal, int dev_replace_is_ongoing)
4327 struct btrfs_device *srcdev;
4329 if (dev_replace_is_ongoing &&
4330 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4331 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4332 srcdev = fs_info->dev_replace.srcdev;
4337 * try to avoid the drive that is the source drive for a
4338 * dev-replace procedure, only choose it if no other non-missing
4339 * mirror is available
4341 for (tolerance = 0; tolerance < 2; tolerance++) {
4342 if (map->stripes[optimal].dev->bdev &&
4343 (tolerance || map->stripes[optimal].dev != srcdev))
4345 for (i = first; i < first + num; i++) {
4346 if (map->stripes[i].dev->bdev &&
4347 (tolerance || map->stripes[i].dev != srcdev))
4352 /* we couldn't find one that doesn't fail. Just return something
4353 * and the io error handling code will clean up eventually
4358 static inline int parity_smaller(u64 a, u64 b)
4363 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4364 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4366 struct btrfs_bio_stripe s;
4373 for (i = 0; i < bbio->num_stripes - 1; i++) {
4374 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4375 s = bbio->stripes[i];
4377 bbio->stripes[i] = bbio->stripes[i+1];
4378 raid_map[i] = raid_map[i+1];
4379 bbio->stripes[i+1] = s;
4387 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4388 u64 logical, u64 *length,
4389 struct btrfs_bio **bbio_ret,
4390 int mirror_num, u64 **raid_map_ret)
4392 struct extent_map *em;
4393 struct map_lookup *map;
4394 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4395 struct extent_map_tree *em_tree = &map_tree->map_tree;
4398 u64 stripe_end_offset;
4403 u64 *raid_map = NULL;
4409 struct btrfs_bio *bbio = NULL;
4410 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4411 int dev_replace_is_ongoing = 0;
4412 int num_alloc_stripes;
4413 int patch_the_first_stripe_for_dev_replace = 0;
4414 u64 physical_to_patch_in_first_stripe = 0;
4415 u64 raid56_full_stripe_start = (u64)-1;
4417 read_lock(&em_tree->lock);
4418 em = lookup_extent_mapping(em_tree, logical, *length);
4419 read_unlock(&em_tree->lock);
4422 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4423 (unsigned long long)logical,
4424 (unsigned long long)*length);
4428 if (em->start > logical || em->start + em->len < logical) {
4429 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4430 "found %Lu-%Lu\n", logical, em->start,
4431 em->start + em->len);
4435 map = (struct map_lookup *)em->bdev;
4436 offset = logical - em->start;
4438 if (mirror_num > map->num_stripes)
4441 stripe_len = map->stripe_len;
4444 * stripe_nr counts the total number of stripes we have to stride
4445 * to get to this block
4447 do_div(stripe_nr, stripe_len);
4449 stripe_offset = stripe_nr * stripe_len;
4450 BUG_ON(offset < stripe_offset);
4452 /* stripe_offset is the offset of this block in its stripe*/
4453 stripe_offset = offset - stripe_offset;
4455 /* if we're here for raid56, we need to know the stripe aligned start */
4456 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4457 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4458 raid56_full_stripe_start = offset;
4460 /* allow a write of a full stripe, but make sure we don't
4461 * allow straddling of stripes
4463 do_div(raid56_full_stripe_start, full_stripe_len);
4464 raid56_full_stripe_start *= full_stripe_len;
4467 if (rw & REQ_DISCARD) {
4468 /* we don't discard raid56 yet */
4470 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4474 *length = min_t(u64, em->len - offset, *length);
4475 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4477 /* For writes to RAID[56], allow a full stripeset across all disks.
4478 For other RAID types and for RAID[56] reads, just allow a single
4479 stripe (on a single disk). */
4480 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4482 max_len = stripe_len * nr_data_stripes(map) -
4483 (offset - raid56_full_stripe_start);
4485 /* we limit the length of each bio to what fits in a stripe */
4486 max_len = stripe_len - stripe_offset;
4488 *length = min_t(u64, em->len - offset, max_len);
4490 *length = em->len - offset;
4493 /* This is for when we're called from btrfs_merge_bio_hook() and all
4494 it cares about is the length */
4498 btrfs_dev_replace_lock(dev_replace);
4499 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4500 if (!dev_replace_is_ongoing)
4501 btrfs_dev_replace_unlock(dev_replace);
4503 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4504 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4505 dev_replace->tgtdev != NULL) {
4507 * in dev-replace case, for repair case (that's the only
4508 * case where the mirror is selected explicitly when
4509 * calling btrfs_map_block), blocks left of the left cursor
4510 * can also be read from the target drive.
4511 * For REQ_GET_READ_MIRRORS, the target drive is added as
4512 * the last one to the array of stripes. For READ, it also
4513 * needs to be supported using the same mirror number.
4514 * If the requested block is not left of the left cursor,
4515 * EIO is returned. This can happen because btrfs_num_copies()
4516 * returns one more in the dev-replace case.
4518 u64 tmp_length = *length;
4519 struct btrfs_bio *tmp_bbio = NULL;
4520 int tmp_num_stripes;
4521 u64 srcdev_devid = dev_replace->srcdev->devid;
4522 int index_srcdev = 0;
4524 u64 physical_of_found = 0;
4526 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4527 logical, &tmp_length, &tmp_bbio, 0, NULL);
4529 WARN_ON(tmp_bbio != NULL);
4533 tmp_num_stripes = tmp_bbio->num_stripes;
4534 if (mirror_num > tmp_num_stripes) {
4536 * REQ_GET_READ_MIRRORS does not contain this
4537 * mirror, that means that the requested area
4538 * is not left of the left cursor
4546 * process the rest of the function using the mirror_num
4547 * of the source drive. Therefore look it up first.
4548 * At the end, patch the device pointer to the one of the
4551 for (i = 0; i < tmp_num_stripes; i++) {
4552 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4554 * In case of DUP, in order to keep it
4555 * simple, only add the mirror with the
4556 * lowest physical address
4559 physical_of_found <=
4560 tmp_bbio->stripes[i].physical)
4565 tmp_bbio->stripes[i].physical;
4570 mirror_num = index_srcdev + 1;
4571 patch_the_first_stripe_for_dev_replace = 1;
4572 physical_to_patch_in_first_stripe = physical_of_found;
4581 } else if (mirror_num > map->num_stripes) {
4587 stripe_nr_orig = stripe_nr;
4588 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
4589 do_div(stripe_nr_end, map->stripe_len);
4590 stripe_end_offset = stripe_nr_end * map->stripe_len -
4593 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4594 if (rw & REQ_DISCARD)
4595 num_stripes = min_t(u64, map->num_stripes,
4596 stripe_nr_end - stripe_nr_orig);
4597 stripe_index = do_div(stripe_nr, map->num_stripes);
4598 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
4599 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
4600 num_stripes = map->num_stripes;
4601 else if (mirror_num)
4602 stripe_index = mirror_num - 1;
4604 stripe_index = find_live_mirror(fs_info, map, 0,
4606 current->pid % map->num_stripes,
4607 dev_replace_is_ongoing);
4608 mirror_num = stripe_index + 1;
4611 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
4612 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
4613 num_stripes = map->num_stripes;
4614 } else if (mirror_num) {
4615 stripe_index = mirror_num - 1;
4620 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4621 int factor = map->num_stripes / map->sub_stripes;
4623 stripe_index = do_div(stripe_nr, factor);
4624 stripe_index *= map->sub_stripes;
4626 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
4627 num_stripes = map->sub_stripes;
4628 else if (rw & REQ_DISCARD)
4629 num_stripes = min_t(u64, map->sub_stripes *
4630 (stripe_nr_end - stripe_nr_orig),
4632 else if (mirror_num)
4633 stripe_index += mirror_num - 1;
4635 int old_stripe_index = stripe_index;
4636 stripe_index = find_live_mirror(fs_info, map,
4638 map->sub_stripes, stripe_index +
4639 current->pid % map->sub_stripes,
4640 dev_replace_is_ongoing);
4641 mirror_num = stripe_index - old_stripe_index + 1;
4644 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4645 BTRFS_BLOCK_GROUP_RAID6)) {
4648 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4652 /* push stripe_nr back to the start of the full stripe */
4653 stripe_nr = raid56_full_stripe_start;
4654 do_div(stripe_nr, stripe_len);
4656 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4658 /* RAID[56] write or recovery. Return all stripes */
4659 num_stripes = map->num_stripes;
4660 max_errors = nr_parity_stripes(map);
4662 raid_map = kmalloc(sizeof(u64) * num_stripes,
4669 /* Work out the disk rotation on this stripe-set */
4671 rot = do_div(tmp, num_stripes);
4673 /* Fill in the logical address of each stripe */
4674 tmp = stripe_nr * nr_data_stripes(map);
4675 for (i = 0; i < nr_data_stripes(map); i++)
4676 raid_map[(i+rot) % num_stripes] =
4677 em->start + (tmp + i) * map->stripe_len;
4679 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4680 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4681 raid_map[(i+rot+1) % num_stripes] =
4684 *length = map->stripe_len;
4689 * Mirror #0 or #1 means the original data block.
4690 * Mirror #2 is RAID5 parity block.
4691 * Mirror #3 is RAID6 Q block.
4693 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4695 stripe_index = nr_data_stripes(map) +
4698 /* We distribute the parity blocks across stripes */
4699 tmp = stripe_nr + stripe_index;
4700 stripe_index = do_div(tmp, map->num_stripes);
4704 * after this do_div call, stripe_nr is the number of stripes
4705 * on this device we have to walk to find the data, and
4706 * stripe_index is the number of our device in the stripe array
4708 stripe_index = do_div(stripe_nr, map->num_stripes);
4709 mirror_num = stripe_index + 1;
4711 BUG_ON(stripe_index >= map->num_stripes);
4713 num_alloc_stripes = num_stripes;
4714 if (dev_replace_is_ongoing) {
4715 if (rw & (REQ_WRITE | REQ_DISCARD))
4716 num_alloc_stripes <<= 1;
4717 if (rw & REQ_GET_READ_MIRRORS)
4718 num_alloc_stripes++;
4720 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
4725 atomic_set(&bbio->error, 0);
4727 if (rw & REQ_DISCARD) {
4729 int sub_stripes = 0;
4730 u64 stripes_per_dev = 0;
4731 u32 remaining_stripes = 0;
4732 u32 last_stripe = 0;
4735 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4736 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4739 sub_stripes = map->sub_stripes;
4741 factor = map->num_stripes / sub_stripes;
4742 stripes_per_dev = div_u64_rem(stripe_nr_end -
4745 &remaining_stripes);
4746 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4747 last_stripe *= sub_stripes;
4750 for (i = 0; i < num_stripes; i++) {
4751 bbio->stripes[i].physical =
4752 map->stripes[stripe_index].physical +
4753 stripe_offset + stripe_nr * map->stripe_len;
4754 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
4756 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
4757 BTRFS_BLOCK_GROUP_RAID10)) {
4758 bbio->stripes[i].length = stripes_per_dev *
4761 if (i / sub_stripes < remaining_stripes)
4762 bbio->stripes[i].length +=
4766 * Special for the first stripe and
4769 * |-------|...|-------|
4773 if (i < sub_stripes)
4774 bbio->stripes[i].length -=
4777 if (stripe_index >= last_stripe &&
4778 stripe_index <= (last_stripe +
4780 bbio->stripes[i].length -=
4783 if (i == sub_stripes - 1)
4786 bbio->stripes[i].length = *length;
4789 if (stripe_index == map->num_stripes) {
4790 /* This could only happen for RAID0/10 */
4796 for (i = 0; i < num_stripes; i++) {
4797 bbio->stripes[i].physical =
4798 map->stripes[stripe_index].physical +
4800 stripe_nr * map->stripe_len;
4801 bbio->stripes[i].dev =
4802 map->stripes[stripe_index].dev;
4807 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
4808 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4809 BTRFS_BLOCK_GROUP_RAID10 |
4810 BTRFS_BLOCK_GROUP_RAID5 |
4811 BTRFS_BLOCK_GROUP_DUP)) {
4813 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4818 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
4819 dev_replace->tgtdev != NULL) {
4820 int index_where_to_add;
4821 u64 srcdev_devid = dev_replace->srcdev->devid;
4824 * duplicate the write operations while the dev replace
4825 * procedure is running. Since the copying of the old disk
4826 * to the new disk takes place at run time while the
4827 * filesystem is mounted writable, the regular write
4828 * operations to the old disk have to be duplicated to go
4829 * to the new disk as well.
4830 * Note that device->missing is handled by the caller, and
4831 * that the write to the old disk is already set up in the
4834 index_where_to_add = num_stripes;
4835 for (i = 0; i < num_stripes; i++) {
4836 if (bbio->stripes[i].dev->devid == srcdev_devid) {
4837 /* write to new disk, too */
4838 struct btrfs_bio_stripe *new =
4839 bbio->stripes + index_where_to_add;
4840 struct btrfs_bio_stripe *old =
4843 new->physical = old->physical;
4844 new->length = old->length;
4845 new->dev = dev_replace->tgtdev;
4846 index_where_to_add++;
4850 num_stripes = index_where_to_add;
4851 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
4852 dev_replace->tgtdev != NULL) {
4853 u64 srcdev_devid = dev_replace->srcdev->devid;
4854 int index_srcdev = 0;
4856 u64 physical_of_found = 0;
4859 * During the dev-replace procedure, the target drive can
4860 * also be used to read data in case it is needed to repair
4861 * a corrupt block elsewhere. This is possible if the
4862 * requested area is left of the left cursor. In this area,
4863 * the target drive is a full copy of the source drive.
4865 for (i = 0; i < num_stripes; i++) {
4866 if (bbio->stripes[i].dev->devid == srcdev_devid) {
4868 * In case of DUP, in order to keep it
4869 * simple, only add the mirror with the
4870 * lowest physical address
4873 physical_of_found <=
4874 bbio->stripes[i].physical)
4878 physical_of_found = bbio->stripes[i].physical;
4882 u64 length = map->stripe_len;
4884 if (physical_of_found + length <=
4885 dev_replace->cursor_left) {
4886 struct btrfs_bio_stripe *tgtdev_stripe =
4887 bbio->stripes + num_stripes;
4889 tgtdev_stripe->physical = physical_of_found;
4890 tgtdev_stripe->length =
4891 bbio->stripes[index_srcdev].length;
4892 tgtdev_stripe->dev = dev_replace->tgtdev;
4900 bbio->num_stripes = num_stripes;
4901 bbio->max_errors = max_errors;
4902 bbio->mirror_num = mirror_num;
4905 * this is the case that REQ_READ && dev_replace_is_ongoing &&
4906 * mirror_num == num_stripes + 1 && dev_replace target drive is
4907 * available as a mirror
4909 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
4910 WARN_ON(num_stripes > 1);
4911 bbio->stripes[0].dev = dev_replace->tgtdev;
4912 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
4913 bbio->mirror_num = map->num_stripes + 1;
4916 sort_parity_stripes(bbio, raid_map);
4917 *raid_map_ret = raid_map;
4920 if (dev_replace_is_ongoing)
4921 btrfs_dev_replace_unlock(dev_replace);
4922 free_extent_map(em);
4926 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4927 u64 logical, u64 *length,
4928 struct btrfs_bio **bbio_ret, int mirror_num)
4930 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
4934 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
4935 u64 chunk_start, u64 physical, u64 devid,
4936 u64 **logical, int *naddrs, int *stripe_len)
4938 struct extent_map_tree *em_tree = &map_tree->map_tree;
4939 struct extent_map *em;
4940 struct map_lookup *map;
4948 read_lock(&em_tree->lock);
4949 em = lookup_extent_mapping(em_tree, chunk_start, 1);
4950 read_unlock(&em_tree->lock);
4953 printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n",
4958 if (em->start != chunk_start) {
4959 printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n",
4960 em->start, chunk_start);
4961 free_extent_map(em);
4964 map = (struct map_lookup *)em->bdev;
4967 rmap_len = map->stripe_len;
4969 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4970 do_div(length, map->num_stripes / map->sub_stripes);
4971 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4972 do_div(length, map->num_stripes);
4973 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4974 BTRFS_BLOCK_GROUP_RAID6)) {
4975 do_div(length, nr_data_stripes(map));
4976 rmap_len = map->stripe_len * nr_data_stripes(map);
4979 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
4980 BUG_ON(!buf); /* -ENOMEM */
4982 for (i = 0; i < map->num_stripes; i++) {
4983 if (devid && map->stripes[i].dev->devid != devid)
4985 if (map->stripes[i].physical > physical ||
4986 map->stripes[i].physical + length <= physical)
4989 stripe_nr = physical - map->stripes[i].physical;
4990 do_div(stripe_nr, map->stripe_len);
4992 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4993 stripe_nr = stripe_nr * map->num_stripes + i;
4994 do_div(stripe_nr, map->sub_stripes);
4995 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4996 stripe_nr = stripe_nr * map->num_stripes + i;
4997 } /* else if RAID[56], multiply by nr_data_stripes().
4998 * Alternatively, just use rmap_len below instead of
4999 * map->stripe_len */
5001 bytenr = chunk_start + stripe_nr * rmap_len;
5002 WARN_ON(nr >= map->num_stripes);
5003 for (j = 0; j < nr; j++) {
5004 if (buf[j] == bytenr)
5008 WARN_ON(nr >= map->num_stripes);
5015 *stripe_len = rmap_len;
5017 free_extent_map(em);
5021 static void btrfs_end_bio(struct bio *bio, int err)
5023 struct btrfs_bio *bbio = bio->bi_private;
5024 int is_orig_bio = 0;
5027 atomic_inc(&bbio->error);
5028 if (err == -EIO || err == -EREMOTEIO) {
5029 unsigned int stripe_index =
5030 btrfs_io_bio(bio)->stripe_index;
5031 struct btrfs_device *dev;
5033 BUG_ON(stripe_index >= bbio->num_stripes);
5034 dev = bbio->stripes[stripe_index].dev;
5036 if (bio->bi_rw & WRITE)
5037 btrfs_dev_stat_inc(dev,
5038 BTRFS_DEV_STAT_WRITE_ERRS);
5040 btrfs_dev_stat_inc(dev,
5041 BTRFS_DEV_STAT_READ_ERRS);
5042 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5043 btrfs_dev_stat_inc(dev,
5044 BTRFS_DEV_STAT_FLUSH_ERRS);
5045 btrfs_dev_stat_print_on_error(dev);
5050 if (bio == bbio->orig_bio)
5053 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5056 bio = bbio->orig_bio;
5058 bio->bi_private = bbio->private;
5059 bio->bi_end_io = bbio->end_io;
5060 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5061 /* only send an error to the higher layers if it is
5062 * beyond the tolerance of the btrfs bio
5064 if (atomic_read(&bbio->error) > bbio->max_errors) {
5068 * this bio is actually up to date, we didn't
5069 * go over the max number of errors
5071 set_bit(BIO_UPTODATE, &bio->bi_flags);
5076 bio_endio(bio, err);
5077 } else if (!is_orig_bio) {
5082 struct async_sched {
5085 struct btrfs_fs_info *info;
5086 struct btrfs_work work;
5090 * see run_scheduled_bios for a description of why bios are collected for
5093 * This will add one bio to the pending list for a device and make sure
5094 * the work struct is scheduled.
5096 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5097 struct btrfs_device *device,
5098 int rw, struct bio *bio)
5100 int should_queue = 1;
5101 struct btrfs_pending_bios *pending_bios;
5103 if (device->missing || !device->bdev) {
5104 bio_endio(bio, -EIO);
5108 /* don't bother with additional async steps for reads, right now */
5109 if (!(rw & REQ_WRITE)) {
5111 btrfsic_submit_bio(rw, bio);
5117 * nr_async_bios allows us to reliably return congestion to the
5118 * higher layers. Otherwise, the async bio makes it appear we have
5119 * made progress against dirty pages when we've really just put it
5120 * on a queue for later
5122 atomic_inc(&root->fs_info->nr_async_bios);
5123 WARN_ON(bio->bi_next);
5124 bio->bi_next = NULL;
5127 spin_lock(&device->io_lock);
5128 if (bio->bi_rw & REQ_SYNC)
5129 pending_bios = &device->pending_sync_bios;
5131 pending_bios = &device->pending_bios;
5133 if (pending_bios->tail)
5134 pending_bios->tail->bi_next = bio;
5136 pending_bios->tail = bio;
5137 if (!pending_bios->head)
5138 pending_bios->head = bio;
5139 if (device->running_pending)
5142 spin_unlock(&device->io_lock);
5145 btrfs_queue_worker(&root->fs_info->submit_workers,
5149 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5152 struct bio_vec *prev;
5153 struct request_queue *q = bdev_get_queue(bdev);
5154 unsigned short max_sectors = queue_max_sectors(q);
5155 struct bvec_merge_data bvm = {
5157 .bi_sector = sector,
5158 .bi_rw = bio->bi_rw,
5161 if (bio->bi_vcnt == 0) {
5166 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5167 if (bio_sectors(bio) > max_sectors)
5170 if (!q->merge_bvec_fn)
5173 bvm.bi_size = bio->bi_size - prev->bv_len;
5174 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5179 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5180 struct bio *bio, u64 physical, int dev_nr,
5183 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5185 bio->bi_private = bbio;
5186 btrfs_io_bio(bio)->stripe_index = dev_nr;
5187 bio->bi_end_io = btrfs_end_bio;
5188 bio->bi_sector = physical >> 9;
5191 struct rcu_string *name;
5194 name = rcu_dereference(dev->name);
5195 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5196 "(%s id %llu), size=%u\n", rw,
5197 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5198 name->str, dev->devid, bio->bi_size);
5202 bio->bi_bdev = dev->bdev;
5204 btrfs_schedule_bio(root, dev, rw, bio);
5206 btrfsic_submit_bio(rw, bio);
5209 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5210 struct bio *first_bio, struct btrfs_device *dev,
5211 int dev_nr, int rw, int async)
5213 struct bio_vec *bvec = first_bio->bi_io_vec;
5215 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5216 u64 physical = bbio->stripes[dev_nr].physical;
5219 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5223 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5224 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5225 bvec->bv_offset) < bvec->bv_len) {
5226 u64 len = bio->bi_size;
5228 atomic_inc(&bbio->stripes_pending);
5229 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5237 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5241 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5243 atomic_inc(&bbio->error);
5244 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5245 bio->bi_private = bbio->private;
5246 bio->bi_end_io = bbio->end_io;
5247 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5248 bio->bi_sector = logical >> 9;
5250 bio_endio(bio, -EIO);
5254 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5255 int mirror_num, int async_submit)
5257 struct btrfs_device *dev;
5258 struct bio *first_bio = bio;
5259 u64 logical = (u64)bio->bi_sector << 9;
5262 u64 *raid_map = NULL;
5266 struct btrfs_bio *bbio = NULL;
5268 length = bio->bi_size;
5269 map_length = length;
5271 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5272 mirror_num, &raid_map);
5273 if (ret) /* -ENOMEM */
5276 total_devs = bbio->num_stripes;
5277 bbio->orig_bio = first_bio;
5278 bbio->private = first_bio->bi_private;
5279 bbio->end_io = first_bio->bi_end_io;
5280 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5283 /* In this case, map_length has been set to the length of
5284 a single stripe; not the whole write */
5286 return raid56_parity_write(root, bio, bbio,
5287 raid_map, map_length);
5289 return raid56_parity_recover(root, bio, bbio,
5290 raid_map, map_length,
5295 if (map_length < length) {
5296 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5297 (unsigned long long)logical,
5298 (unsigned long long)length,
5299 (unsigned long long)map_length);
5303 while (dev_nr < total_devs) {
5304 dev = bbio->stripes[dev_nr].dev;
5305 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5306 bbio_error(bbio, first_bio, logical);
5312 * Check and see if we're ok with this bio based on it's size
5313 * and offset with the given device.
5315 if (!bio_size_ok(dev->bdev, first_bio,
5316 bbio->stripes[dev_nr].physical >> 9)) {
5317 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5318 dev_nr, rw, async_submit);
5324 if (dev_nr < total_devs - 1) {
5325 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5326 BUG_ON(!bio); /* -ENOMEM */
5331 submit_stripe_bio(root, bbio, bio,
5332 bbio->stripes[dev_nr].physical, dev_nr, rw,
5339 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5342 struct btrfs_device *device;
5343 struct btrfs_fs_devices *cur_devices;
5345 cur_devices = fs_info->fs_devices;
5346 while (cur_devices) {
5348 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5349 device = __find_device(&cur_devices->devices,
5354 cur_devices = cur_devices->seed;
5359 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5360 u64 devid, u8 *dev_uuid)
5362 struct btrfs_device *device;
5363 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5365 device = kzalloc(sizeof(*device), GFP_NOFS);
5368 list_add(&device->dev_list,
5369 &fs_devices->devices);
5370 device->dev_root = root->fs_info->dev_root;
5371 device->devid = devid;
5372 device->work.func = pending_bios_fn;
5373 device->fs_devices = fs_devices;
5374 device->missing = 1;
5375 fs_devices->num_devices++;
5376 fs_devices->missing_devices++;
5377 spin_lock_init(&device->io_lock);
5378 INIT_LIST_HEAD(&device->dev_alloc_list);
5379 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
5383 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5384 struct extent_buffer *leaf,
5385 struct btrfs_chunk *chunk)
5387 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5388 struct map_lookup *map;
5389 struct extent_map *em;
5393 u8 uuid[BTRFS_UUID_SIZE];
5398 logical = key->offset;
5399 length = btrfs_chunk_length(leaf, chunk);
5401 read_lock(&map_tree->map_tree.lock);
5402 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5403 read_unlock(&map_tree->map_tree.lock);
5405 /* already mapped? */
5406 if (em && em->start <= logical && em->start + em->len > logical) {
5407 free_extent_map(em);
5410 free_extent_map(em);
5413 em = alloc_extent_map();
5416 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5417 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5419 free_extent_map(em);
5423 em->bdev = (struct block_device *)map;
5424 em->start = logical;
5427 em->block_start = 0;
5428 em->block_len = em->len;
5430 map->num_stripes = num_stripes;
5431 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5432 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5433 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5434 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5435 map->type = btrfs_chunk_type(leaf, chunk);
5436 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5437 for (i = 0; i < num_stripes; i++) {
5438 map->stripes[i].physical =
5439 btrfs_stripe_offset_nr(leaf, chunk, i);
5440 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5441 read_extent_buffer(leaf, uuid, (unsigned long)
5442 btrfs_stripe_dev_uuid_nr(chunk, i),
5444 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5446 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5448 free_extent_map(em);
5451 if (!map->stripes[i].dev) {
5452 map->stripes[i].dev =
5453 add_missing_dev(root, devid, uuid);
5454 if (!map->stripes[i].dev) {
5456 free_extent_map(em);
5460 map->stripes[i].dev->in_fs_metadata = 1;
5463 write_lock(&map_tree->map_tree.lock);
5464 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
5465 write_unlock(&map_tree->map_tree.lock);
5466 BUG_ON(ret); /* Tree corruption */
5467 free_extent_map(em);
5472 static void fill_device_from_item(struct extent_buffer *leaf,
5473 struct btrfs_dev_item *dev_item,
5474 struct btrfs_device *device)
5478 device->devid = btrfs_device_id(leaf, dev_item);
5479 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5480 device->total_bytes = device->disk_total_bytes;
5481 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5482 device->type = btrfs_device_type(leaf, dev_item);
5483 device->io_align = btrfs_device_io_align(leaf, dev_item);
5484 device->io_width = btrfs_device_io_width(leaf, dev_item);
5485 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
5486 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
5487 device->is_tgtdev_for_dev_replace = 0;
5489 ptr = (unsigned long)btrfs_device_uuid(dev_item);
5490 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
5493 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5495 struct btrfs_fs_devices *fs_devices;
5498 BUG_ON(!mutex_is_locked(&uuid_mutex));
5500 fs_devices = root->fs_info->fs_devices->seed;
5501 while (fs_devices) {
5502 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5506 fs_devices = fs_devices->seed;
5509 fs_devices = find_fsid(fsid);
5515 fs_devices = clone_fs_devices(fs_devices);
5516 if (IS_ERR(fs_devices)) {
5517 ret = PTR_ERR(fs_devices);
5521 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
5522 root->fs_info->bdev_holder);
5524 free_fs_devices(fs_devices);
5528 if (!fs_devices->seeding) {
5529 __btrfs_close_devices(fs_devices);
5530 free_fs_devices(fs_devices);
5535 fs_devices->seed = root->fs_info->fs_devices->seed;
5536 root->fs_info->fs_devices->seed = fs_devices;
5541 static int read_one_dev(struct btrfs_root *root,
5542 struct extent_buffer *leaf,
5543 struct btrfs_dev_item *dev_item)
5545 struct btrfs_device *device;
5548 u8 fs_uuid[BTRFS_UUID_SIZE];
5549 u8 dev_uuid[BTRFS_UUID_SIZE];
5551 devid = btrfs_device_id(leaf, dev_item);
5552 read_extent_buffer(leaf, dev_uuid,
5553 (unsigned long)btrfs_device_uuid(dev_item),
5555 read_extent_buffer(leaf, fs_uuid,
5556 (unsigned long)btrfs_device_fsid(dev_item),
5559 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5560 ret = open_seed_devices(root, fs_uuid);
5561 if (ret && !btrfs_test_opt(root, DEGRADED))
5565 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5566 if (!device || !device->bdev) {
5567 if (!btrfs_test_opt(root, DEGRADED))
5571 btrfs_warn(root->fs_info, "devid %llu missing",
5572 (unsigned long long)devid);
5573 device = add_missing_dev(root, devid, dev_uuid);
5576 } else if (!device->missing) {
5578 * this happens when a device that was properly setup
5579 * in the device info lists suddenly goes bad.
5580 * device->bdev is NULL, and so we have to set
5581 * device->missing to one here
5583 root->fs_info->fs_devices->missing_devices++;
5584 device->missing = 1;
5588 if (device->fs_devices != root->fs_info->fs_devices) {
5589 BUG_ON(device->writeable);
5590 if (device->generation !=
5591 btrfs_device_generation(leaf, dev_item))
5595 fill_device_from_item(leaf, dev_item, device);
5596 device->dev_root = root->fs_info->dev_root;
5597 device->in_fs_metadata = 1;
5598 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
5599 device->fs_devices->total_rw_bytes += device->total_bytes;
5600 spin_lock(&root->fs_info->free_chunk_lock);
5601 root->fs_info->free_chunk_space += device->total_bytes -
5603 spin_unlock(&root->fs_info->free_chunk_lock);
5609 int btrfs_read_sys_array(struct btrfs_root *root)
5611 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
5612 struct extent_buffer *sb;
5613 struct btrfs_disk_key *disk_key;
5614 struct btrfs_chunk *chunk;
5616 unsigned long sb_ptr;
5622 struct btrfs_key key;
5624 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
5625 BTRFS_SUPER_INFO_SIZE);
5628 btrfs_set_buffer_uptodate(sb);
5629 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
5631 * The sb extent buffer is artifical and just used to read the system array.
5632 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5633 * pages up-to-date when the page is larger: extent does not cover the
5634 * whole page and consequently check_page_uptodate does not find all
5635 * the page's extents up-to-date (the hole beyond sb),
5636 * write_extent_buffer then triggers a WARN_ON.
5638 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5639 * but sb spans only this function. Add an explicit SetPageUptodate call
5640 * to silence the warning eg. on PowerPC 64.
5642 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
5643 SetPageUptodate(sb->pages[0]);
5645 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
5646 array_size = btrfs_super_sys_array_size(super_copy);
5648 ptr = super_copy->sys_chunk_array;
5649 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5652 while (cur < array_size) {
5653 disk_key = (struct btrfs_disk_key *)ptr;
5654 btrfs_disk_key_to_cpu(&key, disk_key);
5656 len = sizeof(*disk_key); ptr += len;
5660 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
5661 chunk = (struct btrfs_chunk *)sb_ptr;
5662 ret = read_one_chunk(root, &key, sb, chunk);
5665 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5666 len = btrfs_chunk_item_size(num_stripes);
5675 free_extent_buffer(sb);
5679 int btrfs_read_chunk_tree(struct btrfs_root *root)
5681 struct btrfs_path *path;
5682 struct extent_buffer *leaf;
5683 struct btrfs_key key;
5684 struct btrfs_key found_key;
5688 root = root->fs_info->chunk_root;
5690 path = btrfs_alloc_path();
5694 mutex_lock(&uuid_mutex);
5697 /* first we search for all of the device items, and then we
5698 * read in all of the chunk items. This way we can create chunk
5699 * mappings that reference all of the devices that are afound
5701 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5705 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5709 leaf = path->nodes[0];
5710 slot = path->slots[0];
5711 if (slot >= btrfs_header_nritems(leaf)) {
5712 ret = btrfs_next_leaf(root, path);
5719 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5720 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
5721 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
5723 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
5724 struct btrfs_dev_item *dev_item;
5725 dev_item = btrfs_item_ptr(leaf, slot,
5726 struct btrfs_dev_item);
5727 ret = read_one_dev(root, leaf, dev_item);
5731 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
5732 struct btrfs_chunk *chunk;
5733 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
5734 ret = read_one_chunk(root, &found_key, leaf, chunk);
5740 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
5742 btrfs_release_path(path);
5747 unlock_chunks(root);
5748 mutex_unlock(&uuid_mutex);
5750 btrfs_free_path(path);
5754 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
5758 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5759 btrfs_dev_stat_reset(dev, i);
5762 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
5764 struct btrfs_key key;
5765 struct btrfs_key found_key;
5766 struct btrfs_root *dev_root = fs_info->dev_root;
5767 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
5768 struct extent_buffer *eb;
5771 struct btrfs_device *device;
5772 struct btrfs_path *path = NULL;
5775 path = btrfs_alloc_path();
5781 mutex_lock(&fs_devices->device_list_mutex);
5782 list_for_each_entry(device, &fs_devices->devices, dev_list) {
5784 struct btrfs_dev_stats_item *ptr;
5787 key.type = BTRFS_DEV_STATS_KEY;
5788 key.offset = device->devid;
5789 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
5791 __btrfs_reset_dev_stats(device);
5792 device->dev_stats_valid = 1;
5793 btrfs_release_path(path);
5796 slot = path->slots[0];
5797 eb = path->nodes[0];
5798 btrfs_item_key_to_cpu(eb, &found_key, slot);
5799 item_size = btrfs_item_size_nr(eb, slot);
5801 ptr = btrfs_item_ptr(eb, slot,
5802 struct btrfs_dev_stats_item);
5804 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
5805 if (item_size >= (1 + i) * sizeof(__le64))
5806 btrfs_dev_stat_set(device, i,
5807 btrfs_dev_stats_value(eb, ptr, i));
5809 btrfs_dev_stat_reset(device, i);
5812 device->dev_stats_valid = 1;
5813 btrfs_dev_stat_print_on_load(device);
5814 btrfs_release_path(path);
5816 mutex_unlock(&fs_devices->device_list_mutex);
5819 btrfs_free_path(path);
5820 return ret < 0 ? ret : 0;
5823 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
5824 struct btrfs_root *dev_root,
5825 struct btrfs_device *device)
5827 struct btrfs_path *path;
5828 struct btrfs_key key;
5829 struct extent_buffer *eb;
5830 struct btrfs_dev_stats_item *ptr;
5835 key.type = BTRFS_DEV_STATS_KEY;
5836 key.offset = device->devid;
5838 path = btrfs_alloc_path();
5840 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
5842 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
5843 ret, rcu_str_deref(device->name));
5848 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
5849 /* need to delete old one and insert a new one */
5850 ret = btrfs_del_item(trans, dev_root, path);
5852 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
5853 rcu_str_deref(device->name), ret);
5860 /* need to insert a new item */
5861 btrfs_release_path(path);
5862 ret = btrfs_insert_empty_item(trans, dev_root, path,
5863 &key, sizeof(*ptr));
5865 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
5866 rcu_str_deref(device->name), ret);
5871 eb = path->nodes[0];
5872 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
5873 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5874 btrfs_set_dev_stats_value(eb, ptr, i,
5875 btrfs_dev_stat_read(device, i));
5876 btrfs_mark_buffer_dirty(eb);
5879 btrfs_free_path(path);
5884 * called from commit_transaction. Writes all changed device stats to disk.
5886 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
5887 struct btrfs_fs_info *fs_info)
5889 struct btrfs_root *dev_root = fs_info->dev_root;
5890 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
5891 struct btrfs_device *device;
5894 mutex_lock(&fs_devices->device_list_mutex);
5895 list_for_each_entry(device, &fs_devices->devices, dev_list) {
5896 if (!device->dev_stats_valid || !device->dev_stats_dirty)
5899 ret = update_dev_stat_item(trans, dev_root, device);
5901 device->dev_stats_dirty = 0;
5903 mutex_unlock(&fs_devices->device_list_mutex);
5908 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
5910 btrfs_dev_stat_inc(dev, index);
5911 btrfs_dev_stat_print_on_error(dev);
5914 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
5916 if (!dev->dev_stats_valid)
5918 printk_ratelimited_in_rcu(KERN_ERR
5919 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
5920 rcu_str_deref(dev->name),
5921 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
5922 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
5923 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
5924 btrfs_dev_stat_read(dev,
5925 BTRFS_DEV_STAT_CORRUPTION_ERRS),
5926 btrfs_dev_stat_read(dev,
5927 BTRFS_DEV_STAT_GENERATION_ERRS));
5930 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
5934 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5935 if (btrfs_dev_stat_read(dev, i) != 0)
5937 if (i == BTRFS_DEV_STAT_VALUES_MAX)
5938 return; /* all values == 0, suppress message */
5940 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
5941 rcu_str_deref(dev->name),
5942 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
5943 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
5944 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
5945 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
5946 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
5949 int btrfs_get_dev_stats(struct btrfs_root *root,
5950 struct btrfs_ioctl_get_dev_stats *stats)
5952 struct btrfs_device *dev;
5953 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5956 mutex_lock(&fs_devices->device_list_mutex);
5957 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
5958 mutex_unlock(&fs_devices->device_list_mutex);
5962 "btrfs: get dev_stats failed, device not found\n");
5964 } else if (!dev->dev_stats_valid) {
5966 "btrfs: get dev_stats failed, not yet valid\n");
5968 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
5969 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
5970 if (stats->nr_items > i)
5972 btrfs_dev_stat_read_and_reset(dev, i);
5974 btrfs_dev_stat_reset(dev, i);
5977 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5978 if (stats->nr_items > i)
5979 stats->values[i] = btrfs_dev_stat_read(dev, i);
5981 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
5982 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
5986 int btrfs_scratch_superblock(struct btrfs_device *device)
5988 struct buffer_head *bh;
5989 struct btrfs_super_block *disk_super;
5991 bh = btrfs_read_dev_super(device->bdev);
5994 disk_super = (struct btrfs_super_block *)bh->b_data;
5996 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
5997 set_buffer_dirty(bh);
5998 sync_dirty_buffer(bh);