Btrfs: merge inode_list in __merge_refs
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "compat.h"
29 #include "ctree.h"
30 #include "extent_map.h"
31 #include "disk-io.h"
32 #include "transaction.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "async-thread.h"
36 #include "check-integrity.h"
37 #include "rcu-string.h"
38 #include "math.h"
39
40 static int init_first_rw_device(struct btrfs_trans_handle *trans,
41                                 struct btrfs_root *root,
42                                 struct btrfs_device *device);
43 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
44 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
45 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
46
47 static DEFINE_MUTEX(uuid_mutex);
48 static LIST_HEAD(fs_uuids);
49
50 static void lock_chunks(struct btrfs_root *root)
51 {
52         mutex_lock(&root->fs_info->chunk_mutex);
53 }
54
55 static void unlock_chunks(struct btrfs_root *root)
56 {
57         mutex_unlock(&root->fs_info->chunk_mutex);
58 }
59
60 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
61 {
62         struct btrfs_device *device;
63         WARN_ON(fs_devices->opened);
64         while (!list_empty(&fs_devices->devices)) {
65                 device = list_entry(fs_devices->devices.next,
66                                     struct btrfs_device, dev_list);
67                 list_del(&device->dev_list);
68                 rcu_string_free(device->name);
69                 kfree(device);
70         }
71         kfree(fs_devices);
72 }
73
74 void btrfs_cleanup_fs_uuids(void)
75 {
76         struct btrfs_fs_devices *fs_devices;
77
78         while (!list_empty(&fs_uuids)) {
79                 fs_devices = list_entry(fs_uuids.next,
80                                         struct btrfs_fs_devices, list);
81                 list_del(&fs_devices->list);
82                 free_fs_devices(fs_devices);
83         }
84 }
85
86 static noinline struct btrfs_device *__find_device(struct list_head *head,
87                                                    u64 devid, u8 *uuid)
88 {
89         struct btrfs_device *dev;
90
91         list_for_each_entry(dev, head, dev_list) {
92                 if (dev->devid == devid &&
93                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
94                         return dev;
95                 }
96         }
97         return NULL;
98 }
99
100 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
101 {
102         struct btrfs_fs_devices *fs_devices;
103
104         list_for_each_entry(fs_devices, &fs_uuids, list) {
105                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
106                         return fs_devices;
107         }
108         return NULL;
109 }
110
111 static void requeue_list(struct btrfs_pending_bios *pending_bios,
112                         struct bio *head, struct bio *tail)
113 {
114
115         struct bio *old_head;
116
117         old_head = pending_bios->head;
118         pending_bios->head = head;
119         if (pending_bios->tail)
120                 tail->bi_next = old_head;
121         else
122                 pending_bios->tail = tail;
123 }
124
125 /*
126  * we try to collect pending bios for a device so we don't get a large
127  * number of procs sending bios down to the same device.  This greatly
128  * improves the schedulers ability to collect and merge the bios.
129  *
130  * But, it also turns into a long list of bios to process and that is sure
131  * to eventually make the worker thread block.  The solution here is to
132  * make some progress and then put this work struct back at the end of
133  * the list if the block device is congested.  This way, multiple devices
134  * can make progress from a single worker thread.
135  */
136 static noinline void run_scheduled_bios(struct btrfs_device *device)
137 {
138         struct bio *pending;
139         struct backing_dev_info *bdi;
140         struct btrfs_fs_info *fs_info;
141         struct btrfs_pending_bios *pending_bios;
142         struct bio *tail;
143         struct bio *cur;
144         int again = 0;
145         unsigned long num_run;
146         unsigned long batch_run = 0;
147         unsigned long limit;
148         unsigned long last_waited = 0;
149         int force_reg = 0;
150         int sync_pending = 0;
151         struct blk_plug plug;
152
153         /*
154          * this function runs all the bios we've collected for
155          * a particular device.  We don't want to wander off to
156          * another device without first sending all of these down.
157          * So, setup a plug here and finish it off before we return
158          */
159         blk_start_plug(&plug);
160
161         bdi = blk_get_backing_dev_info(device->bdev);
162         fs_info = device->dev_root->fs_info;
163         limit = btrfs_async_submit_limit(fs_info);
164         limit = limit * 2 / 3;
165
166 loop:
167         spin_lock(&device->io_lock);
168
169 loop_lock:
170         num_run = 0;
171
172         /* take all the bios off the list at once and process them
173          * later on (without the lock held).  But, remember the
174          * tail and other pointers so the bios can be properly reinserted
175          * into the list if we hit congestion
176          */
177         if (!force_reg && device->pending_sync_bios.head) {
178                 pending_bios = &device->pending_sync_bios;
179                 force_reg = 1;
180         } else {
181                 pending_bios = &device->pending_bios;
182                 force_reg = 0;
183         }
184
185         pending = pending_bios->head;
186         tail = pending_bios->tail;
187         WARN_ON(pending && !tail);
188
189         /*
190          * if pending was null this time around, no bios need processing
191          * at all and we can stop.  Otherwise it'll loop back up again
192          * and do an additional check so no bios are missed.
193          *
194          * device->running_pending is used to synchronize with the
195          * schedule_bio code.
196          */
197         if (device->pending_sync_bios.head == NULL &&
198             device->pending_bios.head == NULL) {
199                 again = 0;
200                 device->running_pending = 0;
201         } else {
202                 again = 1;
203                 device->running_pending = 1;
204         }
205
206         pending_bios->head = NULL;
207         pending_bios->tail = NULL;
208
209         spin_unlock(&device->io_lock);
210
211         while (pending) {
212
213                 rmb();
214                 /* we want to work on both lists, but do more bios on the
215                  * sync list than the regular list
216                  */
217                 if ((num_run > 32 &&
218                     pending_bios != &device->pending_sync_bios &&
219                     device->pending_sync_bios.head) ||
220                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
221                     device->pending_bios.head)) {
222                         spin_lock(&device->io_lock);
223                         requeue_list(pending_bios, pending, tail);
224                         goto loop_lock;
225                 }
226
227                 cur = pending;
228                 pending = pending->bi_next;
229                 cur->bi_next = NULL;
230
231                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
232                     waitqueue_active(&fs_info->async_submit_wait))
233                         wake_up(&fs_info->async_submit_wait);
234
235                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
236
237                 /*
238                  * if we're doing the sync list, record that our
239                  * plug has some sync requests on it
240                  *
241                  * If we're doing the regular list and there are
242                  * sync requests sitting around, unplug before
243                  * we add more
244                  */
245                 if (pending_bios == &device->pending_sync_bios) {
246                         sync_pending = 1;
247                 } else if (sync_pending) {
248                         blk_finish_plug(&plug);
249                         blk_start_plug(&plug);
250                         sync_pending = 0;
251                 }
252
253                 btrfsic_submit_bio(cur->bi_rw, cur);
254                 num_run++;
255                 batch_run++;
256                 if (need_resched())
257                         cond_resched();
258
259                 /*
260                  * we made progress, there is more work to do and the bdi
261                  * is now congested.  Back off and let other work structs
262                  * run instead
263                  */
264                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
265                     fs_info->fs_devices->open_devices > 1) {
266                         struct io_context *ioc;
267
268                         ioc = current->io_context;
269
270                         /*
271                          * the main goal here is that we don't want to
272                          * block if we're going to be able to submit
273                          * more requests without blocking.
274                          *
275                          * This code does two great things, it pokes into
276                          * the elevator code from a filesystem _and_
277                          * it makes assumptions about how batching works.
278                          */
279                         if (ioc && ioc->nr_batch_requests > 0 &&
280                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
281                             (last_waited == 0 ||
282                              ioc->last_waited == last_waited)) {
283                                 /*
284                                  * we want to go through our batch of
285                                  * requests and stop.  So, we copy out
286                                  * the ioc->last_waited time and test
287                                  * against it before looping
288                                  */
289                                 last_waited = ioc->last_waited;
290                                 if (need_resched())
291                                         cond_resched();
292                                 continue;
293                         }
294                         spin_lock(&device->io_lock);
295                         requeue_list(pending_bios, pending, tail);
296                         device->running_pending = 1;
297
298                         spin_unlock(&device->io_lock);
299                         btrfs_requeue_work(&device->work);
300                         goto done;
301                 }
302                 /* unplug every 64 requests just for good measure */
303                 if (batch_run % 64 == 0) {
304                         blk_finish_plug(&plug);
305                         blk_start_plug(&plug);
306                         sync_pending = 0;
307                 }
308         }
309
310         cond_resched();
311         if (again)
312                 goto loop;
313
314         spin_lock(&device->io_lock);
315         if (device->pending_bios.head || device->pending_sync_bios.head)
316                 goto loop_lock;
317         spin_unlock(&device->io_lock);
318
319 done:
320         blk_finish_plug(&plug);
321 }
322
323 static void pending_bios_fn(struct btrfs_work *work)
324 {
325         struct btrfs_device *device;
326
327         device = container_of(work, struct btrfs_device, work);
328         run_scheduled_bios(device);
329 }
330
331 static noinline int device_list_add(const char *path,
332                            struct btrfs_super_block *disk_super,
333                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
334 {
335         struct btrfs_device *device;
336         struct btrfs_fs_devices *fs_devices;
337         struct rcu_string *name;
338         u64 found_transid = btrfs_super_generation(disk_super);
339
340         fs_devices = find_fsid(disk_super->fsid);
341         if (!fs_devices) {
342                 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
343                 if (!fs_devices)
344                         return -ENOMEM;
345                 INIT_LIST_HEAD(&fs_devices->devices);
346                 INIT_LIST_HEAD(&fs_devices->alloc_list);
347                 list_add(&fs_devices->list, &fs_uuids);
348                 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
349                 fs_devices->latest_devid = devid;
350                 fs_devices->latest_trans = found_transid;
351                 mutex_init(&fs_devices->device_list_mutex);
352                 device = NULL;
353         } else {
354                 device = __find_device(&fs_devices->devices, devid,
355                                        disk_super->dev_item.uuid);
356         }
357         if (!device) {
358                 if (fs_devices->opened)
359                         return -EBUSY;
360
361                 device = kzalloc(sizeof(*device), GFP_NOFS);
362                 if (!device) {
363                         /* we can safely leave the fs_devices entry around */
364                         return -ENOMEM;
365                 }
366                 device->devid = devid;
367                 device->dev_stats_valid = 0;
368                 device->work.func = pending_bios_fn;
369                 memcpy(device->uuid, disk_super->dev_item.uuid,
370                        BTRFS_UUID_SIZE);
371                 spin_lock_init(&device->io_lock);
372
373                 name = rcu_string_strdup(path, GFP_NOFS);
374                 if (!name) {
375                         kfree(device);
376                         return -ENOMEM;
377                 }
378                 rcu_assign_pointer(device->name, name);
379                 INIT_LIST_HEAD(&device->dev_alloc_list);
380
381                 /* init readahead state */
382                 spin_lock_init(&device->reada_lock);
383                 device->reada_curr_zone = NULL;
384                 atomic_set(&device->reada_in_flight, 0);
385                 device->reada_next = 0;
386                 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
387                 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
388
389                 mutex_lock(&fs_devices->device_list_mutex);
390                 list_add_rcu(&device->dev_list, &fs_devices->devices);
391                 mutex_unlock(&fs_devices->device_list_mutex);
392
393                 device->fs_devices = fs_devices;
394                 fs_devices->num_devices++;
395         } else if (!device->name || strcmp(device->name->str, path)) {
396                 name = rcu_string_strdup(path, GFP_NOFS);
397                 if (!name)
398                         return -ENOMEM;
399                 rcu_string_free(device->name);
400                 rcu_assign_pointer(device->name, name);
401                 if (device->missing) {
402                         fs_devices->missing_devices--;
403                         device->missing = 0;
404                 }
405         }
406
407         if (found_transid > fs_devices->latest_trans) {
408                 fs_devices->latest_devid = devid;
409                 fs_devices->latest_trans = found_transid;
410         }
411         *fs_devices_ret = fs_devices;
412         return 0;
413 }
414
415 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
416 {
417         struct btrfs_fs_devices *fs_devices;
418         struct btrfs_device *device;
419         struct btrfs_device *orig_dev;
420
421         fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
422         if (!fs_devices)
423                 return ERR_PTR(-ENOMEM);
424
425         INIT_LIST_HEAD(&fs_devices->devices);
426         INIT_LIST_HEAD(&fs_devices->alloc_list);
427         INIT_LIST_HEAD(&fs_devices->list);
428         mutex_init(&fs_devices->device_list_mutex);
429         fs_devices->latest_devid = orig->latest_devid;
430         fs_devices->latest_trans = orig->latest_trans;
431         fs_devices->total_devices = orig->total_devices;
432         memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
433
434         /* We have held the volume lock, it is safe to get the devices. */
435         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
436                 struct rcu_string *name;
437
438                 device = kzalloc(sizeof(*device), GFP_NOFS);
439                 if (!device)
440                         goto error;
441
442                 /*
443                  * This is ok to do without rcu read locked because we hold the
444                  * uuid mutex so nothing we touch in here is going to disappear.
445                  */
446                 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
447                 if (!name) {
448                         kfree(device);
449                         goto error;
450                 }
451                 rcu_assign_pointer(device->name, name);
452
453                 device->devid = orig_dev->devid;
454                 device->work.func = pending_bios_fn;
455                 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
456                 spin_lock_init(&device->io_lock);
457                 INIT_LIST_HEAD(&device->dev_list);
458                 INIT_LIST_HEAD(&device->dev_alloc_list);
459
460                 list_add(&device->dev_list, &fs_devices->devices);
461                 device->fs_devices = fs_devices;
462                 fs_devices->num_devices++;
463         }
464         return fs_devices;
465 error:
466         free_fs_devices(fs_devices);
467         return ERR_PTR(-ENOMEM);
468 }
469
470 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
471 {
472         struct btrfs_device *device, *next;
473
474         struct block_device *latest_bdev = NULL;
475         u64 latest_devid = 0;
476         u64 latest_transid = 0;
477
478         mutex_lock(&uuid_mutex);
479 again:
480         /* This is the initialized path, it is safe to release the devices. */
481         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
482                 if (device->in_fs_metadata) {
483                         if (!latest_transid ||
484                             device->generation > latest_transid) {
485                                 latest_devid = device->devid;
486                                 latest_transid = device->generation;
487                                 latest_bdev = device->bdev;
488                         }
489                         continue;
490                 }
491
492                 if (device->bdev) {
493                         blkdev_put(device->bdev, device->mode);
494                         device->bdev = NULL;
495                         fs_devices->open_devices--;
496                 }
497                 if (device->writeable) {
498                         list_del_init(&device->dev_alloc_list);
499                         device->writeable = 0;
500                         fs_devices->rw_devices--;
501                 }
502                 list_del_init(&device->dev_list);
503                 fs_devices->num_devices--;
504                 rcu_string_free(device->name);
505                 kfree(device);
506         }
507
508         if (fs_devices->seed) {
509                 fs_devices = fs_devices->seed;
510                 goto again;
511         }
512
513         fs_devices->latest_bdev = latest_bdev;
514         fs_devices->latest_devid = latest_devid;
515         fs_devices->latest_trans = latest_transid;
516
517         mutex_unlock(&uuid_mutex);
518 }
519
520 static void __free_device(struct work_struct *work)
521 {
522         struct btrfs_device *device;
523
524         device = container_of(work, struct btrfs_device, rcu_work);
525
526         if (device->bdev)
527                 blkdev_put(device->bdev, device->mode);
528
529         rcu_string_free(device->name);
530         kfree(device);
531 }
532
533 static void free_device(struct rcu_head *head)
534 {
535         struct btrfs_device *device;
536
537         device = container_of(head, struct btrfs_device, rcu);
538
539         INIT_WORK(&device->rcu_work, __free_device);
540         schedule_work(&device->rcu_work);
541 }
542
543 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
544 {
545         struct btrfs_device *device;
546
547         if (--fs_devices->opened > 0)
548                 return 0;
549
550         mutex_lock(&fs_devices->device_list_mutex);
551         list_for_each_entry(device, &fs_devices->devices, dev_list) {
552                 struct btrfs_device *new_device;
553                 struct rcu_string *name;
554
555                 if (device->bdev)
556                         fs_devices->open_devices--;
557
558                 if (device->writeable) {
559                         list_del_init(&device->dev_alloc_list);
560                         fs_devices->rw_devices--;
561                 }
562
563                 if (device->can_discard)
564                         fs_devices->num_can_discard--;
565
566                 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
567                 BUG_ON(!new_device); /* -ENOMEM */
568                 memcpy(new_device, device, sizeof(*new_device));
569
570                 /* Safe because we are under uuid_mutex */
571                 if (device->name) {
572                         name = rcu_string_strdup(device->name->str, GFP_NOFS);
573                         BUG_ON(device->name && !name); /* -ENOMEM */
574                         rcu_assign_pointer(new_device->name, name);
575                 }
576                 new_device->bdev = NULL;
577                 new_device->writeable = 0;
578                 new_device->in_fs_metadata = 0;
579                 new_device->can_discard = 0;
580                 list_replace_rcu(&device->dev_list, &new_device->dev_list);
581
582                 call_rcu(&device->rcu, free_device);
583         }
584         mutex_unlock(&fs_devices->device_list_mutex);
585
586         WARN_ON(fs_devices->open_devices);
587         WARN_ON(fs_devices->rw_devices);
588         fs_devices->opened = 0;
589         fs_devices->seeding = 0;
590
591         return 0;
592 }
593
594 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
595 {
596         struct btrfs_fs_devices *seed_devices = NULL;
597         int ret;
598
599         mutex_lock(&uuid_mutex);
600         ret = __btrfs_close_devices(fs_devices);
601         if (!fs_devices->opened) {
602                 seed_devices = fs_devices->seed;
603                 fs_devices->seed = NULL;
604         }
605         mutex_unlock(&uuid_mutex);
606
607         while (seed_devices) {
608                 fs_devices = seed_devices;
609                 seed_devices = fs_devices->seed;
610                 __btrfs_close_devices(fs_devices);
611                 free_fs_devices(fs_devices);
612         }
613         return ret;
614 }
615
616 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
617                                 fmode_t flags, void *holder)
618 {
619         struct request_queue *q;
620         struct block_device *bdev;
621         struct list_head *head = &fs_devices->devices;
622         struct btrfs_device *device;
623         struct block_device *latest_bdev = NULL;
624         struct buffer_head *bh;
625         struct btrfs_super_block *disk_super;
626         u64 latest_devid = 0;
627         u64 latest_transid = 0;
628         u64 devid;
629         int seeding = 1;
630         int ret = 0;
631
632         flags |= FMODE_EXCL;
633
634         list_for_each_entry(device, head, dev_list) {
635                 if (device->bdev)
636                         continue;
637                 if (!device->name)
638                         continue;
639
640                 bdev = blkdev_get_by_path(device->name->str, flags, holder);
641                 if (IS_ERR(bdev)) {
642                         printk(KERN_INFO "btrfs: open %s failed\n", device->name->str);
643                         goto error;
644                 }
645                 filemap_write_and_wait(bdev->bd_inode->i_mapping);
646                 invalidate_bdev(bdev);
647                 set_blocksize(bdev, 4096);
648
649                 bh = btrfs_read_dev_super(bdev);
650                 if (!bh)
651                         goto error_close;
652
653                 disk_super = (struct btrfs_super_block *)bh->b_data;
654                 devid = btrfs_stack_device_id(&disk_super->dev_item);
655                 if (devid != device->devid)
656                         goto error_brelse;
657
658                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
659                            BTRFS_UUID_SIZE))
660                         goto error_brelse;
661
662                 device->generation = btrfs_super_generation(disk_super);
663                 if (!latest_transid || device->generation > latest_transid) {
664                         latest_devid = devid;
665                         latest_transid = device->generation;
666                         latest_bdev = bdev;
667                 }
668
669                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
670                         device->writeable = 0;
671                 } else {
672                         device->writeable = !bdev_read_only(bdev);
673                         seeding = 0;
674                 }
675
676                 q = bdev_get_queue(bdev);
677                 if (blk_queue_discard(q)) {
678                         device->can_discard = 1;
679                         fs_devices->num_can_discard++;
680                 }
681
682                 device->bdev = bdev;
683                 device->in_fs_metadata = 0;
684                 device->mode = flags;
685
686                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
687                         fs_devices->rotating = 1;
688
689                 fs_devices->open_devices++;
690                 if (device->writeable) {
691                         fs_devices->rw_devices++;
692                         list_add(&device->dev_alloc_list,
693                                  &fs_devices->alloc_list);
694                 }
695                 brelse(bh);
696                 continue;
697
698 error_brelse:
699                 brelse(bh);
700 error_close:
701                 blkdev_put(bdev, flags);
702 error:
703                 continue;
704         }
705         if (fs_devices->open_devices == 0) {
706                 ret = -EINVAL;
707                 goto out;
708         }
709         fs_devices->seeding = seeding;
710         fs_devices->opened = 1;
711         fs_devices->latest_bdev = latest_bdev;
712         fs_devices->latest_devid = latest_devid;
713         fs_devices->latest_trans = latest_transid;
714         fs_devices->total_rw_bytes = 0;
715 out:
716         return ret;
717 }
718
719 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
720                        fmode_t flags, void *holder)
721 {
722         int ret;
723
724         mutex_lock(&uuid_mutex);
725         if (fs_devices->opened) {
726                 fs_devices->opened++;
727                 ret = 0;
728         } else {
729                 ret = __btrfs_open_devices(fs_devices, flags, holder);
730         }
731         mutex_unlock(&uuid_mutex);
732         return ret;
733 }
734
735 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
736                           struct btrfs_fs_devices **fs_devices_ret)
737 {
738         struct btrfs_super_block *disk_super;
739         struct block_device *bdev;
740         struct buffer_head *bh;
741         int ret;
742         u64 devid;
743         u64 transid;
744         u64 total_devices;
745
746         flags |= FMODE_EXCL;
747         bdev = blkdev_get_by_path(path, flags, holder);
748
749         if (IS_ERR(bdev)) {
750                 ret = PTR_ERR(bdev);
751                 goto error;
752         }
753
754         mutex_lock(&uuid_mutex);
755         ret = set_blocksize(bdev, 4096);
756         if (ret)
757                 goto error_close;
758         bh = btrfs_read_dev_super(bdev);
759         if (!bh) {
760                 ret = -EINVAL;
761                 goto error_close;
762         }
763         disk_super = (struct btrfs_super_block *)bh->b_data;
764         devid = btrfs_stack_device_id(&disk_super->dev_item);
765         transid = btrfs_super_generation(disk_super);
766         total_devices = btrfs_super_num_devices(disk_super);
767         if (disk_super->label[0]) {
768                 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
769                         disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
770                 printk(KERN_INFO "device label %s ", disk_super->label);
771         } else {
772                 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
773         }
774         printk(KERN_CONT "devid %llu transid %llu %s\n",
775                (unsigned long long)devid, (unsigned long long)transid, path);
776         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
777         if (!ret && fs_devices_ret)
778                 (*fs_devices_ret)->total_devices = total_devices;
779         brelse(bh);
780 error_close:
781         mutex_unlock(&uuid_mutex);
782         blkdev_put(bdev, flags);
783 error:
784         return ret;
785 }
786
787 /* helper to account the used device space in the range */
788 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
789                                    u64 end, u64 *length)
790 {
791         struct btrfs_key key;
792         struct btrfs_root *root = device->dev_root;
793         struct btrfs_dev_extent *dev_extent;
794         struct btrfs_path *path;
795         u64 extent_end;
796         int ret;
797         int slot;
798         struct extent_buffer *l;
799
800         *length = 0;
801
802         if (start >= device->total_bytes)
803                 return 0;
804
805         path = btrfs_alloc_path();
806         if (!path)
807                 return -ENOMEM;
808         path->reada = 2;
809
810         key.objectid = device->devid;
811         key.offset = start;
812         key.type = BTRFS_DEV_EXTENT_KEY;
813
814         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
815         if (ret < 0)
816                 goto out;
817         if (ret > 0) {
818                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
819                 if (ret < 0)
820                         goto out;
821         }
822
823         while (1) {
824                 l = path->nodes[0];
825                 slot = path->slots[0];
826                 if (slot >= btrfs_header_nritems(l)) {
827                         ret = btrfs_next_leaf(root, path);
828                         if (ret == 0)
829                                 continue;
830                         if (ret < 0)
831                                 goto out;
832
833                         break;
834                 }
835                 btrfs_item_key_to_cpu(l, &key, slot);
836
837                 if (key.objectid < device->devid)
838                         goto next;
839
840                 if (key.objectid > device->devid)
841                         break;
842
843                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
844                         goto next;
845
846                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
847                 extent_end = key.offset + btrfs_dev_extent_length(l,
848                                                                   dev_extent);
849                 if (key.offset <= start && extent_end > end) {
850                         *length = end - start + 1;
851                         break;
852                 } else if (key.offset <= start && extent_end > start)
853                         *length += extent_end - start;
854                 else if (key.offset > start && extent_end <= end)
855                         *length += extent_end - key.offset;
856                 else if (key.offset > start && key.offset <= end) {
857                         *length += end - key.offset + 1;
858                         break;
859                 } else if (key.offset > end)
860                         break;
861
862 next:
863                 path->slots[0]++;
864         }
865         ret = 0;
866 out:
867         btrfs_free_path(path);
868         return ret;
869 }
870
871 /*
872  * find_free_dev_extent - find free space in the specified device
873  * @device:     the device which we search the free space in
874  * @num_bytes:  the size of the free space that we need
875  * @start:      store the start of the free space.
876  * @len:        the size of the free space. that we find, or the size of the max
877  *              free space if we don't find suitable free space
878  *
879  * this uses a pretty simple search, the expectation is that it is
880  * called very infrequently and that a given device has a small number
881  * of extents
882  *
883  * @start is used to store the start of the free space if we find. But if we
884  * don't find suitable free space, it will be used to store the start position
885  * of the max free space.
886  *
887  * @len is used to store the size of the free space that we find.
888  * But if we don't find suitable free space, it is used to store the size of
889  * the max free space.
890  */
891 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
892                          u64 *start, u64 *len)
893 {
894         struct btrfs_key key;
895         struct btrfs_root *root = device->dev_root;
896         struct btrfs_dev_extent *dev_extent;
897         struct btrfs_path *path;
898         u64 hole_size;
899         u64 max_hole_start;
900         u64 max_hole_size;
901         u64 extent_end;
902         u64 search_start;
903         u64 search_end = device->total_bytes;
904         int ret;
905         int slot;
906         struct extent_buffer *l;
907
908         /* FIXME use last free of some kind */
909
910         /* we don't want to overwrite the superblock on the drive,
911          * so we make sure to start at an offset of at least 1MB
912          */
913         search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
914
915         max_hole_start = search_start;
916         max_hole_size = 0;
917         hole_size = 0;
918
919         if (search_start >= search_end) {
920                 ret = -ENOSPC;
921                 goto error;
922         }
923
924         path = btrfs_alloc_path();
925         if (!path) {
926                 ret = -ENOMEM;
927                 goto error;
928         }
929         path->reada = 2;
930
931         key.objectid = device->devid;
932         key.offset = search_start;
933         key.type = BTRFS_DEV_EXTENT_KEY;
934
935         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
936         if (ret < 0)
937                 goto out;
938         if (ret > 0) {
939                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
940                 if (ret < 0)
941                         goto out;
942         }
943
944         while (1) {
945                 l = path->nodes[0];
946                 slot = path->slots[0];
947                 if (slot >= btrfs_header_nritems(l)) {
948                         ret = btrfs_next_leaf(root, path);
949                         if (ret == 0)
950                                 continue;
951                         if (ret < 0)
952                                 goto out;
953
954                         break;
955                 }
956                 btrfs_item_key_to_cpu(l, &key, slot);
957
958                 if (key.objectid < device->devid)
959                         goto next;
960
961                 if (key.objectid > device->devid)
962                         break;
963
964                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
965                         goto next;
966
967                 if (key.offset > search_start) {
968                         hole_size = key.offset - search_start;
969
970                         if (hole_size > max_hole_size) {
971                                 max_hole_start = search_start;
972                                 max_hole_size = hole_size;
973                         }
974
975                         /*
976                          * If this free space is greater than which we need,
977                          * it must be the max free space that we have found
978                          * until now, so max_hole_start must point to the start
979                          * of this free space and the length of this free space
980                          * is stored in max_hole_size. Thus, we return
981                          * max_hole_start and max_hole_size and go back to the
982                          * caller.
983                          */
984                         if (hole_size >= num_bytes) {
985                                 ret = 0;
986                                 goto out;
987                         }
988                 }
989
990                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
991                 extent_end = key.offset + btrfs_dev_extent_length(l,
992                                                                   dev_extent);
993                 if (extent_end > search_start)
994                         search_start = extent_end;
995 next:
996                 path->slots[0]++;
997                 cond_resched();
998         }
999
1000         /*
1001          * At this point, search_start should be the end of
1002          * allocated dev extents, and when shrinking the device,
1003          * search_end may be smaller than search_start.
1004          */
1005         if (search_end > search_start)
1006                 hole_size = search_end - search_start;
1007
1008         if (hole_size > max_hole_size) {
1009                 max_hole_start = search_start;
1010                 max_hole_size = hole_size;
1011         }
1012
1013         /* See above. */
1014         if (hole_size < num_bytes)
1015                 ret = -ENOSPC;
1016         else
1017                 ret = 0;
1018
1019 out:
1020         btrfs_free_path(path);
1021 error:
1022         *start = max_hole_start;
1023         if (len)
1024                 *len = max_hole_size;
1025         return ret;
1026 }
1027
1028 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1029                           struct btrfs_device *device,
1030                           u64 start)
1031 {
1032         int ret;
1033         struct btrfs_path *path;
1034         struct btrfs_root *root = device->dev_root;
1035         struct btrfs_key key;
1036         struct btrfs_key found_key;
1037         struct extent_buffer *leaf = NULL;
1038         struct btrfs_dev_extent *extent = NULL;
1039
1040         path = btrfs_alloc_path();
1041         if (!path)
1042                 return -ENOMEM;
1043
1044         key.objectid = device->devid;
1045         key.offset = start;
1046         key.type = BTRFS_DEV_EXTENT_KEY;
1047 again:
1048         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1049         if (ret > 0) {
1050                 ret = btrfs_previous_item(root, path, key.objectid,
1051                                           BTRFS_DEV_EXTENT_KEY);
1052                 if (ret)
1053                         goto out;
1054                 leaf = path->nodes[0];
1055                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1056                 extent = btrfs_item_ptr(leaf, path->slots[0],
1057                                         struct btrfs_dev_extent);
1058                 BUG_ON(found_key.offset > start || found_key.offset +
1059                        btrfs_dev_extent_length(leaf, extent) < start);
1060                 key = found_key;
1061                 btrfs_release_path(path);
1062                 goto again;
1063         } else if (ret == 0) {
1064                 leaf = path->nodes[0];
1065                 extent = btrfs_item_ptr(leaf, path->slots[0],
1066                                         struct btrfs_dev_extent);
1067         } else {
1068                 btrfs_error(root->fs_info, ret, "Slot search failed");
1069                 goto out;
1070         }
1071
1072         if (device->bytes_used > 0) {
1073                 u64 len = btrfs_dev_extent_length(leaf, extent);
1074                 device->bytes_used -= len;
1075                 spin_lock(&root->fs_info->free_chunk_lock);
1076                 root->fs_info->free_chunk_space += len;
1077                 spin_unlock(&root->fs_info->free_chunk_lock);
1078         }
1079         ret = btrfs_del_item(trans, root, path);
1080         if (ret) {
1081                 btrfs_error(root->fs_info, ret,
1082                             "Failed to remove dev extent item");
1083         }
1084 out:
1085         btrfs_free_path(path);
1086         return ret;
1087 }
1088
1089 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1090                            struct btrfs_device *device,
1091                            u64 chunk_tree, u64 chunk_objectid,
1092                            u64 chunk_offset, u64 start, u64 num_bytes)
1093 {
1094         int ret;
1095         struct btrfs_path *path;
1096         struct btrfs_root *root = device->dev_root;
1097         struct btrfs_dev_extent *extent;
1098         struct extent_buffer *leaf;
1099         struct btrfs_key key;
1100
1101         WARN_ON(!device->in_fs_metadata);
1102         path = btrfs_alloc_path();
1103         if (!path)
1104                 return -ENOMEM;
1105
1106         key.objectid = device->devid;
1107         key.offset = start;
1108         key.type = BTRFS_DEV_EXTENT_KEY;
1109         ret = btrfs_insert_empty_item(trans, root, path, &key,
1110                                       sizeof(*extent));
1111         if (ret)
1112                 goto out;
1113
1114         leaf = path->nodes[0];
1115         extent = btrfs_item_ptr(leaf, path->slots[0],
1116                                 struct btrfs_dev_extent);
1117         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1118         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1119         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1120
1121         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1122                     (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1123                     BTRFS_UUID_SIZE);
1124
1125         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1126         btrfs_mark_buffer_dirty(leaf);
1127 out:
1128         btrfs_free_path(path);
1129         return ret;
1130 }
1131
1132 static noinline int find_next_chunk(struct btrfs_root *root,
1133                                     u64 objectid, u64 *offset)
1134 {
1135         struct btrfs_path *path;
1136         int ret;
1137         struct btrfs_key key;
1138         struct btrfs_chunk *chunk;
1139         struct btrfs_key found_key;
1140
1141         path = btrfs_alloc_path();
1142         if (!path)
1143                 return -ENOMEM;
1144
1145         key.objectid = objectid;
1146         key.offset = (u64)-1;
1147         key.type = BTRFS_CHUNK_ITEM_KEY;
1148
1149         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1150         if (ret < 0)
1151                 goto error;
1152
1153         BUG_ON(ret == 0); /* Corruption */
1154
1155         ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1156         if (ret) {
1157                 *offset = 0;
1158         } else {
1159                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1160                                       path->slots[0]);
1161                 if (found_key.objectid != objectid)
1162                         *offset = 0;
1163                 else {
1164                         chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1165                                                struct btrfs_chunk);
1166                         *offset = found_key.offset +
1167                                 btrfs_chunk_length(path->nodes[0], chunk);
1168                 }
1169         }
1170         ret = 0;
1171 error:
1172         btrfs_free_path(path);
1173         return ret;
1174 }
1175
1176 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1177 {
1178         int ret;
1179         struct btrfs_key key;
1180         struct btrfs_key found_key;
1181         struct btrfs_path *path;
1182
1183         root = root->fs_info->chunk_root;
1184
1185         path = btrfs_alloc_path();
1186         if (!path)
1187                 return -ENOMEM;
1188
1189         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1190         key.type = BTRFS_DEV_ITEM_KEY;
1191         key.offset = (u64)-1;
1192
1193         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1194         if (ret < 0)
1195                 goto error;
1196
1197         BUG_ON(ret == 0); /* Corruption */
1198
1199         ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1200                                   BTRFS_DEV_ITEM_KEY);
1201         if (ret) {
1202                 *objectid = 1;
1203         } else {
1204                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1205                                       path->slots[0]);
1206                 *objectid = found_key.offset + 1;
1207         }
1208         ret = 0;
1209 error:
1210         btrfs_free_path(path);
1211         return ret;
1212 }
1213
1214 /*
1215  * the device information is stored in the chunk root
1216  * the btrfs_device struct should be fully filled in
1217  */
1218 int btrfs_add_device(struct btrfs_trans_handle *trans,
1219                      struct btrfs_root *root,
1220                      struct btrfs_device *device)
1221 {
1222         int ret;
1223         struct btrfs_path *path;
1224         struct btrfs_dev_item *dev_item;
1225         struct extent_buffer *leaf;
1226         struct btrfs_key key;
1227         unsigned long ptr;
1228
1229         root = root->fs_info->chunk_root;
1230
1231         path = btrfs_alloc_path();
1232         if (!path)
1233                 return -ENOMEM;
1234
1235         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1236         key.type = BTRFS_DEV_ITEM_KEY;
1237         key.offset = device->devid;
1238
1239         ret = btrfs_insert_empty_item(trans, root, path, &key,
1240                                       sizeof(*dev_item));
1241         if (ret)
1242                 goto out;
1243
1244         leaf = path->nodes[0];
1245         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1246
1247         btrfs_set_device_id(leaf, dev_item, device->devid);
1248         btrfs_set_device_generation(leaf, dev_item, 0);
1249         btrfs_set_device_type(leaf, dev_item, device->type);
1250         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1251         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1252         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1253         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1254         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1255         btrfs_set_device_group(leaf, dev_item, 0);
1256         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1257         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1258         btrfs_set_device_start_offset(leaf, dev_item, 0);
1259
1260         ptr = (unsigned long)btrfs_device_uuid(dev_item);
1261         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1262         ptr = (unsigned long)btrfs_device_fsid(dev_item);
1263         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1264         btrfs_mark_buffer_dirty(leaf);
1265
1266         ret = 0;
1267 out:
1268         btrfs_free_path(path);
1269         return ret;
1270 }
1271
1272 static int btrfs_rm_dev_item(struct btrfs_root *root,
1273                              struct btrfs_device *device)
1274 {
1275         int ret;
1276         struct btrfs_path *path;
1277         struct btrfs_key key;
1278         struct btrfs_trans_handle *trans;
1279
1280         root = root->fs_info->chunk_root;
1281
1282         path = btrfs_alloc_path();
1283         if (!path)
1284                 return -ENOMEM;
1285
1286         trans = btrfs_start_transaction(root, 0);
1287         if (IS_ERR(trans)) {
1288                 btrfs_free_path(path);
1289                 return PTR_ERR(trans);
1290         }
1291         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1292         key.type = BTRFS_DEV_ITEM_KEY;
1293         key.offset = device->devid;
1294         lock_chunks(root);
1295
1296         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1297         if (ret < 0)
1298                 goto out;
1299
1300         if (ret > 0) {
1301                 ret = -ENOENT;
1302                 goto out;
1303         }
1304
1305         ret = btrfs_del_item(trans, root, path);
1306         if (ret)
1307                 goto out;
1308 out:
1309         btrfs_free_path(path);
1310         unlock_chunks(root);
1311         btrfs_commit_transaction(trans, root);
1312         return ret;
1313 }
1314
1315 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1316 {
1317         struct btrfs_device *device;
1318         struct btrfs_device *next_device;
1319         struct block_device *bdev;
1320         struct buffer_head *bh = NULL;
1321         struct btrfs_super_block *disk_super;
1322         struct btrfs_fs_devices *cur_devices;
1323         u64 all_avail;
1324         u64 devid;
1325         u64 num_devices;
1326         u8 *dev_uuid;
1327         int ret = 0;
1328         bool clear_super = false;
1329
1330         mutex_lock(&uuid_mutex);
1331
1332         all_avail = root->fs_info->avail_data_alloc_bits |
1333                 root->fs_info->avail_system_alloc_bits |
1334                 root->fs_info->avail_metadata_alloc_bits;
1335
1336         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1337             root->fs_info->fs_devices->num_devices <= 4) {
1338                 printk(KERN_ERR "btrfs: unable to go below four devices "
1339                        "on raid10\n");
1340                 ret = -EINVAL;
1341                 goto out;
1342         }
1343
1344         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1345             root->fs_info->fs_devices->num_devices <= 2) {
1346                 printk(KERN_ERR "btrfs: unable to go below two "
1347                        "devices on raid1\n");
1348                 ret = -EINVAL;
1349                 goto out;
1350         }
1351
1352         if (strcmp(device_path, "missing") == 0) {
1353                 struct list_head *devices;
1354                 struct btrfs_device *tmp;
1355
1356                 device = NULL;
1357                 devices = &root->fs_info->fs_devices->devices;
1358                 /*
1359                  * It is safe to read the devices since the volume_mutex
1360                  * is held.
1361                  */
1362                 list_for_each_entry(tmp, devices, dev_list) {
1363                         if (tmp->in_fs_metadata && !tmp->bdev) {
1364                                 device = tmp;
1365                                 break;
1366                         }
1367                 }
1368                 bdev = NULL;
1369                 bh = NULL;
1370                 disk_super = NULL;
1371                 if (!device) {
1372                         printk(KERN_ERR "btrfs: no missing devices found to "
1373                                "remove\n");
1374                         goto out;
1375                 }
1376         } else {
1377                 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1378                                           root->fs_info->bdev_holder);
1379                 if (IS_ERR(bdev)) {
1380                         ret = PTR_ERR(bdev);
1381                         goto out;
1382                 }
1383
1384                 set_blocksize(bdev, 4096);
1385                 invalidate_bdev(bdev);
1386                 bh = btrfs_read_dev_super(bdev);
1387                 if (!bh) {
1388                         ret = -EINVAL;
1389                         goto error_close;
1390                 }
1391                 disk_super = (struct btrfs_super_block *)bh->b_data;
1392                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1393                 dev_uuid = disk_super->dev_item.uuid;
1394                 device = btrfs_find_device(root, devid, dev_uuid,
1395                                            disk_super->fsid);
1396                 if (!device) {
1397                         ret = -ENOENT;
1398                         goto error_brelse;
1399                 }
1400         }
1401
1402         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1403                 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1404                        "device\n");
1405                 ret = -EINVAL;
1406                 goto error_brelse;
1407         }
1408
1409         if (device->writeable) {
1410                 lock_chunks(root);
1411                 list_del_init(&device->dev_alloc_list);
1412                 unlock_chunks(root);
1413                 root->fs_info->fs_devices->rw_devices--;
1414                 clear_super = true;
1415         }
1416
1417         ret = btrfs_shrink_device(device, 0);
1418         if (ret)
1419                 goto error_undo;
1420
1421         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1422         if (ret)
1423                 goto error_undo;
1424
1425         spin_lock(&root->fs_info->free_chunk_lock);
1426         root->fs_info->free_chunk_space = device->total_bytes -
1427                 device->bytes_used;
1428         spin_unlock(&root->fs_info->free_chunk_lock);
1429
1430         device->in_fs_metadata = 0;
1431         btrfs_scrub_cancel_dev(root, device);
1432
1433         /*
1434          * the device list mutex makes sure that we don't change
1435          * the device list while someone else is writing out all
1436          * the device supers.
1437          */
1438
1439         cur_devices = device->fs_devices;
1440         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1441         list_del_rcu(&device->dev_list);
1442
1443         device->fs_devices->num_devices--;
1444         device->fs_devices->total_devices--;
1445
1446         if (device->missing)
1447                 root->fs_info->fs_devices->missing_devices--;
1448
1449         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1450                                  struct btrfs_device, dev_list);
1451         if (device->bdev == root->fs_info->sb->s_bdev)
1452                 root->fs_info->sb->s_bdev = next_device->bdev;
1453         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1454                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1455
1456         if (device->bdev)
1457                 device->fs_devices->open_devices--;
1458
1459         call_rcu(&device->rcu, free_device);
1460         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1461
1462         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1463         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1464
1465         if (cur_devices->open_devices == 0) {
1466                 struct btrfs_fs_devices *fs_devices;
1467                 fs_devices = root->fs_info->fs_devices;
1468                 while (fs_devices) {
1469                         if (fs_devices->seed == cur_devices)
1470                                 break;
1471                         fs_devices = fs_devices->seed;
1472                 }
1473                 fs_devices->seed = cur_devices->seed;
1474                 cur_devices->seed = NULL;
1475                 lock_chunks(root);
1476                 __btrfs_close_devices(cur_devices);
1477                 unlock_chunks(root);
1478                 free_fs_devices(cur_devices);
1479         }
1480
1481         root->fs_info->num_tolerated_disk_barrier_failures =
1482                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1483
1484         /*
1485          * at this point, the device is zero sized.  We want to
1486          * remove it from the devices list and zero out the old super
1487          */
1488         if (clear_super) {
1489                 /* make sure this device isn't detected as part of
1490                  * the FS anymore
1491                  */
1492                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1493                 set_buffer_dirty(bh);
1494                 sync_dirty_buffer(bh);
1495         }
1496
1497         ret = 0;
1498
1499 error_brelse:
1500         brelse(bh);
1501 error_close:
1502         if (bdev)
1503                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1504 out:
1505         mutex_unlock(&uuid_mutex);
1506         return ret;
1507 error_undo:
1508         if (device->writeable) {
1509                 lock_chunks(root);
1510                 list_add(&device->dev_alloc_list,
1511                          &root->fs_info->fs_devices->alloc_list);
1512                 unlock_chunks(root);
1513                 root->fs_info->fs_devices->rw_devices++;
1514         }
1515         goto error_brelse;
1516 }
1517
1518 /*
1519  * does all the dirty work required for changing file system's UUID.
1520  */
1521 static int btrfs_prepare_sprout(struct btrfs_root *root)
1522 {
1523         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1524         struct btrfs_fs_devices *old_devices;
1525         struct btrfs_fs_devices *seed_devices;
1526         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1527         struct btrfs_device *device;
1528         u64 super_flags;
1529
1530         BUG_ON(!mutex_is_locked(&uuid_mutex));
1531         if (!fs_devices->seeding)
1532                 return -EINVAL;
1533
1534         seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1535         if (!seed_devices)
1536                 return -ENOMEM;
1537
1538         old_devices = clone_fs_devices(fs_devices);
1539         if (IS_ERR(old_devices)) {
1540                 kfree(seed_devices);
1541                 return PTR_ERR(old_devices);
1542         }
1543
1544         list_add(&old_devices->list, &fs_uuids);
1545
1546         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1547         seed_devices->opened = 1;
1548         INIT_LIST_HEAD(&seed_devices->devices);
1549         INIT_LIST_HEAD(&seed_devices->alloc_list);
1550         mutex_init(&seed_devices->device_list_mutex);
1551
1552         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1553         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1554                               synchronize_rcu);
1555         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1556
1557         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1558         list_for_each_entry(device, &seed_devices->devices, dev_list) {
1559                 device->fs_devices = seed_devices;
1560         }
1561
1562         fs_devices->seeding = 0;
1563         fs_devices->num_devices = 0;
1564         fs_devices->open_devices = 0;
1565         fs_devices->total_devices = 0;
1566         fs_devices->seed = seed_devices;
1567
1568         generate_random_uuid(fs_devices->fsid);
1569         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1570         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1571         super_flags = btrfs_super_flags(disk_super) &
1572                       ~BTRFS_SUPER_FLAG_SEEDING;
1573         btrfs_set_super_flags(disk_super, super_flags);
1574
1575         return 0;
1576 }
1577
1578 /*
1579  * strore the expected generation for seed devices in device items.
1580  */
1581 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1582                                struct btrfs_root *root)
1583 {
1584         struct btrfs_path *path;
1585         struct extent_buffer *leaf;
1586         struct btrfs_dev_item *dev_item;
1587         struct btrfs_device *device;
1588         struct btrfs_key key;
1589         u8 fs_uuid[BTRFS_UUID_SIZE];
1590         u8 dev_uuid[BTRFS_UUID_SIZE];
1591         u64 devid;
1592         int ret;
1593
1594         path = btrfs_alloc_path();
1595         if (!path)
1596                 return -ENOMEM;
1597
1598         root = root->fs_info->chunk_root;
1599         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1600         key.offset = 0;
1601         key.type = BTRFS_DEV_ITEM_KEY;
1602
1603         while (1) {
1604                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1605                 if (ret < 0)
1606                         goto error;
1607
1608                 leaf = path->nodes[0];
1609 next_slot:
1610                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1611                         ret = btrfs_next_leaf(root, path);
1612                         if (ret > 0)
1613                                 break;
1614                         if (ret < 0)
1615                                 goto error;
1616                         leaf = path->nodes[0];
1617                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1618                         btrfs_release_path(path);
1619                         continue;
1620                 }
1621
1622                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1623                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1624                     key.type != BTRFS_DEV_ITEM_KEY)
1625                         break;
1626
1627                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1628                                           struct btrfs_dev_item);
1629                 devid = btrfs_device_id(leaf, dev_item);
1630                 read_extent_buffer(leaf, dev_uuid,
1631                                    (unsigned long)btrfs_device_uuid(dev_item),
1632                                    BTRFS_UUID_SIZE);
1633                 read_extent_buffer(leaf, fs_uuid,
1634                                    (unsigned long)btrfs_device_fsid(dev_item),
1635                                    BTRFS_UUID_SIZE);
1636                 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1637                 BUG_ON(!device); /* Logic error */
1638
1639                 if (device->fs_devices->seeding) {
1640                         btrfs_set_device_generation(leaf, dev_item,
1641                                                     device->generation);
1642                         btrfs_mark_buffer_dirty(leaf);
1643                 }
1644
1645                 path->slots[0]++;
1646                 goto next_slot;
1647         }
1648         ret = 0;
1649 error:
1650         btrfs_free_path(path);
1651         return ret;
1652 }
1653
1654 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1655 {
1656         struct request_queue *q;
1657         struct btrfs_trans_handle *trans;
1658         struct btrfs_device *device;
1659         struct block_device *bdev;
1660         struct list_head *devices;
1661         struct super_block *sb = root->fs_info->sb;
1662         struct rcu_string *name;
1663         u64 total_bytes;
1664         int seeding_dev = 0;
1665         int ret = 0;
1666
1667         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1668                 return -EROFS;
1669
1670         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1671                                   root->fs_info->bdev_holder);
1672         if (IS_ERR(bdev))
1673                 return PTR_ERR(bdev);
1674
1675         if (root->fs_info->fs_devices->seeding) {
1676                 seeding_dev = 1;
1677                 down_write(&sb->s_umount);
1678                 mutex_lock(&uuid_mutex);
1679         }
1680
1681         filemap_write_and_wait(bdev->bd_inode->i_mapping);
1682
1683         devices = &root->fs_info->fs_devices->devices;
1684         /*
1685          * we have the volume lock, so we don't need the extra
1686          * device list mutex while reading the list here.
1687          */
1688         list_for_each_entry(device, devices, dev_list) {
1689                 if (device->bdev == bdev) {
1690                         ret = -EEXIST;
1691                         goto error;
1692                 }
1693         }
1694
1695         device = kzalloc(sizeof(*device), GFP_NOFS);
1696         if (!device) {
1697                 /* we can safely leave the fs_devices entry around */
1698                 ret = -ENOMEM;
1699                 goto error;
1700         }
1701
1702         name = rcu_string_strdup(device_path, GFP_NOFS);
1703         if (!name) {
1704                 kfree(device);
1705                 ret = -ENOMEM;
1706                 goto error;
1707         }
1708         rcu_assign_pointer(device->name, name);
1709
1710         ret = find_next_devid(root, &device->devid);
1711         if (ret) {
1712                 rcu_string_free(device->name);
1713                 kfree(device);
1714                 goto error;
1715         }
1716
1717         trans = btrfs_start_transaction(root, 0);
1718         if (IS_ERR(trans)) {
1719                 rcu_string_free(device->name);
1720                 kfree(device);
1721                 ret = PTR_ERR(trans);
1722                 goto error;
1723         }
1724
1725         lock_chunks(root);
1726
1727         q = bdev_get_queue(bdev);
1728         if (blk_queue_discard(q))
1729                 device->can_discard = 1;
1730         device->writeable = 1;
1731         device->work.func = pending_bios_fn;
1732         generate_random_uuid(device->uuid);
1733         spin_lock_init(&device->io_lock);
1734         device->generation = trans->transid;
1735         device->io_width = root->sectorsize;
1736         device->io_align = root->sectorsize;
1737         device->sector_size = root->sectorsize;
1738         device->total_bytes = i_size_read(bdev->bd_inode);
1739         device->disk_total_bytes = device->total_bytes;
1740         device->dev_root = root->fs_info->dev_root;
1741         device->bdev = bdev;
1742         device->in_fs_metadata = 1;
1743         device->mode = FMODE_EXCL;
1744         set_blocksize(device->bdev, 4096);
1745
1746         if (seeding_dev) {
1747                 sb->s_flags &= ~MS_RDONLY;
1748                 ret = btrfs_prepare_sprout(root);
1749                 BUG_ON(ret); /* -ENOMEM */
1750         }
1751
1752         device->fs_devices = root->fs_info->fs_devices;
1753
1754         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1755         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1756         list_add(&device->dev_alloc_list,
1757                  &root->fs_info->fs_devices->alloc_list);
1758         root->fs_info->fs_devices->num_devices++;
1759         root->fs_info->fs_devices->open_devices++;
1760         root->fs_info->fs_devices->rw_devices++;
1761         root->fs_info->fs_devices->total_devices++;
1762         if (device->can_discard)
1763                 root->fs_info->fs_devices->num_can_discard++;
1764         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1765
1766         spin_lock(&root->fs_info->free_chunk_lock);
1767         root->fs_info->free_chunk_space += device->total_bytes;
1768         spin_unlock(&root->fs_info->free_chunk_lock);
1769
1770         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1771                 root->fs_info->fs_devices->rotating = 1;
1772
1773         total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1774         btrfs_set_super_total_bytes(root->fs_info->super_copy,
1775                                     total_bytes + device->total_bytes);
1776
1777         total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1778         btrfs_set_super_num_devices(root->fs_info->super_copy,
1779                                     total_bytes + 1);
1780         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1781
1782         if (seeding_dev) {
1783                 ret = init_first_rw_device(trans, root, device);
1784                 if (ret) {
1785                         btrfs_abort_transaction(trans, root, ret);
1786                         goto error_trans;
1787                 }
1788                 ret = btrfs_finish_sprout(trans, root);
1789                 if (ret) {
1790                         btrfs_abort_transaction(trans, root, ret);
1791                         goto error_trans;
1792                 }
1793         } else {
1794                 ret = btrfs_add_device(trans, root, device);
1795                 if (ret) {
1796                         btrfs_abort_transaction(trans, root, ret);
1797                         goto error_trans;
1798                 }
1799         }
1800
1801         /*
1802          * we've got more storage, clear any full flags on the space
1803          * infos
1804          */
1805         btrfs_clear_space_info_full(root->fs_info);
1806
1807         unlock_chunks(root);
1808         root->fs_info->num_tolerated_disk_barrier_failures =
1809                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1810         ret = btrfs_commit_transaction(trans, root);
1811
1812         if (seeding_dev) {
1813                 mutex_unlock(&uuid_mutex);
1814                 up_write(&sb->s_umount);
1815
1816                 if (ret) /* transaction commit */
1817                         return ret;
1818
1819                 ret = btrfs_relocate_sys_chunks(root);
1820                 if (ret < 0)
1821                         btrfs_error(root->fs_info, ret,
1822                                     "Failed to relocate sys chunks after "
1823                                     "device initialization. This can be fixed "
1824                                     "using the \"btrfs balance\" command.");
1825                 trans = btrfs_attach_transaction(root);
1826                 if (IS_ERR(trans)) {
1827                         if (PTR_ERR(trans) == -ENOENT)
1828                                 return 0;
1829                         return PTR_ERR(trans);
1830                 }
1831                 ret = btrfs_commit_transaction(trans, root);
1832         }
1833
1834         return ret;
1835
1836 error_trans:
1837         unlock_chunks(root);
1838         btrfs_end_transaction(trans, root);
1839         rcu_string_free(device->name);
1840         kfree(device);
1841 error:
1842         blkdev_put(bdev, FMODE_EXCL);
1843         if (seeding_dev) {
1844                 mutex_unlock(&uuid_mutex);
1845                 up_write(&sb->s_umount);
1846         }
1847         return ret;
1848 }
1849
1850 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1851                                         struct btrfs_device *device)
1852 {
1853         int ret;
1854         struct btrfs_path *path;
1855         struct btrfs_root *root;
1856         struct btrfs_dev_item *dev_item;
1857         struct extent_buffer *leaf;
1858         struct btrfs_key key;
1859
1860         root = device->dev_root->fs_info->chunk_root;
1861
1862         path = btrfs_alloc_path();
1863         if (!path)
1864                 return -ENOMEM;
1865
1866         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1867         key.type = BTRFS_DEV_ITEM_KEY;
1868         key.offset = device->devid;
1869
1870         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1871         if (ret < 0)
1872                 goto out;
1873
1874         if (ret > 0) {
1875                 ret = -ENOENT;
1876                 goto out;
1877         }
1878
1879         leaf = path->nodes[0];
1880         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1881
1882         btrfs_set_device_id(leaf, dev_item, device->devid);
1883         btrfs_set_device_type(leaf, dev_item, device->type);
1884         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1885         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1886         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1887         btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1888         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1889         btrfs_mark_buffer_dirty(leaf);
1890
1891 out:
1892         btrfs_free_path(path);
1893         return ret;
1894 }
1895
1896 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1897                       struct btrfs_device *device, u64 new_size)
1898 {
1899         struct btrfs_super_block *super_copy =
1900                 device->dev_root->fs_info->super_copy;
1901         u64 old_total = btrfs_super_total_bytes(super_copy);
1902         u64 diff = new_size - device->total_bytes;
1903
1904         if (!device->writeable)
1905                 return -EACCES;
1906         if (new_size <= device->total_bytes)
1907                 return -EINVAL;
1908
1909         btrfs_set_super_total_bytes(super_copy, old_total + diff);
1910         device->fs_devices->total_rw_bytes += diff;
1911
1912         device->total_bytes = new_size;
1913         device->disk_total_bytes = new_size;
1914         btrfs_clear_space_info_full(device->dev_root->fs_info);
1915
1916         return btrfs_update_device(trans, device);
1917 }
1918
1919 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1920                       struct btrfs_device *device, u64 new_size)
1921 {
1922         int ret;
1923         lock_chunks(device->dev_root);
1924         ret = __btrfs_grow_device(trans, device, new_size);
1925         unlock_chunks(device->dev_root);
1926         return ret;
1927 }
1928
1929 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1930                             struct btrfs_root *root,
1931                             u64 chunk_tree, u64 chunk_objectid,
1932                             u64 chunk_offset)
1933 {
1934         int ret;
1935         struct btrfs_path *path;
1936         struct btrfs_key key;
1937
1938         root = root->fs_info->chunk_root;
1939         path = btrfs_alloc_path();
1940         if (!path)
1941                 return -ENOMEM;
1942
1943         key.objectid = chunk_objectid;
1944         key.offset = chunk_offset;
1945         key.type = BTRFS_CHUNK_ITEM_KEY;
1946
1947         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1948         if (ret < 0)
1949                 goto out;
1950         else if (ret > 0) { /* Logic error or corruption */
1951                 btrfs_error(root->fs_info, -ENOENT,
1952                             "Failed lookup while freeing chunk.");
1953                 ret = -ENOENT;
1954                 goto out;
1955         }
1956
1957         ret = btrfs_del_item(trans, root, path);
1958         if (ret < 0)
1959                 btrfs_error(root->fs_info, ret,
1960                             "Failed to delete chunk item.");
1961 out:
1962         btrfs_free_path(path);
1963         return ret;
1964 }
1965
1966 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1967                         chunk_offset)
1968 {
1969         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1970         struct btrfs_disk_key *disk_key;
1971         struct btrfs_chunk *chunk;
1972         u8 *ptr;
1973         int ret = 0;
1974         u32 num_stripes;
1975         u32 array_size;
1976         u32 len = 0;
1977         u32 cur;
1978         struct btrfs_key key;
1979
1980         array_size = btrfs_super_sys_array_size(super_copy);
1981
1982         ptr = super_copy->sys_chunk_array;
1983         cur = 0;
1984
1985         while (cur < array_size) {
1986                 disk_key = (struct btrfs_disk_key *)ptr;
1987                 btrfs_disk_key_to_cpu(&key, disk_key);
1988
1989                 len = sizeof(*disk_key);
1990
1991                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1992                         chunk = (struct btrfs_chunk *)(ptr + len);
1993                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1994                         len += btrfs_chunk_item_size(num_stripes);
1995                 } else {
1996                         ret = -EIO;
1997                         break;
1998                 }
1999                 if (key.objectid == chunk_objectid &&
2000                     key.offset == chunk_offset) {
2001                         memmove(ptr, ptr + len, array_size - (cur + len));
2002                         array_size -= len;
2003                         btrfs_set_super_sys_array_size(super_copy, array_size);
2004                 } else {
2005                         ptr += len;
2006                         cur += len;
2007                 }
2008         }
2009         return ret;
2010 }
2011
2012 static int btrfs_relocate_chunk(struct btrfs_root *root,
2013                          u64 chunk_tree, u64 chunk_objectid,
2014                          u64 chunk_offset)
2015 {
2016         struct extent_map_tree *em_tree;
2017         struct btrfs_root *extent_root;
2018         struct btrfs_trans_handle *trans;
2019         struct extent_map *em;
2020         struct map_lookup *map;
2021         int ret;
2022         int i;
2023
2024         root = root->fs_info->chunk_root;
2025         extent_root = root->fs_info->extent_root;
2026         em_tree = &root->fs_info->mapping_tree.map_tree;
2027
2028         ret = btrfs_can_relocate(extent_root, chunk_offset);
2029         if (ret)
2030                 return -ENOSPC;
2031
2032         /* step one, relocate all the extents inside this chunk */
2033         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2034         if (ret)
2035                 return ret;
2036
2037         trans = btrfs_start_transaction(root, 0);
2038         BUG_ON(IS_ERR(trans));
2039
2040         lock_chunks(root);
2041
2042         /*
2043          * step two, delete the device extents and the
2044          * chunk tree entries
2045          */
2046         read_lock(&em_tree->lock);
2047         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2048         read_unlock(&em_tree->lock);
2049
2050         BUG_ON(!em || em->start > chunk_offset ||
2051                em->start + em->len < chunk_offset);
2052         map = (struct map_lookup *)em->bdev;
2053
2054         for (i = 0; i < map->num_stripes; i++) {
2055                 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2056                                             map->stripes[i].physical);
2057                 BUG_ON(ret);
2058
2059                 if (map->stripes[i].dev) {
2060                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2061                         BUG_ON(ret);
2062                 }
2063         }
2064         ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2065                                chunk_offset);
2066
2067         BUG_ON(ret);
2068
2069         trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2070
2071         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2072                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2073                 BUG_ON(ret);
2074         }
2075
2076         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2077         BUG_ON(ret);
2078
2079         write_lock(&em_tree->lock);
2080         remove_extent_mapping(em_tree, em);
2081         write_unlock(&em_tree->lock);
2082
2083         kfree(map);
2084         em->bdev = NULL;
2085
2086         /* once for the tree */
2087         free_extent_map(em);
2088         /* once for us */
2089         free_extent_map(em);
2090
2091         unlock_chunks(root);
2092         btrfs_end_transaction(trans, root);
2093         return 0;
2094 }
2095
2096 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2097 {
2098         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2099         struct btrfs_path *path;
2100         struct extent_buffer *leaf;
2101         struct btrfs_chunk *chunk;
2102         struct btrfs_key key;
2103         struct btrfs_key found_key;
2104         u64 chunk_tree = chunk_root->root_key.objectid;
2105         u64 chunk_type;
2106         bool retried = false;
2107         int failed = 0;
2108         int ret;
2109
2110         path = btrfs_alloc_path();
2111         if (!path)
2112                 return -ENOMEM;
2113
2114 again:
2115         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2116         key.offset = (u64)-1;
2117         key.type = BTRFS_CHUNK_ITEM_KEY;
2118
2119         while (1) {
2120                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2121                 if (ret < 0)
2122                         goto error;
2123                 BUG_ON(ret == 0); /* Corruption */
2124
2125                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2126                                           key.type);
2127                 if (ret < 0)
2128                         goto error;
2129                 if (ret > 0)
2130                         break;
2131
2132                 leaf = path->nodes[0];
2133                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2134
2135                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2136                                        struct btrfs_chunk);
2137                 chunk_type = btrfs_chunk_type(leaf, chunk);
2138                 btrfs_release_path(path);
2139
2140                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2141                         ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2142                                                    found_key.objectid,
2143                                                    found_key.offset);
2144                         if (ret == -ENOSPC)
2145                                 failed++;
2146                         else if (ret)
2147                                 BUG();
2148                 }
2149
2150                 if (found_key.offset == 0)
2151                         break;
2152                 key.offset = found_key.offset - 1;
2153         }
2154         ret = 0;
2155         if (failed && !retried) {
2156                 failed = 0;
2157                 retried = true;
2158                 goto again;
2159         } else if (failed && retried) {
2160                 WARN_ON(1);
2161                 ret = -ENOSPC;
2162         }
2163 error:
2164         btrfs_free_path(path);
2165         return ret;
2166 }
2167
2168 static int insert_balance_item(struct btrfs_root *root,
2169                                struct btrfs_balance_control *bctl)
2170 {
2171         struct btrfs_trans_handle *trans;
2172         struct btrfs_balance_item *item;
2173         struct btrfs_disk_balance_args disk_bargs;
2174         struct btrfs_path *path;
2175         struct extent_buffer *leaf;
2176         struct btrfs_key key;
2177         int ret, err;
2178
2179         path = btrfs_alloc_path();
2180         if (!path)
2181                 return -ENOMEM;
2182
2183         trans = btrfs_start_transaction(root, 0);
2184         if (IS_ERR(trans)) {
2185                 btrfs_free_path(path);
2186                 return PTR_ERR(trans);
2187         }
2188
2189         key.objectid = BTRFS_BALANCE_OBJECTID;
2190         key.type = BTRFS_BALANCE_ITEM_KEY;
2191         key.offset = 0;
2192
2193         ret = btrfs_insert_empty_item(trans, root, path, &key,
2194                                       sizeof(*item));
2195         if (ret)
2196                 goto out;
2197
2198         leaf = path->nodes[0];
2199         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2200
2201         memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2202
2203         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2204         btrfs_set_balance_data(leaf, item, &disk_bargs);
2205         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2206         btrfs_set_balance_meta(leaf, item, &disk_bargs);
2207         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2208         btrfs_set_balance_sys(leaf, item, &disk_bargs);
2209
2210         btrfs_set_balance_flags(leaf, item, bctl->flags);
2211
2212         btrfs_mark_buffer_dirty(leaf);
2213 out:
2214         btrfs_free_path(path);
2215         err = btrfs_commit_transaction(trans, root);
2216         if (err && !ret)
2217                 ret = err;
2218         return ret;
2219 }
2220
2221 static int del_balance_item(struct btrfs_root *root)
2222 {
2223         struct btrfs_trans_handle *trans;
2224         struct btrfs_path *path;
2225         struct btrfs_key key;
2226         int ret, err;
2227
2228         path = btrfs_alloc_path();
2229         if (!path)
2230                 return -ENOMEM;
2231
2232         trans = btrfs_start_transaction(root, 0);
2233         if (IS_ERR(trans)) {
2234                 btrfs_free_path(path);
2235                 return PTR_ERR(trans);
2236         }
2237
2238         key.objectid = BTRFS_BALANCE_OBJECTID;
2239         key.type = BTRFS_BALANCE_ITEM_KEY;
2240         key.offset = 0;
2241
2242         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2243         if (ret < 0)
2244                 goto out;
2245         if (ret > 0) {
2246                 ret = -ENOENT;
2247                 goto out;
2248         }
2249
2250         ret = btrfs_del_item(trans, root, path);
2251 out:
2252         btrfs_free_path(path);
2253         err = btrfs_commit_transaction(trans, root);
2254         if (err && !ret)
2255                 ret = err;
2256         return ret;
2257 }
2258
2259 /*
2260  * This is a heuristic used to reduce the number of chunks balanced on
2261  * resume after balance was interrupted.
2262  */
2263 static void update_balance_args(struct btrfs_balance_control *bctl)
2264 {
2265         /*
2266          * Turn on soft mode for chunk types that were being converted.
2267          */
2268         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2269                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2270         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2271                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2272         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2273                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2274
2275         /*
2276          * Turn on usage filter if is not already used.  The idea is
2277          * that chunks that we have already balanced should be
2278          * reasonably full.  Don't do it for chunks that are being
2279          * converted - that will keep us from relocating unconverted
2280          * (albeit full) chunks.
2281          */
2282         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2283             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2284                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2285                 bctl->data.usage = 90;
2286         }
2287         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2288             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2289                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2290                 bctl->sys.usage = 90;
2291         }
2292         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2293             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2294                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2295                 bctl->meta.usage = 90;
2296         }
2297 }
2298
2299 /*
2300  * Should be called with both balance and volume mutexes held to
2301  * serialize other volume operations (add_dev/rm_dev/resize) with
2302  * restriper.  Same goes for unset_balance_control.
2303  */
2304 static void set_balance_control(struct btrfs_balance_control *bctl)
2305 {
2306         struct btrfs_fs_info *fs_info = bctl->fs_info;
2307
2308         BUG_ON(fs_info->balance_ctl);
2309
2310         spin_lock(&fs_info->balance_lock);
2311         fs_info->balance_ctl = bctl;
2312         spin_unlock(&fs_info->balance_lock);
2313 }
2314
2315 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2316 {
2317         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2318
2319         BUG_ON(!fs_info->balance_ctl);
2320
2321         spin_lock(&fs_info->balance_lock);
2322         fs_info->balance_ctl = NULL;
2323         spin_unlock(&fs_info->balance_lock);
2324
2325         kfree(bctl);
2326 }
2327
2328 /*
2329  * Balance filters.  Return 1 if chunk should be filtered out
2330  * (should not be balanced).
2331  */
2332 static int chunk_profiles_filter(u64 chunk_type,
2333                                  struct btrfs_balance_args *bargs)
2334 {
2335         chunk_type = chunk_to_extended(chunk_type) &
2336                                 BTRFS_EXTENDED_PROFILE_MASK;
2337
2338         if (bargs->profiles & chunk_type)
2339                 return 0;
2340
2341         return 1;
2342 }
2343
2344 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2345                               struct btrfs_balance_args *bargs)
2346 {
2347         struct btrfs_block_group_cache *cache;
2348         u64 chunk_used, user_thresh;
2349         int ret = 1;
2350
2351         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2352         chunk_used = btrfs_block_group_used(&cache->item);
2353
2354         user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2355         if (chunk_used < user_thresh)
2356                 ret = 0;
2357
2358         btrfs_put_block_group(cache);
2359         return ret;
2360 }
2361
2362 static int chunk_devid_filter(struct extent_buffer *leaf,
2363                               struct btrfs_chunk *chunk,
2364                               struct btrfs_balance_args *bargs)
2365 {
2366         struct btrfs_stripe *stripe;
2367         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2368         int i;
2369
2370         for (i = 0; i < num_stripes; i++) {
2371                 stripe = btrfs_stripe_nr(chunk, i);
2372                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2373                         return 0;
2374         }
2375
2376         return 1;
2377 }
2378
2379 /* [pstart, pend) */
2380 static int chunk_drange_filter(struct extent_buffer *leaf,
2381                                struct btrfs_chunk *chunk,
2382                                u64 chunk_offset,
2383                                struct btrfs_balance_args *bargs)
2384 {
2385         struct btrfs_stripe *stripe;
2386         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2387         u64 stripe_offset;
2388         u64 stripe_length;
2389         int factor;
2390         int i;
2391
2392         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2393                 return 0;
2394
2395         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2396              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2397                 factor = 2;
2398         else
2399                 factor = 1;
2400         factor = num_stripes / factor;
2401
2402         for (i = 0; i < num_stripes; i++) {
2403                 stripe = btrfs_stripe_nr(chunk, i);
2404                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2405                         continue;
2406
2407                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2408                 stripe_length = btrfs_chunk_length(leaf, chunk);
2409                 do_div(stripe_length, factor);
2410
2411                 if (stripe_offset < bargs->pend &&
2412                     stripe_offset + stripe_length > bargs->pstart)
2413                         return 0;
2414         }
2415
2416         return 1;
2417 }
2418
2419 /* [vstart, vend) */
2420 static int chunk_vrange_filter(struct extent_buffer *leaf,
2421                                struct btrfs_chunk *chunk,
2422                                u64 chunk_offset,
2423                                struct btrfs_balance_args *bargs)
2424 {
2425         if (chunk_offset < bargs->vend &&
2426             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2427                 /* at least part of the chunk is inside this vrange */
2428                 return 0;
2429
2430         return 1;
2431 }
2432
2433 static int chunk_soft_convert_filter(u64 chunk_type,
2434                                      struct btrfs_balance_args *bargs)
2435 {
2436         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2437                 return 0;
2438
2439         chunk_type = chunk_to_extended(chunk_type) &
2440                                 BTRFS_EXTENDED_PROFILE_MASK;
2441
2442         if (bargs->target == chunk_type)
2443                 return 1;
2444
2445         return 0;
2446 }
2447
2448 static int should_balance_chunk(struct btrfs_root *root,
2449                                 struct extent_buffer *leaf,
2450                                 struct btrfs_chunk *chunk, u64 chunk_offset)
2451 {
2452         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2453         struct btrfs_balance_args *bargs = NULL;
2454         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2455
2456         /* type filter */
2457         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2458               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2459                 return 0;
2460         }
2461
2462         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2463                 bargs = &bctl->data;
2464         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2465                 bargs = &bctl->sys;
2466         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2467                 bargs = &bctl->meta;
2468
2469         /* profiles filter */
2470         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2471             chunk_profiles_filter(chunk_type, bargs)) {
2472                 return 0;
2473         }
2474
2475         /* usage filter */
2476         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2477             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2478                 return 0;
2479         }
2480
2481         /* devid filter */
2482         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2483             chunk_devid_filter(leaf, chunk, bargs)) {
2484                 return 0;
2485         }
2486
2487         /* drange filter, makes sense only with devid filter */
2488         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2489             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2490                 return 0;
2491         }
2492
2493         /* vrange filter */
2494         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2495             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2496                 return 0;
2497         }
2498
2499         /* soft profile changing mode */
2500         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2501             chunk_soft_convert_filter(chunk_type, bargs)) {
2502                 return 0;
2503         }
2504
2505         return 1;
2506 }
2507
2508 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2509 {
2510         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2511         struct btrfs_root *chunk_root = fs_info->chunk_root;
2512         struct btrfs_root *dev_root = fs_info->dev_root;
2513         struct list_head *devices;
2514         struct btrfs_device *device;
2515         u64 old_size;
2516         u64 size_to_free;
2517         struct btrfs_chunk *chunk;
2518         struct btrfs_path *path;
2519         struct btrfs_key key;
2520         struct btrfs_key found_key;
2521         struct btrfs_trans_handle *trans;
2522         struct extent_buffer *leaf;
2523         int slot;
2524         int ret;
2525         int enospc_errors = 0;
2526         bool counting = true;
2527
2528         /* step one make some room on all the devices */
2529         devices = &fs_info->fs_devices->devices;
2530         list_for_each_entry(device, devices, dev_list) {
2531                 old_size = device->total_bytes;
2532                 size_to_free = div_factor(old_size, 1);
2533                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2534                 if (!device->writeable ||
2535                     device->total_bytes - device->bytes_used > size_to_free)
2536                         continue;
2537
2538                 ret = btrfs_shrink_device(device, old_size - size_to_free);
2539                 if (ret == -ENOSPC)
2540                         break;
2541                 BUG_ON(ret);
2542
2543                 trans = btrfs_start_transaction(dev_root, 0);
2544                 BUG_ON(IS_ERR(trans));
2545
2546                 ret = btrfs_grow_device(trans, device, old_size);
2547                 BUG_ON(ret);
2548
2549                 btrfs_end_transaction(trans, dev_root);
2550         }
2551
2552         /* step two, relocate all the chunks */
2553         path = btrfs_alloc_path();
2554         if (!path) {
2555                 ret = -ENOMEM;
2556                 goto error;
2557         }
2558
2559         /* zero out stat counters */
2560         spin_lock(&fs_info->balance_lock);
2561         memset(&bctl->stat, 0, sizeof(bctl->stat));
2562         spin_unlock(&fs_info->balance_lock);
2563 again:
2564         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2565         key.offset = (u64)-1;
2566         key.type = BTRFS_CHUNK_ITEM_KEY;
2567
2568         while (1) {
2569                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2570                     atomic_read(&fs_info->balance_cancel_req)) {
2571                         ret = -ECANCELED;
2572                         goto error;
2573                 }
2574
2575                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2576                 if (ret < 0)
2577                         goto error;
2578
2579                 /*
2580                  * this shouldn't happen, it means the last relocate
2581                  * failed
2582                  */
2583                 if (ret == 0)
2584                         BUG(); /* FIXME break ? */
2585
2586                 ret = btrfs_previous_item(chunk_root, path, 0,
2587                                           BTRFS_CHUNK_ITEM_KEY);
2588                 if (ret) {
2589                         ret = 0;
2590                         break;
2591                 }
2592
2593                 leaf = path->nodes[0];
2594                 slot = path->slots[0];
2595                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2596
2597                 if (found_key.objectid != key.objectid)
2598                         break;
2599
2600                 /* chunk zero is special */
2601                 if (found_key.offset == 0)
2602                         break;
2603
2604                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2605
2606                 if (!counting) {
2607                         spin_lock(&fs_info->balance_lock);
2608                         bctl->stat.considered++;
2609                         spin_unlock(&fs_info->balance_lock);
2610                 }
2611
2612                 ret = should_balance_chunk(chunk_root, leaf, chunk,
2613                                            found_key.offset);
2614                 btrfs_release_path(path);
2615                 if (!ret)
2616                         goto loop;
2617
2618                 if (counting) {
2619                         spin_lock(&fs_info->balance_lock);
2620                         bctl->stat.expected++;
2621                         spin_unlock(&fs_info->balance_lock);
2622                         goto loop;
2623                 }
2624
2625                 ret = btrfs_relocate_chunk(chunk_root,
2626                                            chunk_root->root_key.objectid,
2627                                            found_key.objectid,
2628                                            found_key.offset);
2629                 if (ret && ret != -ENOSPC)
2630                         goto error;
2631                 if (ret == -ENOSPC) {
2632                         enospc_errors++;
2633                 } else {
2634                         spin_lock(&fs_info->balance_lock);
2635                         bctl->stat.completed++;
2636                         spin_unlock(&fs_info->balance_lock);
2637                 }
2638 loop:
2639                 key.offset = found_key.offset - 1;
2640         }
2641
2642         if (counting) {
2643                 btrfs_release_path(path);
2644                 counting = false;
2645                 goto again;
2646         }
2647 error:
2648         btrfs_free_path(path);
2649         if (enospc_errors) {
2650                 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2651                        enospc_errors);
2652                 if (!ret)
2653                         ret = -ENOSPC;
2654         }
2655
2656         return ret;
2657 }
2658
2659 /**
2660  * alloc_profile_is_valid - see if a given profile is valid and reduced
2661  * @flags: profile to validate
2662  * @extended: if true @flags is treated as an extended profile
2663  */
2664 static int alloc_profile_is_valid(u64 flags, int extended)
2665 {
2666         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2667                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
2668
2669         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2670
2671         /* 1) check that all other bits are zeroed */
2672         if (flags & ~mask)
2673                 return 0;
2674
2675         /* 2) see if profile is reduced */
2676         if (flags == 0)
2677                 return !extended; /* "0" is valid for usual profiles */
2678
2679         /* true if exactly one bit set */
2680         return (flags & (flags - 1)) == 0;
2681 }
2682
2683 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2684 {
2685         /* cancel requested || normal exit path */
2686         return atomic_read(&fs_info->balance_cancel_req) ||
2687                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2688                  atomic_read(&fs_info->balance_cancel_req) == 0);
2689 }
2690
2691 static void __cancel_balance(struct btrfs_fs_info *fs_info)
2692 {
2693         int ret;
2694
2695         unset_balance_control(fs_info);
2696         ret = del_balance_item(fs_info->tree_root);
2697         BUG_ON(ret);
2698 }
2699
2700 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
2701                                struct btrfs_ioctl_balance_args *bargs);
2702
2703 /*
2704  * Should be called with both balance and volume mutexes held
2705  */
2706 int btrfs_balance(struct btrfs_balance_control *bctl,
2707                   struct btrfs_ioctl_balance_args *bargs)
2708 {
2709         struct btrfs_fs_info *fs_info = bctl->fs_info;
2710         u64 allowed;
2711         int mixed = 0;
2712         int ret;
2713
2714         if (btrfs_fs_closing(fs_info) ||
2715             atomic_read(&fs_info->balance_pause_req) ||
2716             atomic_read(&fs_info->balance_cancel_req)) {
2717                 ret = -EINVAL;
2718                 goto out;
2719         }
2720
2721         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2722         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2723                 mixed = 1;
2724
2725         /*
2726          * In case of mixed groups both data and meta should be picked,
2727          * and identical options should be given for both of them.
2728          */
2729         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2730         if (mixed && (bctl->flags & allowed)) {
2731                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2732                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2733                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2734                         printk(KERN_ERR "btrfs: with mixed groups data and "
2735                                "metadata balance options must be the same\n");
2736                         ret = -EINVAL;
2737                         goto out;
2738                 }
2739         }
2740
2741         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2742         if (fs_info->fs_devices->num_devices == 1)
2743                 allowed |= BTRFS_BLOCK_GROUP_DUP;
2744         else if (fs_info->fs_devices->num_devices < 4)
2745                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2746         else
2747                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2748                                 BTRFS_BLOCK_GROUP_RAID10);
2749
2750         if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2751             (!alloc_profile_is_valid(bctl->data.target, 1) ||
2752              (bctl->data.target & ~allowed))) {
2753                 printk(KERN_ERR "btrfs: unable to start balance with target "
2754                        "data profile %llu\n",
2755                        (unsigned long long)bctl->data.target);
2756                 ret = -EINVAL;
2757                 goto out;
2758         }
2759         if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2760             (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2761              (bctl->meta.target & ~allowed))) {
2762                 printk(KERN_ERR "btrfs: unable to start balance with target "
2763                        "metadata profile %llu\n",
2764                        (unsigned long long)bctl->meta.target);
2765                 ret = -EINVAL;
2766                 goto out;
2767         }
2768         if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2769             (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2770              (bctl->sys.target & ~allowed))) {
2771                 printk(KERN_ERR "btrfs: unable to start balance with target "
2772                        "system profile %llu\n",
2773                        (unsigned long long)bctl->sys.target);
2774                 ret = -EINVAL;
2775                 goto out;
2776         }
2777
2778         /* allow dup'ed data chunks only in mixed mode */
2779         if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2780             (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
2781                 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2782                 ret = -EINVAL;
2783                 goto out;
2784         }
2785
2786         /* allow to reduce meta or sys integrity only if force set */
2787         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2788                         BTRFS_BLOCK_GROUP_RAID10;
2789         if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2790              (fs_info->avail_system_alloc_bits & allowed) &&
2791              !(bctl->sys.target & allowed)) ||
2792             ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2793              (fs_info->avail_metadata_alloc_bits & allowed) &&
2794              !(bctl->meta.target & allowed))) {
2795                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
2796                         printk(KERN_INFO "btrfs: force reducing metadata "
2797                                "integrity\n");
2798                 } else {
2799                         printk(KERN_ERR "btrfs: balance will reduce metadata "
2800                                "integrity, use force if you want this\n");
2801                         ret = -EINVAL;
2802                         goto out;
2803                 }
2804         }
2805
2806         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
2807                 int num_tolerated_disk_barrier_failures;
2808                 u64 target = bctl->sys.target;
2809
2810                 num_tolerated_disk_barrier_failures =
2811                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2812                 if (num_tolerated_disk_barrier_failures > 0 &&
2813                     (target &
2814                      (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
2815                       BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
2816                         num_tolerated_disk_barrier_failures = 0;
2817                 else if (num_tolerated_disk_barrier_failures > 1 &&
2818                          (target &
2819                           (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
2820                         num_tolerated_disk_barrier_failures = 1;
2821
2822                 fs_info->num_tolerated_disk_barrier_failures =
2823                         num_tolerated_disk_barrier_failures;
2824         }
2825
2826         ret = insert_balance_item(fs_info->tree_root, bctl);
2827         if (ret && ret != -EEXIST)
2828                 goto out;
2829
2830         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2831                 BUG_ON(ret == -EEXIST);
2832                 set_balance_control(bctl);
2833         } else {
2834                 BUG_ON(ret != -EEXIST);
2835                 spin_lock(&fs_info->balance_lock);
2836                 update_balance_args(bctl);
2837                 spin_unlock(&fs_info->balance_lock);
2838         }
2839
2840         atomic_inc(&fs_info->balance_running);
2841         mutex_unlock(&fs_info->balance_mutex);
2842
2843         ret = __btrfs_balance(fs_info);
2844
2845         mutex_lock(&fs_info->balance_mutex);
2846         atomic_dec(&fs_info->balance_running);
2847
2848         if (bargs) {
2849                 memset(bargs, 0, sizeof(*bargs));
2850                 update_ioctl_balance_args(fs_info, 0, bargs);
2851         }
2852
2853         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2854             balance_need_close(fs_info)) {
2855                 __cancel_balance(fs_info);
2856         }
2857
2858         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
2859                 fs_info->num_tolerated_disk_barrier_failures =
2860                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2861         }
2862
2863         wake_up(&fs_info->balance_wait_q);
2864
2865         return ret;
2866 out:
2867         if (bctl->flags & BTRFS_BALANCE_RESUME)
2868                 __cancel_balance(fs_info);
2869         else
2870                 kfree(bctl);
2871         return ret;
2872 }
2873
2874 static int balance_kthread(void *data)
2875 {
2876         struct btrfs_fs_info *fs_info = data;
2877         int ret = 0;
2878
2879         mutex_lock(&fs_info->volume_mutex);
2880         mutex_lock(&fs_info->balance_mutex);
2881
2882         if (fs_info->balance_ctl) {
2883                 printk(KERN_INFO "btrfs: continuing balance\n");
2884                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
2885         }
2886
2887         mutex_unlock(&fs_info->balance_mutex);
2888         mutex_unlock(&fs_info->volume_mutex);
2889
2890         return ret;
2891 }
2892
2893 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
2894 {
2895         struct task_struct *tsk;
2896
2897         spin_lock(&fs_info->balance_lock);
2898         if (!fs_info->balance_ctl) {
2899                 spin_unlock(&fs_info->balance_lock);
2900                 return 0;
2901         }
2902         spin_unlock(&fs_info->balance_lock);
2903
2904         if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2905                 printk(KERN_INFO "btrfs: force skipping balance\n");
2906                 return 0;
2907         }
2908
2909         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
2910         if (IS_ERR(tsk))
2911                 return PTR_ERR(tsk);
2912
2913         return 0;
2914 }
2915
2916 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
2917 {
2918         struct btrfs_balance_control *bctl;
2919         struct btrfs_balance_item *item;
2920         struct btrfs_disk_balance_args disk_bargs;
2921         struct btrfs_path *path;
2922         struct extent_buffer *leaf;
2923         struct btrfs_key key;
2924         int ret;
2925
2926         path = btrfs_alloc_path();
2927         if (!path)
2928                 return -ENOMEM;
2929
2930         key.objectid = BTRFS_BALANCE_OBJECTID;
2931         key.type = BTRFS_BALANCE_ITEM_KEY;
2932         key.offset = 0;
2933
2934         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2935         if (ret < 0)
2936                 goto out;
2937         if (ret > 0) { /* ret = -ENOENT; */
2938                 ret = 0;
2939                 goto out;
2940         }
2941
2942         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2943         if (!bctl) {
2944                 ret = -ENOMEM;
2945                 goto out;
2946         }
2947
2948         leaf = path->nodes[0];
2949         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2950
2951         bctl->fs_info = fs_info;
2952         bctl->flags = btrfs_balance_flags(leaf, item);
2953         bctl->flags |= BTRFS_BALANCE_RESUME;
2954
2955         btrfs_balance_data(leaf, item, &disk_bargs);
2956         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2957         btrfs_balance_meta(leaf, item, &disk_bargs);
2958         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2959         btrfs_balance_sys(leaf, item, &disk_bargs);
2960         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2961
2962         mutex_lock(&fs_info->volume_mutex);
2963         mutex_lock(&fs_info->balance_mutex);
2964
2965         set_balance_control(bctl);
2966
2967         mutex_unlock(&fs_info->balance_mutex);
2968         mutex_unlock(&fs_info->volume_mutex);
2969 out:
2970         btrfs_free_path(path);
2971         return ret;
2972 }
2973
2974 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2975 {
2976         int ret = 0;
2977
2978         mutex_lock(&fs_info->balance_mutex);
2979         if (!fs_info->balance_ctl) {
2980                 mutex_unlock(&fs_info->balance_mutex);
2981                 return -ENOTCONN;
2982         }
2983
2984         if (atomic_read(&fs_info->balance_running)) {
2985                 atomic_inc(&fs_info->balance_pause_req);
2986                 mutex_unlock(&fs_info->balance_mutex);
2987
2988                 wait_event(fs_info->balance_wait_q,
2989                            atomic_read(&fs_info->balance_running) == 0);
2990
2991                 mutex_lock(&fs_info->balance_mutex);
2992                 /* we are good with balance_ctl ripped off from under us */
2993                 BUG_ON(atomic_read(&fs_info->balance_running));
2994                 atomic_dec(&fs_info->balance_pause_req);
2995         } else {
2996                 ret = -ENOTCONN;
2997         }
2998
2999         mutex_unlock(&fs_info->balance_mutex);
3000         return ret;
3001 }
3002
3003 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3004 {
3005         mutex_lock(&fs_info->balance_mutex);
3006         if (!fs_info->balance_ctl) {
3007                 mutex_unlock(&fs_info->balance_mutex);
3008                 return -ENOTCONN;
3009         }
3010
3011         atomic_inc(&fs_info->balance_cancel_req);
3012         /*
3013          * if we are running just wait and return, balance item is
3014          * deleted in btrfs_balance in this case
3015          */
3016         if (atomic_read(&fs_info->balance_running)) {
3017                 mutex_unlock(&fs_info->balance_mutex);
3018                 wait_event(fs_info->balance_wait_q,
3019                            atomic_read(&fs_info->balance_running) == 0);
3020                 mutex_lock(&fs_info->balance_mutex);
3021         } else {
3022                 /* __cancel_balance needs volume_mutex */
3023                 mutex_unlock(&fs_info->balance_mutex);
3024                 mutex_lock(&fs_info->volume_mutex);
3025                 mutex_lock(&fs_info->balance_mutex);
3026
3027                 if (fs_info->balance_ctl)
3028                         __cancel_balance(fs_info);
3029
3030                 mutex_unlock(&fs_info->volume_mutex);
3031         }
3032
3033         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3034         atomic_dec(&fs_info->balance_cancel_req);
3035         mutex_unlock(&fs_info->balance_mutex);
3036         return 0;
3037 }
3038
3039 /*
3040  * shrinking a device means finding all of the device extents past
3041  * the new size, and then following the back refs to the chunks.
3042  * The chunk relocation code actually frees the device extent
3043  */
3044 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3045 {
3046         struct btrfs_trans_handle *trans;
3047         struct btrfs_root *root = device->dev_root;
3048         struct btrfs_dev_extent *dev_extent = NULL;
3049         struct btrfs_path *path;
3050         u64 length;
3051         u64 chunk_tree;
3052         u64 chunk_objectid;
3053         u64 chunk_offset;
3054         int ret;
3055         int slot;
3056         int failed = 0;
3057         bool retried = false;
3058         struct extent_buffer *l;
3059         struct btrfs_key key;
3060         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3061         u64 old_total = btrfs_super_total_bytes(super_copy);
3062         u64 old_size = device->total_bytes;
3063         u64 diff = device->total_bytes - new_size;
3064
3065         path = btrfs_alloc_path();
3066         if (!path)
3067                 return -ENOMEM;
3068
3069         path->reada = 2;
3070
3071         lock_chunks(root);
3072
3073         device->total_bytes = new_size;
3074         if (device->writeable) {
3075                 device->fs_devices->total_rw_bytes -= diff;
3076                 spin_lock(&root->fs_info->free_chunk_lock);
3077                 root->fs_info->free_chunk_space -= diff;
3078                 spin_unlock(&root->fs_info->free_chunk_lock);
3079         }
3080         unlock_chunks(root);
3081
3082 again:
3083         key.objectid = device->devid;
3084         key.offset = (u64)-1;
3085         key.type = BTRFS_DEV_EXTENT_KEY;
3086
3087         do {
3088                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3089                 if (ret < 0)
3090                         goto done;
3091
3092                 ret = btrfs_previous_item(root, path, 0, key.type);
3093                 if (ret < 0)
3094                         goto done;
3095                 if (ret) {
3096                         ret = 0;
3097                         btrfs_release_path(path);
3098                         break;
3099                 }
3100
3101                 l = path->nodes[0];
3102                 slot = path->slots[0];
3103                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3104
3105                 if (key.objectid != device->devid) {
3106                         btrfs_release_path(path);
3107                         break;
3108                 }
3109
3110                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3111                 length = btrfs_dev_extent_length(l, dev_extent);
3112
3113                 if (key.offset + length <= new_size) {
3114                         btrfs_release_path(path);
3115                         break;
3116                 }
3117
3118                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3119                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3120                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3121                 btrfs_release_path(path);
3122
3123                 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3124                                            chunk_offset);
3125                 if (ret && ret != -ENOSPC)
3126                         goto done;
3127                 if (ret == -ENOSPC)
3128                         failed++;
3129         } while (key.offset-- > 0);
3130
3131         if (failed && !retried) {
3132                 failed = 0;
3133                 retried = true;
3134                 goto again;
3135         } else if (failed && retried) {
3136                 ret = -ENOSPC;
3137                 lock_chunks(root);
3138
3139                 device->total_bytes = old_size;
3140                 if (device->writeable)
3141                         device->fs_devices->total_rw_bytes += diff;
3142                 spin_lock(&root->fs_info->free_chunk_lock);
3143                 root->fs_info->free_chunk_space += diff;
3144                 spin_unlock(&root->fs_info->free_chunk_lock);
3145                 unlock_chunks(root);
3146                 goto done;
3147         }
3148
3149         /* Shrinking succeeded, else we would be at "done". */
3150         trans = btrfs_start_transaction(root, 0);
3151         if (IS_ERR(trans)) {
3152                 ret = PTR_ERR(trans);
3153                 goto done;
3154         }
3155
3156         lock_chunks(root);
3157
3158         device->disk_total_bytes = new_size;
3159         /* Now btrfs_update_device() will change the on-disk size. */
3160         ret = btrfs_update_device(trans, device);
3161         if (ret) {
3162                 unlock_chunks(root);
3163                 btrfs_end_transaction(trans, root);
3164                 goto done;
3165         }
3166         WARN_ON(diff > old_total);
3167         btrfs_set_super_total_bytes(super_copy, old_total - diff);
3168         unlock_chunks(root);
3169         btrfs_end_transaction(trans, root);
3170 done:
3171         btrfs_free_path(path);
3172         return ret;
3173 }
3174
3175 static int btrfs_add_system_chunk(struct btrfs_root *root,
3176                            struct btrfs_key *key,
3177                            struct btrfs_chunk *chunk, int item_size)
3178 {
3179         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3180         struct btrfs_disk_key disk_key;
3181         u32 array_size;
3182         u8 *ptr;
3183
3184         array_size = btrfs_super_sys_array_size(super_copy);
3185         if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3186                 return -EFBIG;
3187
3188         ptr = super_copy->sys_chunk_array + array_size;
3189         btrfs_cpu_key_to_disk(&disk_key, key);
3190         memcpy(ptr, &disk_key, sizeof(disk_key));
3191         ptr += sizeof(disk_key);
3192         memcpy(ptr, chunk, item_size);
3193         item_size += sizeof(disk_key);
3194         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3195         return 0;
3196 }
3197
3198 /*
3199  * sort the devices in descending order by max_avail, total_avail
3200  */
3201 static int btrfs_cmp_device_info(const void *a, const void *b)
3202 {
3203         const struct btrfs_device_info *di_a = a;
3204         const struct btrfs_device_info *di_b = b;
3205
3206         if (di_a->max_avail > di_b->max_avail)
3207                 return -1;
3208         if (di_a->max_avail < di_b->max_avail)
3209                 return 1;
3210         if (di_a->total_avail > di_b->total_avail)
3211                 return -1;
3212         if (di_a->total_avail < di_b->total_avail)
3213                 return 1;
3214         return 0;
3215 }
3216
3217 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3218                                struct btrfs_root *extent_root,
3219                                struct map_lookup **map_ret,
3220                                u64 *num_bytes_out, u64 *stripe_size_out,
3221                                u64 start, u64 type)
3222 {
3223         struct btrfs_fs_info *info = extent_root->fs_info;
3224         struct btrfs_fs_devices *fs_devices = info->fs_devices;
3225         struct list_head *cur;
3226         struct map_lookup *map = NULL;
3227         struct extent_map_tree *em_tree;
3228         struct extent_map *em;
3229         struct btrfs_device_info *devices_info = NULL;
3230         u64 total_avail;
3231         int num_stripes;        /* total number of stripes to allocate */
3232         int sub_stripes;        /* sub_stripes info for map */
3233         int dev_stripes;        /* stripes per dev */
3234         int devs_max;           /* max devs to use */
3235         int devs_min;           /* min devs needed */
3236         int devs_increment;     /* ndevs has to be a multiple of this */
3237         int ncopies;            /* how many copies to data has */
3238         int ret;
3239         u64 max_stripe_size;
3240         u64 max_chunk_size;
3241         u64 stripe_size;
3242         u64 num_bytes;
3243         int ndevs;
3244         int i;
3245         int j;
3246
3247         BUG_ON(!alloc_profile_is_valid(type, 0));
3248
3249         if (list_empty(&fs_devices->alloc_list))
3250                 return -ENOSPC;
3251
3252         sub_stripes = 1;
3253         dev_stripes = 1;
3254         devs_increment = 1;
3255         ncopies = 1;
3256         devs_max = 0;   /* 0 == as many as possible */
3257         devs_min = 1;
3258
3259         /*
3260          * define the properties of each RAID type.
3261          * FIXME: move this to a global table and use it in all RAID
3262          * calculation code
3263          */
3264         if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3265                 dev_stripes = 2;
3266                 ncopies = 2;
3267                 devs_max = 1;
3268         } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3269                 devs_min = 2;
3270         } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3271                 devs_increment = 2;
3272                 ncopies = 2;
3273                 devs_max = 2;
3274                 devs_min = 2;
3275         } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3276                 sub_stripes = 2;
3277                 devs_increment = 2;
3278                 ncopies = 2;
3279                 devs_min = 4;
3280         } else {
3281                 devs_max = 1;
3282         }
3283
3284         if (type & BTRFS_BLOCK_GROUP_DATA) {
3285                 max_stripe_size = 1024 * 1024 * 1024;
3286                 max_chunk_size = 10 * max_stripe_size;
3287         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
3288                 /* for larger filesystems, use larger metadata chunks */
3289                 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3290                         max_stripe_size = 1024 * 1024 * 1024;
3291                 else
3292                         max_stripe_size = 256 * 1024 * 1024;
3293                 max_chunk_size = max_stripe_size;
3294         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
3295                 max_stripe_size = 32 * 1024 * 1024;
3296                 max_chunk_size = 2 * max_stripe_size;
3297         } else {
3298                 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3299                        type);
3300                 BUG_ON(1);
3301         }
3302
3303         /* we don't want a chunk larger than 10% of writeable space */
3304         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3305                              max_chunk_size);
3306
3307         devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3308                                GFP_NOFS);
3309         if (!devices_info)
3310                 return -ENOMEM;
3311
3312         cur = fs_devices->alloc_list.next;
3313
3314         /*
3315          * in the first pass through the devices list, we gather information
3316          * about the available holes on each device.
3317          */
3318         ndevs = 0;
3319         while (cur != &fs_devices->alloc_list) {
3320                 struct btrfs_device *device;
3321                 u64 max_avail;
3322                 u64 dev_offset;
3323
3324                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
3325
3326                 cur = cur->next;
3327
3328                 if (!device->writeable) {
3329                         WARN(1, KERN_ERR
3330                                "btrfs: read-only device in alloc_list\n");
3331                         continue;
3332                 }
3333
3334                 if (!device->in_fs_metadata)
3335                         continue;
3336
3337                 if (device->total_bytes > device->bytes_used)
3338                         total_avail = device->total_bytes - device->bytes_used;
3339                 else
3340                         total_avail = 0;
3341
3342                 /* If there is no space on this device, skip it. */
3343                 if (total_avail == 0)
3344                         continue;
3345
3346                 ret = find_free_dev_extent(device,
3347                                            max_stripe_size * dev_stripes,
3348                                            &dev_offset, &max_avail);
3349                 if (ret && ret != -ENOSPC)
3350                         goto error;
3351
3352                 if (ret == 0)
3353                         max_avail = max_stripe_size * dev_stripes;
3354
3355                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3356                         continue;
3357
3358                 devices_info[ndevs].dev_offset = dev_offset;
3359                 devices_info[ndevs].max_avail = max_avail;
3360                 devices_info[ndevs].total_avail = total_avail;
3361                 devices_info[ndevs].dev = device;
3362                 ++ndevs;
3363         }
3364
3365         /*
3366          * now sort the devices by hole size / available space
3367          */
3368         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3369              btrfs_cmp_device_info, NULL);
3370
3371         /* round down to number of usable stripes */
3372         ndevs -= ndevs % devs_increment;
3373
3374         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3375                 ret = -ENOSPC;
3376                 goto error;
3377         }
3378
3379         if (devs_max && ndevs > devs_max)
3380                 ndevs = devs_max;
3381         /*
3382          * the primary goal is to maximize the number of stripes, so use as many
3383          * devices as possible, even if the stripes are not maximum sized.
3384          */
3385         stripe_size = devices_info[ndevs-1].max_avail;
3386         num_stripes = ndevs * dev_stripes;
3387
3388         if (stripe_size * ndevs > max_chunk_size * ncopies) {
3389                 stripe_size = max_chunk_size * ncopies;
3390                 do_div(stripe_size, ndevs);
3391         }
3392
3393         do_div(stripe_size, dev_stripes);
3394
3395         /* align to BTRFS_STRIPE_LEN */
3396         do_div(stripe_size, BTRFS_STRIPE_LEN);
3397         stripe_size *= BTRFS_STRIPE_LEN;
3398
3399         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3400         if (!map) {
3401                 ret = -ENOMEM;
3402                 goto error;
3403         }
3404         map->num_stripes = num_stripes;
3405
3406         for (i = 0; i < ndevs; ++i) {
3407                 for (j = 0; j < dev_stripes; ++j) {
3408                         int s = i * dev_stripes + j;
3409                         map->stripes[s].dev = devices_info[i].dev;
3410                         map->stripes[s].physical = devices_info[i].dev_offset +
3411                                                    j * stripe_size;
3412                 }
3413         }
3414         map->sector_size = extent_root->sectorsize;
3415         map->stripe_len = BTRFS_STRIPE_LEN;
3416         map->io_align = BTRFS_STRIPE_LEN;
3417         map->io_width = BTRFS_STRIPE_LEN;
3418         map->type = type;
3419         map->sub_stripes = sub_stripes;
3420
3421         *map_ret = map;
3422         num_bytes = stripe_size * (num_stripes / ncopies);
3423
3424         *stripe_size_out = stripe_size;
3425         *num_bytes_out = num_bytes;
3426
3427         trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
3428
3429         em = alloc_extent_map();
3430         if (!em) {
3431                 ret = -ENOMEM;
3432                 goto error;
3433         }
3434         em->bdev = (struct block_device *)map;
3435         em->start = start;
3436         em->len = num_bytes;
3437         em->block_start = 0;
3438         em->block_len = em->len;
3439
3440         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
3441         write_lock(&em_tree->lock);
3442         ret = add_extent_mapping(em_tree, em);
3443         write_unlock(&em_tree->lock);
3444         free_extent_map(em);
3445         if (ret)
3446                 goto error;
3447
3448         ret = btrfs_make_block_group(trans, extent_root, 0, type,
3449                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3450                                      start, num_bytes);
3451         if (ret)
3452                 goto error;
3453
3454         for (i = 0; i < map->num_stripes; ++i) {
3455                 struct btrfs_device *device;
3456                 u64 dev_offset;
3457
3458                 device = map->stripes[i].dev;
3459                 dev_offset = map->stripes[i].physical;
3460
3461                 ret = btrfs_alloc_dev_extent(trans, device,
3462                                 info->chunk_root->root_key.objectid,
3463                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3464                                 start, dev_offset, stripe_size);
3465                 if (ret) {
3466                         btrfs_abort_transaction(trans, extent_root, ret);
3467                         goto error;
3468                 }
3469         }
3470
3471         kfree(devices_info);
3472         return 0;
3473
3474 error:
3475         kfree(map);
3476         kfree(devices_info);
3477         return ret;
3478 }
3479
3480 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3481                                 struct btrfs_root *extent_root,
3482                                 struct map_lookup *map, u64 chunk_offset,
3483                                 u64 chunk_size, u64 stripe_size)
3484 {
3485         u64 dev_offset;
3486         struct btrfs_key key;
3487         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3488         struct btrfs_device *device;
3489         struct btrfs_chunk *chunk;
3490         struct btrfs_stripe *stripe;
3491         size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3492         int index = 0;
3493         int ret;
3494
3495         chunk = kzalloc(item_size, GFP_NOFS);
3496         if (!chunk)
3497                 return -ENOMEM;
3498
3499         index = 0;
3500         while (index < map->num_stripes) {
3501                 device = map->stripes[index].dev;
3502                 device->bytes_used += stripe_size;
3503                 ret = btrfs_update_device(trans, device);
3504                 if (ret)
3505                         goto out_free;
3506                 index++;
3507         }
3508
3509         spin_lock(&extent_root->fs_info->free_chunk_lock);
3510         extent_root->fs_info->free_chunk_space -= (stripe_size *
3511                                                    map->num_stripes);
3512         spin_unlock(&extent_root->fs_info->free_chunk_lock);
3513
3514         index = 0;
3515         stripe = &chunk->stripe;
3516         while (index < map->num_stripes) {
3517                 device = map->stripes[index].dev;
3518                 dev_offset = map->stripes[index].physical;
3519
3520                 btrfs_set_stack_stripe_devid(stripe, device->devid);
3521                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
3522                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
3523                 stripe++;
3524                 index++;
3525         }
3526
3527         btrfs_set_stack_chunk_length(chunk, chunk_size);
3528         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
3529         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3530         btrfs_set_stack_chunk_type(chunk, map->type);
3531         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3532         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3533         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
3534         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
3535         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
3536
3537         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3538         key.type = BTRFS_CHUNK_ITEM_KEY;
3539         key.offset = chunk_offset;
3540
3541         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
3542
3543         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3544                 /*
3545                  * TODO: Cleanup of inserted chunk root in case of
3546                  * failure.
3547                  */
3548                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
3549                                              item_size);
3550         }
3551
3552 out_free:
3553         kfree(chunk);
3554         return ret;
3555 }
3556
3557 /*
3558  * Chunk allocation falls into two parts. The first part does works
3559  * that make the new allocated chunk useable, but not do any operation
3560  * that modifies the chunk tree. The second part does the works that
3561  * require modifying the chunk tree. This division is important for the
3562  * bootstrap process of adding storage to a seed btrfs.
3563  */
3564 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3565                       struct btrfs_root *extent_root, u64 type)
3566 {
3567         u64 chunk_offset;
3568         u64 chunk_size;
3569         u64 stripe_size;
3570         struct map_lookup *map;
3571         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3572         int ret;
3573
3574         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3575                               &chunk_offset);
3576         if (ret)
3577                 return ret;
3578
3579         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3580                                   &stripe_size, chunk_offset, type);
3581         if (ret)
3582                 return ret;
3583
3584         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3585                                    chunk_size, stripe_size);
3586         if (ret)
3587                 return ret;
3588         return 0;
3589 }
3590
3591 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
3592                                          struct btrfs_root *root,
3593                                          struct btrfs_device *device)
3594 {
3595         u64 chunk_offset;
3596         u64 sys_chunk_offset;
3597         u64 chunk_size;
3598         u64 sys_chunk_size;
3599         u64 stripe_size;
3600         u64 sys_stripe_size;
3601         u64 alloc_profile;
3602         struct map_lookup *map;
3603         struct map_lookup *sys_map;
3604         struct btrfs_fs_info *fs_info = root->fs_info;
3605         struct btrfs_root *extent_root = fs_info->extent_root;
3606         int ret;
3607
3608         ret = find_next_chunk(fs_info->chunk_root,
3609                               BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
3610         if (ret)
3611                 return ret;
3612
3613         alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
3614                                 fs_info->avail_metadata_alloc_bits;
3615         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3616
3617         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3618                                   &stripe_size, chunk_offset, alloc_profile);
3619         if (ret)
3620                 return ret;
3621
3622         sys_chunk_offset = chunk_offset + chunk_size;
3623
3624         alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
3625                                 fs_info->avail_system_alloc_bits;
3626         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3627
3628         ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3629                                   &sys_chunk_size, &sys_stripe_size,
3630                                   sys_chunk_offset, alloc_profile);
3631         if (ret) {
3632                 btrfs_abort_transaction(trans, root, ret);
3633                 goto out;
3634         }
3635
3636         ret = btrfs_add_device(trans, fs_info->chunk_root, device);
3637         if (ret) {
3638                 btrfs_abort_transaction(trans, root, ret);
3639                 goto out;
3640         }
3641
3642         /*
3643          * Modifying chunk tree needs allocating new blocks from both
3644          * system block group and metadata block group. So we only can
3645          * do operations require modifying the chunk tree after both
3646          * block groups were created.
3647          */
3648         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3649                                    chunk_size, stripe_size);
3650         if (ret) {
3651                 btrfs_abort_transaction(trans, root, ret);
3652                 goto out;
3653         }
3654
3655         ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3656                                    sys_chunk_offset, sys_chunk_size,
3657                                    sys_stripe_size);
3658         if (ret)
3659                 btrfs_abort_transaction(trans, root, ret);
3660
3661 out:
3662
3663         return ret;
3664 }
3665
3666 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3667 {
3668         struct extent_map *em;
3669         struct map_lookup *map;
3670         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3671         int readonly = 0;
3672         int i;
3673
3674         read_lock(&map_tree->map_tree.lock);
3675         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3676         read_unlock(&map_tree->map_tree.lock);
3677         if (!em)
3678                 return 1;
3679
3680         if (btrfs_test_opt(root, DEGRADED)) {
3681                 free_extent_map(em);
3682                 return 0;
3683         }
3684
3685         map = (struct map_lookup *)em->bdev;
3686         for (i = 0; i < map->num_stripes; i++) {
3687                 if (!map->stripes[i].dev->writeable) {
3688                         readonly = 1;
3689                         break;
3690                 }
3691         }
3692         free_extent_map(em);
3693         return readonly;
3694 }
3695
3696 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3697 {
3698         extent_map_tree_init(&tree->map_tree);
3699 }
3700
3701 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3702 {
3703         struct extent_map *em;
3704
3705         while (1) {
3706                 write_lock(&tree->map_tree.lock);
3707                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3708                 if (em)
3709                         remove_extent_mapping(&tree->map_tree, em);
3710                 write_unlock(&tree->map_tree.lock);
3711                 if (!em)
3712                         break;
3713                 kfree(em->bdev);
3714                 /* once for us */
3715                 free_extent_map(em);
3716                 /* once for the tree */
3717                 free_extent_map(em);
3718         }
3719 }
3720
3721 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3722 {
3723         struct extent_map *em;
3724         struct map_lookup *map;
3725         struct extent_map_tree *em_tree = &map_tree->map_tree;
3726         int ret;
3727
3728         read_lock(&em_tree->lock);
3729         em = lookup_extent_mapping(em_tree, logical, len);
3730         read_unlock(&em_tree->lock);
3731         BUG_ON(!em);
3732
3733         BUG_ON(em->start > logical || em->start + em->len < logical);
3734         map = (struct map_lookup *)em->bdev;
3735         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3736                 ret = map->num_stripes;
3737         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3738                 ret = map->sub_stripes;
3739         else
3740                 ret = 1;
3741         free_extent_map(em);
3742         return ret;
3743 }
3744
3745 static int find_live_mirror(struct map_lookup *map, int first, int num,
3746                             int optimal)
3747 {
3748         int i;
3749         if (map->stripes[optimal].dev->bdev)
3750                 return optimal;
3751         for (i = first; i < first + num; i++) {
3752                 if (map->stripes[i].dev->bdev)
3753                         return i;
3754         }
3755         /* we couldn't find one that doesn't fail.  Just return something
3756          * and the io error handling code will clean up eventually
3757          */
3758         return optimal;
3759 }
3760
3761 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3762                              u64 logical, u64 *length,
3763                              struct btrfs_bio **bbio_ret,
3764                              int mirror_num)
3765 {
3766         struct extent_map *em;
3767         struct map_lookup *map;
3768         struct extent_map_tree *em_tree = &map_tree->map_tree;
3769         u64 offset;
3770         u64 stripe_offset;
3771         u64 stripe_end_offset;
3772         u64 stripe_nr;
3773         u64 stripe_nr_orig;
3774         u64 stripe_nr_end;
3775         int stripe_index;
3776         int i;
3777         int ret = 0;
3778         int num_stripes;
3779         int max_errors = 0;
3780         struct btrfs_bio *bbio = NULL;
3781
3782         read_lock(&em_tree->lock);
3783         em = lookup_extent_mapping(em_tree, logical, *length);
3784         read_unlock(&em_tree->lock);
3785
3786         if (!em) {
3787                 printk(KERN_CRIT "btrfs: unable to find logical %llu len %llu\n",
3788                        (unsigned long long)logical,
3789                        (unsigned long long)*length);
3790                 BUG();
3791         }
3792
3793         BUG_ON(em->start > logical || em->start + em->len < logical);
3794         map = (struct map_lookup *)em->bdev;
3795         offset = logical - em->start;
3796
3797         if (mirror_num > map->num_stripes)
3798                 mirror_num = 0;
3799
3800         stripe_nr = offset;
3801         /*
3802          * stripe_nr counts the total number of stripes we have to stride
3803          * to get to this block
3804          */
3805         do_div(stripe_nr, map->stripe_len);
3806
3807         stripe_offset = stripe_nr * map->stripe_len;
3808         BUG_ON(offset < stripe_offset);
3809
3810         /* stripe_offset is the offset of this block in its stripe*/
3811         stripe_offset = offset - stripe_offset;
3812
3813         if (rw & REQ_DISCARD)
3814                 *length = min_t(u64, em->len - offset, *length);
3815         else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
3816                 /* we limit the length of each bio to what fits in a stripe */
3817                 *length = min_t(u64, em->len - offset,
3818                                 map->stripe_len - stripe_offset);
3819         } else {
3820                 *length = em->len - offset;
3821         }
3822
3823         if (!bbio_ret)
3824                 goto out;
3825
3826         num_stripes = 1;
3827         stripe_index = 0;
3828         stripe_nr_orig = stripe_nr;
3829         stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3830                         (~(map->stripe_len - 1));
3831         do_div(stripe_nr_end, map->stripe_len);
3832         stripe_end_offset = stripe_nr_end * map->stripe_len -
3833                             (offset + *length);
3834         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3835                 if (rw & REQ_DISCARD)
3836                         num_stripes = min_t(u64, map->num_stripes,
3837                                             stripe_nr_end - stripe_nr_orig);
3838                 stripe_index = do_div(stripe_nr, map->num_stripes);
3839         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3840                 if (rw & (REQ_WRITE | REQ_DISCARD))
3841                         num_stripes = map->num_stripes;
3842                 else if (mirror_num)
3843                         stripe_index = mirror_num - 1;
3844                 else {
3845                         stripe_index = find_live_mirror(map, 0,
3846                                             map->num_stripes,
3847                                             current->pid % map->num_stripes);
3848                         mirror_num = stripe_index + 1;
3849                 }
3850
3851         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3852                 if (rw & (REQ_WRITE | REQ_DISCARD)) {
3853                         num_stripes = map->num_stripes;
3854                 } else if (mirror_num) {
3855                         stripe_index = mirror_num - 1;
3856                 } else {
3857                         mirror_num = 1;
3858                 }
3859
3860         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3861                 int factor = map->num_stripes / map->sub_stripes;
3862
3863                 stripe_index = do_div(stripe_nr, factor);
3864                 stripe_index *= map->sub_stripes;
3865
3866                 if (rw & REQ_WRITE)
3867                         num_stripes = map->sub_stripes;
3868                 else if (rw & REQ_DISCARD)
3869                         num_stripes = min_t(u64, map->sub_stripes *
3870                                             (stripe_nr_end - stripe_nr_orig),
3871                                             map->num_stripes);
3872                 else if (mirror_num)
3873                         stripe_index += mirror_num - 1;
3874                 else {
3875                         int old_stripe_index = stripe_index;
3876                         stripe_index = find_live_mirror(map, stripe_index,
3877                                               map->sub_stripes, stripe_index +
3878                                               current->pid % map->sub_stripes);
3879                         mirror_num = stripe_index - old_stripe_index + 1;
3880                 }
3881         } else {
3882                 /*
3883                  * after this do_div call, stripe_nr is the number of stripes
3884                  * on this device we have to walk to find the data, and
3885                  * stripe_index is the number of our device in the stripe array
3886                  */
3887                 stripe_index = do_div(stripe_nr, map->num_stripes);
3888                 mirror_num = stripe_index + 1;
3889         }
3890         BUG_ON(stripe_index >= map->num_stripes);
3891
3892         bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3893         if (!bbio) {
3894                 ret = -ENOMEM;
3895                 goto out;
3896         }
3897         atomic_set(&bbio->error, 0);
3898
3899         if (rw & REQ_DISCARD) {
3900                 int factor = 0;
3901                 int sub_stripes = 0;
3902                 u64 stripes_per_dev = 0;
3903                 u32 remaining_stripes = 0;
3904                 u32 last_stripe = 0;
3905
3906                 if (map->type &
3907                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3908                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3909                                 sub_stripes = 1;
3910                         else
3911                                 sub_stripes = map->sub_stripes;
3912
3913                         factor = map->num_stripes / sub_stripes;
3914                         stripes_per_dev = div_u64_rem(stripe_nr_end -
3915                                                       stripe_nr_orig,
3916                                                       factor,
3917                                                       &remaining_stripes);
3918                         div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
3919                         last_stripe *= sub_stripes;
3920                 }
3921
3922                 for (i = 0; i < num_stripes; i++) {
3923                         bbio->stripes[i].physical =
3924                                 map->stripes[stripe_index].physical +
3925                                 stripe_offset + stripe_nr * map->stripe_len;
3926                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
3927
3928                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3929                                          BTRFS_BLOCK_GROUP_RAID10)) {
3930                                 bbio->stripes[i].length = stripes_per_dev *
3931                                                           map->stripe_len;
3932
3933                                 if (i / sub_stripes < remaining_stripes)
3934                                         bbio->stripes[i].length +=
3935                                                 map->stripe_len;
3936
3937                                 /*
3938                                  * Special for the first stripe and
3939                                  * the last stripe:
3940                                  *
3941                                  * |-------|...|-------|
3942                                  *     |----------|
3943                                  *    off     end_off
3944                                  */
3945                                 if (i < sub_stripes)
3946                                         bbio->stripes[i].length -=
3947                                                 stripe_offset;
3948
3949                                 if (stripe_index >= last_stripe &&
3950                                     stripe_index <= (last_stripe +
3951                                                      sub_stripes - 1))
3952                                         bbio->stripes[i].length -=
3953                                                 stripe_end_offset;
3954
3955                                 if (i == sub_stripes - 1)
3956                                         stripe_offset = 0;
3957                         } else
3958                                 bbio->stripes[i].length = *length;
3959
3960                         stripe_index++;
3961                         if (stripe_index == map->num_stripes) {
3962                                 /* This could only happen for RAID0/10 */
3963                                 stripe_index = 0;
3964                                 stripe_nr++;
3965                         }
3966                 }
3967         } else {
3968                 for (i = 0; i < num_stripes; i++) {
3969                         bbio->stripes[i].physical =
3970                                 map->stripes[stripe_index].physical +
3971                                 stripe_offset +
3972                                 stripe_nr * map->stripe_len;
3973                         bbio->stripes[i].dev =
3974                                 map->stripes[stripe_index].dev;
3975                         stripe_index++;
3976                 }
3977         }
3978
3979         if (rw & REQ_WRITE) {
3980                 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3981                                  BTRFS_BLOCK_GROUP_RAID10 |
3982                                  BTRFS_BLOCK_GROUP_DUP)) {
3983                         max_errors = 1;
3984                 }
3985         }
3986
3987         *bbio_ret = bbio;
3988         bbio->num_stripes = num_stripes;
3989         bbio->max_errors = max_errors;
3990         bbio->mirror_num = mirror_num;
3991 out:
3992         free_extent_map(em);
3993         return ret;
3994 }
3995
3996 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3997                       u64 logical, u64 *length,
3998                       struct btrfs_bio **bbio_ret, int mirror_num)
3999 {
4000         return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
4001                                  mirror_num);
4002 }
4003
4004 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
4005                      u64 chunk_start, u64 physical, u64 devid,
4006                      u64 **logical, int *naddrs, int *stripe_len)
4007 {
4008         struct extent_map_tree *em_tree = &map_tree->map_tree;
4009         struct extent_map *em;
4010         struct map_lookup *map;
4011         u64 *buf;
4012         u64 bytenr;
4013         u64 length;
4014         u64 stripe_nr;
4015         int i, j, nr = 0;
4016
4017         read_lock(&em_tree->lock);
4018         em = lookup_extent_mapping(em_tree, chunk_start, 1);
4019         read_unlock(&em_tree->lock);
4020
4021         BUG_ON(!em || em->start != chunk_start);
4022         map = (struct map_lookup *)em->bdev;
4023
4024         length = em->len;
4025         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4026                 do_div(length, map->num_stripes / map->sub_stripes);
4027         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4028                 do_div(length, map->num_stripes);
4029
4030         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
4031         BUG_ON(!buf); /* -ENOMEM */
4032
4033         for (i = 0; i < map->num_stripes; i++) {
4034                 if (devid && map->stripes[i].dev->devid != devid)
4035                         continue;
4036                 if (map->stripes[i].physical > physical ||
4037                     map->stripes[i].physical + length <= physical)
4038                         continue;
4039
4040                 stripe_nr = physical - map->stripes[i].physical;
4041                 do_div(stripe_nr, map->stripe_len);
4042
4043                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4044                         stripe_nr = stripe_nr * map->num_stripes + i;
4045                         do_div(stripe_nr, map->sub_stripes);
4046                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4047                         stripe_nr = stripe_nr * map->num_stripes + i;
4048                 }
4049                 bytenr = chunk_start + stripe_nr * map->stripe_len;
4050                 WARN_ON(nr >= map->num_stripes);
4051                 for (j = 0; j < nr; j++) {
4052                         if (buf[j] == bytenr)
4053                                 break;
4054                 }
4055                 if (j == nr) {
4056                         WARN_ON(nr >= map->num_stripes);
4057                         buf[nr++] = bytenr;
4058                 }
4059         }
4060
4061         *logical = buf;
4062         *naddrs = nr;
4063         *stripe_len = map->stripe_len;
4064
4065         free_extent_map(em);
4066         return 0;
4067 }
4068
4069 static void *merge_stripe_index_into_bio_private(void *bi_private,
4070                                                  unsigned int stripe_index)
4071 {
4072         /*
4073          * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4074          * at most 1.
4075          * The alternative solution (instead of stealing bits from the
4076          * pointer) would be to allocate an intermediate structure
4077          * that contains the old private pointer plus the stripe_index.
4078          */
4079         BUG_ON((((uintptr_t)bi_private) & 3) != 0);
4080         BUG_ON(stripe_index > 3);
4081         return (void *)(((uintptr_t)bi_private) | stripe_index);
4082 }
4083
4084 static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private)
4085 {
4086         return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3));
4087 }
4088
4089 static unsigned int extract_stripe_index_from_bio_private(void *bi_private)
4090 {
4091         return (unsigned int)((uintptr_t)bi_private) & 3;
4092 }
4093
4094 static void btrfs_end_bio(struct bio *bio, int err)
4095 {
4096         struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private);
4097         int is_orig_bio = 0;
4098
4099         if (err) {
4100                 atomic_inc(&bbio->error);
4101                 if (err == -EIO || err == -EREMOTEIO) {
4102                         unsigned int stripe_index =
4103                                 extract_stripe_index_from_bio_private(
4104                                         bio->bi_private);
4105                         struct btrfs_device *dev;
4106
4107                         BUG_ON(stripe_index >= bbio->num_stripes);
4108                         dev = bbio->stripes[stripe_index].dev;
4109                         if (dev->bdev) {
4110                                 if (bio->bi_rw & WRITE)
4111                                         btrfs_dev_stat_inc(dev,
4112                                                 BTRFS_DEV_STAT_WRITE_ERRS);
4113                                 else
4114                                         btrfs_dev_stat_inc(dev,
4115                                                 BTRFS_DEV_STAT_READ_ERRS);
4116                                 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
4117                                         btrfs_dev_stat_inc(dev,
4118                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
4119                                 btrfs_dev_stat_print_on_error(dev);
4120                         }
4121                 }
4122         }
4123
4124         if (bio == bbio->orig_bio)
4125                 is_orig_bio = 1;
4126
4127         if (atomic_dec_and_test(&bbio->stripes_pending)) {
4128                 if (!is_orig_bio) {
4129                         bio_put(bio);
4130                         bio = bbio->orig_bio;
4131                 }
4132                 bio->bi_private = bbio->private;
4133                 bio->bi_end_io = bbio->end_io;
4134                 bio->bi_bdev = (struct block_device *)
4135                                         (unsigned long)bbio->mirror_num;
4136                 /* only send an error to the higher layers if it is
4137                  * beyond the tolerance of the multi-bio
4138                  */
4139                 if (atomic_read(&bbio->error) > bbio->max_errors) {
4140                         err = -EIO;
4141                 } else {
4142                         /*
4143                          * this bio is actually up to date, we didn't
4144                          * go over the max number of errors
4145                          */
4146                         set_bit(BIO_UPTODATE, &bio->bi_flags);
4147                         err = 0;
4148                 }
4149                 kfree(bbio);
4150
4151                 bio_endio(bio, err);
4152         } else if (!is_orig_bio) {
4153                 bio_put(bio);
4154         }
4155 }
4156
4157 struct async_sched {
4158         struct bio *bio;
4159         int rw;
4160         struct btrfs_fs_info *info;
4161         struct btrfs_work work;
4162 };
4163
4164 /*
4165  * see run_scheduled_bios for a description of why bios are collected for
4166  * async submit.
4167  *
4168  * This will add one bio to the pending list for a device and make sure
4169  * the work struct is scheduled.
4170  */
4171 static noinline void schedule_bio(struct btrfs_root *root,
4172                                  struct btrfs_device *device,
4173                                  int rw, struct bio *bio)
4174 {
4175         int should_queue = 1;
4176         struct btrfs_pending_bios *pending_bios;
4177
4178         /* don't bother with additional async steps for reads, right now */
4179         if (!(rw & REQ_WRITE)) {
4180                 bio_get(bio);
4181                 btrfsic_submit_bio(rw, bio);
4182                 bio_put(bio);
4183                 return;
4184         }
4185
4186         /*
4187          * nr_async_bios allows us to reliably return congestion to the
4188          * higher layers.  Otherwise, the async bio makes it appear we have
4189          * made progress against dirty pages when we've really just put it
4190          * on a queue for later
4191          */
4192         atomic_inc(&root->fs_info->nr_async_bios);
4193         WARN_ON(bio->bi_next);
4194         bio->bi_next = NULL;
4195         bio->bi_rw |= rw;
4196
4197         spin_lock(&device->io_lock);
4198         if (bio->bi_rw & REQ_SYNC)
4199                 pending_bios = &device->pending_sync_bios;
4200         else
4201                 pending_bios = &device->pending_bios;
4202
4203         if (pending_bios->tail)
4204                 pending_bios->tail->bi_next = bio;
4205
4206         pending_bios->tail = bio;
4207         if (!pending_bios->head)
4208                 pending_bios->head = bio;
4209         if (device->running_pending)
4210                 should_queue = 0;
4211
4212         spin_unlock(&device->io_lock);
4213
4214         if (should_queue)
4215                 btrfs_queue_worker(&root->fs_info->submit_workers,
4216                                    &device->work);
4217 }
4218
4219 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
4220                        sector_t sector)
4221 {
4222         struct bio_vec *prev;
4223         struct request_queue *q = bdev_get_queue(bdev);
4224         unsigned short max_sectors = queue_max_sectors(q);
4225         struct bvec_merge_data bvm = {
4226                 .bi_bdev = bdev,
4227                 .bi_sector = sector,
4228                 .bi_rw = bio->bi_rw,
4229         };
4230
4231         if (bio->bi_vcnt == 0) {
4232                 WARN_ON(1);
4233                 return 1;
4234         }
4235
4236         prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
4237         if ((bio->bi_size >> 9) > max_sectors)
4238                 return 0;
4239
4240         if (!q->merge_bvec_fn)
4241                 return 1;
4242
4243         bvm.bi_size = bio->bi_size - prev->bv_len;
4244         if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
4245                 return 0;
4246         return 1;
4247 }
4248
4249 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
4250                               struct bio *bio, u64 physical, int dev_nr,
4251                               int rw, int async)
4252 {
4253         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
4254
4255         bio->bi_private = bbio;
4256         bio->bi_private = merge_stripe_index_into_bio_private(
4257                         bio->bi_private, (unsigned int)dev_nr);
4258         bio->bi_end_io = btrfs_end_bio;
4259         bio->bi_sector = physical >> 9;
4260 #ifdef DEBUG
4261         {
4262                 struct rcu_string *name;
4263
4264                 rcu_read_lock();
4265                 name = rcu_dereference(dev->name);
4266                 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
4267                          "(%s id %llu), size=%u\n", rw,
4268                          (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4269                          name->str, dev->devid, bio->bi_size);
4270                 rcu_read_unlock();
4271         }
4272 #endif
4273         bio->bi_bdev = dev->bdev;
4274         if (async)
4275                 schedule_bio(root, dev, rw, bio);
4276         else
4277                 btrfsic_submit_bio(rw, bio);
4278 }
4279
4280 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
4281                               struct bio *first_bio, struct btrfs_device *dev,
4282                               int dev_nr, int rw, int async)
4283 {
4284         struct bio_vec *bvec = first_bio->bi_io_vec;
4285         struct bio *bio;
4286         int nr_vecs = bio_get_nr_vecs(dev->bdev);
4287         u64 physical = bbio->stripes[dev_nr].physical;
4288
4289 again:
4290         bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
4291         if (!bio)
4292                 return -ENOMEM;
4293
4294         while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
4295                 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
4296                                  bvec->bv_offset) < bvec->bv_len) {
4297                         u64 len = bio->bi_size;
4298
4299                         atomic_inc(&bbio->stripes_pending);
4300                         submit_stripe_bio(root, bbio, bio, physical, dev_nr,
4301                                           rw, async);
4302                         physical += len;
4303                         goto again;
4304                 }
4305                 bvec++;
4306         }
4307
4308         submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
4309         return 0;
4310 }
4311
4312 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
4313 {
4314         atomic_inc(&bbio->error);
4315         if (atomic_dec_and_test(&bbio->stripes_pending)) {
4316                 bio->bi_private = bbio->private;
4317                 bio->bi_end_io = bbio->end_io;
4318                 bio->bi_bdev = (struct block_device *)
4319                         (unsigned long)bbio->mirror_num;
4320                 bio->bi_sector = logical >> 9;
4321                 kfree(bbio);
4322                 bio_endio(bio, -EIO);
4323         }
4324 }
4325
4326 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
4327                   int mirror_num, int async_submit)
4328 {
4329         struct btrfs_mapping_tree *map_tree;
4330         struct btrfs_device *dev;
4331         struct bio *first_bio = bio;
4332         u64 logical = (u64)bio->bi_sector << 9;
4333         u64 length = 0;
4334         u64 map_length;
4335         int ret;
4336         int dev_nr = 0;
4337         int total_devs = 1;
4338         struct btrfs_bio *bbio = NULL;
4339
4340         length = bio->bi_size;
4341         map_tree = &root->fs_info->mapping_tree;
4342         map_length = length;
4343
4344         ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
4345                               mirror_num);
4346         if (ret) /* -ENOMEM */
4347                 return ret;
4348
4349         total_devs = bbio->num_stripes;
4350         if (map_length < length) {
4351                 printk(KERN_CRIT "btrfs: mapping failed logical %llu bio len %llu "
4352                        "len %llu\n", (unsigned long long)logical,
4353                        (unsigned long long)length,
4354                        (unsigned long long)map_length);
4355                 BUG();
4356         }
4357
4358         bbio->orig_bio = first_bio;
4359         bbio->private = first_bio->bi_private;
4360         bbio->end_io = first_bio->bi_end_io;
4361         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
4362
4363         while (dev_nr < total_devs) {
4364                 dev = bbio->stripes[dev_nr].dev;
4365                 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
4366                         bbio_error(bbio, first_bio, logical);
4367                         dev_nr++;
4368                         continue;
4369                 }
4370
4371                 /*
4372                  * Check and see if we're ok with this bio based on it's size
4373                  * and offset with the given device.
4374                  */
4375                 if (!bio_size_ok(dev->bdev, first_bio,
4376                                  bbio->stripes[dev_nr].physical >> 9)) {
4377                         ret = breakup_stripe_bio(root, bbio, first_bio, dev,
4378                                                  dev_nr, rw, async_submit);
4379                         BUG_ON(ret);
4380                         dev_nr++;
4381                         continue;
4382                 }
4383
4384                 if (dev_nr < total_devs - 1) {
4385                         bio = bio_clone(first_bio, GFP_NOFS);
4386                         BUG_ON(!bio); /* -ENOMEM */
4387                 } else {
4388                         bio = first_bio;
4389                 }
4390
4391                 submit_stripe_bio(root, bbio, bio,
4392                                   bbio->stripes[dev_nr].physical, dev_nr, rw,
4393                                   async_submit);
4394                 dev_nr++;
4395         }
4396         return 0;
4397 }
4398
4399 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
4400                                        u8 *uuid, u8 *fsid)
4401 {
4402         struct btrfs_device *device;
4403         struct btrfs_fs_devices *cur_devices;
4404
4405         cur_devices = root->fs_info->fs_devices;
4406         while (cur_devices) {
4407                 if (!fsid ||
4408                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4409                         device = __find_device(&cur_devices->devices,
4410                                                devid, uuid);
4411                         if (device)
4412                                 return device;
4413                 }
4414                 cur_devices = cur_devices->seed;
4415         }
4416         return NULL;
4417 }
4418
4419 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4420                                             u64 devid, u8 *dev_uuid)
4421 {
4422         struct btrfs_device *device;
4423         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4424
4425         device = kzalloc(sizeof(*device), GFP_NOFS);
4426         if (!device)
4427                 return NULL;
4428         list_add(&device->dev_list,
4429                  &fs_devices->devices);
4430         device->dev_root = root->fs_info->dev_root;
4431         device->devid = devid;
4432         device->work.func = pending_bios_fn;
4433         device->fs_devices = fs_devices;
4434         device->missing = 1;
4435         fs_devices->num_devices++;
4436         fs_devices->missing_devices++;
4437         spin_lock_init(&device->io_lock);
4438         INIT_LIST_HEAD(&device->dev_alloc_list);
4439         memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4440         return device;
4441 }
4442
4443 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4444                           struct extent_buffer *leaf,
4445                           struct btrfs_chunk *chunk)
4446 {
4447         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4448         struct map_lookup *map;
4449         struct extent_map *em;
4450         u64 logical;
4451         u64 length;
4452         u64 devid;
4453         u8 uuid[BTRFS_UUID_SIZE];
4454         int num_stripes;
4455         int ret;
4456         int i;
4457
4458         logical = key->offset;
4459         length = btrfs_chunk_length(leaf, chunk);
4460
4461         read_lock(&map_tree->map_tree.lock);
4462         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
4463         read_unlock(&map_tree->map_tree.lock);
4464
4465         /* already mapped? */
4466         if (em && em->start <= logical && em->start + em->len > logical) {
4467                 free_extent_map(em);
4468                 return 0;
4469         } else if (em) {
4470                 free_extent_map(em);
4471         }
4472
4473         em = alloc_extent_map();
4474         if (!em)
4475                 return -ENOMEM;
4476         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4477         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4478         if (!map) {
4479                 free_extent_map(em);
4480                 return -ENOMEM;
4481         }
4482
4483         em->bdev = (struct block_device *)map;
4484         em->start = logical;
4485         em->len = length;
4486         em->block_start = 0;
4487         em->block_len = em->len;
4488
4489         map->num_stripes = num_stripes;
4490         map->io_width = btrfs_chunk_io_width(leaf, chunk);
4491         map->io_align = btrfs_chunk_io_align(leaf, chunk);
4492         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4493         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4494         map->type = btrfs_chunk_type(leaf, chunk);
4495         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
4496         for (i = 0; i < num_stripes; i++) {
4497                 map->stripes[i].physical =
4498                         btrfs_stripe_offset_nr(leaf, chunk, i);
4499                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
4500                 read_extent_buffer(leaf, uuid, (unsigned long)
4501                                    btrfs_stripe_dev_uuid_nr(chunk, i),
4502                                    BTRFS_UUID_SIZE);
4503                 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4504                                                         NULL);
4505                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
4506                         kfree(map);
4507                         free_extent_map(em);
4508                         return -EIO;
4509                 }
4510                 if (!map->stripes[i].dev) {
4511                         map->stripes[i].dev =
4512                                 add_missing_dev(root, devid, uuid);
4513                         if (!map->stripes[i].dev) {
4514                                 kfree(map);
4515                                 free_extent_map(em);
4516                                 return -EIO;
4517                         }
4518                 }
4519                 map->stripes[i].dev->in_fs_metadata = 1;
4520         }
4521
4522         write_lock(&map_tree->map_tree.lock);
4523         ret = add_extent_mapping(&map_tree->map_tree, em);
4524         write_unlock(&map_tree->map_tree.lock);
4525         BUG_ON(ret); /* Tree corruption */
4526         free_extent_map(em);
4527
4528         return 0;
4529 }
4530
4531 static void fill_device_from_item(struct extent_buffer *leaf,
4532                                  struct btrfs_dev_item *dev_item,
4533                                  struct btrfs_device *device)
4534 {
4535         unsigned long ptr;
4536
4537         device->devid = btrfs_device_id(leaf, dev_item);
4538         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4539         device->total_bytes = device->disk_total_bytes;
4540         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4541         device->type = btrfs_device_type(leaf, dev_item);
4542         device->io_align = btrfs_device_io_align(leaf, dev_item);
4543         device->io_width = btrfs_device_io_width(leaf, dev_item);
4544         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
4545
4546         ptr = (unsigned long)btrfs_device_uuid(dev_item);
4547         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
4548 }
4549
4550 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4551 {
4552         struct btrfs_fs_devices *fs_devices;
4553         int ret;
4554
4555         BUG_ON(!mutex_is_locked(&uuid_mutex));
4556
4557         fs_devices = root->fs_info->fs_devices->seed;
4558         while (fs_devices) {
4559                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4560                         ret = 0;
4561                         goto out;
4562                 }
4563                 fs_devices = fs_devices->seed;
4564         }
4565
4566         fs_devices = find_fsid(fsid);
4567         if (!fs_devices) {
4568                 ret = -ENOENT;
4569                 goto out;
4570         }
4571
4572         fs_devices = clone_fs_devices(fs_devices);
4573         if (IS_ERR(fs_devices)) {
4574                 ret = PTR_ERR(fs_devices);
4575                 goto out;
4576         }
4577
4578         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
4579                                    root->fs_info->bdev_holder);
4580         if (ret) {
4581                 free_fs_devices(fs_devices);
4582                 goto out;
4583         }
4584
4585         if (!fs_devices->seeding) {
4586                 __btrfs_close_devices(fs_devices);
4587                 free_fs_devices(fs_devices);
4588                 ret = -EINVAL;
4589                 goto out;
4590         }
4591
4592         fs_devices->seed = root->fs_info->fs_devices->seed;
4593         root->fs_info->fs_devices->seed = fs_devices;
4594 out:
4595         return ret;
4596 }
4597
4598 static int read_one_dev(struct btrfs_root *root,
4599                         struct extent_buffer *leaf,
4600                         struct btrfs_dev_item *dev_item)
4601 {
4602         struct btrfs_device *device;
4603         u64 devid;
4604         int ret;
4605         u8 fs_uuid[BTRFS_UUID_SIZE];
4606         u8 dev_uuid[BTRFS_UUID_SIZE];
4607
4608         devid = btrfs_device_id(leaf, dev_item);
4609         read_extent_buffer(leaf, dev_uuid,
4610                            (unsigned long)btrfs_device_uuid(dev_item),
4611                            BTRFS_UUID_SIZE);
4612         read_extent_buffer(leaf, fs_uuid,
4613                            (unsigned long)btrfs_device_fsid(dev_item),
4614                            BTRFS_UUID_SIZE);
4615
4616         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4617                 ret = open_seed_devices(root, fs_uuid);
4618                 if (ret && !btrfs_test_opt(root, DEGRADED))
4619                         return ret;
4620         }
4621
4622         device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4623         if (!device || !device->bdev) {
4624                 if (!btrfs_test_opt(root, DEGRADED))
4625                         return -EIO;
4626
4627                 if (!device) {
4628                         printk(KERN_WARNING "warning devid %llu missing\n",
4629                                (unsigned long long)devid);
4630                         device = add_missing_dev(root, devid, dev_uuid);
4631                         if (!device)
4632                                 return -ENOMEM;
4633                 } else if (!device->missing) {
4634                         /*
4635                          * this happens when a device that was properly setup
4636                          * in the device info lists suddenly goes bad.
4637                          * device->bdev is NULL, and so we have to set
4638                          * device->missing to one here
4639                          */
4640                         root->fs_info->fs_devices->missing_devices++;
4641                         device->missing = 1;
4642                 }
4643         }
4644
4645         if (device->fs_devices != root->fs_info->fs_devices) {
4646                 BUG_ON(device->writeable);
4647                 if (device->generation !=
4648                     btrfs_device_generation(leaf, dev_item))
4649                         return -EINVAL;
4650         }
4651
4652         fill_device_from_item(leaf, dev_item, device);
4653         device->dev_root = root->fs_info->dev_root;
4654         device->in_fs_metadata = 1;
4655         if (device->writeable) {
4656                 device->fs_devices->total_rw_bytes += device->total_bytes;
4657                 spin_lock(&root->fs_info->free_chunk_lock);
4658                 root->fs_info->free_chunk_space += device->total_bytes -
4659                         device->bytes_used;
4660                 spin_unlock(&root->fs_info->free_chunk_lock);
4661         }
4662         ret = 0;
4663         return ret;
4664 }
4665
4666 int btrfs_read_sys_array(struct btrfs_root *root)
4667 {
4668         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4669         struct extent_buffer *sb;
4670         struct btrfs_disk_key *disk_key;
4671         struct btrfs_chunk *chunk;
4672         u8 *ptr;
4673         unsigned long sb_ptr;
4674         int ret = 0;
4675         u32 num_stripes;
4676         u32 array_size;
4677         u32 len = 0;
4678         u32 cur;
4679         struct btrfs_key key;
4680
4681         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
4682                                           BTRFS_SUPER_INFO_SIZE);
4683         if (!sb)
4684                 return -ENOMEM;
4685         btrfs_set_buffer_uptodate(sb);
4686         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
4687         /*
4688          * The sb extent buffer is artifical and just used to read the system array.
4689          * btrfs_set_buffer_uptodate() call does not properly mark all it's
4690          * pages up-to-date when the page is larger: extent does not cover the
4691          * whole page and consequently check_page_uptodate does not find all
4692          * the page's extents up-to-date (the hole beyond sb),
4693          * write_extent_buffer then triggers a WARN_ON.
4694          *
4695          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4696          * but sb spans only this function. Add an explicit SetPageUptodate call
4697          * to silence the warning eg. on PowerPC 64.
4698          */
4699         if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
4700                 SetPageUptodate(sb->pages[0]);
4701
4702         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
4703         array_size = btrfs_super_sys_array_size(super_copy);
4704
4705         ptr = super_copy->sys_chunk_array;
4706         sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4707         cur = 0;
4708
4709         while (cur < array_size) {
4710                 disk_key = (struct btrfs_disk_key *)ptr;
4711                 btrfs_disk_key_to_cpu(&key, disk_key);
4712
4713                 len = sizeof(*disk_key); ptr += len;
4714                 sb_ptr += len;
4715                 cur += len;
4716
4717                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
4718                         chunk = (struct btrfs_chunk *)sb_ptr;
4719                         ret = read_one_chunk(root, &key, sb, chunk);
4720                         if (ret)
4721                                 break;
4722                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4723                         len = btrfs_chunk_item_size(num_stripes);
4724                 } else {
4725                         ret = -EIO;
4726                         break;
4727                 }
4728                 ptr += len;
4729                 sb_ptr += len;
4730                 cur += len;
4731         }
4732         free_extent_buffer(sb);
4733         return ret;
4734 }
4735
4736 int btrfs_read_chunk_tree(struct btrfs_root *root)
4737 {
4738         struct btrfs_path *path;
4739         struct extent_buffer *leaf;
4740         struct btrfs_key key;
4741         struct btrfs_key found_key;
4742         int ret;
4743         int slot;
4744
4745         root = root->fs_info->chunk_root;
4746
4747         path = btrfs_alloc_path();
4748         if (!path)
4749                 return -ENOMEM;
4750
4751         mutex_lock(&uuid_mutex);
4752         lock_chunks(root);
4753
4754         /* first we search for all of the device items, and then we
4755          * read in all of the chunk items.  This way we can create chunk
4756          * mappings that reference all of the devices that are afound
4757          */
4758         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4759         key.offset = 0;
4760         key.type = 0;
4761 again:
4762         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4763         if (ret < 0)
4764                 goto error;
4765         while (1) {
4766                 leaf = path->nodes[0];
4767                 slot = path->slots[0];
4768                 if (slot >= btrfs_header_nritems(leaf)) {
4769                         ret = btrfs_next_leaf(root, path);
4770                         if (ret == 0)
4771                                 continue;
4772                         if (ret < 0)
4773                                 goto error;
4774                         break;
4775                 }
4776                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4777                 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4778                         if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4779                                 break;
4780                         if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4781                                 struct btrfs_dev_item *dev_item;
4782                                 dev_item = btrfs_item_ptr(leaf, slot,
4783                                                   struct btrfs_dev_item);
4784                                 ret = read_one_dev(root, leaf, dev_item);
4785                                 if (ret)
4786                                         goto error;
4787                         }
4788                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4789                         struct btrfs_chunk *chunk;
4790                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4791                         ret = read_one_chunk(root, &found_key, leaf, chunk);
4792                         if (ret)
4793                                 goto error;
4794                 }
4795                 path->slots[0]++;
4796         }
4797         if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4798                 key.objectid = 0;
4799                 btrfs_release_path(path);
4800                 goto again;
4801         }
4802         ret = 0;
4803 error:
4804         unlock_chunks(root);
4805         mutex_unlock(&uuid_mutex);
4806
4807         btrfs_free_path(path);
4808         return ret;
4809 }
4810
4811 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
4812 {
4813         int i;
4814
4815         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4816                 btrfs_dev_stat_reset(dev, i);
4817 }
4818
4819 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
4820 {
4821         struct btrfs_key key;
4822         struct btrfs_key found_key;
4823         struct btrfs_root *dev_root = fs_info->dev_root;
4824         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4825         struct extent_buffer *eb;
4826         int slot;
4827         int ret = 0;
4828         struct btrfs_device *device;
4829         struct btrfs_path *path = NULL;
4830         int i;
4831
4832         path = btrfs_alloc_path();
4833         if (!path) {
4834                 ret = -ENOMEM;
4835                 goto out;
4836         }
4837
4838         mutex_lock(&fs_devices->device_list_mutex);
4839         list_for_each_entry(device, &fs_devices->devices, dev_list) {
4840                 int item_size;
4841                 struct btrfs_dev_stats_item *ptr;
4842
4843                 key.objectid = 0;
4844                 key.type = BTRFS_DEV_STATS_KEY;
4845                 key.offset = device->devid;
4846                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
4847                 if (ret) {
4848                         __btrfs_reset_dev_stats(device);
4849                         device->dev_stats_valid = 1;
4850                         btrfs_release_path(path);
4851                         continue;
4852                 }
4853                 slot = path->slots[0];
4854                 eb = path->nodes[0];
4855                 btrfs_item_key_to_cpu(eb, &found_key, slot);
4856                 item_size = btrfs_item_size_nr(eb, slot);
4857
4858                 ptr = btrfs_item_ptr(eb, slot,
4859                                      struct btrfs_dev_stats_item);
4860
4861                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4862                         if (item_size >= (1 + i) * sizeof(__le64))
4863                                 btrfs_dev_stat_set(device, i,
4864                                         btrfs_dev_stats_value(eb, ptr, i));
4865                         else
4866                                 btrfs_dev_stat_reset(device, i);
4867                 }
4868
4869                 device->dev_stats_valid = 1;
4870                 btrfs_dev_stat_print_on_load(device);
4871                 btrfs_release_path(path);
4872         }
4873         mutex_unlock(&fs_devices->device_list_mutex);
4874
4875 out:
4876         btrfs_free_path(path);
4877         return ret < 0 ? ret : 0;
4878 }
4879
4880 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
4881                                 struct btrfs_root *dev_root,
4882                                 struct btrfs_device *device)
4883 {
4884         struct btrfs_path *path;
4885         struct btrfs_key key;
4886         struct extent_buffer *eb;
4887         struct btrfs_dev_stats_item *ptr;
4888         int ret;
4889         int i;
4890
4891         key.objectid = 0;
4892         key.type = BTRFS_DEV_STATS_KEY;
4893         key.offset = device->devid;
4894
4895         path = btrfs_alloc_path();
4896         BUG_ON(!path);
4897         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
4898         if (ret < 0) {
4899                 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
4900                               ret, rcu_str_deref(device->name));
4901                 goto out;
4902         }
4903
4904         if (ret == 0 &&
4905             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
4906                 /* need to delete old one and insert a new one */
4907                 ret = btrfs_del_item(trans, dev_root, path);
4908                 if (ret != 0) {
4909                         printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
4910                                       rcu_str_deref(device->name), ret);
4911                         goto out;
4912                 }
4913                 ret = 1;
4914         }
4915
4916         if (ret == 1) {
4917                 /* need to insert a new item */
4918                 btrfs_release_path(path);
4919                 ret = btrfs_insert_empty_item(trans, dev_root, path,
4920                                               &key, sizeof(*ptr));
4921                 if (ret < 0) {
4922                         printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
4923                                       rcu_str_deref(device->name), ret);
4924                         goto out;
4925                 }
4926         }
4927
4928         eb = path->nodes[0];
4929         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
4930         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4931                 btrfs_set_dev_stats_value(eb, ptr, i,
4932                                           btrfs_dev_stat_read(device, i));
4933         btrfs_mark_buffer_dirty(eb);
4934
4935 out:
4936         btrfs_free_path(path);
4937         return ret;
4938 }
4939
4940 /*
4941  * called from commit_transaction. Writes all changed device stats to disk.
4942  */
4943 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
4944                         struct btrfs_fs_info *fs_info)
4945 {
4946         struct btrfs_root *dev_root = fs_info->dev_root;
4947         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4948         struct btrfs_device *device;
4949         int ret = 0;
4950
4951         mutex_lock(&fs_devices->device_list_mutex);
4952         list_for_each_entry(device, &fs_devices->devices, dev_list) {
4953                 if (!device->dev_stats_valid || !device->dev_stats_dirty)
4954                         continue;
4955
4956                 ret = update_dev_stat_item(trans, dev_root, device);
4957                 if (!ret)
4958                         device->dev_stats_dirty = 0;
4959         }
4960         mutex_unlock(&fs_devices->device_list_mutex);
4961
4962         return ret;
4963 }
4964
4965 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
4966 {
4967         btrfs_dev_stat_inc(dev, index);
4968         btrfs_dev_stat_print_on_error(dev);
4969 }
4970
4971 void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
4972 {
4973         if (!dev->dev_stats_valid)
4974                 return;
4975         printk_ratelimited_in_rcu(KERN_ERR
4976                            "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4977                            rcu_str_deref(dev->name),
4978                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4979                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4980                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4981                            btrfs_dev_stat_read(dev,
4982                                                BTRFS_DEV_STAT_CORRUPTION_ERRS),
4983                            btrfs_dev_stat_read(dev,
4984                                                BTRFS_DEV_STAT_GENERATION_ERRS));
4985 }
4986
4987 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
4988 {
4989         int i;
4990
4991         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4992                 if (btrfs_dev_stat_read(dev, i) != 0)
4993                         break;
4994         if (i == BTRFS_DEV_STAT_VALUES_MAX)
4995                 return; /* all values == 0, suppress message */
4996
4997         printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4998                rcu_str_deref(dev->name),
4999                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
5000                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
5001                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
5002                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
5003                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
5004 }
5005
5006 int btrfs_get_dev_stats(struct btrfs_root *root,
5007                         struct btrfs_ioctl_get_dev_stats *stats)
5008 {
5009         struct btrfs_device *dev;
5010         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5011         int i;
5012
5013         mutex_lock(&fs_devices->device_list_mutex);
5014         dev = btrfs_find_device(root, stats->devid, NULL, NULL);
5015         mutex_unlock(&fs_devices->device_list_mutex);
5016
5017         if (!dev) {
5018                 printk(KERN_WARNING
5019                        "btrfs: get dev_stats failed, device not found\n");
5020                 return -ENODEV;
5021         } else if (!dev->dev_stats_valid) {
5022                 printk(KERN_WARNING
5023                        "btrfs: get dev_stats failed, not yet valid\n");
5024                 return -ENODEV;
5025         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
5026                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
5027                         if (stats->nr_items > i)
5028                                 stats->values[i] =
5029                                         btrfs_dev_stat_read_and_reset(dev, i);
5030                         else
5031                                 btrfs_dev_stat_reset(dev, i);
5032                 }
5033         } else {
5034                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5035                         if (stats->nr_items > i)
5036                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
5037         }
5038         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
5039                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
5040         return 0;
5041 }