ext4: check s_chksum_driver when looking for bg csum presence
[firefly-linux-kernel-4.4.55.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59         trace_block_touch_buffer(bh);
60         mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63
64 void __lock_buffer(struct buffer_head *bh)
65 {
66         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69
70 void unlock_buffer(struct buffer_head *bh)
71 {
72         clear_bit_unlock(BH_Lock, &bh->b_state);
73         smp_mb__after_atomic();
74         wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77
78 /*
79  * Returns if the page has dirty or writeback buffers. If all the buffers
80  * are unlocked and clean then the PageDirty information is stale. If
81  * any of the pages are locked, it is assumed they are locked for IO.
82  */
83 void buffer_check_dirty_writeback(struct page *page,
84                                      bool *dirty, bool *writeback)
85 {
86         struct buffer_head *head, *bh;
87         *dirty = false;
88         *writeback = false;
89
90         BUG_ON(!PageLocked(page));
91
92         if (!page_has_buffers(page))
93                 return;
94
95         if (PageWriteback(page))
96                 *writeback = true;
97
98         head = page_buffers(page);
99         bh = head;
100         do {
101                 if (buffer_locked(bh))
102                         *writeback = true;
103
104                 if (buffer_dirty(bh))
105                         *dirty = true;
106
107                 bh = bh->b_this_page;
108         } while (bh != head);
109 }
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
111
112 /*
113  * Block until a buffer comes unlocked.  This doesn't stop it
114  * from becoming locked again - you have to lock it yourself
115  * if you want to preserve its state.
116  */
117 void __wait_on_buffer(struct buffer_head * bh)
118 {
119         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
120 }
121 EXPORT_SYMBOL(__wait_on_buffer);
122
123 static void
124 __clear_page_buffers(struct page *page)
125 {
126         ClearPagePrivate(page);
127         set_page_private(page, 0);
128         page_cache_release(page);
129 }
130
131
132 static int quiet_error(struct buffer_head *bh)
133 {
134         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
135                 return 0;
136         return 1;
137 }
138
139
140 static void buffer_io_error(struct buffer_head *bh)
141 {
142         char b[BDEVNAME_SIZE];
143         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
144                         bdevname(bh->b_bdev, b),
145                         (unsigned long long)bh->b_blocknr);
146 }
147
148 /*
149  * End-of-IO handler helper function which does not touch the bh after
150  * unlocking it.
151  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
152  * a race there is benign: unlock_buffer() only use the bh's address for
153  * hashing after unlocking the buffer, so it doesn't actually touch the bh
154  * itself.
155  */
156 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
157 {
158         if (uptodate) {
159                 set_buffer_uptodate(bh);
160         } else {
161                 /* This happens, due to failed READA attempts. */
162                 clear_buffer_uptodate(bh);
163         }
164         unlock_buffer(bh);
165 }
166
167 /*
168  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
169  * unlock the buffer. This is what ll_rw_block uses too.
170  */
171 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
172 {
173         __end_buffer_read_notouch(bh, uptodate);
174         put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_read_sync);
177
178 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
179 {
180         char b[BDEVNAME_SIZE];
181
182         if (uptodate) {
183                 set_buffer_uptodate(bh);
184         } else {
185                 if (!quiet_error(bh)) {
186                         buffer_io_error(bh);
187                         printk(KERN_WARNING "lost page write due to "
188                                         "I/O error on %s\n",
189                                        bdevname(bh->b_bdev, b));
190                 }
191                 set_buffer_write_io_error(bh);
192                 clear_buffer_uptodate(bh);
193         }
194         unlock_buffer(bh);
195         put_bh(bh);
196 }
197 EXPORT_SYMBOL(end_buffer_write_sync);
198
199 /*
200  * Various filesystems appear to want __find_get_block to be non-blocking.
201  * But it's the page lock which protects the buffers.  To get around this,
202  * we get exclusion from try_to_free_buffers with the blockdev mapping's
203  * private_lock.
204  *
205  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
206  * may be quite high.  This code could TryLock the page, and if that
207  * succeeds, there is no need to take private_lock. (But if
208  * private_lock is contended then so is mapping->tree_lock).
209  */
210 static struct buffer_head *
211 __find_get_block_slow(struct block_device *bdev, sector_t block)
212 {
213         struct inode *bd_inode = bdev->bd_inode;
214         struct address_space *bd_mapping = bd_inode->i_mapping;
215         struct buffer_head *ret = NULL;
216         pgoff_t index;
217         struct buffer_head *bh;
218         struct buffer_head *head;
219         struct page *page;
220         int all_mapped = 1;
221
222         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
223         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
224         if (!page)
225                 goto out;
226
227         spin_lock(&bd_mapping->private_lock);
228         if (!page_has_buffers(page))
229                 goto out_unlock;
230         head = page_buffers(page);
231         bh = head;
232         do {
233                 if (!buffer_mapped(bh))
234                         all_mapped = 0;
235                 else if (bh->b_blocknr == block) {
236                         ret = bh;
237                         get_bh(bh);
238                         goto out_unlock;
239                 }
240                 bh = bh->b_this_page;
241         } while (bh != head);
242
243         /* we might be here because some of the buffers on this page are
244          * not mapped.  This is due to various races between
245          * file io on the block device and getblk.  It gets dealt with
246          * elsewhere, don't buffer_error if we had some unmapped buffers
247          */
248         if (all_mapped) {
249                 char b[BDEVNAME_SIZE];
250
251                 printk("__find_get_block_slow() failed. "
252                         "block=%llu, b_blocknr=%llu\n",
253                         (unsigned long long)block,
254                         (unsigned long long)bh->b_blocknr);
255                 printk("b_state=0x%08lx, b_size=%zu\n",
256                         bh->b_state, bh->b_size);
257                 printk("device %s blocksize: %d\n", bdevname(bdev, b),
258                         1 << bd_inode->i_blkbits);
259         }
260 out_unlock:
261         spin_unlock(&bd_mapping->private_lock);
262         page_cache_release(page);
263 out:
264         return ret;
265 }
266
267 /*
268  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
269  */
270 static void free_more_memory(void)
271 {
272         struct zone *zone;
273         int nid;
274
275         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
276         yield();
277
278         for_each_online_node(nid) {
279                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
280                                                 gfp_zone(GFP_NOFS), NULL,
281                                                 &zone);
282                 if (zone)
283                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
284                                                 GFP_NOFS, NULL);
285         }
286 }
287
288 /*
289  * I/O completion handler for block_read_full_page() - pages
290  * which come unlocked at the end of I/O.
291  */
292 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
293 {
294         unsigned long flags;
295         struct buffer_head *first;
296         struct buffer_head *tmp;
297         struct page *page;
298         int page_uptodate = 1;
299
300         BUG_ON(!buffer_async_read(bh));
301
302         page = bh->b_page;
303         if (uptodate) {
304                 set_buffer_uptodate(bh);
305         } else {
306                 clear_buffer_uptodate(bh);
307                 if (!quiet_error(bh))
308                         buffer_io_error(bh);
309                 SetPageError(page);
310         }
311
312         /*
313          * Be _very_ careful from here on. Bad things can happen if
314          * two buffer heads end IO at almost the same time and both
315          * decide that the page is now completely done.
316          */
317         first = page_buffers(page);
318         local_irq_save(flags);
319         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
320         clear_buffer_async_read(bh);
321         unlock_buffer(bh);
322         tmp = bh;
323         do {
324                 if (!buffer_uptodate(tmp))
325                         page_uptodate = 0;
326                 if (buffer_async_read(tmp)) {
327                         BUG_ON(!buffer_locked(tmp));
328                         goto still_busy;
329                 }
330                 tmp = tmp->b_this_page;
331         } while (tmp != bh);
332         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333         local_irq_restore(flags);
334
335         /*
336          * If none of the buffers had errors and they are all
337          * uptodate then we can set the page uptodate.
338          */
339         if (page_uptodate && !PageError(page))
340                 SetPageUptodate(page);
341         unlock_page(page);
342         return;
343
344 still_busy:
345         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346         local_irq_restore(flags);
347         return;
348 }
349
350 /*
351  * Completion handler for block_write_full_page() - pages which are unlocked
352  * during I/O, and which have PageWriteback cleared upon I/O completion.
353  */
354 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
355 {
356         char b[BDEVNAME_SIZE];
357         unsigned long flags;
358         struct buffer_head *first;
359         struct buffer_head *tmp;
360         struct page *page;
361
362         BUG_ON(!buffer_async_write(bh));
363
364         page = bh->b_page;
365         if (uptodate) {
366                 set_buffer_uptodate(bh);
367         } else {
368                 if (!quiet_error(bh)) {
369                         buffer_io_error(bh);
370                         printk(KERN_WARNING "lost page write due to "
371                                         "I/O error on %s\n",
372                                bdevname(bh->b_bdev, b));
373                 }
374                 set_bit(AS_EIO, &page->mapping->flags);
375                 set_buffer_write_io_error(bh);
376                 clear_buffer_uptodate(bh);
377                 SetPageError(page);
378         }
379
380         first = page_buffers(page);
381         local_irq_save(flags);
382         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
383
384         clear_buffer_async_write(bh);
385         unlock_buffer(bh);
386         tmp = bh->b_this_page;
387         while (tmp != bh) {
388                 if (buffer_async_write(tmp)) {
389                         BUG_ON(!buffer_locked(tmp));
390                         goto still_busy;
391                 }
392                 tmp = tmp->b_this_page;
393         }
394         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
395         local_irq_restore(flags);
396         end_page_writeback(page);
397         return;
398
399 still_busy:
400         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
401         local_irq_restore(flags);
402         return;
403 }
404 EXPORT_SYMBOL(end_buffer_async_write);
405
406 /*
407  * If a page's buffers are under async readin (end_buffer_async_read
408  * completion) then there is a possibility that another thread of
409  * control could lock one of the buffers after it has completed
410  * but while some of the other buffers have not completed.  This
411  * locked buffer would confuse end_buffer_async_read() into not unlocking
412  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
413  * that this buffer is not under async I/O.
414  *
415  * The page comes unlocked when it has no locked buffer_async buffers
416  * left.
417  *
418  * PageLocked prevents anyone starting new async I/O reads any of
419  * the buffers.
420  *
421  * PageWriteback is used to prevent simultaneous writeout of the same
422  * page.
423  *
424  * PageLocked prevents anyone from starting writeback of a page which is
425  * under read I/O (PageWriteback is only ever set against a locked page).
426  */
427 static void mark_buffer_async_read(struct buffer_head *bh)
428 {
429         bh->b_end_io = end_buffer_async_read;
430         set_buffer_async_read(bh);
431 }
432
433 static void mark_buffer_async_write_endio(struct buffer_head *bh,
434                                           bh_end_io_t *handler)
435 {
436         bh->b_end_io = handler;
437         set_buffer_async_write(bh);
438 }
439
440 void mark_buffer_async_write(struct buffer_head *bh)
441 {
442         mark_buffer_async_write_endio(bh, end_buffer_async_write);
443 }
444 EXPORT_SYMBOL(mark_buffer_async_write);
445
446
447 /*
448  * fs/buffer.c contains helper functions for buffer-backed address space's
449  * fsync functions.  A common requirement for buffer-based filesystems is
450  * that certain data from the backing blockdev needs to be written out for
451  * a successful fsync().  For example, ext2 indirect blocks need to be
452  * written back and waited upon before fsync() returns.
453  *
454  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
455  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
456  * management of a list of dependent buffers at ->i_mapping->private_list.
457  *
458  * Locking is a little subtle: try_to_free_buffers() will remove buffers
459  * from their controlling inode's queue when they are being freed.  But
460  * try_to_free_buffers() will be operating against the *blockdev* mapping
461  * at the time, not against the S_ISREG file which depends on those buffers.
462  * So the locking for private_list is via the private_lock in the address_space
463  * which backs the buffers.  Which is different from the address_space 
464  * against which the buffers are listed.  So for a particular address_space,
465  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
466  * mapping->private_list will always be protected by the backing blockdev's
467  * ->private_lock.
468  *
469  * Which introduces a requirement: all buffers on an address_space's
470  * ->private_list must be from the same address_space: the blockdev's.
471  *
472  * address_spaces which do not place buffers at ->private_list via these
473  * utility functions are free to use private_lock and private_list for
474  * whatever they want.  The only requirement is that list_empty(private_list)
475  * be true at clear_inode() time.
476  *
477  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
478  * filesystems should do that.  invalidate_inode_buffers() should just go
479  * BUG_ON(!list_empty).
480  *
481  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
482  * take an address_space, not an inode.  And it should be called
483  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
484  * queued up.
485  *
486  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
487  * list if it is already on a list.  Because if the buffer is on a list,
488  * it *must* already be on the right one.  If not, the filesystem is being
489  * silly.  This will save a ton of locking.  But first we have to ensure
490  * that buffers are taken *off* the old inode's list when they are freed
491  * (presumably in truncate).  That requires careful auditing of all
492  * filesystems (do it inside bforget()).  It could also be done by bringing
493  * b_inode back.
494  */
495
496 /*
497  * The buffer's backing address_space's private_lock must be held
498  */
499 static void __remove_assoc_queue(struct buffer_head *bh)
500 {
501         list_del_init(&bh->b_assoc_buffers);
502         WARN_ON(!bh->b_assoc_map);
503         if (buffer_write_io_error(bh))
504                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
505         bh->b_assoc_map = NULL;
506 }
507
508 int inode_has_buffers(struct inode *inode)
509 {
510         return !list_empty(&inode->i_data.private_list);
511 }
512
513 /*
514  * osync is designed to support O_SYNC io.  It waits synchronously for
515  * all already-submitted IO to complete, but does not queue any new
516  * writes to the disk.
517  *
518  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
519  * you dirty the buffers, and then use osync_inode_buffers to wait for
520  * completion.  Any other dirty buffers which are not yet queued for
521  * write will not be flushed to disk by the osync.
522  */
523 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
524 {
525         struct buffer_head *bh;
526         struct list_head *p;
527         int err = 0;
528
529         spin_lock(lock);
530 repeat:
531         list_for_each_prev(p, list) {
532                 bh = BH_ENTRY(p);
533                 if (buffer_locked(bh)) {
534                         get_bh(bh);
535                         spin_unlock(lock);
536                         wait_on_buffer(bh);
537                         if (!buffer_uptodate(bh))
538                                 err = -EIO;
539                         brelse(bh);
540                         spin_lock(lock);
541                         goto repeat;
542                 }
543         }
544         spin_unlock(lock);
545         return err;
546 }
547
548 static void do_thaw_one(struct super_block *sb, void *unused)
549 {
550         char b[BDEVNAME_SIZE];
551         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
552                 printk(KERN_WARNING "Emergency Thaw on %s\n",
553                        bdevname(sb->s_bdev, b));
554 }
555
556 static void do_thaw_all(struct work_struct *work)
557 {
558         iterate_supers(do_thaw_one, NULL);
559         kfree(work);
560         printk(KERN_WARNING "Emergency Thaw complete\n");
561 }
562
563 /**
564  * emergency_thaw_all -- forcibly thaw every frozen filesystem
565  *
566  * Used for emergency unfreeze of all filesystems via SysRq
567  */
568 void emergency_thaw_all(void)
569 {
570         struct work_struct *work;
571
572         work = kmalloc(sizeof(*work), GFP_ATOMIC);
573         if (work) {
574                 INIT_WORK(work, do_thaw_all);
575                 schedule_work(work);
576         }
577 }
578
579 /**
580  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
581  * @mapping: the mapping which wants those buffers written
582  *
583  * Starts I/O against the buffers at mapping->private_list, and waits upon
584  * that I/O.
585  *
586  * Basically, this is a convenience function for fsync().
587  * @mapping is a file or directory which needs those buffers to be written for
588  * a successful fsync().
589  */
590 int sync_mapping_buffers(struct address_space *mapping)
591 {
592         struct address_space *buffer_mapping = mapping->private_data;
593
594         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
595                 return 0;
596
597         return fsync_buffers_list(&buffer_mapping->private_lock,
598                                         &mapping->private_list);
599 }
600 EXPORT_SYMBOL(sync_mapping_buffers);
601
602 /*
603  * Called when we've recently written block `bblock', and it is known that
604  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
605  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
606  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
607  */
608 void write_boundary_block(struct block_device *bdev,
609                         sector_t bblock, unsigned blocksize)
610 {
611         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
612         if (bh) {
613                 if (buffer_dirty(bh))
614                         ll_rw_block(WRITE, 1, &bh);
615                 put_bh(bh);
616         }
617 }
618
619 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
620 {
621         struct address_space *mapping = inode->i_mapping;
622         struct address_space *buffer_mapping = bh->b_page->mapping;
623
624         mark_buffer_dirty(bh);
625         if (!mapping->private_data) {
626                 mapping->private_data = buffer_mapping;
627         } else {
628                 BUG_ON(mapping->private_data != buffer_mapping);
629         }
630         if (!bh->b_assoc_map) {
631                 spin_lock(&buffer_mapping->private_lock);
632                 list_move_tail(&bh->b_assoc_buffers,
633                                 &mapping->private_list);
634                 bh->b_assoc_map = mapping;
635                 spin_unlock(&buffer_mapping->private_lock);
636         }
637 }
638 EXPORT_SYMBOL(mark_buffer_dirty_inode);
639
640 /*
641  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
642  * dirty.
643  *
644  * If warn is true, then emit a warning if the page is not uptodate and has
645  * not been truncated.
646  */
647 static void __set_page_dirty(struct page *page,
648                 struct address_space *mapping, int warn)
649 {
650         unsigned long flags;
651
652         spin_lock_irqsave(&mapping->tree_lock, flags);
653         if (page->mapping) {    /* Race with truncate? */
654                 WARN_ON_ONCE(warn && !PageUptodate(page));
655                 account_page_dirtied(page, mapping);
656                 radix_tree_tag_set(&mapping->page_tree,
657                                 page_index(page), PAGECACHE_TAG_DIRTY);
658         }
659         spin_unlock_irqrestore(&mapping->tree_lock, flags);
660         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
661 }
662
663 /*
664  * Add a page to the dirty page list.
665  *
666  * It is a sad fact of life that this function is called from several places
667  * deeply under spinlocking.  It may not sleep.
668  *
669  * If the page has buffers, the uptodate buffers are set dirty, to preserve
670  * dirty-state coherency between the page and the buffers.  It the page does
671  * not have buffers then when they are later attached they will all be set
672  * dirty.
673  *
674  * The buffers are dirtied before the page is dirtied.  There's a small race
675  * window in which a writepage caller may see the page cleanness but not the
676  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
677  * before the buffers, a concurrent writepage caller could clear the page dirty
678  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
679  * page on the dirty page list.
680  *
681  * We use private_lock to lock against try_to_free_buffers while using the
682  * page's buffer list.  Also use this to protect against clean buffers being
683  * added to the page after it was set dirty.
684  *
685  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
686  * address_space though.
687  */
688 int __set_page_dirty_buffers(struct page *page)
689 {
690         int newly_dirty;
691         struct address_space *mapping = page_mapping(page);
692
693         if (unlikely(!mapping))
694                 return !TestSetPageDirty(page);
695
696         spin_lock(&mapping->private_lock);
697         if (page_has_buffers(page)) {
698                 struct buffer_head *head = page_buffers(page);
699                 struct buffer_head *bh = head;
700
701                 do {
702                         set_buffer_dirty(bh);
703                         bh = bh->b_this_page;
704                 } while (bh != head);
705         }
706         newly_dirty = !TestSetPageDirty(page);
707         spin_unlock(&mapping->private_lock);
708
709         if (newly_dirty)
710                 __set_page_dirty(page, mapping, 1);
711         return newly_dirty;
712 }
713 EXPORT_SYMBOL(__set_page_dirty_buffers);
714
715 /*
716  * Write out and wait upon a list of buffers.
717  *
718  * We have conflicting pressures: we want to make sure that all
719  * initially dirty buffers get waited on, but that any subsequently
720  * dirtied buffers don't.  After all, we don't want fsync to last
721  * forever if somebody is actively writing to the file.
722  *
723  * Do this in two main stages: first we copy dirty buffers to a
724  * temporary inode list, queueing the writes as we go.  Then we clean
725  * up, waiting for those writes to complete.
726  * 
727  * During this second stage, any subsequent updates to the file may end
728  * up refiling the buffer on the original inode's dirty list again, so
729  * there is a chance we will end up with a buffer queued for write but
730  * not yet completed on that list.  So, as a final cleanup we go through
731  * the osync code to catch these locked, dirty buffers without requeuing
732  * any newly dirty buffers for write.
733  */
734 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
735 {
736         struct buffer_head *bh;
737         struct list_head tmp;
738         struct address_space *mapping;
739         int err = 0, err2;
740         struct blk_plug plug;
741
742         INIT_LIST_HEAD(&tmp);
743         blk_start_plug(&plug);
744
745         spin_lock(lock);
746         while (!list_empty(list)) {
747                 bh = BH_ENTRY(list->next);
748                 mapping = bh->b_assoc_map;
749                 __remove_assoc_queue(bh);
750                 /* Avoid race with mark_buffer_dirty_inode() which does
751                  * a lockless check and we rely on seeing the dirty bit */
752                 smp_mb();
753                 if (buffer_dirty(bh) || buffer_locked(bh)) {
754                         list_add(&bh->b_assoc_buffers, &tmp);
755                         bh->b_assoc_map = mapping;
756                         if (buffer_dirty(bh)) {
757                                 get_bh(bh);
758                                 spin_unlock(lock);
759                                 /*
760                                  * Ensure any pending I/O completes so that
761                                  * write_dirty_buffer() actually writes the
762                                  * current contents - it is a noop if I/O is
763                                  * still in flight on potentially older
764                                  * contents.
765                                  */
766                                 write_dirty_buffer(bh, WRITE_SYNC);
767
768                                 /*
769                                  * Kick off IO for the previous mapping. Note
770                                  * that we will not run the very last mapping,
771                                  * wait_on_buffer() will do that for us
772                                  * through sync_buffer().
773                                  */
774                                 brelse(bh);
775                                 spin_lock(lock);
776                         }
777                 }
778         }
779
780         spin_unlock(lock);
781         blk_finish_plug(&plug);
782         spin_lock(lock);
783
784         while (!list_empty(&tmp)) {
785                 bh = BH_ENTRY(tmp.prev);
786                 get_bh(bh);
787                 mapping = bh->b_assoc_map;
788                 __remove_assoc_queue(bh);
789                 /* Avoid race with mark_buffer_dirty_inode() which does
790                  * a lockless check and we rely on seeing the dirty bit */
791                 smp_mb();
792                 if (buffer_dirty(bh)) {
793                         list_add(&bh->b_assoc_buffers,
794                                  &mapping->private_list);
795                         bh->b_assoc_map = mapping;
796                 }
797                 spin_unlock(lock);
798                 wait_on_buffer(bh);
799                 if (!buffer_uptodate(bh))
800                         err = -EIO;
801                 brelse(bh);
802                 spin_lock(lock);
803         }
804         
805         spin_unlock(lock);
806         err2 = osync_buffers_list(lock, list);
807         if (err)
808                 return err;
809         else
810                 return err2;
811 }
812
813 /*
814  * Invalidate any and all dirty buffers on a given inode.  We are
815  * probably unmounting the fs, but that doesn't mean we have already
816  * done a sync().  Just drop the buffers from the inode list.
817  *
818  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
819  * assumes that all the buffers are against the blockdev.  Not true
820  * for reiserfs.
821  */
822 void invalidate_inode_buffers(struct inode *inode)
823 {
824         if (inode_has_buffers(inode)) {
825                 struct address_space *mapping = &inode->i_data;
826                 struct list_head *list = &mapping->private_list;
827                 struct address_space *buffer_mapping = mapping->private_data;
828
829                 spin_lock(&buffer_mapping->private_lock);
830                 while (!list_empty(list))
831                         __remove_assoc_queue(BH_ENTRY(list->next));
832                 spin_unlock(&buffer_mapping->private_lock);
833         }
834 }
835 EXPORT_SYMBOL(invalidate_inode_buffers);
836
837 /*
838  * Remove any clean buffers from the inode's buffer list.  This is called
839  * when we're trying to free the inode itself.  Those buffers can pin it.
840  *
841  * Returns true if all buffers were removed.
842  */
843 int remove_inode_buffers(struct inode *inode)
844 {
845         int ret = 1;
846
847         if (inode_has_buffers(inode)) {
848                 struct address_space *mapping = &inode->i_data;
849                 struct list_head *list = &mapping->private_list;
850                 struct address_space *buffer_mapping = mapping->private_data;
851
852                 spin_lock(&buffer_mapping->private_lock);
853                 while (!list_empty(list)) {
854                         struct buffer_head *bh = BH_ENTRY(list->next);
855                         if (buffer_dirty(bh)) {
856                                 ret = 0;
857                                 break;
858                         }
859                         __remove_assoc_queue(bh);
860                 }
861                 spin_unlock(&buffer_mapping->private_lock);
862         }
863         return ret;
864 }
865
866 /*
867  * Create the appropriate buffers when given a page for data area and
868  * the size of each buffer.. Use the bh->b_this_page linked list to
869  * follow the buffers created.  Return NULL if unable to create more
870  * buffers.
871  *
872  * The retry flag is used to differentiate async IO (paging, swapping)
873  * which may not fail from ordinary buffer allocations.
874  */
875 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
876                 int retry)
877 {
878         struct buffer_head *bh, *head;
879         long offset;
880
881 try_again:
882         head = NULL;
883         offset = PAGE_SIZE;
884         while ((offset -= size) >= 0) {
885                 bh = alloc_buffer_head(GFP_NOFS);
886                 if (!bh)
887                         goto no_grow;
888
889                 bh->b_this_page = head;
890                 bh->b_blocknr = -1;
891                 head = bh;
892
893                 bh->b_size = size;
894
895                 /* Link the buffer to its page */
896                 set_bh_page(bh, page, offset);
897         }
898         return head;
899 /*
900  * In case anything failed, we just free everything we got.
901  */
902 no_grow:
903         if (head) {
904                 do {
905                         bh = head;
906                         head = head->b_this_page;
907                         free_buffer_head(bh);
908                 } while (head);
909         }
910
911         /*
912          * Return failure for non-async IO requests.  Async IO requests
913          * are not allowed to fail, so we have to wait until buffer heads
914          * become available.  But we don't want tasks sleeping with 
915          * partially complete buffers, so all were released above.
916          */
917         if (!retry)
918                 return NULL;
919
920         /* We're _really_ low on memory. Now we just
921          * wait for old buffer heads to become free due to
922          * finishing IO.  Since this is an async request and
923          * the reserve list is empty, we're sure there are 
924          * async buffer heads in use.
925          */
926         free_more_memory();
927         goto try_again;
928 }
929 EXPORT_SYMBOL_GPL(alloc_page_buffers);
930
931 static inline void
932 link_dev_buffers(struct page *page, struct buffer_head *head)
933 {
934         struct buffer_head *bh, *tail;
935
936         bh = head;
937         do {
938                 tail = bh;
939                 bh = bh->b_this_page;
940         } while (bh);
941         tail->b_this_page = head;
942         attach_page_buffers(page, head);
943 }
944
945 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
946 {
947         sector_t retval = ~((sector_t)0);
948         loff_t sz = i_size_read(bdev->bd_inode);
949
950         if (sz) {
951                 unsigned int sizebits = blksize_bits(size);
952                 retval = (sz >> sizebits);
953         }
954         return retval;
955 }
956
957 /*
958  * Initialise the state of a blockdev page's buffers.
959  */ 
960 static sector_t
961 init_page_buffers(struct page *page, struct block_device *bdev,
962                         sector_t block, int size)
963 {
964         struct buffer_head *head = page_buffers(page);
965         struct buffer_head *bh = head;
966         int uptodate = PageUptodate(page);
967         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
968
969         do {
970                 if (!buffer_mapped(bh)) {
971                         init_buffer(bh, NULL, NULL);
972                         bh->b_bdev = bdev;
973                         bh->b_blocknr = block;
974                         if (uptodate)
975                                 set_buffer_uptodate(bh);
976                         if (block < end_block)
977                                 set_buffer_mapped(bh);
978                 }
979                 block++;
980                 bh = bh->b_this_page;
981         } while (bh != head);
982
983         /*
984          * Caller needs to validate requested block against end of device.
985          */
986         return end_block;
987 }
988
989 /*
990  * Create the page-cache page that contains the requested block.
991  *
992  * This is used purely for blockdev mappings.
993  */
994 static int
995 grow_dev_page(struct block_device *bdev, sector_t block,
996               pgoff_t index, int size, int sizebits, gfp_t gfp)
997 {
998         struct inode *inode = bdev->bd_inode;
999         struct page *page;
1000         struct buffer_head *bh;
1001         sector_t end_block;
1002         int ret = 0;            /* Will call free_more_memory() */
1003         gfp_t gfp_mask;
1004
1005         gfp_mask = (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS) | gfp;
1006
1007         /*
1008          * XXX: __getblk_slow() can not really deal with failure and
1009          * will endlessly loop on improvised global reclaim.  Prefer
1010          * looping in the allocator rather than here, at least that
1011          * code knows what it's doing.
1012          */
1013         gfp_mask |= __GFP_NOFAIL;
1014
1015         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1016         if (!page)
1017                 return ret;
1018
1019         BUG_ON(!PageLocked(page));
1020
1021         if (page_has_buffers(page)) {
1022                 bh = page_buffers(page);
1023                 if (bh->b_size == size) {
1024                         end_block = init_page_buffers(page, bdev,
1025                                                 index << sizebits, size);
1026                         goto done;
1027                 }
1028                 if (!try_to_free_buffers(page))
1029                         goto failed;
1030         }
1031
1032         /*
1033          * Allocate some buffers for this page
1034          */
1035         bh = alloc_page_buffers(page, size, 0);
1036         if (!bh)
1037                 goto failed;
1038
1039         /*
1040          * Link the page to the buffers and initialise them.  Take the
1041          * lock to be atomic wrt __find_get_block(), which does not
1042          * run under the page lock.
1043          */
1044         spin_lock(&inode->i_mapping->private_lock);
1045         link_dev_buffers(page, bh);
1046         end_block = init_page_buffers(page, bdev, index << sizebits, size);
1047         spin_unlock(&inode->i_mapping->private_lock);
1048 done:
1049         ret = (block < end_block) ? 1 : -ENXIO;
1050 failed:
1051         unlock_page(page);
1052         page_cache_release(page);
1053         return ret;
1054 }
1055
1056 /*
1057  * Create buffers for the specified block device block's page.  If
1058  * that page was dirty, the buffers are set dirty also.
1059  */
1060 static int
1061 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1062 {
1063         pgoff_t index;
1064         int sizebits;
1065
1066         sizebits = -1;
1067         do {
1068                 sizebits++;
1069         } while ((size << sizebits) < PAGE_SIZE);
1070
1071         index = block >> sizebits;
1072
1073         /*
1074          * Check for a block which wants to lie outside our maximum possible
1075          * pagecache index.  (this comparison is done using sector_t types).
1076          */
1077         if (unlikely(index != block >> sizebits)) {
1078                 char b[BDEVNAME_SIZE];
1079
1080                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1081                         "device %s\n",
1082                         __func__, (unsigned long long)block,
1083                         bdevname(bdev, b));
1084                 return -EIO;
1085         }
1086
1087         /* Create a page with the proper size buffers.. */
1088         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1089 }
1090
1091 struct buffer_head *
1092 __getblk_slow(struct block_device *bdev, sector_t block,
1093              unsigned size, gfp_t gfp)
1094 {
1095         /* Size must be multiple of hard sectorsize */
1096         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1097                         (size < 512 || size > PAGE_SIZE))) {
1098                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1099                                         size);
1100                 printk(KERN_ERR "logical block size: %d\n",
1101                                         bdev_logical_block_size(bdev));
1102
1103                 dump_stack();
1104                 return NULL;
1105         }
1106
1107         for (;;) {
1108                 struct buffer_head *bh;
1109                 int ret;
1110
1111                 bh = __find_get_block(bdev, block, size);
1112                 if (bh)
1113                         return bh;
1114
1115                 ret = grow_buffers(bdev, block, size, gfp);
1116                 if (ret < 0)
1117                         return NULL;
1118                 if (ret == 0)
1119                         free_more_memory();
1120         }
1121 }
1122 EXPORT_SYMBOL(__getblk_slow);
1123
1124 /*
1125  * The relationship between dirty buffers and dirty pages:
1126  *
1127  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1128  * the page is tagged dirty in its radix tree.
1129  *
1130  * At all times, the dirtiness of the buffers represents the dirtiness of
1131  * subsections of the page.  If the page has buffers, the page dirty bit is
1132  * merely a hint about the true dirty state.
1133  *
1134  * When a page is set dirty in its entirety, all its buffers are marked dirty
1135  * (if the page has buffers).
1136  *
1137  * When a buffer is marked dirty, its page is dirtied, but the page's other
1138  * buffers are not.
1139  *
1140  * Also.  When blockdev buffers are explicitly read with bread(), they
1141  * individually become uptodate.  But their backing page remains not
1142  * uptodate - even if all of its buffers are uptodate.  A subsequent
1143  * block_read_full_page() against that page will discover all the uptodate
1144  * buffers, will set the page uptodate and will perform no I/O.
1145  */
1146
1147 /**
1148  * mark_buffer_dirty - mark a buffer_head as needing writeout
1149  * @bh: the buffer_head to mark dirty
1150  *
1151  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1152  * backing page dirty, then tag the page as dirty in its address_space's radix
1153  * tree and then attach the address_space's inode to its superblock's dirty
1154  * inode list.
1155  *
1156  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1157  * mapping->tree_lock and mapping->host->i_lock.
1158  */
1159 void mark_buffer_dirty(struct buffer_head *bh)
1160 {
1161         WARN_ON_ONCE(!buffer_uptodate(bh));
1162
1163         trace_block_dirty_buffer(bh);
1164
1165         /*
1166          * Very *carefully* optimize the it-is-already-dirty case.
1167          *
1168          * Don't let the final "is it dirty" escape to before we
1169          * perhaps modified the buffer.
1170          */
1171         if (buffer_dirty(bh)) {
1172                 smp_mb();
1173                 if (buffer_dirty(bh))
1174                         return;
1175         }
1176
1177         if (!test_set_buffer_dirty(bh)) {
1178                 struct page *page = bh->b_page;
1179                 if (!TestSetPageDirty(page)) {
1180                         struct address_space *mapping = page_mapping(page);
1181                         if (mapping)
1182                                 __set_page_dirty(page, mapping, 0);
1183                 }
1184         }
1185 }
1186 EXPORT_SYMBOL(mark_buffer_dirty);
1187
1188 /*
1189  * Decrement a buffer_head's reference count.  If all buffers against a page
1190  * have zero reference count, are clean and unlocked, and if the page is clean
1191  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1192  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1193  * a page but it ends up not being freed, and buffers may later be reattached).
1194  */
1195 void __brelse(struct buffer_head * buf)
1196 {
1197         if (atomic_read(&buf->b_count)) {
1198                 put_bh(buf);
1199                 return;
1200         }
1201         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1202 }
1203 EXPORT_SYMBOL(__brelse);
1204
1205 /*
1206  * bforget() is like brelse(), except it discards any
1207  * potentially dirty data.
1208  */
1209 void __bforget(struct buffer_head *bh)
1210 {
1211         clear_buffer_dirty(bh);
1212         if (bh->b_assoc_map) {
1213                 struct address_space *buffer_mapping = bh->b_page->mapping;
1214
1215                 spin_lock(&buffer_mapping->private_lock);
1216                 list_del_init(&bh->b_assoc_buffers);
1217                 bh->b_assoc_map = NULL;
1218                 spin_unlock(&buffer_mapping->private_lock);
1219         }
1220         __brelse(bh);
1221 }
1222 EXPORT_SYMBOL(__bforget);
1223
1224 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1225 {
1226         lock_buffer(bh);
1227         if (buffer_uptodate(bh)) {
1228                 unlock_buffer(bh);
1229                 return bh;
1230         } else {
1231                 get_bh(bh);
1232                 bh->b_end_io = end_buffer_read_sync;
1233                 submit_bh(READ, bh);
1234                 wait_on_buffer(bh);
1235                 if (buffer_uptodate(bh))
1236                         return bh;
1237         }
1238         brelse(bh);
1239         return NULL;
1240 }
1241
1242 /*
1243  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1244  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1245  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1246  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1247  * CPU's LRUs at the same time.
1248  *
1249  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1250  * sb_find_get_block().
1251  *
1252  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1253  * a local interrupt disable for that.
1254  */
1255
1256 #define BH_LRU_SIZE     8
1257
1258 struct bh_lru {
1259         struct buffer_head *bhs[BH_LRU_SIZE];
1260 };
1261
1262 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1263
1264 #ifdef CONFIG_SMP
1265 #define bh_lru_lock()   local_irq_disable()
1266 #define bh_lru_unlock() local_irq_enable()
1267 #else
1268 #define bh_lru_lock()   preempt_disable()
1269 #define bh_lru_unlock() preempt_enable()
1270 #endif
1271
1272 static inline void check_irqs_on(void)
1273 {
1274 #ifdef irqs_disabled
1275         BUG_ON(irqs_disabled());
1276 #endif
1277 }
1278
1279 /*
1280  * The LRU management algorithm is dopey-but-simple.  Sorry.
1281  */
1282 static void bh_lru_install(struct buffer_head *bh)
1283 {
1284         struct buffer_head *evictee = NULL;
1285
1286         check_irqs_on();
1287         bh_lru_lock();
1288         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1289                 struct buffer_head *bhs[BH_LRU_SIZE];
1290                 int in;
1291                 int out = 0;
1292
1293                 get_bh(bh);
1294                 bhs[out++] = bh;
1295                 for (in = 0; in < BH_LRU_SIZE; in++) {
1296                         struct buffer_head *bh2 =
1297                                 __this_cpu_read(bh_lrus.bhs[in]);
1298
1299                         if (bh2 == bh) {
1300                                 __brelse(bh2);
1301                         } else {
1302                                 if (out >= BH_LRU_SIZE) {
1303                                         BUG_ON(evictee != NULL);
1304                                         evictee = bh2;
1305                                 } else {
1306                                         bhs[out++] = bh2;
1307                                 }
1308                         }
1309                 }
1310                 while (out < BH_LRU_SIZE)
1311                         bhs[out++] = NULL;
1312                 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1313         }
1314         bh_lru_unlock();
1315
1316         if (evictee)
1317                 __brelse(evictee);
1318 }
1319
1320 /*
1321  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1322  */
1323 static struct buffer_head *
1324 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1325 {
1326         struct buffer_head *ret = NULL;
1327         unsigned int i;
1328
1329         check_irqs_on();
1330         bh_lru_lock();
1331         for (i = 0; i < BH_LRU_SIZE; i++) {
1332                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1333
1334                 if (bh && bh->b_bdev == bdev &&
1335                                 bh->b_blocknr == block && bh->b_size == size) {
1336                         if (i) {
1337                                 while (i) {
1338                                         __this_cpu_write(bh_lrus.bhs[i],
1339                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1340                                         i--;
1341                                 }
1342                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1343                         }
1344                         get_bh(bh);
1345                         ret = bh;
1346                         break;
1347                 }
1348         }
1349         bh_lru_unlock();
1350         return ret;
1351 }
1352
1353 /*
1354  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1355  * it in the LRU and mark it as accessed.  If it is not present then return
1356  * NULL
1357  */
1358 struct buffer_head *
1359 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1360 {
1361         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1362
1363         if (bh == NULL) {
1364                 /* __find_get_block_slow will mark the page accessed */
1365                 bh = __find_get_block_slow(bdev, block);
1366                 if (bh)
1367                         bh_lru_install(bh);
1368         } else
1369                 touch_buffer(bh);
1370
1371         return bh;
1372 }
1373 EXPORT_SYMBOL(__find_get_block);
1374
1375 /*
1376  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1377  * which corresponds to the passed block_device, block and size. The
1378  * returned buffer has its reference count incremented.
1379  *
1380  * __getblk_gfp() will lock up the machine if grow_dev_page's
1381  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1382  */
1383 struct buffer_head *
1384 __getblk_gfp(struct block_device *bdev, sector_t block,
1385              unsigned size, gfp_t gfp)
1386 {
1387         struct buffer_head *bh = __find_get_block(bdev, block, size);
1388
1389         might_sleep();
1390         if (bh == NULL)
1391                 bh = __getblk_slow(bdev, block, size, gfp);
1392         return bh;
1393 }
1394 EXPORT_SYMBOL(__getblk_gfp);
1395
1396 /*
1397  * Do async read-ahead on a buffer..
1398  */
1399 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1400 {
1401         struct buffer_head *bh = __getblk(bdev, block, size);
1402         if (likely(bh)) {
1403                 ll_rw_block(READA, 1, &bh);
1404                 brelse(bh);
1405         }
1406 }
1407 EXPORT_SYMBOL(__breadahead);
1408
1409 /**
1410  *  __bread_gfp() - reads a specified block and returns the bh
1411  *  @bdev: the block_device to read from
1412  *  @block: number of block
1413  *  @size: size (in bytes) to read
1414  *  @gfp: page allocation flag
1415  *
1416  *  Reads a specified block, and returns buffer head that contains it.
1417  *  The page cache can be allocated from non-movable area
1418  *  not to prevent page migration if you set gfp to zero.
1419  *  It returns NULL if the block was unreadable.
1420  */
1421 struct buffer_head *
1422 __bread_gfp(struct block_device *bdev, sector_t block,
1423                    unsigned size, gfp_t gfp)
1424 {
1425         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1426
1427         if (likely(bh) && !buffer_uptodate(bh))
1428                 bh = __bread_slow(bh);
1429         return bh;
1430 }
1431 EXPORT_SYMBOL(__bread_gfp);
1432
1433 /*
1434  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1435  * This doesn't race because it runs in each cpu either in irq
1436  * or with preempt disabled.
1437  */
1438 static void invalidate_bh_lru(void *arg)
1439 {
1440         struct bh_lru *b = &get_cpu_var(bh_lrus);
1441         int i;
1442
1443         for (i = 0; i < BH_LRU_SIZE; i++) {
1444                 brelse(b->bhs[i]);
1445                 b->bhs[i] = NULL;
1446         }
1447         put_cpu_var(bh_lrus);
1448 }
1449
1450 static bool has_bh_in_lru(int cpu, void *dummy)
1451 {
1452         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1453         int i;
1454         
1455         for (i = 0; i < BH_LRU_SIZE; i++) {
1456                 if (b->bhs[i])
1457                         return 1;
1458         }
1459
1460         return 0;
1461 }
1462
1463 void invalidate_bh_lrus(void)
1464 {
1465         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1466 }
1467 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1468
1469 void set_bh_page(struct buffer_head *bh,
1470                 struct page *page, unsigned long offset)
1471 {
1472         bh->b_page = page;
1473         BUG_ON(offset >= PAGE_SIZE);
1474         if (PageHighMem(page))
1475                 /*
1476                  * This catches illegal uses and preserves the offset:
1477                  */
1478                 bh->b_data = (char *)(0 + offset);
1479         else
1480                 bh->b_data = page_address(page) + offset;
1481 }
1482 EXPORT_SYMBOL(set_bh_page);
1483
1484 /*
1485  * Called when truncating a buffer on a page completely.
1486  */
1487
1488 /* Bits that are cleared during an invalidate */
1489 #define BUFFER_FLAGS_DISCARD \
1490         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1491          1 << BH_Delay | 1 << BH_Unwritten)
1492
1493 static void discard_buffer(struct buffer_head * bh)
1494 {
1495         unsigned long b_state, b_state_old;
1496
1497         lock_buffer(bh);
1498         clear_buffer_dirty(bh);
1499         bh->b_bdev = NULL;
1500         b_state = bh->b_state;
1501         for (;;) {
1502                 b_state_old = cmpxchg(&bh->b_state, b_state,
1503                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1504                 if (b_state_old == b_state)
1505                         break;
1506                 b_state = b_state_old;
1507         }
1508         unlock_buffer(bh);
1509 }
1510
1511 /**
1512  * block_invalidatepage - invalidate part or all of a buffer-backed page
1513  *
1514  * @page: the page which is affected
1515  * @offset: start of the range to invalidate
1516  * @length: length of the range to invalidate
1517  *
1518  * block_invalidatepage() is called when all or part of the page has become
1519  * invalidated by a truncate operation.
1520  *
1521  * block_invalidatepage() does not have to release all buffers, but it must
1522  * ensure that no dirty buffer is left outside @offset and that no I/O
1523  * is underway against any of the blocks which are outside the truncation
1524  * point.  Because the caller is about to free (and possibly reuse) those
1525  * blocks on-disk.
1526  */
1527 void block_invalidatepage(struct page *page, unsigned int offset,
1528                           unsigned int length)
1529 {
1530         struct buffer_head *head, *bh, *next;
1531         unsigned int curr_off = 0;
1532         unsigned int stop = length + offset;
1533
1534         BUG_ON(!PageLocked(page));
1535         if (!page_has_buffers(page))
1536                 goto out;
1537
1538         /*
1539          * Check for overflow
1540          */
1541         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1542
1543         head = page_buffers(page);
1544         bh = head;
1545         do {
1546                 unsigned int next_off = curr_off + bh->b_size;
1547                 next = bh->b_this_page;
1548
1549                 /*
1550                  * Are we still fully in range ?
1551                  */
1552                 if (next_off > stop)
1553                         goto out;
1554
1555                 /*
1556                  * is this block fully invalidated?
1557                  */
1558                 if (offset <= curr_off)
1559                         discard_buffer(bh);
1560                 curr_off = next_off;
1561                 bh = next;
1562         } while (bh != head);
1563
1564         /*
1565          * We release buffers only if the entire page is being invalidated.
1566          * The get_block cached value has been unconditionally invalidated,
1567          * so real IO is not possible anymore.
1568          */
1569         if (offset == 0)
1570                 try_to_release_page(page, 0);
1571 out:
1572         return;
1573 }
1574 EXPORT_SYMBOL(block_invalidatepage);
1575
1576
1577 /*
1578  * We attach and possibly dirty the buffers atomically wrt
1579  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1580  * is already excluded via the page lock.
1581  */
1582 void create_empty_buffers(struct page *page,
1583                         unsigned long blocksize, unsigned long b_state)
1584 {
1585         struct buffer_head *bh, *head, *tail;
1586
1587         head = alloc_page_buffers(page, blocksize, 1);
1588         bh = head;
1589         do {
1590                 bh->b_state |= b_state;
1591                 tail = bh;
1592                 bh = bh->b_this_page;
1593         } while (bh);
1594         tail->b_this_page = head;
1595
1596         spin_lock(&page->mapping->private_lock);
1597         if (PageUptodate(page) || PageDirty(page)) {
1598                 bh = head;
1599                 do {
1600                         if (PageDirty(page))
1601                                 set_buffer_dirty(bh);
1602                         if (PageUptodate(page))
1603                                 set_buffer_uptodate(bh);
1604                         bh = bh->b_this_page;
1605                 } while (bh != head);
1606         }
1607         attach_page_buffers(page, head);
1608         spin_unlock(&page->mapping->private_lock);
1609 }
1610 EXPORT_SYMBOL(create_empty_buffers);
1611
1612 /*
1613  * We are taking a block for data and we don't want any output from any
1614  * buffer-cache aliases starting from return from that function and
1615  * until the moment when something will explicitly mark the buffer
1616  * dirty (hopefully that will not happen until we will free that block ;-)
1617  * We don't even need to mark it not-uptodate - nobody can expect
1618  * anything from a newly allocated buffer anyway. We used to used
1619  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1620  * don't want to mark the alias unmapped, for example - it would confuse
1621  * anyone who might pick it with bread() afterwards...
1622  *
1623  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1624  * be writeout I/O going on against recently-freed buffers.  We don't
1625  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1626  * only if we really need to.  That happens here.
1627  */
1628 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1629 {
1630         struct buffer_head *old_bh;
1631
1632         might_sleep();
1633
1634         old_bh = __find_get_block_slow(bdev, block);
1635         if (old_bh) {
1636                 clear_buffer_dirty(old_bh);
1637                 wait_on_buffer(old_bh);
1638                 clear_buffer_req(old_bh);
1639                 __brelse(old_bh);
1640         }
1641 }
1642 EXPORT_SYMBOL(unmap_underlying_metadata);
1643
1644 /*
1645  * Size is a power-of-two in the range 512..PAGE_SIZE,
1646  * and the case we care about most is PAGE_SIZE.
1647  *
1648  * So this *could* possibly be written with those
1649  * constraints in mind (relevant mostly if some
1650  * architecture has a slow bit-scan instruction)
1651  */
1652 static inline int block_size_bits(unsigned int blocksize)
1653 {
1654         return ilog2(blocksize);
1655 }
1656
1657 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1658 {
1659         BUG_ON(!PageLocked(page));
1660
1661         if (!page_has_buffers(page))
1662                 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1663         return page_buffers(page);
1664 }
1665
1666 /*
1667  * NOTE! All mapped/uptodate combinations are valid:
1668  *
1669  *      Mapped  Uptodate        Meaning
1670  *
1671  *      No      No              "unknown" - must do get_block()
1672  *      No      Yes             "hole" - zero-filled
1673  *      Yes     No              "allocated" - allocated on disk, not read in
1674  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1675  *
1676  * "Dirty" is valid only with the last case (mapped+uptodate).
1677  */
1678
1679 /*
1680  * While block_write_full_page is writing back the dirty buffers under
1681  * the page lock, whoever dirtied the buffers may decide to clean them
1682  * again at any time.  We handle that by only looking at the buffer
1683  * state inside lock_buffer().
1684  *
1685  * If block_write_full_page() is called for regular writeback
1686  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1687  * locked buffer.   This only can happen if someone has written the buffer
1688  * directly, with submit_bh().  At the address_space level PageWriteback
1689  * prevents this contention from occurring.
1690  *
1691  * If block_write_full_page() is called with wbc->sync_mode ==
1692  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1693  * causes the writes to be flagged as synchronous writes.
1694  */
1695 static int __block_write_full_page(struct inode *inode, struct page *page,
1696                         get_block_t *get_block, struct writeback_control *wbc,
1697                         bh_end_io_t *handler)
1698 {
1699         int err;
1700         sector_t block;
1701         sector_t last_block;
1702         struct buffer_head *bh, *head;
1703         unsigned int blocksize, bbits;
1704         int nr_underway = 0;
1705         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1706                         WRITE_SYNC : WRITE);
1707
1708         head = create_page_buffers(page, inode,
1709                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1710
1711         /*
1712          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1713          * here, and the (potentially unmapped) buffers may become dirty at
1714          * any time.  If a buffer becomes dirty here after we've inspected it
1715          * then we just miss that fact, and the page stays dirty.
1716          *
1717          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1718          * handle that here by just cleaning them.
1719          */
1720
1721         bh = head;
1722         blocksize = bh->b_size;
1723         bbits = block_size_bits(blocksize);
1724
1725         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1726         last_block = (i_size_read(inode) - 1) >> bbits;
1727
1728         /*
1729          * Get all the dirty buffers mapped to disk addresses and
1730          * handle any aliases from the underlying blockdev's mapping.
1731          */
1732         do {
1733                 if (block > last_block) {
1734                         /*
1735                          * mapped buffers outside i_size will occur, because
1736                          * this page can be outside i_size when there is a
1737                          * truncate in progress.
1738                          */
1739                         /*
1740                          * The buffer was zeroed by block_write_full_page()
1741                          */
1742                         clear_buffer_dirty(bh);
1743                         set_buffer_uptodate(bh);
1744                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1745                            buffer_dirty(bh)) {
1746                         WARN_ON(bh->b_size != blocksize);
1747                         err = get_block(inode, block, bh, 1);
1748                         if (err)
1749                                 goto recover;
1750                         clear_buffer_delay(bh);
1751                         if (buffer_new(bh)) {
1752                                 /* blockdev mappings never come here */
1753                                 clear_buffer_new(bh);
1754                                 unmap_underlying_metadata(bh->b_bdev,
1755                                                         bh->b_blocknr);
1756                         }
1757                 }
1758                 bh = bh->b_this_page;
1759                 block++;
1760         } while (bh != head);
1761
1762         do {
1763                 if (!buffer_mapped(bh))
1764                         continue;
1765                 /*
1766                  * If it's a fully non-blocking write attempt and we cannot
1767                  * lock the buffer then redirty the page.  Note that this can
1768                  * potentially cause a busy-wait loop from writeback threads
1769                  * and kswapd activity, but those code paths have their own
1770                  * higher-level throttling.
1771                  */
1772                 if (wbc->sync_mode != WB_SYNC_NONE) {
1773                         lock_buffer(bh);
1774                 } else if (!trylock_buffer(bh)) {
1775                         redirty_page_for_writepage(wbc, page);
1776                         continue;
1777                 }
1778                 if (test_clear_buffer_dirty(bh)) {
1779                         mark_buffer_async_write_endio(bh, handler);
1780                 } else {
1781                         unlock_buffer(bh);
1782                 }
1783         } while ((bh = bh->b_this_page) != head);
1784
1785         /*
1786          * The page and its buffers are protected by PageWriteback(), so we can
1787          * drop the bh refcounts early.
1788          */
1789         BUG_ON(PageWriteback(page));
1790         set_page_writeback(page);
1791
1792         do {
1793                 struct buffer_head *next = bh->b_this_page;
1794                 if (buffer_async_write(bh)) {
1795                         submit_bh(write_op, bh);
1796                         nr_underway++;
1797                 }
1798                 bh = next;
1799         } while (bh != head);
1800         unlock_page(page);
1801
1802         err = 0;
1803 done:
1804         if (nr_underway == 0) {
1805                 /*
1806                  * The page was marked dirty, but the buffers were
1807                  * clean.  Someone wrote them back by hand with
1808                  * ll_rw_block/submit_bh.  A rare case.
1809                  */
1810                 end_page_writeback(page);
1811
1812                 /*
1813                  * The page and buffer_heads can be released at any time from
1814                  * here on.
1815                  */
1816         }
1817         return err;
1818
1819 recover:
1820         /*
1821          * ENOSPC, or some other error.  We may already have added some
1822          * blocks to the file, so we need to write these out to avoid
1823          * exposing stale data.
1824          * The page is currently locked and not marked for writeback
1825          */
1826         bh = head;
1827         /* Recovery: lock and submit the mapped buffers */
1828         do {
1829                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1830                     !buffer_delay(bh)) {
1831                         lock_buffer(bh);
1832                         mark_buffer_async_write_endio(bh, handler);
1833                 } else {
1834                         /*
1835                          * The buffer may have been set dirty during
1836                          * attachment to a dirty page.
1837                          */
1838                         clear_buffer_dirty(bh);
1839                 }
1840         } while ((bh = bh->b_this_page) != head);
1841         SetPageError(page);
1842         BUG_ON(PageWriteback(page));
1843         mapping_set_error(page->mapping, err);
1844         set_page_writeback(page);
1845         do {
1846                 struct buffer_head *next = bh->b_this_page;
1847                 if (buffer_async_write(bh)) {
1848                         clear_buffer_dirty(bh);
1849                         submit_bh(write_op, bh);
1850                         nr_underway++;
1851                 }
1852                 bh = next;
1853         } while (bh != head);
1854         unlock_page(page);
1855         goto done;
1856 }
1857
1858 /*
1859  * If a page has any new buffers, zero them out here, and mark them uptodate
1860  * and dirty so they'll be written out (in order to prevent uninitialised
1861  * block data from leaking). And clear the new bit.
1862  */
1863 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1864 {
1865         unsigned int block_start, block_end;
1866         struct buffer_head *head, *bh;
1867
1868         BUG_ON(!PageLocked(page));
1869         if (!page_has_buffers(page))
1870                 return;
1871
1872         bh = head = page_buffers(page);
1873         block_start = 0;
1874         do {
1875                 block_end = block_start + bh->b_size;
1876
1877                 if (buffer_new(bh)) {
1878                         if (block_end > from && block_start < to) {
1879                                 if (!PageUptodate(page)) {
1880                                         unsigned start, size;
1881
1882                                         start = max(from, block_start);
1883                                         size = min(to, block_end) - start;
1884
1885                                         zero_user(page, start, size);
1886                                         set_buffer_uptodate(bh);
1887                                 }
1888
1889                                 clear_buffer_new(bh);
1890                                 mark_buffer_dirty(bh);
1891                         }
1892                 }
1893
1894                 block_start = block_end;
1895                 bh = bh->b_this_page;
1896         } while (bh != head);
1897 }
1898 EXPORT_SYMBOL(page_zero_new_buffers);
1899
1900 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1901                 get_block_t *get_block)
1902 {
1903         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1904         unsigned to = from + len;
1905         struct inode *inode = page->mapping->host;
1906         unsigned block_start, block_end;
1907         sector_t block;
1908         int err = 0;
1909         unsigned blocksize, bbits;
1910         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1911
1912         BUG_ON(!PageLocked(page));
1913         BUG_ON(from > PAGE_CACHE_SIZE);
1914         BUG_ON(to > PAGE_CACHE_SIZE);
1915         BUG_ON(from > to);
1916
1917         head = create_page_buffers(page, inode, 0);
1918         blocksize = head->b_size;
1919         bbits = block_size_bits(blocksize);
1920
1921         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1922
1923         for(bh = head, block_start = 0; bh != head || !block_start;
1924             block++, block_start=block_end, bh = bh->b_this_page) {
1925                 block_end = block_start + blocksize;
1926                 if (block_end <= from || block_start >= to) {
1927                         if (PageUptodate(page)) {
1928                                 if (!buffer_uptodate(bh))
1929                                         set_buffer_uptodate(bh);
1930                         }
1931                         continue;
1932                 }
1933                 if (buffer_new(bh))
1934                         clear_buffer_new(bh);
1935                 if (!buffer_mapped(bh)) {
1936                         WARN_ON(bh->b_size != blocksize);
1937                         err = get_block(inode, block, bh, 1);
1938                         if (err)
1939                                 break;
1940                         if (buffer_new(bh)) {
1941                                 unmap_underlying_metadata(bh->b_bdev,
1942                                                         bh->b_blocknr);
1943                                 if (PageUptodate(page)) {
1944                                         clear_buffer_new(bh);
1945                                         set_buffer_uptodate(bh);
1946                                         mark_buffer_dirty(bh);
1947                                         continue;
1948                                 }
1949                                 if (block_end > to || block_start < from)
1950                                         zero_user_segments(page,
1951                                                 to, block_end,
1952                                                 block_start, from);
1953                                 continue;
1954                         }
1955                 }
1956                 if (PageUptodate(page)) {
1957                         if (!buffer_uptodate(bh))
1958                                 set_buffer_uptodate(bh);
1959                         continue; 
1960                 }
1961                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1962                     !buffer_unwritten(bh) &&
1963                      (block_start < from || block_end > to)) {
1964                         ll_rw_block(READ, 1, &bh);
1965                         *wait_bh++=bh;
1966                 }
1967         }
1968         /*
1969          * If we issued read requests - let them complete.
1970          */
1971         while(wait_bh > wait) {
1972                 wait_on_buffer(*--wait_bh);
1973                 if (!buffer_uptodate(*wait_bh))
1974                         err = -EIO;
1975         }
1976         if (unlikely(err))
1977                 page_zero_new_buffers(page, from, to);
1978         return err;
1979 }
1980 EXPORT_SYMBOL(__block_write_begin);
1981
1982 static int __block_commit_write(struct inode *inode, struct page *page,
1983                 unsigned from, unsigned to)
1984 {
1985         unsigned block_start, block_end;
1986         int partial = 0;
1987         unsigned blocksize;
1988         struct buffer_head *bh, *head;
1989
1990         bh = head = page_buffers(page);
1991         blocksize = bh->b_size;
1992
1993         block_start = 0;
1994         do {
1995                 block_end = block_start + blocksize;
1996                 if (block_end <= from || block_start >= to) {
1997                         if (!buffer_uptodate(bh))
1998                                 partial = 1;
1999                 } else {
2000                         set_buffer_uptodate(bh);
2001                         mark_buffer_dirty(bh);
2002                 }
2003                 clear_buffer_new(bh);
2004
2005                 block_start = block_end;
2006                 bh = bh->b_this_page;
2007         } while (bh != head);
2008
2009         /*
2010          * If this is a partial write which happened to make all buffers
2011          * uptodate then we can optimize away a bogus readpage() for
2012          * the next read(). Here we 'discover' whether the page went
2013          * uptodate as a result of this (potentially partial) write.
2014          */
2015         if (!partial)
2016                 SetPageUptodate(page);
2017         return 0;
2018 }
2019
2020 /*
2021  * block_write_begin takes care of the basic task of block allocation and
2022  * bringing partial write blocks uptodate first.
2023  *
2024  * The filesystem needs to handle block truncation upon failure.
2025  */
2026 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2027                 unsigned flags, struct page **pagep, get_block_t *get_block)
2028 {
2029         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2030         struct page *page;
2031         int status;
2032
2033         page = grab_cache_page_write_begin(mapping, index, flags);
2034         if (!page)
2035                 return -ENOMEM;
2036
2037         status = __block_write_begin(page, pos, len, get_block);
2038         if (unlikely(status)) {
2039                 unlock_page(page);
2040                 page_cache_release(page);
2041                 page = NULL;
2042         }
2043
2044         *pagep = page;
2045         return status;
2046 }
2047 EXPORT_SYMBOL(block_write_begin);
2048
2049 int block_write_end(struct file *file, struct address_space *mapping,
2050                         loff_t pos, unsigned len, unsigned copied,
2051                         struct page *page, void *fsdata)
2052 {
2053         struct inode *inode = mapping->host;
2054         unsigned start;
2055
2056         start = pos & (PAGE_CACHE_SIZE - 1);
2057
2058         if (unlikely(copied < len)) {
2059                 /*
2060                  * The buffers that were written will now be uptodate, so we
2061                  * don't have to worry about a readpage reading them and
2062                  * overwriting a partial write. However if we have encountered
2063                  * a short write and only partially written into a buffer, it
2064                  * will not be marked uptodate, so a readpage might come in and
2065                  * destroy our partial write.
2066                  *
2067                  * Do the simplest thing, and just treat any short write to a
2068                  * non uptodate page as a zero-length write, and force the
2069                  * caller to redo the whole thing.
2070                  */
2071                 if (!PageUptodate(page))
2072                         copied = 0;
2073
2074                 page_zero_new_buffers(page, start+copied, start+len);
2075         }
2076         flush_dcache_page(page);
2077
2078         /* This could be a short (even 0-length) commit */
2079         __block_commit_write(inode, page, start, start+copied);
2080
2081         return copied;
2082 }
2083 EXPORT_SYMBOL(block_write_end);
2084
2085 int generic_write_end(struct file *file, struct address_space *mapping,
2086                         loff_t pos, unsigned len, unsigned copied,
2087                         struct page *page, void *fsdata)
2088 {
2089         struct inode *inode = mapping->host;
2090         loff_t old_size = inode->i_size;
2091         int i_size_changed = 0;
2092
2093         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2094
2095         /*
2096          * No need to use i_size_read() here, the i_size
2097          * cannot change under us because we hold i_mutex.
2098          *
2099          * But it's important to update i_size while still holding page lock:
2100          * page writeout could otherwise come in and zero beyond i_size.
2101          */
2102         if (pos+copied > inode->i_size) {
2103                 i_size_write(inode, pos+copied);
2104                 i_size_changed = 1;
2105         }
2106
2107         unlock_page(page);
2108         page_cache_release(page);
2109
2110         if (old_size < pos)
2111                 pagecache_isize_extended(inode, old_size, pos);
2112         /*
2113          * Don't mark the inode dirty under page lock. First, it unnecessarily
2114          * makes the holding time of page lock longer. Second, it forces lock
2115          * ordering of page lock and transaction start for journaling
2116          * filesystems.
2117          */
2118         if (i_size_changed)
2119                 mark_inode_dirty(inode);
2120
2121         return copied;
2122 }
2123 EXPORT_SYMBOL(generic_write_end);
2124
2125 /*
2126  * block_is_partially_uptodate checks whether buffers within a page are
2127  * uptodate or not.
2128  *
2129  * Returns true if all buffers which correspond to a file portion
2130  * we want to read are uptodate.
2131  */
2132 int block_is_partially_uptodate(struct page *page, unsigned long from,
2133                                         unsigned long count)
2134 {
2135         unsigned block_start, block_end, blocksize;
2136         unsigned to;
2137         struct buffer_head *bh, *head;
2138         int ret = 1;
2139
2140         if (!page_has_buffers(page))
2141                 return 0;
2142
2143         head = page_buffers(page);
2144         blocksize = head->b_size;
2145         to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2146         to = from + to;
2147         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2148                 return 0;
2149
2150         bh = head;
2151         block_start = 0;
2152         do {
2153                 block_end = block_start + blocksize;
2154                 if (block_end > from && block_start < to) {
2155                         if (!buffer_uptodate(bh)) {
2156                                 ret = 0;
2157                                 break;
2158                         }
2159                         if (block_end >= to)
2160                                 break;
2161                 }
2162                 block_start = block_end;
2163                 bh = bh->b_this_page;
2164         } while (bh != head);
2165
2166         return ret;
2167 }
2168 EXPORT_SYMBOL(block_is_partially_uptodate);
2169
2170 /*
2171  * Generic "read page" function for block devices that have the normal
2172  * get_block functionality. This is most of the block device filesystems.
2173  * Reads the page asynchronously --- the unlock_buffer() and
2174  * set/clear_buffer_uptodate() functions propagate buffer state into the
2175  * page struct once IO has completed.
2176  */
2177 int block_read_full_page(struct page *page, get_block_t *get_block)
2178 {
2179         struct inode *inode = page->mapping->host;
2180         sector_t iblock, lblock;
2181         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2182         unsigned int blocksize, bbits;
2183         int nr, i;
2184         int fully_mapped = 1;
2185
2186         head = create_page_buffers(page, inode, 0);
2187         blocksize = head->b_size;
2188         bbits = block_size_bits(blocksize);
2189
2190         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2191         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2192         bh = head;
2193         nr = 0;
2194         i = 0;
2195
2196         do {
2197                 if (buffer_uptodate(bh))
2198                         continue;
2199
2200                 if (!buffer_mapped(bh)) {
2201                         int err = 0;
2202
2203                         fully_mapped = 0;
2204                         if (iblock < lblock) {
2205                                 WARN_ON(bh->b_size != blocksize);
2206                                 err = get_block(inode, iblock, bh, 0);
2207                                 if (err)
2208                                         SetPageError(page);
2209                         }
2210                         if (!buffer_mapped(bh)) {
2211                                 zero_user(page, i * blocksize, blocksize);
2212                                 if (!err)
2213                                         set_buffer_uptodate(bh);
2214                                 continue;
2215                         }
2216                         /*
2217                          * get_block() might have updated the buffer
2218                          * synchronously
2219                          */
2220                         if (buffer_uptodate(bh))
2221                                 continue;
2222                 }
2223                 arr[nr++] = bh;
2224         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2225
2226         if (fully_mapped)
2227                 SetPageMappedToDisk(page);
2228
2229         if (!nr) {
2230                 /*
2231                  * All buffers are uptodate - we can set the page uptodate
2232                  * as well. But not if get_block() returned an error.
2233                  */
2234                 if (!PageError(page))
2235                         SetPageUptodate(page);
2236                 unlock_page(page);
2237                 return 0;
2238         }
2239
2240         /* Stage two: lock the buffers */
2241         for (i = 0; i < nr; i++) {
2242                 bh = arr[i];
2243                 lock_buffer(bh);
2244                 mark_buffer_async_read(bh);
2245         }
2246
2247         /*
2248          * Stage 3: start the IO.  Check for uptodateness
2249          * inside the buffer lock in case another process reading
2250          * the underlying blockdev brought it uptodate (the sct fix).
2251          */
2252         for (i = 0; i < nr; i++) {
2253                 bh = arr[i];
2254                 if (buffer_uptodate(bh))
2255                         end_buffer_async_read(bh, 1);
2256                 else
2257                         submit_bh(READ, bh);
2258         }
2259         return 0;
2260 }
2261 EXPORT_SYMBOL(block_read_full_page);
2262
2263 /* utility function for filesystems that need to do work on expanding
2264  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2265  * deal with the hole.  
2266  */
2267 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2268 {
2269         struct address_space *mapping = inode->i_mapping;
2270         struct page *page;
2271         void *fsdata;
2272         int err;
2273
2274         err = inode_newsize_ok(inode, size);
2275         if (err)
2276                 goto out;
2277
2278         err = pagecache_write_begin(NULL, mapping, size, 0,
2279                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2280                                 &page, &fsdata);
2281         if (err)
2282                 goto out;
2283
2284         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2285         BUG_ON(err > 0);
2286
2287 out:
2288         return err;
2289 }
2290 EXPORT_SYMBOL(generic_cont_expand_simple);
2291
2292 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2293                             loff_t pos, loff_t *bytes)
2294 {
2295         struct inode *inode = mapping->host;
2296         unsigned blocksize = 1 << inode->i_blkbits;
2297         struct page *page;
2298         void *fsdata;
2299         pgoff_t index, curidx;
2300         loff_t curpos;
2301         unsigned zerofrom, offset, len;
2302         int err = 0;
2303
2304         index = pos >> PAGE_CACHE_SHIFT;
2305         offset = pos & ~PAGE_CACHE_MASK;
2306
2307         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2308                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2309                 if (zerofrom & (blocksize-1)) {
2310                         *bytes |= (blocksize-1);
2311                         (*bytes)++;
2312                 }
2313                 len = PAGE_CACHE_SIZE - zerofrom;
2314
2315                 err = pagecache_write_begin(file, mapping, curpos, len,
2316                                                 AOP_FLAG_UNINTERRUPTIBLE,
2317                                                 &page, &fsdata);
2318                 if (err)
2319                         goto out;
2320                 zero_user(page, zerofrom, len);
2321                 err = pagecache_write_end(file, mapping, curpos, len, len,
2322                                                 page, fsdata);
2323                 if (err < 0)
2324                         goto out;
2325                 BUG_ON(err != len);
2326                 err = 0;
2327
2328                 balance_dirty_pages_ratelimited(mapping);
2329         }
2330
2331         /* page covers the boundary, find the boundary offset */
2332         if (index == curidx) {
2333                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2334                 /* if we will expand the thing last block will be filled */
2335                 if (offset <= zerofrom) {
2336                         goto out;
2337                 }
2338                 if (zerofrom & (blocksize-1)) {
2339                         *bytes |= (blocksize-1);
2340                         (*bytes)++;
2341                 }
2342                 len = offset - zerofrom;
2343
2344                 err = pagecache_write_begin(file, mapping, curpos, len,
2345                                                 AOP_FLAG_UNINTERRUPTIBLE,
2346                                                 &page, &fsdata);
2347                 if (err)
2348                         goto out;
2349                 zero_user(page, zerofrom, len);
2350                 err = pagecache_write_end(file, mapping, curpos, len, len,
2351                                                 page, fsdata);
2352                 if (err < 0)
2353                         goto out;
2354                 BUG_ON(err != len);
2355                 err = 0;
2356         }
2357 out:
2358         return err;
2359 }
2360
2361 /*
2362  * For moronic filesystems that do not allow holes in file.
2363  * We may have to extend the file.
2364  */
2365 int cont_write_begin(struct file *file, struct address_space *mapping,
2366                         loff_t pos, unsigned len, unsigned flags,
2367                         struct page **pagep, void **fsdata,
2368                         get_block_t *get_block, loff_t *bytes)
2369 {
2370         struct inode *inode = mapping->host;
2371         unsigned blocksize = 1 << inode->i_blkbits;
2372         unsigned zerofrom;
2373         int err;
2374
2375         err = cont_expand_zero(file, mapping, pos, bytes);
2376         if (err)
2377                 return err;
2378
2379         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2380         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2381                 *bytes |= (blocksize-1);
2382                 (*bytes)++;
2383         }
2384
2385         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2386 }
2387 EXPORT_SYMBOL(cont_write_begin);
2388
2389 int block_commit_write(struct page *page, unsigned from, unsigned to)
2390 {
2391         struct inode *inode = page->mapping->host;
2392         __block_commit_write(inode,page,from,to);
2393         return 0;
2394 }
2395 EXPORT_SYMBOL(block_commit_write);
2396
2397 /*
2398  * block_page_mkwrite() is not allowed to change the file size as it gets
2399  * called from a page fault handler when a page is first dirtied. Hence we must
2400  * be careful to check for EOF conditions here. We set the page up correctly
2401  * for a written page which means we get ENOSPC checking when writing into
2402  * holes and correct delalloc and unwritten extent mapping on filesystems that
2403  * support these features.
2404  *
2405  * We are not allowed to take the i_mutex here so we have to play games to
2406  * protect against truncate races as the page could now be beyond EOF.  Because
2407  * truncate writes the inode size before removing pages, once we have the
2408  * page lock we can determine safely if the page is beyond EOF. If it is not
2409  * beyond EOF, then the page is guaranteed safe against truncation until we
2410  * unlock the page.
2411  *
2412  * Direct callers of this function should protect against filesystem freezing
2413  * using sb_start_write() - sb_end_write() functions.
2414  */
2415 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2416                          get_block_t get_block)
2417 {
2418         struct page *page = vmf->page;
2419         struct inode *inode = file_inode(vma->vm_file);
2420         unsigned long end;
2421         loff_t size;
2422         int ret;
2423
2424         lock_page(page);
2425         size = i_size_read(inode);
2426         if ((page->mapping != inode->i_mapping) ||
2427             (page_offset(page) > size)) {
2428                 /* We overload EFAULT to mean page got truncated */
2429                 ret = -EFAULT;
2430                 goto out_unlock;
2431         }
2432
2433         /* page is wholly or partially inside EOF */
2434         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2435                 end = size & ~PAGE_CACHE_MASK;
2436         else
2437                 end = PAGE_CACHE_SIZE;
2438
2439         ret = __block_write_begin(page, 0, end, get_block);
2440         if (!ret)
2441                 ret = block_commit_write(page, 0, end);
2442
2443         if (unlikely(ret < 0))
2444                 goto out_unlock;
2445         set_page_dirty(page);
2446         wait_for_stable_page(page);
2447         return 0;
2448 out_unlock:
2449         unlock_page(page);
2450         return ret;
2451 }
2452 EXPORT_SYMBOL(__block_page_mkwrite);
2453
2454 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2455                    get_block_t get_block)
2456 {
2457         int ret;
2458         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2459
2460         sb_start_pagefault(sb);
2461
2462         /*
2463          * Update file times before taking page lock. We may end up failing the
2464          * fault so this update may be superfluous but who really cares...
2465          */
2466         file_update_time(vma->vm_file);
2467
2468         ret = __block_page_mkwrite(vma, vmf, get_block);
2469         sb_end_pagefault(sb);
2470         return block_page_mkwrite_return(ret);
2471 }
2472 EXPORT_SYMBOL(block_page_mkwrite);
2473
2474 /*
2475  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2476  * immediately, while under the page lock.  So it needs a special end_io
2477  * handler which does not touch the bh after unlocking it.
2478  */
2479 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2480 {
2481         __end_buffer_read_notouch(bh, uptodate);
2482 }
2483
2484 /*
2485  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2486  * the page (converting it to circular linked list and taking care of page
2487  * dirty races).
2488  */
2489 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2490 {
2491         struct buffer_head *bh;
2492
2493         BUG_ON(!PageLocked(page));
2494
2495         spin_lock(&page->mapping->private_lock);
2496         bh = head;
2497         do {
2498                 if (PageDirty(page))
2499                         set_buffer_dirty(bh);
2500                 if (!bh->b_this_page)
2501                         bh->b_this_page = head;
2502                 bh = bh->b_this_page;
2503         } while (bh != head);
2504         attach_page_buffers(page, head);
2505         spin_unlock(&page->mapping->private_lock);
2506 }
2507
2508 /*
2509  * On entry, the page is fully not uptodate.
2510  * On exit the page is fully uptodate in the areas outside (from,to)
2511  * The filesystem needs to handle block truncation upon failure.
2512  */
2513 int nobh_write_begin(struct address_space *mapping,
2514                         loff_t pos, unsigned len, unsigned flags,
2515                         struct page **pagep, void **fsdata,
2516                         get_block_t *get_block)
2517 {
2518         struct inode *inode = mapping->host;
2519         const unsigned blkbits = inode->i_blkbits;
2520         const unsigned blocksize = 1 << blkbits;
2521         struct buffer_head *head, *bh;
2522         struct page *page;
2523         pgoff_t index;
2524         unsigned from, to;
2525         unsigned block_in_page;
2526         unsigned block_start, block_end;
2527         sector_t block_in_file;
2528         int nr_reads = 0;
2529         int ret = 0;
2530         int is_mapped_to_disk = 1;
2531
2532         index = pos >> PAGE_CACHE_SHIFT;
2533         from = pos & (PAGE_CACHE_SIZE - 1);
2534         to = from + len;
2535
2536         page = grab_cache_page_write_begin(mapping, index, flags);
2537         if (!page)
2538                 return -ENOMEM;
2539         *pagep = page;
2540         *fsdata = NULL;
2541
2542         if (page_has_buffers(page)) {
2543                 ret = __block_write_begin(page, pos, len, get_block);
2544                 if (unlikely(ret))
2545                         goto out_release;
2546                 return ret;
2547         }
2548
2549         if (PageMappedToDisk(page))
2550                 return 0;
2551
2552         /*
2553          * Allocate buffers so that we can keep track of state, and potentially
2554          * attach them to the page if an error occurs. In the common case of
2555          * no error, they will just be freed again without ever being attached
2556          * to the page (which is all OK, because we're under the page lock).
2557          *
2558          * Be careful: the buffer linked list is a NULL terminated one, rather
2559          * than the circular one we're used to.
2560          */
2561         head = alloc_page_buffers(page, blocksize, 0);
2562         if (!head) {
2563                 ret = -ENOMEM;
2564                 goto out_release;
2565         }
2566
2567         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2568
2569         /*
2570          * We loop across all blocks in the page, whether or not they are
2571          * part of the affected region.  This is so we can discover if the
2572          * page is fully mapped-to-disk.
2573          */
2574         for (block_start = 0, block_in_page = 0, bh = head;
2575                   block_start < PAGE_CACHE_SIZE;
2576                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2577                 int create;
2578
2579                 block_end = block_start + blocksize;
2580                 bh->b_state = 0;
2581                 create = 1;
2582                 if (block_start >= to)
2583                         create = 0;
2584                 ret = get_block(inode, block_in_file + block_in_page,
2585                                         bh, create);
2586                 if (ret)
2587                         goto failed;
2588                 if (!buffer_mapped(bh))
2589                         is_mapped_to_disk = 0;
2590                 if (buffer_new(bh))
2591                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2592                 if (PageUptodate(page)) {
2593                         set_buffer_uptodate(bh);
2594                         continue;
2595                 }
2596                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2597                         zero_user_segments(page, block_start, from,
2598                                                         to, block_end);
2599                         continue;
2600                 }
2601                 if (buffer_uptodate(bh))
2602                         continue;       /* reiserfs does this */
2603                 if (block_start < from || block_end > to) {
2604                         lock_buffer(bh);
2605                         bh->b_end_io = end_buffer_read_nobh;
2606                         submit_bh(READ, bh);
2607                         nr_reads++;
2608                 }
2609         }
2610
2611         if (nr_reads) {
2612                 /*
2613                  * The page is locked, so these buffers are protected from
2614                  * any VM or truncate activity.  Hence we don't need to care
2615                  * for the buffer_head refcounts.
2616                  */
2617                 for (bh = head; bh; bh = bh->b_this_page) {
2618                         wait_on_buffer(bh);
2619                         if (!buffer_uptodate(bh))
2620                                 ret = -EIO;
2621                 }
2622                 if (ret)
2623                         goto failed;
2624         }
2625
2626         if (is_mapped_to_disk)
2627                 SetPageMappedToDisk(page);
2628
2629         *fsdata = head; /* to be released by nobh_write_end */
2630
2631         return 0;
2632
2633 failed:
2634         BUG_ON(!ret);
2635         /*
2636          * Error recovery is a bit difficult. We need to zero out blocks that
2637          * were newly allocated, and dirty them to ensure they get written out.
2638          * Buffers need to be attached to the page at this point, otherwise
2639          * the handling of potential IO errors during writeout would be hard
2640          * (could try doing synchronous writeout, but what if that fails too?)
2641          */
2642         attach_nobh_buffers(page, head);
2643         page_zero_new_buffers(page, from, to);
2644
2645 out_release:
2646         unlock_page(page);
2647         page_cache_release(page);
2648         *pagep = NULL;
2649
2650         return ret;
2651 }
2652 EXPORT_SYMBOL(nobh_write_begin);
2653
2654 int nobh_write_end(struct file *file, struct address_space *mapping,
2655                         loff_t pos, unsigned len, unsigned copied,
2656                         struct page *page, void *fsdata)
2657 {
2658         struct inode *inode = page->mapping->host;
2659         struct buffer_head *head = fsdata;
2660         struct buffer_head *bh;
2661         BUG_ON(fsdata != NULL && page_has_buffers(page));
2662
2663         if (unlikely(copied < len) && head)
2664                 attach_nobh_buffers(page, head);
2665         if (page_has_buffers(page))
2666                 return generic_write_end(file, mapping, pos, len,
2667                                         copied, page, fsdata);
2668
2669         SetPageUptodate(page);
2670         set_page_dirty(page);
2671         if (pos+copied > inode->i_size) {
2672                 i_size_write(inode, pos+copied);
2673                 mark_inode_dirty(inode);
2674         }
2675
2676         unlock_page(page);
2677         page_cache_release(page);
2678
2679         while (head) {
2680                 bh = head;
2681                 head = head->b_this_page;
2682                 free_buffer_head(bh);
2683         }
2684
2685         return copied;
2686 }
2687 EXPORT_SYMBOL(nobh_write_end);
2688
2689 /*
2690  * nobh_writepage() - based on block_full_write_page() except
2691  * that it tries to operate without attaching bufferheads to
2692  * the page.
2693  */
2694 int nobh_writepage(struct page *page, get_block_t *get_block,
2695                         struct writeback_control *wbc)
2696 {
2697         struct inode * const inode = page->mapping->host;
2698         loff_t i_size = i_size_read(inode);
2699         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2700         unsigned offset;
2701         int ret;
2702
2703         /* Is the page fully inside i_size? */
2704         if (page->index < end_index)
2705                 goto out;
2706
2707         /* Is the page fully outside i_size? (truncate in progress) */
2708         offset = i_size & (PAGE_CACHE_SIZE-1);
2709         if (page->index >= end_index+1 || !offset) {
2710                 /*
2711                  * The page may have dirty, unmapped buffers.  For example,
2712                  * they may have been added in ext3_writepage().  Make them
2713                  * freeable here, so the page does not leak.
2714                  */
2715 #if 0
2716                 /* Not really sure about this  - do we need this ? */
2717                 if (page->mapping->a_ops->invalidatepage)
2718                         page->mapping->a_ops->invalidatepage(page, offset);
2719 #endif
2720                 unlock_page(page);
2721                 return 0; /* don't care */
2722         }
2723
2724         /*
2725          * The page straddles i_size.  It must be zeroed out on each and every
2726          * writepage invocation because it may be mmapped.  "A file is mapped
2727          * in multiples of the page size.  For a file that is not a multiple of
2728          * the  page size, the remaining memory is zeroed when mapped, and
2729          * writes to that region are not written out to the file."
2730          */
2731         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2732 out:
2733         ret = mpage_writepage(page, get_block, wbc);
2734         if (ret == -EAGAIN)
2735                 ret = __block_write_full_page(inode, page, get_block, wbc,
2736                                               end_buffer_async_write);
2737         return ret;
2738 }
2739 EXPORT_SYMBOL(nobh_writepage);
2740
2741 int nobh_truncate_page(struct address_space *mapping,
2742                         loff_t from, get_block_t *get_block)
2743 {
2744         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2745         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2746         unsigned blocksize;
2747         sector_t iblock;
2748         unsigned length, pos;
2749         struct inode *inode = mapping->host;
2750         struct page *page;
2751         struct buffer_head map_bh;
2752         int err;
2753
2754         blocksize = 1 << inode->i_blkbits;
2755         length = offset & (blocksize - 1);
2756
2757         /* Block boundary? Nothing to do */
2758         if (!length)
2759                 return 0;
2760
2761         length = blocksize - length;
2762         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2763
2764         page = grab_cache_page(mapping, index);
2765         err = -ENOMEM;
2766         if (!page)
2767                 goto out;
2768
2769         if (page_has_buffers(page)) {
2770 has_buffers:
2771                 unlock_page(page);
2772                 page_cache_release(page);
2773                 return block_truncate_page(mapping, from, get_block);
2774         }
2775
2776         /* Find the buffer that contains "offset" */
2777         pos = blocksize;
2778         while (offset >= pos) {
2779                 iblock++;
2780                 pos += blocksize;
2781         }
2782
2783         map_bh.b_size = blocksize;
2784         map_bh.b_state = 0;
2785         err = get_block(inode, iblock, &map_bh, 0);
2786         if (err)
2787                 goto unlock;
2788         /* unmapped? It's a hole - nothing to do */
2789         if (!buffer_mapped(&map_bh))
2790                 goto unlock;
2791
2792         /* Ok, it's mapped. Make sure it's up-to-date */
2793         if (!PageUptodate(page)) {
2794                 err = mapping->a_ops->readpage(NULL, page);
2795                 if (err) {
2796                         page_cache_release(page);
2797                         goto out;
2798                 }
2799                 lock_page(page);
2800                 if (!PageUptodate(page)) {
2801                         err = -EIO;
2802                         goto unlock;
2803                 }
2804                 if (page_has_buffers(page))
2805                         goto has_buffers;
2806         }
2807         zero_user(page, offset, length);
2808         set_page_dirty(page);
2809         err = 0;
2810
2811 unlock:
2812         unlock_page(page);
2813         page_cache_release(page);
2814 out:
2815         return err;
2816 }
2817 EXPORT_SYMBOL(nobh_truncate_page);
2818
2819 int block_truncate_page(struct address_space *mapping,
2820                         loff_t from, get_block_t *get_block)
2821 {
2822         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2823         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2824         unsigned blocksize;
2825         sector_t iblock;
2826         unsigned length, pos;
2827         struct inode *inode = mapping->host;
2828         struct page *page;
2829         struct buffer_head *bh;
2830         int err;
2831
2832         blocksize = 1 << inode->i_blkbits;
2833         length = offset & (blocksize - 1);
2834
2835         /* Block boundary? Nothing to do */
2836         if (!length)
2837                 return 0;
2838
2839         length = blocksize - length;
2840         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2841         
2842         page = grab_cache_page(mapping, index);
2843         err = -ENOMEM;
2844         if (!page)
2845                 goto out;
2846
2847         if (!page_has_buffers(page))
2848                 create_empty_buffers(page, blocksize, 0);
2849
2850         /* Find the buffer that contains "offset" */
2851         bh = page_buffers(page);
2852         pos = blocksize;
2853         while (offset >= pos) {
2854                 bh = bh->b_this_page;
2855                 iblock++;
2856                 pos += blocksize;
2857         }
2858
2859         err = 0;
2860         if (!buffer_mapped(bh)) {
2861                 WARN_ON(bh->b_size != blocksize);
2862                 err = get_block(inode, iblock, bh, 0);
2863                 if (err)
2864                         goto unlock;
2865                 /* unmapped? It's a hole - nothing to do */
2866                 if (!buffer_mapped(bh))
2867                         goto unlock;
2868         }
2869
2870         /* Ok, it's mapped. Make sure it's up-to-date */
2871         if (PageUptodate(page))
2872                 set_buffer_uptodate(bh);
2873
2874         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2875                 err = -EIO;
2876                 ll_rw_block(READ, 1, &bh);
2877                 wait_on_buffer(bh);
2878                 /* Uhhuh. Read error. Complain and punt. */
2879                 if (!buffer_uptodate(bh))
2880                         goto unlock;
2881         }
2882
2883         zero_user(page, offset, length);
2884         mark_buffer_dirty(bh);
2885         err = 0;
2886
2887 unlock:
2888         unlock_page(page);
2889         page_cache_release(page);
2890 out:
2891         return err;
2892 }
2893 EXPORT_SYMBOL(block_truncate_page);
2894
2895 /*
2896  * The generic ->writepage function for buffer-backed address_spaces
2897  */
2898 int block_write_full_page(struct page *page, get_block_t *get_block,
2899                         struct writeback_control *wbc)
2900 {
2901         struct inode * const inode = page->mapping->host;
2902         loff_t i_size = i_size_read(inode);
2903         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2904         unsigned offset;
2905
2906         /* Is the page fully inside i_size? */
2907         if (page->index < end_index)
2908                 return __block_write_full_page(inode, page, get_block, wbc,
2909                                                end_buffer_async_write);
2910
2911         /* Is the page fully outside i_size? (truncate in progress) */
2912         offset = i_size & (PAGE_CACHE_SIZE-1);
2913         if (page->index >= end_index+1 || !offset) {
2914                 /*
2915                  * The page may have dirty, unmapped buffers.  For example,
2916                  * they may have been added in ext3_writepage().  Make them
2917                  * freeable here, so the page does not leak.
2918                  */
2919                 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2920                 unlock_page(page);
2921                 return 0; /* don't care */
2922         }
2923
2924         /*
2925          * The page straddles i_size.  It must be zeroed out on each and every
2926          * writepage invocation because it may be mmapped.  "A file is mapped
2927          * in multiples of the page size.  For a file that is not a multiple of
2928          * the  page size, the remaining memory is zeroed when mapped, and
2929          * writes to that region are not written out to the file."
2930          */
2931         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2932         return __block_write_full_page(inode, page, get_block, wbc,
2933                                                         end_buffer_async_write);
2934 }
2935 EXPORT_SYMBOL(block_write_full_page);
2936
2937 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2938                             get_block_t *get_block)
2939 {
2940         struct buffer_head tmp;
2941         struct inode *inode = mapping->host;
2942         tmp.b_state = 0;
2943         tmp.b_blocknr = 0;
2944         tmp.b_size = 1 << inode->i_blkbits;
2945         get_block(inode, block, &tmp, 0);
2946         return tmp.b_blocknr;
2947 }
2948 EXPORT_SYMBOL(generic_block_bmap);
2949
2950 static void end_bio_bh_io_sync(struct bio *bio, int err)
2951 {
2952         struct buffer_head *bh = bio->bi_private;
2953
2954         if (err == -EOPNOTSUPP) {
2955                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2956         }
2957
2958         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2959                 set_bit(BH_Quiet, &bh->b_state);
2960
2961         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2962         bio_put(bio);
2963 }
2964
2965 /*
2966  * This allows us to do IO even on the odd last sectors
2967  * of a device, even if the bh block size is some multiple
2968  * of the physical sector size.
2969  *
2970  * We'll just truncate the bio to the size of the device,
2971  * and clear the end of the buffer head manually.
2972  *
2973  * Truly out-of-range accesses will turn into actual IO
2974  * errors, this only handles the "we need to be able to
2975  * do IO at the final sector" case.
2976  */
2977 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2978 {
2979         sector_t maxsector;
2980         unsigned bytes;
2981
2982         maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2983         if (!maxsector)
2984                 return;
2985
2986         /*
2987          * If the *whole* IO is past the end of the device,
2988          * let it through, and the IO layer will turn it into
2989          * an EIO.
2990          */
2991         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2992                 return;
2993
2994         maxsector -= bio->bi_iter.bi_sector;
2995         bytes = bio->bi_iter.bi_size;
2996         if (likely((bytes >> 9) <= maxsector))
2997                 return;
2998
2999         /* Uhhuh. We've got a bh that straddles the device size! */
3000         bytes = maxsector << 9;
3001
3002         /* Truncate the bio.. */
3003         bio->bi_iter.bi_size = bytes;
3004         bio->bi_io_vec[0].bv_len = bytes;
3005
3006         /* ..and clear the end of the buffer for reads */
3007         if ((rw & RW_MASK) == READ) {
3008                 void *kaddr = kmap_atomic(bh->b_page);
3009                 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
3010                 kunmap_atomic(kaddr);
3011                 flush_dcache_page(bh->b_page);
3012         }
3013 }
3014
3015 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3016 {
3017         struct bio *bio;
3018         int ret = 0;
3019
3020         BUG_ON(!buffer_locked(bh));
3021         BUG_ON(!buffer_mapped(bh));
3022         BUG_ON(!bh->b_end_io);
3023         BUG_ON(buffer_delay(bh));
3024         BUG_ON(buffer_unwritten(bh));
3025
3026         /*
3027          * Only clear out a write error when rewriting
3028          */
3029         if (test_set_buffer_req(bh) && (rw & WRITE))
3030                 clear_buffer_write_io_error(bh);
3031
3032         /*
3033          * from here on down, it's all bio -- do the initial mapping,
3034          * submit_bio -> generic_make_request may further map this bio around
3035          */
3036         bio = bio_alloc(GFP_NOIO, 1);
3037
3038         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3039         bio->bi_bdev = bh->b_bdev;
3040         bio->bi_io_vec[0].bv_page = bh->b_page;
3041         bio->bi_io_vec[0].bv_len = bh->b_size;
3042         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3043
3044         bio->bi_vcnt = 1;
3045         bio->bi_iter.bi_size = bh->b_size;
3046
3047         bio->bi_end_io = end_bio_bh_io_sync;
3048         bio->bi_private = bh;
3049         bio->bi_flags |= bio_flags;
3050
3051         /* Take care of bh's that straddle the end of the device */
3052         guard_bh_eod(rw, bio, bh);
3053
3054         if (buffer_meta(bh))
3055                 rw |= REQ_META;
3056         if (buffer_prio(bh))
3057                 rw |= REQ_PRIO;
3058
3059         bio_get(bio);
3060         submit_bio(rw, bio);
3061
3062         if (bio_flagged(bio, BIO_EOPNOTSUPP))
3063                 ret = -EOPNOTSUPP;
3064
3065         bio_put(bio);
3066         return ret;
3067 }
3068 EXPORT_SYMBOL_GPL(_submit_bh);
3069
3070 int submit_bh(int rw, struct buffer_head *bh)
3071 {
3072         return _submit_bh(rw, bh, 0);
3073 }
3074 EXPORT_SYMBOL(submit_bh);
3075
3076 /**
3077  * ll_rw_block: low-level access to block devices (DEPRECATED)
3078  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3079  * @nr: number of &struct buffer_heads in the array
3080  * @bhs: array of pointers to &struct buffer_head
3081  *
3082  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3083  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3084  * %READA option is described in the documentation for generic_make_request()
3085  * which ll_rw_block() calls.
3086  *
3087  * This function drops any buffer that it cannot get a lock on (with the
3088  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3089  * request, and any buffer that appears to be up-to-date when doing read
3090  * request.  Further it marks as clean buffers that are processed for
3091  * writing (the buffer cache won't assume that they are actually clean
3092  * until the buffer gets unlocked).
3093  *
3094  * ll_rw_block sets b_end_io to simple completion handler that marks
3095  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3096  * any waiters. 
3097  *
3098  * All of the buffers must be for the same device, and must also be a
3099  * multiple of the current approved size for the device.
3100  */
3101 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3102 {
3103         int i;
3104
3105         for (i = 0; i < nr; i++) {
3106                 struct buffer_head *bh = bhs[i];
3107
3108                 if (!trylock_buffer(bh))
3109                         continue;
3110                 if (rw == WRITE) {
3111                         if (test_clear_buffer_dirty(bh)) {
3112                                 bh->b_end_io = end_buffer_write_sync;
3113                                 get_bh(bh);
3114                                 submit_bh(WRITE, bh);
3115                                 continue;
3116                         }
3117                 } else {
3118                         if (!buffer_uptodate(bh)) {
3119                                 bh->b_end_io = end_buffer_read_sync;
3120                                 get_bh(bh);
3121                                 submit_bh(rw, bh);
3122                                 continue;
3123                         }
3124                 }
3125                 unlock_buffer(bh);
3126         }
3127 }
3128 EXPORT_SYMBOL(ll_rw_block);
3129
3130 void write_dirty_buffer(struct buffer_head *bh, int rw)
3131 {
3132         lock_buffer(bh);
3133         if (!test_clear_buffer_dirty(bh)) {
3134                 unlock_buffer(bh);
3135                 return;
3136         }
3137         bh->b_end_io = end_buffer_write_sync;
3138         get_bh(bh);
3139         submit_bh(rw, bh);
3140 }
3141 EXPORT_SYMBOL(write_dirty_buffer);
3142
3143 /*
3144  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3145  * and then start new I/O and then wait upon it.  The caller must have a ref on
3146  * the buffer_head.
3147  */
3148 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3149 {
3150         int ret = 0;
3151
3152         WARN_ON(atomic_read(&bh->b_count) < 1);
3153         lock_buffer(bh);
3154         if (test_clear_buffer_dirty(bh)) {
3155                 get_bh(bh);
3156                 bh->b_end_io = end_buffer_write_sync;
3157                 ret = submit_bh(rw, bh);
3158                 wait_on_buffer(bh);
3159                 if (!ret && !buffer_uptodate(bh))
3160                         ret = -EIO;
3161         } else {
3162                 unlock_buffer(bh);
3163         }
3164         return ret;
3165 }
3166 EXPORT_SYMBOL(__sync_dirty_buffer);
3167
3168 int sync_dirty_buffer(struct buffer_head *bh)
3169 {
3170         return __sync_dirty_buffer(bh, WRITE_SYNC);
3171 }
3172 EXPORT_SYMBOL(sync_dirty_buffer);
3173
3174 /*
3175  * try_to_free_buffers() checks if all the buffers on this particular page
3176  * are unused, and releases them if so.
3177  *
3178  * Exclusion against try_to_free_buffers may be obtained by either
3179  * locking the page or by holding its mapping's private_lock.
3180  *
3181  * If the page is dirty but all the buffers are clean then we need to
3182  * be sure to mark the page clean as well.  This is because the page
3183  * may be against a block device, and a later reattachment of buffers
3184  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3185  * filesystem data on the same device.
3186  *
3187  * The same applies to regular filesystem pages: if all the buffers are
3188  * clean then we set the page clean and proceed.  To do that, we require
3189  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3190  * private_lock.
3191  *
3192  * try_to_free_buffers() is non-blocking.
3193  */
3194 static inline int buffer_busy(struct buffer_head *bh)
3195 {
3196         return atomic_read(&bh->b_count) |
3197                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3198 }
3199
3200 static int
3201 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3202 {
3203         struct buffer_head *head = page_buffers(page);
3204         struct buffer_head *bh;
3205
3206         bh = head;
3207         do {
3208                 if (buffer_write_io_error(bh) && page->mapping)
3209                         set_bit(AS_EIO, &page->mapping->flags);
3210                 if (buffer_busy(bh))
3211                         goto failed;
3212                 bh = bh->b_this_page;
3213         } while (bh != head);
3214
3215         do {
3216                 struct buffer_head *next = bh->b_this_page;
3217
3218                 if (bh->b_assoc_map)
3219                         __remove_assoc_queue(bh);
3220                 bh = next;
3221         } while (bh != head);
3222         *buffers_to_free = head;
3223         __clear_page_buffers(page);
3224         return 1;
3225 failed:
3226         return 0;
3227 }
3228
3229 int try_to_free_buffers(struct page *page)
3230 {
3231         struct address_space * const mapping = page->mapping;
3232         struct buffer_head *buffers_to_free = NULL;
3233         int ret = 0;
3234
3235         BUG_ON(!PageLocked(page));
3236         if (PageWriteback(page))
3237                 return 0;
3238
3239         if (mapping == NULL) {          /* can this still happen? */
3240                 ret = drop_buffers(page, &buffers_to_free);
3241                 goto out;
3242         }
3243
3244         spin_lock(&mapping->private_lock);
3245         ret = drop_buffers(page, &buffers_to_free);
3246
3247         /*
3248          * If the filesystem writes its buffers by hand (eg ext3)
3249          * then we can have clean buffers against a dirty page.  We
3250          * clean the page here; otherwise the VM will never notice
3251          * that the filesystem did any IO at all.
3252          *
3253          * Also, during truncate, discard_buffer will have marked all
3254          * the page's buffers clean.  We discover that here and clean
3255          * the page also.
3256          *
3257          * private_lock must be held over this entire operation in order
3258          * to synchronise against __set_page_dirty_buffers and prevent the
3259          * dirty bit from being lost.
3260          */
3261         if (ret)
3262                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3263         spin_unlock(&mapping->private_lock);
3264 out:
3265         if (buffers_to_free) {
3266                 struct buffer_head *bh = buffers_to_free;
3267
3268                 do {
3269                         struct buffer_head *next = bh->b_this_page;
3270                         free_buffer_head(bh);
3271                         bh = next;
3272                 } while (bh != buffers_to_free);
3273         }
3274         return ret;
3275 }
3276 EXPORT_SYMBOL(try_to_free_buffers);
3277
3278 /*
3279  * There are no bdflush tunables left.  But distributions are
3280  * still running obsolete flush daemons, so we terminate them here.
3281  *
3282  * Use of bdflush() is deprecated and will be removed in a future kernel.
3283  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3284  */
3285 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3286 {
3287         static int msg_count;
3288
3289         if (!capable(CAP_SYS_ADMIN))
3290                 return -EPERM;
3291
3292         if (msg_count < 5) {
3293                 msg_count++;
3294                 printk(KERN_INFO
3295                         "warning: process `%s' used the obsolete bdflush"
3296                         " system call\n", current->comm);
3297                 printk(KERN_INFO "Fix your initscripts?\n");
3298         }
3299
3300         if (func == 1)
3301                 do_exit(0);
3302         return 0;
3303 }
3304
3305 /*
3306  * Buffer-head allocation
3307  */
3308 static struct kmem_cache *bh_cachep __read_mostly;
3309
3310 /*
3311  * Once the number of bh's in the machine exceeds this level, we start
3312  * stripping them in writeback.
3313  */
3314 static unsigned long max_buffer_heads;
3315
3316 int buffer_heads_over_limit;
3317
3318 struct bh_accounting {
3319         int nr;                 /* Number of live bh's */
3320         int ratelimit;          /* Limit cacheline bouncing */
3321 };
3322
3323 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3324
3325 static void recalc_bh_state(void)
3326 {
3327         int i;
3328         int tot = 0;
3329
3330         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3331                 return;
3332         __this_cpu_write(bh_accounting.ratelimit, 0);
3333         for_each_online_cpu(i)
3334                 tot += per_cpu(bh_accounting, i).nr;
3335         buffer_heads_over_limit = (tot > max_buffer_heads);
3336 }
3337
3338 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3339 {
3340         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3341         if (ret) {
3342                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3343                 preempt_disable();
3344                 __this_cpu_inc(bh_accounting.nr);
3345                 recalc_bh_state();
3346                 preempt_enable();
3347         }
3348         return ret;
3349 }
3350 EXPORT_SYMBOL(alloc_buffer_head);
3351
3352 void free_buffer_head(struct buffer_head *bh)
3353 {
3354         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3355         kmem_cache_free(bh_cachep, bh);
3356         preempt_disable();
3357         __this_cpu_dec(bh_accounting.nr);
3358         recalc_bh_state();
3359         preempt_enable();
3360 }
3361 EXPORT_SYMBOL(free_buffer_head);
3362
3363 static void buffer_exit_cpu(int cpu)
3364 {
3365         int i;
3366         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3367
3368         for (i = 0; i < BH_LRU_SIZE; i++) {
3369                 brelse(b->bhs[i]);
3370                 b->bhs[i] = NULL;
3371         }
3372         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3373         per_cpu(bh_accounting, cpu).nr = 0;
3374 }
3375
3376 static int buffer_cpu_notify(struct notifier_block *self,
3377                               unsigned long action, void *hcpu)
3378 {
3379         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3380                 buffer_exit_cpu((unsigned long)hcpu);
3381         return NOTIFY_OK;
3382 }
3383
3384 /**
3385  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3386  * @bh: struct buffer_head
3387  *
3388  * Return true if the buffer is up-to-date and false,
3389  * with the buffer locked, if not.
3390  */
3391 int bh_uptodate_or_lock(struct buffer_head *bh)
3392 {
3393         if (!buffer_uptodate(bh)) {
3394                 lock_buffer(bh);
3395                 if (!buffer_uptodate(bh))
3396                         return 0;
3397                 unlock_buffer(bh);
3398         }
3399         return 1;
3400 }
3401 EXPORT_SYMBOL(bh_uptodate_or_lock);
3402
3403 /**
3404  * bh_submit_read - Submit a locked buffer for reading
3405  * @bh: struct buffer_head
3406  *
3407  * Returns zero on success and -EIO on error.
3408  */
3409 int bh_submit_read(struct buffer_head *bh)
3410 {
3411         BUG_ON(!buffer_locked(bh));
3412
3413         if (buffer_uptodate(bh)) {
3414                 unlock_buffer(bh);
3415                 return 0;
3416         }
3417
3418         get_bh(bh);
3419         bh->b_end_io = end_buffer_read_sync;
3420         submit_bh(READ, bh);
3421         wait_on_buffer(bh);
3422         if (buffer_uptodate(bh))
3423                 return 0;
3424         return -EIO;
3425 }
3426 EXPORT_SYMBOL(bh_submit_read);
3427
3428 void __init buffer_init(void)
3429 {
3430         unsigned long nrpages;
3431
3432         bh_cachep = kmem_cache_create("buffer_head",
3433                         sizeof(struct buffer_head), 0,
3434                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3435                                 SLAB_MEM_SPREAD),
3436                                 NULL);
3437
3438         /*
3439          * Limit the bh occupancy to 10% of ZONE_NORMAL
3440          */
3441         nrpages = (nr_free_buffer_pages() * 10) / 100;
3442         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3443         hotcpu_notifier(buffer_cpu_notify, 0);
3444 }