4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
56 static int sync_buffer(void *word)
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
65 blk_run_address_space(bd->bd_inode->i_mapping);
70 void __lock_buffer(struct buffer_head *bh)
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
75 EXPORT_SYMBOL(__lock_buffer);
77 void unlock_buffer(struct buffer_head *bh)
79 clear_bit_unlock(BH_Lock, &bh->b_state);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
85 * Block until a buffer comes unlocked. This doesn't stop it
86 * from becoming locked again - you have to lock it yourself
87 * if you want to preserve its state.
89 void __wait_on_buffer(struct buffer_head * bh)
91 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
95 __clear_page_buffers(struct page *page)
97 ClearPagePrivate(page);
98 set_page_private(page, 0);
99 page_cache_release(page);
103 static int quiet_error(struct buffer_head *bh)
105 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
111 static void buffer_io_error(struct buffer_head *bh)
113 char b[BDEVNAME_SIZE];
114 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115 bdevname(bh->b_bdev, b),
116 (unsigned long long)bh->b_blocknr);
120 * End-of-IO handler helper function which does not touch the bh after
122 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123 * a race there is benign: unlock_buffer() only use the bh's address for
124 * hashing after unlocking the buffer, so it doesn't actually touch the bh
127 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
130 set_buffer_uptodate(bh);
132 /* This happens, due to failed READA attempts. */
133 clear_buffer_uptodate(bh);
139 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
140 * unlock the buffer. This is what ll_rw_block uses too.
142 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
144 __end_buffer_read_notouch(bh, uptodate);
148 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
150 char b[BDEVNAME_SIZE];
153 set_buffer_uptodate(bh);
155 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
157 printk(KERN_WARNING "lost page write due to "
159 bdevname(bh->b_bdev, b));
161 set_buffer_write_io_error(bh);
162 clear_buffer_uptodate(bh);
169 * Various filesystems appear to want __find_get_block to be non-blocking.
170 * But it's the page lock which protects the buffers. To get around this,
171 * we get exclusion from try_to_free_buffers with the blockdev mapping's
174 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
175 * may be quite high. This code could TryLock the page, and if that
176 * succeeds, there is no need to take private_lock. (But if
177 * private_lock is contended then so is mapping->tree_lock).
179 static struct buffer_head *
180 __find_get_block_slow(struct block_device *bdev, sector_t block)
182 struct inode *bd_inode = bdev->bd_inode;
183 struct address_space *bd_mapping = bd_inode->i_mapping;
184 struct buffer_head *ret = NULL;
186 struct buffer_head *bh;
187 struct buffer_head *head;
191 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
192 page = find_get_page(bd_mapping, index);
196 spin_lock(&bd_mapping->private_lock);
197 if (!page_has_buffers(page))
199 head = page_buffers(page);
202 if (bh->b_blocknr == block) {
207 if (!buffer_mapped(bh))
209 bh = bh->b_this_page;
210 } while (bh != head);
212 /* we might be here because some of the buffers on this page are
213 * not mapped. This is due to various races between
214 * file io on the block device and getblk. It gets dealt with
215 * elsewhere, don't buffer_error if we had some unmapped buffers
218 printk("__find_get_block_slow() failed. "
219 "block=%llu, b_blocknr=%llu\n",
220 (unsigned long long)block,
221 (unsigned long long)bh->b_blocknr);
222 printk("b_state=0x%08lx, b_size=%zu\n",
223 bh->b_state, bh->b_size);
224 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
227 spin_unlock(&bd_mapping->private_lock);
228 page_cache_release(page);
233 /* If invalidate_buffers() will trash dirty buffers, it means some kind
234 of fs corruption is going on. Trashing dirty data always imply losing
235 information that was supposed to be just stored on the physical layer
238 Thus invalidate_buffers in general usage is not allwowed to trash
239 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
240 be preserved. These buffers are simply skipped.
242 We also skip buffers which are still in use. For example this can
243 happen if a userspace program is reading the block device.
245 NOTE: In the case where the user removed a removable-media-disk even if
246 there's still dirty data not synced on disk (due a bug in the device driver
247 or due an error of the user), by not destroying the dirty buffers we could
248 generate corruption also on the next media inserted, thus a parameter is
249 necessary to handle this case in the most safe way possible (trying
250 to not corrupt also the new disk inserted with the data belonging to
251 the old now corrupted disk). Also for the ramdisk the natural thing
252 to do in order to release the ramdisk memory is to destroy dirty buffers.
254 These are two special cases. Normal usage imply the device driver
255 to issue a sync on the device (without waiting I/O completion) and
256 then an invalidate_buffers call that doesn't trash dirty buffers.
258 For handling cache coherency with the blkdev pagecache the 'update' case
259 is been introduced. It is needed to re-read from disk any pinned
260 buffer. NOTE: re-reading from disk is destructive so we can do it only
261 when we assume nobody is changing the buffercache under our I/O and when
262 we think the disk contains more recent information than the buffercache.
263 The update == 1 pass marks the buffers we need to update, the update == 2
264 pass does the actual I/O. */
265 void invalidate_bdev(struct block_device *bdev)
267 struct address_space *mapping = bdev->bd_inode->i_mapping;
269 if (mapping->nrpages == 0)
272 invalidate_bh_lrus();
273 invalidate_mapping_pages(mapping, 0, -1);
277 * Kick pdflush then try to free up some ZONE_NORMAL memory.
279 static void free_more_memory(void)
284 wakeup_pdflush(1024);
287 for_each_online_node(nid) {
288 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
289 gfp_zone(GFP_NOFS), NULL,
292 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
298 * I/O completion handler for block_read_full_page() - pages
299 * which come unlocked at the end of I/O.
301 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
304 struct buffer_head *first;
305 struct buffer_head *tmp;
307 int page_uptodate = 1;
309 BUG_ON(!buffer_async_read(bh));
313 set_buffer_uptodate(bh);
315 clear_buffer_uptodate(bh);
316 if (!quiet_error(bh))
322 * Be _very_ careful from here on. Bad things can happen if
323 * two buffer heads end IO at almost the same time and both
324 * decide that the page is now completely done.
326 first = page_buffers(page);
327 local_irq_save(flags);
328 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
329 clear_buffer_async_read(bh);
333 if (!buffer_uptodate(tmp))
335 if (buffer_async_read(tmp)) {
336 BUG_ON(!buffer_locked(tmp));
339 tmp = tmp->b_this_page;
341 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
342 local_irq_restore(flags);
345 * If none of the buffers had errors and they are all
346 * uptodate then we can set the page uptodate.
348 if (page_uptodate && !PageError(page))
349 SetPageUptodate(page);
354 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
355 local_irq_restore(flags);
360 * Completion handler for block_write_full_page() - pages which are unlocked
361 * during I/O, and which have PageWriteback cleared upon I/O completion.
363 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
365 char b[BDEVNAME_SIZE];
367 struct buffer_head *first;
368 struct buffer_head *tmp;
371 BUG_ON(!buffer_async_write(bh));
375 set_buffer_uptodate(bh);
377 if (!quiet_error(bh)) {
379 printk(KERN_WARNING "lost page write due to "
381 bdevname(bh->b_bdev, b));
383 set_bit(AS_EIO, &page->mapping->flags);
384 set_buffer_write_io_error(bh);
385 clear_buffer_uptodate(bh);
389 first = page_buffers(page);
390 local_irq_save(flags);
391 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
393 clear_buffer_async_write(bh);
395 tmp = bh->b_this_page;
397 if (buffer_async_write(tmp)) {
398 BUG_ON(!buffer_locked(tmp));
401 tmp = tmp->b_this_page;
403 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
404 local_irq_restore(flags);
405 end_page_writeback(page);
409 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410 local_irq_restore(flags);
415 * If a page's buffers are under async readin (end_buffer_async_read
416 * completion) then there is a possibility that another thread of
417 * control could lock one of the buffers after it has completed
418 * but while some of the other buffers have not completed. This
419 * locked buffer would confuse end_buffer_async_read() into not unlocking
420 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
421 * that this buffer is not under async I/O.
423 * The page comes unlocked when it has no locked buffer_async buffers
426 * PageLocked prevents anyone starting new async I/O reads any of
429 * PageWriteback is used to prevent simultaneous writeout of the same
432 * PageLocked prevents anyone from starting writeback of a page which is
433 * under read I/O (PageWriteback is only ever set against a locked page).
435 static void mark_buffer_async_read(struct buffer_head *bh)
437 bh->b_end_io = end_buffer_async_read;
438 set_buffer_async_read(bh);
441 void mark_buffer_async_write(struct buffer_head *bh)
443 bh->b_end_io = end_buffer_async_write;
444 set_buffer_async_write(bh);
446 EXPORT_SYMBOL(mark_buffer_async_write);
450 * fs/buffer.c contains helper functions for buffer-backed address space's
451 * fsync functions. A common requirement for buffer-based filesystems is
452 * that certain data from the backing blockdev needs to be written out for
453 * a successful fsync(). For example, ext2 indirect blocks need to be
454 * written back and waited upon before fsync() returns.
456 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
457 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
458 * management of a list of dependent buffers at ->i_mapping->private_list.
460 * Locking is a little subtle: try_to_free_buffers() will remove buffers
461 * from their controlling inode's queue when they are being freed. But
462 * try_to_free_buffers() will be operating against the *blockdev* mapping
463 * at the time, not against the S_ISREG file which depends on those buffers.
464 * So the locking for private_list is via the private_lock in the address_space
465 * which backs the buffers. Which is different from the address_space
466 * against which the buffers are listed. So for a particular address_space,
467 * mapping->private_lock does *not* protect mapping->private_list! In fact,
468 * mapping->private_list will always be protected by the backing blockdev's
471 * Which introduces a requirement: all buffers on an address_space's
472 * ->private_list must be from the same address_space: the blockdev's.
474 * address_spaces which do not place buffers at ->private_list via these
475 * utility functions are free to use private_lock and private_list for
476 * whatever they want. The only requirement is that list_empty(private_list)
477 * be true at clear_inode() time.
479 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
480 * filesystems should do that. invalidate_inode_buffers() should just go
481 * BUG_ON(!list_empty).
483 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
484 * take an address_space, not an inode. And it should be called
485 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
488 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
489 * list if it is already on a list. Because if the buffer is on a list,
490 * it *must* already be on the right one. If not, the filesystem is being
491 * silly. This will save a ton of locking. But first we have to ensure
492 * that buffers are taken *off* the old inode's list when they are freed
493 * (presumably in truncate). That requires careful auditing of all
494 * filesystems (do it inside bforget()). It could also be done by bringing
499 * The buffer's backing address_space's private_lock must be held
501 static void __remove_assoc_queue(struct buffer_head *bh)
503 list_del_init(&bh->b_assoc_buffers);
504 WARN_ON(!bh->b_assoc_map);
505 if (buffer_write_io_error(bh))
506 set_bit(AS_EIO, &bh->b_assoc_map->flags);
507 bh->b_assoc_map = NULL;
510 int inode_has_buffers(struct inode *inode)
512 return !list_empty(&inode->i_data.private_list);
516 * osync is designed to support O_SYNC io. It waits synchronously for
517 * all already-submitted IO to complete, but does not queue any new
518 * writes to the disk.
520 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
521 * you dirty the buffers, and then use osync_inode_buffers to wait for
522 * completion. Any other dirty buffers which are not yet queued for
523 * write will not be flushed to disk by the osync.
525 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
527 struct buffer_head *bh;
533 list_for_each_prev(p, list) {
535 if (buffer_locked(bh)) {
539 if (!buffer_uptodate(bh))
551 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
552 * @mapping: the mapping which wants those buffers written
554 * Starts I/O against the buffers at mapping->private_list, and waits upon
557 * Basically, this is a convenience function for fsync().
558 * @mapping is a file or directory which needs those buffers to be written for
559 * a successful fsync().
561 int sync_mapping_buffers(struct address_space *mapping)
563 struct address_space *buffer_mapping = mapping->assoc_mapping;
565 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
568 return fsync_buffers_list(&buffer_mapping->private_lock,
569 &mapping->private_list);
571 EXPORT_SYMBOL(sync_mapping_buffers);
574 * Called when we've recently written block `bblock', and it is known that
575 * `bblock' was for a buffer_boundary() buffer. This means that the block at
576 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
577 * dirty, schedule it for IO. So that indirects merge nicely with their data.
579 void write_boundary_block(struct block_device *bdev,
580 sector_t bblock, unsigned blocksize)
582 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
584 if (buffer_dirty(bh))
585 ll_rw_block(WRITE, 1, &bh);
590 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
592 struct address_space *mapping = inode->i_mapping;
593 struct address_space *buffer_mapping = bh->b_page->mapping;
595 mark_buffer_dirty(bh);
596 if (!mapping->assoc_mapping) {
597 mapping->assoc_mapping = buffer_mapping;
599 BUG_ON(mapping->assoc_mapping != buffer_mapping);
601 if (!bh->b_assoc_map) {
602 spin_lock(&buffer_mapping->private_lock);
603 list_move_tail(&bh->b_assoc_buffers,
604 &mapping->private_list);
605 bh->b_assoc_map = mapping;
606 spin_unlock(&buffer_mapping->private_lock);
609 EXPORT_SYMBOL(mark_buffer_dirty_inode);
612 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
615 * If warn is true, then emit a warning if the page is not uptodate and has
616 * not been truncated.
618 static void __set_page_dirty(struct page *page,
619 struct address_space *mapping, int warn)
621 spin_lock_irq(&mapping->tree_lock);
622 if (page->mapping) { /* Race with truncate? */
623 WARN_ON_ONCE(warn && !PageUptodate(page));
625 if (mapping_cap_account_dirty(mapping)) {
626 __inc_zone_page_state(page, NR_FILE_DIRTY);
627 __inc_bdi_stat(mapping->backing_dev_info,
629 task_dirty_inc(current);
630 task_io_account_write(PAGE_CACHE_SIZE);
632 radix_tree_tag_set(&mapping->page_tree,
633 page_index(page), PAGECACHE_TAG_DIRTY);
635 spin_unlock_irq(&mapping->tree_lock);
636 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
640 * Add a page to the dirty page list.
642 * It is a sad fact of life that this function is called from several places
643 * deeply under spinlocking. It may not sleep.
645 * If the page has buffers, the uptodate buffers are set dirty, to preserve
646 * dirty-state coherency between the page and the buffers. It the page does
647 * not have buffers then when they are later attached they will all be set
650 * The buffers are dirtied before the page is dirtied. There's a small race
651 * window in which a writepage caller may see the page cleanness but not the
652 * buffer dirtiness. That's fine. If this code were to set the page dirty
653 * before the buffers, a concurrent writepage caller could clear the page dirty
654 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
655 * page on the dirty page list.
657 * We use private_lock to lock against try_to_free_buffers while using the
658 * page's buffer list. Also use this to protect against clean buffers being
659 * added to the page after it was set dirty.
661 * FIXME: may need to call ->reservepage here as well. That's rather up to the
662 * address_space though.
664 int __set_page_dirty_buffers(struct page *page)
667 struct address_space *mapping = page_mapping(page);
669 if (unlikely(!mapping))
670 return !TestSetPageDirty(page);
672 spin_lock(&mapping->private_lock);
673 if (page_has_buffers(page)) {
674 struct buffer_head *head = page_buffers(page);
675 struct buffer_head *bh = head;
678 set_buffer_dirty(bh);
679 bh = bh->b_this_page;
680 } while (bh != head);
682 newly_dirty = !TestSetPageDirty(page);
683 spin_unlock(&mapping->private_lock);
686 __set_page_dirty(page, mapping, 1);
689 EXPORT_SYMBOL(__set_page_dirty_buffers);
692 * Write out and wait upon a list of buffers.
694 * We have conflicting pressures: we want to make sure that all
695 * initially dirty buffers get waited on, but that any subsequently
696 * dirtied buffers don't. After all, we don't want fsync to last
697 * forever if somebody is actively writing to the file.
699 * Do this in two main stages: first we copy dirty buffers to a
700 * temporary inode list, queueing the writes as we go. Then we clean
701 * up, waiting for those writes to complete.
703 * During this second stage, any subsequent updates to the file may end
704 * up refiling the buffer on the original inode's dirty list again, so
705 * there is a chance we will end up with a buffer queued for write but
706 * not yet completed on that list. So, as a final cleanup we go through
707 * the osync code to catch these locked, dirty buffers without requeuing
708 * any newly dirty buffers for write.
710 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
712 struct buffer_head *bh;
713 struct list_head tmp;
714 struct address_space *mapping;
717 INIT_LIST_HEAD(&tmp);
720 while (!list_empty(list)) {
721 bh = BH_ENTRY(list->next);
722 mapping = bh->b_assoc_map;
723 __remove_assoc_queue(bh);
724 /* Avoid race with mark_buffer_dirty_inode() which does
725 * a lockless check and we rely on seeing the dirty bit */
727 if (buffer_dirty(bh) || buffer_locked(bh)) {
728 list_add(&bh->b_assoc_buffers, &tmp);
729 bh->b_assoc_map = mapping;
730 if (buffer_dirty(bh)) {
734 * Ensure any pending I/O completes so that
735 * ll_rw_block() actually writes the current
736 * contents - it is a noop if I/O is still in
737 * flight on potentially older contents.
739 ll_rw_block(SWRITE_SYNC, 1, &bh);
746 while (!list_empty(&tmp)) {
747 bh = BH_ENTRY(tmp.prev);
749 mapping = bh->b_assoc_map;
750 __remove_assoc_queue(bh);
751 /* Avoid race with mark_buffer_dirty_inode() which does
752 * a lockless check and we rely on seeing the dirty bit */
754 if (buffer_dirty(bh)) {
755 list_add(&bh->b_assoc_buffers,
756 &mapping->private_list);
757 bh->b_assoc_map = mapping;
761 if (!buffer_uptodate(bh))
768 err2 = osync_buffers_list(lock, list);
776 * Invalidate any and all dirty buffers on a given inode. We are
777 * probably unmounting the fs, but that doesn't mean we have already
778 * done a sync(). Just drop the buffers from the inode list.
780 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
781 * assumes that all the buffers are against the blockdev. Not true
784 void invalidate_inode_buffers(struct inode *inode)
786 if (inode_has_buffers(inode)) {
787 struct address_space *mapping = &inode->i_data;
788 struct list_head *list = &mapping->private_list;
789 struct address_space *buffer_mapping = mapping->assoc_mapping;
791 spin_lock(&buffer_mapping->private_lock);
792 while (!list_empty(list))
793 __remove_assoc_queue(BH_ENTRY(list->next));
794 spin_unlock(&buffer_mapping->private_lock);
797 EXPORT_SYMBOL(invalidate_inode_buffers);
800 * Remove any clean buffers from the inode's buffer list. This is called
801 * when we're trying to free the inode itself. Those buffers can pin it.
803 * Returns true if all buffers were removed.
805 int remove_inode_buffers(struct inode *inode)
809 if (inode_has_buffers(inode)) {
810 struct address_space *mapping = &inode->i_data;
811 struct list_head *list = &mapping->private_list;
812 struct address_space *buffer_mapping = mapping->assoc_mapping;
814 spin_lock(&buffer_mapping->private_lock);
815 while (!list_empty(list)) {
816 struct buffer_head *bh = BH_ENTRY(list->next);
817 if (buffer_dirty(bh)) {
821 __remove_assoc_queue(bh);
823 spin_unlock(&buffer_mapping->private_lock);
829 * Create the appropriate buffers when given a page for data area and
830 * the size of each buffer.. Use the bh->b_this_page linked list to
831 * follow the buffers created. Return NULL if unable to create more
834 * The retry flag is used to differentiate async IO (paging, swapping)
835 * which may not fail from ordinary buffer allocations.
837 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840 struct buffer_head *bh, *head;
846 while ((offset -= size) >= 0) {
847 bh = alloc_buffer_head(GFP_NOFS);
852 bh->b_this_page = head;
857 atomic_set(&bh->b_count, 0);
858 bh->b_private = NULL;
861 /* Link the buffer to its page */
862 set_bh_page(bh, page, offset);
864 init_buffer(bh, NULL, NULL);
868 * In case anything failed, we just free everything we got.
874 head = head->b_this_page;
875 free_buffer_head(bh);
880 * Return failure for non-async IO requests. Async IO requests
881 * are not allowed to fail, so we have to wait until buffer heads
882 * become available. But we don't want tasks sleeping with
883 * partially complete buffers, so all were released above.
888 /* We're _really_ low on memory. Now we just
889 * wait for old buffer heads to become free due to
890 * finishing IO. Since this is an async request and
891 * the reserve list is empty, we're sure there are
892 * async buffer heads in use.
897 EXPORT_SYMBOL_GPL(alloc_page_buffers);
900 link_dev_buffers(struct page *page, struct buffer_head *head)
902 struct buffer_head *bh, *tail;
907 bh = bh->b_this_page;
909 tail->b_this_page = head;
910 attach_page_buffers(page, head);
914 * Initialise the state of a blockdev page's buffers.
917 init_page_buffers(struct page *page, struct block_device *bdev,
918 sector_t block, int size)
920 struct buffer_head *head = page_buffers(page);
921 struct buffer_head *bh = head;
922 int uptodate = PageUptodate(page);
925 if (!buffer_mapped(bh)) {
926 init_buffer(bh, NULL, NULL);
928 bh->b_blocknr = block;
930 set_buffer_uptodate(bh);
931 set_buffer_mapped(bh);
934 bh = bh->b_this_page;
935 } while (bh != head);
939 * Create the page-cache page that contains the requested block.
941 * This is user purely for blockdev mappings.
944 grow_dev_page(struct block_device *bdev, sector_t block,
945 pgoff_t index, int size)
947 struct inode *inode = bdev->bd_inode;
949 struct buffer_head *bh;
951 page = find_or_create_page(inode->i_mapping, index,
952 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
956 BUG_ON(!PageLocked(page));
958 if (page_has_buffers(page)) {
959 bh = page_buffers(page);
960 if (bh->b_size == size) {
961 init_page_buffers(page, bdev, block, size);
964 if (!try_to_free_buffers(page))
969 * Allocate some buffers for this page
971 bh = alloc_page_buffers(page, size, 0);
976 * Link the page to the buffers and initialise them. Take the
977 * lock to be atomic wrt __find_get_block(), which does not
978 * run under the page lock.
980 spin_lock(&inode->i_mapping->private_lock);
981 link_dev_buffers(page, bh);
982 init_page_buffers(page, bdev, block, size);
983 spin_unlock(&inode->i_mapping->private_lock);
989 page_cache_release(page);
994 * Create buffers for the specified block device block's page. If
995 * that page was dirty, the buffers are set dirty also.
998 grow_buffers(struct block_device *bdev, sector_t block, int size)
1007 } while ((size << sizebits) < PAGE_SIZE);
1009 index = block >> sizebits;
1012 * Check for a block which wants to lie outside our maximum possible
1013 * pagecache index. (this comparison is done using sector_t types).
1015 if (unlikely(index != block >> sizebits)) {
1016 char b[BDEVNAME_SIZE];
1018 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1020 __func__, (unsigned long long)block,
1024 block = index << sizebits;
1025 /* Create a page with the proper size buffers.. */
1026 page = grow_dev_page(bdev, block, index, size);
1030 page_cache_release(page);
1034 static struct buffer_head *
1035 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1037 /* Size must be multiple of hard sectorsize */
1038 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1039 (size < 512 || size > PAGE_SIZE))) {
1040 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1042 printk(KERN_ERR "hardsect size: %d\n",
1043 bdev_hardsect_size(bdev));
1050 struct buffer_head * bh;
1053 bh = __find_get_block(bdev, block, size);
1057 ret = grow_buffers(bdev, block, size);
1066 * The relationship between dirty buffers and dirty pages:
1068 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1069 * the page is tagged dirty in its radix tree.
1071 * At all times, the dirtiness of the buffers represents the dirtiness of
1072 * subsections of the page. If the page has buffers, the page dirty bit is
1073 * merely a hint about the true dirty state.
1075 * When a page is set dirty in its entirety, all its buffers are marked dirty
1076 * (if the page has buffers).
1078 * When a buffer is marked dirty, its page is dirtied, but the page's other
1081 * Also. When blockdev buffers are explicitly read with bread(), they
1082 * individually become uptodate. But their backing page remains not
1083 * uptodate - even if all of its buffers are uptodate. A subsequent
1084 * block_read_full_page() against that page will discover all the uptodate
1085 * buffers, will set the page uptodate and will perform no I/O.
1089 * mark_buffer_dirty - mark a buffer_head as needing writeout
1090 * @bh: the buffer_head to mark dirty
1092 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1093 * backing page dirty, then tag the page as dirty in its address_space's radix
1094 * tree and then attach the address_space's inode to its superblock's dirty
1097 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1098 * mapping->tree_lock and the global inode_lock.
1100 void mark_buffer_dirty(struct buffer_head *bh)
1102 WARN_ON_ONCE(!buffer_uptodate(bh));
1105 * Very *carefully* optimize the it-is-already-dirty case.
1107 * Don't let the final "is it dirty" escape to before we
1108 * perhaps modified the buffer.
1110 if (buffer_dirty(bh)) {
1112 if (buffer_dirty(bh))
1116 if (!test_set_buffer_dirty(bh)) {
1117 struct page *page = bh->b_page;
1118 if (!TestSetPageDirty(page))
1119 __set_page_dirty(page, page_mapping(page), 0);
1124 * Decrement a buffer_head's reference count. If all buffers against a page
1125 * have zero reference count, are clean and unlocked, and if the page is clean
1126 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1127 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1128 * a page but it ends up not being freed, and buffers may later be reattached).
1130 void __brelse(struct buffer_head * buf)
1132 if (atomic_read(&buf->b_count)) {
1136 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1140 * bforget() is like brelse(), except it discards any
1141 * potentially dirty data.
1143 void __bforget(struct buffer_head *bh)
1145 clear_buffer_dirty(bh);
1146 if (bh->b_assoc_map) {
1147 struct address_space *buffer_mapping = bh->b_page->mapping;
1149 spin_lock(&buffer_mapping->private_lock);
1150 list_del_init(&bh->b_assoc_buffers);
1151 bh->b_assoc_map = NULL;
1152 spin_unlock(&buffer_mapping->private_lock);
1157 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1160 if (buffer_uptodate(bh)) {
1165 bh->b_end_io = end_buffer_read_sync;
1166 submit_bh(READ, bh);
1168 if (buffer_uptodate(bh))
1176 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1177 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1178 * refcount elevated by one when they're in an LRU. A buffer can only appear
1179 * once in a particular CPU's LRU. A single buffer can be present in multiple
1180 * CPU's LRUs at the same time.
1182 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1183 * sb_find_get_block().
1185 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1186 * a local interrupt disable for that.
1189 #define BH_LRU_SIZE 8
1192 struct buffer_head *bhs[BH_LRU_SIZE];
1195 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1198 #define bh_lru_lock() local_irq_disable()
1199 #define bh_lru_unlock() local_irq_enable()
1201 #define bh_lru_lock() preempt_disable()
1202 #define bh_lru_unlock() preempt_enable()
1205 static inline void check_irqs_on(void)
1207 #ifdef irqs_disabled
1208 BUG_ON(irqs_disabled());
1213 * The LRU management algorithm is dopey-but-simple. Sorry.
1215 static void bh_lru_install(struct buffer_head *bh)
1217 struct buffer_head *evictee = NULL;
1222 lru = &__get_cpu_var(bh_lrus);
1223 if (lru->bhs[0] != bh) {
1224 struct buffer_head *bhs[BH_LRU_SIZE];
1230 for (in = 0; in < BH_LRU_SIZE; in++) {
1231 struct buffer_head *bh2 = lru->bhs[in];
1236 if (out >= BH_LRU_SIZE) {
1237 BUG_ON(evictee != NULL);
1244 while (out < BH_LRU_SIZE)
1246 memcpy(lru->bhs, bhs, sizeof(bhs));
1255 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1257 static struct buffer_head *
1258 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1260 struct buffer_head *ret = NULL;
1266 lru = &__get_cpu_var(bh_lrus);
1267 for (i = 0; i < BH_LRU_SIZE; i++) {
1268 struct buffer_head *bh = lru->bhs[i];
1270 if (bh && bh->b_bdev == bdev &&
1271 bh->b_blocknr == block && bh->b_size == size) {
1274 lru->bhs[i] = lru->bhs[i - 1];
1289 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1290 * it in the LRU and mark it as accessed. If it is not present then return
1293 struct buffer_head *
1294 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1296 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1299 bh = __find_get_block_slow(bdev, block);
1307 EXPORT_SYMBOL(__find_get_block);
1310 * __getblk will locate (and, if necessary, create) the buffer_head
1311 * which corresponds to the passed block_device, block and size. The
1312 * returned buffer has its reference count incremented.
1314 * __getblk() cannot fail - it just keeps trying. If you pass it an
1315 * illegal block number, __getblk() will happily return a buffer_head
1316 * which represents the non-existent block. Very weird.
1318 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1319 * attempt is failing. FIXME, perhaps?
1321 struct buffer_head *
1322 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1324 struct buffer_head *bh = __find_get_block(bdev, block, size);
1328 bh = __getblk_slow(bdev, block, size);
1331 EXPORT_SYMBOL(__getblk);
1334 * Do async read-ahead on a buffer..
1336 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1338 struct buffer_head *bh = __getblk(bdev, block, size);
1340 ll_rw_block(READA, 1, &bh);
1344 EXPORT_SYMBOL(__breadahead);
1347 * __bread() - reads a specified block and returns the bh
1348 * @bdev: the block_device to read from
1349 * @block: number of block
1350 * @size: size (in bytes) to read
1352 * Reads a specified block, and returns buffer head that contains it.
1353 * It returns NULL if the block was unreadable.
1355 struct buffer_head *
1356 __bread(struct block_device *bdev, sector_t block, unsigned size)
1358 struct buffer_head *bh = __getblk(bdev, block, size);
1360 if (likely(bh) && !buffer_uptodate(bh))
1361 bh = __bread_slow(bh);
1364 EXPORT_SYMBOL(__bread);
1367 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1368 * This doesn't race because it runs in each cpu either in irq
1369 * or with preempt disabled.
1371 static void invalidate_bh_lru(void *arg)
1373 struct bh_lru *b = &get_cpu_var(bh_lrus);
1376 for (i = 0; i < BH_LRU_SIZE; i++) {
1380 put_cpu_var(bh_lrus);
1383 void invalidate_bh_lrus(void)
1385 on_each_cpu(invalidate_bh_lru, NULL, 1);
1387 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1389 void set_bh_page(struct buffer_head *bh,
1390 struct page *page, unsigned long offset)
1393 BUG_ON(offset >= PAGE_SIZE);
1394 if (PageHighMem(page))
1396 * This catches illegal uses and preserves the offset:
1398 bh->b_data = (char *)(0 + offset);
1400 bh->b_data = page_address(page) + offset;
1402 EXPORT_SYMBOL(set_bh_page);
1405 * Called when truncating a buffer on a page completely.
1407 static void discard_buffer(struct buffer_head * bh)
1410 clear_buffer_dirty(bh);
1412 clear_buffer_mapped(bh);
1413 clear_buffer_req(bh);
1414 clear_buffer_new(bh);
1415 clear_buffer_delay(bh);
1416 clear_buffer_unwritten(bh);
1421 * block_invalidatepage - invalidate part of all of a buffer-backed page
1423 * @page: the page which is affected
1424 * @offset: the index of the truncation point
1426 * block_invalidatepage() is called when all or part of the page has become
1427 * invalidatedby a truncate operation.
1429 * block_invalidatepage() does not have to release all buffers, but it must
1430 * ensure that no dirty buffer is left outside @offset and that no I/O
1431 * is underway against any of the blocks which are outside the truncation
1432 * point. Because the caller is about to free (and possibly reuse) those
1435 void block_invalidatepage(struct page *page, unsigned long offset)
1437 struct buffer_head *head, *bh, *next;
1438 unsigned int curr_off = 0;
1440 BUG_ON(!PageLocked(page));
1441 if (!page_has_buffers(page))
1444 head = page_buffers(page);
1447 unsigned int next_off = curr_off + bh->b_size;
1448 next = bh->b_this_page;
1451 * is this block fully invalidated?
1453 if (offset <= curr_off)
1455 curr_off = next_off;
1457 } while (bh != head);
1460 * We release buffers only if the entire page is being invalidated.
1461 * The get_block cached value has been unconditionally invalidated,
1462 * so real IO is not possible anymore.
1465 try_to_release_page(page, 0);
1469 EXPORT_SYMBOL(block_invalidatepage);
1472 * We attach and possibly dirty the buffers atomically wrt
1473 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1474 * is already excluded via the page lock.
1476 void create_empty_buffers(struct page *page,
1477 unsigned long blocksize, unsigned long b_state)
1479 struct buffer_head *bh, *head, *tail;
1481 head = alloc_page_buffers(page, blocksize, 1);
1484 bh->b_state |= b_state;
1486 bh = bh->b_this_page;
1488 tail->b_this_page = head;
1490 spin_lock(&page->mapping->private_lock);
1491 if (PageUptodate(page) || PageDirty(page)) {
1494 if (PageDirty(page))
1495 set_buffer_dirty(bh);
1496 if (PageUptodate(page))
1497 set_buffer_uptodate(bh);
1498 bh = bh->b_this_page;
1499 } while (bh != head);
1501 attach_page_buffers(page, head);
1502 spin_unlock(&page->mapping->private_lock);
1504 EXPORT_SYMBOL(create_empty_buffers);
1507 * We are taking a block for data and we don't want any output from any
1508 * buffer-cache aliases starting from return from that function and
1509 * until the moment when something will explicitly mark the buffer
1510 * dirty (hopefully that will not happen until we will free that block ;-)
1511 * We don't even need to mark it not-uptodate - nobody can expect
1512 * anything from a newly allocated buffer anyway. We used to used
1513 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1514 * don't want to mark the alias unmapped, for example - it would confuse
1515 * anyone who might pick it with bread() afterwards...
1517 * Also.. Note that bforget() doesn't lock the buffer. So there can
1518 * be writeout I/O going on against recently-freed buffers. We don't
1519 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1520 * only if we really need to. That happens here.
1522 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1524 struct buffer_head *old_bh;
1528 old_bh = __find_get_block_slow(bdev, block);
1530 clear_buffer_dirty(old_bh);
1531 wait_on_buffer(old_bh);
1532 clear_buffer_req(old_bh);
1536 EXPORT_SYMBOL(unmap_underlying_metadata);
1539 * NOTE! All mapped/uptodate combinations are valid:
1541 * Mapped Uptodate Meaning
1543 * No No "unknown" - must do get_block()
1544 * No Yes "hole" - zero-filled
1545 * Yes No "allocated" - allocated on disk, not read in
1546 * Yes Yes "valid" - allocated and up-to-date in memory.
1548 * "Dirty" is valid only with the last case (mapped+uptodate).
1552 * While block_write_full_page is writing back the dirty buffers under
1553 * the page lock, whoever dirtied the buffers may decide to clean them
1554 * again at any time. We handle that by only looking at the buffer
1555 * state inside lock_buffer().
1557 * If block_write_full_page() is called for regular writeback
1558 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1559 * locked buffer. This only can happen if someone has written the buffer
1560 * directly, with submit_bh(). At the address_space level PageWriteback
1561 * prevents this contention from occurring.
1563 static int __block_write_full_page(struct inode *inode, struct page *page,
1564 get_block_t *get_block, struct writeback_control *wbc)
1568 sector_t last_block;
1569 struct buffer_head *bh, *head;
1570 const unsigned blocksize = 1 << inode->i_blkbits;
1571 int nr_underway = 0;
1573 BUG_ON(!PageLocked(page));
1575 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1577 if (!page_has_buffers(page)) {
1578 create_empty_buffers(page, blocksize,
1579 (1 << BH_Dirty)|(1 << BH_Uptodate));
1583 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1584 * here, and the (potentially unmapped) buffers may become dirty at
1585 * any time. If a buffer becomes dirty here after we've inspected it
1586 * then we just miss that fact, and the page stays dirty.
1588 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1589 * handle that here by just cleaning them.
1592 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1593 head = page_buffers(page);
1597 * Get all the dirty buffers mapped to disk addresses and
1598 * handle any aliases from the underlying blockdev's mapping.
1601 if (block > last_block) {
1603 * mapped buffers outside i_size will occur, because
1604 * this page can be outside i_size when there is a
1605 * truncate in progress.
1608 * The buffer was zeroed by block_write_full_page()
1610 clear_buffer_dirty(bh);
1611 set_buffer_uptodate(bh);
1612 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1614 WARN_ON(bh->b_size != blocksize);
1615 err = get_block(inode, block, bh, 1);
1618 clear_buffer_delay(bh);
1619 if (buffer_new(bh)) {
1620 /* blockdev mappings never come here */
1621 clear_buffer_new(bh);
1622 unmap_underlying_metadata(bh->b_bdev,
1626 bh = bh->b_this_page;
1628 } while (bh != head);
1631 if (!buffer_mapped(bh))
1634 * If it's a fully non-blocking write attempt and we cannot
1635 * lock the buffer then redirty the page. Note that this can
1636 * potentially cause a busy-wait loop from pdflush and kswapd
1637 * activity, but those code paths have their own higher-level
1640 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1642 } else if (!trylock_buffer(bh)) {
1643 redirty_page_for_writepage(wbc, page);
1646 if (test_clear_buffer_dirty(bh)) {
1647 mark_buffer_async_write(bh);
1651 } while ((bh = bh->b_this_page) != head);
1654 * The page and its buffers are protected by PageWriteback(), so we can
1655 * drop the bh refcounts early.
1657 BUG_ON(PageWriteback(page));
1658 set_page_writeback(page);
1661 struct buffer_head *next = bh->b_this_page;
1662 if (buffer_async_write(bh)) {
1663 submit_bh(WRITE, bh);
1667 } while (bh != head);
1672 if (nr_underway == 0) {
1674 * The page was marked dirty, but the buffers were
1675 * clean. Someone wrote them back by hand with
1676 * ll_rw_block/submit_bh. A rare case.
1678 end_page_writeback(page);
1681 * The page and buffer_heads can be released at any time from
1689 * ENOSPC, or some other error. We may already have added some
1690 * blocks to the file, so we need to write these out to avoid
1691 * exposing stale data.
1692 * The page is currently locked and not marked for writeback
1695 /* Recovery: lock and submit the mapped buffers */
1697 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1698 !buffer_delay(bh)) {
1700 mark_buffer_async_write(bh);
1703 * The buffer may have been set dirty during
1704 * attachment to a dirty page.
1706 clear_buffer_dirty(bh);
1708 } while ((bh = bh->b_this_page) != head);
1710 BUG_ON(PageWriteback(page));
1711 mapping_set_error(page->mapping, err);
1712 set_page_writeback(page);
1714 struct buffer_head *next = bh->b_this_page;
1715 if (buffer_async_write(bh)) {
1716 clear_buffer_dirty(bh);
1717 submit_bh(WRITE, bh);
1721 } while (bh != head);
1727 * If a page has any new buffers, zero them out here, and mark them uptodate
1728 * and dirty so they'll be written out (in order to prevent uninitialised
1729 * block data from leaking). And clear the new bit.
1731 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1733 unsigned int block_start, block_end;
1734 struct buffer_head *head, *bh;
1736 BUG_ON(!PageLocked(page));
1737 if (!page_has_buffers(page))
1740 bh = head = page_buffers(page);
1743 block_end = block_start + bh->b_size;
1745 if (buffer_new(bh)) {
1746 if (block_end > from && block_start < to) {
1747 if (!PageUptodate(page)) {
1748 unsigned start, size;
1750 start = max(from, block_start);
1751 size = min(to, block_end) - start;
1753 zero_user(page, start, size);
1754 set_buffer_uptodate(bh);
1757 clear_buffer_new(bh);
1758 mark_buffer_dirty(bh);
1762 block_start = block_end;
1763 bh = bh->b_this_page;
1764 } while (bh != head);
1766 EXPORT_SYMBOL(page_zero_new_buffers);
1768 static int __block_prepare_write(struct inode *inode, struct page *page,
1769 unsigned from, unsigned to, get_block_t *get_block)
1771 unsigned block_start, block_end;
1774 unsigned blocksize, bbits;
1775 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1777 BUG_ON(!PageLocked(page));
1778 BUG_ON(from > PAGE_CACHE_SIZE);
1779 BUG_ON(to > PAGE_CACHE_SIZE);
1782 blocksize = 1 << inode->i_blkbits;
1783 if (!page_has_buffers(page))
1784 create_empty_buffers(page, blocksize, 0);
1785 head = page_buffers(page);
1787 bbits = inode->i_blkbits;
1788 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1790 for(bh = head, block_start = 0; bh != head || !block_start;
1791 block++, block_start=block_end, bh = bh->b_this_page) {
1792 block_end = block_start + blocksize;
1793 if (block_end <= from || block_start >= to) {
1794 if (PageUptodate(page)) {
1795 if (!buffer_uptodate(bh))
1796 set_buffer_uptodate(bh);
1801 clear_buffer_new(bh);
1802 if (!buffer_mapped(bh)) {
1803 WARN_ON(bh->b_size != blocksize);
1804 err = get_block(inode, block, bh, 1);
1807 if (buffer_new(bh)) {
1808 unmap_underlying_metadata(bh->b_bdev,
1810 if (PageUptodate(page)) {
1811 clear_buffer_new(bh);
1812 set_buffer_uptodate(bh);
1813 mark_buffer_dirty(bh);
1816 if (block_end > to || block_start < from)
1817 zero_user_segments(page,
1823 if (PageUptodate(page)) {
1824 if (!buffer_uptodate(bh))
1825 set_buffer_uptodate(bh);
1828 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1829 !buffer_unwritten(bh) &&
1830 (block_start < from || block_end > to)) {
1831 ll_rw_block(READ, 1, &bh);
1836 * If we issued read requests - let them complete.
1838 while(wait_bh > wait) {
1839 wait_on_buffer(*--wait_bh);
1840 if (!buffer_uptodate(*wait_bh))
1844 page_zero_new_buffers(page, from, to);
1848 static int __block_commit_write(struct inode *inode, struct page *page,
1849 unsigned from, unsigned to)
1851 unsigned block_start, block_end;
1854 struct buffer_head *bh, *head;
1856 blocksize = 1 << inode->i_blkbits;
1858 for(bh = head = page_buffers(page), block_start = 0;
1859 bh != head || !block_start;
1860 block_start=block_end, bh = bh->b_this_page) {
1861 block_end = block_start + blocksize;
1862 if (block_end <= from || block_start >= to) {
1863 if (!buffer_uptodate(bh))
1866 set_buffer_uptodate(bh);
1867 mark_buffer_dirty(bh);
1869 clear_buffer_new(bh);
1873 * If this is a partial write which happened to make all buffers
1874 * uptodate then we can optimize away a bogus readpage() for
1875 * the next read(). Here we 'discover' whether the page went
1876 * uptodate as a result of this (potentially partial) write.
1879 SetPageUptodate(page);
1884 * block_write_begin takes care of the basic task of block allocation and
1885 * bringing partial write blocks uptodate first.
1887 * If *pagep is not NULL, then block_write_begin uses the locked page
1888 * at *pagep rather than allocating its own. In this case, the page will
1889 * not be unlocked or deallocated on failure.
1891 int block_write_begin(struct file *file, struct address_space *mapping,
1892 loff_t pos, unsigned len, unsigned flags,
1893 struct page **pagep, void **fsdata,
1894 get_block_t *get_block)
1896 struct inode *inode = mapping->host;
1900 unsigned start, end;
1903 index = pos >> PAGE_CACHE_SHIFT;
1904 start = pos & (PAGE_CACHE_SIZE - 1);
1910 page = grab_cache_page_write_begin(mapping, index, flags);
1917 BUG_ON(!PageLocked(page));
1919 status = __block_prepare_write(inode, page, start, end, get_block);
1920 if (unlikely(status)) {
1921 ClearPageUptodate(page);
1925 page_cache_release(page);
1929 * prepare_write() may have instantiated a few blocks
1930 * outside i_size. Trim these off again. Don't need
1931 * i_size_read because we hold i_mutex.
1933 if (pos + len > inode->i_size)
1934 vmtruncate(inode, inode->i_size);
1941 EXPORT_SYMBOL(block_write_begin);
1943 int block_write_end(struct file *file, struct address_space *mapping,
1944 loff_t pos, unsigned len, unsigned copied,
1945 struct page *page, void *fsdata)
1947 struct inode *inode = mapping->host;
1950 start = pos & (PAGE_CACHE_SIZE - 1);
1952 if (unlikely(copied < len)) {
1954 * The buffers that were written will now be uptodate, so we
1955 * don't have to worry about a readpage reading them and
1956 * overwriting a partial write. However if we have encountered
1957 * a short write and only partially written into a buffer, it
1958 * will not be marked uptodate, so a readpage might come in and
1959 * destroy our partial write.
1961 * Do the simplest thing, and just treat any short write to a
1962 * non uptodate page as a zero-length write, and force the
1963 * caller to redo the whole thing.
1965 if (!PageUptodate(page))
1968 page_zero_new_buffers(page, start+copied, start+len);
1970 flush_dcache_page(page);
1972 /* This could be a short (even 0-length) commit */
1973 __block_commit_write(inode, page, start, start+copied);
1977 EXPORT_SYMBOL(block_write_end);
1979 int generic_write_end(struct file *file, struct address_space *mapping,
1980 loff_t pos, unsigned len, unsigned copied,
1981 struct page *page, void *fsdata)
1983 struct inode *inode = mapping->host;
1984 int i_size_changed = 0;
1986 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1989 * No need to use i_size_read() here, the i_size
1990 * cannot change under us because we hold i_mutex.
1992 * But it's important to update i_size while still holding page lock:
1993 * page writeout could otherwise come in and zero beyond i_size.
1995 if (pos+copied > inode->i_size) {
1996 i_size_write(inode, pos+copied);
2001 page_cache_release(page);
2004 * Don't mark the inode dirty under page lock. First, it unnecessarily
2005 * makes the holding time of page lock longer. Second, it forces lock
2006 * ordering of page lock and transaction start for journaling
2010 mark_inode_dirty(inode);
2014 EXPORT_SYMBOL(generic_write_end);
2017 * block_is_partially_uptodate checks whether buffers within a page are
2020 * Returns true if all buffers which correspond to a file portion
2021 * we want to read are uptodate.
2023 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2026 struct inode *inode = page->mapping->host;
2027 unsigned block_start, block_end, blocksize;
2029 struct buffer_head *bh, *head;
2032 if (!page_has_buffers(page))
2035 blocksize = 1 << inode->i_blkbits;
2036 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2038 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2041 head = page_buffers(page);
2045 block_end = block_start + blocksize;
2046 if (block_end > from && block_start < to) {
2047 if (!buffer_uptodate(bh)) {
2051 if (block_end >= to)
2054 block_start = block_end;
2055 bh = bh->b_this_page;
2056 } while (bh != head);
2060 EXPORT_SYMBOL(block_is_partially_uptodate);
2063 * Generic "read page" function for block devices that have the normal
2064 * get_block functionality. This is most of the block device filesystems.
2065 * Reads the page asynchronously --- the unlock_buffer() and
2066 * set/clear_buffer_uptodate() functions propagate buffer state into the
2067 * page struct once IO has completed.
2069 int block_read_full_page(struct page *page, get_block_t *get_block)
2071 struct inode *inode = page->mapping->host;
2072 sector_t iblock, lblock;
2073 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2074 unsigned int blocksize;
2076 int fully_mapped = 1;
2078 BUG_ON(!PageLocked(page));
2079 blocksize = 1 << inode->i_blkbits;
2080 if (!page_has_buffers(page))
2081 create_empty_buffers(page, blocksize, 0);
2082 head = page_buffers(page);
2084 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2085 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2091 if (buffer_uptodate(bh))
2094 if (!buffer_mapped(bh)) {
2098 if (iblock < lblock) {
2099 WARN_ON(bh->b_size != blocksize);
2100 err = get_block(inode, iblock, bh, 0);
2104 if (!buffer_mapped(bh)) {
2105 zero_user(page, i * blocksize, blocksize);
2107 set_buffer_uptodate(bh);
2111 * get_block() might have updated the buffer
2114 if (buffer_uptodate(bh))
2118 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2121 SetPageMappedToDisk(page);
2125 * All buffers are uptodate - we can set the page uptodate
2126 * as well. But not if get_block() returned an error.
2128 if (!PageError(page))
2129 SetPageUptodate(page);
2134 /* Stage two: lock the buffers */
2135 for (i = 0; i < nr; i++) {
2138 mark_buffer_async_read(bh);
2142 * Stage 3: start the IO. Check for uptodateness
2143 * inside the buffer lock in case another process reading
2144 * the underlying blockdev brought it uptodate (the sct fix).
2146 for (i = 0; i < nr; i++) {
2148 if (buffer_uptodate(bh))
2149 end_buffer_async_read(bh, 1);
2151 submit_bh(READ, bh);
2156 /* utility function for filesystems that need to do work on expanding
2157 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2158 * deal with the hole.
2160 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2162 struct address_space *mapping = inode->i_mapping;
2165 unsigned long limit;
2169 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2170 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2171 send_sig(SIGXFSZ, current, 0);
2174 if (size > inode->i_sb->s_maxbytes)
2177 err = pagecache_write_begin(NULL, mapping, size, 0,
2178 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2183 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2190 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2191 loff_t pos, loff_t *bytes)
2193 struct inode *inode = mapping->host;
2194 unsigned blocksize = 1 << inode->i_blkbits;
2197 pgoff_t index, curidx;
2199 unsigned zerofrom, offset, len;
2202 index = pos >> PAGE_CACHE_SHIFT;
2203 offset = pos & ~PAGE_CACHE_MASK;
2205 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2206 zerofrom = curpos & ~PAGE_CACHE_MASK;
2207 if (zerofrom & (blocksize-1)) {
2208 *bytes |= (blocksize-1);
2211 len = PAGE_CACHE_SIZE - zerofrom;
2213 err = pagecache_write_begin(file, mapping, curpos, len,
2214 AOP_FLAG_UNINTERRUPTIBLE,
2218 zero_user(page, zerofrom, len);
2219 err = pagecache_write_end(file, mapping, curpos, len, len,
2226 balance_dirty_pages_ratelimited(mapping);
2229 /* page covers the boundary, find the boundary offset */
2230 if (index == curidx) {
2231 zerofrom = curpos & ~PAGE_CACHE_MASK;
2232 /* if we will expand the thing last block will be filled */
2233 if (offset <= zerofrom) {
2236 if (zerofrom & (blocksize-1)) {
2237 *bytes |= (blocksize-1);
2240 len = offset - zerofrom;
2242 err = pagecache_write_begin(file, mapping, curpos, len,
2243 AOP_FLAG_UNINTERRUPTIBLE,
2247 zero_user(page, zerofrom, len);
2248 err = pagecache_write_end(file, mapping, curpos, len, len,
2260 * For moronic filesystems that do not allow holes in file.
2261 * We may have to extend the file.
2263 int cont_write_begin(struct file *file, struct address_space *mapping,
2264 loff_t pos, unsigned len, unsigned flags,
2265 struct page **pagep, void **fsdata,
2266 get_block_t *get_block, loff_t *bytes)
2268 struct inode *inode = mapping->host;
2269 unsigned blocksize = 1 << inode->i_blkbits;
2273 err = cont_expand_zero(file, mapping, pos, bytes);
2277 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2278 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2279 *bytes |= (blocksize-1);
2284 err = block_write_begin(file, mapping, pos, len,
2285 flags, pagep, fsdata, get_block);
2290 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2291 get_block_t *get_block)
2293 struct inode *inode = page->mapping->host;
2294 int err = __block_prepare_write(inode, page, from, to, get_block);
2296 ClearPageUptodate(page);
2300 int block_commit_write(struct page *page, unsigned from, unsigned to)
2302 struct inode *inode = page->mapping->host;
2303 __block_commit_write(inode,page,from,to);
2308 * block_page_mkwrite() is not allowed to change the file size as it gets
2309 * called from a page fault handler when a page is first dirtied. Hence we must
2310 * be careful to check for EOF conditions here. We set the page up correctly
2311 * for a written page which means we get ENOSPC checking when writing into
2312 * holes and correct delalloc and unwritten extent mapping on filesystems that
2313 * support these features.
2315 * We are not allowed to take the i_mutex here so we have to play games to
2316 * protect against truncate races as the page could now be beyond EOF. Because
2317 * vmtruncate() writes the inode size before removing pages, once we have the
2318 * page lock we can determine safely if the page is beyond EOF. If it is not
2319 * beyond EOF, then the page is guaranteed safe against truncation until we
2323 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2324 get_block_t get_block)
2326 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2332 size = i_size_read(inode);
2333 if ((page->mapping != inode->i_mapping) ||
2334 (page_offset(page) > size)) {
2335 /* page got truncated out from underneath us */
2339 /* page is wholly or partially inside EOF */
2340 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2341 end = size & ~PAGE_CACHE_MASK;
2343 end = PAGE_CACHE_SIZE;
2345 ret = block_prepare_write(page, 0, end, get_block);
2347 ret = block_commit_write(page, 0, end);
2355 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2356 * immediately, while under the page lock. So it needs a special end_io
2357 * handler which does not touch the bh after unlocking it.
2359 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2361 __end_buffer_read_notouch(bh, uptodate);
2365 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2366 * the page (converting it to circular linked list and taking care of page
2369 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2371 struct buffer_head *bh;
2373 BUG_ON(!PageLocked(page));
2375 spin_lock(&page->mapping->private_lock);
2378 if (PageDirty(page))
2379 set_buffer_dirty(bh);
2380 if (!bh->b_this_page)
2381 bh->b_this_page = head;
2382 bh = bh->b_this_page;
2383 } while (bh != head);
2384 attach_page_buffers(page, head);
2385 spin_unlock(&page->mapping->private_lock);
2389 * On entry, the page is fully not uptodate.
2390 * On exit the page is fully uptodate in the areas outside (from,to)
2392 int nobh_write_begin(struct file *file, struct address_space *mapping,
2393 loff_t pos, unsigned len, unsigned flags,
2394 struct page **pagep, void **fsdata,
2395 get_block_t *get_block)
2397 struct inode *inode = mapping->host;
2398 const unsigned blkbits = inode->i_blkbits;
2399 const unsigned blocksize = 1 << blkbits;
2400 struct buffer_head *head, *bh;
2404 unsigned block_in_page;
2405 unsigned block_start, block_end;
2406 sector_t block_in_file;
2409 int is_mapped_to_disk = 1;
2411 index = pos >> PAGE_CACHE_SHIFT;
2412 from = pos & (PAGE_CACHE_SIZE - 1);
2415 page = grab_cache_page_write_begin(mapping, index, flags);
2421 if (page_has_buffers(page)) {
2423 page_cache_release(page);
2425 return block_write_begin(file, mapping, pos, len, flags, pagep,
2429 if (PageMappedToDisk(page))
2433 * Allocate buffers so that we can keep track of state, and potentially
2434 * attach them to the page if an error occurs. In the common case of
2435 * no error, they will just be freed again without ever being attached
2436 * to the page (which is all OK, because we're under the page lock).
2438 * Be careful: the buffer linked list is a NULL terminated one, rather
2439 * than the circular one we're used to.
2441 head = alloc_page_buffers(page, blocksize, 0);
2447 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2450 * We loop across all blocks in the page, whether or not they are
2451 * part of the affected region. This is so we can discover if the
2452 * page is fully mapped-to-disk.
2454 for (block_start = 0, block_in_page = 0, bh = head;
2455 block_start < PAGE_CACHE_SIZE;
2456 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2459 block_end = block_start + blocksize;
2462 if (block_start >= to)
2464 ret = get_block(inode, block_in_file + block_in_page,
2468 if (!buffer_mapped(bh))
2469 is_mapped_to_disk = 0;
2471 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2472 if (PageUptodate(page)) {
2473 set_buffer_uptodate(bh);
2476 if (buffer_new(bh) || !buffer_mapped(bh)) {
2477 zero_user_segments(page, block_start, from,
2481 if (buffer_uptodate(bh))
2482 continue; /* reiserfs does this */
2483 if (block_start < from || block_end > to) {
2485 bh->b_end_io = end_buffer_read_nobh;
2486 submit_bh(READ, bh);
2493 * The page is locked, so these buffers are protected from
2494 * any VM or truncate activity. Hence we don't need to care
2495 * for the buffer_head refcounts.
2497 for (bh = head; bh; bh = bh->b_this_page) {
2499 if (!buffer_uptodate(bh))
2506 if (is_mapped_to_disk)
2507 SetPageMappedToDisk(page);
2509 *fsdata = head; /* to be released by nobh_write_end */
2516 * Error recovery is a bit difficult. We need to zero out blocks that
2517 * were newly allocated, and dirty them to ensure they get written out.
2518 * Buffers need to be attached to the page at this point, otherwise
2519 * the handling of potential IO errors during writeout would be hard
2520 * (could try doing synchronous writeout, but what if that fails too?)
2522 attach_nobh_buffers(page, head);
2523 page_zero_new_buffers(page, from, to);
2527 page_cache_release(page);
2530 if (pos + len > inode->i_size)
2531 vmtruncate(inode, inode->i_size);
2535 EXPORT_SYMBOL(nobh_write_begin);
2537 int nobh_write_end(struct file *file, struct address_space *mapping,
2538 loff_t pos, unsigned len, unsigned copied,
2539 struct page *page, void *fsdata)
2541 struct inode *inode = page->mapping->host;
2542 struct buffer_head *head = fsdata;
2543 struct buffer_head *bh;
2544 BUG_ON(fsdata != NULL && page_has_buffers(page));
2546 if (unlikely(copied < len) && head)
2547 attach_nobh_buffers(page, head);
2548 if (page_has_buffers(page))
2549 return generic_write_end(file, mapping, pos, len,
2550 copied, page, fsdata);
2552 SetPageUptodate(page);
2553 set_page_dirty(page);
2554 if (pos+copied > inode->i_size) {
2555 i_size_write(inode, pos+copied);
2556 mark_inode_dirty(inode);
2560 page_cache_release(page);
2564 head = head->b_this_page;
2565 free_buffer_head(bh);
2570 EXPORT_SYMBOL(nobh_write_end);
2573 * nobh_writepage() - based on block_full_write_page() except
2574 * that it tries to operate without attaching bufferheads to
2577 int nobh_writepage(struct page *page, get_block_t *get_block,
2578 struct writeback_control *wbc)
2580 struct inode * const inode = page->mapping->host;
2581 loff_t i_size = i_size_read(inode);
2582 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2586 /* Is the page fully inside i_size? */
2587 if (page->index < end_index)
2590 /* Is the page fully outside i_size? (truncate in progress) */
2591 offset = i_size & (PAGE_CACHE_SIZE-1);
2592 if (page->index >= end_index+1 || !offset) {
2594 * The page may have dirty, unmapped buffers. For example,
2595 * they may have been added in ext3_writepage(). Make them
2596 * freeable here, so the page does not leak.
2599 /* Not really sure about this - do we need this ? */
2600 if (page->mapping->a_ops->invalidatepage)
2601 page->mapping->a_ops->invalidatepage(page, offset);
2604 return 0; /* don't care */
2608 * The page straddles i_size. It must be zeroed out on each and every
2609 * writepage invocation because it may be mmapped. "A file is mapped
2610 * in multiples of the page size. For a file that is not a multiple of
2611 * the page size, the remaining memory is zeroed when mapped, and
2612 * writes to that region are not written out to the file."
2614 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2616 ret = mpage_writepage(page, get_block, wbc);
2618 ret = __block_write_full_page(inode, page, get_block, wbc);
2621 EXPORT_SYMBOL(nobh_writepage);
2623 int nobh_truncate_page(struct address_space *mapping,
2624 loff_t from, get_block_t *get_block)
2626 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2627 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2630 unsigned length, pos;
2631 struct inode *inode = mapping->host;
2633 struct buffer_head map_bh;
2636 blocksize = 1 << inode->i_blkbits;
2637 length = offset & (blocksize - 1);
2639 /* Block boundary? Nothing to do */
2643 length = blocksize - length;
2644 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2646 page = grab_cache_page(mapping, index);
2651 if (page_has_buffers(page)) {
2654 page_cache_release(page);
2655 return block_truncate_page(mapping, from, get_block);
2658 /* Find the buffer that contains "offset" */
2660 while (offset >= pos) {
2665 err = get_block(inode, iblock, &map_bh, 0);
2668 /* unmapped? It's a hole - nothing to do */
2669 if (!buffer_mapped(&map_bh))
2672 /* Ok, it's mapped. Make sure it's up-to-date */
2673 if (!PageUptodate(page)) {
2674 err = mapping->a_ops->readpage(NULL, page);
2676 page_cache_release(page);
2680 if (!PageUptodate(page)) {
2684 if (page_has_buffers(page))
2687 zero_user(page, offset, length);
2688 set_page_dirty(page);
2693 page_cache_release(page);
2697 EXPORT_SYMBOL(nobh_truncate_page);
2699 int block_truncate_page(struct address_space *mapping,
2700 loff_t from, get_block_t *get_block)
2702 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2703 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2706 unsigned length, pos;
2707 struct inode *inode = mapping->host;
2709 struct buffer_head *bh;
2712 blocksize = 1 << inode->i_blkbits;
2713 length = offset & (blocksize - 1);
2715 /* Block boundary? Nothing to do */
2719 length = blocksize - length;
2720 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2722 page = grab_cache_page(mapping, index);
2727 if (!page_has_buffers(page))
2728 create_empty_buffers(page, blocksize, 0);
2730 /* Find the buffer that contains "offset" */
2731 bh = page_buffers(page);
2733 while (offset >= pos) {
2734 bh = bh->b_this_page;
2740 if (!buffer_mapped(bh)) {
2741 WARN_ON(bh->b_size != blocksize);
2742 err = get_block(inode, iblock, bh, 0);
2745 /* unmapped? It's a hole - nothing to do */
2746 if (!buffer_mapped(bh))
2750 /* Ok, it's mapped. Make sure it's up-to-date */
2751 if (PageUptodate(page))
2752 set_buffer_uptodate(bh);
2754 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2756 ll_rw_block(READ, 1, &bh);
2758 /* Uhhuh. Read error. Complain and punt. */
2759 if (!buffer_uptodate(bh))
2763 zero_user(page, offset, length);
2764 mark_buffer_dirty(bh);
2769 page_cache_release(page);
2775 * The generic ->writepage function for buffer-backed address_spaces
2777 int block_write_full_page(struct page *page, get_block_t *get_block,
2778 struct writeback_control *wbc)
2780 struct inode * const inode = page->mapping->host;
2781 loff_t i_size = i_size_read(inode);
2782 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2785 /* Is the page fully inside i_size? */
2786 if (page->index < end_index)
2787 return __block_write_full_page(inode, page, get_block, wbc);
2789 /* Is the page fully outside i_size? (truncate in progress) */
2790 offset = i_size & (PAGE_CACHE_SIZE-1);
2791 if (page->index >= end_index+1 || !offset) {
2793 * The page may have dirty, unmapped buffers. For example,
2794 * they may have been added in ext3_writepage(). Make them
2795 * freeable here, so the page does not leak.
2797 do_invalidatepage(page, 0);
2799 return 0; /* don't care */
2803 * The page straddles i_size. It must be zeroed out on each and every
2804 * writepage invokation because it may be mmapped. "A file is mapped
2805 * in multiples of the page size. For a file that is not a multiple of
2806 * the page size, the remaining memory is zeroed when mapped, and
2807 * writes to that region are not written out to the file."
2809 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2810 return __block_write_full_page(inode, page, get_block, wbc);
2813 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2814 get_block_t *get_block)
2816 struct buffer_head tmp;
2817 struct inode *inode = mapping->host;
2820 tmp.b_size = 1 << inode->i_blkbits;
2821 get_block(inode, block, &tmp, 0);
2822 return tmp.b_blocknr;
2825 static void end_bio_bh_io_sync(struct bio *bio, int err)
2827 struct buffer_head *bh = bio->bi_private;
2829 if (err == -EOPNOTSUPP) {
2830 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2831 set_bit(BH_Eopnotsupp, &bh->b_state);
2834 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2835 set_bit(BH_Quiet, &bh->b_state);
2837 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2841 int submit_bh(int rw, struct buffer_head * bh)
2846 BUG_ON(!buffer_locked(bh));
2847 BUG_ON(!buffer_mapped(bh));
2848 BUG_ON(!bh->b_end_io);
2851 * Mask in barrier bit for a write (could be either a WRITE or a
2854 if (buffer_ordered(bh) && (rw & WRITE))
2855 rw |= WRITE_BARRIER;
2858 * Only clear out a write error when rewriting
2860 if (test_set_buffer_req(bh) && (rw & WRITE))
2861 clear_buffer_write_io_error(bh);
2864 * from here on down, it's all bio -- do the initial mapping,
2865 * submit_bio -> generic_make_request may further map this bio around
2867 bio = bio_alloc(GFP_NOIO, 1);
2869 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2870 bio->bi_bdev = bh->b_bdev;
2871 bio->bi_io_vec[0].bv_page = bh->b_page;
2872 bio->bi_io_vec[0].bv_len = bh->b_size;
2873 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2877 bio->bi_size = bh->b_size;
2879 bio->bi_end_io = end_bio_bh_io_sync;
2880 bio->bi_private = bh;
2883 submit_bio(rw, bio);
2885 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2893 * ll_rw_block: low-level access to block devices (DEPRECATED)
2894 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2895 * @nr: number of &struct buffer_heads in the array
2896 * @bhs: array of pointers to &struct buffer_head
2898 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2899 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2900 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2901 * are sent to disk. The fourth %READA option is described in the documentation
2902 * for generic_make_request() which ll_rw_block() calls.
2904 * This function drops any buffer that it cannot get a lock on (with the
2905 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2906 * clean when doing a write request, and any buffer that appears to be
2907 * up-to-date when doing read request. Further it marks as clean buffers that
2908 * are processed for writing (the buffer cache won't assume that they are
2909 * actually clean until the buffer gets unlocked).
2911 * ll_rw_block sets b_end_io to simple completion handler that marks
2912 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2915 * All of the buffers must be for the same device, and must also be a
2916 * multiple of the current approved size for the device.
2918 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2922 for (i = 0; i < nr; i++) {
2923 struct buffer_head *bh = bhs[i];
2925 if (rw == SWRITE || rw == SWRITE_SYNC)
2927 else if (!trylock_buffer(bh))
2930 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) {
2931 if (test_clear_buffer_dirty(bh)) {
2932 bh->b_end_io = end_buffer_write_sync;
2934 if (rw == SWRITE_SYNC)
2935 submit_bh(WRITE_SYNC, bh);
2937 submit_bh(WRITE, bh);
2941 if (!buffer_uptodate(bh)) {
2942 bh->b_end_io = end_buffer_read_sync;
2953 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2954 * and then start new I/O and then wait upon it. The caller must have a ref on
2957 int sync_dirty_buffer(struct buffer_head *bh)
2961 WARN_ON(atomic_read(&bh->b_count) < 1);
2963 if (test_clear_buffer_dirty(bh)) {
2965 bh->b_end_io = end_buffer_write_sync;
2966 ret = submit_bh(WRITE, bh);
2968 if (buffer_eopnotsupp(bh)) {
2969 clear_buffer_eopnotsupp(bh);
2972 if (!ret && !buffer_uptodate(bh))
2981 * try_to_free_buffers() checks if all the buffers on this particular page
2982 * are unused, and releases them if so.
2984 * Exclusion against try_to_free_buffers may be obtained by either
2985 * locking the page or by holding its mapping's private_lock.
2987 * If the page is dirty but all the buffers are clean then we need to
2988 * be sure to mark the page clean as well. This is because the page
2989 * may be against a block device, and a later reattachment of buffers
2990 * to a dirty page will set *all* buffers dirty. Which would corrupt
2991 * filesystem data on the same device.
2993 * The same applies to regular filesystem pages: if all the buffers are
2994 * clean then we set the page clean and proceed. To do that, we require
2995 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2998 * try_to_free_buffers() is non-blocking.
3000 static inline int buffer_busy(struct buffer_head *bh)
3002 return atomic_read(&bh->b_count) |
3003 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3007 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3009 struct buffer_head *head = page_buffers(page);
3010 struct buffer_head *bh;
3014 if (buffer_write_io_error(bh) && page->mapping)
3015 set_bit(AS_EIO, &page->mapping->flags);
3016 if (buffer_busy(bh))
3018 bh = bh->b_this_page;
3019 } while (bh != head);
3022 struct buffer_head *next = bh->b_this_page;
3024 if (bh->b_assoc_map)
3025 __remove_assoc_queue(bh);
3027 } while (bh != head);
3028 *buffers_to_free = head;
3029 __clear_page_buffers(page);
3035 int try_to_free_buffers(struct page *page)
3037 struct address_space * const mapping = page->mapping;
3038 struct buffer_head *buffers_to_free = NULL;
3041 BUG_ON(!PageLocked(page));
3042 if (PageWriteback(page))
3045 if (mapping == NULL) { /* can this still happen? */
3046 ret = drop_buffers(page, &buffers_to_free);
3050 spin_lock(&mapping->private_lock);
3051 ret = drop_buffers(page, &buffers_to_free);
3054 * If the filesystem writes its buffers by hand (eg ext3)
3055 * then we can have clean buffers against a dirty page. We
3056 * clean the page here; otherwise the VM will never notice
3057 * that the filesystem did any IO at all.
3059 * Also, during truncate, discard_buffer will have marked all
3060 * the page's buffers clean. We discover that here and clean
3063 * private_lock must be held over this entire operation in order
3064 * to synchronise against __set_page_dirty_buffers and prevent the
3065 * dirty bit from being lost.
3068 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3069 spin_unlock(&mapping->private_lock);
3071 if (buffers_to_free) {
3072 struct buffer_head *bh = buffers_to_free;
3075 struct buffer_head *next = bh->b_this_page;
3076 free_buffer_head(bh);
3078 } while (bh != buffers_to_free);
3082 EXPORT_SYMBOL(try_to_free_buffers);
3084 void block_sync_page(struct page *page)
3086 struct address_space *mapping;
3089 mapping = page_mapping(page);
3091 blk_run_backing_dev(mapping->backing_dev_info, page);
3095 * There are no bdflush tunables left. But distributions are
3096 * still running obsolete flush daemons, so we terminate them here.
3098 * Use of bdflush() is deprecated and will be removed in a future kernel.
3099 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3101 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3103 static int msg_count;
3105 if (!capable(CAP_SYS_ADMIN))
3108 if (msg_count < 5) {
3111 "warning: process `%s' used the obsolete bdflush"
3112 " system call\n", current->comm);
3113 printk(KERN_INFO "Fix your initscripts?\n");
3122 * Buffer-head allocation
3124 static struct kmem_cache *bh_cachep;
3127 * Once the number of bh's in the machine exceeds this level, we start
3128 * stripping them in writeback.
3130 static int max_buffer_heads;
3132 int buffer_heads_over_limit;
3134 struct bh_accounting {
3135 int nr; /* Number of live bh's */
3136 int ratelimit; /* Limit cacheline bouncing */
3139 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3141 static void recalc_bh_state(void)
3146 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3148 __get_cpu_var(bh_accounting).ratelimit = 0;
3149 for_each_online_cpu(i)
3150 tot += per_cpu(bh_accounting, i).nr;
3151 buffer_heads_over_limit = (tot > max_buffer_heads);
3154 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3156 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3158 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3159 get_cpu_var(bh_accounting).nr++;
3161 put_cpu_var(bh_accounting);
3165 EXPORT_SYMBOL(alloc_buffer_head);
3167 void free_buffer_head(struct buffer_head *bh)
3169 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3170 kmem_cache_free(bh_cachep, bh);
3171 get_cpu_var(bh_accounting).nr--;
3173 put_cpu_var(bh_accounting);
3175 EXPORT_SYMBOL(free_buffer_head);
3177 static void buffer_exit_cpu(int cpu)
3180 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3182 for (i = 0; i < BH_LRU_SIZE; i++) {
3186 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3187 per_cpu(bh_accounting, cpu).nr = 0;
3188 put_cpu_var(bh_accounting);
3191 static int buffer_cpu_notify(struct notifier_block *self,
3192 unsigned long action, void *hcpu)
3194 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3195 buffer_exit_cpu((unsigned long)hcpu);
3200 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3201 * @bh: struct buffer_head
3203 * Return true if the buffer is up-to-date and false,
3204 * with the buffer locked, if not.
3206 int bh_uptodate_or_lock(struct buffer_head *bh)
3208 if (!buffer_uptodate(bh)) {
3210 if (!buffer_uptodate(bh))
3216 EXPORT_SYMBOL(bh_uptodate_or_lock);
3219 * bh_submit_read - Submit a locked buffer for reading
3220 * @bh: struct buffer_head
3222 * Returns zero on success and -EIO on error.
3224 int bh_submit_read(struct buffer_head *bh)
3226 BUG_ON(!buffer_locked(bh));
3228 if (buffer_uptodate(bh)) {
3234 bh->b_end_io = end_buffer_read_sync;
3235 submit_bh(READ, bh);
3237 if (buffer_uptodate(bh))
3241 EXPORT_SYMBOL(bh_submit_read);
3244 init_buffer_head(void *data)
3246 struct buffer_head *bh = data;
3248 memset(bh, 0, sizeof(*bh));
3249 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3252 void __init buffer_init(void)
3256 bh_cachep = kmem_cache_create("buffer_head",
3257 sizeof(struct buffer_head), 0,
3258 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3263 * Limit the bh occupancy to 10% of ZONE_NORMAL
3265 nrpages = (nr_free_buffer_pages() * 10) / 100;
3266 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3267 hotcpu_notifier(buffer_cpu_notify, 0);
3270 EXPORT_SYMBOL(__bforget);
3271 EXPORT_SYMBOL(__brelse);
3272 EXPORT_SYMBOL(__wait_on_buffer);
3273 EXPORT_SYMBOL(block_commit_write);
3274 EXPORT_SYMBOL(block_prepare_write);
3275 EXPORT_SYMBOL(block_page_mkwrite);
3276 EXPORT_SYMBOL(block_read_full_page);
3277 EXPORT_SYMBOL(block_sync_page);
3278 EXPORT_SYMBOL(block_truncate_page);
3279 EXPORT_SYMBOL(block_write_full_page);
3280 EXPORT_SYMBOL(cont_write_begin);
3281 EXPORT_SYMBOL(end_buffer_read_sync);
3282 EXPORT_SYMBOL(end_buffer_write_sync);
3283 EXPORT_SYMBOL(file_fsync);
3284 EXPORT_SYMBOL(fsync_bdev);
3285 EXPORT_SYMBOL(generic_block_bmap);
3286 EXPORT_SYMBOL(generic_cont_expand_simple);
3287 EXPORT_SYMBOL(init_buffer);
3288 EXPORT_SYMBOL(invalidate_bdev);
3289 EXPORT_SYMBOL(ll_rw_block);
3290 EXPORT_SYMBOL(mark_buffer_dirty);
3291 EXPORT_SYMBOL(submit_bh);
3292 EXPORT_SYMBOL(sync_dirty_buffer);
3293 EXPORT_SYMBOL(unlock_buffer);