fs: merge I/O error prints into one line
[firefly-linux-kernel-4.4.55.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59         trace_block_touch_buffer(bh);
60         mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63
64 void __lock_buffer(struct buffer_head *bh)
65 {
66         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69
70 void unlock_buffer(struct buffer_head *bh)
71 {
72         clear_bit_unlock(BH_Lock, &bh->b_state);
73         smp_mb__after_atomic();
74         wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77
78 /*
79  * Returns if the page has dirty or writeback buffers. If all the buffers
80  * are unlocked and clean then the PageDirty information is stale. If
81  * any of the pages are locked, it is assumed they are locked for IO.
82  */
83 void buffer_check_dirty_writeback(struct page *page,
84                                      bool *dirty, bool *writeback)
85 {
86         struct buffer_head *head, *bh;
87         *dirty = false;
88         *writeback = false;
89
90         BUG_ON(!PageLocked(page));
91
92         if (!page_has_buffers(page))
93                 return;
94
95         if (PageWriteback(page))
96                 *writeback = true;
97
98         head = page_buffers(page);
99         bh = head;
100         do {
101                 if (buffer_locked(bh))
102                         *writeback = true;
103
104                 if (buffer_dirty(bh))
105                         *dirty = true;
106
107                 bh = bh->b_this_page;
108         } while (bh != head);
109 }
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
111
112 /*
113  * Block until a buffer comes unlocked.  This doesn't stop it
114  * from becoming locked again - you have to lock it yourself
115  * if you want to preserve its state.
116  */
117 void __wait_on_buffer(struct buffer_head * bh)
118 {
119         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
120 }
121 EXPORT_SYMBOL(__wait_on_buffer);
122
123 static void
124 __clear_page_buffers(struct page *page)
125 {
126         ClearPagePrivate(page);
127         set_page_private(page, 0);
128         page_cache_release(page);
129 }
130
131
132 static int quiet_error(struct buffer_head *bh)
133 {
134         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
135                 return 0;
136         return 1;
137 }
138
139
140 static void buffer_io_error(struct buffer_head *bh, char *msg)
141 {
142         char b[BDEVNAME_SIZE];
143         printk(KERN_ERR "Buffer I/O error on dev %s, logical block %llu%s\n",
144                         bdevname(bh->b_bdev, b),
145                         (unsigned long long)bh->b_blocknr, msg);
146 }
147
148 /*
149  * End-of-IO handler helper function which does not touch the bh after
150  * unlocking it.
151  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
152  * a race there is benign: unlock_buffer() only use the bh's address for
153  * hashing after unlocking the buffer, so it doesn't actually touch the bh
154  * itself.
155  */
156 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
157 {
158         if (uptodate) {
159                 set_buffer_uptodate(bh);
160         } else {
161                 /* This happens, due to failed READA attempts. */
162                 clear_buffer_uptodate(bh);
163         }
164         unlock_buffer(bh);
165 }
166
167 /*
168  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
169  * unlock the buffer. This is what ll_rw_block uses too.
170  */
171 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
172 {
173         __end_buffer_read_notouch(bh, uptodate);
174         put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_read_sync);
177
178 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
179 {
180         if (uptodate) {
181                 set_buffer_uptodate(bh);
182         } else {
183                 if (!quiet_error(bh))
184                         buffer_io_error(bh, ", lost sync page write");
185                 set_buffer_write_io_error(bh);
186                 clear_buffer_uptodate(bh);
187         }
188         unlock_buffer(bh);
189         put_bh(bh);
190 }
191 EXPORT_SYMBOL(end_buffer_write_sync);
192
193 /*
194  * Various filesystems appear to want __find_get_block to be non-blocking.
195  * But it's the page lock which protects the buffers.  To get around this,
196  * we get exclusion from try_to_free_buffers with the blockdev mapping's
197  * private_lock.
198  *
199  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
200  * may be quite high.  This code could TryLock the page, and if that
201  * succeeds, there is no need to take private_lock. (But if
202  * private_lock is contended then so is mapping->tree_lock).
203  */
204 static struct buffer_head *
205 __find_get_block_slow(struct block_device *bdev, sector_t block)
206 {
207         struct inode *bd_inode = bdev->bd_inode;
208         struct address_space *bd_mapping = bd_inode->i_mapping;
209         struct buffer_head *ret = NULL;
210         pgoff_t index;
211         struct buffer_head *bh;
212         struct buffer_head *head;
213         struct page *page;
214         int all_mapped = 1;
215
216         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
217         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
218         if (!page)
219                 goto out;
220
221         spin_lock(&bd_mapping->private_lock);
222         if (!page_has_buffers(page))
223                 goto out_unlock;
224         head = page_buffers(page);
225         bh = head;
226         do {
227                 if (!buffer_mapped(bh))
228                         all_mapped = 0;
229                 else if (bh->b_blocknr == block) {
230                         ret = bh;
231                         get_bh(bh);
232                         goto out_unlock;
233                 }
234                 bh = bh->b_this_page;
235         } while (bh != head);
236
237         /* we might be here because some of the buffers on this page are
238          * not mapped.  This is due to various races between
239          * file io on the block device and getblk.  It gets dealt with
240          * elsewhere, don't buffer_error if we had some unmapped buffers
241          */
242         if (all_mapped) {
243                 char b[BDEVNAME_SIZE];
244
245                 printk("__find_get_block_slow() failed. "
246                         "block=%llu, b_blocknr=%llu\n",
247                         (unsigned long long)block,
248                         (unsigned long long)bh->b_blocknr);
249                 printk("b_state=0x%08lx, b_size=%zu\n",
250                         bh->b_state, bh->b_size);
251                 printk("device %s blocksize: %d\n", bdevname(bdev, b),
252                         1 << bd_inode->i_blkbits);
253         }
254 out_unlock:
255         spin_unlock(&bd_mapping->private_lock);
256         page_cache_release(page);
257 out:
258         return ret;
259 }
260
261 /*
262  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
263  */
264 static void free_more_memory(void)
265 {
266         struct zone *zone;
267         int nid;
268
269         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
270         yield();
271
272         for_each_online_node(nid) {
273                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
274                                                 gfp_zone(GFP_NOFS), NULL,
275                                                 &zone);
276                 if (zone)
277                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
278                                                 GFP_NOFS, NULL);
279         }
280 }
281
282 /*
283  * I/O completion handler for block_read_full_page() - pages
284  * which come unlocked at the end of I/O.
285  */
286 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
287 {
288         unsigned long flags;
289         struct buffer_head *first;
290         struct buffer_head *tmp;
291         struct page *page;
292         int page_uptodate = 1;
293
294         BUG_ON(!buffer_async_read(bh));
295
296         page = bh->b_page;
297         if (uptodate) {
298                 set_buffer_uptodate(bh);
299         } else {
300                 clear_buffer_uptodate(bh);
301                 if (!quiet_error(bh))
302                         buffer_io_error(bh, ", async page read");
303                 SetPageError(page);
304         }
305
306         /*
307          * Be _very_ careful from here on. Bad things can happen if
308          * two buffer heads end IO at almost the same time and both
309          * decide that the page is now completely done.
310          */
311         first = page_buffers(page);
312         local_irq_save(flags);
313         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
314         clear_buffer_async_read(bh);
315         unlock_buffer(bh);
316         tmp = bh;
317         do {
318                 if (!buffer_uptodate(tmp))
319                         page_uptodate = 0;
320                 if (buffer_async_read(tmp)) {
321                         BUG_ON(!buffer_locked(tmp));
322                         goto still_busy;
323                 }
324                 tmp = tmp->b_this_page;
325         } while (tmp != bh);
326         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
327         local_irq_restore(flags);
328
329         /*
330          * If none of the buffers had errors and they are all
331          * uptodate then we can set the page uptodate.
332          */
333         if (page_uptodate && !PageError(page))
334                 SetPageUptodate(page);
335         unlock_page(page);
336         return;
337
338 still_busy:
339         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
340         local_irq_restore(flags);
341         return;
342 }
343
344 /*
345  * Completion handler for block_write_full_page() - pages which are unlocked
346  * during I/O, and which have PageWriteback cleared upon I/O completion.
347  */
348 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
349 {
350         unsigned long flags;
351         struct buffer_head *first;
352         struct buffer_head *tmp;
353         struct page *page;
354
355         BUG_ON(!buffer_async_write(bh));
356
357         page = bh->b_page;
358         if (uptodate) {
359                 set_buffer_uptodate(bh);
360         } else {
361                 if (!quiet_error(bh))
362                         buffer_io_error(bh, ", lost async page write");
363                 set_bit(AS_EIO, &page->mapping->flags);
364                 set_buffer_write_io_error(bh);
365                 clear_buffer_uptodate(bh);
366                 SetPageError(page);
367         }
368
369         first = page_buffers(page);
370         local_irq_save(flags);
371         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
372
373         clear_buffer_async_write(bh);
374         unlock_buffer(bh);
375         tmp = bh->b_this_page;
376         while (tmp != bh) {
377                 if (buffer_async_write(tmp)) {
378                         BUG_ON(!buffer_locked(tmp));
379                         goto still_busy;
380                 }
381                 tmp = tmp->b_this_page;
382         }
383         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
384         local_irq_restore(flags);
385         end_page_writeback(page);
386         return;
387
388 still_busy:
389         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
390         local_irq_restore(flags);
391         return;
392 }
393 EXPORT_SYMBOL(end_buffer_async_write);
394
395 /*
396  * If a page's buffers are under async readin (end_buffer_async_read
397  * completion) then there is a possibility that another thread of
398  * control could lock one of the buffers after it has completed
399  * but while some of the other buffers have not completed.  This
400  * locked buffer would confuse end_buffer_async_read() into not unlocking
401  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
402  * that this buffer is not under async I/O.
403  *
404  * The page comes unlocked when it has no locked buffer_async buffers
405  * left.
406  *
407  * PageLocked prevents anyone starting new async I/O reads any of
408  * the buffers.
409  *
410  * PageWriteback is used to prevent simultaneous writeout of the same
411  * page.
412  *
413  * PageLocked prevents anyone from starting writeback of a page which is
414  * under read I/O (PageWriteback is only ever set against a locked page).
415  */
416 static void mark_buffer_async_read(struct buffer_head *bh)
417 {
418         bh->b_end_io = end_buffer_async_read;
419         set_buffer_async_read(bh);
420 }
421
422 static void mark_buffer_async_write_endio(struct buffer_head *bh,
423                                           bh_end_io_t *handler)
424 {
425         bh->b_end_io = handler;
426         set_buffer_async_write(bh);
427 }
428
429 void mark_buffer_async_write(struct buffer_head *bh)
430 {
431         mark_buffer_async_write_endio(bh, end_buffer_async_write);
432 }
433 EXPORT_SYMBOL(mark_buffer_async_write);
434
435
436 /*
437  * fs/buffer.c contains helper functions for buffer-backed address space's
438  * fsync functions.  A common requirement for buffer-based filesystems is
439  * that certain data from the backing blockdev needs to be written out for
440  * a successful fsync().  For example, ext2 indirect blocks need to be
441  * written back and waited upon before fsync() returns.
442  *
443  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
444  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
445  * management of a list of dependent buffers at ->i_mapping->private_list.
446  *
447  * Locking is a little subtle: try_to_free_buffers() will remove buffers
448  * from their controlling inode's queue when they are being freed.  But
449  * try_to_free_buffers() will be operating against the *blockdev* mapping
450  * at the time, not against the S_ISREG file which depends on those buffers.
451  * So the locking for private_list is via the private_lock in the address_space
452  * which backs the buffers.  Which is different from the address_space 
453  * against which the buffers are listed.  So for a particular address_space,
454  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
455  * mapping->private_list will always be protected by the backing blockdev's
456  * ->private_lock.
457  *
458  * Which introduces a requirement: all buffers on an address_space's
459  * ->private_list must be from the same address_space: the blockdev's.
460  *
461  * address_spaces which do not place buffers at ->private_list via these
462  * utility functions are free to use private_lock and private_list for
463  * whatever they want.  The only requirement is that list_empty(private_list)
464  * be true at clear_inode() time.
465  *
466  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
467  * filesystems should do that.  invalidate_inode_buffers() should just go
468  * BUG_ON(!list_empty).
469  *
470  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
471  * take an address_space, not an inode.  And it should be called
472  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
473  * queued up.
474  *
475  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
476  * list if it is already on a list.  Because if the buffer is on a list,
477  * it *must* already be on the right one.  If not, the filesystem is being
478  * silly.  This will save a ton of locking.  But first we have to ensure
479  * that buffers are taken *off* the old inode's list when they are freed
480  * (presumably in truncate).  That requires careful auditing of all
481  * filesystems (do it inside bforget()).  It could also be done by bringing
482  * b_inode back.
483  */
484
485 /*
486  * The buffer's backing address_space's private_lock must be held
487  */
488 static void __remove_assoc_queue(struct buffer_head *bh)
489 {
490         list_del_init(&bh->b_assoc_buffers);
491         WARN_ON(!bh->b_assoc_map);
492         if (buffer_write_io_error(bh))
493                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
494         bh->b_assoc_map = NULL;
495 }
496
497 int inode_has_buffers(struct inode *inode)
498 {
499         return !list_empty(&inode->i_data.private_list);
500 }
501
502 /*
503  * osync is designed to support O_SYNC io.  It waits synchronously for
504  * all already-submitted IO to complete, but does not queue any new
505  * writes to the disk.
506  *
507  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
508  * you dirty the buffers, and then use osync_inode_buffers to wait for
509  * completion.  Any other dirty buffers which are not yet queued for
510  * write will not be flushed to disk by the osync.
511  */
512 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
513 {
514         struct buffer_head *bh;
515         struct list_head *p;
516         int err = 0;
517
518         spin_lock(lock);
519 repeat:
520         list_for_each_prev(p, list) {
521                 bh = BH_ENTRY(p);
522                 if (buffer_locked(bh)) {
523                         get_bh(bh);
524                         spin_unlock(lock);
525                         wait_on_buffer(bh);
526                         if (!buffer_uptodate(bh))
527                                 err = -EIO;
528                         brelse(bh);
529                         spin_lock(lock);
530                         goto repeat;
531                 }
532         }
533         spin_unlock(lock);
534         return err;
535 }
536
537 static void do_thaw_one(struct super_block *sb, void *unused)
538 {
539         char b[BDEVNAME_SIZE];
540         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
541                 printk(KERN_WARNING "Emergency Thaw on %s\n",
542                        bdevname(sb->s_bdev, b));
543 }
544
545 static void do_thaw_all(struct work_struct *work)
546 {
547         iterate_supers(do_thaw_one, NULL);
548         kfree(work);
549         printk(KERN_WARNING "Emergency Thaw complete\n");
550 }
551
552 /**
553  * emergency_thaw_all -- forcibly thaw every frozen filesystem
554  *
555  * Used for emergency unfreeze of all filesystems via SysRq
556  */
557 void emergency_thaw_all(void)
558 {
559         struct work_struct *work;
560
561         work = kmalloc(sizeof(*work), GFP_ATOMIC);
562         if (work) {
563                 INIT_WORK(work, do_thaw_all);
564                 schedule_work(work);
565         }
566 }
567
568 /**
569  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
570  * @mapping: the mapping which wants those buffers written
571  *
572  * Starts I/O against the buffers at mapping->private_list, and waits upon
573  * that I/O.
574  *
575  * Basically, this is a convenience function for fsync().
576  * @mapping is a file or directory which needs those buffers to be written for
577  * a successful fsync().
578  */
579 int sync_mapping_buffers(struct address_space *mapping)
580 {
581         struct address_space *buffer_mapping = mapping->private_data;
582
583         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
584                 return 0;
585
586         return fsync_buffers_list(&buffer_mapping->private_lock,
587                                         &mapping->private_list);
588 }
589 EXPORT_SYMBOL(sync_mapping_buffers);
590
591 /*
592  * Called when we've recently written block `bblock', and it is known that
593  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
594  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
595  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
596  */
597 void write_boundary_block(struct block_device *bdev,
598                         sector_t bblock, unsigned blocksize)
599 {
600         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
601         if (bh) {
602                 if (buffer_dirty(bh))
603                         ll_rw_block(WRITE, 1, &bh);
604                 put_bh(bh);
605         }
606 }
607
608 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
609 {
610         struct address_space *mapping = inode->i_mapping;
611         struct address_space *buffer_mapping = bh->b_page->mapping;
612
613         mark_buffer_dirty(bh);
614         if (!mapping->private_data) {
615                 mapping->private_data = buffer_mapping;
616         } else {
617                 BUG_ON(mapping->private_data != buffer_mapping);
618         }
619         if (!bh->b_assoc_map) {
620                 spin_lock(&buffer_mapping->private_lock);
621                 list_move_tail(&bh->b_assoc_buffers,
622                                 &mapping->private_list);
623                 bh->b_assoc_map = mapping;
624                 spin_unlock(&buffer_mapping->private_lock);
625         }
626 }
627 EXPORT_SYMBOL(mark_buffer_dirty_inode);
628
629 /*
630  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
631  * dirty.
632  *
633  * If warn is true, then emit a warning if the page is not uptodate and has
634  * not been truncated.
635  */
636 static void __set_page_dirty(struct page *page,
637                 struct address_space *mapping, int warn)
638 {
639         unsigned long flags;
640
641         spin_lock_irqsave(&mapping->tree_lock, flags);
642         if (page->mapping) {    /* Race with truncate? */
643                 WARN_ON_ONCE(warn && !PageUptodate(page));
644                 account_page_dirtied(page, mapping);
645                 radix_tree_tag_set(&mapping->page_tree,
646                                 page_index(page), PAGECACHE_TAG_DIRTY);
647         }
648         spin_unlock_irqrestore(&mapping->tree_lock, flags);
649         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
650 }
651
652 /*
653  * Add a page to the dirty page list.
654  *
655  * It is a sad fact of life that this function is called from several places
656  * deeply under spinlocking.  It may not sleep.
657  *
658  * If the page has buffers, the uptodate buffers are set dirty, to preserve
659  * dirty-state coherency between the page and the buffers.  It the page does
660  * not have buffers then when they are later attached they will all be set
661  * dirty.
662  *
663  * The buffers are dirtied before the page is dirtied.  There's a small race
664  * window in which a writepage caller may see the page cleanness but not the
665  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
666  * before the buffers, a concurrent writepage caller could clear the page dirty
667  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
668  * page on the dirty page list.
669  *
670  * We use private_lock to lock against try_to_free_buffers while using the
671  * page's buffer list.  Also use this to protect against clean buffers being
672  * added to the page after it was set dirty.
673  *
674  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
675  * address_space though.
676  */
677 int __set_page_dirty_buffers(struct page *page)
678 {
679         int newly_dirty;
680         struct address_space *mapping = page_mapping(page);
681
682         if (unlikely(!mapping))
683                 return !TestSetPageDirty(page);
684
685         spin_lock(&mapping->private_lock);
686         if (page_has_buffers(page)) {
687                 struct buffer_head *head = page_buffers(page);
688                 struct buffer_head *bh = head;
689
690                 do {
691                         set_buffer_dirty(bh);
692                         bh = bh->b_this_page;
693                 } while (bh != head);
694         }
695         newly_dirty = !TestSetPageDirty(page);
696         spin_unlock(&mapping->private_lock);
697
698         if (newly_dirty)
699                 __set_page_dirty(page, mapping, 1);
700         return newly_dirty;
701 }
702 EXPORT_SYMBOL(__set_page_dirty_buffers);
703
704 /*
705  * Write out and wait upon a list of buffers.
706  *
707  * We have conflicting pressures: we want to make sure that all
708  * initially dirty buffers get waited on, but that any subsequently
709  * dirtied buffers don't.  After all, we don't want fsync to last
710  * forever if somebody is actively writing to the file.
711  *
712  * Do this in two main stages: first we copy dirty buffers to a
713  * temporary inode list, queueing the writes as we go.  Then we clean
714  * up, waiting for those writes to complete.
715  * 
716  * During this second stage, any subsequent updates to the file may end
717  * up refiling the buffer on the original inode's dirty list again, so
718  * there is a chance we will end up with a buffer queued for write but
719  * not yet completed on that list.  So, as a final cleanup we go through
720  * the osync code to catch these locked, dirty buffers without requeuing
721  * any newly dirty buffers for write.
722  */
723 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
724 {
725         struct buffer_head *bh;
726         struct list_head tmp;
727         struct address_space *mapping;
728         int err = 0, err2;
729         struct blk_plug plug;
730
731         INIT_LIST_HEAD(&tmp);
732         blk_start_plug(&plug);
733
734         spin_lock(lock);
735         while (!list_empty(list)) {
736                 bh = BH_ENTRY(list->next);
737                 mapping = bh->b_assoc_map;
738                 __remove_assoc_queue(bh);
739                 /* Avoid race with mark_buffer_dirty_inode() which does
740                  * a lockless check and we rely on seeing the dirty bit */
741                 smp_mb();
742                 if (buffer_dirty(bh) || buffer_locked(bh)) {
743                         list_add(&bh->b_assoc_buffers, &tmp);
744                         bh->b_assoc_map = mapping;
745                         if (buffer_dirty(bh)) {
746                                 get_bh(bh);
747                                 spin_unlock(lock);
748                                 /*
749                                  * Ensure any pending I/O completes so that
750                                  * write_dirty_buffer() actually writes the
751                                  * current contents - it is a noop if I/O is
752                                  * still in flight on potentially older
753                                  * contents.
754                                  */
755                                 write_dirty_buffer(bh, WRITE_SYNC);
756
757                                 /*
758                                  * Kick off IO for the previous mapping. Note
759                                  * that we will not run the very last mapping,
760                                  * wait_on_buffer() will do that for us
761                                  * through sync_buffer().
762                                  */
763                                 brelse(bh);
764                                 spin_lock(lock);
765                         }
766                 }
767         }
768
769         spin_unlock(lock);
770         blk_finish_plug(&plug);
771         spin_lock(lock);
772
773         while (!list_empty(&tmp)) {
774                 bh = BH_ENTRY(tmp.prev);
775                 get_bh(bh);
776                 mapping = bh->b_assoc_map;
777                 __remove_assoc_queue(bh);
778                 /* Avoid race with mark_buffer_dirty_inode() which does
779                  * a lockless check and we rely on seeing the dirty bit */
780                 smp_mb();
781                 if (buffer_dirty(bh)) {
782                         list_add(&bh->b_assoc_buffers,
783                                  &mapping->private_list);
784                         bh->b_assoc_map = mapping;
785                 }
786                 spin_unlock(lock);
787                 wait_on_buffer(bh);
788                 if (!buffer_uptodate(bh))
789                         err = -EIO;
790                 brelse(bh);
791                 spin_lock(lock);
792         }
793         
794         spin_unlock(lock);
795         err2 = osync_buffers_list(lock, list);
796         if (err)
797                 return err;
798         else
799                 return err2;
800 }
801
802 /*
803  * Invalidate any and all dirty buffers on a given inode.  We are
804  * probably unmounting the fs, but that doesn't mean we have already
805  * done a sync().  Just drop the buffers from the inode list.
806  *
807  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
808  * assumes that all the buffers are against the blockdev.  Not true
809  * for reiserfs.
810  */
811 void invalidate_inode_buffers(struct inode *inode)
812 {
813         if (inode_has_buffers(inode)) {
814                 struct address_space *mapping = &inode->i_data;
815                 struct list_head *list = &mapping->private_list;
816                 struct address_space *buffer_mapping = mapping->private_data;
817
818                 spin_lock(&buffer_mapping->private_lock);
819                 while (!list_empty(list))
820                         __remove_assoc_queue(BH_ENTRY(list->next));
821                 spin_unlock(&buffer_mapping->private_lock);
822         }
823 }
824 EXPORT_SYMBOL(invalidate_inode_buffers);
825
826 /*
827  * Remove any clean buffers from the inode's buffer list.  This is called
828  * when we're trying to free the inode itself.  Those buffers can pin it.
829  *
830  * Returns true if all buffers were removed.
831  */
832 int remove_inode_buffers(struct inode *inode)
833 {
834         int ret = 1;
835
836         if (inode_has_buffers(inode)) {
837                 struct address_space *mapping = &inode->i_data;
838                 struct list_head *list = &mapping->private_list;
839                 struct address_space *buffer_mapping = mapping->private_data;
840
841                 spin_lock(&buffer_mapping->private_lock);
842                 while (!list_empty(list)) {
843                         struct buffer_head *bh = BH_ENTRY(list->next);
844                         if (buffer_dirty(bh)) {
845                                 ret = 0;
846                                 break;
847                         }
848                         __remove_assoc_queue(bh);
849                 }
850                 spin_unlock(&buffer_mapping->private_lock);
851         }
852         return ret;
853 }
854
855 /*
856  * Create the appropriate buffers when given a page for data area and
857  * the size of each buffer.. Use the bh->b_this_page linked list to
858  * follow the buffers created.  Return NULL if unable to create more
859  * buffers.
860  *
861  * The retry flag is used to differentiate async IO (paging, swapping)
862  * which may not fail from ordinary buffer allocations.
863  */
864 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
865                 int retry)
866 {
867         struct buffer_head *bh, *head;
868         long offset;
869
870 try_again:
871         head = NULL;
872         offset = PAGE_SIZE;
873         while ((offset -= size) >= 0) {
874                 bh = alloc_buffer_head(GFP_NOFS);
875                 if (!bh)
876                         goto no_grow;
877
878                 bh->b_this_page = head;
879                 bh->b_blocknr = -1;
880                 head = bh;
881
882                 bh->b_size = size;
883
884                 /* Link the buffer to its page */
885                 set_bh_page(bh, page, offset);
886         }
887         return head;
888 /*
889  * In case anything failed, we just free everything we got.
890  */
891 no_grow:
892         if (head) {
893                 do {
894                         bh = head;
895                         head = head->b_this_page;
896                         free_buffer_head(bh);
897                 } while (head);
898         }
899
900         /*
901          * Return failure for non-async IO requests.  Async IO requests
902          * are not allowed to fail, so we have to wait until buffer heads
903          * become available.  But we don't want tasks sleeping with 
904          * partially complete buffers, so all were released above.
905          */
906         if (!retry)
907                 return NULL;
908
909         /* We're _really_ low on memory. Now we just
910          * wait for old buffer heads to become free due to
911          * finishing IO.  Since this is an async request and
912          * the reserve list is empty, we're sure there are 
913          * async buffer heads in use.
914          */
915         free_more_memory();
916         goto try_again;
917 }
918 EXPORT_SYMBOL_GPL(alloc_page_buffers);
919
920 static inline void
921 link_dev_buffers(struct page *page, struct buffer_head *head)
922 {
923         struct buffer_head *bh, *tail;
924
925         bh = head;
926         do {
927                 tail = bh;
928                 bh = bh->b_this_page;
929         } while (bh);
930         tail->b_this_page = head;
931         attach_page_buffers(page, head);
932 }
933
934 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
935 {
936         sector_t retval = ~((sector_t)0);
937         loff_t sz = i_size_read(bdev->bd_inode);
938
939         if (sz) {
940                 unsigned int sizebits = blksize_bits(size);
941                 retval = (sz >> sizebits);
942         }
943         return retval;
944 }
945
946 /*
947  * Initialise the state of a blockdev page's buffers.
948  */ 
949 static sector_t
950 init_page_buffers(struct page *page, struct block_device *bdev,
951                         sector_t block, int size)
952 {
953         struct buffer_head *head = page_buffers(page);
954         struct buffer_head *bh = head;
955         int uptodate = PageUptodate(page);
956         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
957
958         do {
959                 if (!buffer_mapped(bh)) {
960                         init_buffer(bh, NULL, NULL);
961                         bh->b_bdev = bdev;
962                         bh->b_blocknr = block;
963                         if (uptodate)
964                                 set_buffer_uptodate(bh);
965                         if (block < end_block)
966                                 set_buffer_mapped(bh);
967                 }
968                 block++;
969                 bh = bh->b_this_page;
970         } while (bh != head);
971
972         /*
973          * Caller needs to validate requested block against end of device.
974          */
975         return end_block;
976 }
977
978 /*
979  * Create the page-cache page that contains the requested block.
980  *
981  * This is used purely for blockdev mappings.
982  */
983 static int
984 grow_dev_page(struct block_device *bdev, sector_t block,
985               pgoff_t index, int size, int sizebits, gfp_t gfp)
986 {
987         struct inode *inode = bdev->bd_inode;
988         struct page *page;
989         struct buffer_head *bh;
990         sector_t end_block;
991         int ret = 0;            /* Will call free_more_memory() */
992         gfp_t gfp_mask;
993
994         gfp_mask = (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS) | gfp;
995
996         /*
997          * XXX: __getblk_slow() can not really deal with failure and
998          * will endlessly loop on improvised global reclaim.  Prefer
999          * looping in the allocator rather than here, at least that
1000          * code knows what it's doing.
1001          */
1002         gfp_mask |= __GFP_NOFAIL;
1003
1004         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1005         if (!page)
1006                 return ret;
1007
1008         BUG_ON(!PageLocked(page));
1009
1010         if (page_has_buffers(page)) {
1011                 bh = page_buffers(page);
1012                 if (bh->b_size == size) {
1013                         end_block = init_page_buffers(page, bdev,
1014                                                 (sector_t)index << sizebits,
1015                                                 size);
1016                         goto done;
1017                 }
1018                 if (!try_to_free_buffers(page))
1019                         goto failed;
1020         }
1021
1022         /*
1023          * Allocate some buffers for this page
1024          */
1025         bh = alloc_page_buffers(page, size, 0);
1026         if (!bh)
1027                 goto failed;
1028
1029         /*
1030          * Link the page to the buffers and initialise them.  Take the
1031          * lock to be atomic wrt __find_get_block(), which does not
1032          * run under the page lock.
1033          */
1034         spin_lock(&inode->i_mapping->private_lock);
1035         link_dev_buffers(page, bh);
1036         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1037                         size);
1038         spin_unlock(&inode->i_mapping->private_lock);
1039 done:
1040         ret = (block < end_block) ? 1 : -ENXIO;
1041 failed:
1042         unlock_page(page);
1043         page_cache_release(page);
1044         return ret;
1045 }
1046
1047 /*
1048  * Create buffers for the specified block device block's page.  If
1049  * that page was dirty, the buffers are set dirty also.
1050  */
1051 static int
1052 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1053 {
1054         pgoff_t index;
1055         int sizebits;
1056
1057         sizebits = -1;
1058         do {
1059                 sizebits++;
1060         } while ((size << sizebits) < PAGE_SIZE);
1061
1062         index = block >> sizebits;
1063
1064         /*
1065          * Check for a block which wants to lie outside our maximum possible
1066          * pagecache index.  (this comparison is done using sector_t types).
1067          */
1068         if (unlikely(index != block >> sizebits)) {
1069                 char b[BDEVNAME_SIZE];
1070
1071                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1072                         "device %s\n",
1073                         __func__, (unsigned long long)block,
1074                         bdevname(bdev, b));
1075                 return -EIO;
1076         }
1077
1078         /* Create a page with the proper size buffers.. */
1079         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1080 }
1081
1082 struct buffer_head *
1083 __getblk_slow(struct block_device *bdev, sector_t block,
1084              unsigned size, gfp_t gfp)
1085 {
1086         /* Size must be multiple of hard sectorsize */
1087         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088                         (size < 512 || size > PAGE_SIZE))) {
1089                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090                                         size);
1091                 printk(KERN_ERR "logical block size: %d\n",
1092                                         bdev_logical_block_size(bdev));
1093
1094                 dump_stack();
1095                 return NULL;
1096         }
1097
1098         for (;;) {
1099                 struct buffer_head *bh;
1100                 int ret;
1101
1102                 bh = __find_get_block(bdev, block, size);
1103                 if (bh)
1104                         return bh;
1105
1106                 ret = grow_buffers(bdev, block, size, gfp);
1107                 if (ret < 0)
1108                         return NULL;
1109                 if (ret == 0)
1110                         free_more_memory();
1111         }
1112 }
1113 EXPORT_SYMBOL(__getblk_slow);
1114
1115 /*
1116  * The relationship between dirty buffers and dirty pages:
1117  *
1118  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1119  * the page is tagged dirty in its radix tree.
1120  *
1121  * At all times, the dirtiness of the buffers represents the dirtiness of
1122  * subsections of the page.  If the page has buffers, the page dirty bit is
1123  * merely a hint about the true dirty state.
1124  *
1125  * When a page is set dirty in its entirety, all its buffers are marked dirty
1126  * (if the page has buffers).
1127  *
1128  * When a buffer is marked dirty, its page is dirtied, but the page's other
1129  * buffers are not.
1130  *
1131  * Also.  When blockdev buffers are explicitly read with bread(), they
1132  * individually become uptodate.  But their backing page remains not
1133  * uptodate - even if all of its buffers are uptodate.  A subsequent
1134  * block_read_full_page() against that page will discover all the uptodate
1135  * buffers, will set the page uptodate and will perform no I/O.
1136  */
1137
1138 /**
1139  * mark_buffer_dirty - mark a buffer_head as needing writeout
1140  * @bh: the buffer_head to mark dirty
1141  *
1142  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1143  * backing page dirty, then tag the page as dirty in its address_space's radix
1144  * tree and then attach the address_space's inode to its superblock's dirty
1145  * inode list.
1146  *
1147  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1148  * mapping->tree_lock and mapping->host->i_lock.
1149  */
1150 void mark_buffer_dirty(struct buffer_head *bh)
1151 {
1152         WARN_ON_ONCE(!buffer_uptodate(bh));
1153
1154         trace_block_dirty_buffer(bh);
1155
1156         /*
1157          * Very *carefully* optimize the it-is-already-dirty case.
1158          *
1159          * Don't let the final "is it dirty" escape to before we
1160          * perhaps modified the buffer.
1161          */
1162         if (buffer_dirty(bh)) {
1163                 smp_mb();
1164                 if (buffer_dirty(bh))
1165                         return;
1166         }
1167
1168         if (!test_set_buffer_dirty(bh)) {
1169                 struct page *page = bh->b_page;
1170                 if (!TestSetPageDirty(page)) {
1171                         struct address_space *mapping = page_mapping(page);
1172                         if (mapping)
1173                                 __set_page_dirty(page, mapping, 0);
1174                 }
1175         }
1176 }
1177 EXPORT_SYMBOL(mark_buffer_dirty);
1178
1179 /*
1180  * Decrement a buffer_head's reference count.  If all buffers against a page
1181  * have zero reference count, are clean and unlocked, and if the page is clean
1182  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1183  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1184  * a page but it ends up not being freed, and buffers may later be reattached).
1185  */
1186 void __brelse(struct buffer_head * buf)
1187 {
1188         if (atomic_read(&buf->b_count)) {
1189                 put_bh(buf);
1190                 return;
1191         }
1192         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1193 }
1194 EXPORT_SYMBOL(__brelse);
1195
1196 /*
1197  * bforget() is like brelse(), except it discards any
1198  * potentially dirty data.
1199  */
1200 void __bforget(struct buffer_head *bh)
1201 {
1202         clear_buffer_dirty(bh);
1203         if (bh->b_assoc_map) {
1204                 struct address_space *buffer_mapping = bh->b_page->mapping;
1205
1206                 spin_lock(&buffer_mapping->private_lock);
1207                 list_del_init(&bh->b_assoc_buffers);
1208                 bh->b_assoc_map = NULL;
1209                 spin_unlock(&buffer_mapping->private_lock);
1210         }
1211         __brelse(bh);
1212 }
1213 EXPORT_SYMBOL(__bforget);
1214
1215 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1216 {
1217         lock_buffer(bh);
1218         if (buffer_uptodate(bh)) {
1219                 unlock_buffer(bh);
1220                 return bh;
1221         } else {
1222                 get_bh(bh);
1223                 bh->b_end_io = end_buffer_read_sync;
1224                 submit_bh(READ, bh);
1225                 wait_on_buffer(bh);
1226                 if (buffer_uptodate(bh))
1227                         return bh;
1228         }
1229         brelse(bh);
1230         return NULL;
1231 }
1232
1233 /*
1234  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1235  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1236  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1237  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1238  * CPU's LRUs at the same time.
1239  *
1240  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1241  * sb_find_get_block().
1242  *
1243  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1244  * a local interrupt disable for that.
1245  */
1246
1247 #define BH_LRU_SIZE     16
1248
1249 struct bh_lru {
1250         struct buffer_head *bhs[BH_LRU_SIZE];
1251 };
1252
1253 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1254
1255 #ifdef CONFIG_SMP
1256 #define bh_lru_lock()   local_irq_disable()
1257 #define bh_lru_unlock() local_irq_enable()
1258 #else
1259 #define bh_lru_lock()   preempt_disable()
1260 #define bh_lru_unlock() preempt_enable()
1261 #endif
1262
1263 static inline void check_irqs_on(void)
1264 {
1265 #ifdef irqs_disabled
1266         BUG_ON(irqs_disabled());
1267 #endif
1268 }
1269
1270 /*
1271  * The LRU management algorithm is dopey-but-simple.  Sorry.
1272  */
1273 static void bh_lru_install(struct buffer_head *bh)
1274 {
1275         struct buffer_head *evictee = NULL;
1276
1277         check_irqs_on();
1278         bh_lru_lock();
1279         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1280                 struct buffer_head *bhs[BH_LRU_SIZE];
1281                 int in;
1282                 int out = 0;
1283
1284                 get_bh(bh);
1285                 bhs[out++] = bh;
1286                 for (in = 0; in < BH_LRU_SIZE; in++) {
1287                         struct buffer_head *bh2 =
1288                                 __this_cpu_read(bh_lrus.bhs[in]);
1289
1290                         if (bh2 == bh) {
1291                                 __brelse(bh2);
1292                         } else {
1293                                 if (out >= BH_LRU_SIZE) {
1294                                         BUG_ON(evictee != NULL);
1295                                         evictee = bh2;
1296                                 } else {
1297                                         bhs[out++] = bh2;
1298                                 }
1299                         }
1300                 }
1301                 while (out < BH_LRU_SIZE)
1302                         bhs[out++] = NULL;
1303                 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1304         }
1305         bh_lru_unlock();
1306
1307         if (evictee)
1308                 __brelse(evictee);
1309 }
1310
1311 /*
1312  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1313  */
1314 static struct buffer_head *
1315 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1316 {
1317         struct buffer_head *ret = NULL;
1318         unsigned int i;
1319
1320         check_irqs_on();
1321         bh_lru_lock();
1322         for (i = 0; i < BH_LRU_SIZE; i++) {
1323                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1324
1325                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1326                     bh->b_size == size) {
1327                         if (i) {
1328                                 while (i) {
1329                                         __this_cpu_write(bh_lrus.bhs[i],
1330                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1331                                         i--;
1332                                 }
1333                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1334                         }
1335                         get_bh(bh);
1336                         ret = bh;
1337                         break;
1338                 }
1339         }
1340         bh_lru_unlock();
1341         return ret;
1342 }
1343
1344 /*
1345  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1346  * it in the LRU and mark it as accessed.  If it is not present then return
1347  * NULL
1348  */
1349 struct buffer_head *
1350 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1351 {
1352         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1353
1354         if (bh == NULL) {
1355                 /* __find_get_block_slow will mark the page accessed */
1356                 bh = __find_get_block_slow(bdev, block);
1357                 if (bh)
1358                         bh_lru_install(bh);
1359         } else
1360                 touch_buffer(bh);
1361
1362         return bh;
1363 }
1364 EXPORT_SYMBOL(__find_get_block);
1365
1366 /*
1367  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1368  * which corresponds to the passed block_device, block and size. The
1369  * returned buffer has its reference count incremented.
1370  *
1371  * __getblk_gfp() will lock up the machine if grow_dev_page's
1372  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1373  */
1374 struct buffer_head *
1375 __getblk_gfp(struct block_device *bdev, sector_t block,
1376              unsigned size, gfp_t gfp)
1377 {
1378         struct buffer_head *bh = __find_get_block(bdev, block, size);
1379
1380         might_sleep();
1381         if (bh == NULL)
1382                 bh = __getblk_slow(bdev, block, size, gfp);
1383         return bh;
1384 }
1385 EXPORT_SYMBOL(__getblk_gfp);
1386
1387 /*
1388  * Do async read-ahead on a buffer..
1389  */
1390 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1391 {
1392         struct buffer_head *bh = __getblk(bdev, block, size);
1393         if (likely(bh)) {
1394                 ll_rw_block(READA, 1, &bh);
1395                 brelse(bh);
1396         }
1397 }
1398 EXPORT_SYMBOL(__breadahead);
1399
1400 /**
1401  *  __bread_gfp() - reads a specified block and returns the bh
1402  *  @bdev: the block_device to read from
1403  *  @block: number of block
1404  *  @size: size (in bytes) to read
1405  *  @gfp: page allocation flag
1406  *
1407  *  Reads a specified block, and returns buffer head that contains it.
1408  *  The page cache can be allocated from non-movable area
1409  *  not to prevent page migration if you set gfp to zero.
1410  *  It returns NULL if the block was unreadable.
1411  */
1412 struct buffer_head *
1413 __bread_gfp(struct block_device *bdev, sector_t block,
1414                    unsigned size, gfp_t gfp)
1415 {
1416         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1417
1418         if (likely(bh) && !buffer_uptodate(bh))
1419                 bh = __bread_slow(bh);
1420         return bh;
1421 }
1422 EXPORT_SYMBOL(__bread_gfp);
1423
1424 /*
1425  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1426  * This doesn't race because it runs in each cpu either in irq
1427  * or with preempt disabled.
1428  */
1429 static void invalidate_bh_lru(void *arg)
1430 {
1431         struct bh_lru *b = &get_cpu_var(bh_lrus);
1432         int i;
1433
1434         for (i = 0; i < BH_LRU_SIZE; i++) {
1435                 brelse(b->bhs[i]);
1436                 b->bhs[i] = NULL;
1437         }
1438         put_cpu_var(bh_lrus);
1439 }
1440
1441 static bool has_bh_in_lru(int cpu, void *dummy)
1442 {
1443         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1444         int i;
1445         
1446         for (i = 0; i < BH_LRU_SIZE; i++) {
1447                 if (b->bhs[i])
1448                         return 1;
1449         }
1450
1451         return 0;
1452 }
1453
1454 void invalidate_bh_lrus(void)
1455 {
1456         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1457 }
1458 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1459
1460 void set_bh_page(struct buffer_head *bh,
1461                 struct page *page, unsigned long offset)
1462 {
1463         bh->b_page = page;
1464         BUG_ON(offset >= PAGE_SIZE);
1465         if (PageHighMem(page))
1466                 /*
1467                  * This catches illegal uses and preserves the offset:
1468                  */
1469                 bh->b_data = (char *)(0 + offset);
1470         else
1471                 bh->b_data = page_address(page) + offset;
1472 }
1473 EXPORT_SYMBOL(set_bh_page);
1474
1475 /*
1476  * Called when truncating a buffer on a page completely.
1477  */
1478
1479 /* Bits that are cleared during an invalidate */
1480 #define BUFFER_FLAGS_DISCARD \
1481         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1482          1 << BH_Delay | 1 << BH_Unwritten)
1483
1484 static void discard_buffer(struct buffer_head * bh)
1485 {
1486         unsigned long b_state, b_state_old;
1487
1488         lock_buffer(bh);
1489         clear_buffer_dirty(bh);
1490         bh->b_bdev = NULL;
1491         b_state = bh->b_state;
1492         for (;;) {
1493                 b_state_old = cmpxchg(&bh->b_state, b_state,
1494                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1495                 if (b_state_old == b_state)
1496                         break;
1497                 b_state = b_state_old;
1498         }
1499         unlock_buffer(bh);
1500 }
1501
1502 /**
1503  * block_invalidatepage - invalidate part or all of a buffer-backed page
1504  *
1505  * @page: the page which is affected
1506  * @offset: start of the range to invalidate
1507  * @length: length of the range to invalidate
1508  *
1509  * block_invalidatepage() is called when all or part of the page has become
1510  * invalidated by a truncate operation.
1511  *
1512  * block_invalidatepage() does not have to release all buffers, but it must
1513  * ensure that no dirty buffer is left outside @offset and that no I/O
1514  * is underway against any of the blocks which are outside the truncation
1515  * point.  Because the caller is about to free (and possibly reuse) those
1516  * blocks on-disk.
1517  */
1518 void block_invalidatepage(struct page *page, unsigned int offset,
1519                           unsigned int length)
1520 {
1521         struct buffer_head *head, *bh, *next;
1522         unsigned int curr_off = 0;
1523         unsigned int stop = length + offset;
1524
1525         BUG_ON(!PageLocked(page));
1526         if (!page_has_buffers(page))
1527                 goto out;
1528
1529         /*
1530          * Check for overflow
1531          */
1532         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1533
1534         head = page_buffers(page);
1535         bh = head;
1536         do {
1537                 unsigned int next_off = curr_off + bh->b_size;
1538                 next = bh->b_this_page;
1539
1540                 /*
1541                  * Are we still fully in range ?
1542                  */
1543                 if (next_off > stop)
1544                         goto out;
1545
1546                 /*
1547                  * is this block fully invalidated?
1548                  */
1549                 if (offset <= curr_off)
1550                         discard_buffer(bh);
1551                 curr_off = next_off;
1552                 bh = next;
1553         } while (bh != head);
1554
1555         /*
1556          * We release buffers only if the entire page is being invalidated.
1557          * The get_block cached value has been unconditionally invalidated,
1558          * so real IO is not possible anymore.
1559          */
1560         if (offset == 0)
1561                 try_to_release_page(page, 0);
1562 out:
1563         return;
1564 }
1565 EXPORT_SYMBOL(block_invalidatepage);
1566
1567
1568 /*
1569  * We attach and possibly dirty the buffers atomically wrt
1570  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1571  * is already excluded via the page lock.
1572  */
1573 void create_empty_buffers(struct page *page,
1574                         unsigned long blocksize, unsigned long b_state)
1575 {
1576         struct buffer_head *bh, *head, *tail;
1577
1578         head = alloc_page_buffers(page, blocksize, 1);
1579         bh = head;
1580         do {
1581                 bh->b_state |= b_state;
1582                 tail = bh;
1583                 bh = bh->b_this_page;
1584         } while (bh);
1585         tail->b_this_page = head;
1586
1587         spin_lock(&page->mapping->private_lock);
1588         if (PageUptodate(page) || PageDirty(page)) {
1589                 bh = head;
1590                 do {
1591                         if (PageDirty(page))
1592                                 set_buffer_dirty(bh);
1593                         if (PageUptodate(page))
1594                                 set_buffer_uptodate(bh);
1595                         bh = bh->b_this_page;
1596                 } while (bh != head);
1597         }
1598         attach_page_buffers(page, head);
1599         spin_unlock(&page->mapping->private_lock);
1600 }
1601 EXPORT_SYMBOL(create_empty_buffers);
1602
1603 /*
1604  * We are taking a block for data and we don't want any output from any
1605  * buffer-cache aliases starting from return from that function and
1606  * until the moment when something will explicitly mark the buffer
1607  * dirty (hopefully that will not happen until we will free that block ;-)
1608  * We don't even need to mark it not-uptodate - nobody can expect
1609  * anything from a newly allocated buffer anyway. We used to used
1610  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1611  * don't want to mark the alias unmapped, for example - it would confuse
1612  * anyone who might pick it with bread() afterwards...
1613  *
1614  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1615  * be writeout I/O going on against recently-freed buffers.  We don't
1616  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1617  * only if we really need to.  That happens here.
1618  */
1619 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1620 {
1621         struct buffer_head *old_bh;
1622
1623         might_sleep();
1624
1625         old_bh = __find_get_block_slow(bdev, block);
1626         if (old_bh) {
1627                 clear_buffer_dirty(old_bh);
1628                 wait_on_buffer(old_bh);
1629                 clear_buffer_req(old_bh);
1630                 __brelse(old_bh);
1631         }
1632 }
1633 EXPORT_SYMBOL(unmap_underlying_metadata);
1634
1635 /*
1636  * Size is a power-of-two in the range 512..PAGE_SIZE,
1637  * and the case we care about most is PAGE_SIZE.
1638  *
1639  * So this *could* possibly be written with those
1640  * constraints in mind (relevant mostly if some
1641  * architecture has a slow bit-scan instruction)
1642  */
1643 static inline int block_size_bits(unsigned int blocksize)
1644 {
1645         return ilog2(blocksize);
1646 }
1647
1648 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1649 {
1650         BUG_ON(!PageLocked(page));
1651
1652         if (!page_has_buffers(page))
1653                 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1654         return page_buffers(page);
1655 }
1656
1657 /*
1658  * NOTE! All mapped/uptodate combinations are valid:
1659  *
1660  *      Mapped  Uptodate        Meaning
1661  *
1662  *      No      No              "unknown" - must do get_block()
1663  *      No      Yes             "hole" - zero-filled
1664  *      Yes     No              "allocated" - allocated on disk, not read in
1665  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1666  *
1667  * "Dirty" is valid only with the last case (mapped+uptodate).
1668  */
1669
1670 /*
1671  * While block_write_full_page is writing back the dirty buffers under
1672  * the page lock, whoever dirtied the buffers may decide to clean them
1673  * again at any time.  We handle that by only looking at the buffer
1674  * state inside lock_buffer().
1675  *
1676  * If block_write_full_page() is called for regular writeback
1677  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1678  * locked buffer.   This only can happen if someone has written the buffer
1679  * directly, with submit_bh().  At the address_space level PageWriteback
1680  * prevents this contention from occurring.
1681  *
1682  * If block_write_full_page() is called with wbc->sync_mode ==
1683  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1684  * causes the writes to be flagged as synchronous writes.
1685  */
1686 static int __block_write_full_page(struct inode *inode, struct page *page,
1687                         get_block_t *get_block, struct writeback_control *wbc,
1688                         bh_end_io_t *handler)
1689 {
1690         int err;
1691         sector_t block;
1692         sector_t last_block;
1693         struct buffer_head *bh, *head;
1694         unsigned int blocksize, bbits;
1695         int nr_underway = 0;
1696         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1697                         WRITE_SYNC : WRITE);
1698
1699         head = create_page_buffers(page, inode,
1700                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1701
1702         /*
1703          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1704          * here, and the (potentially unmapped) buffers may become dirty at
1705          * any time.  If a buffer becomes dirty here after we've inspected it
1706          * then we just miss that fact, and the page stays dirty.
1707          *
1708          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1709          * handle that here by just cleaning them.
1710          */
1711
1712         bh = head;
1713         blocksize = bh->b_size;
1714         bbits = block_size_bits(blocksize);
1715
1716         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1717         last_block = (i_size_read(inode) - 1) >> bbits;
1718
1719         /*
1720          * Get all the dirty buffers mapped to disk addresses and
1721          * handle any aliases from the underlying blockdev's mapping.
1722          */
1723         do {
1724                 if (block > last_block) {
1725                         /*
1726                          * mapped buffers outside i_size will occur, because
1727                          * this page can be outside i_size when there is a
1728                          * truncate in progress.
1729                          */
1730                         /*
1731                          * The buffer was zeroed by block_write_full_page()
1732                          */
1733                         clear_buffer_dirty(bh);
1734                         set_buffer_uptodate(bh);
1735                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1736                            buffer_dirty(bh)) {
1737                         WARN_ON(bh->b_size != blocksize);
1738                         err = get_block(inode, block, bh, 1);
1739                         if (err)
1740                                 goto recover;
1741                         clear_buffer_delay(bh);
1742                         if (buffer_new(bh)) {
1743                                 /* blockdev mappings never come here */
1744                                 clear_buffer_new(bh);
1745                                 unmap_underlying_metadata(bh->b_bdev,
1746                                                         bh->b_blocknr);
1747                         }
1748                 }
1749                 bh = bh->b_this_page;
1750                 block++;
1751         } while (bh != head);
1752
1753         do {
1754                 if (!buffer_mapped(bh))
1755                         continue;
1756                 /*
1757                  * If it's a fully non-blocking write attempt and we cannot
1758                  * lock the buffer then redirty the page.  Note that this can
1759                  * potentially cause a busy-wait loop from writeback threads
1760                  * and kswapd activity, but those code paths have their own
1761                  * higher-level throttling.
1762                  */
1763                 if (wbc->sync_mode != WB_SYNC_NONE) {
1764                         lock_buffer(bh);
1765                 } else if (!trylock_buffer(bh)) {
1766                         redirty_page_for_writepage(wbc, page);
1767                         continue;
1768                 }
1769                 if (test_clear_buffer_dirty(bh)) {
1770                         mark_buffer_async_write_endio(bh, handler);
1771                 } else {
1772                         unlock_buffer(bh);
1773                 }
1774         } while ((bh = bh->b_this_page) != head);
1775
1776         /*
1777          * The page and its buffers are protected by PageWriteback(), so we can
1778          * drop the bh refcounts early.
1779          */
1780         BUG_ON(PageWriteback(page));
1781         set_page_writeback(page);
1782
1783         do {
1784                 struct buffer_head *next = bh->b_this_page;
1785                 if (buffer_async_write(bh)) {
1786                         submit_bh(write_op, bh);
1787                         nr_underway++;
1788                 }
1789                 bh = next;
1790         } while (bh != head);
1791         unlock_page(page);
1792
1793         err = 0;
1794 done:
1795         if (nr_underway == 0) {
1796                 /*
1797                  * The page was marked dirty, but the buffers were
1798                  * clean.  Someone wrote them back by hand with
1799                  * ll_rw_block/submit_bh.  A rare case.
1800                  */
1801                 end_page_writeback(page);
1802
1803                 /*
1804                  * The page and buffer_heads can be released at any time from
1805                  * here on.
1806                  */
1807         }
1808         return err;
1809
1810 recover:
1811         /*
1812          * ENOSPC, or some other error.  We may already have added some
1813          * blocks to the file, so we need to write these out to avoid
1814          * exposing stale data.
1815          * The page is currently locked and not marked for writeback
1816          */
1817         bh = head;
1818         /* Recovery: lock and submit the mapped buffers */
1819         do {
1820                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1821                     !buffer_delay(bh)) {
1822                         lock_buffer(bh);
1823                         mark_buffer_async_write_endio(bh, handler);
1824                 } else {
1825                         /*
1826                          * The buffer may have been set dirty during
1827                          * attachment to a dirty page.
1828                          */
1829                         clear_buffer_dirty(bh);
1830                 }
1831         } while ((bh = bh->b_this_page) != head);
1832         SetPageError(page);
1833         BUG_ON(PageWriteback(page));
1834         mapping_set_error(page->mapping, err);
1835         set_page_writeback(page);
1836         do {
1837                 struct buffer_head *next = bh->b_this_page;
1838                 if (buffer_async_write(bh)) {
1839                         clear_buffer_dirty(bh);
1840                         submit_bh(write_op, bh);
1841                         nr_underway++;
1842                 }
1843                 bh = next;
1844         } while (bh != head);
1845         unlock_page(page);
1846         goto done;
1847 }
1848
1849 /*
1850  * If a page has any new buffers, zero them out here, and mark them uptodate
1851  * and dirty so they'll be written out (in order to prevent uninitialised
1852  * block data from leaking). And clear the new bit.
1853  */
1854 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1855 {
1856         unsigned int block_start, block_end;
1857         struct buffer_head *head, *bh;
1858
1859         BUG_ON(!PageLocked(page));
1860         if (!page_has_buffers(page))
1861                 return;
1862
1863         bh = head = page_buffers(page);
1864         block_start = 0;
1865         do {
1866                 block_end = block_start + bh->b_size;
1867
1868                 if (buffer_new(bh)) {
1869                         if (block_end > from && block_start < to) {
1870                                 if (!PageUptodate(page)) {
1871                                         unsigned start, size;
1872
1873                                         start = max(from, block_start);
1874                                         size = min(to, block_end) - start;
1875
1876                                         zero_user(page, start, size);
1877                                         set_buffer_uptodate(bh);
1878                                 }
1879
1880                                 clear_buffer_new(bh);
1881                                 mark_buffer_dirty(bh);
1882                         }
1883                 }
1884
1885                 block_start = block_end;
1886                 bh = bh->b_this_page;
1887         } while (bh != head);
1888 }
1889 EXPORT_SYMBOL(page_zero_new_buffers);
1890
1891 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1892                 get_block_t *get_block)
1893 {
1894         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1895         unsigned to = from + len;
1896         struct inode *inode = page->mapping->host;
1897         unsigned block_start, block_end;
1898         sector_t block;
1899         int err = 0;
1900         unsigned blocksize, bbits;
1901         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1902
1903         BUG_ON(!PageLocked(page));
1904         BUG_ON(from > PAGE_CACHE_SIZE);
1905         BUG_ON(to > PAGE_CACHE_SIZE);
1906         BUG_ON(from > to);
1907
1908         head = create_page_buffers(page, inode, 0);
1909         blocksize = head->b_size;
1910         bbits = block_size_bits(blocksize);
1911
1912         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1913
1914         for(bh = head, block_start = 0; bh != head || !block_start;
1915             block++, block_start=block_end, bh = bh->b_this_page) {
1916                 block_end = block_start + blocksize;
1917                 if (block_end <= from || block_start >= to) {
1918                         if (PageUptodate(page)) {
1919                                 if (!buffer_uptodate(bh))
1920                                         set_buffer_uptodate(bh);
1921                         }
1922                         continue;
1923                 }
1924                 if (buffer_new(bh))
1925                         clear_buffer_new(bh);
1926                 if (!buffer_mapped(bh)) {
1927                         WARN_ON(bh->b_size != blocksize);
1928                         err = get_block(inode, block, bh, 1);
1929                         if (err)
1930                                 break;
1931                         if (buffer_new(bh)) {
1932                                 unmap_underlying_metadata(bh->b_bdev,
1933                                                         bh->b_blocknr);
1934                                 if (PageUptodate(page)) {
1935                                         clear_buffer_new(bh);
1936                                         set_buffer_uptodate(bh);
1937                                         mark_buffer_dirty(bh);
1938                                         continue;
1939                                 }
1940                                 if (block_end > to || block_start < from)
1941                                         zero_user_segments(page,
1942                                                 to, block_end,
1943                                                 block_start, from);
1944                                 continue;
1945                         }
1946                 }
1947                 if (PageUptodate(page)) {
1948                         if (!buffer_uptodate(bh))
1949                                 set_buffer_uptodate(bh);
1950                         continue; 
1951                 }
1952                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1953                     !buffer_unwritten(bh) &&
1954                      (block_start < from || block_end > to)) {
1955                         ll_rw_block(READ, 1, &bh);
1956                         *wait_bh++=bh;
1957                 }
1958         }
1959         /*
1960          * If we issued read requests - let them complete.
1961          */
1962         while(wait_bh > wait) {
1963                 wait_on_buffer(*--wait_bh);
1964                 if (!buffer_uptodate(*wait_bh))
1965                         err = -EIO;
1966         }
1967         if (unlikely(err))
1968                 page_zero_new_buffers(page, from, to);
1969         return err;
1970 }
1971 EXPORT_SYMBOL(__block_write_begin);
1972
1973 static int __block_commit_write(struct inode *inode, struct page *page,
1974                 unsigned from, unsigned to)
1975 {
1976         unsigned block_start, block_end;
1977         int partial = 0;
1978         unsigned blocksize;
1979         struct buffer_head *bh, *head;
1980
1981         bh = head = page_buffers(page);
1982         blocksize = bh->b_size;
1983
1984         block_start = 0;
1985         do {
1986                 block_end = block_start + blocksize;
1987                 if (block_end <= from || block_start >= to) {
1988                         if (!buffer_uptodate(bh))
1989                                 partial = 1;
1990                 } else {
1991                         set_buffer_uptodate(bh);
1992                         mark_buffer_dirty(bh);
1993                 }
1994                 clear_buffer_new(bh);
1995
1996                 block_start = block_end;
1997                 bh = bh->b_this_page;
1998         } while (bh != head);
1999
2000         /*
2001          * If this is a partial write which happened to make all buffers
2002          * uptodate then we can optimize away a bogus readpage() for
2003          * the next read(). Here we 'discover' whether the page went
2004          * uptodate as a result of this (potentially partial) write.
2005          */
2006         if (!partial)
2007                 SetPageUptodate(page);
2008         return 0;
2009 }
2010
2011 /*
2012  * block_write_begin takes care of the basic task of block allocation and
2013  * bringing partial write blocks uptodate first.
2014  *
2015  * The filesystem needs to handle block truncation upon failure.
2016  */
2017 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2018                 unsigned flags, struct page **pagep, get_block_t *get_block)
2019 {
2020         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2021         struct page *page;
2022         int status;
2023
2024         page = grab_cache_page_write_begin(mapping, index, flags);
2025         if (!page)
2026                 return -ENOMEM;
2027
2028         status = __block_write_begin(page, pos, len, get_block);
2029         if (unlikely(status)) {
2030                 unlock_page(page);
2031                 page_cache_release(page);
2032                 page = NULL;
2033         }
2034
2035         *pagep = page;
2036         return status;
2037 }
2038 EXPORT_SYMBOL(block_write_begin);
2039
2040 int block_write_end(struct file *file, struct address_space *mapping,
2041                         loff_t pos, unsigned len, unsigned copied,
2042                         struct page *page, void *fsdata)
2043 {
2044         struct inode *inode = mapping->host;
2045         unsigned start;
2046
2047         start = pos & (PAGE_CACHE_SIZE - 1);
2048
2049         if (unlikely(copied < len)) {
2050                 /*
2051                  * The buffers that were written will now be uptodate, so we
2052                  * don't have to worry about a readpage reading them and
2053                  * overwriting a partial write. However if we have encountered
2054                  * a short write and only partially written into a buffer, it
2055                  * will not be marked uptodate, so a readpage might come in and
2056                  * destroy our partial write.
2057                  *
2058                  * Do the simplest thing, and just treat any short write to a
2059                  * non uptodate page as a zero-length write, and force the
2060                  * caller to redo the whole thing.
2061                  */
2062                 if (!PageUptodate(page))
2063                         copied = 0;
2064
2065                 page_zero_new_buffers(page, start+copied, start+len);
2066         }
2067         flush_dcache_page(page);
2068
2069         /* This could be a short (even 0-length) commit */
2070         __block_commit_write(inode, page, start, start+copied);
2071
2072         return copied;
2073 }
2074 EXPORT_SYMBOL(block_write_end);
2075
2076 int generic_write_end(struct file *file, struct address_space *mapping,
2077                         loff_t pos, unsigned len, unsigned copied,
2078                         struct page *page, void *fsdata)
2079 {
2080         struct inode *inode = mapping->host;
2081         loff_t old_size = inode->i_size;
2082         int i_size_changed = 0;
2083
2084         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2085
2086         /*
2087          * No need to use i_size_read() here, the i_size
2088          * cannot change under us because we hold i_mutex.
2089          *
2090          * But it's important to update i_size while still holding page lock:
2091          * page writeout could otherwise come in and zero beyond i_size.
2092          */
2093         if (pos+copied > inode->i_size) {
2094                 i_size_write(inode, pos+copied);
2095                 i_size_changed = 1;
2096         }
2097
2098         unlock_page(page);
2099         page_cache_release(page);
2100
2101         if (old_size < pos)
2102                 pagecache_isize_extended(inode, old_size, pos);
2103         /*
2104          * Don't mark the inode dirty under page lock. First, it unnecessarily
2105          * makes the holding time of page lock longer. Second, it forces lock
2106          * ordering of page lock and transaction start for journaling
2107          * filesystems.
2108          */
2109         if (i_size_changed)
2110                 mark_inode_dirty(inode);
2111
2112         return copied;
2113 }
2114 EXPORT_SYMBOL(generic_write_end);
2115
2116 /*
2117  * block_is_partially_uptodate checks whether buffers within a page are
2118  * uptodate or not.
2119  *
2120  * Returns true if all buffers which correspond to a file portion
2121  * we want to read are uptodate.
2122  */
2123 int block_is_partially_uptodate(struct page *page, unsigned long from,
2124                                         unsigned long count)
2125 {
2126         unsigned block_start, block_end, blocksize;
2127         unsigned to;
2128         struct buffer_head *bh, *head;
2129         int ret = 1;
2130
2131         if (!page_has_buffers(page))
2132                 return 0;
2133
2134         head = page_buffers(page);
2135         blocksize = head->b_size;
2136         to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2137         to = from + to;
2138         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2139                 return 0;
2140
2141         bh = head;
2142         block_start = 0;
2143         do {
2144                 block_end = block_start + blocksize;
2145                 if (block_end > from && block_start < to) {
2146                         if (!buffer_uptodate(bh)) {
2147                                 ret = 0;
2148                                 break;
2149                         }
2150                         if (block_end >= to)
2151                                 break;
2152                 }
2153                 block_start = block_end;
2154                 bh = bh->b_this_page;
2155         } while (bh != head);
2156
2157         return ret;
2158 }
2159 EXPORT_SYMBOL(block_is_partially_uptodate);
2160
2161 /*
2162  * Generic "read page" function for block devices that have the normal
2163  * get_block functionality. This is most of the block device filesystems.
2164  * Reads the page asynchronously --- the unlock_buffer() and
2165  * set/clear_buffer_uptodate() functions propagate buffer state into the
2166  * page struct once IO has completed.
2167  */
2168 int block_read_full_page(struct page *page, get_block_t *get_block)
2169 {
2170         struct inode *inode = page->mapping->host;
2171         sector_t iblock, lblock;
2172         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2173         unsigned int blocksize, bbits;
2174         int nr, i;
2175         int fully_mapped = 1;
2176
2177         head = create_page_buffers(page, inode, 0);
2178         blocksize = head->b_size;
2179         bbits = block_size_bits(blocksize);
2180
2181         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2182         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2183         bh = head;
2184         nr = 0;
2185         i = 0;
2186
2187         do {
2188                 if (buffer_uptodate(bh))
2189                         continue;
2190
2191                 if (!buffer_mapped(bh)) {
2192                         int err = 0;
2193
2194                         fully_mapped = 0;
2195                         if (iblock < lblock) {
2196                                 WARN_ON(bh->b_size != blocksize);
2197                                 err = get_block(inode, iblock, bh, 0);
2198                                 if (err)
2199                                         SetPageError(page);
2200                         }
2201                         if (!buffer_mapped(bh)) {
2202                                 zero_user(page, i * blocksize, blocksize);
2203                                 if (!err)
2204                                         set_buffer_uptodate(bh);
2205                                 continue;
2206                         }
2207                         /*
2208                          * get_block() might have updated the buffer
2209                          * synchronously
2210                          */
2211                         if (buffer_uptodate(bh))
2212                                 continue;
2213                 }
2214                 arr[nr++] = bh;
2215         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2216
2217         if (fully_mapped)
2218                 SetPageMappedToDisk(page);
2219
2220         if (!nr) {
2221                 /*
2222                  * All buffers are uptodate - we can set the page uptodate
2223                  * as well. But not if get_block() returned an error.
2224                  */
2225                 if (!PageError(page))
2226                         SetPageUptodate(page);
2227                 unlock_page(page);
2228                 return 0;
2229         }
2230
2231         /* Stage two: lock the buffers */
2232         for (i = 0; i < nr; i++) {
2233                 bh = arr[i];
2234                 lock_buffer(bh);
2235                 mark_buffer_async_read(bh);
2236         }
2237
2238         /*
2239          * Stage 3: start the IO.  Check for uptodateness
2240          * inside the buffer lock in case another process reading
2241          * the underlying blockdev brought it uptodate (the sct fix).
2242          */
2243         for (i = 0; i < nr; i++) {
2244                 bh = arr[i];
2245                 if (buffer_uptodate(bh))
2246                         end_buffer_async_read(bh, 1);
2247                 else
2248                         submit_bh(READ, bh);
2249         }
2250         return 0;
2251 }
2252 EXPORT_SYMBOL(block_read_full_page);
2253
2254 /* utility function for filesystems that need to do work on expanding
2255  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2256  * deal with the hole.  
2257  */
2258 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2259 {
2260         struct address_space *mapping = inode->i_mapping;
2261         struct page *page;
2262         void *fsdata;
2263         int err;
2264
2265         err = inode_newsize_ok(inode, size);
2266         if (err)
2267                 goto out;
2268
2269         err = pagecache_write_begin(NULL, mapping, size, 0,
2270                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2271                                 &page, &fsdata);
2272         if (err)
2273                 goto out;
2274
2275         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2276         BUG_ON(err > 0);
2277
2278 out:
2279         return err;
2280 }
2281 EXPORT_SYMBOL(generic_cont_expand_simple);
2282
2283 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2284                             loff_t pos, loff_t *bytes)
2285 {
2286         struct inode *inode = mapping->host;
2287         unsigned blocksize = 1 << inode->i_blkbits;
2288         struct page *page;
2289         void *fsdata;
2290         pgoff_t index, curidx;
2291         loff_t curpos;
2292         unsigned zerofrom, offset, len;
2293         int err = 0;
2294
2295         index = pos >> PAGE_CACHE_SHIFT;
2296         offset = pos & ~PAGE_CACHE_MASK;
2297
2298         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2299                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2300                 if (zerofrom & (blocksize-1)) {
2301                         *bytes |= (blocksize-1);
2302                         (*bytes)++;
2303                 }
2304                 len = PAGE_CACHE_SIZE - zerofrom;
2305
2306                 err = pagecache_write_begin(file, mapping, curpos, len,
2307                                                 AOP_FLAG_UNINTERRUPTIBLE,
2308                                                 &page, &fsdata);
2309                 if (err)
2310                         goto out;
2311                 zero_user(page, zerofrom, len);
2312                 err = pagecache_write_end(file, mapping, curpos, len, len,
2313                                                 page, fsdata);
2314                 if (err < 0)
2315                         goto out;
2316                 BUG_ON(err != len);
2317                 err = 0;
2318
2319                 balance_dirty_pages_ratelimited(mapping);
2320
2321                 if (unlikely(fatal_signal_pending(current))) {
2322                         err = -EINTR;
2323                         goto out;
2324                 }
2325         }
2326
2327         /* page covers the boundary, find the boundary offset */
2328         if (index == curidx) {
2329                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2330                 /* if we will expand the thing last block will be filled */
2331                 if (offset <= zerofrom) {
2332                         goto out;
2333                 }
2334                 if (zerofrom & (blocksize-1)) {
2335                         *bytes |= (blocksize-1);
2336                         (*bytes)++;
2337                 }
2338                 len = offset - zerofrom;
2339
2340                 err = pagecache_write_begin(file, mapping, curpos, len,
2341                                                 AOP_FLAG_UNINTERRUPTIBLE,
2342                                                 &page, &fsdata);
2343                 if (err)
2344                         goto out;
2345                 zero_user(page, zerofrom, len);
2346                 err = pagecache_write_end(file, mapping, curpos, len, len,
2347                                                 page, fsdata);
2348                 if (err < 0)
2349                         goto out;
2350                 BUG_ON(err != len);
2351                 err = 0;
2352         }
2353 out:
2354         return err;
2355 }
2356
2357 /*
2358  * For moronic filesystems that do not allow holes in file.
2359  * We may have to extend the file.
2360  */
2361 int cont_write_begin(struct file *file, struct address_space *mapping,
2362                         loff_t pos, unsigned len, unsigned flags,
2363                         struct page **pagep, void **fsdata,
2364                         get_block_t *get_block, loff_t *bytes)
2365 {
2366         struct inode *inode = mapping->host;
2367         unsigned blocksize = 1 << inode->i_blkbits;
2368         unsigned zerofrom;
2369         int err;
2370
2371         err = cont_expand_zero(file, mapping, pos, bytes);
2372         if (err)
2373                 return err;
2374
2375         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2376         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2377                 *bytes |= (blocksize-1);
2378                 (*bytes)++;
2379         }
2380
2381         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2382 }
2383 EXPORT_SYMBOL(cont_write_begin);
2384
2385 int block_commit_write(struct page *page, unsigned from, unsigned to)
2386 {
2387         struct inode *inode = page->mapping->host;
2388         __block_commit_write(inode,page,from,to);
2389         return 0;
2390 }
2391 EXPORT_SYMBOL(block_commit_write);
2392
2393 /*
2394  * block_page_mkwrite() is not allowed to change the file size as it gets
2395  * called from a page fault handler when a page is first dirtied. Hence we must
2396  * be careful to check for EOF conditions here. We set the page up correctly
2397  * for a written page which means we get ENOSPC checking when writing into
2398  * holes and correct delalloc and unwritten extent mapping on filesystems that
2399  * support these features.
2400  *
2401  * We are not allowed to take the i_mutex here so we have to play games to
2402  * protect against truncate races as the page could now be beyond EOF.  Because
2403  * truncate writes the inode size before removing pages, once we have the
2404  * page lock we can determine safely if the page is beyond EOF. If it is not
2405  * beyond EOF, then the page is guaranteed safe against truncation until we
2406  * unlock the page.
2407  *
2408  * Direct callers of this function should protect against filesystem freezing
2409  * using sb_start_write() - sb_end_write() functions.
2410  */
2411 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2412                          get_block_t get_block)
2413 {
2414         struct page *page = vmf->page;
2415         struct inode *inode = file_inode(vma->vm_file);
2416         unsigned long end;
2417         loff_t size;
2418         int ret;
2419
2420         lock_page(page);
2421         size = i_size_read(inode);
2422         if ((page->mapping != inode->i_mapping) ||
2423             (page_offset(page) > size)) {
2424                 /* We overload EFAULT to mean page got truncated */
2425                 ret = -EFAULT;
2426                 goto out_unlock;
2427         }
2428
2429         /* page is wholly or partially inside EOF */
2430         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2431                 end = size & ~PAGE_CACHE_MASK;
2432         else
2433                 end = PAGE_CACHE_SIZE;
2434
2435         ret = __block_write_begin(page, 0, end, get_block);
2436         if (!ret)
2437                 ret = block_commit_write(page, 0, end);
2438
2439         if (unlikely(ret < 0))
2440                 goto out_unlock;
2441         set_page_dirty(page);
2442         wait_for_stable_page(page);
2443         return 0;
2444 out_unlock:
2445         unlock_page(page);
2446         return ret;
2447 }
2448 EXPORT_SYMBOL(__block_page_mkwrite);
2449
2450 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2451                    get_block_t get_block)
2452 {
2453         int ret;
2454         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2455
2456         sb_start_pagefault(sb);
2457
2458         /*
2459          * Update file times before taking page lock. We may end up failing the
2460          * fault so this update may be superfluous but who really cares...
2461          */
2462         file_update_time(vma->vm_file);
2463
2464         ret = __block_page_mkwrite(vma, vmf, get_block);
2465         sb_end_pagefault(sb);
2466         return block_page_mkwrite_return(ret);
2467 }
2468 EXPORT_SYMBOL(block_page_mkwrite);
2469
2470 /*
2471  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2472  * immediately, while under the page lock.  So it needs a special end_io
2473  * handler which does not touch the bh after unlocking it.
2474  */
2475 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2476 {
2477         __end_buffer_read_notouch(bh, uptodate);
2478 }
2479
2480 /*
2481  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2482  * the page (converting it to circular linked list and taking care of page
2483  * dirty races).
2484  */
2485 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2486 {
2487         struct buffer_head *bh;
2488
2489         BUG_ON(!PageLocked(page));
2490
2491         spin_lock(&page->mapping->private_lock);
2492         bh = head;
2493         do {
2494                 if (PageDirty(page))
2495                         set_buffer_dirty(bh);
2496                 if (!bh->b_this_page)
2497                         bh->b_this_page = head;
2498                 bh = bh->b_this_page;
2499         } while (bh != head);
2500         attach_page_buffers(page, head);
2501         spin_unlock(&page->mapping->private_lock);
2502 }
2503
2504 /*
2505  * On entry, the page is fully not uptodate.
2506  * On exit the page is fully uptodate in the areas outside (from,to)
2507  * The filesystem needs to handle block truncation upon failure.
2508  */
2509 int nobh_write_begin(struct address_space *mapping,
2510                         loff_t pos, unsigned len, unsigned flags,
2511                         struct page **pagep, void **fsdata,
2512                         get_block_t *get_block)
2513 {
2514         struct inode *inode = mapping->host;
2515         const unsigned blkbits = inode->i_blkbits;
2516         const unsigned blocksize = 1 << blkbits;
2517         struct buffer_head *head, *bh;
2518         struct page *page;
2519         pgoff_t index;
2520         unsigned from, to;
2521         unsigned block_in_page;
2522         unsigned block_start, block_end;
2523         sector_t block_in_file;
2524         int nr_reads = 0;
2525         int ret = 0;
2526         int is_mapped_to_disk = 1;
2527
2528         index = pos >> PAGE_CACHE_SHIFT;
2529         from = pos & (PAGE_CACHE_SIZE - 1);
2530         to = from + len;
2531
2532         page = grab_cache_page_write_begin(mapping, index, flags);
2533         if (!page)
2534                 return -ENOMEM;
2535         *pagep = page;
2536         *fsdata = NULL;
2537
2538         if (page_has_buffers(page)) {
2539                 ret = __block_write_begin(page, pos, len, get_block);
2540                 if (unlikely(ret))
2541                         goto out_release;
2542                 return ret;
2543         }
2544
2545         if (PageMappedToDisk(page))
2546                 return 0;
2547
2548         /*
2549          * Allocate buffers so that we can keep track of state, and potentially
2550          * attach them to the page if an error occurs. In the common case of
2551          * no error, they will just be freed again without ever being attached
2552          * to the page (which is all OK, because we're under the page lock).
2553          *
2554          * Be careful: the buffer linked list is a NULL terminated one, rather
2555          * than the circular one we're used to.
2556          */
2557         head = alloc_page_buffers(page, blocksize, 0);
2558         if (!head) {
2559                 ret = -ENOMEM;
2560                 goto out_release;
2561         }
2562
2563         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2564
2565         /*
2566          * We loop across all blocks in the page, whether or not they are
2567          * part of the affected region.  This is so we can discover if the
2568          * page is fully mapped-to-disk.
2569          */
2570         for (block_start = 0, block_in_page = 0, bh = head;
2571                   block_start < PAGE_CACHE_SIZE;
2572                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2573                 int create;
2574
2575                 block_end = block_start + blocksize;
2576                 bh->b_state = 0;
2577                 create = 1;
2578                 if (block_start >= to)
2579                         create = 0;
2580                 ret = get_block(inode, block_in_file + block_in_page,
2581                                         bh, create);
2582                 if (ret)
2583                         goto failed;
2584                 if (!buffer_mapped(bh))
2585                         is_mapped_to_disk = 0;
2586                 if (buffer_new(bh))
2587                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2588                 if (PageUptodate(page)) {
2589                         set_buffer_uptodate(bh);
2590                         continue;
2591                 }
2592                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2593                         zero_user_segments(page, block_start, from,
2594                                                         to, block_end);
2595                         continue;
2596                 }
2597                 if (buffer_uptodate(bh))
2598                         continue;       /* reiserfs does this */
2599                 if (block_start < from || block_end > to) {
2600                         lock_buffer(bh);
2601                         bh->b_end_io = end_buffer_read_nobh;
2602                         submit_bh(READ, bh);
2603                         nr_reads++;
2604                 }
2605         }
2606
2607         if (nr_reads) {
2608                 /*
2609                  * The page is locked, so these buffers are protected from
2610                  * any VM or truncate activity.  Hence we don't need to care
2611                  * for the buffer_head refcounts.
2612                  */
2613                 for (bh = head; bh; bh = bh->b_this_page) {
2614                         wait_on_buffer(bh);
2615                         if (!buffer_uptodate(bh))
2616                                 ret = -EIO;
2617                 }
2618                 if (ret)
2619                         goto failed;
2620         }
2621
2622         if (is_mapped_to_disk)
2623                 SetPageMappedToDisk(page);
2624
2625         *fsdata = head; /* to be released by nobh_write_end */
2626
2627         return 0;
2628
2629 failed:
2630         BUG_ON(!ret);
2631         /*
2632          * Error recovery is a bit difficult. We need to zero out blocks that
2633          * were newly allocated, and dirty them to ensure they get written out.
2634          * Buffers need to be attached to the page at this point, otherwise
2635          * the handling of potential IO errors during writeout would be hard
2636          * (could try doing synchronous writeout, but what if that fails too?)
2637          */
2638         attach_nobh_buffers(page, head);
2639         page_zero_new_buffers(page, from, to);
2640
2641 out_release:
2642         unlock_page(page);
2643         page_cache_release(page);
2644         *pagep = NULL;
2645
2646         return ret;
2647 }
2648 EXPORT_SYMBOL(nobh_write_begin);
2649
2650 int nobh_write_end(struct file *file, struct address_space *mapping,
2651                         loff_t pos, unsigned len, unsigned copied,
2652                         struct page *page, void *fsdata)
2653 {
2654         struct inode *inode = page->mapping->host;
2655         struct buffer_head *head = fsdata;
2656         struct buffer_head *bh;
2657         BUG_ON(fsdata != NULL && page_has_buffers(page));
2658
2659         if (unlikely(copied < len) && head)
2660                 attach_nobh_buffers(page, head);
2661         if (page_has_buffers(page))
2662                 return generic_write_end(file, mapping, pos, len,
2663                                         copied, page, fsdata);
2664
2665         SetPageUptodate(page);
2666         set_page_dirty(page);
2667         if (pos+copied > inode->i_size) {
2668                 i_size_write(inode, pos+copied);
2669                 mark_inode_dirty(inode);
2670         }
2671
2672         unlock_page(page);
2673         page_cache_release(page);
2674
2675         while (head) {
2676                 bh = head;
2677                 head = head->b_this_page;
2678                 free_buffer_head(bh);
2679         }
2680
2681         return copied;
2682 }
2683 EXPORT_SYMBOL(nobh_write_end);
2684
2685 /*
2686  * nobh_writepage() - based on block_full_write_page() except
2687  * that it tries to operate without attaching bufferheads to
2688  * the page.
2689  */
2690 int nobh_writepage(struct page *page, get_block_t *get_block,
2691                         struct writeback_control *wbc)
2692 {
2693         struct inode * const inode = page->mapping->host;
2694         loff_t i_size = i_size_read(inode);
2695         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2696         unsigned offset;
2697         int ret;
2698
2699         /* Is the page fully inside i_size? */
2700         if (page->index < end_index)
2701                 goto out;
2702
2703         /* Is the page fully outside i_size? (truncate in progress) */
2704         offset = i_size & (PAGE_CACHE_SIZE-1);
2705         if (page->index >= end_index+1 || !offset) {
2706                 /*
2707                  * The page may have dirty, unmapped buffers.  For example,
2708                  * they may have been added in ext3_writepage().  Make them
2709                  * freeable here, so the page does not leak.
2710                  */
2711 #if 0
2712                 /* Not really sure about this  - do we need this ? */
2713                 if (page->mapping->a_ops->invalidatepage)
2714                         page->mapping->a_ops->invalidatepage(page, offset);
2715 #endif
2716                 unlock_page(page);
2717                 return 0; /* don't care */
2718         }
2719
2720         /*
2721          * The page straddles i_size.  It must be zeroed out on each and every
2722          * writepage invocation because it may be mmapped.  "A file is mapped
2723          * in multiples of the page size.  For a file that is not a multiple of
2724          * the  page size, the remaining memory is zeroed when mapped, and
2725          * writes to that region are not written out to the file."
2726          */
2727         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2728 out:
2729         ret = mpage_writepage(page, get_block, wbc);
2730         if (ret == -EAGAIN)
2731                 ret = __block_write_full_page(inode, page, get_block, wbc,
2732                                               end_buffer_async_write);
2733         return ret;
2734 }
2735 EXPORT_SYMBOL(nobh_writepage);
2736
2737 int nobh_truncate_page(struct address_space *mapping,
2738                         loff_t from, get_block_t *get_block)
2739 {
2740         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2741         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2742         unsigned blocksize;
2743         sector_t iblock;
2744         unsigned length, pos;
2745         struct inode *inode = mapping->host;
2746         struct page *page;
2747         struct buffer_head map_bh;
2748         int err;
2749
2750         blocksize = 1 << inode->i_blkbits;
2751         length = offset & (blocksize - 1);
2752
2753         /* Block boundary? Nothing to do */
2754         if (!length)
2755                 return 0;
2756
2757         length = blocksize - length;
2758         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2759
2760         page = grab_cache_page(mapping, index);
2761         err = -ENOMEM;
2762         if (!page)
2763                 goto out;
2764
2765         if (page_has_buffers(page)) {
2766 has_buffers:
2767                 unlock_page(page);
2768                 page_cache_release(page);
2769                 return block_truncate_page(mapping, from, get_block);
2770         }
2771
2772         /* Find the buffer that contains "offset" */
2773         pos = blocksize;
2774         while (offset >= pos) {
2775                 iblock++;
2776                 pos += blocksize;
2777         }
2778
2779         map_bh.b_size = blocksize;
2780         map_bh.b_state = 0;
2781         err = get_block(inode, iblock, &map_bh, 0);
2782         if (err)
2783                 goto unlock;
2784         /* unmapped? It's a hole - nothing to do */
2785         if (!buffer_mapped(&map_bh))
2786                 goto unlock;
2787
2788         /* Ok, it's mapped. Make sure it's up-to-date */
2789         if (!PageUptodate(page)) {
2790                 err = mapping->a_ops->readpage(NULL, page);
2791                 if (err) {
2792                         page_cache_release(page);
2793                         goto out;
2794                 }
2795                 lock_page(page);
2796                 if (!PageUptodate(page)) {
2797                         err = -EIO;
2798                         goto unlock;
2799                 }
2800                 if (page_has_buffers(page))
2801                         goto has_buffers;
2802         }
2803         zero_user(page, offset, length);
2804         set_page_dirty(page);
2805         err = 0;
2806
2807 unlock:
2808         unlock_page(page);
2809         page_cache_release(page);
2810 out:
2811         return err;
2812 }
2813 EXPORT_SYMBOL(nobh_truncate_page);
2814
2815 int block_truncate_page(struct address_space *mapping,
2816                         loff_t from, get_block_t *get_block)
2817 {
2818         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2819         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2820         unsigned blocksize;
2821         sector_t iblock;
2822         unsigned length, pos;
2823         struct inode *inode = mapping->host;
2824         struct page *page;
2825         struct buffer_head *bh;
2826         int err;
2827
2828         blocksize = 1 << inode->i_blkbits;
2829         length = offset & (blocksize - 1);
2830
2831         /* Block boundary? Nothing to do */
2832         if (!length)
2833                 return 0;
2834
2835         length = blocksize - length;
2836         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2837         
2838         page = grab_cache_page(mapping, index);
2839         err = -ENOMEM;
2840         if (!page)
2841                 goto out;
2842
2843         if (!page_has_buffers(page))
2844                 create_empty_buffers(page, blocksize, 0);
2845
2846         /* Find the buffer that contains "offset" */
2847         bh = page_buffers(page);
2848         pos = blocksize;
2849         while (offset >= pos) {
2850                 bh = bh->b_this_page;
2851                 iblock++;
2852                 pos += blocksize;
2853         }
2854
2855         err = 0;
2856         if (!buffer_mapped(bh)) {
2857                 WARN_ON(bh->b_size != blocksize);
2858                 err = get_block(inode, iblock, bh, 0);
2859                 if (err)
2860                         goto unlock;
2861                 /* unmapped? It's a hole - nothing to do */
2862                 if (!buffer_mapped(bh))
2863                         goto unlock;
2864         }
2865
2866         /* Ok, it's mapped. Make sure it's up-to-date */
2867         if (PageUptodate(page))
2868                 set_buffer_uptodate(bh);
2869
2870         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2871                 err = -EIO;
2872                 ll_rw_block(READ, 1, &bh);
2873                 wait_on_buffer(bh);
2874                 /* Uhhuh. Read error. Complain and punt. */
2875                 if (!buffer_uptodate(bh))
2876                         goto unlock;
2877         }
2878
2879         zero_user(page, offset, length);
2880         mark_buffer_dirty(bh);
2881         err = 0;
2882
2883 unlock:
2884         unlock_page(page);
2885         page_cache_release(page);
2886 out:
2887         return err;
2888 }
2889 EXPORT_SYMBOL(block_truncate_page);
2890
2891 /*
2892  * The generic ->writepage function for buffer-backed address_spaces
2893  */
2894 int block_write_full_page(struct page *page, get_block_t *get_block,
2895                         struct writeback_control *wbc)
2896 {
2897         struct inode * const inode = page->mapping->host;
2898         loff_t i_size = i_size_read(inode);
2899         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2900         unsigned offset;
2901
2902         /* Is the page fully inside i_size? */
2903         if (page->index < end_index)
2904                 return __block_write_full_page(inode, page, get_block, wbc,
2905                                                end_buffer_async_write);
2906
2907         /* Is the page fully outside i_size? (truncate in progress) */
2908         offset = i_size & (PAGE_CACHE_SIZE-1);
2909         if (page->index >= end_index+1 || !offset) {
2910                 /*
2911                  * The page may have dirty, unmapped buffers.  For example,
2912                  * they may have been added in ext3_writepage().  Make them
2913                  * freeable here, so the page does not leak.
2914                  */
2915                 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2916                 unlock_page(page);
2917                 return 0; /* don't care */
2918         }
2919
2920         /*
2921          * The page straddles i_size.  It must be zeroed out on each and every
2922          * writepage invocation because it may be mmapped.  "A file is mapped
2923          * in multiples of the page size.  For a file that is not a multiple of
2924          * the  page size, the remaining memory is zeroed when mapped, and
2925          * writes to that region are not written out to the file."
2926          */
2927         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2928         return __block_write_full_page(inode, page, get_block, wbc,
2929                                                         end_buffer_async_write);
2930 }
2931 EXPORT_SYMBOL(block_write_full_page);
2932
2933 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2934                             get_block_t *get_block)
2935 {
2936         struct buffer_head tmp;
2937         struct inode *inode = mapping->host;
2938         tmp.b_state = 0;
2939         tmp.b_blocknr = 0;
2940         tmp.b_size = 1 << inode->i_blkbits;
2941         get_block(inode, block, &tmp, 0);
2942         return tmp.b_blocknr;
2943 }
2944 EXPORT_SYMBOL(generic_block_bmap);
2945
2946 static void end_bio_bh_io_sync(struct bio *bio, int err)
2947 {
2948         struct buffer_head *bh = bio->bi_private;
2949
2950         if (err == -EOPNOTSUPP) {
2951                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2952         }
2953
2954         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2955                 set_bit(BH_Quiet, &bh->b_state);
2956
2957         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2958         bio_put(bio);
2959 }
2960
2961 /*
2962  * This allows us to do IO even on the odd last sectors
2963  * of a device, even if the block size is some multiple
2964  * of the physical sector size.
2965  *
2966  * We'll just truncate the bio to the size of the device,
2967  * and clear the end of the buffer head manually.
2968  *
2969  * Truly out-of-range accesses will turn into actual IO
2970  * errors, this only handles the "we need to be able to
2971  * do IO at the final sector" case.
2972  */
2973 void guard_bio_eod(int rw, struct bio *bio)
2974 {
2975         sector_t maxsector;
2976         struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2977         unsigned truncated_bytes;
2978
2979         maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2980         if (!maxsector)
2981                 return;
2982
2983         /*
2984          * If the *whole* IO is past the end of the device,
2985          * let it through, and the IO layer will turn it into
2986          * an EIO.
2987          */
2988         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2989                 return;
2990
2991         maxsector -= bio->bi_iter.bi_sector;
2992         if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
2993                 return;
2994
2995         /* Uhhuh. We've got a bio that straddles the device size! */
2996         truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
2997
2998         /* Truncate the bio.. */
2999         bio->bi_iter.bi_size -= truncated_bytes;
3000         bvec->bv_len -= truncated_bytes;
3001
3002         /* ..and clear the end of the buffer for reads */
3003         if ((rw & RW_MASK) == READ) {
3004                 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3005                                 truncated_bytes);
3006         }
3007 }
3008
3009 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3010 {
3011         struct bio *bio;
3012         int ret = 0;
3013
3014         BUG_ON(!buffer_locked(bh));
3015         BUG_ON(!buffer_mapped(bh));
3016         BUG_ON(!bh->b_end_io);
3017         BUG_ON(buffer_delay(bh));
3018         BUG_ON(buffer_unwritten(bh));
3019
3020         /*
3021          * Only clear out a write error when rewriting
3022          */
3023         if (test_set_buffer_req(bh) && (rw & WRITE))
3024                 clear_buffer_write_io_error(bh);
3025
3026         /*
3027          * from here on down, it's all bio -- do the initial mapping,
3028          * submit_bio -> generic_make_request may further map this bio around
3029          */
3030         bio = bio_alloc(GFP_NOIO, 1);
3031
3032         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3033         bio->bi_bdev = bh->b_bdev;
3034         bio->bi_io_vec[0].bv_page = bh->b_page;
3035         bio->bi_io_vec[0].bv_len = bh->b_size;
3036         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3037
3038         bio->bi_vcnt = 1;
3039         bio->bi_iter.bi_size = bh->b_size;
3040
3041         bio->bi_end_io = end_bio_bh_io_sync;
3042         bio->bi_private = bh;
3043         bio->bi_flags |= bio_flags;
3044
3045         /* Take care of bh's that straddle the end of the device */
3046         guard_bio_eod(rw, bio);
3047
3048         if (buffer_meta(bh))
3049                 rw |= REQ_META;
3050         if (buffer_prio(bh))
3051                 rw |= REQ_PRIO;
3052
3053         bio_get(bio);
3054         submit_bio(rw, bio);
3055
3056         if (bio_flagged(bio, BIO_EOPNOTSUPP))
3057                 ret = -EOPNOTSUPP;
3058
3059         bio_put(bio);
3060         return ret;
3061 }
3062 EXPORT_SYMBOL_GPL(_submit_bh);
3063
3064 int submit_bh(int rw, struct buffer_head *bh)
3065 {
3066         return _submit_bh(rw, bh, 0);
3067 }
3068 EXPORT_SYMBOL(submit_bh);
3069
3070 /**
3071  * ll_rw_block: low-level access to block devices (DEPRECATED)
3072  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3073  * @nr: number of &struct buffer_heads in the array
3074  * @bhs: array of pointers to &struct buffer_head
3075  *
3076  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3077  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3078  * %READA option is described in the documentation for generic_make_request()
3079  * which ll_rw_block() calls.
3080  *
3081  * This function drops any buffer that it cannot get a lock on (with the
3082  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3083  * request, and any buffer that appears to be up-to-date when doing read
3084  * request.  Further it marks as clean buffers that are processed for
3085  * writing (the buffer cache won't assume that they are actually clean
3086  * until the buffer gets unlocked).
3087  *
3088  * ll_rw_block sets b_end_io to simple completion handler that marks
3089  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3090  * any waiters. 
3091  *
3092  * All of the buffers must be for the same device, and must also be a
3093  * multiple of the current approved size for the device.
3094  */
3095 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3096 {
3097         int i;
3098
3099         for (i = 0; i < nr; i++) {
3100                 struct buffer_head *bh = bhs[i];
3101
3102                 if (!trylock_buffer(bh))
3103                         continue;
3104                 if (rw == WRITE) {
3105                         if (test_clear_buffer_dirty(bh)) {
3106                                 bh->b_end_io = end_buffer_write_sync;
3107                                 get_bh(bh);
3108                                 submit_bh(WRITE, bh);
3109                                 continue;
3110                         }
3111                 } else {
3112                         if (!buffer_uptodate(bh)) {
3113                                 bh->b_end_io = end_buffer_read_sync;
3114                                 get_bh(bh);
3115                                 submit_bh(rw, bh);
3116                                 continue;
3117                         }
3118                 }
3119                 unlock_buffer(bh);
3120         }
3121 }
3122 EXPORT_SYMBOL(ll_rw_block);
3123
3124 void write_dirty_buffer(struct buffer_head *bh, int rw)
3125 {
3126         lock_buffer(bh);
3127         if (!test_clear_buffer_dirty(bh)) {
3128                 unlock_buffer(bh);
3129                 return;
3130         }
3131         bh->b_end_io = end_buffer_write_sync;
3132         get_bh(bh);
3133         submit_bh(rw, bh);
3134 }
3135 EXPORT_SYMBOL(write_dirty_buffer);
3136
3137 /*
3138  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3139  * and then start new I/O and then wait upon it.  The caller must have a ref on
3140  * the buffer_head.
3141  */
3142 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3143 {
3144         int ret = 0;
3145
3146         WARN_ON(atomic_read(&bh->b_count) < 1);
3147         lock_buffer(bh);
3148         if (test_clear_buffer_dirty(bh)) {
3149                 get_bh(bh);
3150                 bh->b_end_io = end_buffer_write_sync;
3151                 ret = submit_bh(rw, bh);
3152                 wait_on_buffer(bh);
3153                 if (!ret && !buffer_uptodate(bh))
3154                         ret = -EIO;
3155         } else {
3156                 unlock_buffer(bh);
3157         }
3158         return ret;
3159 }
3160 EXPORT_SYMBOL(__sync_dirty_buffer);
3161
3162 int sync_dirty_buffer(struct buffer_head *bh)
3163 {
3164         return __sync_dirty_buffer(bh, WRITE_SYNC);
3165 }
3166 EXPORT_SYMBOL(sync_dirty_buffer);
3167
3168 /*
3169  * try_to_free_buffers() checks if all the buffers on this particular page
3170  * are unused, and releases them if so.
3171  *
3172  * Exclusion against try_to_free_buffers may be obtained by either
3173  * locking the page or by holding its mapping's private_lock.
3174  *
3175  * If the page is dirty but all the buffers are clean then we need to
3176  * be sure to mark the page clean as well.  This is because the page
3177  * may be against a block device, and a later reattachment of buffers
3178  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3179  * filesystem data on the same device.
3180  *
3181  * The same applies to regular filesystem pages: if all the buffers are
3182  * clean then we set the page clean and proceed.  To do that, we require
3183  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3184  * private_lock.
3185  *
3186  * try_to_free_buffers() is non-blocking.
3187  */
3188 static inline int buffer_busy(struct buffer_head *bh)
3189 {
3190         return atomic_read(&bh->b_count) |
3191                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3192 }
3193
3194 static int
3195 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3196 {
3197         struct buffer_head *head = page_buffers(page);
3198         struct buffer_head *bh;
3199
3200         bh = head;
3201         do {
3202                 if (buffer_write_io_error(bh) && page->mapping)
3203                         set_bit(AS_EIO, &page->mapping->flags);
3204                 if (buffer_busy(bh))
3205                         goto failed;
3206                 bh = bh->b_this_page;
3207         } while (bh != head);
3208
3209         do {
3210                 struct buffer_head *next = bh->b_this_page;
3211
3212                 if (bh->b_assoc_map)
3213                         __remove_assoc_queue(bh);
3214                 bh = next;
3215         } while (bh != head);
3216         *buffers_to_free = head;
3217         __clear_page_buffers(page);
3218         return 1;
3219 failed:
3220         return 0;
3221 }
3222
3223 int try_to_free_buffers(struct page *page)
3224 {
3225         struct address_space * const mapping = page->mapping;
3226         struct buffer_head *buffers_to_free = NULL;
3227         int ret = 0;
3228
3229         BUG_ON(!PageLocked(page));
3230         if (PageWriteback(page))
3231                 return 0;
3232
3233         if (mapping == NULL) {          /* can this still happen? */
3234                 ret = drop_buffers(page, &buffers_to_free);
3235                 goto out;
3236         }
3237
3238         spin_lock(&mapping->private_lock);
3239         ret = drop_buffers(page, &buffers_to_free);
3240
3241         /*
3242          * If the filesystem writes its buffers by hand (eg ext3)
3243          * then we can have clean buffers against a dirty page.  We
3244          * clean the page here; otherwise the VM will never notice
3245          * that the filesystem did any IO at all.
3246          *
3247          * Also, during truncate, discard_buffer will have marked all
3248          * the page's buffers clean.  We discover that here and clean
3249          * the page also.
3250          *
3251          * private_lock must be held over this entire operation in order
3252          * to synchronise against __set_page_dirty_buffers and prevent the
3253          * dirty bit from being lost.
3254          */
3255         if (ret)
3256                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3257         spin_unlock(&mapping->private_lock);
3258 out:
3259         if (buffers_to_free) {
3260                 struct buffer_head *bh = buffers_to_free;
3261
3262                 do {
3263                         struct buffer_head *next = bh->b_this_page;
3264                         free_buffer_head(bh);
3265                         bh = next;
3266                 } while (bh != buffers_to_free);
3267         }
3268         return ret;
3269 }
3270 EXPORT_SYMBOL(try_to_free_buffers);
3271
3272 /*
3273  * There are no bdflush tunables left.  But distributions are
3274  * still running obsolete flush daemons, so we terminate them here.
3275  *
3276  * Use of bdflush() is deprecated and will be removed in a future kernel.
3277  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3278  */
3279 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3280 {
3281         static int msg_count;
3282
3283         if (!capable(CAP_SYS_ADMIN))
3284                 return -EPERM;
3285
3286         if (msg_count < 5) {
3287                 msg_count++;
3288                 printk(KERN_INFO
3289                         "warning: process `%s' used the obsolete bdflush"
3290                         " system call\n", current->comm);
3291                 printk(KERN_INFO "Fix your initscripts?\n");
3292         }
3293
3294         if (func == 1)
3295                 do_exit(0);
3296         return 0;
3297 }
3298
3299 /*
3300  * Buffer-head allocation
3301  */
3302 static struct kmem_cache *bh_cachep __read_mostly;
3303
3304 /*
3305  * Once the number of bh's in the machine exceeds this level, we start
3306  * stripping them in writeback.
3307  */
3308 static unsigned long max_buffer_heads;
3309
3310 int buffer_heads_over_limit;
3311
3312 struct bh_accounting {
3313         int nr;                 /* Number of live bh's */
3314         int ratelimit;          /* Limit cacheline bouncing */
3315 };
3316
3317 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3318
3319 static void recalc_bh_state(void)
3320 {
3321         int i;
3322         int tot = 0;
3323
3324         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3325                 return;
3326         __this_cpu_write(bh_accounting.ratelimit, 0);
3327         for_each_online_cpu(i)
3328                 tot += per_cpu(bh_accounting, i).nr;
3329         buffer_heads_over_limit = (tot > max_buffer_heads);
3330 }
3331
3332 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3333 {
3334         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3335         if (ret) {
3336                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3337                 preempt_disable();
3338                 __this_cpu_inc(bh_accounting.nr);
3339                 recalc_bh_state();
3340                 preempt_enable();
3341         }
3342         return ret;
3343 }
3344 EXPORT_SYMBOL(alloc_buffer_head);
3345
3346 void free_buffer_head(struct buffer_head *bh)
3347 {
3348         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3349         kmem_cache_free(bh_cachep, bh);
3350         preempt_disable();
3351         __this_cpu_dec(bh_accounting.nr);
3352         recalc_bh_state();
3353         preempt_enable();
3354 }
3355 EXPORT_SYMBOL(free_buffer_head);
3356
3357 static void buffer_exit_cpu(int cpu)
3358 {
3359         int i;
3360         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3361
3362         for (i = 0; i < BH_LRU_SIZE; i++) {
3363                 brelse(b->bhs[i]);
3364                 b->bhs[i] = NULL;
3365         }
3366         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3367         per_cpu(bh_accounting, cpu).nr = 0;
3368 }
3369
3370 static int buffer_cpu_notify(struct notifier_block *self,
3371                               unsigned long action, void *hcpu)
3372 {
3373         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3374                 buffer_exit_cpu((unsigned long)hcpu);
3375         return NOTIFY_OK;
3376 }
3377
3378 /**
3379  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3380  * @bh: struct buffer_head
3381  *
3382  * Return true if the buffer is up-to-date and false,
3383  * with the buffer locked, if not.
3384  */
3385 int bh_uptodate_or_lock(struct buffer_head *bh)
3386 {
3387         if (!buffer_uptodate(bh)) {
3388                 lock_buffer(bh);
3389                 if (!buffer_uptodate(bh))
3390                         return 0;
3391                 unlock_buffer(bh);
3392         }
3393         return 1;
3394 }
3395 EXPORT_SYMBOL(bh_uptodate_or_lock);
3396
3397 /**
3398  * bh_submit_read - Submit a locked buffer for reading
3399  * @bh: struct buffer_head
3400  *
3401  * Returns zero on success and -EIO on error.
3402  */
3403 int bh_submit_read(struct buffer_head *bh)
3404 {
3405         BUG_ON(!buffer_locked(bh));
3406
3407         if (buffer_uptodate(bh)) {
3408                 unlock_buffer(bh);
3409                 return 0;
3410         }
3411
3412         get_bh(bh);
3413         bh->b_end_io = end_buffer_read_sync;
3414         submit_bh(READ, bh);
3415         wait_on_buffer(bh);
3416         if (buffer_uptodate(bh))
3417                 return 0;
3418         return -EIO;
3419 }
3420 EXPORT_SYMBOL(bh_submit_read);
3421
3422 void __init buffer_init(void)
3423 {
3424         unsigned long nrpages;
3425
3426         bh_cachep = kmem_cache_create("buffer_head",
3427                         sizeof(struct buffer_head), 0,
3428                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3429                                 SLAB_MEM_SPREAD),
3430                                 NULL);
3431
3432         /*
3433          * Limit the bh occupancy to 10% of ZONE_NORMAL
3434          */
3435         nrpages = (nr_free_buffer_pages() * 10) / 100;
3436         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3437         hotcpu_notifier(buffer_cpu_notify, 0);
3438 }