4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
56 static int sync_buffer(void *word)
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
65 blk_run_address_space(bd->bd_inode->i_mapping);
70 void __lock_buffer(struct buffer_head *bh)
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
75 EXPORT_SYMBOL(__lock_buffer);
77 void unlock_buffer(struct buffer_head *bh)
79 clear_bit_unlock(BH_Lock, &bh->b_state);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
85 * Block until a buffer comes unlocked. This doesn't stop it
86 * from becoming locked again - you have to lock it yourself
87 * if you want to preserve its state.
89 void __wait_on_buffer(struct buffer_head * bh)
91 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
95 __clear_page_buffers(struct page *page)
97 ClearPagePrivate(page);
98 set_page_private(page, 0);
99 page_cache_release(page);
103 static int quiet_error(struct buffer_head *bh)
105 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
111 static void buffer_io_error(struct buffer_head *bh)
113 char b[BDEVNAME_SIZE];
114 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115 bdevname(bh->b_bdev, b),
116 (unsigned long long)bh->b_blocknr);
120 * End-of-IO handler helper function which does not touch the bh after
122 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123 * a race there is benign: unlock_buffer() only use the bh's address for
124 * hashing after unlocking the buffer, so it doesn't actually touch the bh
127 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
130 set_buffer_uptodate(bh);
132 /* This happens, due to failed READA attempts. */
133 clear_buffer_uptodate(bh);
139 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
140 * unlock the buffer. This is what ll_rw_block uses too.
142 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
144 __end_buffer_read_notouch(bh, uptodate);
148 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
150 char b[BDEVNAME_SIZE];
153 set_buffer_uptodate(bh);
155 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
157 printk(KERN_WARNING "lost page write due to "
159 bdevname(bh->b_bdev, b));
161 set_buffer_write_io_error(bh);
162 clear_buffer_uptodate(bh);
169 * Write out and wait upon all the dirty data associated with a block
170 * device via its mapping. Does not take the superblock lock.
172 int sync_blockdev(struct block_device *bdev)
177 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
180 EXPORT_SYMBOL(sync_blockdev);
183 * Write out and wait upon all dirty data associated with this
184 * device. Filesystem data as well as the underlying block
185 * device. Takes the superblock lock.
187 int fsync_bdev(struct block_device *bdev)
189 struct super_block *sb = get_super(bdev);
191 int res = fsync_super(sb);
195 return sync_blockdev(bdev);
199 * freeze_bdev -- lock a filesystem and force it into a consistent state
200 * @bdev: blockdevice to lock
202 * This takes the block device bd_mount_sem to make sure no new mounts
203 * happen on bdev until thaw_bdev() is called.
204 * If a superblock is found on this device, we take the s_umount semaphore
205 * on it to make sure nobody unmounts until the snapshot creation is done.
206 * The reference counter (bd_fsfreeze_count) guarantees that only the last
207 * unfreeze process can unfreeze the frozen filesystem actually when multiple
208 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
209 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
212 struct super_block *freeze_bdev(struct block_device *bdev)
214 struct super_block *sb;
217 mutex_lock(&bdev->bd_fsfreeze_mutex);
218 if (bdev->bd_fsfreeze_count > 0) {
219 bdev->bd_fsfreeze_count++;
220 sb = get_super(bdev);
221 mutex_unlock(&bdev->bd_fsfreeze_mutex);
224 bdev->bd_fsfreeze_count++;
226 down(&bdev->bd_mount_sem);
227 sb = get_super(bdev);
228 if (sb && !(sb->s_flags & MS_RDONLY)) {
229 sb->s_frozen = SB_FREEZE_WRITE;
234 sb->s_frozen = SB_FREEZE_TRANS;
237 sync_blockdev(sb->s_bdev);
239 if (sb->s_op->freeze_fs) {
240 error = sb->s_op->freeze_fs(sb);
243 "VFS:Filesystem freeze failed\n");
244 sb->s_frozen = SB_UNFROZEN;
246 up(&bdev->bd_mount_sem);
247 bdev->bd_fsfreeze_count--;
248 mutex_unlock(&bdev->bd_fsfreeze_mutex);
249 return ERR_PTR(error);
255 mutex_unlock(&bdev->bd_fsfreeze_mutex);
257 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
259 EXPORT_SYMBOL(freeze_bdev);
262 * thaw_bdev -- unlock filesystem
263 * @bdev: blockdevice to unlock
264 * @sb: associated superblock
266 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
268 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
272 mutex_lock(&bdev->bd_fsfreeze_mutex);
273 if (!bdev->bd_fsfreeze_count) {
274 mutex_unlock(&bdev->bd_fsfreeze_mutex);
278 bdev->bd_fsfreeze_count--;
279 if (bdev->bd_fsfreeze_count > 0) {
282 mutex_unlock(&bdev->bd_fsfreeze_mutex);
287 BUG_ON(sb->s_bdev != bdev);
288 if (!(sb->s_flags & MS_RDONLY)) {
289 if (sb->s_op->unfreeze_fs) {
290 error = sb->s_op->unfreeze_fs(sb);
293 "VFS:Filesystem thaw failed\n");
294 sb->s_frozen = SB_FREEZE_TRANS;
295 bdev->bd_fsfreeze_count++;
296 mutex_unlock(&bdev->bd_fsfreeze_mutex);
300 sb->s_frozen = SB_UNFROZEN;
302 wake_up(&sb->s_wait_unfrozen);
307 up(&bdev->bd_mount_sem);
308 mutex_unlock(&bdev->bd_fsfreeze_mutex);
311 EXPORT_SYMBOL(thaw_bdev);
314 * Various filesystems appear to want __find_get_block to be non-blocking.
315 * But it's the page lock which protects the buffers. To get around this,
316 * we get exclusion from try_to_free_buffers with the blockdev mapping's
319 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
320 * may be quite high. This code could TryLock the page, and if that
321 * succeeds, there is no need to take private_lock. (But if
322 * private_lock is contended then so is mapping->tree_lock).
324 static struct buffer_head *
325 __find_get_block_slow(struct block_device *bdev, sector_t block)
327 struct inode *bd_inode = bdev->bd_inode;
328 struct address_space *bd_mapping = bd_inode->i_mapping;
329 struct buffer_head *ret = NULL;
331 struct buffer_head *bh;
332 struct buffer_head *head;
336 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
337 page = find_get_page(bd_mapping, index);
341 spin_lock(&bd_mapping->private_lock);
342 if (!page_has_buffers(page))
344 head = page_buffers(page);
347 if (bh->b_blocknr == block) {
352 if (!buffer_mapped(bh))
354 bh = bh->b_this_page;
355 } while (bh != head);
357 /* we might be here because some of the buffers on this page are
358 * not mapped. This is due to various races between
359 * file io on the block device and getblk. It gets dealt with
360 * elsewhere, don't buffer_error if we had some unmapped buffers
363 printk("__find_get_block_slow() failed. "
364 "block=%llu, b_blocknr=%llu\n",
365 (unsigned long long)block,
366 (unsigned long long)bh->b_blocknr);
367 printk("b_state=0x%08lx, b_size=%zu\n",
368 bh->b_state, bh->b_size);
369 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
372 spin_unlock(&bd_mapping->private_lock);
373 page_cache_release(page);
378 /* If invalidate_buffers() will trash dirty buffers, it means some kind
379 of fs corruption is going on. Trashing dirty data always imply losing
380 information that was supposed to be just stored on the physical layer
383 Thus invalidate_buffers in general usage is not allwowed to trash
384 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
385 be preserved. These buffers are simply skipped.
387 We also skip buffers which are still in use. For example this can
388 happen if a userspace program is reading the block device.
390 NOTE: In the case where the user removed a removable-media-disk even if
391 there's still dirty data not synced on disk (due a bug in the device driver
392 or due an error of the user), by not destroying the dirty buffers we could
393 generate corruption also on the next media inserted, thus a parameter is
394 necessary to handle this case in the most safe way possible (trying
395 to not corrupt also the new disk inserted with the data belonging to
396 the old now corrupted disk). Also for the ramdisk the natural thing
397 to do in order to release the ramdisk memory is to destroy dirty buffers.
399 These are two special cases. Normal usage imply the device driver
400 to issue a sync on the device (without waiting I/O completion) and
401 then an invalidate_buffers call that doesn't trash dirty buffers.
403 For handling cache coherency with the blkdev pagecache the 'update' case
404 is been introduced. It is needed to re-read from disk any pinned
405 buffer. NOTE: re-reading from disk is destructive so we can do it only
406 when we assume nobody is changing the buffercache under our I/O and when
407 we think the disk contains more recent information than the buffercache.
408 The update == 1 pass marks the buffers we need to update, the update == 2
409 pass does the actual I/O. */
410 void invalidate_bdev(struct block_device *bdev)
412 struct address_space *mapping = bdev->bd_inode->i_mapping;
414 if (mapping->nrpages == 0)
417 invalidate_bh_lrus();
418 invalidate_mapping_pages(mapping, 0, -1);
422 * Kick pdflush then try to free up some ZONE_NORMAL memory.
424 static void free_more_memory(void)
429 wakeup_pdflush(1024);
432 for_each_online_node(nid) {
433 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
434 gfp_zone(GFP_NOFS), NULL,
437 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
443 * I/O completion handler for block_read_full_page() - pages
444 * which come unlocked at the end of I/O.
446 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
449 struct buffer_head *first;
450 struct buffer_head *tmp;
452 int page_uptodate = 1;
454 BUG_ON(!buffer_async_read(bh));
458 set_buffer_uptodate(bh);
460 clear_buffer_uptodate(bh);
461 if (!quiet_error(bh))
467 * Be _very_ careful from here on. Bad things can happen if
468 * two buffer heads end IO at almost the same time and both
469 * decide that the page is now completely done.
471 first = page_buffers(page);
472 local_irq_save(flags);
473 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
474 clear_buffer_async_read(bh);
478 if (!buffer_uptodate(tmp))
480 if (buffer_async_read(tmp)) {
481 BUG_ON(!buffer_locked(tmp));
484 tmp = tmp->b_this_page;
486 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
487 local_irq_restore(flags);
490 * If none of the buffers had errors and they are all
491 * uptodate then we can set the page uptodate.
493 if (page_uptodate && !PageError(page))
494 SetPageUptodate(page);
499 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
500 local_irq_restore(flags);
505 * Completion handler for block_write_full_page() - pages which are unlocked
506 * during I/O, and which have PageWriteback cleared upon I/O completion.
508 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
510 char b[BDEVNAME_SIZE];
512 struct buffer_head *first;
513 struct buffer_head *tmp;
516 BUG_ON(!buffer_async_write(bh));
520 set_buffer_uptodate(bh);
522 if (!quiet_error(bh)) {
524 printk(KERN_WARNING "lost page write due to "
526 bdevname(bh->b_bdev, b));
528 set_bit(AS_EIO, &page->mapping->flags);
529 set_buffer_write_io_error(bh);
530 clear_buffer_uptodate(bh);
534 first = page_buffers(page);
535 local_irq_save(flags);
536 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
538 clear_buffer_async_write(bh);
540 tmp = bh->b_this_page;
542 if (buffer_async_write(tmp)) {
543 BUG_ON(!buffer_locked(tmp));
546 tmp = tmp->b_this_page;
548 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
549 local_irq_restore(flags);
550 end_page_writeback(page);
554 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
555 local_irq_restore(flags);
560 * If a page's buffers are under async readin (end_buffer_async_read
561 * completion) then there is a possibility that another thread of
562 * control could lock one of the buffers after it has completed
563 * but while some of the other buffers have not completed. This
564 * locked buffer would confuse end_buffer_async_read() into not unlocking
565 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
566 * that this buffer is not under async I/O.
568 * The page comes unlocked when it has no locked buffer_async buffers
571 * PageLocked prevents anyone starting new async I/O reads any of
574 * PageWriteback is used to prevent simultaneous writeout of the same
577 * PageLocked prevents anyone from starting writeback of a page which is
578 * under read I/O (PageWriteback is only ever set against a locked page).
580 static void mark_buffer_async_read(struct buffer_head *bh)
582 bh->b_end_io = end_buffer_async_read;
583 set_buffer_async_read(bh);
586 void mark_buffer_async_write(struct buffer_head *bh)
588 bh->b_end_io = end_buffer_async_write;
589 set_buffer_async_write(bh);
591 EXPORT_SYMBOL(mark_buffer_async_write);
595 * fs/buffer.c contains helper functions for buffer-backed address space's
596 * fsync functions. A common requirement for buffer-based filesystems is
597 * that certain data from the backing blockdev needs to be written out for
598 * a successful fsync(). For example, ext2 indirect blocks need to be
599 * written back and waited upon before fsync() returns.
601 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
602 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
603 * management of a list of dependent buffers at ->i_mapping->private_list.
605 * Locking is a little subtle: try_to_free_buffers() will remove buffers
606 * from their controlling inode's queue when they are being freed. But
607 * try_to_free_buffers() will be operating against the *blockdev* mapping
608 * at the time, not against the S_ISREG file which depends on those buffers.
609 * So the locking for private_list is via the private_lock in the address_space
610 * which backs the buffers. Which is different from the address_space
611 * against which the buffers are listed. So for a particular address_space,
612 * mapping->private_lock does *not* protect mapping->private_list! In fact,
613 * mapping->private_list will always be protected by the backing blockdev's
616 * Which introduces a requirement: all buffers on an address_space's
617 * ->private_list must be from the same address_space: the blockdev's.
619 * address_spaces which do not place buffers at ->private_list via these
620 * utility functions are free to use private_lock and private_list for
621 * whatever they want. The only requirement is that list_empty(private_list)
622 * be true at clear_inode() time.
624 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
625 * filesystems should do that. invalidate_inode_buffers() should just go
626 * BUG_ON(!list_empty).
628 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
629 * take an address_space, not an inode. And it should be called
630 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
633 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
634 * list if it is already on a list. Because if the buffer is on a list,
635 * it *must* already be on the right one. If not, the filesystem is being
636 * silly. This will save a ton of locking. But first we have to ensure
637 * that buffers are taken *off* the old inode's list when they are freed
638 * (presumably in truncate). That requires careful auditing of all
639 * filesystems (do it inside bforget()). It could also be done by bringing
644 * The buffer's backing address_space's private_lock must be held
646 static void __remove_assoc_queue(struct buffer_head *bh)
648 list_del_init(&bh->b_assoc_buffers);
649 WARN_ON(!bh->b_assoc_map);
650 if (buffer_write_io_error(bh))
651 set_bit(AS_EIO, &bh->b_assoc_map->flags);
652 bh->b_assoc_map = NULL;
655 int inode_has_buffers(struct inode *inode)
657 return !list_empty(&inode->i_data.private_list);
661 * osync is designed to support O_SYNC io. It waits synchronously for
662 * all already-submitted IO to complete, but does not queue any new
663 * writes to the disk.
665 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
666 * you dirty the buffers, and then use osync_inode_buffers to wait for
667 * completion. Any other dirty buffers which are not yet queued for
668 * write will not be flushed to disk by the osync.
670 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
672 struct buffer_head *bh;
678 list_for_each_prev(p, list) {
680 if (buffer_locked(bh)) {
684 if (!buffer_uptodate(bh))
696 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
697 * @mapping: the mapping which wants those buffers written
699 * Starts I/O against the buffers at mapping->private_list, and waits upon
702 * Basically, this is a convenience function for fsync().
703 * @mapping is a file or directory which needs those buffers to be written for
704 * a successful fsync().
706 int sync_mapping_buffers(struct address_space *mapping)
708 struct address_space *buffer_mapping = mapping->assoc_mapping;
710 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
713 return fsync_buffers_list(&buffer_mapping->private_lock,
714 &mapping->private_list);
716 EXPORT_SYMBOL(sync_mapping_buffers);
719 * Called when we've recently written block `bblock', and it is known that
720 * `bblock' was for a buffer_boundary() buffer. This means that the block at
721 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
722 * dirty, schedule it for IO. So that indirects merge nicely with their data.
724 void write_boundary_block(struct block_device *bdev,
725 sector_t bblock, unsigned blocksize)
727 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
729 if (buffer_dirty(bh))
730 ll_rw_block(WRITE, 1, &bh);
735 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
737 struct address_space *mapping = inode->i_mapping;
738 struct address_space *buffer_mapping = bh->b_page->mapping;
740 mark_buffer_dirty(bh);
741 if (!mapping->assoc_mapping) {
742 mapping->assoc_mapping = buffer_mapping;
744 BUG_ON(mapping->assoc_mapping != buffer_mapping);
746 if (!bh->b_assoc_map) {
747 spin_lock(&buffer_mapping->private_lock);
748 list_move_tail(&bh->b_assoc_buffers,
749 &mapping->private_list);
750 bh->b_assoc_map = mapping;
751 spin_unlock(&buffer_mapping->private_lock);
754 EXPORT_SYMBOL(mark_buffer_dirty_inode);
757 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
760 * If warn is true, then emit a warning if the page is not uptodate and has
761 * not been truncated.
763 static int __set_page_dirty(struct page *page,
764 struct address_space *mapping, int warn)
766 if (unlikely(!mapping))
767 return !TestSetPageDirty(page);
769 if (TestSetPageDirty(page))
772 spin_lock_irq(&mapping->tree_lock);
773 if (page->mapping) { /* Race with truncate? */
774 WARN_ON_ONCE(warn && !PageUptodate(page));
776 if (mapping_cap_account_dirty(mapping)) {
777 __inc_zone_page_state(page, NR_FILE_DIRTY);
778 __inc_bdi_stat(mapping->backing_dev_info,
780 task_dirty_inc(current);
781 task_io_account_write(PAGE_CACHE_SIZE);
783 radix_tree_tag_set(&mapping->page_tree,
784 page_index(page), PAGECACHE_TAG_DIRTY);
786 spin_unlock_irq(&mapping->tree_lock);
787 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
793 * Add a page to the dirty page list.
795 * It is a sad fact of life that this function is called from several places
796 * deeply under spinlocking. It may not sleep.
798 * If the page has buffers, the uptodate buffers are set dirty, to preserve
799 * dirty-state coherency between the page and the buffers. It the page does
800 * not have buffers then when they are later attached they will all be set
803 * The buffers are dirtied before the page is dirtied. There's a small race
804 * window in which a writepage caller may see the page cleanness but not the
805 * buffer dirtiness. That's fine. If this code were to set the page dirty
806 * before the buffers, a concurrent writepage caller could clear the page dirty
807 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
808 * page on the dirty page list.
810 * We use private_lock to lock against try_to_free_buffers while using the
811 * page's buffer list. Also use this to protect against clean buffers being
812 * added to the page after it was set dirty.
814 * FIXME: may need to call ->reservepage here as well. That's rather up to the
815 * address_space though.
817 int __set_page_dirty_buffers(struct page *page)
819 struct address_space *mapping = page_mapping(page);
821 if (unlikely(!mapping))
822 return !TestSetPageDirty(page);
824 spin_lock(&mapping->private_lock);
825 if (page_has_buffers(page)) {
826 struct buffer_head *head = page_buffers(page);
827 struct buffer_head *bh = head;
830 set_buffer_dirty(bh);
831 bh = bh->b_this_page;
832 } while (bh != head);
834 spin_unlock(&mapping->private_lock);
836 return __set_page_dirty(page, mapping, 1);
838 EXPORT_SYMBOL(__set_page_dirty_buffers);
841 * Write out and wait upon a list of buffers.
843 * We have conflicting pressures: we want to make sure that all
844 * initially dirty buffers get waited on, but that any subsequently
845 * dirtied buffers don't. After all, we don't want fsync to last
846 * forever if somebody is actively writing to the file.
848 * Do this in two main stages: first we copy dirty buffers to a
849 * temporary inode list, queueing the writes as we go. Then we clean
850 * up, waiting for those writes to complete.
852 * During this second stage, any subsequent updates to the file may end
853 * up refiling the buffer on the original inode's dirty list again, so
854 * there is a chance we will end up with a buffer queued for write but
855 * not yet completed on that list. So, as a final cleanup we go through
856 * the osync code to catch these locked, dirty buffers without requeuing
857 * any newly dirty buffers for write.
859 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
861 struct buffer_head *bh;
862 struct list_head tmp;
863 struct address_space *mapping;
866 INIT_LIST_HEAD(&tmp);
869 while (!list_empty(list)) {
870 bh = BH_ENTRY(list->next);
871 mapping = bh->b_assoc_map;
872 __remove_assoc_queue(bh);
873 /* Avoid race with mark_buffer_dirty_inode() which does
874 * a lockless check and we rely on seeing the dirty bit */
876 if (buffer_dirty(bh) || buffer_locked(bh)) {
877 list_add(&bh->b_assoc_buffers, &tmp);
878 bh->b_assoc_map = mapping;
879 if (buffer_dirty(bh)) {
883 * Ensure any pending I/O completes so that
884 * ll_rw_block() actually writes the current
885 * contents - it is a noop if I/O is still in
886 * flight on potentially older contents.
888 ll_rw_block(SWRITE_SYNC, 1, &bh);
895 while (!list_empty(&tmp)) {
896 bh = BH_ENTRY(tmp.prev);
898 mapping = bh->b_assoc_map;
899 __remove_assoc_queue(bh);
900 /* Avoid race with mark_buffer_dirty_inode() which does
901 * a lockless check and we rely on seeing the dirty bit */
903 if (buffer_dirty(bh)) {
904 list_add(&bh->b_assoc_buffers,
905 &mapping->private_list);
906 bh->b_assoc_map = mapping;
910 if (!buffer_uptodate(bh))
917 err2 = osync_buffers_list(lock, list);
925 * Invalidate any and all dirty buffers on a given inode. We are
926 * probably unmounting the fs, but that doesn't mean we have already
927 * done a sync(). Just drop the buffers from the inode list.
929 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
930 * assumes that all the buffers are against the blockdev. Not true
933 void invalidate_inode_buffers(struct inode *inode)
935 if (inode_has_buffers(inode)) {
936 struct address_space *mapping = &inode->i_data;
937 struct list_head *list = &mapping->private_list;
938 struct address_space *buffer_mapping = mapping->assoc_mapping;
940 spin_lock(&buffer_mapping->private_lock);
941 while (!list_empty(list))
942 __remove_assoc_queue(BH_ENTRY(list->next));
943 spin_unlock(&buffer_mapping->private_lock);
946 EXPORT_SYMBOL(invalidate_inode_buffers);
949 * Remove any clean buffers from the inode's buffer list. This is called
950 * when we're trying to free the inode itself. Those buffers can pin it.
952 * Returns true if all buffers were removed.
954 int remove_inode_buffers(struct inode *inode)
958 if (inode_has_buffers(inode)) {
959 struct address_space *mapping = &inode->i_data;
960 struct list_head *list = &mapping->private_list;
961 struct address_space *buffer_mapping = mapping->assoc_mapping;
963 spin_lock(&buffer_mapping->private_lock);
964 while (!list_empty(list)) {
965 struct buffer_head *bh = BH_ENTRY(list->next);
966 if (buffer_dirty(bh)) {
970 __remove_assoc_queue(bh);
972 spin_unlock(&buffer_mapping->private_lock);
978 * Create the appropriate buffers when given a page for data area and
979 * the size of each buffer.. Use the bh->b_this_page linked list to
980 * follow the buffers created. Return NULL if unable to create more
983 * The retry flag is used to differentiate async IO (paging, swapping)
984 * which may not fail from ordinary buffer allocations.
986 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
989 struct buffer_head *bh, *head;
995 while ((offset -= size) >= 0) {
996 bh = alloc_buffer_head(GFP_NOFS);
1001 bh->b_this_page = head;
1006 atomic_set(&bh->b_count, 0);
1007 bh->b_private = NULL;
1010 /* Link the buffer to its page */
1011 set_bh_page(bh, page, offset);
1013 init_buffer(bh, NULL, NULL);
1017 * In case anything failed, we just free everything we got.
1023 head = head->b_this_page;
1024 free_buffer_head(bh);
1029 * Return failure for non-async IO requests. Async IO requests
1030 * are not allowed to fail, so we have to wait until buffer heads
1031 * become available. But we don't want tasks sleeping with
1032 * partially complete buffers, so all were released above.
1037 /* We're _really_ low on memory. Now we just
1038 * wait for old buffer heads to become free due to
1039 * finishing IO. Since this is an async request and
1040 * the reserve list is empty, we're sure there are
1041 * async buffer heads in use.
1046 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1049 link_dev_buffers(struct page *page, struct buffer_head *head)
1051 struct buffer_head *bh, *tail;
1056 bh = bh->b_this_page;
1058 tail->b_this_page = head;
1059 attach_page_buffers(page, head);
1063 * Initialise the state of a blockdev page's buffers.
1066 init_page_buffers(struct page *page, struct block_device *bdev,
1067 sector_t block, int size)
1069 struct buffer_head *head = page_buffers(page);
1070 struct buffer_head *bh = head;
1071 int uptodate = PageUptodate(page);
1074 if (!buffer_mapped(bh)) {
1075 init_buffer(bh, NULL, NULL);
1077 bh->b_blocknr = block;
1079 set_buffer_uptodate(bh);
1080 set_buffer_mapped(bh);
1083 bh = bh->b_this_page;
1084 } while (bh != head);
1088 * Create the page-cache page that contains the requested block.
1090 * This is user purely for blockdev mappings.
1092 static struct page *
1093 grow_dev_page(struct block_device *bdev, sector_t block,
1094 pgoff_t index, int size)
1096 struct inode *inode = bdev->bd_inode;
1098 struct buffer_head *bh;
1100 page = find_or_create_page(inode->i_mapping, index,
1101 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1105 BUG_ON(!PageLocked(page));
1107 if (page_has_buffers(page)) {
1108 bh = page_buffers(page);
1109 if (bh->b_size == size) {
1110 init_page_buffers(page, bdev, block, size);
1113 if (!try_to_free_buffers(page))
1118 * Allocate some buffers for this page
1120 bh = alloc_page_buffers(page, size, 0);
1125 * Link the page to the buffers and initialise them. Take the
1126 * lock to be atomic wrt __find_get_block(), which does not
1127 * run under the page lock.
1129 spin_lock(&inode->i_mapping->private_lock);
1130 link_dev_buffers(page, bh);
1131 init_page_buffers(page, bdev, block, size);
1132 spin_unlock(&inode->i_mapping->private_lock);
1138 page_cache_release(page);
1143 * Create buffers for the specified block device block's page. If
1144 * that page was dirty, the buffers are set dirty also.
1147 grow_buffers(struct block_device *bdev, sector_t block, int size)
1156 } while ((size << sizebits) < PAGE_SIZE);
1158 index = block >> sizebits;
1161 * Check for a block which wants to lie outside our maximum possible
1162 * pagecache index. (this comparison is done using sector_t types).
1164 if (unlikely(index != block >> sizebits)) {
1165 char b[BDEVNAME_SIZE];
1167 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1169 __func__, (unsigned long long)block,
1173 block = index << sizebits;
1174 /* Create a page with the proper size buffers.. */
1175 page = grow_dev_page(bdev, block, index, size);
1179 page_cache_release(page);
1183 static struct buffer_head *
1184 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1186 /* Size must be multiple of hard sectorsize */
1187 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1188 (size < 512 || size > PAGE_SIZE))) {
1189 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1191 printk(KERN_ERR "hardsect size: %d\n",
1192 bdev_hardsect_size(bdev));
1199 struct buffer_head * bh;
1202 bh = __find_get_block(bdev, block, size);
1206 ret = grow_buffers(bdev, block, size);
1215 * The relationship between dirty buffers and dirty pages:
1217 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1218 * the page is tagged dirty in its radix tree.
1220 * At all times, the dirtiness of the buffers represents the dirtiness of
1221 * subsections of the page. If the page has buffers, the page dirty bit is
1222 * merely a hint about the true dirty state.
1224 * When a page is set dirty in its entirety, all its buffers are marked dirty
1225 * (if the page has buffers).
1227 * When a buffer is marked dirty, its page is dirtied, but the page's other
1230 * Also. When blockdev buffers are explicitly read with bread(), they
1231 * individually become uptodate. But their backing page remains not
1232 * uptodate - even if all of its buffers are uptodate. A subsequent
1233 * block_read_full_page() against that page will discover all the uptodate
1234 * buffers, will set the page uptodate and will perform no I/O.
1238 * mark_buffer_dirty - mark a buffer_head as needing writeout
1239 * @bh: the buffer_head to mark dirty
1241 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1242 * backing page dirty, then tag the page as dirty in its address_space's radix
1243 * tree and then attach the address_space's inode to its superblock's dirty
1246 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1247 * mapping->tree_lock and the global inode_lock.
1249 void mark_buffer_dirty(struct buffer_head *bh)
1251 WARN_ON_ONCE(!buffer_uptodate(bh));
1254 * Very *carefully* optimize the it-is-already-dirty case.
1256 * Don't let the final "is it dirty" escape to before we
1257 * perhaps modified the buffer.
1259 if (buffer_dirty(bh)) {
1261 if (buffer_dirty(bh))
1265 if (!test_set_buffer_dirty(bh))
1266 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1270 * Decrement a buffer_head's reference count. If all buffers against a page
1271 * have zero reference count, are clean and unlocked, and if the page is clean
1272 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1273 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1274 * a page but it ends up not being freed, and buffers may later be reattached).
1276 void __brelse(struct buffer_head * buf)
1278 if (atomic_read(&buf->b_count)) {
1282 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1286 * bforget() is like brelse(), except it discards any
1287 * potentially dirty data.
1289 void __bforget(struct buffer_head *bh)
1291 clear_buffer_dirty(bh);
1292 if (bh->b_assoc_map) {
1293 struct address_space *buffer_mapping = bh->b_page->mapping;
1295 spin_lock(&buffer_mapping->private_lock);
1296 list_del_init(&bh->b_assoc_buffers);
1297 bh->b_assoc_map = NULL;
1298 spin_unlock(&buffer_mapping->private_lock);
1303 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1306 if (buffer_uptodate(bh)) {
1311 bh->b_end_io = end_buffer_read_sync;
1312 submit_bh(READ, bh);
1314 if (buffer_uptodate(bh))
1322 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1323 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1324 * refcount elevated by one when they're in an LRU. A buffer can only appear
1325 * once in a particular CPU's LRU. A single buffer can be present in multiple
1326 * CPU's LRUs at the same time.
1328 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1329 * sb_find_get_block().
1331 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1332 * a local interrupt disable for that.
1335 #define BH_LRU_SIZE 8
1338 struct buffer_head *bhs[BH_LRU_SIZE];
1341 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1344 #define bh_lru_lock() local_irq_disable()
1345 #define bh_lru_unlock() local_irq_enable()
1347 #define bh_lru_lock() preempt_disable()
1348 #define bh_lru_unlock() preempt_enable()
1351 static inline void check_irqs_on(void)
1353 #ifdef irqs_disabled
1354 BUG_ON(irqs_disabled());
1359 * The LRU management algorithm is dopey-but-simple. Sorry.
1361 static void bh_lru_install(struct buffer_head *bh)
1363 struct buffer_head *evictee = NULL;
1368 lru = &__get_cpu_var(bh_lrus);
1369 if (lru->bhs[0] != bh) {
1370 struct buffer_head *bhs[BH_LRU_SIZE];
1376 for (in = 0; in < BH_LRU_SIZE; in++) {
1377 struct buffer_head *bh2 = lru->bhs[in];
1382 if (out >= BH_LRU_SIZE) {
1383 BUG_ON(evictee != NULL);
1390 while (out < BH_LRU_SIZE)
1392 memcpy(lru->bhs, bhs, sizeof(bhs));
1401 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1403 static struct buffer_head *
1404 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1406 struct buffer_head *ret = NULL;
1412 lru = &__get_cpu_var(bh_lrus);
1413 for (i = 0; i < BH_LRU_SIZE; i++) {
1414 struct buffer_head *bh = lru->bhs[i];
1416 if (bh && bh->b_bdev == bdev &&
1417 bh->b_blocknr == block && bh->b_size == size) {
1420 lru->bhs[i] = lru->bhs[i - 1];
1435 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1436 * it in the LRU and mark it as accessed. If it is not present then return
1439 struct buffer_head *
1440 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1442 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1445 bh = __find_get_block_slow(bdev, block);
1453 EXPORT_SYMBOL(__find_get_block);
1456 * __getblk will locate (and, if necessary, create) the buffer_head
1457 * which corresponds to the passed block_device, block and size. The
1458 * returned buffer has its reference count incremented.
1460 * __getblk() cannot fail - it just keeps trying. If you pass it an
1461 * illegal block number, __getblk() will happily return a buffer_head
1462 * which represents the non-existent block. Very weird.
1464 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1465 * attempt is failing. FIXME, perhaps?
1467 struct buffer_head *
1468 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1470 struct buffer_head *bh = __find_get_block(bdev, block, size);
1474 bh = __getblk_slow(bdev, block, size);
1477 EXPORT_SYMBOL(__getblk);
1480 * Do async read-ahead on a buffer..
1482 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1484 struct buffer_head *bh = __getblk(bdev, block, size);
1486 ll_rw_block(READA, 1, &bh);
1490 EXPORT_SYMBOL(__breadahead);
1493 * __bread() - reads a specified block and returns the bh
1494 * @bdev: the block_device to read from
1495 * @block: number of block
1496 * @size: size (in bytes) to read
1498 * Reads a specified block, and returns buffer head that contains it.
1499 * It returns NULL if the block was unreadable.
1501 struct buffer_head *
1502 __bread(struct block_device *bdev, sector_t block, unsigned size)
1504 struct buffer_head *bh = __getblk(bdev, block, size);
1506 if (likely(bh) && !buffer_uptodate(bh))
1507 bh = __bread_slow(bh);
1510 EXPORT_SYMBOL(__bread);
1513 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1514 * This doesn't race because it runs in each cpu either in irq
1515 * or with preempt disabled.
1517 static void invalidate_bh_lru(void *arg)
1519 struct bh_lru *b = &get_cpu_var(bh_lrus);
1522 for (i = 0; i < BH_LRU_SIZE; i++) {
1526 put_cpu_var(bh_lrus);
1529 void invalidate_bh_lrus(void)
1531 on_each_cpu(invalidate_bh_lru, NULL, 1);
1533 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1535 void set_bh_page(struct buffer_head *bh,
1536 struct page *page, unsigned long offset)
1539 BUG_ON(offset >= PAGE_SIZE);
1540 if (PageHighMem(page))
1542 * This catches illegal uses and preserves the offset:
1544 bh->b_data = (char *)(0 + offset);
1546 bh->b_data = page_address(page) + offset;
1548 EXPORT_SYMBOL(set_bh_page);
1551 * Called when truncating a buffer on a page completely.
1553 static void discard_buffer(struct buffer_head * bh)
1556 clear_buffer_dirty(bh);
1558 clear_buffer_mapped(bh);
1559 clear_buffer_req(bh);
1560 clear_buffer_new(bh);
1561 clear_buffer_delay(bh);
1562 clear_buffer_unwritten(bh);
1567 * block_invalidatepage - invalidate part of all of a buffer-backed page
1569 * @page: the page which is affected
1570 * @offset: the index of the truncation point
1572 * block_invalidatepage() is called when all or part of the page has become
1573 * invalidatedby a truncate operation.
1575 * block_invalidatepage() does not have to release all buffers, but it must
1576 * ensure that no dirty buffer is left outside @offset and that no I/O
1577 * is underway against any of the blocks which are outside the truncation
1578 * point. Because the caller is about to free (and possibly reuse) those
1581 void block_invalidatepage(struct page *page, unsigned long offset)
1583 struct buffer_head *head, *bh, *next;
1584 unsigned int curr_off = 0;
1586 BUG_ON(!PageLocked(page));
1587 if (!page_has_buffers(page))
1590 head = page_buffers(page);
1593 unsigned int next_off = curr_off + bh->b_size;
1594 next = bh->b_this_page;
1597 * is this block fully invalidated?
1599 if (offset <= curr_off)
1601 curr_off = next_off;
1603 } while (bh != head);
1606 * We release buffers only if the entire page is being invalidated.
1607 * The get_block cached value has been unconditionally invalidated,
1608 * so real IO is not possible anymore.
1611 try_to_release_page(page, 0);
1615 EXPORT_SYMBOL(block_invalidatepage);
1618 * We attach and possibly dirty the buffers atomically wrt
1619 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1620 * is already excluded via the page lock.
1622 void create_empty_buffers(struct page *page,
1623 unsigned long blocksize, unsigned long b_state)
1625 struct buffer_head *bh, *head, *tail;
1627 head = alloc_page_buffers(page, blocksize, 1);
1630 bh->b_state |= b_state;
1632 bh = bh->b_this_page;
1634 tail->b_this_page = head;
1636 spin_lock(&page->mapping->private_lock);
1637 if (PageUptodate(page) || PageDirty(page)) {
1640 if (PageDirty(page))
1641 set_buffer_dirty(bh);
1642 if (PageUptodate(page))
1643 set_buffer_uptodate(bh);
1644 bh = bh->b_this_page;
1645 } while (bh != head);
1647 attach_page_buffers(page, head);
1648 spin_unlock(&page->mapping->private_lock);
1650 EXPORT_SYMBOL(create_empty_buffers);
1653 * We are taking a block for data and we don't want any output from any
1654 * buffer-cache aliases starting from return from that function and
1655 * until the moment when something will explicitly mark the buffer
1656 * dirty (hopefully that will not happen until we will free that block ;-)
1657 * We don't even need to mark it not-uptodate - nobody can expect
1658 * anything from a newly allocated buffer anyway. We used to used
1659 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1660 * don't want to mark the alias unmapped, for example - it would confuse
1661 * anyone who might pick it with bread() afterwards...
1663 * Also.. Note that bforget() doesn't lock the buffer. So there can
1664 * be writeout I/O going on against recently-freed buffers. We don't
1665 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1666 * only if we really need to. That happens here.
1668 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1670 struct buffer_head *old_bh;
1674 old_bh = __find_get_block_slow(bdev, block);
1676 clear_buffer_dirty(old_bh);
1677 wait_on_buffer(old_bh);
1678 clear_buffer_req(old_bh);
1682 EXPORT_SYMBOL(unmap_underlying_metadata);
1685 * NOTE! All mapped/uptodate combinations are valid:
1687 * Mapped Uptodate Meaning
1689 * No No "unknown" - must do get_block()
1690 * No Yes "hole" - zero-filled
1691 * Yes No "allocated" - allocated on disk, not read in
1692 * Yes Yes "valid" - allocated and up-to-date in memory.
1694 * "Dirty" is valid only with the last case (mapped+uptodate).
1698 * While block_write_full_page is writing back the dirty buffers under
1699 * the page lock, whoever dirtied the buffers may decide to clean them
1700 * again at any time. We handle that by only looking at the buffer
1701 * state inside lock_buffer().
1703 * If block_write_full_page() is called for regular writeback
1704 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1705 * locked buffer. This only can happen if someone has written the buffer
1706 * directly, with submit_bh(). At the address_space level PageWriteback
1707 * prevents this contention from occurring.
1709 static int __block_write_full_page(struct inode *inode, struct page *page,
1710 get_block_t *get_block, struct writeback_control *wbc)
1714 sector_t last_block;
1715 struct buffer_head *bh, *head;
1716 const unsigned blocksize = 1 << inode->i_blkbits;
1717 int nr_underway = 0;
1719 BUG_ON(!PageLocked(page));
1721 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1723 if (!page_has_buffers(page)) {
1724 create_empty_buffers(page, blocksize,
1725 (1 << BH_Dirty)|(1 << BH_Uptodate));
1729 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1730 * here, and the (potentially unmapped) buffers may become dirty at
1731 * any time. If a buffer becomes dirty here after we've inspected it
1732 * then we just miss that fact, and the page stays dirty.
1734 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1735 * handle that here by just cleaning them.
1738 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1739 head = page_buffers(page);
1743 * Get all the dirty buffers mapped to disk addresses and
1744 * handle any aliases from the underlying blockdev's mapping.
1747 if (block > last_block) {
1749 * mapped buffers outside i_size will occur, because
1750 * this page can be outside i_size when there is a
1751 * truncate in progress.
1754 * The buffer was zeroed by block_write_full_page()
1756 clear_buffer_dirty(bh);
1757 set_buffer_uptodate(bh);
1758 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1760 WARN_ON(bh->b_size != blocksize);
1761 err = get_block(inode, block, bh, 1);
1764 clear_buffer_delay(bh);
1765 if (buffer_new(bh)) {
1766 /* blockdev mappings never come here */
1767 clear_buffer_new(bh);
1768 unmap_underlying_metadata(bh->b_bdev,
1772 bh = bh->b_this_page;
1774 } while (bh != head);
1777 if (!buffer_mapped(bh))
1780 * If it's a fully non-blocking write attempt and we cannot
1781 * lock the buffer then redirty the page. Note that this can
1782 * potentially cause a busy-wait loop from pdflush and kswapd
1783 * activity, but those code paths have their own higher-level
1786 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1788 } else if (!trylock_buffer(bh)) {
1789 redirty_page_for_writepage(wbc, page);
1792 if (test_clear_buffer_dirty(bh)) {
1793 mark_buffer_async_write(bh);
1797 } while ((bh = bh->b_this_page) != head);
1800 * The page and its buffers are protected by PageWriteback(), so we can
1801 * drop the bh refcounts early.
1803 BUG_ON(PageWriteback(page));
1804 set_page_writeback(page);
1807 struct buffer_head *next = bh->b_this_page;
1808 if (buffer_async_write(bh)) {
1809 submit_bh(WRITE, bh);
1813 } while (bh != head);
1818 if (nr_underway == 0) {
1820 * The page was marked dirty, but the buffers were
1821 * clean. Someone wrote them back by hand with
1822 * ll_rw_block/submit_bh. A rare case.
1824 end_page_writeback(page);
1827 * The page and buffer_heads can be released at any time from
1835 * ENOSPC, or some other error. We may already have added some
1836 * blocks to the file, so we need to write these out to avoid
1837 * exposing stale data.
1838 * The page is currently locked and not marked for writeback
1841 /* Recovery: lock and submit the mapped buffers */
1843 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1844 !buffer_delay(bh)) {
1846 mark_buffer_async_write(bh);
1849 * The buffer may have been set dirty during
1850 * attachment to a dirty page.
1852 clear_buffer_dirty(bh);
1854 } while ((bh = bh->b_this_page) != head);
1856 BUG_ON(PageWriteback(page));
1857 mapping_set_error(page->mapping, err);
1858 set_page_writeback(page);
1860 struct buffer_head *next = bh->b_this_page;
1861 if (buffer_async_write(bh)) {
1862 clear_buffer_dirty(bh);
1863 submit_bh(WRITE, bh);
1867 } while (bh != head);
1873 * If a page has any new buffers, zero them out here, and mark them uptodate
1874 * and dirty so they'll be written out (in order to prevent uninitialised
1875 * block data from leaking). And clear the new bit.
1877 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1879 unsigned int block_start, block_end;
1880 struct buffer_head *head, *bh;
1882 BUG_ON(!PageLocked(page));
1883 if (!page_has_buffers(page))
1886 bh = head = page_buffers(page);
1889 block_end = block_start + bh->b_size;
1891 if (buffer_new(bh)) {
1892 if (block_end > from && block_start < to) {
1893 if (!PageUptodate(page)) {
1894 unsigned start, size;
1896 start = max(from, block_start);
1897 size = min(to, block_end) - start;
1899 zero_user(page, start, size);
1900 set_buffer_uptodate(bh);
1903 clear_buffer_new(bh);
1904 mark_buffer_dirty(bh);
1908 block_start = block_end;
1909 bh = bh->b_this_page;
1910 } while (bh != head);
1912 EXPORT_SYMBOL(page_zero_new_buffers);
1914 static int __block_prepare_write(struct inode *inode, struct page *page,
1915 unsigned from, unsigned to, get_block_t *get_block)
1917 unsigned block_start, block_end;
1920 unsigned blocksize, bbits;
1921 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1923 BUG_ON(!PageLocked(page));
1924 BUG_ON(from > PAGE_CACHE_SIZE);
1925 BUG_ON(to > PAGE_CACHE_SIZE);
1928 blocksize = 1 << inode->i_blkbits;
1929 if (!page_has_buffers(page))
1930 create_empty_buffers(page, blocksize, 0);
1931 head = page_buffers(page);
1933 bbits = inode->i_blkbits;
1934 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1936 for(bh = head, block_start = 0; bh != head || !block_start;
1937 block++, block_start=block_end, bh = bh->b_this_page) {
1938 block_end = block_start + blocksize;
1939 if (block_end <= from || block_start >= to) {
1940 if (PageUptodate(page)) {
1941 if (!buffer_uptodate(bh))
1942 set_buffer_uptodate(bh);
1947 clear_buffer_new(bh);
1948 if (!buffer_mapped(bh)) {
1949 WARN_ON(bh->b_size != blocksize);
1950 err = get_block(inode, block, bh, 1);
1953 if (buffer_new(bh)) {
1954 unmap_underlying_metadata(bh->b_bdev,
1956 if (PageUptodate(page)) {
1957 clear_buffer_new(bh);
1958 set_buffer_uptodate(bh);
1959 mark_buffer_dirty(bh);
1962 if (block_end > to || block_start < from)
1963 zero_user_segments(page,
1969 if (PageUptodate(page)) {
1970 if (!buffer_uptodate(bh))
1971 set_buffer_uptodate(bh);
1974 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1975 !buffer_unwritten(bh) &&
1976 (block_start < from || block_end > to)) {
1977 ll_rw_block(READ, 1, &bh);
1982 * If we issued read requests - let them complete.
1984 while(wait_bh > wait) {
1985 wait_on_buffer(*--wait_bh);
1986 if (!buffer_uptodate(*wait_bh))
1990 page_zero_new_buffers(page, from, to);
1994 static int __block_commit_write(struct inode *inode, struct page *page,
1995 unsigned from, unsigned to)
1997 unsigned block_start, block_end;
2000 struct buffer_head *bh, *head;
2002 blocksize = 1 << inode->i_blkbits;
2004 for(bh = head = page_buffers(page), block_start = 0;
2005 bh != head || !block_start;
2006 block_start=block_end, bh = bh->b_this_page) {
2007 block_end = block_start + blocksize;
2008 if (block_end <= from || block_start >= to) {
2009 if (!buffer_uptodate(bh))
2012 set_buffer_uptodate(bh);
2013 mark_buffer_dirty(bh);
2015 clear_buffer_new(bh);
2019 * If this is a partial write which happened to make all buffers
2020 * uptodate then we can optimize away a bogus readpage() for
2021 * the next read(). Here we 'discover' whether the page went
2022 * uptodate as a result of this (potentially partial) write.
2025 SetPageUptodate(page);
2030 * block_write_begin takes care of the basic task of block allocation and
2031 * bringing partial write blocks uptodate first.
2033 * If *pagep is not NULL, then block_write_begin uses the locked page
2034 * at *pagep rather than allocating its own. In this case, the page will
2035 * not be unlocked or deallocated on failure.
2037 int block_write_begin(struct file *file, struct address_space *mapping,
2038 loff_t pos, unsigned len, unsigned flags,
2039 struct page **pagep, void **fsdata,
2040 get_block_t *get_block)
2042 struct inode *inode = mapping->host;
2046 unsigned start, end;
2049 index = pos >> PAGE_CACHE_SHIFT;
2050 start = pos & (PAGE_CACHE_SIZE - 1);
2056 page = grab_cache_page_write_begin(mapping, index, flags);
2063 BUG_ON(!PageLocked(page));
2065 status = __block_prepare_write(inode, page, start, end, get_block);
2066 if (unlikely(status)) {
2067 ClearPageUptodate(page);
2071 page_cache_release(page);
2075 * prepare_write() may have instantiated a few blocks
2076 * outside i_size. Trim these off again. Don't need
2077 * i_size_read because we hold i_mutex.
2079 if (pos + len > inode->i_size)
2080 vmtruncate(inode, inode->i_size);
2087 EXPORT_SYMBOL(block_write_begin);
2089 int block_write_end(struct file *file, struct address_space *mapping,
2090 loff_t pos, unsigned len, unsigned copied,
2091 struct page *page, void *fsdata)
2093 struct inode *inode = mapping->host;
2096 start = pos & (PAGE_CACHE_SIZE - 1);
2098 if (unlikely(copied < len)) {
2100 * The buffers that were written will now be uptodate, so we
2101 * don't have to worry about a readpage reading them and
2102 * overwriting a partial write. However if we have encountered
2103 * a short write and only partially written into a buffer, it
2104 * will not be marked uptodate, so a readpage might come in and
2105 * destroy our partial write.
2107 * Do the simplest thing, and just treat any short write to a
2108 * non uptodate page as a zero-length write, and force the
2109 * caller to redo the whole thing.
2111 if (!PageUptodate(page))
2114 page_zero_new_buffers(page, start+copied, start+len);
2116 flush_dcache_page(page);
2118 /* This could be a short (even 0-length) commit */
2119 __block_commit_write(inode, page, start, start+copied);
2123 EXPORT_SYMBOL(block_write_end);
2125 int generic_write_end(struct file *file, struct address_space *mapping,
2126 loff_t pos, unsigned len, unsigned copied,
2127 struct page *page, void *fsdata)
2129 struct inode *inode = mapping->host;
2130 int i_size_changed = 0;
2132 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2135 * No need to use i_size_read() here, the i_size
2136 * cannot change under us because we hold i_mutex.
2138 * But it's important to update i_size while still holding page lock:
2139 * page writeout could otherwise come in and zero beyond i_size.
2141 if (pos+copied > inode->i_size) {
2142 i_size_write(inode, pos+copied);
2147 page_cache_release(page);
2150 * Don't mark the inode dirty under page lock. First, it unnecessarily
2151 * makes the holding time of page lock longer. Second, it forces lock
2152 * ordering of page lock and transaction start for journaling
2156 mark_inode_dirty(inode);
2160 EXPORT_SYMBOL(generic_write_end);
2163 * block_is_partially_uptodate checks whether buffers within a page are
2166 * Returns true if all buffers which correspond to a file portion
2167 * we want to read are uptodate.
2169 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2172 struct inode *inode = page->mapping->host;
2173 unsigned block_start, block_end, blocksize;
2175 struct buffer_head *bh, *head;
2178 if (!page_has_buffers(page))
2181 blocksize = 1 << inode->i_blkbits;
2182 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2184 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2187 head = page_buffers(page);
2191 block_end = block_start + blocksize;
2192 if (block_end > from && block_start < to) {
2193 if (!buffer_uptodate(bh)) {
2197 if (block_end >= to)
2200 block_start = block_end;
2201 bh = bh->b_this_page;
2202 } while (bh != head);
2206 EXPORT_SYMBOL(block_is_partially_uptodate);
2209 * Generic "read page" function for block devices that have the normal
2210 * get_block functionality. This is most of the block device filesystems.
2211 * Reads the page asynchronously --- the unlock_buffer() and
2212 * set/clear_buffer_uptodate() functions propagate buffer state into the
2213 * page struct once IO has completed.
2215 int block_read_full_page(struct page *page, get_block_t *get_block)
2217 struct inode *inode = page->mapping->host;
2218 sector_t iblock, lblock;
2219 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2220 unsigned int blocksize;
2222 int fully_mapped = 1;
2224 BUG_ON(!PageLocked(page));
2225 blocksize = 1 << inode->i_blkbits;
2226 if (!page_has_buffers(page))
2227 create_empty_buffers(page, blocksize, 0);
2228 head = page_buffers(page);
2230 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2231 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2237 if (buffer_uptodate(bh))
2240 if (!buffer_mapped(bh)) {
2244 if (iblock < lblock) {
2245 WARN_ON(bh->b_size != blocksize);
2246 err = get_block(inode, iblock, bh, 0);
2250 if (!buffer_mapped(bh)) {
2251 zero_user(page, i * blocksize, blocksize);
2253 set_buffer_uptodate(bh);
2257 * get_block() might have updated the buffer
2260 if (buffer_uptodate(bh))
2264 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2267 SetPageMappedToDisk(page);
2271 * All buffers are uptodate - we can set the page uptodate
2272 * as well. But not if get_block() returned an error.
2274 if (!PageError(page))
2275 SetPageUptodate(page);
2280 /* Stage two: lock the buffers */
2281 for (i = 0; i < nr; i++) {
2284 mark_buffer_async_read(bh);
2288 * Stage 3: start the IO. Check for uptodateness
2289 * inside the buffer lock in case another process reading
2290 * the underlying blockdev brought it uptodate (the sct fix).
2292 for (i = 0; i < nr; i++) {
2294 if (buffer_uptodate(bh))
2295 end_buffer_async_read(bh, 1);
2297 submit_bh(READ, bh);
2302 /* utility function for filesystems that need to do work on expanding
2303 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2304 * deal with the hole.
2306 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2308 struct address_space *mapping = inode->i_mapping;
2311 unsigned long limit;
2315 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2316 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2317 send_sig(SIGXFSZ, current, 0);
2320 if (size > inode->i_sb->s_maxbytes)
2323 err = pagecache_write_begin(NULL, mapping, size, 0,
2324 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2329 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2336 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2337 loff_t pos, loff_t *bytes)
2339 struct inode *inode = mapping->host;
2340 unsigned blocksize = 1 << inode->i_blkbits;
2343 pgoff_t index, curidx;
2345 unsigned zerofrom, offset, len;
2348 index = pos >> PAGE_CACHE_SHIFT;
2349 offset = pos & ~PAGE_CACHE_MASK;
2351 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2352 zerofrom = curpos & ~PAGE_CACHE_MASK;
2353 if (zerofrom & (blocksize-1)) {
2354 *bytes |= (blocksize-1);
2357 len = PAGE_CACHE_SIZE - zerofrom;
2359 err = pagecache_write_begin(file, mapping, curpos, len,
2360 AOP_FLAG_UNINTERRUPTIBLE,
2364 zero_user(page, zerofrom, len);
2365 err = pagecache_write_end(file, mapping, curpos, len, len,
2372 balance_dirty_pages_ratelimited(mapping);
2375 /* page covers the boundary, find the boundary offset */
2376 if (index == curidx) {
2377 zerofrom = curpos & ~PAGE_CACHE_MASK;
2378 /* if we will expand the thing last block will be filled */
2379 if (offset <= zerofrom) {
2382 if (zerofrom & (blocksize-1)) {
2383 *bytes |= (blocksize-1);
2386 len = offset - zerofrom;
2388 err = pagecache_write_begin(file, mapping, curpos, len,
2389 AOP_FLAG_UNINTERRUPTIBLE,
2393 zero_user(page, zerofrom, len);
2394 err = pagecache_write_end(file, mapping, curpos, len, len,
2406 * For moronic filesystems that do not allow holes in file.
2407 * We may have to extend the file.
2409 int cont_write_begin(struct file *file, struct address_space *mapping,
2410 loff_t pos, unsigned len, unsigned flags,
2411 struct page **pagep, void **fsdata,
2412 get_block_t *get_block, loff_t *bytes)
2414 struct inode *inode = mapping->host;
2415 unsigned blocksize = 1 << inode->i_blkbits;
2419 err = cont_expand_zero(file, mapping, pos, bytes);
2423 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2424 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2425 *bytes |= (blocksize-1);
2430 err = block_write_begin(file, mapping, pos, len,
2431 flags, pagep, fsdata, get_block);
2436 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2437 get_block_t *get_block)
2439 struct inode *inode = page->mapping->host;
2440 int err = __block_prepare_write(inode, page, from, to, get_block);
2442 ClearPageUptodate(page);
2446 int block_commit_write(struct page *page, unsigned from, unsigned to)
2448 struct inode *inode = page->mapping->host;
2449 __block_commit_write(inode,page,from,to);
2454 * block_page_mkwrite() is not allowed to change the file size as it gets
2455 * called from a page fault handler when a page is first dirtied. Hence we must
2456 * be careful to check for EOF conditions here. We set the page up correctly
2457 * for a written page which means we get ENOSPC checking when writing into
2458 * holes and correct delalloc and unwritten extent mapping on filesystems that
2459 * support these features.
2461 * We are not allowed to take the i_mutex here so we have to play games to
2462 * protect against truncate races as the page could now be beyond EOF. Because
2463 * vmtruncate() writes the inode size before removing pages, once we have the
2464 * page lock we can determine safely if the page is beyond EOF. If it is not
2465 * beyond EOF, then the page is guaranteed safe against truncation until we
2469 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2470 get_block_t get_block)
2472 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2478 size = i_size_read(inode);
2479 if ((page->mapping != inode->i_mapping) ||
2480 (page_offset(page) > size)) {
2481 /* page got truncated out from underneath us */
2485 /* page is wholly or partially inside EOF */
2486 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2487 end = size & ~PAGE_CACHE_MASK;
2489 end = PAGE_CACHE_SIZE;
2491 ret = block_prepare_write(page, 0, end, get_block);
2493 ret = block_commit_write(page, 0, end);
2501 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2502 * immediately, while under the page lock. So it needs a special end_io
2503 * handler which does not touch the bh after unlocking it.
2505 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2507 __end_buffer_read_notouch(bh, uptodate);
2511 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2512 * the page (converting it to circular linked list and taking care of page
2515 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2517 struct buffer_head *bh;
2519 BUG_ON(!PageLocked(page));
2521 spin_lock(&page->mapping->private_lock);
2524 if (PageDirty(page))
2525 set_buffer_dirty(bh);
2526 if (!bh->b_this_page)
2527 bh->b_this_page = head;
2528 bh = bh->b_this_page;
2529 } while (bh != head);
2530 attach_page_buffers(page, head);
2531 spin_unlock(&page->mapping->private_lock);
2535 * On entry, the page is fully not uptodate.
2536 * On exit the page is fully uptodate in the areas outside (from,to)
2538 int nobh_write_begin(struct file *file, struct address_space *mapping,
2539 loff_t pos, unsigned len, unsigned flags,
2540 struct page **pagep, void **fsdata,
2541 get_block_t *get_block)
2543 struct inode *inode = mapping->host;
2544 const unsigned blkbits = inode->i_blkbits;
2545 const unsigned blocksize = 1 << blkbits;
2546 struct buffer_head *head, *bh;
2550 unsigned block_in_page;
2551 unsigned block_start, block_end;
2552 sector_t block_in_file;
2555 int is_mapped_to_disk = 1;
2557 index = pos >> PAGE_CACHE_SHIFT;
2558 from = pos & (PAGE_CACHE_SIZE - 1);
2561 page = grab_cache_page_write_begin(mapping, index, flags);
2567 if (page_has_buffers(page)) {
2569 page_cache_release(page);
2571 return block_write_begin(file, mapping, pos, len, flags, pagep,
2575 if (PageMappedToDisk(page))
2579 * Allocate buffers so that we can keep track of state, and potentially
2580 * attach them to the page if an error occurs. In the common case of
2581 * no error, they will just be freed again without ever being attached
2582 * to the page (which is all OK, because we're under the page lock).
2584 * Be careful: the buffer linked list is a NULL terminated one, rather
2585 * than the circular one we're used to.
2587 head = alloc_page_buffers(page, blocksize, 0);
2593 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2596 * We loop across all blocks in the page, whether or not they are
2597 * part of the affected region. This is so we can discover if the
2598 * page is fully mapped-to-disk.
2600 for (block_start = 0, block_in_page = 0, bh = head;
2601 block_start < PAGE_CACHE_SIZE;
2602 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2605 block_end = block_start + blocksize;
2608 if (block_start >= to)
2610 ret = get_block(inode, block_in_file + block_in_page,
2614 if (!buffer_mapped(bh))
2615 is_mapped_to_disk = 0;
2617 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2618 if (PageUptodate(page)) {
2619 set_buffer_uptodate(bh);
2622 if (buffer_new(bh) || !buffer_mapped(bh)) {
2623 zero_user_segments(page, block_start, from,
2627 if (buffer_uptodate(bh))
2628 continue; /* reiserfs does this */
2629 if (block_start < from || block_end > to) {
2631 bh->b_end_io = end_buffer_read_nobh;
2632 submit_bh(READ, bh);
2639 * The page is locked, so these buffers are protected from
2640 * any VM or truncate activity. Hence we don't need to care
2641 * for the buffer_head refcounts.
2643 for (bh = head; bh; bh = bh->b_this_page) {
2645 if (!buffer_uptodate(bh))
2652 if (is_mapped_to_disk)
2653 SetPageMappedToDisk(page);
2655 *fsdata = head; /* to be released by nobh_write_end */
2662 * Error recovery is a bit difficult. We need to zero out blocks that
2663 * were newly allocated, and dirty them to ensure they get written out.
2664 * Buffers need to be attached to the page at this point, otherwise
2665 * the handling of potential IO errors during writeout would be hard
2666 * (could try doing synchronous writeout, but what if that fails too?)
2668 attach_nobh_buffers(page, head);
2669 page_zero_new_buffers(page, from, to);
2673 page_cache_release(page);
2676 if (pos + len > inode->i_size)
2677 vmtruncate(inode, inode->i_size);
2681 EXPORT_SYMBOL(nobh_write_begin);
2683 int nobh_write_end(struct file *file, struct address_space *mapping,
2684 loff_t pos, unsigned len, unsigned copied,
2685 struct page *page, void *fsdata)
2687 struct inode *inode = page->mapping->host;
2688 struct buffer_head *head = fsdata;
2689 struct buffer_head *bh;
2690 BUG_ON(fsdata != NULL && page_has_buffers(page));
2692 if (unlikely(copied < len) && head)
2693 attach_nobh_buffers(page, head);
2694 if (page_has_buffers(page))
2695 return generic_write_end(file, mapping, pos, len,
2696 copied, page, fsdata);
2698 SetPageUptodate(page);
2699 set_page_dirty(page);
2700 if (pos+copied > inode->i_size) {
2701 i_size_write(inode, pos+copied);
2702 mark_inode_dirty(inode);
2706 page_cache_release(page);
2710 head = head->b_this_page;
2711 free_buffer_head(bh);
2716 EXPORT_SYMBOL(nobh_write_end);
2719 * nobh_writepage() - based on block_full_write_page() except
2720 * that it tries to operate without attaching bufferheads to
2723 int nobh_writepage(struct page *page, get_block_t *get_block,
2724 struct writeback_control *wbc)
2726 struct inode * const inode = page->mapping->host;
2727 loff_t i_size = i_size_read(inode);
2728 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2732 /* Is the page fully inside i_size? */
2733 if (page->index < end_index)
2736 /* Is the page fully outside i_size? (truncate in progress) */
2737 offset = i_size & (PAGE_CACHE_SIZE-1);
2738 if (page->index >= end_index+1 || !offset) {
2740 * The page may have dirty, unmapped buffers. For example,
2741 * they may have been added in ext3_writepage(). Make them
2742 * freeable here, so the page does not leak.
2745 /* Not really sure about this - do we need this ? */
2746 if (page->mapping->a_ops->invalidatepage)
2747 page->mapping->a_ops->invalidatepage(page, offset);
2750 return 0; /* don't care */
2754 * The page straddles i_size. It must be zeroed out on each and every
2755 * writepage invocation because it may be mmapped. "A file is mapped
2756 * in multiples of the page size. For a file that is not a multiple of
2757 * the page size, the remaining memory is zeroed when mapped, and
2758 * writes to that region are not written out to the file."
2760 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2762 ret = mpage_writepage(page, get_block, wbc);
2764 ret = __block_write_full_page(inode, page, get_block, wbc);
2767 EXPORT_SYMBOL(nobh_writepage);
2769 int nobh_truncate_page(struct address_space *mapping,
2770 loff_t from, get_block_t *get_block)
2772 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2773 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2776 unsigned length, pos;
2777 struct inode *inode = mapping->host;
2779 struct buffer_head map_bh;
2782 blocksize = 1 << inode->i_blkbits;
2783 length = offset & (blocksize - 1);
2785 /* Block boundary? Nothing to do */
2789 length = blocksize - length;
2790 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2792 page = grab_cache_page(mapping, index);
2797 if (page_has_buffers(page)) {
2800 page_cache_release(page);
2801 return block_truncate_page(mapping, from, get_block);
2804 /* Find the buffer that contains "offset" */
2806 while (offset >= pos) {
2811 err = get_block(inode, iblock, &map_bh, 0);
2814 /* unmapped? It's a hole - nothing to do */
2815 if (!buffer_mapped(&map_bh))
2818 /* Ok, it's mapped. Make sure it's up-to-date */
2819 if (!PageUptodate(page)) {
2820 err = mapping->a_ops->readpage(NULL, page);
2822 page_cache_release(page);
2826 if (!PageUptodate(page)) {
2830 if (page_has_buffers(page))
2833 zero_user(page, offset, length);
2834 set_page_dirty(page);
2839 page_cache_release(page);
2843 EXPORT_SYMBOL(nobh_truncate_page);
2845 int block_truncate_page(struct address_space *mapping,
2846 loff_t from, get_block_t *get_block)
2848 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2849 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2852 unsigned length, pos;
2853 struct inode *inode = mapping->host;
2855 struct buffer_head *bh;
2858 blocksize = 1 << inode->i_blkbits;
2859 length = offset & (blocksize - 1);
2861 /* Block boundary? Nothing to do */
2865 length = blocksize - length;
2866 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2868 page = grab_cache_page(mapping, index);
2873 if (!page_has_buffers(page))
2874 create_empty_buffers(page, blocksize, 0);
2876 /* Find the buffer that contains "offset" */
2877 bh = page_buffers(page);
2879 while (offset >= pos) {
2880 bh = bh->b_this_page;
2886 if (!buffer_mapped(bh)) {
2887 WARN_ON(bh->b_size != blocksize);
2888 err = get_block(inode, iblock, bh, 0);
2891 /* unmapped? It's a hole - nothing to do */
2892 if (!buffer_mapped(bh))
2896 /* Ok, it's mapped. Make sure it's up-to-date */
2897 if (PageUptodate(page))
2898 set_buffer_uptodate(bh);
2900 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2902 ll_rw_block(READ, 1, &bh);
2904 /* Uhhuh. Read error. Complain and punt. */
2905 if (!buffer_uptodate(bh))
2909 zero_user(page, offset, length);
2910 mark_buffer_dirty(bh);
2915 page_cache_release(page);
2921 * The generic ->writepage function for buffer-backed address_spaces
2923 int block_write_full_page(struct page *page, get_block_t *get_block,
2924 struct writeback_control *wbc)
2926 struct inode * const inode = page->mapping->host;
2927 loff_t i_size = i_size_read(inode);
2928 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2931 /* Is the page fully inside i_size? */
2932 if (page->index < end_index)
2933 return __block_write_full_page(inode, page, get_block, wbc);
2935 /* Is the page fully outside i_size? (truncate in progress) */
2936 offset = i_size & (PAGE_CACHE_SIZE-1);
2937 if (page->index >= end_index+1 || !offset) {
2939 * The page may have dirty, unmapped buffers. For example,
2940 * they may have been added in ext3_writepage(). Make them
2941 * freeable here, so the page does not leak.
2943 do_invalidatepage(page, 0);
2945 return 0; /* don't care */
2949 * The page straddles i_size. It must be zeroed out on each and every
2950 * writepage invokation because it may be mmapped. "A file is mapped
2951 * in multiples of the page size. For a file that is not a multiple of
2952 * the page size, the remaining memory is zeroed when mapped, and
2953 * writes to that region are not written out to the file."
2955 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2956 return __block_write_full_page(inode, page, get_block, wbc);
2959 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2960 get_block_t *get_block)
2962 struct buffer_head tmp;
2963 struct inode *inode = mapping->host;
2966 tmp.b_size = 1 << inode->i_blkbits;
2967 get_block(inode, block, &tmp, 0);
2968 return tmp.b_blocknr;
2971 static void end_bio_bh_io_sync(struct bio *bio, int err)
2973 struct buffer_head *bh = bio->bi_private;
2975 if (err == -EOPNOTSUPP) {
2976 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2977 set_bit(BH_Eopnotsupp, &bh->b_state);
2980 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2981 set_bit(BH_Quiet, &bh->b_state);
2983 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2987 int submit_bh(int rw, struct buffer_head * bh)
2992 BUG_ON(!buffer_locked(bh));
2993 BUG_ON(!buffer_mapped(bh));
2994 BUG_ON(!bh->b_end_io);
2997 * Mask in barrier bit for a write (could be either a WRITE or a
3000 if (buffer_ordered(bh) && (rw & WRITE))
3001 rw |= WRITE_BARRIER;
3004 * Only clear out a write error when rewriting
3006 if (test_set_buffer_req(bh) && (rw & WRITE))
3007 clear_buffer_write_io_error(bh);
3010 * from here on down, it's all bio -- do the initial mapping,
3011 * submit_bio -> generic_make_request may further map this bio around
3013 bio = bio_alloc(GFP_NOIO, 1);
3015 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3016 bio->bi_bdev = bh->b_bdev;
3017 bio->bi_io_vec[0].bv_page = bh->b_page;
3018 bio->bi_io_vec[0].bv_len = bh->b_size;
3019 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3023 bio->bi_size = bh->b_size;
3025 bio->bi_end_io = end_bio_bh_io_sync;
3026 bio->bi_private = bh;
3029 submit_bio(rw, bio);
3031 if (bio_flagged(bio, BIO_EOPNOTSUPP))
3039 * ll_rw_block: low-level access to block devices (DEPRECATED)
3040 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
3041 * @nr: number of &struct buffer_heads in the array
3042 * @bhs: array of pointers to &struct buffer_head
3044 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3045 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3046 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
3047 * are sent to disk. The fourth %READA option is described in the documentation
3048 * for generic_make_request() which ll_rw_block() calls.
3050 * This function drops any buffer that it cannot get a lock on (with the
3051 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
3052 * clean when doing a write request, and any buffer that appears to be
3053 * up-to-date when doing read request. Further it marks as clean buffers that
3054 * are processed for writing (the buffer cache won't assume that they are
3055 * actually clean until the buffer gets unlocked).
3057 * ll_rw_block sets b_end_io to simple completion handler that marks
3058 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3061 * All of the buffers must be for the same device, and must also be a
3062 * multiple of the current approved size for the device.
3064 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3068 for (i = 0; i < nr; i++) {
3069 struct buffer_head *bh = bhs[i];
3071 if (rw == SWRITE || rw == SWRITE_SYNC)
3073 else if (!trylock_buffer(bh))
3076 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) {
3077 if (test_clear_buffer_dirty(bh)) {
3078 bh->b_end_io = end_buffer_write_sync;
3080 if (rw == SWRITE_SYNC)
3081 submit_bh(WRITE_SYNC, bh);
3083 submit_bh(WRITE, bh);
3087 if (!buffer_uptodate(bh)) {
3088 bh->b_end_io = end_buffer_read_sync;
3099 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3100 * and then start new I/O and then wait upon it. The caller must have a ref on
3103 int sync_dirty_buffer(struct buffer_head *bh)
3107 WARN_ON(atomic_read(&bh->b_count) < 1);
3109 if (test_clear_buffer_dirty(bh)) {
3111 bh->b_end_io = end_buffer_write_sync;
3112 ret = submit_bh(WRITE, bh);
3114 if (buffer_eopnotsupp(bh)) {
3115 clear_buffer_eopnotsupp(bh);
3118 if (!ret && !buffer_uptodate(bh))
3127 * try_to_free_buffers() checks if all the buffers on this particular page
3128 * are unused, and releases them if so.
3130 * Exclusion against try_to_free_buffers may be obtained by either
3131 * locking the page or by holding its mapping's private_lock.
3133 * If the page is dirty but all the buffers are clean then we need to
3134 * be sure to mark the page clean as well. This is because the page
3135 * may be against a block device, and a later reattachment of buffers
3136 * to a dirty page will set *all* buffers dirty. Which would corrupt
3137 * filesystem data on the same device.
3139 * The same applies to regular filesystem pages: if all the buffers are
3140 * clean then we set the page clean and proceed. To do that, we require
3141 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3144 * try_to_free_buffers() is non-blocking.
3146 static inline int buffer_busy(struct buffer_head *bh)
3148 return atomic_read(&bh->b_count) |
3149 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3153 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3155 struct buffer_head *head = page_buffers(page);
3156 struct buffer_head *bh;
3160 if (buffer_write_io_error(bh) && page->mapping)
3161 set_bit(AS_EIO, &page->mapping->flags);
3162 if (buffer_busy(bh))
3164 bh = bh->b_this_page;
3165 } while (bh != head);
3168 struct buffer_head *next = bh->b_this_page;
3170 if (bh->b_assoc_map)
3171 __remove_assoc_queue(bh);
3173 } while (bh != head);
3174 *buffers_to_free = head;
3175 __clear_page_buffers(page);
3181 int try_to_free_buffers(struct page *page)
3183 struct address_space * const mapping = page->mapping;
3184 struct buffer_head *buffers_to_free = NULL;
3187 BUG_ON(!PageLocked(page));
3188 if (PageWriteback(page))
3191 if (mapping == NULL) { /* can this still happen? */
3192 ret = drop_buffers(page, &buffers_to_free);
3196 spin_lock(&mapping->private_lock);
3197 ret = drop_buffers(page, &buffers_to_free);
3200 * If the filesystem writes its buffers by hand (eg ext3)
3201 * then we can have clean buffers against a dirty page. We
3202 * clean the page here; otherwise the VM will never notice
3203 * that the filesystem did any IO at all.
3205 * Also, during truncate, discard_buffer will have marked all
3206 * the page's buffers clean. We discover that here and clean
3209 * private_lock must be held over this entire operation in order
3210 * to synchronise against __set_page_dirty_buffers and prevent the
3211 * dirty bit from being lost.
3214 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3215 spin_unlock(&mapping->private_lock);
3217 if (buffers_to_free) {
3218 struct buffer_head *bh = buffers_to_free;
3221 struct buffer_head *next = bh->b_this_page;
3222 free_buffer_head(bh);
3224 } while (bh != buffers_to_free);
3228 EXPORT_SYMBOL(try_to_free_buffers);
3230 void block_sync_page(struct page *page)
3232 struct address_space *mapping;
3235 mapping = page_mapping(page);
3237 blk_run_backing_dev(mapping->backing_dev_info, page);
3241 * There are no bdflush tunables left. But distributions are
3242 * still running obsolete flush daemons, so we terminate them here.
3244 * Use of bdflush() is deprecated and will be removed in a future kernel.
3245 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3247 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3249 static int msg_count;
3251 if (!capable(CAP_SYS_ADMIN))
3254 if (msg_count < 5) {
3257 "warning: process `%s' used the obsolete bdflush"
3258 " system call\n", current->comm);
3259 printk(KERN_INFO "Fix your initscripts?\n");
3268 * Buffer-head allocation
3270 static struct kmem_cache *bh_cachep;
3273 * Once the number of bh's in the machine exceeds this level, we start
3274 * stripping them in writeback.
3276 static int max_buffer_heads;
3278 int buffer_heads_over_limit;
3280 struct bh_accounting {
3281 int nr; /* Number of live bh's */
3282 int ratelimit; /* Limit cacheline bouncing */
3285 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3287 static void recalc_bh_state(void)
3292 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3294 __get_cpu_var(bh_accounting).ratelimit = 0;
3295 for_each_online_cpu(i)
3296 tot += per_cpu(bh_accounting, i).nr;
3297 buffer_heads_over_limit = (tot > max_buffer_heads);
3300 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3302 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3304 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3305 get_cpu_var(bh_accounting).nr++;
3307 put_cpu_var(bh_accounting);
3311 EXPORT_SYMBOL(alloc_buffer_head);
3313 void free_buffer_head(struct buffer_head *bh)
3315 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3316 kmem_cache_free(bh_cachep, bh);
3317 get_cpu_var(bh_accounting).nr--;
3319 put_cpu_var(bh_accounting);
3321 EXPORT_SYMBOL(free_buffer_head);
3323 static void buffer_exit_cpu(int cpu)
3326 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3328 for (i = 0; i < BH_LRU_SIZE; i++) {
3332 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3333 per_cpu(bh_accounting, cpu).nr = 0;
3334 put_cpu_var(bh_accounting);
3337 static int buffer_cpu_notify(struct notifier_block *self,
3338 unsigned long action, void *hcpu)
3340 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3341 buffer_exit_cpu((unsigned long)hcpu);
3346 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3347 * @bh: struct buffer_head
3349 * Return true if the buffer is up-to-date and false,
3350 * with the buffer locked, if not.
3352 int bh_uptodate_or_lock(struct buffer_head *bh)
3354 if (!buffer_uptodate(bh)) {
3356 if (!buffer_uptodate(bh))
3362 EXPORT_SYMBOL(bh_uptodate_or_lock);
3365 * bh_submit_read - Submit a locked buffer for reading
3366 * @bh: struct buffer_head
3368 * Returns zero on success and -EIO on error.
3370 int bh_submit_read(struct buffer_head *bh)
3372 BUG_ON(!buffer_locked(bh));
3374 if (buffer_uptodate(bh)) {
3380 bh->b_end_io = end_buffer_read_sync;
3381 submit_bh(READ, bh);
3383 if (buffer_uptodate(bh))
3387 EXPORT_SYMBOL(bh_submit_read);
3390 init_buffer_head(void *data)
3392 struct buffer_head *bh = data;
3394 memset(bh, 0, sizeof(*bh));
3395 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3398 void __init buffer_init(void)
3402 bh_cachep = kmem_cache_create("buffer_head",
3403 sizeof(struct buffer_head), 0,
3404 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3409 * Limit the bh occupancy to 10% of ZONE_NORMAL
3411 nrpages = (nr_free_buffer_pages() * 10) / 100;
3412 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3413 hotcpu_notifier(buffer_cpu_notify, 0);
3416 EXPORT_SYMBOL(__bforget);
3417 EXPORT_SYMBOL(__brelse);
3418 EXPORT_SYMBOL(__wait_on_buffer);
3419 EXPORT_SYMBOL(block_commit_write);
3420 EXPORT_SYMBOL(block_prepare_write);
3421 EXPORT_SYMBOL(block_page_mkwrite);
3422 EXPORT_SYMBOL(block_read_full_page);
3423 EXPORT_SYMBOL(block_sync_page);
3424 EXPORT_SYMBOL(block_truncate_page);
3425 EXPORT_SYMBOL(block_write_full_page);
3426 EXPORT_SYMBOL(cont_write_begin);
3427 EXPORT_SYMBOL(end_buffer_read_sync);
3428 EXPORT_SYMBOL(end_buffer_write_sync);
3429 EXPORT_SYMBOL(file_fsync);
3430 EXPORT_SYMBOL(fsync_bdev);
3431 EXPORT_SYMBOL(generic_block_bmap);
3432 EXPORT_SYMBOL(generic_cont_expand_simple);
3433 EXPORT_SYMBOL(init_buffer);
3434 EXPORT_SYMBOL(invalidate_bdev);
3435 EXPORT_SYMBOL(ll_rw_block);
3436 EXPORT_SYMBOL(mark_buffer_dirty);
3437 EXPORT_SYMBOL(submit_bh);
3438 EXPORT_SYMBOL(sync_dirty_buffer);
3439 EXPORT_SYMBOL(unlock_buffer);