Merge branch 'topic/docbook-fix' into for-linus
[firefly-linux-kernel-4.4.55.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55
56 static int sync_buffer(void *word)
57 {
58         struct block_device *bd;
59         struct buffer_head *bh
60                 = container_of(word, struct buffer_head, b_state);
61
62         smp_mb();
63         bd = bh->b_bdev;
64         if (bd)
65                 blk_run_address_space(bd->bd_inode->i_mapping);
66         io_schedule();
67         return 0;
68 }
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73                                                         TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void unlock_buffer(struct buffer_head *bh)
78 {
79         clear_bit_unlock(BH_Lock, &bh->b_state);
80         smp_mb__after_clear_bit();
81         wake_up_bit(&bh->b_state, BH_Lock);
82 }
83
84 /*
85  * Block until a buffer comes unlocked.  This doesn't stop it
86  * from becoming locked again - you have to lock it yourself
87  * if you want to preserve its state.
88  */
89 void __wait_on_buffer(struct buffer_head * bh)
90 {
91         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
92 }
93
94 static void
95 __clear_page_buffers(struct page *page)
96 {
97         ClearPagePrivate(page);
98         set_page_private(page, 0);
99         page_cache_release(page);
100 }
101
102
103 static int quiet_error(struct buffer_head *bh)
104 {
105         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
106                 return 0;
107         return 1;
108 }
109
110
111 static void buffer_io_error(struct buffer_head *bh)
112 {
113         char b[BDEVNAME_SIZE];
114         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115                         bdevname(bh->b_bdev, b),
116                         (unsigned long long)bh->b_blocknr);
117 }
118
119 /*
120  * End-of-IO handler helper function which does not touch the bh after
121  * unlocking it.
122  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123  * a race there is benign: unlock_buffer() only use the bh's address for
124  * hashing after unlocking the buffer, so it doesn't actually touch the bh
125  * itself.
126  */
127 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
128 {
129         if (uptodate) {
130                 set_buffer_uptodate(bh);
131         } else {
132                 /* This happens, due to failed READA attempts. */
133                 clear_buffer_uptodate(bh);
134         }
135         unlock_buffer(bh);
136 }
137
138 /*
139  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
140  * unlock the buffer. This is what ll_rw_block uses too.
141  */
142 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
143 {
144         __end_buffer_read_notouch(bh, uptodate);
145         put_bh(bh);
146 }
147
148 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
149 {
150         char b[BDEVNAME_SIZE];
151
152         if (uptodate) {
153                 set_buffer_uptodate(bh);
154         } else {
155                 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
156                         buffer_io_error(bh);
157                         printk(KERN_WARNING "lost page write due to "
158                                         "I/O error on %s\n",
159                                        bdevname(bh->b_bdev, b));
160                 }
161                 set_buffer_write_io_error(bh);
162                 clear_buffer_uptodate(bh);
163         }
164         unlock_buffer(bh);
165         put_bh(bh);
166 }
167
168 /*
169  * Write out and wait upon all the dirty data associated with a block
170  * device via its mapping.  Does not take the superblock lock.
171  */
172 int sync_blockdev(struct block_device *bdev)
173 {
174         int ret = 0;
175
176         if (bdev)
177                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
178         return ret;
179 }
180 EXPORT_SYMBOL(sync_blockdev);
181
182 /*
183  * Write out and wait upon all dirty data associated with this
184  * device.   Filesystem data as well as the underlying block
185  * device.  Takes the superblock lock.
186  */
187 int fsync_bdev(struct block_device *bdev)
188 {
189         struct super_block *sb = get_super(bdev);
190         if (sb) {
191                 int res = fsync_super(sb);
192                 drop_super(sb);
193                 return res;
194         }
195         return sync_blockdev(bdev);
196 }
197
198 /**
199  * freeze_bdev  --  lock a filesystem and force it into a consistent state
200  * @bdev:       blockdevice to lock
201  *
202  * This takes the block device bd_mount_sem to make sure no new mounts
203  * happen on bdev until thaw_bdev() is called.
204  * If a superblock is found on this device, we take the s_umount semaphore
205  * on it to make sure nobody unmounts until the snapshot creation is done.
206  * The reference counter (bd_fsfreeze_count) guarantees that only the last
207  * unfreeze process can unfreeze the frozen filesystem actually when multiple
208  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
209  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
210  * actually.
211  */
212 struct super_block *freeze_bdev(struct block_device *bdev)
213 {
214         struct super_block *sb;
215         int error = 0;
216
217         mutex_lock(&bdev->bd_fsfreeze_mutex);
218         if (bdev->bd_fsfreeze_count > 0) {
219                 bdev->bd_fsfreeze_count++;
220                 sb = get_super(bdev);
221                 mutex_unlock(&bdev->bd_fsfreeze_mutex);
222                 return sb;
223         }
224         bdev->bd_fsfreeze_count++;
225
226         down(&bdev->bd_mount_sem);
227         sb = get_super(bdev);
228         if (sb && !(sb->s_flags & MS_RDONLY)) {
229                 sb->s_frozen = SB_FREEZE_WRITE;
230                 smp_wmb();
231
232                 __fsync_super(sb);
233
234                 sb->s_frozen = SB_FREEZE_TRANS;
235                 smp_wmb();
236
237                 sync_blockdev(sb->s_bdev);
238
239                 if (sb->s_op->freeze_fs) {
240                         error = sb->s_op->freeze_fs(sb);
241                         if (error) {
242                                 printk(KERN_ERR
243                                         "VFS:Filesystem freeze failed\n");
244                                 sb->s_frozen = SB_UNFROZEN;
245                                 drop_super(sb);
246                                 up(&bdev->bd_mount_sem);
247                                 bdev->bd_fsfreeze_count--;
248                                 mutex_unlock(&bdev->bd_fsfreeze_mutex);
249                                 return ERR_PTR(error);
250                         }
251                 }
252         }
253
254         sync_blockdev(bdev);
255         mutex_unlock(&bdev->bd_fsfreeze_mutex);
256
257         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
258 }
259 EXPORT_SYMBOL(freeze_bdev);
260
261 /**
262  * thaw_bdev  -- unlock filesystem
263  * @bdev:       blockdevice to unlock
264  * @sb:         associated superblock
265  *
266  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
267  */
268 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
269 {
270         int error = 0;
271
272         mutex_lock(&bdev->bd_fsfreeze_mutex);
273         if (!bdev->bd_fsfreeze_count) {
274                 mutex_unlock(&bdev->bd_fsfreeze_mutex);
275                 return -EINVAL;
276         }
277
278         bdev->bd_fsfreeze_count--;
279         if (bdev->bd_fsfreeze_count > 0) {
280                 if (sb)
281                         drop_super(sb);
282                 mutex_unlock(&bdev->bd_fsfreeze_mutex);
283                 return 0;
284         }
285
286         if (sb) {
287                 BUG_ON(sb->s_bdev != bdev);
288                 if (!(sb->s_flags & MS_RDONLY)) {
289                         if (sb->s_op->unfreeze_fs) {
290                                 error = sb->s_op->unfreeze_fs(sb);
291                                 if (error) {
292                                         printk(KERN_ERR
293                                                 "VFS:Filesystem thaw failed\n");
294                                         sb->s_frozen = SB_FREEZE_TRANS;
295                                         bdev->bd_fsfreeze_count++;
296                                         mutex_unlock(&bdev->bd_fsfreeze_mutex);
297                                         return error;
298                                 }
299                         }
300                         sb->s_frozen = SB_UNFROZEN;
301                         smp_wmb();
302                         wake_up(&sb->s_wait_unfrozen);
303                 }
304                 drop_super(sb);
305         }
306
307         up(&bdev->bd_mount_sem);
308         mutex_unlock(&bdev->bd_fsfreeze_mutex);
309         return 0;
310 }
311 EXPORT_SYMBOL(thaw_bdev);
312
313 /*
314  * Various filesystems appear to want __find_get_block to be non-blocking.
315  * But it's the page lock which protects the buffers.  To get around this,
316  * we get exclusion from try_to_free_buffers with the blockdev mapping's
317  * private_lock.
318  *
319  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
320  * may be quite high.  This code could TryLock the page, and if that
321  * succeeds, there is no need to take private_lock. (But if
322  * private_lock is contended then so is mapping->tree_lock).
323  */
324 static struct buffer_head *
325 __find_get_block_slow(struct block_device *bdev, sector_t block)
326 {
327         struct inode *bd_inode = bdev->bd_inode;
328         struct address_space *bd_mapping = bd_inode->i_mapping;
329         struct buffer_head *ret = NULL;
330         pgoff_t index;
331         struct buffer_head *bh;
332         struct buffer_head *head;
333         struct page *page;
334         int all_mapped = 1;
335
336         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
337         page = find_get_page(bd_mapping, index);
338         if (!page)
339                 goto out;
340
341         spin_lock(&bd_mapping->private_lock);
342         if (!page_has_buffers(page))
343                 goto out_unlock;
344         head = page_buffers(page);
345         bh = head;
346         do {
347                 if (bh->b_blocknr == block) {
348                         ret = bh;
349                         get_bh(bh);
350                         goto out_unlock;
351                 }
352                 if (!buffer_mapped(bh))
353                         all_mapped = 0;
354                 bh = bh->b_this_page;
355         } while (bh != head);
356
357         /* we might be here because some of the buffers on this page are
358          * not mapped.  This is due to various races between
359          * file io on the block device and getblk.  It gets dealt with
360          * elsewhere, don't buffer_error if we had some unmapped buffers
361          */
362         if (all_mapped) {
363                 printk("__find_get_block_slow() failed. "
364                         "block=%llu, b_blocknr=%llu\n",
365                         (unsigned long long)block,
366                         (unsigned long long)bh->b_blocknr);
367                 printk("b_state=0x%08lx, b_size=%zu\n",
368                         bh->b_state, bh->b_size);
369                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
370         }
371 out_unlock:
372         spin_unlock(&bd_mapping->private_lock);
373         page_cache_release(page);
374 out:
375         return ret;
376 }
377
378 /* If invalidate_buffers() will trash dirty buffers, it means some kind
379    of fs corruption is going on. Trashing dirty data always imply losing
380    information that was supposed to be just stored on the physical layer
381    by the user.
382
383    Thus invalidate_buffers in general usage is not allwowed to trash
384    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
385    be preserved.  These buffers are simply skipped.
386   
387    We also skip buffers which are still in use.  For example this can
388    happen if a userspace program is reading the block device.
389
390    NOTE: In the case where the user removed a removable-media-disk even if
391    there's still dirty data not synced on disk (due a bug in the device driver
392    or due an error of the user), by not destroying the dirty buffers we could
393    generate corruption also on the next media inserted, thus a parameter is
394    necessary to handle this case in the most safe way possible (trying
395    to not corrupt also the new disk inserted with the data belonging to
396    the old now corrupted disk). Also for the ramdisk the natural thing
397    to do in order to release the ramdisk memory is to destroy dirty buffers.
398
399    These are two special cases. Normal usage imply the device driver
400    to issue a sync on the device (without waiting I/O completion) and
401    then an invalidate_buffers call that doesn't trash dirty buffers.
402
403    For handling cache coherency with the blkdev pagecache the 'update' case
404    is been introduced. It is needed to re-read from disk any pinned
405    buffer. NOTE: re-reading from disk is destructive so we can do it only
406    when we assume nobody is changing the buffercache under our I/O and when
407    we think the disk contains more recent information than the buffercache.
408    The update == 1 pass marks the buffers we need to update, the update == 2
409    pass does the actual I/O. */
410 void invalidate_bdev(struct block_device *bdev)
411 {
412         struct address_space *mapping = bdev->bd_inode->i_mapping;
413
414         if (mapping->nrpages == 0)
415                 return;
416
417         invalidate_bh_lrus();
418         invalidate_mapping_pages(mapping, 0, -1);
419 }
420
421 /*
422  * Kick pdflush then try to free up some ZONE_NORMAL memory.
423  */
424 static void free_more_memory(void)
425 {
426         struct zone *zone;
427         int nid;
428
429         wakeup_pdflush(1024);
430         yield();
431
432         for_each_online_node(nid) {
433                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
434                                                 gfp_zone(GFP_NOFS), NULL,
435                                                 &zone);
436                 if (zone)
437                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
438                                                 GFP_NOFS);
439         }
440 }
441
442 /*
443  * I/O completion handler for block_read_full_page() - pages
444  * which come unlocked at the end of I/O.
445  */
446 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
447 {
448         unsigned long flags;
449         struct buffer_head *first;
450         struct buffer_head *tmp;
451         struct page *page;
452         int page_uptodate = 1;
453
454         BUG_ON(!buffer_async_read(bh));
455
456         page = bh->b_page;
457         if (uptodate) {
458                 set_buffer_uptodate(bh);
459         } else {
460                 clear_buffer_uptodate(bh);
461                 if (!quiet_error(bh))
462                         buffer_io_error(bh);
463                 SetPageError(page);
464         }
465
466         /*
467          * Be _very_ careful from here on. Bad things can happen if
468          * two buffer heads end IO at almost the same time and both
469          * decide that the page is now completely done.
470          */
471         first = page_buffers(page);
472         local_irq_save(flags);
473         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
474         clear_buffer_async_read(bh);
475         unlock_buffer(bh);
476         tmp = bh;
477         do {
478                 if (!buffer_uptodate(tmp))
479                         page_uptodate = 0;
480                 if (buffer_async_read(tmp)) {
481                         BUG_ON(!buffer_locked(tmp));
482                         goto still_busy;
483                 }
484                 tmp = tmp->b_this_page;
485         } while (tmp != bh);
486         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
487         local_irq_restore(flags);
488
489         /*
490          * If none of the buffers had errors and they are all
491          * uptodate then we can set the page uptodate.
492          */
493         if (page_uptodate && !PageError(page))
494                 SetPageUptodate(page);
495         unlock_page(page);
496         return;
497
498 still_busy:
499         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
500         local_irq_restore(flags);
501         return;
502 }
503
504 /*
505  * Completion handler for block_write_full_page() - pages which are unlocked
506  * during I/O, and which have PageWriteback cleared upon I/O completion.
507  */
508 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
509 {
510         char b[BDEVNAME_SIZE];
511         unsigned long flags;
512         struct buffer_head *first;
513         struct buffer_head *tmp;
514         struct page *page;
515
516         BUG_ON(!buffer_async_write(bh));
517
518         page = bh->b_page;
519         if (uptodate) {
520                 set_buffer_uptodate(bh);
521         } else {
522                 if (!quiet_error(bh)) {
523                         buffer_io_error(bh);
524                         printk(KERN_WARNING "lost page write due to "
525                                         "I/O error on %s\n",
526                                bdevname(bh->b_bdev, b));
527                 }
528                 set_bit(AS_EIO, &page->mapping->flags);
529                 set_buffer_write_io_error(bh);
530                 clear_buffer_uptodate(bh);
531                 SetPageError(page);
532         }
533
534         first = page_buffers(page);
535         local_irq_save(flags);
536         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
537
538         clear_buffer_async_write(bh);
539         unlock_buffer(bh);
540         tmp = bh->b_this_page;
541         while (tmp != bh) {
542                 if (buffer_async_write(tmp)) {
543                         BUG_ON(!buffer_locked(tmp));
544                         goto still_busy;
545                 }
546                 tmp = tmp->b_this_page;
547         }
548         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
549         local_irq_restore(flags);
550         end_page_writeback(page);
551         return;
552
553 still_busy:
554         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
555         local_irq_restore(flags);
556         return;
557 }
558
559 /*
560  * If a page's buffers are under async readin (end_buffer_async_read
561  * completion) then there is a possibility that another thread of
562  * control could lock one of the buffers after it has completed
563  * but while some of the other buffers have not completed.  This
564  * locked buffer would confuse end_buffer_async_read() into not unlocking
565  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
566  * that this buffer is not under async I/O.
567  *
568  * The page comes unlocked when it has no locked buffer_async buffers
569  * left.
570  *
571  * PageLocked prevents anyone starting new async I/O reads any of
572  * the buffers.
573  *
574  * PageWriteback is used to prevent simultaneous writeout of the same
575  * page.
576  *
577  * PageLocked prevents anyone from starting writeback of a page which is
578  * under read I/O (PageWriteback is only ever set against a locked page).
579  */
580 static void mark_buffer_async_read(struct buffer_head *bh)
581 {
582         bh->b_end_io = end_buffer_async_read;
583         set_buffer_async_read(bh);
584 }
585
586 void mark_buffer_async_write(struct buffer_head *bh)
587 {
588         bh->b_end_io = end_buffer_async_write;
589         set_buffer_async_write(bh);
590 }
591 EXPORT_SYMBOL(mark_buffer_async_write);
592
593
594 /*
595  * fs/buffer.c contains helper functions for buffer-backed address space's
596  * fsync functions.  A common requirement for buffer-based filesystems is
597  * that certain data from the backing blockdev needs to be written out for
598  * a successful fsync().  For example, ext2 indirect blocks need to be
599  * written back and waited upon before fsync() returns.
600  *
601  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
602  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
603  * management of a list of dependent buffers at ->i_mapping->private_list.
604  *
605  * Locking is a little subtle: try_to_free_buffers() will remove buffers
606  * from their controlling inode's queue when they are being freed.  But
607  * try_to_free_buffers() will be operating against the *blockdev* mapping
608  * at the time, not against the S_ISREG file which depends on those buffers.
609  * So the locking for private_list is via the private_lock in the address_space
610  * which backs the buffers.  Which is different from the address_space 
611  * against which the buffers are listed.  So for a particular address_space,
612  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
613  * mapping->private_list will always be protected by the backing blockdev's
614  * ->private_lock.
615  *
616  * Which introduces a requirement: all buffers on an address_space's
617  * ->private_list must be from the same address_space: the blockdev's.
618  *
619  * address_spaces which do not place buffers at ->private_list via these
620  * utility functions are free to use private_lock and private_list for
621  * whatever they want.  The only requirement is that list_empty(private_list)
622  * be true at clear_inode() time.
623  *
624  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
625  * filesystems should do that.  invalidate_inode_buffers() should just go
626  * BUG_ON(!list_empty).
627  *
628  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
629  * take an address_space, not an inode.  And it should be called
630  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
631  * queued up.
632  *
633  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
634  * list if it is already on a list.  Because if the buffer is on a list,
635  * it *must* already be on the right one.  If not, the filesystem is being
636  * silly.  This will save a ton of locking.  But first we have to ensure
637  * that buffers are taken *off* the old inode's list when they are freed
638  * (presumably in truncate).  That requires careful auditing of all
639  * filesystems (do it inside bforget()).  It could also be done by bringing
640  * b_inode back.
641  */
642
643 /*
644  * The buffer's backing address_space's private_lock must be held
645  */
646 static void __remove_assoc_queue(struct buffer_head *bh)
647 {
648         list_del_init(&bh->b_assoc_buffers);
649         WARN_ON(!bh->b_assoc_map);
650         if (buffer_write_io_error(bh))
651                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
652         bh->b_assoc_map = NULL;
653 }
654
655 int inode_has_buffers(struct inode *inode)
656 {
657         return !list_empty(&inode->i_data.private_list);
658 }
659
660 /*
661  * osync is designed to support O_SYNC io.  It waits synchronously for
662  * all already-submitted IO to complete, but does not queue any new
663  * writes to the disk.
664  *
665  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
666  * you dirty the buffers, and then use osync_inode_buffers to wait for
667  * completion.  Any other dirty buffers which are not yet queued for
668  * write will not be flushed to disk by the osync.
669  */
670 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
671 {
672         struct buffer_head *bh;
673         struct list_head *p;
674         int err = 0;
675
676         spin_lock(lock);
677 repeat:
678         list_for_each_prev(p, list) {
679                 bh = BH_ENTRY(p);
680                 if (buffer_locked(bh)) {
681                         get_bh(bh);
682                         spin_unlock(lock);
683                         wait_on_buffer(bh);
684                         if (!buffer_uptodate(bh))
685                                 err = -EIO;
686                         brelse(bh);
687                         spin_lock(lock);
688                         goto repeat;
689                 }
690         }
691         spin_unlock(lock);
692         return err;
693 }
694
695 /**
696  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
697  * @mapping: the mapping which wants those buffers written
698  *
699  * Starts I/O against the buffers at mapping->private_list, and waits upon
700  * that I/O.
701  *
702  * Basically, this is a convenience function for fsync().
703  * @mapping is a file or directory which needs those buffers to be written for
704  * a successful fsync().
705  */
706 int sync_mapping_buffers(struct address_space *mapping)
707 {
708         struct address_space *buffer_mapping = mapping->assoc_mapping;
709
710         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
711                 return 0;
712
713         return fsync_buffers_list(&buffer_mapping->private_lock,
714                                         &mapping->private_list);
715 }
716 EXPORT_SYMBOL(sync_mapping_buffers);
717
718 /*
719  * Called when we've recently written block `bblock', and it is known that
720  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
721  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
722  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
723  */
724 void write_boundary_block(struct block_device *bdev,
725                         sector_t bblock, unsigned blocksize)
726 {
727         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
728         if (bh) {
729                 if (buffer_dirty(bh))
730                         ll_rw_block(WRITE, 1, &bh);
731                 put_bh(bh);
732         }
733 }
734
735 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
736 {
737         struct address_space *mapping = inode->i_mapping;
738         struct address_space *buffer_mapping = bh->b_page->mapping;
739
740         mark_buffer_dirty(bh);
741         if (!mapping->assoc_mapping) {
742                 mapping->assoc_mapping = buffer_mapping;
743         } else {
744                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
745         }
746         if (!bh->b_assoc_map) {
747                 spin_lock(&buffer_mapping->private_lock);
748                 list_move_tail(&bh->b_assoc_buffers,
749                                 &mapping->private_list);
750                 bh->b_assoc_map = mapping;
751                 spin_unlock(&buffer_mapping->private_lock);
752         }
753 }
754 EXPORT_SYMBOL(mark_buffer_dirty_inode);
755
756 /*
757  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
758  * dirty.
759  *
760  * If warn is true, then emit a warning if the page is not uptodate and has
761  * not been truncated.
762  */
763 static void __set_page_dirty(struct page *page,
764                 struct address_space *mapping, int warn)
765 {
766         spin_lock_irq(&mapping->tree_lock);
767         if (page->mapping) {    /* Race with truncate? */
768                 WARN_ON_ONCE(warn && !PageUptodate(page));
769
770                 if (mapping_cap_account_dirty(mapping)) {
771                         __inc_zone_page_state(page, NR_FILE_DIRTY);
772                         __inc_bdi_stat(mapping->backing_dev_info,
773                                         BDI_RECLAIMABLE);
774                         task_dirty_inc(current);
775                         task_io_account_write(PAGE_CACHE_SIZE);
776                 }
777                 radix_tree_tag_set(&mapping->page_tree,
778                                 page_index(page), PAGECACHE_TAG_DIRTY);
779         }
780         spin_unlock_irq(&mapping->tree_lock);
781         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
782 }
783
784 /*
785  * Add a page to the dirty page list.
786  *
787  * It is a sad fact of life that this function is called from several places
788  * deeply under spinlocking.  It may not sleep.
789  *
790  * If the page has buffers, the uptodate buffers are set dirty, to preserve
791  * dirty-state coherency between the page and the buffers.  It the page does
792  * not have buffers then when they are later attached they will all be set
793  * dirty.
794  *
795  * The buffers are dirtied before the page is dirtied.  There's a small race
796  * window in which a writepage caller may see the page cleanness but not the
797  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
798  * before the buffers, a concurrent writepage caller could clear the page dirty
799  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
800  * page on the dirty page list.
801  *
802  * We use private_lock to lock against try_to_free_buffers while using the
803  * page's buffer list.  Also use this to protect against clean buffers being
804  * added to the page after it was set dirty.
805  *
806  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
807  * address_space though.
808  */
809 int __set_page_dirty_buffers(struct page *page)
810 {
811         int newly_dirty;
812         struct address_space *mapping = page_mapping(page);
813
814         if (unlikely(!mapping))
815                 return !TestSetPageDirty(page);
816
817         spin_lock(&mapping->private_lock);
818         if (page_has_buffers(page)) {
819                 struct buffer_head *head = page_buffers(page);
820                 struct buffer_head *bh = head;
821
822                 do {
823                         set_buffer_dirty(bh);
824                         bh = bh->b_this_page;
825                 } while (bh != head);
826         }
827         newly_dirty = !TestSetPageDirty(page);
828         spin_unlock(&mapping->private_lock);
829
830         if (newly_dirty)
831                 __set_page_dirty(page, mapping, 1);
832         return newly_dirty;
833 }
834 EXPORT_SYMBOL(__set_page_dirty_buffers);
835
836 /*
837  * Write out and wait upon a list of buffers.
838  *
839  * We have conflicting pressures: we want to make sure that all
840  * initially dirty buffers get waited on, but that any subsequently
841  * dirtied buffers don't.  After all, we don't want fsync to last
842  * forever if somebody is actively writing to the file.
843  *
844  * Do this in two main stages: first we copy dirty buffers to a
845  * temporary inode list, queueing the writes as we go.  Then we clean
846  * up, waiting for those writes to complete.
847  * 
848  * During this second stage, any subsequent updates to the file may end
849  * up refiling the buffer on the original inode's dirty list again, so
850  * there is a chance we will end up with a buffer queued for write but
851  * not yet completed on that list.  So, as a final cleanup we go through
852  * the osync code to catch these locked, dirty buffers without requeuing
853  * any newly dirty buffers for write.
854  */
855 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
856 {
857         struct buffer_head *bh;
858         struct list_head tmp;
859         struct address_space *mapping;
860         int err = 0, err2;
861
862         INIT_LIST_HEAD(&tmp);
863
864         spin_lock(lock);
865         while (!list_empty(list)) {
866                 bh = BH_ENTRY(list->next);
867                 mapping = bh->b_assoc_map;
868                 __remove_assoc_queue(bh);
869                 /* Avoid race with mark_buffer_dirty_inode() which does
870                  * a lockless check and we rely on seeing the dirty bit */
871                 smp_mb();
872                 if (buffer_dirty(bh) || buffer_locked(bh)) {
873                         list_add(&bh->b_assoc_buffers, &tmp);
874                         bh->b_assoc_map = mapping;
875                         if (buffer_dirty(bh)) {
876                                 get_bh(bh);
877                                 spin_unlock(lock);
878                                 /*
879                                  * Ensure any pending I/O completes so that
880                                  * ll_rw_block() actually writes the current
881                                  * contents - it is a noop if I/O is still in
882                                  * flight on potentially older contents.
883                                  */
884                                 ll_rw_block(SWRITE_SYNC, 1, &bh);
885                                 brelse(bh);
886                                 spin_lock(lock);
887                         }
888                 }
889         }
890
891         while (!list_empty(&tmp)) {
892                 bh = BH_ENTRY(tmp.prev);
893                 get_bh(bh);
894                 mapping = bh->b_assoc_map;
895                 __remove_assoc_queue(bh);
896                 /* Avoid race with mark_buffer_dirty_inode() which does
897                  * a lockless check and we rely on seeing the dirty bit */
898                 smp_mb();
899                 if (buffer_dirty(bh)) {
900                         list_add(&bh->b_assoc_buffers,
901                                  &mapping->private_list);
902                         bh->b_assoc_map = mapping;
903                 }
904                 spin_unlock(lock);
905                 wait_on_buffer(bh);
906                 if (!buffer_uptodate(bh))
907                         err = -EIO;
908                 brelse(bh);
909                 spin_lock(lock);
910         }
911         
912         spin_unlock(lock);
913         err2 = osync_buffers_list(lock, list);
914         if (err)
915                 return err;
916         else
917                 return err2;
918 }
919
920 /*
921  * Invalidate any and all dirty buffers on a given inode.  We are
922  * probably unmounting the fs, but that doesn't mean we have already
923  * done a sync().  Just drop the buffers from the inode list.
924  *
925  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
926  * assumes that all the buffers are against the blockdev.  Not true
927  * for reiserfs.
928  */
929 void invalidate_inode_buffers(struct inode *inode)
930 {
931         if (inode_has_buffers(inode)) {
932                 struct address_space *mapping = &inode->i_data;
933                 struct list_head *list = &mapping->private_list;
934                 struct address_space *buffer_mapping = mapping->assoc_mapping;
935
936                 spin_lock(&buffer_mapping->private_lock);
937                 while (!list_empty(list))
938                         __remove_assoc_queue(BH_ENTRY(list->next));
939                 spin_unlock(&buffer_mapping->private_lock);
940         }
941 }
942 EXPORT_SYMBOL(invalidate_inode_buffers);
943
944 /*
945  * Remove any clean buffers from the inode's buffer list.  This is called
946  * when we're trying to free the inode itself.  Those buffers can pin it.
947  *
948  * Returns true if all buffers were removed.
949  */
950 int remove_inode_buffers(struct inode *inode)
951 {
952         int ret = 1;
953
954         if (inode_has_buffers(inode)) {
955                 struct address_space *mapping = &inode->i_data;
956                 struct list_head *list = &mapping->private_list;
957                 struct address_space *buffer_mapping = mapping->assoc_mapping;
958
959                 spin_lock(&buffer_mapping->private_lock);
960                 while (!list_empty(list)) {
961                         struct buffer_head *bh = BH_ENTRY(list->next);
962                         if (buffer_dirty(bh)) {
963                                 ret = 0;
964                                 break;
965                         }
966                         __remove_assoc_queue(bh);
967                 }
968                 spin_unlock(&buffer_mapping->private_lock);
969         }
970         return ret;
971 }
972
973 /*
974  * Create the appropriate buffers when given a page for data area and
975  * the size of each buffer.. Use the bh->b_this_page linked list to
976  * follow the buffers created.  Return NULL if unable to create more
977  * buffers.
978  *
979  * The retry flag is used to differentiate async IO (paging, swapping)
980  * which may not fail from ordinary buffer allocations.
981  */
982 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
983                 int retry)
984 {
985         struct buffer_head *bh, *head;
986         long offset;
987
988 try_again:
989         head = NULL;
990         offset = PAGE_SIZE;
991         while ((offset -= size) >= 0) {
992                 bh = alloc_buffer_head(GFP_NOFS);
993                 if (!bh)
994                         goto no_grow;
995
996                 bh->b_bdev = NULL;
997                 bh->b_this_page = head;
998                 bh->b_blocknr = -1;
999                 head = bh;
1000
1001                 bh->b_state = 0;
1002                 atomic_set(&bh->b_count, 0);
1003                 bh->b_private = NULL;
1004                 bh->b_size = size;
1005
1006                 /* Link the buffer to its page */
1007                 set_bh_page(bh, page, offset);
1008
1009                 init_buffer(bh, NULL, NULL);
1010         }
1011         return head;
1012 /*
1013  * In case anything failed, we just free everything we got.
1014  */
1015 no_grow:
1016         if (head) {
1017                 do {
1018                         bh = head;
1019                         head = head->b_this_page;
1020                         free_buffer_head(bh);
1021                 } while (head);
1022         }
1023
1024         /*
1025          * Return failure for non-async IO requests.  Async IO requests
1026          * are not allowed to fail, so we have to wait until buffer heads
1027          * become available.  But we don't want tasks sleeping with 
1028          * partially complete buffers, so all were released above.
1029          */
1030         if (!retry)
1031                 return NULL;
1032
1033         /* We're _really_ low on memory. Now we just
1034          * wait for old buffer heads to become free due to
1035          * finishing IO.  Since this is an async request and
1036          * the reserve list is empty, we're sure there are 
1037          * async buffer heads in use.
1038          */
1039         free_more_memory();
1040         goto try_again;
1041 }
1042 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1043
1044 static inline void
1045 link_dev_buffers(struct page *page, struct buffer_head *head)
1046 {
1047         struct buffer_head *bh, *tail;
1048
1049         bh = head;
1050         do {
1051                 tail = bh;
1052                 bh = bh->b_this_page;
1053         } while (bh);
1054         tail->b_this_page = head;
1055         attach_page_buffers(page, head);
1056 }
1057
1058 /*
1059  * Initialise the state of a blockdev page's buffers.
1060  */ 
1061 static void
1062 init_page_buffers(struct page *page, struct block_device *bdev,
1063                         sector_t block, int size)
1064 {
1065         struct buffer_head *head = page_buffers(page);
1066         struct buffer_head *bh = head;
1067         int uptodate = PageUptodate(page);
1068
1069         do {
1070                 if (!buffer_mapped(bh)) {
1071                         init_buffer(bh, NULL, NULL);
1072                         bh->b_bdev = bdev;
1073                         bh->b_blocknr = block;
1074                         if (uptodate)
1075                                 set_buffer_uptodate(bh);
1076                         set_buffer_mapped(bh);
1077                 }
1078                 block++;
1079                 bh = bh->b_this_page;
1080         } while (bh != head);
1081 }
1082
1083 /*
1084  * Create the page-cache page that contains the requested block.
1085  *
1086  * This is user purely for blockdev mappings.
1087  */
1088 static struct page *
1089 grow_dev_page(struct block_device *bdev, sector_t block,
1090                 pgoff_t index, int size)
1091 {
1092         struct inode *inode = bdev->bd_inode;
1093         struct page *page;
1094         struct buffer_head *bh;
1095
1096         page = find_or_create_page(inode->i_mapping, index,
1097                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1098         if (!page)
1099                 return NULL;
1100
1101         BUG_ON(!PageLocked(page));
1102
1103         if (page_has_buffers(page)) {
1104                 bh = page_buffers(page);
1105                 if (bh->b_size == size) {
1106                         init_page_buffers(page, bdev, block, size);
1107                         return page;
1108                 }
1109                 if (!try_to_free_buffers(page))
1110                         goto failed;
1111         }
1112
1113         /*
1114          * Allocate some buffers for this page
1115          */
1116         bh = alloc_page_buffers(page, size, 0);
1117         if (!bh)
1118                 goto failed;
1119
1120         /*
1121          * Link the page to the buffers and initialise them.  Take the
1122          * lock to be atomic wrt __find_get_block(), which does not
1123          * run under the page lock.
1124          */
1125         spin_lock(&inode->i_mapping->private_lock);
1126         link_dev_buffers(page, bh);
1127         init_page_buffers(page, bdev, block, size);
1128         spin_unlock(&inode->i_mapping->private_lock);
1129         return page;
1130
1131 failed:
1132         BUG();
1133         unlock_page(page);
1134         page_cache_release(page);
1135         return NULL;
1136 }
1137
1138 /*
1139  * Create buffers for the specified block device block's page.  If
1140  * that page was dirty, the buffers are set dirty also.
1141  */
1142 static int
1143 grow_buffers(struct block_device *bdev, sector_t block, int size)
1144 {
1145         struct page *page;
1146         pgoff_t index;
1147         int sizebits;
1148
1149         sizebits = -1;
1150         do {
1151                 sizebits++;
1152         } while ((size << sizebits) < PAGE_SIZE);
1153
1154         index = block >> sizebits;
1155
1156         /*
1157          * Check for a block which wants to lie outside our maximum possible
1158          * pagecache index.  (this comparison is done using sector_t types).
1159          */
1160         if (unlikely(index != block >> sizebits)) {
1161                 char b[BDEVNAME_SIZE];
1162
1163                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1164                         "device %s\n",
1165                         __func__, (unsigned long long)block,
1166                         bdevname(bdev, b));
1167                 return -EIO;
1168         }
1169         block = index << sizebits;
1170         /* Create a page with the proper size buffers.. */
1171         page = grow_dev_page(bdev, block, index, size);
1172         if (!page)
1173                 return 0;
1174         unlock_page(page);
1175         page_cache_release(page);
1176         return 1;
1177 }
1178
1179 static struct buffer_head *
1180 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1181 {
1182         /* Size must be multiple of hard sectorsize */
1183         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1184                         (size < 512 || size > PAGE_SIZE))) {
1185                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1186                                         size);
1187                 printk(KERN_ERR "hardsect size: %d\n",
1188                                         bdev_hardsect_size(bdev));
1189
1190                 dump_stack();
1191                 return NULL;
1192         }
1193
1194         for (;;) {
1195                 struct buffer_head * bh;
1196                 int ret;
1197
1198                 bh = __find_get_block(bdev, block, size);
1199                 if (bh)
1200                         return bh;
1201
1202                 ret = grow_buffers(bdev, block, size);
1203                 if (ret < 0)
1204                         return NULL;
1205                 if (ret == 0)
1206                         free_more_memory();
1207         }
1208 }
1209
1210 /*
1211  * The relationship between dirty buffers and dirty pages:
1212  *
1213  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1214  * the page is tagged dirty in its radix tree.
1215  *
1216  * At all times, the dirtiness of the buffers represents the dirtiness of
1217  * subsections of the page.  If the page has buffers, the page dirty bit is
1218  * merely a hint about the true dirty state.
1219  *
1220  * When a page is set dirty in its entirety, all its buffers are marked dirty
1221  * (if the page has buffers).
1222  *
1223  * When a buffer is marked dirty, its page is dirtied, but the page's other
1224  * buffers are not.
1225  *
1226  * Also.  When blockdev buffers are explicitly read with bread(), they
1227  * individually become uptodate.  But their backing page remains not
1228  * uptodate - even if all of its buffers are uptodate.  A subsequent
1229  * block_read_full_page() against that page will discover all the uptodate
1230  * buffers, will set the page uptodate and will perform no I/O.
1231  */
1232
1233 /**
1234  * mark_buffer_dirty - mark a buffer_head as needing writeout
1235  * @bh: the buffer_head to mark dirty
1236  *
1237  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1238  * backing page dirty, then tag the page as dirty in its address_space's radix
1239  * tree and then attach the address_space's inode to its superblock's dirty
1240  * inode list.
1241  *
1242  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1243  * mapping->tree_lock and the global inode_lock.
1244  */
1245 void mark_buffer_dirty(struct buffer_head *bh)
1246 {
1247         WARN_ON_ONCE(!buffer_uptodate(bh));
1248
1249         /*
1250          * Very *carefully* optimize the it-is-already-dirty case.
1251          *
1252          * Don't let the final "is it dirty" escape to before we
1253          * perhaps modified the buffer.
1254          */
1255         if (buffer_dirty(bh)) {
1256                 smp_mb();
1257                 if (buffer_dirty(bh))
1258                         return;
1259         }
1260
1261         if (!test_set_buffer_dirty(bh)) {
1262                 struct page *page = bh->b_page;
1263                 if (!TestSetPageDirty(page))
1264                         __set_page_dirty(page, page_mapping(page), 0);
1265         }
1266 }
1267
1268 /*
1269  * Decrement a buffer_head's reference count.  If all buffers against a page
1270  * have zero reference count, are clean and unlocked, and if the page is clean
1271  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1272  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1273  * a page but it ends up not being freed, and buffers may later be reattached).
1274  */
1275 void __brelse(struct buffer_head * buf)
1276 {
1277         if (atomic_read(&buf->b_count)) {
1278                 put_bh(buf);
1279                 return;
1280         }
1281         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1282 }
1283
1284 /*
1285  * bforget() is like brelse(), except it discards any
1286  * potentially dirty data.
1287  */
1288 void __bforget(struct buffer_head *bh)
1289 {
1290         clear_buffer_dirty(bh);
1291         if (bh->b_assoc_map) {
1292                 struct address_space *buffer_mapping = bh->b_page->mapping;
1293
1294                 spin_lock(&buffer_mapping->private_lock);
1295                 list_del_init(&bh->b_assoc_buffers);
1296                 bh->b_assoc_map = NULL;
1297                 spin_unlock(&buffer_mapping->private_lock);
1298         }
1299         __brelse(bh);
1300 }
1301
1302 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1303 {
1304         lock_buffer(bh);
1305         if (buffer_uptodate(bh)) {
1306                 unlock_buffer(bh);
1307                 return bh;
1308         } else {
1309                 get_bh(bh);
1310                 bh->b_end_io = end_buffer_read_sync;
1311                 submit_bh(READ, bh);
1312                 wait_on_buffer(bh);
1313                 if (buffer_uptodate(bh))
1314                         return bh;
1315         }
1316         brelse(bh);
1317         return NULL;
1318 }
1319
1320 /*
1321  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1322  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1323  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1324  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1325  * CPU's LRUs at the same time.
1326  *
1327  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1328  * sb_find_get_block().
1329  *
1330  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1331  * a local interrupt disable for that.
1332  */
1333
1334 #define BH_LRU_SIZE     8
1335
1336 struct bh_lru {
1337         struct buffer_head *bhs[BH_LRU_SIZE];
1338 };
1339
1340 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1341
1342 #ifdef CONFIG_SMP
1343 #define bh_lru_lock()   local_irq_disable()
1344 #define bh_lru_unlock() local_irq_enable()
1345 #else
1346 #define bh_lru_lock()   preempt_disable()
1347 #define bh_lru_unlock() preempt_enable()
1348 #endif
1349
1350 static inline void check_irqs_on(void)
1351 {
1352 #ifdef irqs_disabled
1353         BUG_ON(irqs_disabled());
1354 #endif
1355 }
1356
1357 /*
1358  * The LRU management algorithm is dopey-but-simple.  Sorry.
1359  */
1360 static void bh_lru_install(struct buffer_head *bh)
1361 {
1362         struct buffer_head *evictee = NULL;
1363         struct bh_lru *lru;
1364
1365         check_irqs_on();
1366         bh_lru_lock();
1367         lru = &__get_cpu_var(bh_lrus);
1368         if (lru->bhs[0] != bh) {
1369                 struct buffer_head *bhs[BH_LRU_SIZE];
1370                 int in;
1371                 int out = 0;
1372
1373                 get_bh(bh);
1374                 bhs[out++] = bh;
1375                 for (in = 0; in < BH_LRU_SIZE; in++) {
1376                         struct buffer_head *bh2 = lru->bhs[in];
1377
1378                         if (bh2 == bh) {
1379                                 __brelse(bh2);
1380                         } else {
1381                                 if (out >= BH_LRU_SIZE) {
1382                                         BUG_ON(evictee != NULL);
1383                                         evictee = bh2;
1384                                 } else {
1385                                         bhs[out++] = bh2;
1386                                 }
1387                         }
1388                 }
1389                 while (out < BH_LRU_SIZE)
1390                         bhs[out++] = NULL;
1391                 memcpy(lru->bhs, bhs, sizeof(bhs));
1392         }
1393         bh_lru_unlock();
1394
1395         if (evictee)
1396                 __brelse(evictee);
1397 }
1398
1399 /*
1400  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1401  */
1402 static struct buffer_head *
1403 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1404 {
1405         struct buffer_head *ret = NULL;
1406         struct bh_lru *lru;
1407         unsigned int i;
1408
1409         check_irqs_on();
1410         bh_lru_lock();
1411         lru = &__get_cpu_var(bh_lrus);
1412         for (i = 0; i < BH_LRU_SIZE; i++) {
1413                 struct buffer_head *bh = lru->bhs[i];
1414
1415                 if (bh && bh->b_bdev == bdev &&
1416                                 bh->b_blocknr == block && bh->b_size == size) {
1417                         if (i) {
1418                                 while (i) {
1419                                         lru->bhs[i] = lru->bhs[i - 1];
1420                                         i--;
1421                                 }
1422                                 lru->bhs[0] = bh;
1423                         }
1424                         get_bh(bh);
1425                         ret = bh;
1426                         break;
1427                 }
1428         }
1429         bh_lru_unlock();
1430         return ret;
1431 }
1432
1433 /*
1434  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1435  * it in the LRU and mark it as accessed.  If it is not present then return
1436  * NULL
1437  */
1438 struct buffer_head *
1439 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1440 {
1441         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1442
1443         if (bh == NULL) {
1444                 bh = __find_get_block_slow(bdev, block);
1445                 if (bh)
1446                         bh_lru_install(bh);
1447         }
1448         if (bh)
1449                 touch_buffer(bh);
1450         return bh;
1451 }
1452 EXPORT_SYMBOL(__find_get_block);
1453
1454 /*
1455  * __getblk will locate (and, if necessary, create) the buffer_head
1456  * which corresponds to the passed block_device, block and size. The
1457  * returned buffer has its reference count incremented.
1458  *
1459  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1460  * illegal block number, __getblk() will happily return a buffer_head
1461  * which represents the non-existent block.  Very weird.
1462  *
1463  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1464  * attempt is failing.  FIXME, perhaps?
1465  */
1466 struct buffer_head *
1467 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1468 {
1469         struct buffer_head *bh = __find_get_block(bdev, block, size);
1470
1471         might_sleep();
1472         if (bh == NULL)
1473                 bh = __getblk_slow(bdev, block, size);
1474         return bh;
1475 }
1476 EXPORT_SYMBOL(__getblk);
1477
1478 /*
1479  * Do async read-ahead on a buffer..
1480  */
1481 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1482 {
1483         struct buffer_head *bh = __getblk(bdev, block, size);
1484         if (likely(bh)) {
1485                 ll_rw_block(READA, 1, &bh);
1486                 brelse(bh);
1487         }
1488 }
1489 EXPORT_SYMBOL(__breadahead);
1490
1491 /**
1492  *  __bread() - reads a specified block and returns the bh
1493  *  @bdev: the block_device to read from
1494  *  @block: number of block
1495  *  @size: size (in bytes) to read
1496  * 
1497  *  Reads a specified block, and returns buffer head that contains it.
1498  *  It returns NULL if the block was unreadable.
1499  */
1500 struct buffer_head *
1501 __bread(struct block_device *bdev, sector_t block, unsigned size)
1502 {
1503         struct buffer_head *bh = __getblk(bdev, block, size);
1504
1505         if (likely(bh) && !buffer_uptodate(bh))
1506                 bh = __bread_slow(bh);
1507         return bh;
1508 }
1509 EXPORT_SYMBOL(__bread);
1510
1511 /*
1512  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1513  * This doesn't race because it runs in each cpu either in irq
1514  * or with preempt disabled.
1515  */
1516 static void invalidate_bh_lru(void *arg)
1517 {
1518         struct bh_lru *b = &get_cpu_var(bh_lrus);
1519         int i;
1520
1521         for (i = 0; i < BH_LRU_SIZE; i++) {
1522                 brelse(b->bhs[i]);
1523                 b->bhs[i] = NULL;
1524         }
1525         put_cpu_var(bh_lrus);
1526 }
1527         
1528 void invalidate_bh_lrus(void)
1529 {
1530         on_each_cpu(invalidate_bh_lru, NULL, 1);
1531 }
1532 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1533
1534 void set_bh_page(struct buffer_head *bh,
1535                 struct page *page, unsigned long offset)
1536 {
1537         bh->b_page = page;
1538         BUG_ON(offset >= PAGE_SIZE);
1539         if (PageHighMem(page))
1540                 /*
1541                  * This catches illegal uses and preserves the offset:
1542                  */
1543                 bh->b_data = (char *)(0 + offset);
1544         else
1545                 bh->b_data = page_address(page) + offset;
1546 }
1547 EXPORT_SYMBOL(set_bh_page);
1548
1549 /*
1550  * Called when truncating a buffer on a page completely.
1551  */
1552 static void discard_buffer(struct buffer_head * bh)
1553 {
1554         lock_buffer(bh);
1555         clear_buffer_dirty(bh);
1556         bh->b_bdev = NULL;
1557         clear_buffer_mapped(bh);
1558         clear_buffer_req(bh);
1559         clear_buffer_new(bh);
1560         clear_buffer_delay(bh);
1561         clear_buffer_unwritten(bh);
1562         unlock_buffer(bh);
1563 }
1564
1565 /**
1566  * block_invalidatepage - invalidate part of all of a buffer-backed page
1567  *
1568  * @page: the page which is affected
1569  * @offset: the index of the truncation point
1570  *
1571  * block_invalidatepage() is called when all or part of the page has become
1572  * invalidatedby a truncate operation.
1573  *
1574  * block_invalidatepage() does not have to release all buffers, but it must
1575  * ensure that no dirty buffer is left outside @offset and that no I/O
1576  * is underway against any of the blocks which are outside the truncation
1577  * point.  Because the caller is about to free (and possibly reuse) those
1578  * blocks on-disk.
1579  */
1580 void block_invalidatepage(struct page *page, unsigned long offset)
1581 {
1582         struct buffer_head *head, *bh, *next;
1583         unsigned int curr_off = 0;
1584
1585         BUG_ON(!PageLocked(page));
1586         if (!page_has_buffers(page))
1587                 goto out;
1588
1589         head = page_buffers(page);
1590         bh = head;
1591         do {
1592                 unsigned int next_off = curr_off + bh->b_size;
1593                 next = bh->b_this_page;
1594
1595                 /*
1596                  * is this block fully invalidated?
1597                  */
1598                 if (offset <= curr_off)
1599                         discard_buffer(bh);
1600                 curr_off = next_off;
1601                 bh = next;
1602         } while (bh != head);
1603
1604         /*
1605          * We release buffers only if the entire page is being invalidated.
1606          * The get_block cached value has been unconditionally invalidated,
1607          * so real IO is not possible anymore.
1608          */
1609         if (offset == 0)
1610                 try_to_release_page(page, 0);
1611 out:
1612         return;
1613 }
1614 EXPORT_SYMBOL(block_invalidatepage);
1615
1616 /*
1617  * We attach and possibly dirty the buffers atomically wrt
1618  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1619  * is already excluded via the page lock.
1620  */
1621 void create_empty_buffers(struct page *page,
1622                         unsigned long blocksize, unsigned long b_state)
1623 {
1624         struct buffer_head *bh, *head, *tail;
1625
1626         head = alloc_page_buffers(page, blocksize, 1);
1627         bh = head;
1628         do {
1629                 bh->b_state |= b_state;
1630                 tail = bh;
1631                 bh = bh->b_this_page;
1632         } while (bh);
1633         tail->b_this_page = head;
1634
1635         spin_lock(&page->mapping->private_lock);
1636         if (PageUptodate(page) || PageDirty(page)) {
1637                 bh = head;
1638                 do {
1639                         if (PageDirty(page))
1640                                 set_buffer_dirty(bh);
1641                         if (PageUptodate(page))
1642                                 set_buffer_uptodate(bh);
1643                         bh = bh->b_this_page;
1644                 } while (bh != head);
1645         }
1646         attach_page_buffers(page, head);
1647         spin_unlock(&page->mapping->private_lock);
1648 }
1649 EXPORT_SYMBOL(create_empty_buffers);
1650
1651 /*
1652  * We are taking a block for data and we don't want any output from any
1653  * buffer-cache aliases starting from return from that function and
1654  * until the moment when something will explicitly mark the buffer
1655  * dirty (hopefully that will not happen until we will free that block ;-)
1656  * We don't even need to mark it not-uptodate - nobody can expect
1657  * anything from a newly allocated buffer anyway. We used to used
1658  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1659  * don't want to mark the alias unmapped, for example - it would confuse
1660  * anyone who might pick it with bread() afterwards...
1661  *
1662  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1663  * be writeout I/O going on against recently-freed buffers.  We don't
1664  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1665  * only if we really need to.  That happens here.
1666  */
1667 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1668 {
1669         struct buffer_head *old_bh;
1670
1671         might_sleep();
1672
1673         old_bh = __find_get_block_slow(bdev, block);
1674         if (old_bh) {
1675                 clear_buffer_dirty(old_bh);
1676                 wait_on_buffer(old_bh);
1677                 clear_buffer_req(old_bh);
1678                 __brelse(old_bh);
1679         }
1680 }
1681 EXPORT_SYMBOL(unmap_underlying_metadata);
1682
1683 /*
1684  * NOTE! All mapped/uptodate combinations are valid:
1685  *
1686  *      Mapped  Uptodate        Meaning
1687  *
1688  *      No      No              "unknown" - must do get_block()
1689  *      No      Yes             "hole" - zero-filled
1690  *      Yes     No              "allocated" - allocated on disk, not read in
1691  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1692  *
1693  * "Dirty" is valid only with the last case (mapped+uptodate).
1694  */
1695
1696 /*
1697  * While block_write_full_page is writing back the dirty buffers under
1698  * the page lock, whoever dirtied the buffers may decide to clean them
1699  * again at any time.  We handle that by only looking at the buffer
1700  * state inside lock_buffer().
1701  *
1702  * If block_write_full_page() is called for regular writeback
1703  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1704  * locked buffer.   This only can happen if someone has written the buffer
1705  * directly, with submit_bh().  At the address_space level PageWriteback
1706  * prevents this contention from occurring.
1707  */
1708 static int __block_write_full_page(struct inode *inode, struct page *page,
1709                         get_block_t *get_block, struct writeback_control *wbc)
1710 {
1711         int err;
1712         sector_t block;
1713         sector_t last_block;
1714         struct buffer_head *bh, *head;
1715         const unsigned blocksize = 1 << inode->i_blkbits;
1716         int nr_underway = 0;
1717
1718         BUG_ON(!PageLocked(page));
1719
1720         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1721
1722         if (!page_has_buffers(page)) {
1723                 create_empty_buffers(page, blocksize,
1724                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1725         }
1726
1727         /*
1728          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1729          * here, and the (potentially unmapped) buffers may become dirty at
1730          * any time.  If a buffer becomes dirty here after we've inspected it
1731          * then we just miss that fact, and the page stays dirty.
1732          *
1733          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1734          * handle that here by just cleaning them.
1735          */
1736
1737         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1738         head = page_buffers(page);
1739         bh = head;
1740
1741         /*
1742          * Get all the dirty buffers mapped to disk addresses and
1743          * handle any aliases from the underlying blockdev's mapping.
1744          */
1745         do {
1746                 if (block > last_block) {
1747                         /*
1748                          * mapped buffers outside i_size will occur, because
1749                          * this page can be outside i_size when there is a
1750                          * truncate in progress.
1751                          */
1752                         /*
1753                          * The buffer was zeroed by block_write_full_page()
1754                          */
1755                         clear_buffer_dirty(bh);
1756                         set_buffer_uptodate(bh);
1757                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1758                            buffer_dirty(bh)) {
1759                         WARN_ON(bh->b_size != blocksize);
1760                         err = get_block(inode, block, bh, 1);
1761                         if (err)
1762                                 goto recover;
1763                         clear_buffer_delay(bh);
1764                         if (buffer_new(bh)) {
1765                                 /* blockdev mappings never come here */
1766                                 clear_buffer_new(bh);
1767                                 unmap_underlying_metadata(bh->b_bdev,
1768                                                         bh->b_blocknr);
1769                         }
1770                 }
1771                 bh = bh->b_this_page;
1772                 block++;
1773         } while (bh != head);
1774
1775         do {
1776                 if (!buffer_mapped(bh))
1777                         continue;
1778                 /*
1779                  * If it's a fully non-blocking write attempt and we cannot
1780                  * lock the buffer then redirty the page.  Note that this can
1781                  * potentially cause a busy-wait loop from pdflush and kswapd
1782                  * activity, but those code paths have their own higher-level
1783                  * throttling.
1784                  */
1785                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1786                         lock_buffer(bh);
1787                 } else if (!trylock_buffer(bh)) {
1788                         redirty_page_for_writepage(wbc, page);
1789                         continue;
1790                 }
1791                 if (test_clear_buffer_dirty(bh)) {
1792                         mark_buffer_async_write(bh);
1793                 } else {
1794                         unlock_buffer(bh);
1795                 }
1796         } while ((bh = bh->b_this_page) != head);
1797
1798         /*
1799          * The page and its buffers are protected by PageWriteback(), so we can
1800          * drop the bh refcounts early.
1801          */
1802         BUG_ON(PageWriteback(page));
1803         set_page_writeback(page);
1804
1805         do {
1806                 struct buffer_head *next = bh->b_this_page;
1807                 if (buffer_async_write(bh)) {
1808                         submit_bh(WRITE, bh);
1809                         nr_underway++;
1810                 }
1811                 bh = next;
1812         } while (bh != head);
1813         unlock_page(page);
1814
1815         err = 0;
1816 done:
1817         if (nr_underway == 0) {
1818                 /*
1819                  * The page was marked dirty, but the buffers were
1820                  * clean.  Someone wrote them back by hand with
1821                  * ll_rw_block/submit_bh.  A rare case.
1822                  */
1823                 end_page_writeback(page);
1824
1825                 /*
1826                  * The page and buffer_heads can be released at any time from
1827                  * here on.
1828                  */
1829         }
1830         return err;
1831
1832 recover:
1833         /*
1834          * ENOSPC, or some other error.  We may already have added some
1835          * blocks to the file, so we need to write these out to avoid
1836          * exposing stale data.
1837          * The page is currently locked and not marked for writeback
1838          */
1839         bh = head;
1840         /* Recovery: lock and submit the mapped buffers */
1841         do {
1842                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1843                     !buffer_delay(bh)) {
1844                         lock_buffer(bh);
1845                         mark_buffer_async_write(bh);
1846                 } else {
1847                         /*
1848                          * The buffer may have been set dirty during
1849                          * attachment to a dirty page.
1850                          */
1851                         clear_buffer_dirty(bh);
1852                 }
1853         } while ((bh = bh->b_this_page) != head);
1854         SetPageError(page);
1855         BUG_ON(PageWriteback(page));
1856         mapping_set_error(page->mapping, err);
1857         set_page_writeback(page);
1858         do {
1859                 struct buffer_head *next = bh->b_this_page;
1860                 if (buffer_async_write(bh)) {
1861                         clear_buffer_dirty(bh);
1862                         submit_bh(WRITE, bh);
1863                         nr_underway++;
1864                 }
1865                 bh = next;
1866         } while (bh != head);
1867         unlock_page(page);
1868         goto done;
1869 }
1870
1871 /*
1872  * If a page has any new buffers, zero them out here, and mark them uptodate
1873  * and dirty so they'll be written out (in order to prevent uninitialised
1874  * block data from leaking). And clear the new bit.
1875  */
1876 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1877 {
1878         unsigned int block_start, block_end;
1879         struct buffer_head *head, *bh;
1880
1881         BUG_ON(!PageLocked(page));
1882         if (!page_has_buffers(page))
1883                 return;
1884
1885         bh = head = page_buffers(page);
1886         block_start = 0;
1887         do {
1888                 block_end = block_start + bh->b_size;
1889
1890                 if (buffer_new(bh)) {
1891                         if (block_end > from && block_start < to) {
1892                                 if (!PageUptodate(page)) {
1893                                         unsigned start, size;
1894
1895                                         start = max(from, block_start);
1896                                         size = min(to, block_end) - start;
1897
1898                                         zero_user(page, start, size);
1899                                         set_buffer_uptodate(bh);
1900                                 }
1901
1902                                 clear_buffer_new(bh);
1903                                 mark_buffer_dirty(bh);
1904                         }
1905                 }
1906
1907                 block_start = block_end;
1908                 bh = bh->b_this_page;
1909         } while (bh != head);
1910 }
1911 EXPORT_SYMBOL(page_zero_new_buffers);
1912
1913 static int __block_prepare_write(struct inode *inode, struct page *page,
1914                 unsigned from, unsigned to, get_block_t *get_block)
1915 {
1916         unsigned block_start, block_end;
1917         sector_t block;
1918         int err = 0;
1919         unsigned blocksize, bbits;
1920         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1921
1922         BUG_ON(!PageLocked(page));
1923         BUG_ON(from > PAGE_CACHE_SIZE);
1924         BUG_ON(to > PAGE_CACHE_SIZE);
1925         BUG_ON(from > to);
1926
1927         blocksize = 1 << inode->i_blkbits;
1928         if (!page_has_buffers(page))
1929                 create_empty_buffers(page, blocksize, 0);
1930         head = page_buffers(page);
1931
1932         bbits = inode->i_blkbits;
1933         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1934
1935         for(bh = head, block_start = 0; bh != head || !block_start;
1936             block++, block_start=block_end, bh = bh->b_this_page) {
1937                 block_end = block_start + blocksize;
1938                 if (block_end <= from || block_start >= to) {
1939                         if (PageUptodate(page)) {
1940                                 if (!buffer_uptodate(bh))
1941                                         set_buffer_uptodate(bh);
1942                         }
1943                         continue;
1944                 }
1945                 if (buffer_new(bh))
1946                         clear_buffer_new(bh);
1947                 if (!buffer_mapped(bh)) {
1948                         WARN_ON(bh->b_size != blocksize);
1949                         err = get_block(inode, block, bh, 1);
1950                         if (err)
1951                                 break;
1952                         if (buffer_new(bh)) {
1953                                 unmap_underlying_metadata(bh->b_bdev,
1954                                                         bh->b_blocknr);
1955                                 if (PageUptodate(page)) {
1956                                         clear_buffer_new(bh);
1957                                         set_buffer_uptodate(bh);
1958                                         mark_buffer_dirty(bh);
1959                                         continue;
1960                                 }
1961                                 if (block_end > to || block_start < from)
1962                                         zero_user_segments(page,
1963                                                 to, block_end,
1964                                                 block_start, from);
1965                                 continue;
1966                         }
1967                 }
1968                 if (PageUptodate(page)) {
1969                         if (!buffer_uptodate(bh))
1970                                 set_buffer_uptodate(bh);
1971                         continue; 
1972                 }
1973                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1974                     !buffer_unwritten(bh) &&
1975                      (block_start < from || block_end > to)) {
1976                         ll_rw_block(READ, 1, &bh);
1977                         *wait_bh++=bh;
1978                 }
1979         }
1980         /*
1981          * If we issued read requests - let them complete.
1982          */
1983         while(wait_bh > wait) {
1984                 wait_on_buffer(*--wait_bh);
1985                 if (!buffer_uptodate(*wait_bh))
1986                         err = -EIO;
1987         }
1988         if (unlikely(err))
1989                 page_zero_new_buffers(page, from, to);
1990         return err;
1991 }
1992
1993 static int __block_commit_write(struct inode *inode, struct page *page,
1994                 unsigned from, unsigned to)
1995 {
1996         unsigned block_start, block_end;
1997         int partial = 0;
1998         unsigned blocksize;
1999         struct buffer_head *bh, *head;
2000
2001         blocksize = 1 << inode->i_blkbits;
2002
2003         for(bh = head = page_buffers(page), block_start = 0;
2004             bh != head || !block_start;
2005             block_start=block_end, bh = bh->b_this_page) {
2006                 block_end = block_start + blocksize;
2007                 if (block_end <= from || block_start >= to) {
2008                         if (!buffer_uptodate(bh))
2009                                 partial = 1;
2010                 } else {
2011                         set_buffer_uptodate(bh);
2012                         mark_buffer_dirty(bh);
2013                 }
2014                 clear_buffer_new(bh);
2015         }
2016
2017         /*
2018          * If this is a partial write which happened to make all buffers
2019          * uptodate then we can optimize away a bogus readpage() for
2020          * the next read(). Here we 'discover' whether the page went
2021          * uptodate as a result of this (potentially partial) write.
2022          */
2023         if (!partial)
2024                 SetPageUptodate(page);
2025         return 0;
2026 }
2027
2028 /*
2029  * block_write_begin takes care of the basic task of block allocation and
2030  * bringing partial write blocks uptodate first.
2031  *
2032  * If *pagep is not NULL, then block_write_begin uses the locked page
2033  * at *pagep rather than allocating its own. In this case, the page will
2034  * not be unlocked or deallocated on failure.
2035  */
2036 int block_write_begin(struct file *file, struct address_space *mapping,
2037                         loff_t pos, unsigned len, unsigned flags,
2038                         struct page **pagep, void **fsdata,
2039                         get_block_t *get_block)
2040 {
2041         struct inode *inode = mapping->host;
2042         int status = 0;
2043         struct page *page;
2044         pgoff_t index;
2045         unsigned start, end;
2046         int ownpage = 0;
2047
2048         index = pos >> PAGE_CACHE_SHIFT;
2049         start = pos & (PAGE_CACHE_SIZE - 1);
2050         end = start + len;
2051
2052         page = *pagep;
2053         if (page == NULL) {
2054                 ownpage = 1;
2055                 page = grab_cache_page_write_begin(mapping, index, flags);
2056                 if (!page) {
2057                         status = -ENOMEM;
2058                         goto out;
2059                 }
2060                 *pagep = page;
2061         } else
2062                 BUG_ON(!PageLocked(page));
2063
2064         status = __block_prepare_write(inode, page, start, end, get_block);
2065         if (unlikely(status)) {
2066                 ClearPageUptodate(page);
2067
2068                 if (ownpage) {
2069                         unlock_page(page);
2070                         page_cache_release(page);
2071                         *pagep = NULL;
2072
2073                         /*
2074                          * prepare_write() may have instantiated a few blocks
2075                          * outside i_size.  Trim these off again. Don't need
2076                          * i_size_read because we hold i_mutex.
2077                          */
2078                         if (pos + len > inode->i_size)
2079                                 vmtruncate(inode, inode->i_size);
2080                 }
2081         }
2082
2083 out:
2084         return status;
2085 }
2086 EXPORT_SYMBOL(block_write_begin);
2087
2088 int block_write_end(struct file *file, struct address_space *mapping,
2089                         loff_t pos, unsigned len, unsigned copied,
2090                         struct page *page, void *fsdata)
2091 {
2092         struct inode *inode = mapping->host;
2093         unsigned start;
2094
2095         start = pos & (PAGE_CACHE_SIZE - 1);
2096
2097         if (unlikely(copied < len)) {
2098                 /*
2099                  * The buffers that were written will now be uptodate, so we
2100                  * don't have to worry about a readpage reading them and
2101                  * overwriting a partial write. However if we have encountered
2102                  * a short write and only partially written into a buffer, it
2103                  * will not be marked uptodate, so a readpage might come in and
2104                  * destroy our partial write.
2105                  *
2106                  * Do the simplest thing, and just treat any short write to a
2107                  * non uptodate page as a zero-length write, and force the
2108                  * caller to redo the whole thing.
2109                  */
2110                 if (!PageUptodate(page))
2111                         copied = 0;
2112
2113                 page_zero_new_buffers(page, start+copied, start+len);
2114         }
2115         flush_dcache_page(page);
2116
2117         /* This could be a short (even 0-length) commit */
2118         __block_commit_write(inode, page, start, start+copied);
2119
2120         return copied;
2121 }
2122 EXPORT_SYMBOL(block_write_end);
2123
2124 int generic_write_end(struct file *file, struct address_space *mapping,
2125                         loff_t pos, unsigned len, unsigned copied,
2126                         struct page *page, void *fsdata)
2127 {
2128         struct inode *inode = mapping->host;
2129         int i_size_changed = 0;
2130
2131         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2132
2133         /*
2134          * No need to use i_size_read() here, the i_size
2135          * cannot change under us because we hold i_mutex.
2136          *
2137          * But it's important to update i_size while still holding page lock:
2138          * page writeout could otherwise come in and zero beyond i_size.
2139          */
2140         if (pos+copied > inode->i_size) {
2141                 i_size_write(inode, pos+copied);
2142                 i_size_changed = 1;
2143         }
2144
2145         unlock_page(page);
2146         page_cache_release(page);
2147
2148         /*
2149          * Don't mark the inode dirty under page lock. First, it unnecessarily
2150          * makes the holding time of page lock longer. Second, it forces lock
2151          * ordering of page lock and transaction start for journaling
2152          * filesystems.
2153          */
2154         if (i_size_changed)
2155                 mark_inode_dirty(inode);
2156
2157         return copied;
2158 }
2159 EXPORT_SYMBOL(generic_write_end);
2160
2161 /*
2162  * block_is_partially_uptodate checks whether buffers within a page are
2163  * uptodate or not.
2164  *
2165  * Returns true if all buffers which correspond to a file portion
2166  * we want to read are uptodate.
2167  */
2168 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2169                                         unsigned long from)
2170 {
2171         struct inode *inode = page->mapping->host;
2172         unsigned block_start, block_end, blocksize;
2173         unsigned to;
2174         struct buffer_head *bh, *head;
2175         int ret = 1;
2176
2177         if (!page_has_buffers(page))
2178                 return 0;
2179
2180         blocksize = 1 << inode->i_blkbits;
2181         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2182         to = from + to;
2183         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2184                 return 0;
2185
2186         head = page_buffers(page);
2187         bh = head;
2188         block_start = 0;
2189         do {
2190                 block_end = block_start + blocksize;
2191                 if (block_end > from && block_start < to) {
2192                         if (!buffer_uptodate(bh)) {
2193                                 ret = 0;
2194                                 break;
2195                         }
2196                         if (block_end >= to)
2197                                 break;
2198                 }
2199                 block_start = block_end;
2200                 bh = bh->b_this_page;
2201         } while (bh != head);
2202
2203         return ret;
2204 }
2205 EXPORT_SYMBOL(block_is_partially_uptodate);
2206
2207 /*
2208  * Generic "read page" function for block devices that have the normal
2209  * get_block functionality. This is most of the block device filesystems.
2210  * Reads the page asynchronously --- the unlock_buffer() and
2211  * set/clear_buffer_uptodate() functions propagate buffer state into the
2212  * page struct once IO has completed.
2213  */
2214 int block_read_full_page(struct page *page, get_block_t *get_block)
2215 {
2216         struct inode *inode = page->mapping->host;
2217         sector_t iblock, lblock;
2218         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2219         unsigned int blocksize;
2220         int nr, i;
2221         int fully_mapped = 1;
2222
2223         BUG_ON(!PageLocked(page));
2224         blocksize = 1 << inode->i_blkbits;
2225         if (!page_has_buffers(page))
2226                 create_empty_buffers(page, blocksize, 0);
2227         head = page_buffers(page);
2228
2229         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2230         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2231         bh = head;
2232         nr = 0;
2233         i = 0;
2234
2235         do {
2236                 if (buffer_uptodate(bh))
2237                         continue;
2238
2239                 if (!buffer_mapped(bh)) {
2240                         int err = 0;
2241
2242                         fully_mapped = 0;
2243                         if (iblock < lblock) {
2244                                 WARN_ON(bh->b_size != blocksize);
2245                                 err = get_block(inode, iblock, bh, 0);
2246                                 if (err)
2247                                         SetPageError(page);
2248                         }
2249                         if (!buffer_mapped(bh)) {
2250                                 zero_user(page, i * blocksize, blocksize);
2251                                 if (!err)
2252                                         set_buffer_uptodate(bh);
2253                                 continue;
2254                         }
2255                         /*
2256                          * get_block() might have updated the buffer
2257                          * synchronously
2258                          */
2259                         if (buffer_uptodate(bh))
2260                                 continue;
2261                 }
2262                 arr[nr++] = bh;
2263         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2264
2265         if (fully_mapped)
2266                 SetPageMappedToDisk(page);
2267
2268         if (!nr) {
2269                 /*
2270                  * All buffers are uptodate - we can set the page uptodate
2271                  * as well. But not if get_block() returned an error.
2272                  */
2273                 if (!PageError(page))
2274                         SetPageUptodate(page);
2275                 unlock_page(page);
2276                 return 0;
2277         }
2278
2279         /* Stage two: lock the buffers */
2280         for (i = 0; i < nr; i++) {
2281                 bh = arr[i];
2282                 lock_buffer(bh);
2283                 mark_buffer_async_read(bh);
2284         }
2285
2286         /*
2287          * Stage 3: start the IO.  Check for uptodateness
2288          * inside the buffer lock in case another process reading
2289          * the underlying blockdev brought it uptodate (the sct fix).
2290          */
2291         for (i = 0; i < nr; i++) {
2292                 bh = arr[i];
2293                 if (buffer_uptodate(bh))
2294                         end_buffer_async_read(bh, 1);
2295                 else
2296                         submit_bh(READ, bh);
2297         }
2298         return 0;
2299 }
2300
2301 /* utility function for filesystems that need to do work on expanding
2302  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2303  * deal with the hole.  
2304  */
2305 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2306 {
2307         struct address_space *mapping = inode->i_mapping;
2308         struct page *page;
2309         void *fsdata;
2310         unsigned long limit;
2311         int err;
2312
2313         err = -EFBIG;
2314         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2315         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2316                 send_sig(SIGXFSZ, current, 0);
2317                 goto out;
2318         }
2319         if (size > inode->i_sb->s_maxbytes)
2320                 goto out;
2321
2322         err = pagecache_write_begin(NULL, mapping, size, 0,
2323                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2324                                 &page, &fsdata);
2325         if (err)
2326                 goto out;
2327
2328         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2329         BUG_ON(err > 0);
2330
2331 out:
2332         return err;
2333 }
2334
2335 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2336                             loff_t pos, loff_t *bytes)
2337 {
2338         struct inode *inode = mapping->host;
2339         unsigned blocksize = 1 << inode->i_blkbits;
2340         struct page *page;
2341         void *fsdata;
2342         pgoff_t index, curidx;
2343         loff_t curpos;
2344         unsigned zerofrom, offset, len;
2345         int err = 0;
2346
2347         index = pos >> PAGE_CACHE_SHIFT;
2348         offset = pos & ~PAGE_CACHE_MASK;
2349
2350         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2351                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2352                 if (zerofrom & (blocksize-1)) {
2353                         *bytes |= (blocksize-1);
2354                         (*bytes)++;
2355                 }
2356                 len = PAGE_CACHE_SIZE - zerofrom;
2357
2358                 err = pagecache_write_begin(file, mapping, curpos, len,
2359                                                 AOP_FLAG_UNINTERRUPTIBLE,
2360                                                 &page, &fsdata);
2361                 if (err)
2362                         goto out;
2363                 zero_user(page, zerofrom, len);
2364                 err = pagecache_write_end(file, mapping, curpos, len, len,
2365                                                 page, fsdata);
2366                 if (err < 0)
2367                         goto out;
2368                 BUG_ON(err != len);
2369                 err = 0;
2370
2371                 balance_dirty_pages_ratelimited(mapping);
2372         }
2373
2374         /* page covers the boundary, find the boundary offset */
2375         if (index == curidx) {
2376                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2377                 /* if we will expand the thing last block will be filled */
2378                 if (offset <= zerofrom) {
2379                         goto out;
2380                 }
2381                 if (zerofrom & (blocksize-1)) {
2382                         *bytes |= (blocksize-1);
2383                         (*bytes)++;
2384                 }
2385                 len = offset - zerofrom;
2386
2387                 err = pagecache_write_begin(file, mapping, curpos, len,
2388                                                 AOP_FLAG_UNINTERRUPTIBLE,
2389                                                 &page, &fsdata);
2390                 if (err)
2391                         goto out;
2392                 zero_user(page, zerofrom, len);
2393                 err = pagecache_write_end(file, mapping, curpos, len, len,
2394                                                 page, fsdata);
2395                 if (err < 0)
2396                         goto out;
2397                 BUG_ON(err != len);
2398                 err = 0;
2399         }
2400 out:
2401         return err;
2402 }
2403
2404 /*
2405  * For moronic filesystems that do not allow holes in file.
2406  * We may have to extend the file.
2407  */
2408 int cont_write_begin(struct file *file, struct address_space *mapping,
2409                         loff_t pos, unsigned len, unsigned flags,
2410                         struct page **pagep, void **fsdata,
2411                         get_block_t *get_block, loff_t *bytes)
2412 {
2413         struct inode *inode = mapping->host;
2414         unsigned blocksize = 1 << inode->i_blkbits;
2415         unsigned zerofrom;
2416         int err;
2417
2418         err = cont_expand_zero(file, mapping, pos, bytes);
2419         if (err)
2420                 goto out;
2421
2422         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2423         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2424                 *bytes |= (blocksize-1);
2425                 (*bytes)++;
2426         }
2427
2428         *pagep = NULL;
2429         err = block_write_begin(file, mapping, pos, len,
2430                                 flags, pagep, fsdata, get_block);
2431 out:
2432         return err;
2433 }
2434
2435 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2436                         get_block_t *get_block)
2437 {
2438         struct inode *inode = page->mapping->host;
2439         int err = __block_prepare_write(inode, page, from, to, get_block);
2440         if (err)
2441                 ClearPageUptodate(page);
2442         return err;
2443 }
2444
2445 int block_commit_write(struct page *page, unsigned from, unsigned to)
2446 {
2447         struct inode *inode = page->mapping->host;
2448         __block_commit_write(inode,page,from,to);
2449         return 0;
2450 }
2451
2452 /*
2453  * block_page_mkwrite() is not allowed to change the file size as it gets
2454  * called from a page fault handler when a page is first dirtied. Hence we must
2455  * be careful to check for EOF conditions here. We set the page up correctly
2456  * for a written page which means we get ENOSPC checking when writing into
2457  * holes and correct delalloc and unwritten extent mapping on filesystems that
2458  * support these features.
2459  *
2460  * We are not allowed to take the i_mutex here so we have to play games to
2461  * protect against truncate races as the page could now be beyond EOF.  Because
2462  * vmtruncate() writes the inode size before removing pages, once we have the
2463  * page lock we can determine safely if the page is beyond EOF. If it is not
2464  * beyond EOF, then the page is guaranteed safe against truncation until we
2465  * unlock the page.
2466  */
2467 int
2468 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2469                    get_block_t get_block)
2470 {
2471         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2472         unsigned long end;
2473         loff_t size;
2474         int ret = -EINVAL;
2475
2476         lock_page(page);
2477         size = i_size_read(inode);
2478         if ((page->mapping != inode->i_mapping) ||
2479             (page_offset(page) > size)) {
2480                 /* page got truncated out from underneath us */
2481                 goto out_unlock;
2482         }
2483
2484         /* page is wholly or partially inside EOF */
2485         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2486                 end = size & ~PAGE_CACHE_MASK;
2487         else
2488                 end = PAGE_CACHE_SIZE;
2489
2490         ret = block_prepare_write(page, 0, end, get_block);
2491         if (!ret)
2492                 ret = block_commit_write(page, 0, end);
2493
2494 out_unlock:
2495         unlock_page(page);
2496         return ret;
2497 }
2498
2499 /*
2500  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2501  * immediately, while under the page lock.  So it needs a special end_io
2502  * handler which does not touch the bh after unlocking it.
2503  */
2504 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2505 {
2506         __end_buffer_read_notouch(bh, uptodate);
2507 }
2508
2509 /*
2510  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2511  * the page (converting it to circular linked list and taking care of page
2512  * dirty races).
2513  */
2514 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2515 {
2516         struct buffer_head *bh;
2517
2518         BUG_ON(!PageLocked(page));
2519
2520         spin_lock(&page->mapping->private_lock);
2521         bh = head;
2522         do {
2523                 if (PageDirty(page))
2524                         set_buffer_dirty(bh);
2525                 if (!bh->b_this_page)
2526                         bh->b_this_page = head;
2527                 bh = bh->b_this_page;
2528         } while (bh != head);
2529         attach_page_buffers(page, head);
2530         spin_unlock(&page->mapping->private_lock);
2531 }
2532
2533 /*
2534  * On entry, the page is fully not uptodate.
2535  * On exit the page is fully uptodate in the areas outside (from,to)
2536  */
2537 int nobh_write_begin(struct file *file, struct address_space *mapping,
2538                         loff_t pos, unsigned len, unsigned flags,
2539                         struct page **pagep, void **fsdata,
2540                         get_block_t *get_block)
2541 {
2542         struct inode *inode = mapping->host;
2543         const unsigned blkbits = inode->i_blkbits;
2544         const unsigned blocksize = 1 << blkbits;
2545         struct buffer_head *head, *bh;
2546         struct page *page;
2547         pgoff_t index;
2548         unsigned from, to;
2549         unsigned block_in_page;
2550         unsigned block_start, block_end;
2551         sector_t block_in_file;
2552         int nr_reads = 0;
2553         int ret = 0;
2554         int is_mapped_to_disk = 1;
2555
2556         index = pos >> PAGE_CACHE_SHIFT;
2557         from = pos & (PAGE_CACHE_SIZE - 1);
2558         to = from + len;
2559
2560         page = grab_cache_page_write_begin(mapping, index, flags);
2561         if (!page)
2562                 return -ENOMEM;
2563         *pagep = page;
2564         *fsdata = NULL;
2565
2566         if (page_has_buffers(page)) {
2567                 unlock_page(page);
2568                 page_cache_release(page);
2569                 *pagep = NULL;
2570                 return block_write_begin(file, mapping, pos, len, flags, pagep,
2571                                         fsdata, get_block);
2572         }
2573
2574         if (PageMappedToDisk(page))
2575                 return 0;
2576
2577         /*
2578          * Allocate buffers so that we can keep track of state, and potentially
2579          * attach them to the page if an error occurs. In the common case of
2580          * no error, they will just be freed again without ever being attached
2581          * to the page (which is all OK, because we're under the page lock).
2582          *
2583          * Be careful: the buffer linked list is a NULL terminated one, rather
2584          * than the circular one we're used to.
2585          */
2586         head = alloc_page_buffers(page, blocksize, 0);
2587         if (!head) {
2588                 ret = -ENOMEM;
2589                 goto out_release;
2590         }
2591
2592         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2593
2594         /*
2595          * We loop across all blocks in the page, whether or not they are
2596          * part of the affected region.  This is so we can discover if the
2597          * page is fully mapped-to-disk.
2598          */
2599         for (block_start = 0, block_in_page = 0, bh = head;
2600                   block_start < PAGE_CACHE_SIZE;
2601                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2602                 int create;
2603
2604                 block_end = block_start + blocksize;
2605                 bh->b_state = 0;
2606                 create = 1;
2607                 if (block_start >= to)
2608                         create = 0;
2609                 ret = get_block(inode, block_in_file + block_in_page,
2610                                         bh, create);
2611                 if (ret)
2612                         goto failed;
2613                 if (!buffer_mapped(bh))
2614                         is_mapped_to_disk = 0;
2615                 if (buffer_new(bh))
2616                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2617                 if (PageUptodate(page)) {
2618                         set_buffer_uptodate(bh);
2619                         continue;
2620                 }
2621                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2622                         zero_user_segments(page, block_start, from,
2623                                                         to, block_end);
2624                         continue;
2625                 }
2626                 if (buffer_uptodate(bh))
2627                         continue;       /* reiserfs does this */
2628                 if (block_start < from || block_end > to) {
2629                         lock_buffer(bh);
2630                         bh->b_end_io = end_buffer_read_nobh;
2631                         submit_bh(READ, bh);
2632                         nr_reads++;
2633                 }
2634         }
2635
2636         if (nr_reads) {
2637                 /*
2638                  * The page is locked, so these buffers are protected from
2639                  * any VM or truncate activity.  Hence we don't need to care
2640                  * for the buffer_head refcounts.
2641                  */
2642                 for (bh = head; bh; bh = bh->b_this_page) {
2643                         wait_on_buffer(bh);
2644                         if (!buffer_uptodate(bh))
2645                                 ret = -EIO;
2646                 }
2647                 if (ret)
2648                         goto failed;
2649         }
2650
2651         if (is_mapped_to_disk)
2652                 SetPageMappedToDisk(page);
2653
2654         *fsdata = head; /* to be released by nobh_write_end */
2655
2656         return 0;
2657
2658 failed:
2659         BUG_ON(!ret);
2660         /*
2661          * Error recovery is a bit difficult. We need to zero out blocks that
2662          * were newly allocated, and dirty them to ensure they get written out.
2663          * Buffers need to be attached to the page at this point, otherwise
2664          * the handling of potential IO errors during writeout would be hard
2665          * (could try doing synchronous writeout, but what if that fails too?)
2666          */
2667         attach_nobh_buffers(page, head);
2668         page_zero_new_buffers(page, from, to);
2669
2670 out_release:
2671         unlock_page(page);
2672         page_cache_release(page);
2673         *pagep = NULL;
2674
2675         if (pos + len > inode->i_size)
2676                 vmtruncate(inode, inode->i_size);
2677
2678         return ret;
2679 }
2680 EXPORT_SYMBOL(nobh_write_begin);
2681
2682 int nobh_write_end(struct file *file, struct address_space *mapping,
2683                         loff_t pos, unsigned len, unsigned copied,
2684                         struct page *page, void *fsdata)
2685 {
2686         struct inode *inode = page->mapping->host;
2687         struct buffer_head *head = fsdata;
2688         struct buffer_head *bh;
2689         BUG_ON(fsdata != NULL && page_has_buffers(page));
2690
2691         if (unlikely(copied < len) && head)
2692                 attach_nobh_buffers(page, head);
2693         if (page_has_buffers(page))
2694                 return generic_write_end(file, mapping, pos, len,
2695                                         copied, page, fsdata);
2696
2697         SetPageUptodate(page);
2698         set_page_dirty(page);
2699         if (pos+copied > inode->i_size) {
2700                 i_size_write(inode, pos+copied);
2701                 mark_inode_dirty(inode);
2702         }
2703
2704         unlock_page(page);
2705         page_cache_release(page);
2706
2707         while (head) {
2708                 bh = head;
2709                 head = head->b_this_page;
2710                 free_buffer_head(bh);
2711         }
2712
2713         return copied;
2714 }
2715 EXPORT_SYMBOL(nobh_write_end);
2716
2717 /*
2718  * nobh_writepage() - based on block_full_write_page() except
2719  * that it tries to operate without attaching bufferheads to
2720  * the page.
2721  */
2722 int nobh_writepage(struct page *page, get_block_t *get_block,
2723                         struct writeback_control *wbc)
2724 {
2725         struct inode * const inode = page->mapping->host;
2726         loff_t i_size = i_size_read(inode);
2727         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2728         unsigned offset;
2729         int ret;
2730
2731         /* Is the page fully inside i_size? */
2732         if (page->index < end_index)
2733                 goto out;
2734
2735         /* Is the page fully outside i_size? (truncate in progress) */
2736         offset = i_size & (PAGE_CACHE_SIZE-1);
2737         if (page->index >= end_index+1 || !offset) {
2738                 /*
2739                  * The page may have dirty, unmapped buffers.  For example,
2740                  * they may have been added in ext3_writepage().  Make them
2741                  * freeable here, so the page does not leak.
2742                  */
2743 #if 0
2744                 /* Not really sure about this  - do we need this ? */
2745                 if (page->mapping->a_ops->invalidatepage)
2746                         page->mapping->a_ops->invalidatepage(page, offset);
2747 #endif
2748                 unlock_page(page);
2749                 return 0; /* don't care */
2750         }
2751
2752         /*
2753          * The page straddles i_size.  It must be zeroed out on each and every
2754          * writepage invocation because it may be mmapped.  "A file is mapped
2755          * in multiples of the page size.  For a file that is not a multiple of
2756          * the  page size, the remaining memory is zeroed when mapped, and
2757          * writes to that region are not written out to the file."
2758          */
2759         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2760 out:
2761         ret = mpage_writepage(page, get_block, wbc);
2762         if (ret == -EAGAIN)
2763                 ret = __block_write_full_page(inode, page, get_block, wbc);
2764         return ret;
2765 }
2766 EXPORT_SYMBOL(nobh_writepage);
2767
2768 int nobh_truncate_page(struct address_space *mapping,
2769                         loff_t from, get_block_t *get_block)
2770 {
2771         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2772         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2773         unsigned blocksize;
2774         sector_t iblock;
2775         unsigned length, pos;
2776         struct inode *inode = mapping->host;
2777         struct page *page;
2778         struct buffer_head map_bh;
2779         int err;
2780
2781         blocksize = 1 << inode->i_blkbits;
2782         length = offset & (blocksize - 1);
2783
2784         /* Block boundary? Nothing to do */
2785         if (!length)
2786                 return 0;
2787
2788         length = blocksize - length;
2789         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2790
2791         page = grab_cache_page(mapping, index);
2792         err = -ENOMEM;
2793         if (!page)
2794                 goto out;
2795
2796         if (page_has_buffers(page)) {
2797 has_buffers:
2798                 unlock_page(page);
2799                 page_cache_release(page);
2800                 return block_truncate_page(mapping, from, get_block);
2801         }
2802
2803         /* Find the buffer that contains "offset" */
2804         pos = blocksize;
2805         while (offset >= pos) {
2806                 iblock++;
2807                 pos += blocksize;
2808         }
2809
2810         err = get_block(inode, iblock, &map_bh, 0);
2811         if (err)
2812                 goto unlock;
2813         /* unmapped? It's a hole - nothing to do */
2814         if (!buffer_mapped(&map_bh))
2815                 goto unlock;
2816
2817         /* Ok, it's mapped. Make sure it's up-to-date */
2818         if (!PageUptodate(page)) {
2819                 err = mapping->a_ops->readpage(NULL, page);
2820                 if (err) {
2821                         page_cache_release(page);
2822                         goto out;
2823                 }
2824                 lock_page(page);
2825                 if (!PageUptodate(page)) {
2826                         err = -EIO;
2827                         goto unlock;
2828                 }
2829                 if (page_has_buffers(page))
2830                         goto has_buffers;
2831         }
2832         zero_user(page, offset, length);
2833         set_page_dirty(page);
2834         err = 0;
2835
2836 unlock:
2837         unlock_page(page);
2838         page_cache_release(page);
2839 out:
2840         return err;
2841 }
2842 EXPORT_SYMBOL(nobh_truncate_page);
2843
2844 int block_truncate_page(struct address_space *mapping,
2845                         loff_t from, get_block_t *get_block)
2846 {
2847         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2848         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2849         unsigned blocksize;
2850         sector_t iblock;
2851         unsigned length, pos;
2852         struct inode *inode = mapping->host;
2853         struct page *page;
2854         struct buffer_head *bh;
2855         int err;
2856
2857         blocksize = 1 << inode->i_blkbits;
2858         length = offset & (blocksize - 1);
2859
2860         /* Block boundary? Nothing to do */
2861         if (!length)
2862                 return 0;
2863
2864         length = blocksize - length;
2865         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2866         
2867         page = grab_cache_page(mapping, index);
2868         err = -ENOMEM;
2869         if (!page)
2870                 goto out;
2871
2872         if (!page_has_buffers(page))
2873                 create_empty_buffers(page, blocksize, 0);
2874
2875         /* Find the buffer that contains "offset" */
2876         bh = page_buffers(page);
2877         pos = blocksize;
2878         while (offset >= pos) {
2879                 bh = bh->b_this_page;
2880                 iblock++;
2881                 pos += blocksize;
2882         }
2883
2884         err = 0;
2885         if (!buffer_mapped(bh)) {
2886                 WARN_ON(bh->b_size != blocksize);
2887                 err = get_block(inode, iblock, bh, 0);
2888                 if (err)
2889                         goto unlock;
2890                 /* unmapped? It's a hole - nothing to do */
2891                 if (!buffer_mapped(bh))
2892                         goto unlock;
2893         }
2894
2895         /* Ok, it's mapped. Make sure it's up-to-date */
2896         if (PageUptodate(page))
2897                 set_buffer_uptodate(bh);
2898
2899         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2900                 err = -EIO;
2901                 ll_rw_block(READ, 1, &bh);
2902                 wait_on_buffer(bh);
2903                 /* Uhhuh. Read error. Complain and punt. */
2904                 if (!buffer_uptodate(bh))
2905                         goto unlock;
2906         }
2907
2908         zero_user(page, offset, length);
2909         mark_buffer_dirty(bh);
2910         err = 0;
2911
2912 unlock:
2913         unlock_page(page);
2914         page_cache_release(page);
2915 out:
2916         return err;
2917 }
2918
2919 /*
2920  * The generic ->writepage function for buffer-backed address_spaces
2921  */
2922 int block_write_full_page(struct page *page, get_block_t *get_block,
2923                         struct writeback_control *wbc)
2924 {
2925         struct inode * const inode = page->mapping->host;
2926         loff_t i_size = i_size_read(inode);
2927         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2928         unsigned offset;
2929
2930         /* Is the page fully inside i_size? */
2931         if (page->index < end_index)
2932                 return __block_write_full_page(inode, page, get_block, wbc);
2933
2934         /* Is the page fully outside i_size? (truncate in progress) */
2935         offset = i_size & (PAGE_CACHE_SIZE-1);
2936         if (page->index >= end_index+1 || !offset) {
2937                 /*
2938                  * The page may have dirty, unmapped buffers.  For example,
2939                  * they may have been added in ext3_writepage().  Make them
2940                  * freeable here, so the page does not leak.
2941                  */
2942                 do_invalidatepage(page, 0);
2943                 unlock_page(page);
2944                 return 0; /* don't care */
2945         }
2946
2947         /*
2948          * The page straddles i_size.  It must be zeroed out on each and every
2949          * writepage invokation because it may be mmapped.  "A file is mapped
2950          * in multiples of the page size.  For a file that is not a multiple of
2951          * the  page size, the remaining memory is zeroed when mapped, and
2952          * writes to that region are not written out to the file."
2953          */
2954         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2955         return __block_write_full_page(inode, page, get_block, wbc);
2956 }
2957
2958 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2959                             get_block_t *get_block)
2960 {
2961         struct buffer_head tmp;
2962         struct inode *inode = mapping->host;
2963         tmp.b_state = 0;
2964         tmp.b_blocknr = 0;
2965         tmp.b_size = 1 << inode->i_blkbits;
2966         get_block(inode, block, &tmp, 0);
2967         return tmp.b_blocknr;
2968 }
2969
2970 static void end_bio_bh_io_sync(struct bio *bio, int err)
2971 {
2972         struct buffer_head *bh = bio->bi_private;
2973
2974         if (err == -EOPNOTSUPP) {
2975                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2976                 set_bit(BH_Eopnotsupp, &bh->b_state);
2977         }
2978
2979         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2980                 set_bit(BH_Quiet, &bh->b_state);
2981
2982         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2983         bio_put(bio);
2984 }
2985
2986 int submit_bh(int rw, struct buffer_head * bh)
2987 {
2988         struct bio *bio;
2989         int ret = 0;
2990
2991         BUG_ON(!buffer_locked(bh));
2992         BUG_ON(!buffer_mapped(bh));
2993         BUG_ON(!bh->b_end_io);
2994
2995         /*
2996          * Mask in barrier bit for a write (could be either a WRITE or a
2997          * WRITE_SYNC
2998          */
2999         if (buffer_ordered(bh) && (rw & WRITE))
3000                 rw |= WRITE_BARRIER;
3001
3002         /*
3003          * Only clear out a write error when rewriting
3004          */
3005         if (test_set_buffer_req(bh) && (rw & WRITE))
3006                 clear_buffer_write_io_error(bh);
3007
3008         /*
3009          * from here on down, it's all bio -- do the initial mapping,
3010          * submit_bio -> generic_make_request may further map this bio around
3011          */
3012         bio = bio_alloc(GFP_NOIO, 1);
3013
3014         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3015         bio->bi_bdev = bh->b_bdev;
3016         bio->bi_io_vec[0].bv_page = bh->b_page;
3017         bio->bi_io_vec[0].bv_len = bh->b_size;
3018         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3019
3020         bio->bi_vcnt = 1;
3021         bio->bi_idx = 0;
3022         bio->bi_size = bh->b_size;
3023
3024         bio->bi_end_io = end_bio_bh_io_sync;
3025         bio->bi_private = bh;
3026
3027         bio_get(bio);
3028         submit_bio(rw, bio);
3029
3030         if (bio_flagged(bio, BIO_EOPNOTSUPP))
3031                 ret = -EOPNOTSUPP;
3032
3033         bio_put(bio);
3034         return ret;
3035 }
3036
3037 /**
3038  * ll_rw_block: low-level access to block devices (DEPRECATED)
3039  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
3040  * @nr: number of &struct buffer_heads in the array
3041  * @bhs: array of pointers to &struct buffer_head
3042  *
3043  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3044  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3045  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
3046  * are sent to disk. The fourth %READA option is described in the documentation
3047  * for generic_make_request() which ll_rw_block() calls.
3048  *
3049  * This function drops any buffer that it cannot get a lock on (with the
3050  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
3051  * clean when doing a write request, and any buffer that appears to be
3052  * up-to-date when doing read request.  Further it marks as clean buffers that
3053  * are processed for writing (the buffer cache won't assume that they are
3054  * actually clean until the buffer gets unlocked).
3055  *
3056  * ll_rw_block sets b_end_io to simple completion handler that marks
3057  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3058  * any waiters. 
3059  *
3060  * All of the buffers must be for the same device, and must also be a
3061  * multiple of the current approved size for the device.
3062  */
3063 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3064 {
3065         int i;
3066
3067         for (i = 0; i < nr; i++) {
3068                 struct buffer_head *bh = bhs[i];
3069
3070                 if (rw == SWRITE || rw == SWRITE_SYNC)
3071                         lock_buffer(bh);
3072                 else if (!trylock_buffer(bh))
3073                         continue;
3074
3075                 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) {
3076                         if (test_clear_buffer_dirty(bh)) {
3077                                 bh->b_end_io = end_buffer_write_sync;
3078                                 get_bh(bh);
3079                                 if (rw == SWRITE_SYNC)
3080                                         submit_bh(WRITE_SYNC, bh);
3081                                 else
3082                                         submit_bh(WRITE, bh);
3083                                 continue;
3084                         }
3085                 } else {
3086                         if (!buffer_uptodate(bh)) {
3087                                 bh->b_end_io = end_buffer_read_sync;
3088                                 get_bh(bh);
3089                                 submit_bh(rw, bh);
3090                                 continue;
3091                         }
3092                 }
3093                 unlock_buffer(bh);
3094         }
3095 }
3096
3097 /*
3098  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3099  * and then start new I/O and then wait upon it.  The caller must have a ref on
3100  * the buffer_head.
3101  */
3102 int sync_dirty_buffer(struct buffer_head *bh)
3103 {
3104         int ret = 0;
3105
3106         WARN_ON(atomic_read(&bh->b_count) < 1);
3107         lock_buffer(bh);
3108         if (test_clear_buffer_dirty(bh)) {
3109                 get_bh(bh);
3110                 bh->b_end_io = end_buffer_write_sync;
3111                 ret = submit_bh(WRITE, bh);
3112                 wait_on_buffer(bh);
3113                 if (buffer_eopnotsupp(bh)) {
3114                         clear_buffer_eopnotsupp(bh);
3115                         ret = -EOPNOTSUPP;
3116                 }
3117                 if (!ret && !buffer_uptodate(bh))
3118                         ret = -EIO;
3119         } else {
3120                 unlock_buffer(bh);
3121         }
3122         return ret;
3123 }
3124
3125 /*
3126  * try_to_free_buffers() checks if all the buffers on this particular page
3127  * are unused, and releases them if so.
3128  *
3129  * Exclusion against try_to_free_buffers may be obtained by either
3130  * locking the page or by holding its mapping's private_lock.
3131  *
3132  * If the page is dirty but all the buffers are clean then we need to
3133  * be sure to mark the page clean as well.  This is because the page
3134  * may be against a block device, and a later reattachment of buffers
3135  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3136  * filesystem data on the same device.
3137  *
3138  * The same applies to regular filesystem pages: if all the buffers are
3139  * clean then we set the page clean and proceed.  To do that, we require
3140  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3141  * private_lock.
3142  *
3143  * try_to_free_buffers() is non-blocking.
3144  */
3145 static inline int buffer_busy(struct buffer_head *bh)
3146 {
3147         return atomic_read(&bh->b_count) |
3148                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3149 }
3150
3151 static int
3152 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3153 {
3154         struct buffer_head *head = page_buffers(page);
3155         struct buffer_head *bh;
3156
3157         bh = head;
3158         do {
3159                 if (buffer_write_io_error(bh) && page->mapping)
3160                         set_bit(AS_EIO, &page->mapping->flags);
3161                 if (buffer_busy(bh))
3162                         goto failed;
3163                 bh = bh->b_this_page;
3164         } while (bh != head);
3165
3166         do {
3167                 struct buffer_head *next = bh->b_this_page;
3168
3169                 if (bh->b_assoc_map)
3170                         __remove_assoc_queue(bh);
3171                 bh = next;
3172         } while (bh != head);
3173         *buffers_to_free = head;
3174         __clear_page_buffers(page);
3175         return 1;
3176 failed:
3177         return 0;
3178 }
3179
3180 int try_to_free_buffers(struct page *page)
3181 {
3182         struct address_space * const mapping = page->mapping;
3183         struct buffer_head *buffers_to_free = NULL;
3184         int ret = 0;
3185
3186         BUG_ON(!PageLocked(page));
3187         if (PageWriteback(page))
3188                 return 0;
3189
3190         if (mapping == NULL) {          /* can this still happen? */
3191                 ret = drop_buffers(page, &buffers_to_free);
3192                 goto out;
3193         }
3194
3195         spin_lock(&mapping->private_lock);
3196         ret = drop_buffers(page, &buffers_to_free);
3197
3198         /*
3199          * If the filesystem writes its buffers by hand (eg ext3)
3200          * then we can have clean buffers against a dirty page.  We
3201          * clean the page here; otherwise the VM will never notice
3202          * that the filesystem did any IO at all.
3203          *
3204          * Also, during truncate, discard_buffer will have marked all
3205          * the page's buffers clean.  We discover that here and clean
3206          * the page also.
3207          *
3208          * private_lock must be held over this entire operation in order
3209          * to synchronise against __set_page_dirty_buffers and prevent the
3210          * dirty bit from being lost.
3211          */
3212         if (ret)
3213                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3214         spin_unlock(&mapping->private_lock);
3215 out:
3216         if (buffers_to_free) {
3217                 struct buffer_head *bh = buffers_to_free;
3218
3219                 do {
3220                         struct buffer_head *next = bh->b_this_page;
3221                         free_buffer_head(bh);
3222                         bh = next;
3223                 } while (bh != buffers_to_free);
3224         }
3225         return ret;
3226 }
3227 EXPORT_SYMBOL(try_to_free_buffers);
3228
3229 void block_sync_page(struct page *page)
3230 {
3231         struct address_space *mapping;
3232
3233         smp_mb();
3234         mapping = page_mapping(page);
3235         if (mapping)
3236                 blk_run_backing_dev(mapping->backing_dev_info, page);
3237 }
3238
3239 /*
3240  * There are no bdflush tunables left.  But distributions are
3241  * still running obsolete flush daemons, so we terminate them here.
3242  *
3243  * Use of bdflush() is deprecated and will be removed in a future kernel.
3244  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3245  */
3246 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3247 {
3248         static int msg_count;
3249
3250         if (!capable(CAP_SYS_ADMIN))
3251                 return -EPERM;
3252
3253         if (msg_count < 5) {
3254                 msg_count++;
3255                 printk(KERN_INFO
3256                         "warning: process `%s' used the obsolete bdflush"
3257                         " system call\n", current->comm);
3258                 printk(KERN_INFO "Fix your initscripts?\n");
3259         }
3260
3261         if (func == 1)
3262                 do_exit(0);
3263         return 0;
3264 }
3265
3266 /*
3267  * Buffer-head allocation
3268  */
3269 static struct kmem_cache *bh_cachep;
3270
3271 /*
3272  * Once the number of bh's in the machine exceeds this level, we start
3273  * stripping them in writeback.
3274  */
3275 static int max_buffer_heads;
3276
3277 int buffer_heads_over_limit;
3278
3279 struct bh_accounting {
3280         int nr;                 /* Number of live bh's */
3281         int ratelimit;          /* Limit cacheline bouncing */
3282 };
3283
3284 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3285
3286 static void recalc_bh_state(void)
3287 {
3288         int i;
3289         int tot = 0;
3290
3291         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3292                 return;
3293         __get_cpu_var(bh_accounting).ratelimit = 0;
3294         for_each_online_cpu(i)
3295                 tot += per_cpu(bh_accounting, i).nr;
3296         buffer_heads_over_limit = (tot > max_buffer_heads);
3297 }
3298         
3299 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3300 {
3301         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3302         if (ret) {
3303                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3304                 get_cpu_var(bh_accounting).nr++;
3305                 recalc_bh_state();
3306                 put_cpu_var(bh_accounting);
3307         }
3308         return ret;
3309 }
3310 EXPORT_SYMBOL(alloc_buffer_head);
3311
3312 void free_buffer_head(struct buffer_head *bh)
3313 {
3314         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3315         kmem_cache_free(bh_cachep, bh);
3316         get_cpu_var(bh_accounting).nr--;
3317         recalc_bh_state();
3318         put_cpu_var(bh_accounting);
3319 }
3320 EXPORT_SYMBOL(free_buffer_head);
3321
3322 static void buffer_exit_cpu(int cpu)
3323 {
3324         int i;
3325         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3326
3327         for (i = 0; i < BH_LRU_SIZE; i++) {
3328                 brelse(b->bhs[i]);
3329                 b->bhs[i] = NULL;
3330         }
3331         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3332         per_cpu(bh_accounting, cpu).nr = 0;
3333         put_cpu_var(bh_accounting);
3334 }
3335
3336 static int buffer_cpu_notify(struct notifier_block *self,
3337                               unsigned long action, void *hcpu)
3338 {
3339         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3340                 buffer_exit_cpu((unsigned long)hcpu);
3341         return NOTIFY_OK;
3342 }
3343
3344 /**
3345  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3346  * @bh: struct buffer_head
3347  *
3348  * Return true if the buffer is up-to-date and false,
3349  * with the buffer locked, if not.
3350  */
3351 int bh_uptodate_or_lock(struct buffer_head *bh)
3352 {
3353         if (!buffer_uptodate(bh)) {
3354                 lock_buffer(bh);
3355                 if (!buffer_uptodate(bh))
3356                         return 0;
3357                 unlock_buffer(bh);
3358         }
3359         return 1;
3360 }
3361 EXPORT_SYMBOL(bh_uptodate_or_lock);
3362
3363 /**
3364  * bh_submit_read - Submit a locked buffer for reading
3365  * @bh: struct buffer_head
3366  *
3367  * Returns zero on success and -EIO on error.
3368  */
3369 int bh_submit_read(struct buffer_head *bh)
3370 {
3371         BUG_ON(!buffer_locked(bh));
3372
3373         if (buffer_uptodate(bh)) {
3374                 unlock_buffer(bh);
3375                 return 0;
3376         }
3377
3378         get_bh(bh);
3379         bh->b_end_io = end_buffer_read_sync;
3380         submit_bh(READ, bh);
3381         wait_on_buffer(bh);
3382         if (buffer_uptodate(bh))
3383                 return 0;
3384         return -EIO;
3385 }
3386 EXPORT_SYMBOL(bh_submit_read);
3387
3388 static void
3389 init_buffer_head(void *data)
3390 {
3391         struct buffer_head *bh = data;
3392
3393         memset(bh, 0, sizeof(*bh));
3394         INIT_LIST_HEAD(&bh->b_assoc_buffers);
3395 }
3396
3397 void __init buffer_init(void)
3398 {
3399         int nrpages;
3400
3401         bh_cachep = kmem_cache_create("buffer_head",
3402                         sizeof(struct buffer_head), 0,
3403                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3404                                 SLAB_MEM_SPREAD),
3405                                 init_buffer_head);
3406
3407         /*
3408          * Limit the bh occupancy to 10% of ZONE_NORMAL
3409          */
3410         nrpages = (nr_free_buffer_pages() * 10) / 100;
3411         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3412         hotcpu_notifier(buffer_cpu_notify, 0);
3413 }
3414
3415 EXPORT_SYMBOL(__bforget);
3416 EXPORT_SYMBOL(__brelse);
3417 EXPORT_SYMBOL(__wait_on_buffer);
3418 EXPORT_SYMBOL(block_commit_write);
3419 EXPORT_SYMBOL(block_prepare_write);
3420 EXPORT_SYMBOL(block_page_mkwrite);
3421 EXPORT_SYMBOL(block_read_full_page);
3422 EXPORT_SYMBOL(block_sync_page);
3423 EXPORT_SYMBOL(block_truncate_page);
3424 EXPORT_SYMBOL(block_write_full_page);
3425 EXPORT_SYMBOL(cont_write_begin);
3426 EXPORT_SYMBOL(end_buffer_read_sync);
3427 EXPORT_SYMBOL(end_buffer_write_sync);
3428 EXPORT_SYMBOL(file_fsync);
3429 EXPORT_SYMBOL(fsync_bdev);
3430 EXPORT_SYMBOL(generic_block_bmap);
3431 EXPORT_SYMBOL(generic_cont_expand_simple);
3432 EXPORT_SYMBOL(init_buffer);
3433 EXPORT_SYMBOL(invalidate_bdev);
3434 EXPORT_SYMBOL(ll_rw_block);
3435 EXPORT_SYMBOL(mark_buffer_dirty);
3436 EXPORT_SYMBOL(submit_bh);
3437 EXPORT_SYMBOL(sync_dirty_buffer);
3438 EXPORT_SYMBOL(unlock_buffer);