4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/init.h>
9 #include <linux/kdev_t.h>
10 #include <linux/slab.h>
11 #include <linux/string.h>
13 #include <linux/major.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/seq_file.h>
19 #include <linux/kobject.h>
20 #include <linux/kobj_map.h>
21 #include <linux/cdev.h>
22 #include <linux/mutex.h>
23 #include <linux/backing-dev.h>
26 #include <linux/kmod.h>
31 * capabilities for /dev/mem, /dev/kmem and similar directly mappable character
33 * - permits shared-mmap for read, write and/or exec
34 * - does not permit private mmap in NOMMU mode (can't do COW)
35 * - no readahead or I/O queue unplugging required
37 struct backing_dev_info directly_mappable_cdev_bdi = {
40 /* permit private copies of the data to be taken */
43 /* permit direct mmap, for read, write or exec */
45 BDI_CAP_READ_MAP | BDI_CAP_WRITE_MAP | BDI_CAP_EXEC_MAP),
48 static struct kobj_map *cdev_map;
50 static DEFINE_MUTEX(chrdevs_lock);
52 static struct char_device_struct {
53 struct char_device_struct *next;
55 unsigned int baseminor;
58 struct file_operations *fops;
59 struct cdev *cdev; /* will die */
60 } *chrdevs[CHRDEV_MAJOR_HASH_SIZE];
62 /* index in the above */
63 static inline int major_to_index(int major)
65 return major % CHRDEV_MAJOR_HASH_SIZE;
70 void chrdev_show(struct seq_file *f, off_t offset)
72 struct char_device_struct *cd;
74 if (offset < CHRDEV_MAJOR_HASH_SIZE) {
75 mutex_lock(&chrdevs_lock);
76 for (cd = chrdevs[offset]; cd; cd = cd->next)
77 seq_printf(f, "%3d %s\n", cd->major, cd->name);
78 mutex_unlock(&chrdevs_lock);
82 #endif /* CONFIG_PROC_FS */
85 * Register a single major with a specified minor range.
87 * If major == 0 this functions will dynamically allocate a major and return
90 * If major > 0 this function will attempt to reserve the passed range of
91 * minors and will return zero on success.
93 * Returns a -ve errno on failure.
95 static struct char_device_struct *
96 __register_chrdev_region(unsigned int major, unsigned int baseminor,
97 int minorct, const char *name)
99 struct char_device_struct *cd, **cp;
103 cd = kzalloc(sizeof(struct char_device_struct), GFP_KERNEL);
105 return ERR_PTR(-ENOMEM);
107 mutex_lock(&chrdevs_lock);
111 for (i = ARRAY_SIZE(chrdevs)-1; i > 0; i--) {
112 if (is_lanana_major(i))
114 if (chrdevs[i] == NULL)
127 cd->baseminor = baseminor;
128 cd->minorct = minorct;
129 strncpy(cd->name,name, 64);
131 i = major_to_index(major);
133 for (cp = &chrdevs[i]; *cp; cp = &(*cp)->next)
134 if ((*cp)->major > major ||
135 ((*cp)->major == major &&
136 (((*cp)->baseminor >= baseminor) ||
137 ((*cp)->baseminor + (*cp)->minorct > baseminor))))
140 /* Check for overlapping minor ranges. */
141 if (*cp && (*cp)->major == major) {
142 int old_min = (*cp)->baseminor;
143 int old_max = (*cp)->baseminor + (*cp)->minorct - 1;
144 int new_min = baseminor;
145 int new_max = baseminor + minorct - 1;
147 /* New driver overlaps from the left. */
148 if (new_max >= old_min && new_max <= old_max) {
153 /* New driver overlaps from the right. */
154 if (new_min <= old_max && new_min >= old_min) {
162 mutex_unlock(&chrdevs_lock);
165 mutex_unlock(&chrdevs_lock);
170 static struct char_device_struct *
171 __unregister_chrdev_region(unsigned major, unsigned baseminor, int minorct)
173 struct char_device_struct *cd = NULL, **cp;
174 int i = major_to_index(major);
176 mutex_lock(&chrdevs_lock);
177 for (cp = &chrdevs[i]; *cp; cp = &(*cp)->next)
178 if ((*cp)->major == major &&
179 (*cp)->baseminor == baseminor &&
180 (*cp)->minorct == minorct)
186 mutex_unlock(&chrdevs_lock);
191 * register_chrdev_region() - register a range of device numbers
192 * @from: the first in the desired range of device numbers; must include
194 * @count: the number of consecutive device numbers required
195 * @name: the name of the device or driver.
197 * Return value is zero on success, a negative error code on failure.
199 int register_chrdev_region(dev_t from, unsigned count, const char *name)
201 struct char_device_struct *cd;
202 dev_t to = from + count;
205 for (n = from; n < to; n = next) {
206 next = MKDEV(MAJOR(n)+1, 0);
209 cd = __register_chrdev_region(MAJOR(n), MINOR(n),
217 for (n = from; n < to; n = next) {
218 next = MKDEV(MAJOR(n)+1, 0);
219 kfree(__unregister_chrdev_region(MAJOR(n), MINOR(n), next - n));
225 * alloc_chrdev_region() - register a range of char device numbers
226 * @dev: output parameter for first assigned number
227 * @baseminor: first of the requested range of minor numbers
228 * @count: the number of minor numbers required
229 * @name: the name of the associated device or driver
231 * Allocates a range of char device numbers. The major number will be
232 * chosen dynamically, and returned (along with the first minor number)
233 * in @dev. Returns zero or a negative error code.
235 int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count,
238 struct char_device_struct *cd;
239 cd = __register_chrdev_region(0, baseminor, count, name);
242 *dev = MKDEV(cd->major, cd->baseminor);
247 * register_chrdev() - Register a major number for character devices.
248 * @major: major device number or 0 for dynamic allocation
249 * @name: name of this range of devices
250 * @fops: file operations associated with this devices
252 * If @major == 0 this functions will dynamically allocate a major and return
255 * If @major > 0 this function will attempt to reserve a device with the given
256 * major number and will return zero on success.
258 * Returns a -ve errno on failure.
260 * The name of this device has nothing to do with the name of the device in
261 * /dev. It only helps to keep track of the different owners of devices. If
262 * your module name has only one type of devices it's ok to use e.g. the name
263 * of the module here.
265 * This function registers a range of 256 minor numbers. The first minor number
268 int register_chrdev(unsigned int major, const char *name,
269 const struct file_operations *fops)
271 struct char_device_struct *cd;
276 cd = __register_chrdev_region(major, 0, 256, name);
284 cdev->owner = fops->owner;
286 kobject_set_name(&cdev->kobj, "%s", name);
287 for (s = strchr(kobject_name(&cdev->kobj),'/'); s; s = strchr(s, '/'))
290 err = cdev_add(cdev, MKDEV(cd->major, 0), 256);
296 return major ? 0 : cd->major;
298 kobject_put(&cdev->kobj);
300 kfree(__unregister_chrdev_region(cd->major, 0, 256));
305 * unregister_chrdev_region() - return a range of device numbers
306 * @from: the first in the range of numbers to unregister
307 * @count: the number of device numbers to unregister
309 * This function will unregister a range of @count device numbers,
310 * starting with @from. The caller should normally be the one who
311 * allocated those numbers in the first place...
313 void unregister_chrdev_region(dev_t from, unsigned count)
315 dev_t to = from + count;
318 for (n = from; n < to; n = next) {
319 next = MKDEV(MAJOR(n)+1, 0);
322 kfree(__unregister_chrdev_region(MAJOR(n), MINOR(n), next - n));
326 int unregister_chrdev(unsigned int major, const char *name)
328 struct char_device_struct *cd;
329 cd = __unregister_chrdev_region(major, 0, 256);
336 static DEFINE_SPINLOCK(cdev_lock);
338 static struct kobject *cdev_get(struct cdev *p)
340 struct module *owner = p->owner;
341 struct kobject *kobj;
343 if (owner && !try_module_get(owner))
345 kobj = kobject_get(&p->kobj);
351 void cdev_put(struct cdev *p)
354 struct module *owner = p->owner;
355 kobject_put(&p->kobj);
361 * Called every time a character special file is opened
363 int chrdev_open(struct inode * inode, struct file * filp)
366 struct cdev *new = NULL;
369 spin_lock(&cdev_lock);
372 struct kobject *kobj;
374 spin_unlock(&cdev_lock);
375 kobj = kobj_lookup(cdev_map, inode->i_rdev, &idx);
378 new = container_of(kobj, struct cdev, kobj);
379 spin_lock(&cdev_lock);
382 inode->i_cdev = p = new;
383 inode->i_cindex = idx;
384 list_add(&inode->i_devices, &p->list);
386 } else if (!cdev_get(p))
388 } else if (!cdev_get(p))
390 spin_unlock(&cdev_lock);
394 filp->f_op = fops_get(p->ops);
399 if (filp->f_op->open) {
401 ret = filp->f_op->open(inode,filp);
409 void cd_forget(struct inode *inode)
411 spin_lock(&cdev_lock);
412 list_del_init(&inode->i_devices);
413 inode->i_cdev = NULL;
414 spin_unlock(&cdev_lock);
417 static void cdev_purge(struct cdev *cdev)
419 spin_lock(&cdev_lock);
420 while (!list_empty(&cdev->list)) {
422 inode = container_of(cdev->list.next, struct inode, i_devices);
423 list_del_init(&inode->i_devices);
424 inode->i_cdev = NULL;
426 spin_unlock(&cdev_lock);
430 * Dummy default file-operations: the only thing this does
431 * is contain the open that then fills in the correct operations
432 * depending on the special file...
434 const struct file_operations def_chr_fops = {
438 static struct kobject *exact_match(dev_t dev, int *part, void *data)
440 struct cdev *p = data;
444 static int exact_lock(dev_t dev, void *data)
446 struct cdev *p = data;
447 return cdev_get(p) ? 0 : -1;
451 * cdev_add() - add a char device to the system
452 * @p: the cdev structure for the device
453 * @dev: the first device number for which this device is responsible
454 * @count: the number of consecutive minor numbers corresponding to this
457 * cdev_add() adds the device represented by @p to the system, making it
458 * live immediately. A negative error code is returned on failure.
460 int cdev_add(struct cdev *p, dev_t dev, unsigned count)
464 return kobj_map(cdev_map, dev, count, NULL, exact_match, exact_lock, p);
467 static void cdev_unmap(dev_t dev, unsigned count)
469 kobj_unmap(cdev_map, dev, count);
473 * cdev_del() - remove a cdev from the system
474 * @p: the cdev structure to be removed
476 * cdev_del() removes @p from the system, possibly freeing the structure
479 void cdev_del(struct cdev *p)
481 cdev_unmap(p->dev, p->count);
482 kobject_put(&p->kobj);
486 static void cdev_default_release(struct kobject *kobj)
488 struct cdev *p = container_of(kobj, struct cdev, kobj);
492 static void cdev_dynamic_release(struct kobject *kobj)
494 struct cdev *p = container_of(kobj, struct cdev, kobj);
499 static struct kobj_type ktype_cdev_default = {
500 .release = cdev_default_release,
503 static struct kobj_type ktype_cdev_dynamic = {
504 .release = cdev_dynamic_release,
508 * cdev_alloc() - allocate a cdev structure
510 * Allocates and returns a cdev structure, or NULL on failure.
512 struct cdev *cdev_alloc(void)
514 struct cdev *p = kzalloc(sizeof(struct cdev), GFP_KERNEL);
516 p->kobj.ktype = &ktype_cdev_dynamic;
517 INIT_LIST_HEAD(&p->list);
518 kobject_init(&p->kobj);
524 * cdev_init() - initialize a cdev structure
525 * @cdev: the structure to initialize
526 * @fops: the file_operations for this device
528 * Initializes @cdev, remembering @fops, making it ready to add to the
529 * system with cdev_add().
531 void cdev_init(struct cdev *cdev, const struct file_operations *fops)
533 memset(cdev, 0, sizeof *cdev);
534 INIT_LIST_HEAD(&cdev->list);
535 cdev->kobj.ktype = &ktype_cdev_default;
536 kobject_init(&cdev->kobj);
540 static struct kobject *base_probe(dev_t dev, int *part, void *data)
542 if (request_module("char-major-%d-%d", MAJOR(dev), MINOR(dev)) > 0)
543 /* Make old-style 2.4 aliases work */
544 request_module("char-major-%d", MAJOR(dev));
548 void __init chrdev_init(void)
550 cdev_map = kobj_map_init(base_probe, &chrdevs_lock);
554 /* Let modules do char dev stuff */
555 EXPORT_SYMBOL(register_chrdev_region);
556 EXPORT_SYMBOL(unregister_chrdev_region);
557 EXPORT_SYMBOL(alloc_chrdev_region);
558 EXPORT_SYMBOL(cdev_init);
559 EXPORT_SYMBOL(cdev_alloc);
560 EXPORT_SYMBOL(cdev_del);
561 EXPORT_SYMBOL(cdev_add);
562 EXPORT_SYMBOL(register_chrdev);
563 EXPORT_SYMBOL(unregister_chrdev);
564 EXPORT_SYMBOL(directly_mappable_cdev_bdi);