dax_io(): don't let non-error value escape via retval instead of EFAULT
[firefly-linux-kernel-4.4.55.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pmem.h>
28 #include <linux/sched.h>
29 #include <linux/uio.h>
30 #include <linux/vmstat.h>
31
32 int dax_clear_blocks(struct inode *inode, sector_t block, long size)
33 {
34         struct block_device *bdev = inode->i_sb->s_bdev;
35         sector_t sector = block << (inode->i_blkbits - 9);
36
37         might_sleep();
38         do {
39                 void __pmem *addr;
40                 unsigned long pfn;
41                 long count;
42
43                 count = bdev_direct_access(bdev, sector, &addr, &pfn, size);
44                 if (count < 0)
45                         return count;
46                 BUG_ON(size < count);
47                 while (count > 0) {
48                         unsigned pgsz = PAGE_SIZE - offset_in_page(addr);
49                         if (pgsz > count)
50                                 pgsz = count;
51                         clear_pmem(addr, pgsz);
52                         addr += pgsz;
53                         size -= pgsz;
54                         count -= pgsz;
55                         BUG_ON(pgsz & 511);
56                         sector += pgsz / 512;
57                         cond_resched();
58                 }
59         } while (size);
60
61         wmb_pmem();
62         return 0;
63 }
64 EXPORT_SYMBOL_GPL(dax_clear_blocks);
65
66 static long dax_get_addr(struct buffer_head *bh, void __pmem **addr,
67                 unsigned blkbits)
68 {
69         unsigned long pfn;
70         sector_t sector = bh->b_blocknr << (blkbits - 9);
71         return bdev_direct_access(bh->b_bdev, sector, addr, &pfn, bh->b_size);
72 }
73
74 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
75 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
76                 loff_t pos, loff_t end)
77 {
78         loff_t final = end - pos + first; /* The final byte of the buffer */
79
80         if (first > 0)
81                 clear_pmem(addr, first);
82         if (final < size)
83                 clear_pmem(addr + final, size - final);
84 }
85
86 static bool buffer_written(struct buffer_head *bh)
87 {
88         return buffer_mapped(bh) && !buffer_unwritten(bh);
89 }
90
91 /*
92  * When ext4 encounters a hole, it returns without modifying the buffer_head
93  * which means that we can't trust b_size.  To cope with this, we set b_state
94  * to 0 before calling get_block and, if any bit is set, we know we can trust
95  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
96  * and would save us time calling get_block repeatedly.
97  */
98 static bool buffer_size_valid(struct buffer_head *bh)
99 {
100         return bh->b_state != 0;
101 }
102
103 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
104                       loff_t start, loff_t end, get_block_t get_block,
105                       struct buffer_head *bh)
106 {
107         ssize_t retval = 0;
108         loff_t pos = start;
109         loff_t max = start;
110         loff_t bh_max = start;
111         void __pmem *addr;
112         bool hole = false;
113         bool need_wmb = false;
114
115         if (iov_iter_rw(iter) != WRITE)
116                 end = min(end, i_size_read(inode));
117
118         while (pos < end) {
119                 size_t len;
120                 if (pos == max) {
121                         unsigned blkbits = inode->i_blkbits;
122                         long page = pos >> PAGE_SHIFT;
123                         sector_t block = page << (PAGE_SHIFT - blkbits);
124                         unsigned first = pos - (block << blkbits);
125                         long size;
126
127                         if (pos == bh_max) {
128                                 bh->b_size = PAGE_ALIGN(end - pos);
129                                 bh->b_state = 0;
130                                 retval = get_block(inode, block, bh,
131                                                    iov_iter_rw(iter) == WRITE);
132                                 if (retval)
133                                         break;
134                                 if (!buffer_size_valid(bh))
135                                         bh->b_size = 1 << blkbits;
136                                 bh_max = pos - first + bh->b_size;
137                         } else {
138                                 unsigned done = bh->b_size -
139                                                 (bh_max - (pos - first));
140                                 bh->b_blocknr += done >> blkbits;
141                                 bh->b_size -= done;
142                         }
143
144                         hole = iov_iter_rw(iter) != WRITE && !buffer_written(bh);
145                         if (hole) {
146                                 addr = NULL;
147                                 size = bh->b_size - first;
148                         } else {
149                                 retval = dax_get_addr(bh, &addr, blkbits);
150                                 if (retval < 0)
151                                         break;
152                                 if (buffer_unwritten(bh) || buffer_new(bh)) {
153                                         dax_new_buf(addr, retval, first, pos,
154                                                                         end);
155                                         need_wmb = true;
156                                 }
157                                 addr += first;
158                                 size = retval - first;
159                         }
160                         max = min(pos + size, end);
161                 }
162
163                 if (iov_iter_rw(iter) == WRITE) {
164                         len = copy_from_iter_pmem(addr, max - pos, iter);
165                         need_wmb = true;
166                 } else if (!hole)
167                         len = copy_to_iter((void __force *)addr, max - pos,
168                                         iter);
169                 else
170                         len = iov_iter_zero(max - pos, iter);
171
172                 if (!len) {
173                         retval = -EFAULT;
174                         break;
175                 }
176
177                 pos += len;
178                 addr += len;
179         }
180
181         if (need_wmb)
182                 wmb_pmem();
183
184         return (pos == start) ? retval : pos - start;
185 }
186
187 /**
188  * dax_do_io - Perform I/O to a DAX file
189  * @iocb: The control block for this I/O
190  * @inode: The file which the I/O is directed at
191  * @iter: The addresses to do I/O from or to
192  * @pos: The file offset where the I/O starts
193  * @get_block: The filesystem method used to translate file offsets to blocks
194  * @end_io: A filesystem callback for I/O completion
195  * @flags: See below
196  *
197  * This function uses the same locking scheme as do_blockdev_direct_IO:
198  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
199  * caller for writes.  For reads, we take and release the i_mutex ourselves.
200  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
201  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
202  * is in progress.
203  */
204 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
205                   struct iov_iter *iter, loff_t pos, get_block_t get_block,
206                   dio_iodone_t end_io, int flags)
207 {
208         struct buffer_head bh;
209         ssize_t retval = -EINVAL;
210         loff_t end = pos + iov_iter_count(iter);
211
212         memset(&bh, 0, sizeof(bh));
213
214         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
215                 struct address_space *mapping = inode->i_mapping;
216                 mutex_lock(&inode->i_mutex);
217                 retval = filemap_write_and_wait_range(mapping, pos, end - 1);
218                 if (retval) {
219                         mutex_unlock(&inode->i_mutex);
220                         goto out;
221                 }
222         }
223
224         /* Protects against truncate */
225         if (!(flags & DIO_SKIP_DIO_COUNT))
226                 inode_dio_begin(inode);
227
228         retval = dax_io(inode, iter, pos, end, get_block, &bh);
229
230         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
231                 mutex_unlock(&inode->i_mutex);
232
233         if ((retval > 0) && end_io)
234                 end_io(iocb, pos, retval, bh.b_private);
235
236         if (!(flags & DIO_SKIP_DIO_COUNT))
237                 inode_dio_end(inode);
238  out:
239         return retval;
240 }
241 EXPORT_SYMBOL_GPL(dax_do_io);
242
243 /*
244  * The user has performed a load from a hole in the file.  Allocating
245  * a new page in the file would cause excessive storage usage for
246  * workloads with sparse files.  We allocate a page cache page instead.
247  * We'll kick it out of the page cache if it's ever written to,
248  * otherwise it will simply fall out of the page cache under memory
249  * pressure without ever having been dirtied.
250  */
251 static int dax_load_hole(struct address_space *mapping, struct page *page,
252                                                         struct vm_fault *vmf)
253 {
254         unsigned long size;
255         struct inode *inode = mapping->host;
256         if (!page)
257                 page = find_or_create_page(mapping, vmf->pgoff,
258                                                 GFP_KERNEL | __GFP_ZERO);
259         if (!page)
260                 return VM_FAULT_OOM;
261         /* Recheck i_size under page lock to avoid truncate race */
262         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
263         if (vmf->pgoff >= size) {
264                 unlock_page(page);
265                 page_cache_release(page);
266                 return VM_FAULT_SIGBUS;
267         }
268
269         vmf->page = page;
270         return VM_FAULT_LOCKED;
271 }
272
273 static int copy_user_bh(struct page *to, struct buffer_head *bh,
274                         unsigned blkbits, unsigned long vaddr)
275 {
276         void __pmem *vfrom;
277         void *vto;
278
279         if (dax_get_addr(bh, &vfrom, blkbits) < 0)
280                 return -EIO;
281         vto = kmap_atomic(to);
282         copy_user_page(vto, (void __force *)vfrom, vaddr, to);
283         kunmap_atomic(vto);
284         return 0;
285 }
286
287 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
288                         struct vm_area_struct *vma, struct vm_fault *vmf)
289 {
290         struct address_space *mapping = inode->i_mapping;
291         sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
292         unsigned long vaddr = (unsigned long)vmf->virtual_address;
293         void __pmem *addr;
294         unsigned long pfn;
295         pgoff_t size;
296         int error;
297
298         i_mmap_lock_read(mapping);
299
300         /*
301          * Check truncate didn't happen while we were allocating a block.
302          * If it did, this block may or may not be still allocated to the
303          * file.  We can't tell the filesystem to free it because we can't
304          * take i_mutex here.  In the worst case, the file still has blocks
305          * allocated past the end of the file.
306          */
307         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
308         if (unlikely(vmf->pgoff >= size)) {
309                 error = -EIO;
310                 goto out;
311         }
312
313         error = bdev_direct_access(bh->b_bdev, sector, &addr, &pfn, bh->b_size);
314         if (error < 0)
315                 goto out;
316         if (error < PAGE_SIZE) {
317                 error = -EIO;
318                 goto out;
319         }
320
321         if (buffer_unwritten(bh) || buffer_new(bh)) {
322                 clear_pmem(addr, PAGE_SIZE);
323                 wmb_pmem();
324         }
325
326         error = vm_insert_mixed(vma, vaddr, pfn);
327
328  out:
329         i_mmap_unlock_read(mapping);
330
331         return error;
332 }
333
334 /**
335  * __dax_fault - handle a page fault on a DAX file
336  * @vma: The virtual memory area where the fault occurred
337  * @vmf: The description of the fault
338  * @get_block: The filesystem method used to translate file offsets to blocks
339  * @complete_unwritten: The filesystem method used to convert unwritten blocks
340  *      to written so the data written to them is exposed. This is required for
341  *      required by write faults for filesystems that will return unwritten
342  *      extent mappings from @get_block, but it is optional for reads as
343  *      dax_insert_mapping() will always zero unwritten blocks. If the fs does
344  *      not support unwritten extents, the it should pass NULL.
345  *
346  * When a page fault occurs, filesystems may call this helper in their
347  * fault handler for DAX files. __dax_fault() assumes the caller has done all
348  * the necessary locking for the page fault to proceed successfully.
349  */
350 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
351                         get_block_t get_block, dax_iodone_t complete_unwritten)
352 {
353         struct file *file = vma->vm_file;
354         struct address_space *mapping = file->f_mapping;
355         struct inode *inode = mapping->host;
356         struct page *page;
357         struct buffer_head bh;
358         unsigned long vaddr = (unsigned long)vmf->virtual_address;
359         unsigned blkbits = inode->i_blkbits;
360         sector_t block;
361         pgoff_t size;
362         int error;
363         int major = 0;
364
365         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
366         if (vmf->pgoff >= size)
367                 return VM_FAULT_SIGBUS;
368
369         memset(&bh, 0, sizeof(bh));
370         block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
371         bh.b_size = PAGE_SIZE;
372
373  repeat:
374         page = find_get_page(mapping, vmf->pgoff);
375         if (page) {
376                 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
377                         page_cache_release(page);
378                         return VM_FAULT_RETRY;
379                 }
380                 if (unlikely(page->mapping != mapping)) {
381                         unlock_page(page);
382                         page_cache_release(page);
383                         goto repeat;
384                 }
385                 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
386                 if (unlikely(vmf->pgoff >= size)) {
387                         /*
388                          * We have a struct page covering a hole in the file
389                          * from a read fault and we've raced with a truncate
390                          */
391                         error = -EIO;
392                         goto unlock_page;
393                 }
394         }
395
396         error = get_block(inode, block, &bh, 0);
397         if (!error && (bh.b_size < PAGE_SIZE))
398                 error = -EIO;           /* fs corruption? */
399         if (error)
400                 goto unlock_page;
401
402         if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
403                 if (vmf->flags & FAULT_FLAG_WRITE) {
404                         error = get_block(inode, block, &bh, 1);
405                         count_vm_event(PGMAJFAULT);
406                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
407                         major = VM_FAULT_MAJOR;
408                         if (!error && (bh.b_size < PAGE_SIZE))
409                                 error = -EIO;
410                         if (error)
411                                 goto unlock_page;
412                 } else {
413                         return dax_load_hole(mapping, page, vmf);
414                 }
415         }
416
417         if (vmf->cow_page) {
418                 struct page *new_page = vmf->cow_page;
419                 if (buffer_written(&bh))
420                         error = copy_user_bh(new_page, &bh, blkbits, vaddr);
421                 else
422                         clear_user_highpage(new_page, vaddr);
423                 if (error)
424                         goto unlock_page;
425                 vmf->page = page;
426                 if (!page) {
427                         i_mmap_lock_read(mapping);
428                         /* Check we didn't race with truncate */
429                         size = (i_size_read(inode) + PAGE_SIZE - 1) >>
430                                                                 PAGE_SHIFT;
431                         if (vmf->pgoff >= size) {
432                                 i_mmap_unlock_read(mapping);
433                                 error = -EIO;
434                                 goto out;
435                         }
436                 }
437                 return VM_FAULT_LOCKED;
438         }
439
440         /* Check we didn't race with a read fault installing a new page */
441         if (!page && major)
442                 page = find_lock_page(mapping, vmf->pgoff);
443
444         if (page) {
445                 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
446                                                         PAGE_CACHE_SIZE, 0);
447                 delete_from_page_cache(page);
448                 unlock_page(page);
449                 page_cache_release(page);
450         }
451
452         /*
453          * If we successfully insert the new mapping over an unwritten extent,
454          * we need to ensure we convert the unwritten extent. If there is an
455          * error inserting the mapping, the filesystem needs to leave it as
456          * unwritten to prevent exposure of the stale underlying data to
457          * userspace, but we still need to call the completion function so
458          * the private resources on the mapping buffer can be released. We
459          * indicate what the callback should do via the uptodate variable, same
460          * as for normal BH based IO completions.
461          */
462         error = dax_insert_mapping(inode, &bh, vma, vmf);
463         if (buffer_unwritten(&bh)) {
464                 if (complete_unwritten)
465                         complete_unwritten(&bh, !error);
466                 else
467                         WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
468         }
469
470  out:
471         if (error == -ENOMEM)
472                 return VM_FAULT_OOM | major;
473         /* -EBUSY is fine, somebody else faulted on the same PTE */
474         if ((error < 0) && (error != -EBUSY))
475                 return VM_FAULT_SIGBUS | major;
476         return VM_FAULT_NOPAGE | major;
477
478  unlock_page:
479         if (page) {
480                 unlock_page(page);
481                 page_cache_release(page);
482         }
483         goto out;
484 }
485 EXPORT_SYMBOL(__dax_fault);
486
487 /**
488  * dax_fault - handle a page fault on a DAX file
489  * @vma: The virtual memory area where the fault occurred
490  * @vmf: The description of the fault
491  * @get_block: The filesystem method used to translate file offsets to blocks
492  *
493  * When a page fault occurs, filesystems may call this helper in their
494  * fault handler for DAX files.
495  */
496 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
497               get_block_t get_block, dax_iodone_t complete_unwritten)
498 {
499         int result;
500         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
501
502         if (vmf->flags & FAULT_FLAG_WRITE) {
503                 sb_start_pagefault(sb);
504                 file_update_time(vma->vm_file);
505         }
506         result = __dax_fault(vma, vmf, get_block, complete_unwritten);
507         if (vmf->flags & FAULT_FLAG_WRITE)
508                 sb_end_pagefault(sb);
509
510         return result;
511 }
512 EXPORT_SYMBOL_GPL(dax_fault);
513
514 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
515 /*
516  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
517  * more often than one might expect in the below function.
518  */
519 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
520
521 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
522                 pmd_t *pmd, unsigned int flags, get_block_t get_block,
523                 dax_iodone_t complete_unwritten)
524 {
525         struct file *file = vma->vm_file;
526         struct address_space *mapping = file->f_mapping;
527         struct inode *inode = mapping->host;
528         struct buffer_head bh;
529         unsigned blkbits = inode->i_blkbits;
530         unsigned long pmd_addr = address & PMD_MASK;
531         bool write = flags & FAULT_FLAG_WRITE;
532         long length;
533         void __pmem *kaddr;
534         pgoff_t size, pgoff;
535         sector_t block, sector;
536         unsigned long pfn;
537         int result = 0;
538
539         /* Fall back to PTEs if we're going to COW */
540         if (write && !(vma->vm_flags & VM_SHARED))
541                 return VM_FAULT_FALLBACK;
542         /* If the PMD would extend outside the VMA */
543         if (pmd_addr < vma->vm_start)
544                 return VM_FAULT_FALLBACK;
545         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
546                 return VM_FAULT_FALLBACK;
547
548         pgoff = linear_page_index(vma, pmd_addr);
549         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
550         if (pgoff >= size)
551                 return VM_FAULT_SIGBUS;
552         /* If the PMD would cover blocks out of the file */
553         if ((pgoff | PG_PMD_COLOUR) >= size)
554                 return VM_FAULT_FALLBACK;
555
556         memset(&bh, 0, sizeof(bh));
557         block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
558
559         bh.b_size = PMD_SIZE;
560         length = get_block(inode, block, &bh, write);
561         if (length)
562                 return VM_FAULT_SIGBUS;
563         i_mmap_lock_read(mapping);
564
565         /*
566          * If the filesystem isn't willing to tell us the length of a hole,
567          * just fall back to PTEs.  Calling get_block 512 times in a loop
568          * would be silly.
569          */
570         if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE)
571                 goto fallback;
572
573         /*
574          * If we allocated new storage, make sure no process has any
575          * zero pages covering this hole
576          */
577         if (buffer_new(&bh)) {
578                 i_mmap_unlock_read(mapping);
579                 unmap_mapping_range(mapping, pgoff << PAGE_SHIFT, PMD_SIZE, 0);
580                 i_mmap_lock_read(mapping);
581         }
582
583         /*
584          * If a truncate happened while we were allocating blocks, we may
585          * leave blocks allocated to the file that are beyond EOF.  We can't
586          * take i_mutex here, so just leave them hanging; they'll be freed
587          * when the file is deleted.
588          */
589         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
590         if (pgoff >= size) {
591                 result = VM_FAULT_SIGBUS;
592                 goto out;
593         }
594         if ((pgoff | PG_PMD_COLOUR) >= size)
595                 goto fallback;
596
597         if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
598                 spinlock_t *ptl;
599                 pmd_t entry;
600                 struct page *zero_page = get_huge_zero_page();
601
602                 if (unlikely(!zero_page))
603                         goto fallback;
604
605                 ptl = pmd_lock(vma->vm_mm, pmd);
606                 if (!pmd_none(*pmd)) {
607                         spin_unlock(ptl);
608                         goto fallback;
609                 }
610
611                 entry = mk_pmd(zero_page, vma->vm_page_prot);
612                 entry = pmd_mkhuge(entry);
613                 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
614                 result = VM_FAULT_NOPAGE;
615                 spin_unlock(ptl);
616         } else {
617                 sector = bh.b_blocknr << (blkbits - 9);
618                 length = bdev_direct_access(bh.b_bdev, sector, &kaddr, &pfn,
619                                                 bh.b_size);
620                 if (length < 0) {
621                         result = VM_FAULT_SIGBUS;
622                         goto out;
623                 }
624                 if ((length < PMD_SIZE) || (pfn & PG_PMD_COLOUR))
625                         goto fallback;
626
627                 if (buffer_unwritten(&bh) || buffer_new(&bh)) {
628                         int i;
629                         for (i = 0; i < PTRS_PER_PMD; i++)
630                                 clear_pmem(kaddr + i * PAGE_SIZE, PAGE_SIZE);
631                         wmb_pmem();
632                         count_vm_event(PGMAJFAULT);
633                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
634                         result |= VM_FAULT_MAJOR;
635                 }
636
637                 result |= vmf_insert_pfn_pmd(vma, address, pmd, pfn, write);
638         }
639
640  out:
641         i_mmap_unlock_read(mapping);
642
643         if (buffer_unwritten(&bh))
644                 complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
645
646         return result;
647
648  fallback:
649         count_vm_event(THP_FAULT_FALLBACK);
650         result = VM_FAULT_FALLBACK;
651         goto out;
652 }
653 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
654
655 /**
656  * dax_pmd_fault - handle a PMD fault on a DAX file
657  * @vma: The virtual memory area where the fault occurred
658  * @vmf: The description of the fault
659  * @get_block: The filesystem method used to translate file offsets to blocks
660  *
661  * When a page fault occurs, filesystems may call this helper in their
662  * pmd_fault handler for DAX files.
663  */
664 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
665                         pmd_t *pmd, unsigned int flags, get_block_t get_block,
666                         dax_iodone_t complete_unwritten)
667 {
668         int result;
669         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
670
671         if (flags & FAULT_FLAG_WRITE) {
672                 sb_start_pagefault(sb);
673                 file_update_time(vma->vm_file);
674         }
675         result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
676                                 complete_unwritten);
677         if (flags & FAULT_FLAG_WRITE)
678                 sb_end_pagefault(sb);
679
680         return result;
681 }
682 EXPORT_SYMBOL_GPL(dax_pmd_fault);
683 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
684
685 /**
686  * dax_pfn_mkwrite - handle first write to DAX page
687  * @vma: The virtual memory area where the fault occurred
688  * @vmf: The description of the fault
689  *
690  */
691 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
692 {
693         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
694
695         sb_start_pagefault(sb);
696         file_update_time(vma->vm_file);
697         sb_end_pagefault(sb);
698         return VM_FAULT_NOPAGE;
699 }
700 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
701
702 /**
703  * dax_zero_page_range - zero a range within a page of a DAX file
704  * @inode: The file being truncated
705  * @from: The file offset that is being truncated to
706  * @length: The number of bytes to zero
707  * @get_block: The filesystem method used to translate file offsets to blocks
708  *
709  * This function can be called by a filesystem when it is zeroing part of a
710  * page in a DAX file.  This is intended for hole-punch operations.  If
711  * you are truncating a file, the helper function dax_truncate_page() may be
712  * more convenient.
713  *
714  * We work in terms of PAGE_CACHE_SIZE here for commonality with
715  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
716  * took care of disposing of the unnecessary blocks.  Even if the filesystem
717  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
718  * since the file might be mmapped.
719  */
720 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
721                                                         get_block_t get_block)
722 {
723         struct buffer_head bh;
724         pgoff_t index = from >> PAGE_CACHE_SHIFT;
725         unsigned offset = from & (PAGE_CACHE_SIZE-1);
726         int err;
727
728         /* Block boundary? Nothing to do */
729         if (!length)
730                 return 0;
731         BUG_ON((offset + length) > PAGE_CACHE_SIZE);
732
733         memset(&bh, 0, sizeof(bh));
734         bh.b_size = PAGE_CACHE_SIZE;
735         err = get_block(inode, index, &bh, 0);
736         if (err < 0)
737                 return err;
738         if (buffer_written(&bh)) {
739                 void __pmem *addr;
740                 err = dax_get_addr(&bh, &addr, inode->i_blkbits);
741                 if (err < 0)
742                         return err;
743                 clear_pmem(addr + offset, length);
744                 wmb_pmem();
745         }
746
747         return 0;
748 }
749 EXPORT_SYMBOL_GPL(dax_zero_page_range);
750
751 /**
752  * dax_truncate_page - handle a partial page being truncated in a DAX file
753  * @inode: The file being truncated
754  * @from: The file offset that is being truncated to
755  * @get_block: The filesystem method used to translate file offsets to blocks
756  *
757  * Similar to block_truncate_page(), this function can be called by a
758  * filesystem when it is truncating a DAX file to handle the partial page.
759  *
760  * We work in terms of PAGE_CACHE_SIZE here for commonality with
761  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
762  * took care of disposing of the unnecessary blocks.  Even if the filesystem
763  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
764  * since the file might be mmapped.
765  */
766 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
767 {
768         unsigned length = PAGE_CACHE_ALIGN(from) - from;
769         return dax_zero_page_range(inode, from, length, get_block);
770 }
771 EXPORT_SYMBOL_GPL(dax_truncate_page);