Revert "clk: rockchip: rk3368: Add CLK_IGNORE_UNUSED flag for mipi phy refclk"
[firefly-linux-kernel-4.4.55.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/user_namespace.h>
60
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64
65 #include <trace/events/task.h>
66 #include "internal.h"
67
68 #include <trace/events/sched.h>
69
70 int suid_dumpable = 0;
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77         BUG_ON(!fmt);
78         if (WARN_ON(!fmt->load_binary))
79                 return;
80         write_lock(&binfmt_lock);
81         insert ? list_add(&fmt->lh, &formats) :
82                  list_add_tail(&fmt->lh, &formats);
83         write_unlock(&binfmt_lock);
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90         write_lock(&binfmt_lock);
91         list_del(&fmt->lh);
92         write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99         module_put(fmt->module);
100 }
101
102 bool path_noexec(const struct path *path)
103 {
104         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107
108 #ifdef CONFIG_USELIB
109 /*
110  * Note that a shared library must be both readable and executable due to
111  * security reasons.
112  *
113  * Also note that we take the address to load from from the file itself.
114  */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117         struct linux_binfmt *fmt;
118         struct file *file;
119         struct filename *tmp = getname(library);
120         int error = PTR_ERR(tmp);
121         static const struct open_flags uselib_flags = {
122                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123                 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
124                 .intent = LOOKUP_OPEN,
125                 .lookup_flags = LOOKUP_FOLLOW,
126         };
127
128         if (IS_ERR(tmp))
129                 goto out;
130
131         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132         putname(tmp);
133         error = PTR_ERR(file);
134         if (IS_ERR(file))
135                 goto out;
136
137         error = -EINVAL;
138         if (!S_ISREG(file_inode(file)->i_mode))
139                 goto exit;
140
141         error = -EACCES;
142         if (path_noexec(&file->f_path))
143                 goto exit;
144
145         fsnotify_open(file);
146
147         error = -ENOEXEC;
148
149         read_lock(&binfmt_lock);
150         list_for_each_entry(fmt, &formats, lh) {
151                 if (!fmt->load_shlib)
152                         continue;
153                 if (!try_module_get(fmt->module))
154                         continue;
155                 read_unlock(&binfmt_lock);
156                 error = fmt->load_shlib(file);
157                 read_lock(&binfmt_lock);
158                 put_binfmt(fmt);
159                 if (error != -ENOEXEC)
160                         break;
161         }
162         read_unlock(&binfmt_lock);
163 exit:
164         fput(file);
165 out:
166         return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169
170 #ifdef CONFIG_MMU
171 /*
172  * The nascent bprm->mm is not visible until exec_mmap() but it can
173  * use a lot of memory, account these pages in current->mm temporary
174  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175  * change the counter back via acct_arg_size(0).
176  */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179         struct mm_struct *mm = current->mm;
180         long diff = (long)(pages - bprm->vma_pages);
181
182         if (!mm || !diff)
183                 return;
184
185         bprm->vma_pages = pages;
186         add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190                 int write)
191 {
192         struct page *page;
193         int ret;
194
195 #ifdef CONFIG_STACK_GROWSUP
196         if (write) {
197                 ret = expand_downwards(bprm->vma, pos);
198                 if (ret < 0)
199                         return NULL;
200         }
201 #endif
202         ret = get_user_pages(current, bprm->mm, pos,
203                         1, write, 1, &page, NULL);
204         if (ret <= 0)
205                 return NULL;
206
207         if (write) {
208                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
209                 unsigned long ptr_size;
210                 struct rlimit *rlim;
211
212                 /*
213                  * Since the stack will hold pointers to the strings, we
214                  * must account for them as well.
215                  *
216                  * The size calculation is the entire vma while each arg page is
217                  * built, so each time we get here it's calculating how far it
218                  * is currently (rather than each call being just the newly
219                  * added size from the arg page).  As a result, we need to
220                  * always add the entire size of the pointers, so that on the
221                  * last call to get_arg_page() we'll actually have the entire
222                  * correct size.
223                  */
224                 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
225                 if (ptr_size > ULONG_MAX - size)
226                         goto fail;
227                 size += ptr_size;
228
229                 acct_arg_size(bprm, size / PAGE_SIZE);
230
231                 /*
232                  * We've historically supported up to 32 pages (ARG_MAX)
233                  * of argument strings even with small stacks
234                  */
235                 if (size <= ARG_MAX)
236                         return page;
237
238                 /*
239                  * Limit to 1/4-th the stack size for the argv+env strings.
240                  * This ensures that:
241                  *  - the remaining binfmt code will not run out of stack space,
242                  *  - the program will have a reasonable amount of stack left
243                  *    to work from.
244                  */
245                 rlim = current->signal->rlim;
246                 if (size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4)
247                         goto fail;
248         }
249
250         return page;
251
252 fail:
253         put_page(page);
254         return NULL;
255 }
256
257 static void put_arg_page(struct page *page)
258 {
259         put_page(page);
260 }
261
262 static void free_arg_page(struct linux_binprm *bprm, int i)
263 {
264 }
265
266 static void free_arg_pages(struct linux_binprm *bprm)
267 {
268 }
269
270 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
271                 struct page *page)
272 {
273         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
274 }
275
276 static int __bprm_mm_init(struct linux_binprm *bprm)
277 {
278         int err;
279         struct vm_area_struct *vma = NULL;
280         struct mm_struct *mm = bprm->mm;
281
282         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
283         if (!vma)
284                 return -ENOMEM;
285
286         down_write(&mm->mmap_sem);
287         vma->vm_mm = mm;
288
289         /*
290          * Place the stack at the largest stack address the architecture
291          * supports. Later, we'll move this to an appropriate place. We don't
292          * use STACK_TOP because that can depend on attributes which aren't
293          * configured yet.
294          */
295         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
296         vma->vm_end = STACK_TOP_MAX;
297         vma->vm_start = vma->vm_end - PAGE_SIZE;
298         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
299         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
300         INIT_LIST_HEAD(&vma->anon_vma_chain);
301
302         err = insert_vm_struct(mm, vma);
303         if (err)
304                 goto err;
305
306         mm->stack_vm = mm->total_vm = 1;
307         arch_bprm_mm_init(mm, vma);
308         up_write(&mm->mmap_sem);
309         bprm->p = vma->vm_end - sizeof(void *);
310         return 0;
311 err:
312         up_write(&mm->mmap_sem);
313         bprm->vma = NULL;
314         kmem_cache_free(vm_area_cachep, vma);
315         return err;
316 }
317
318 static bool valid_arg_len(struct linux_binprm *bprm, long len)
319 {
320         return len <= MAX_ARG_STRLEN;
321 }
322
323 #else
324
325 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
326 {
327 }
328
329 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
330                 int write)
331 {
332         struct page *page;
333
334         page = bprm->page[pos / PAGE_SIZE];
335         if (!page && write) {
336                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
337                 if (!page)
338                         return NULL;
339                 bprm->page[pos / PAGE_SIZE] = page;
340         }
341
342         return page;
343 }
344
345 static void put_arg_page(struct page *page)
346 {
347 }
348
349 static void free_arg_page(struct linux_binprm *bprm, int i)
350 {
351         if (bprm->page[i]) {
352                 __free_page(bprm->page[i]);
353                 bprm->page[i] = NULL;
354         }
355 }
356
357 static void free_arg_pages(struct linux_binprm *bprm)
358 {
359         int i;
360
361         for (i = 0; i < MAX_ARG_PAGES; i++)
362                 free_arg_page(bprm, i);
363 }
364
365 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
366                 struct page *page)
367 {
368 }
369
370 static int __bprm_mm_init(struct linux_binprm *bprm)
371 {
372         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
373         return 0;
374 }
375
376 static bool valid_arg_len(struct linux_binprm *bprm, long len)
377 {
378         return len <= bprm->p;
379 }
380
381 #endif /* CONFIG_MMU */
382
383 /*
384  * Create a new mm_struct and populate it with a temporary stack
385  * vm_area_struct.  We don't have enough context at this point to set the stack
386  * flags, permissions, and offset, so we use temporary values.  We'll update
387  * them later in setup_arg_pages().
388  */
389 static int bprm_mm_init(struct linux_binprm *bprm)
390 {
391         int err;
392         struct mm_struct *mm = NULL;
393
394         bprm->mm = mm = mm_alloc();
395         err = -ENOMEM;
396         if (!mm)
397                 goto err;
398
399         err = __bprm_mm_init(bprm);
400         if (err)
401                 goto err;
402
403         return 0;
404
405 err:
406         if (mm) {
407                 bprm->mm = NULL;
408                 mmdrop(mm);
409         }
410
411         return err;
412 }
413
414 struct user_arg_ptr {
415 #ifdef CONFIG_COMPAT
416         bool is_compat;
417 #endif
418         union {
419                 const char __user *const __user *native;
420 #ifdef CONFIG_COMPAT
421                 const compat_uptr_t __user *compat;
422 #endif
423         } ptr;
424 };
425
426 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
427 {
428         const char __user *native;
429
430 #ifdef CONFIG_COMPAT
431         if (unlikely(argv.is_compat)) {
432                 compat_uptr_t compat;
433
434                 if (get_user(compat, argv.ptr.compat + nr))
435                         return ERR_PTR(-EFAULT);
436
437                 return compat_ptr(compat);
438         }
439 #endif
440
441         if (get_user(native, argv.ptr.native + nr))
442                 return ERR_PTR(-EFAULT);
443
444         return native;
445 }
446
447 /*
448  * count() counts the number of strings in array ARGV.
449  */
450 static int count(struct user_arg_ptr argv, int max)
451 {
452         int i = 0;
453
454         if (argv.ptr.native != NULL) {
455                 for (;;) {
456                         const char __user *p = get_user_arg_ptr(argv, i);
457
458                         if (!p)
459                                 break;
460
461                         if (IS_ERR(p))
462                                 return -EFAULT;
463
464                         if (i >= max)
465                                 return -E2BIG;
466                         ++i;
467
468                         if (fatal_signal_pending(current))
469                                 return -ERESTARTNOHAND;
470                         cond_resched();
471                 }
472         }
473         return i;
474 }
475
476 /*
477  * 'copy_strings()' copies argument/environment strings from the old
478  * processes's memory to the new process's stack.  The call to get_user_pages()
479  * ensures the destination page is created and not swapped out.
480  */
481 static int copy_strings(int argc, struct user_arg_ptr argv,
482                         struct linux_binprm *bprm)
483 {
484         struct page *kmapped_page = NULL;
485         char *kaddr = NULL;
486         unsigned long kpos = 0;
487         int ret;
488
489         while (argc-- > 0) {
490                 const char __user *str;
491                 int len;
492                 unsigned long pos;
493
494                 ret = -EFAULT;
495                 str = get_user_arg_ptr(argv, argc);
496                 if (IS_ERR(str))
497                         goto out;
498
499                 len = strnlen_user(str, MAX_ARG_STRLEN);
500                 if (!len)
501                         goto out;
502
503                 ret = -E2BIG;
504                 if (!valid_arg_len(bprm, len))
505                         goto out;
506
507                 /* We're going to work our way backwords. */
508                 pos = bprm->p;
509                 str += len;
510                 bprm->p -= len;
511
512                 while (len > 0) {
513                         int offset, bytes_to_copy;
514
515                         if (fatal_signal_pending(current)) {
516                                 ret = -ERESTARTNOHAND;
517                                 goto out;
518                         }
519                         cond_resched();
520
521                         offset = pos % PAGE_SIZE;
522                         if (offset == 0)
523                                 offset = PAGE_SIZE;
524
525                         bytes_to_copy = offset;
526                         if (bytes_to_copy > len)
527                                 bytes_to_copy = len;
528
529                         offset -= bytes_to_copy;
530                         pos -= bytes_to_copy;
531                         str -= bytes_to_copy;
532                         len -= bytes_to_copy;
533
534                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
535                                 struct page *page;
536
537                                 page = get_arg_page(bprm, pos, 1);
538                                 if (!page) {
539                                         ret = -E2BIG;
540                                         goto out;
541                                 }
542
543                                 if (kmapped_page) {
544                                         flush_kernel_dcache_page(kmapped_page);
545                                         kunmap(kmapped_page);
546                                         put_arg_page(kmapped_page);
547                                 }
548                                 kmapped_page = page;
549                                 kaddr = kmap(kmapped_page);
550                                 kpos = pos & PAGE_MASK;
551                                 flush_arg_page(bprm, kpos, kmapped_page);
552                         }
553                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
554                                 ret = -EFAULT;
555                                 goto out;
556                         }
557                 }
558         }
559         ret = 0;
560 out:
561         if (kmapped_page) {
562                 flush_kernel_dcache_page(kmapped_page);
563                 kunmap(kmapped_page);
564                 put_arg_page(kmapped_page);
565         }
566         return ret;
567 }
568
569 /*
570  * Like copy_strings, but get argv and its values from kernel memory.
571  */
572 int copy_strings_kernel(int argc, const char *const *__argv,
573                         struct linux_binprm *bprm)
574 {
575         int r;
576         mm_segment_t oldfs = get_fs();
577         struct user_arg_ptr argv = {
578                 .ptr.native = (const char __user *const  __user *)__argv,
579         };
580
581         set_fs(KERNEL_DS);
582         r = copy_strings(argc, argv, bprm);
583         set_fs(oldfs);
584
585         return r;
586 }
587 EXPORT_SYMBOL(copy_strings_kernel);
588
589 #ifdef CONFIG_MMU
590
591 /*
592  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
593  * the binfmt code determines where the new stack should reside, we shift it to
594  * its final location.  The process proceeds as follows:
595  *
596  * 1) Use shift to calculate the new vma endpoints.
597  * 2) Extend vma to cover both the old and new ranges.  This ensures the
598  *    arguments passed to subsequent functions are consistent.
599  * 3) Move vma's page tables to the new range.
600  * 4) Free up any cleared pgd range.
601  * 5) Shrink the vma to cover only the new range.
602  */
603 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
604 {
605         struct mm_struct *mm = vma->vm_mm;
606         unsigned long old_start = vma->vm_start;
607         unsigned long old_end = vma->vm_end;
608         unsigned long length = old_end - old_start;
609         unsigned long new_start = old_start - shift;
610         unsigned long new_end = old_end - shift;
611         struct mmu_gather tlb;
612
613         BUG_ON(new_start > new_end);
614
615         /*
616          * ensure there are no vmas between where we want to go
617          * and where we are
618          */
619         if (vma != find_vma(mm, new_start))
620                 return -EFAULT;
621
622         /*
623          * cover the whole range: [new_start, old_end)
624          */
625         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
626                 return -ENOMEM;
627
628         /*
629          * move the page tables downwards, on failure we rely on
630          * process cleanup to remove whatever mess we made.
631          */
632         if (length != move_page_tables(vma, old_start,
633                                        vma, new_start, length, false))
634                 return -ENOMEM;
635
636         lru_add_drain();
637         tlb_gather_mmu(&tlb, mm, old_start, old_end);
638         if (new_end > old_start) {
639                 /*
640                  * when the old and new regions overlap clear from new_end.
641                  */
642                 free_pgd_range(&tlb, new_end, old_end, new_end,
643                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
644         } else {
645                 /*
646                  * otherwise, clean from old_start; this is done to not touch
647                  * the address space in [new_end, old_start) some architectures
648                  * have constraints on va-space that make this illegal (IA64) -
649                  * for the others its just a little faster.
650                  */
651                 free_pgd_range(&tlb, old_start, old_end, new_end,
652                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
653         }
654         tlb_finish_mmu(&tlb, old_start, old_end);
655
656         /*
657          * Shrink the vma to just the new range.  Always succeeds.
658          */
659         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
660
661         return 0;
662 }
663
664 /*
665  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
666  * the stack is optionally relocated, and some extra space is added.
667  */
668 int setup_arg_pages(struct linux_binprm *bprm,
669                     unsigned long stack_top,
670                     int executable_stack)
671 {
672         unsigned long ret;
673         unsigned long stack_shift;
674         struct mm_struct *mm = current->mm;
675         struct vm_area_struct *vma = bprm->vma;
676         struct vm_area_struct *prev = NULL;
677         unsigned long vm_flags;
678         unsigned long stack_base;
679         unsigned long stack_size;
680         unsigned long stack_expand;
681         unsigned long rlim_stack;
682
683 #ifdef CONFIG_STACK_GROWSUP
684         /* Limit stack size */
685         stack_base = rlimit_max(RLIMIT_STACK);
686         if (stack_base > STACK_SIZE_MAX)
687                 stack_base = STACK_SIZE_MAX;
688
689         /* Add space for stack randomization. */
690         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
691
692         /* Make sure we didn't let the argument array grow too large. */
693         if (vma->vm_end - vma->vm_start > stack_base)
694                 return -ENOMEM;
695
696         stack_base = PAGE_ALIGN(stack_top - stack_base);
697
698         stack_shift = vma->vm_start - stack_base;
699         mm->arg_start = bprm->p - stack_shift;
700         bprm->p = vma->vm_end - stack_shift;
701 #else
702         stack_top = arch_align_stack(stack_top);
703         stack_top = PAGE_ALIGN(stack_top);
704
705         if (unlikely(stack_top < mmap_min_addr) ||
706             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
707                 return -ENOMEM;
708
709         stack_shift = vma->vm_end - stack_top;
710
711         bprm->p -= stack_shift;
712         mm->arg_start = bprm->p;
713 #endif
714
715         if (bprm->loader)
716                 bprm->loader -= stack_shift;
717         bprm->exec -= stack_shift;
718
719         down_write(&mm->mmap_sem);
720         vm_flags = VM_STACK_FLAGS;
721
722         /*
723          * Adjust stack execute permissions; explicitly enable for
724          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
725          * (arch default) otherwise.
726          */
727         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
728                 vm_flags |= VM_EXEC;
729         else if (executable_stack == EXSTACK_DISABLE_X)
730                 vm_flags &= ~VM_EXEC;
731         vm_flags |= mm->def_flags;
732         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
733
734         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
735                         vm_flags);
736         if (ret)
737                 goto out_unlock;
738         BUG_ON(prev != vma);
739
740         /* Move stack pages down in memory. */
741         if (stack_shift) {
742                 ret = shift_arg_pages(vma, stack_shift);
743                 if (ret)
744                         goto out_unlock;
745         }
746
747         /* mprotect_fixup is overkill to remove the temporary stack flags */
748         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
749
750         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
751         stack_size = vma->vm_end - vma->vm_start;
752         /*
753          * Align this down to a page boundary as expand_stack
754          * will align it up.
755          */
756         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
757 #ifdef CONFIG_STACK_GROWSUP
758         if (stack_size + stack_expand > rlim_stack)
759                 stack_base = vma->vm_start + rlim_stack;
760         else
761                 stack_base = vma->vm_end + stack_expand;
762 #else
763         if (stack_size + stack_expand > rlim_stack)
764                 stack_base = vma->vm_end - rlim_stack;
765         else
766                 stack_base = vma->vm_start - stack_expand;
767 #endif
768         current->mm->start_stack = bprm->p;
769         ret = expand_stack(vma, stack_base);
770         if (ret)
771                 ret = -EFAULT;
772
773 out_unlock:
774         up_write(&mm->mmap_sem);
775         return ret;
776 }
777 EXPORT_SYMBOL(setup_arg_pages);
778
779 #endif /* CONFIG_MMU */
780
781 static struct file *do_open_execat(int fd, struct filename *name, int flags)
782 {
783         struct file *file;
784         int err;
785         struct open_flags open_exec_flags = {
786                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
787                 .acc_mode = MAY_EXEC | MAY_OPEN,
788                 .intent = LOOKUP_OPEN,
789                 .lookup_flags = LOOKUP_FOLLOW,
790         };
791
792         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
793                 return ERR_PTR(-EINVAL);
794         if (flags & AT_SYMLINK_NOFOLLOW)
795                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
796         if (flags & AT_EMPTY_PATH)
797                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
798
799         file = do_filp_open(fd, name, &open_exec_flags);
800         if (IS_ERR(file))
801                 goto out;
802
803         err = -EACCES;
804         if (!S_ISREG(file_inode(file)->i_mode))
805                 goto exit;
806
807         if (path_noexec(&file->f_path))
808                 goto exit;
809
810         err = deny_write_access(file);
811         if (err)
812                 goto exit;
813
814         if (name->name[0] != '\0')
815                 fsnotify_open(file);
816
817 out:
818         return file;
819
820 exit:
821         fput(file);
822         return ERR_PTR(err);
823 }
824
825 struct file *open_exec(const char *name)
826 {
827         struct filename *filename = getname_kernel(name);
828         struct file *f = ERR_CAST(filename);
829
830         if (!IS_ERR(filename)) {
831                 f = do_open_execat(AT_FDCWD, filename, 0);
832                 putname(filename);
833         }
834         return f;
835 }
836 EXPORT_SYMBOL(open_exec);
837
838 int kernel_read(struct file *file, loff_t offset,
839                 char *addr, unsigned long count)
840 {
841         mm_segment_t old_fs;
842         loff_t pos = offset;
843         int result;
844
845         old_fs = get_fs();
846         set_fs(get_ds());
847         /* The cast to a user pointer is valid due to the set_fs() */
848         result = vfs_read(file, (void __user *)addr, count, &pos);
849         set_fs(old_fs);
850         return result;
851 }
852
853 EXPORT_SYMBOL(kernel_read);
854
855 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
856 {
857         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
858         if (res > 0)
859                 flush_icache_range(addr, addr + len);
860         return res;
861 }
862 EXPORT_SYMBOL(read_code);
863
864 static int exec_mmap(struct mm_struct *mm)
865 {
866         struct task_struct *tsk;
867         struct mm_struct *old_mm, *active_mm;
868
869         /* Notify parent that we're no longer interested in the old VM */
870         tsk = current;
871         old_mm = current->mm;
872         mm_release(tsk, old_mm);
873
874         if (old_mm) {
875                 sync_mm_rss(old_mm);
876                 /*
877                  * Make sure that if there is a core dump in progress
878                  * for the old mm, we get out and die instead of going
879                  * through with the exec.  We must hold mmap_sem around
880                  * checking core_state and changing tsk->mm.
881                  */
882                 down_read(&old_mm->mmap_sem);
883                 if (unlikely(old_mm->core_state)) {
884                         up_read(&old_mm->mmap_sem);
885                         return -EINTR;
886                 }
887         }
888         task_lock(tsk);
889         active_mm = tsk->active_mm;
890         tsk->mm = mm;
891         tsk->active_mm = mm;
892         activate_mm(active_mm, mm);
893         tsk->mm->vmacache_seqnum = 0;
894         vmacache_flush(tsk);
895         task_unlock(tsk);
896         if (old_mm) {
897                 up_read(&old_mm->mmap_sem);
898                 BUG_ON(active_mm != old_mm);
899                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
900                 mm_update_next_owner(old_mm);
901                 mmput(old_mm);
902                 return 0;
903         }
904         mmdrop(active_mm);
905         return 0;
906 }
907
908 /*
909  * This function makes sure the current process has its own signal table,
910  * so that flush_signal_handlers can later reset the handlers without
911  * disturbing other processes.  (Other processes might share the signal
912  * table via the CLONE_SIGHAND option to clone().)
913  */
914 static int de_thread(struct task_struct *tsk)
915 {
916         struct signal_struct *sig = tsk->signal;
917         struct sighand_struct *oldsighand = tsk->sighand;
918         spinlock_t *lock = &oldsighand->siglock;
919
920         if (thread_group_empty(tsk))
921                 goto no_thread_group;
922
923         /*
924          * Kill all other threads in the thread group.
925          */
926         spin_lock_irq(lock);
927         if (signal_group_exit(sig)) {
928                 /*
929                  * Another group action in progress, just
930                  * return so that the signal is processed.
931                  */
932                 spin_unlock_irq(lock);
933                 return -EAGAIN;
934         }
935
936         sig->group_exit_task = tsk;
937         sig->notify_count = zap_other_threads(tsk);
938         if (!thread_group_leader(tsk))
939                 sig->notify_count--;
940
941         while (sig->notify_count) {
942                 __set_current_state(TASK_KILLABLE);
943                 spin_unlock_irq(lock);
944                 schedule();
945                 if (unlikely(__fatal_signal_pending(tsk)))
946                         goto killed;
947                 spin_lock_irq(lock);
948         }
949         spin_unlock_irq(lock);
950
951         /*
952          * At this point all other threads have exited, all we have to
953          * do is to wait for the thread group leader to become inactive,
954          * and to assume its PID:
955          */
956         if (!thread_group_leader(tsk)) {
957                 struct task_struct *leader = tsk->group_leader;
958
959                 for (;;) {
960                         threadgroup_change_begin(tsk);
961                         write_lock_irq(&tasklist_lock);
962                         /*
963                          * Do this under tasklist_lock to ensure that
964                          * exit_notify() can't miss ->group_exit_task
965                          */
966                         sig->notify_count = -1;
967                         if (likely(leader->exit_state))
968                                 break;
969                         __set_current_state(TASK_KILLABLE);
970                         write_unlock_irq(&tasklist_lock);
971                         threadgroup_change_end(tsk);
972                         schedule();
973                         if (unlikely(__fatal_signal_pending(tsk)))
974                                 goto killed;
975                 }
976
977                 /*
978                  * The only record we have of the real-time age of a
979                  * process, regardless of execs it's done, is start_time.
980                  * All the past CPU time is accumulated in signal_struct
981                  * from sister threads now dead.  But in this non-leader
982                  * exec, nothing survives from the original leader thread,
983                  * whose birth marks the true age of this process now.
984                  * When we take on its identity by switching to its PID, we
985                  * also take its birthdate (always earlier than our own).
986                  */
987                 tsk->start_time = leader->start_time;
988                 tsk->real_start_time = leader->real_start_time;
989
990                 BUG_ON(!same_thread_group(leader, tsk));
991                 BUG_ON(has_group_leader_pid(tsk));
992                 /*
993                  * An exec() starts a new thread group with the
994                  * TGID of the previous thread group. Rehash the
995                  * two threads with a switched PID, and release
996                  * the former thread group leader:
997                  */
998
999                 /* Become a process group leader with the old leader's pid.
1000                  * The old leader becomes a thread of the this thread group.
1001                  * Note: The old leader also uses this pid until release_task
1002                  *       is called.  Odd but simple and correct.
1003                  */
1004                 tsk->pid = leader->pid;
1005                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1006                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1007                 transfer_pid(leader, tsk, PIDTYPE_SID);
1008
1009                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1010                 list_replace_init(&leader->sibling, &tsk->sibling);
1011
1012                 tsk->group_leader = tsk;
1013                 leader->group_leader = tsk;
1014
1015                 tsk->exit_signal = SIGCHLD;
1016                 leader->exit_signal = -1;
1017
1018                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1019                 leader->exit_state = EXIT_DEAD;
1020
1021                 /*
1022                  * We are going to release_task()->ptrace_unlink() silently,
1023                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1024                  * the tracer wont't block again waiting for this thread.
1025                  */
1026                 if (unlikely(leader->ptrace))
1027                         __wake_up_parent(leader, leader->parent);
1028                 write_unlock_irq(&tasklist_lock);
1029                 threadgroup_change_end(tsk);
1030
1031                 release_task(leader);
1032         }
1033
1034         sig->group_exit_task = NULL;
1035         sig->notify_count = 0;
1036
1037 no_thread_group:
1038         /* we have changed execution domain */
1039         tsk->exit_signal = SIGCHLD;
1040
1041         exit_itimers(sig);
1042         flush_itimer_signals();
1043
1044         if (atomic_read(&oldsighand->count) != 1) {
1045                 struct sighand_struct *newsighand;
1046                 /*
1047                  * This ->sighand is shared with the CLONE_SIGHAND
1048                  * but not CLONE_THREAD task, switch to the new one.
1049                  */
1050                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1051                 if (!newsighand)
1052                         return -ENOMEM;
1053
1054                 atomic_set(&newsighand->count, 1);
1055                 memcpy(newsighand->action, oldsighand->action,
1056                        sizeof(newsighand->action));
1057
1058                 write_lock_irq(&tasklist_lock);
1059                 spin_lock(&oldsighand->siglock);
1060                 rcu_assign_pointer(tsk->sighand, newsighand);
1061                 spin_unlock(&oldsighand->siglock);
1062                 write_unlock_irq(&tasklist_lock);
1063
1064                 __cleanup_sighand(oldsighand);
1065         }
1066
1067         BUG_ON(!thread_group_leader(tsk));
1068         return 0;
1069
1070 killed:
1071         /* protects against exit_notify() and __exit_signal() */
1072         read_lock(&tasklist_lock);
1073         sig->group_exit_task = NULL;
1074         sig->notify_count = 0;
1075         read_unlock(&tasklist_lock);
1076         return -EAGAIN;
1077 }
1078
1079 char *get_task_comm(char *buf, struct task_struct *tsk)
1080 {
1081         /* buf must be at least sizeof(tsk->comm) in size */
1082         task_lock(tsk);
1083         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1084         task_unlock(tsk);
1085         return buf;
1086 }
1087 EXPORT_SYMBOL_GPL(get_task_comm);
1088
1089 /*
1090  * These functions flushes out all traces of the currently running executable
1091  * so that a new one can be started
1092  */
1093
1094 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1095 {
1096         task_lock(tsk);
1097         trace_task_rename(tsk, buf);
1098         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1099         task_unlock(tsk);
1100         perf_event_comm(tsk, exec);
1101 }
1102
1103 int flush_old_exec(struct linux_binprm * bprm)
1104 {
1105         int retval;
1106
1107         /*
1108          * Make sure we have a private signal table and that
1109          * we are unassociated from the previous thread group.
1110          */
1111         retval = de_thread(current);
1112         if (retval)
1113                 goto out;
1114
1115         /*
1116          * Must be called _before_ exec_mmap() as bprm->mm is
1117          * not visibile until then. This also enables the update
1118          * to be lockless.
1119          */
1120         set_mm_exe_file(bprm->mm, bprm->file);
1121
1122         /*
1123          * Release all of the old mmap stuff
1124          */
1125         acct_arg_size(bprm, 0);
1126         retval = exec_mmap(bprm->mm);
1127         if (retval)
1128                 goto out;
1129
1130         bprm->mm = NULL;                /* We're using it now */
1131
1132         set_fs(USER_DS);
1133         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1134                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1135         flush_thread();
1136         current->personality &= ~bprm->per_clear;
1137
1138         /*
1139          * We have to apply CLOEXEC before we change whether the process is
1140          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1141          * trying to access the should-be-closed file descriptors of a process
1142          * undergoing exec(2).
1143          */
1144         do_close_on_exec(current->files);
1145         return 0;
1146
1147 out:
1148         return retval;
1149 }
1150 EXPORT_SYMBOL(flush_old_exec);
1151
1152 void would_dump(struct linux_binprm *bprm, struct file *file)
1153 {
1154         struct inode *inode = file_inode(file);
1155         if (inode_permission2(file->f_path.mnt, inode, MAY_READ) < 0) {
1156                 struct user_namespace *old, *user_ns;
1157                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1158
1159                 /* Ensure mm->user_ns contains the executable */
1160                 user_ns = old = bprm->mm->user_ns;
1161                 while ((user_ns != &init_user_ns) &&
1162                        !privileged_wrt_inode_uidgid(user_ns, inode))
1163                         user_ns = user_ns->parent;
1164
1165                 if (old != user_ns) {
1166                         bprm->mm->user_ns = get_user_ns(user_ns);
1167                         put_user_ns(old);
1168                 }
1169         }
1170 }
1171 EXPORT_SYMBOL(would_dump);
1172
1173 void setup_new_exec(struct linux_binprm * bprm)
1174 {
1175         arch_pick_mmap_layout(current->mm);
1176
1177         /* This is the point of no return */
1178         current->sas_ss_sp = current->sas_ss_size = 0;
1179
1180         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1181                 set_dumpable(current->mm, SUID_DUMP_USER);
1182         else
1183                 set_dumpable(current->mm, suid_dumpable);
1184
1185         perf_event_exec();
1186         __set_task_comm(current, kbasename(bprm->filename), true);
1187
1188         /* Set the new mm task size. We have to do that late because it may
1189          * depend on TIF_32BIT which is only updated in flush_thread() on
1190          * some architectures like powerpc
1191          */
1192         current->mm->task_size = TASK_SIZE;
1193
1194         /* install the new credentials */
1195         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1196             !gid_eq(bprm->cred->gid, current_egid())) {
1197                 current->pdeath_signal = 0;
1198         } else {
1199                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1200                         set_dumpable(current->mm, suid_dumpable);
1201         }
1202
1203         /* An exec changes our domain. We are no longer part of the thread
1204            group */
1205         current->self_exec_id++;
1206         flush_signal_handlers(current, 0);
1207 }
1208 EXPORT_SYMBOL(setup_new_exec);
1209
1210 /*
1211  * Prepare credentials and lock ->cred_guard_mutex.
1212  * install_exec_creds() commits the new creds and drops the lock.
1213  * Or, if exec fails before, free_bprm() should release ->cred and
1214  * and unlock.
1215  */
1216 int prepare_bprm_creds(struct linux_binprm *bprm)
1217 {
1218         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1219                 return -ERESTARTNOINTR;
1220
1221         bprm->cred = prepare_exec_creds();
1222         if (likely(bprm->cred))
1223                 return 0;
1224
1225         mutex_unlock(&current->signal->cred_guard_mutex);
1226         return -ENOMEM;
1227 }
1228
1229 static void free_bprm(struct linux_binprm *bprm)
1230 {
1231         free_arg_pages(bprm);
1232         if (bprm->cred) {
1233                 mutex_unlock(&current->signal->cred_guard_mutex);
1234                 abort_creds(bprm->cred);
1235         }
1236         if (bprm->file) {
1237                 allow_write_access(bprm->file);
1238                 fput(bprm->file);
1239         }
1240         /* If a binfmt changed the interp, free it. */
1241         if (bprm->interp != bprm->filename)
1242                 kfree(bprm->interp);
1243         kfree(bprm);
1244 }
1245
1246 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1247 {
1248         /* If a binfmt changed the interp, free it first. */
1249         if (bprm->interp != bprm->filename)
1250                 kfree(bprm->interp);
1251         bprm->interp = kstrdup(interp, GFP_KERNEL);
1252         if (!bprm->interp)
1253                 return -ENOMEM;
1254         return 0;
1255 }
1256 EXPORT_SYMBOL(bprm_change_interp);
1257
1258 /*
1259  * install the new credentials for this executable
1260  */
1261 void install_exec_creds(struct linux_binprm *bprm)
1262 {
1263         security_bprm_committing_creds(bprm);
1264
1265         commit_creds(bprm->cred);
1266         bprm->cred = NULL;
1267
1268         /*
1269          * Disable monitoring for regular users
1270          * when executing setuid binaries. Must
1271          * wait until new credentials are committed
1272          * by commit_creds() above
1273          */
1274         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1275                 perf_event_exit_task(current);
1276         /*
1277          * cred_guard_mutex must be held at least to this point to prevent
1278          * ptrace_attach() from altering our determination of the task's
1279          * credentials; any time after this it may be unlocked.
1280          */
1281         security_bprm_committed_creds(bprm);
1282         mutex_unlock(&current->signal->cred_guard_mutex);
1283 }
1284 EXPORT_SYMBOL(install_exec_creds);
1285
1286 /*
1287  * determine how safe it is to execute the proposed program
1288  * - the caller must hold ->cred_guard_mutex to protect against
1289  *   PTRACE_ATTACH or seccomp thread-sync
1290  */
1291 static void check_unsafe_exec(struct linux_binprm *bprm)
1292 {
1293         struct task_struct *p = current, *t;
1294         unsigned n_fs;
1295
1296         if (p->ptrace) {
1297                 if (ptracer_capable(p, current_user_ns()))
1298                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1299                 else
1300                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1301         }
1302
1303         /*
1304          * This isn't strictly necessary, but it makes it harder for LSMs to
1305          * mess up.
1306          */
1307         if (task_no_new_privs(current))
1308                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1309
1310         t = p;
1311         n_fs = 1;
1312         spin_lock(&p->fs->lock);
1313         rcu_read_lock();
1314         while_each_thread(p, t) {
1315                 if (t->fs == p->fs)
1316                         n_fs++;
1317         }
1318         rcu_read_unlock();
1319
1320         if (p->fs->users > n_fs)
1321                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1322         else
1323                 p->fs->in_exec = 1;
1324         spin_unlock(&p->fs->lock);
1325 }
1326
1327 static void bprm_fill_uid(struct linux_binprm *bprm)
1328 {
1329         struct inode *inode;
1330         unsigned int mode;
1331         kuid_t uid;
1332         kgid_t gid;
1333
1334         /* clear any previous set[ug]id data from a previous binary */
1335         bprm->cred->euid = current_euid();
1336         bprm->cred->egid = current_egid();
1337
1338         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1339                 return;
1340
1341         if (task_no_new_privs(current))
1342                 return;
1343
1344         inode = file_inode(bprm->file);
1345         mode = READ_ONCE(inode->i_mode);
1346         if (!(mode & (S_ISUID|S_ISGID)))
1347                 return;
1348
1349         /* Be careful if suid/sgid is set */
1350         mutex_lock(&inode->i_mutex);
1351
1352         /* reload atomically mode/uid/gid now that lock held */
1353         mode = inode->i_mode;
1354         uid = inode->i_uid;
1355         gid = inode->i_gid;
1356         mutex_unlock(&inode->i_mutex);
1357
1358         /* We ignore suid/sgid if there are no mappings for them in the ns */
1359         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1360                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1361                 return;
1362
1363         if (mode & S_ISUID) {
1364                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1365                 bprm->cred->euid = uid;
1366         }
1367
1368         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1369                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1370                 bprm->cred->egid = gid;
1371         }
1372 }
1373
1374 /*
1375  * Fill the binprm structure from the inode.
1376  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1377  *
1378  * This may be called multiple times for binary chains (scripts for example).
1379  */
1380 int prepare_binprm(struct linux_binprm *bprm)
1381 {
1382         int retval;
1383
1384         bprm_fill_uid(bprm);
1385
1386         /* fill in binprm security blob */
1387         retval = security_bprm_set_creds(bprm);
1388         if (retval)
1389                 return retval;
1390         bprm->cred_prepared = 1;
1391
1392         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1393         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1394 }
1395
1396 EXPORT_SYMBOL(prepare_binprm);
1397
1398 /*
1399  * Arguments are '\0' separated strings found at the location bprm->p
1400  * points to; chop off the first by relocating brpm->p to right after
1401  * the first '\0' encountered.
1402  */
1403 int remove_arg_zero(struct linux_binprm *bprm)
1404 {
1405         int ret = 0;
1406         unsigned long offset;
1407         char *kaddr;
1408         struct page *page;
1409
1410         if (!bprm->argc)
1411                 return 0;
1412
1413         do {
1414                 offset = bprm->p & ~PAGE_MASK;
1415                 page = get_arg_page(bprm, bprm->p, 0);
1416                 if (!page) {
1417                         ret = -EFAULT;
1418                         goto out;
1419                 }
1420                 kaddr = kmap_atomic(page);
1421
1422                 for (; offset < PAGE_SIZE && kaddr[offset];
1423                                 offset++, bprm->p++)
1424                         ;
1425
1426                 kunmap_atomic(kaddr);
1427                 put_arg_page(page);
1428
1429                 if (offset == PAGE_SIZE)
1430                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1431         } while (offset == PAGE_SIZE);
1432
1433         bprm->p++;
1434         bprm->argc--;
1435         ret = 0;
1436
1437 out:
1438         return ret;
1439 }
1440 EXPORT_SYMBOL(remove_arg_zero);
1441
1442 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1443 /*
1444  * cycle the list of binary formats handler, until one recognizes the image
1445  */
1446 int search_binary_handler(struct linux_binprm *bprm)
1447 {
1448         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1449         struct linux_binfmt *fmt;
1450         int retval;
1451
1452         /* This allows 4 levels of binfmt rewrites before failing hard. */
1453         if (bprm->recursion_depth > 5)
1454                 return -ELOOP;
1455
1456         retval = security_bprm_check(bprm);
1457         if (retval)
1458                 return retval;
1459
1460         retval = -ENOENT;
1461  retry:
1462         read_lock(&binfmt_lock);
1463         list_for_each_entry(fmt, &formats, lh) {
1464                 if (!try_module_get(fmt->module))
1465                         continue;
1466                 read_unlock(&binfmt_lock);
1467                 bprm->recursion_depth++;
1468                 retval = fmt->load_binary(bprm);
1469                 read_lock(&binfmt_lock);
1470                 put_binfmt(fmt);
1471                 bprm->recursion_depth--;
1472                 if (retval < 0 && !bprm->mm) {
1473                         /* we got to flush_old_exec() and failed after it */
1474                         read_unlock(&binfmt_lock);
1475                         force_sigsegv(SIGSEGV, current);
1476                         return retval;
1477                 }
1478                 if (retval != -ENOEXEC || !bprm->file) {
1479                         read_unlock(&binfmt_lock);
1480                         return retval;
1481                 }
1482         }
1483         read_unlock(&binfmt_lock);
1484
1485         if (need_retry) {
1486                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1487                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1488                         return retval;
1489                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1490                         return retval;
1491                 need_retry = false;
1492                 goto retry;
1493         }
1494
1495         return retval;
1496 }
1497 EXPORT_SYMBOL(search_binary_handler);
1498
1499 static int exec_binprm(struct linux_binprm *bprm)
1500 {
1501         pid_t old_pid, old_vpid;
1502         int ret;
1503
1504         /* Need to fetch pid before load_binary changes it */
1505         old_pid = current->pid;
1506         rcu_read_lock();
1507         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1508         rcu_read_unlock();
1509
1510         ret = search_binary_handler(bprm);
1511         if (ret >= 0) {
1512                 audit_bprm(bprm);
1513                 trace_sched_process_exec(current, old_pid, bprm);
1514                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1515                 proc_exec_connector(current);
1516         }
1517
1518         return ret;
1519 }
1520
1521 /*
1522  * sys_execve() executes a new program.
1523  */
1524 static int do_execveat_common(int fd, struct filename *filename,
1525                               struct user_arg_ptr argv,
1526                               struct user_arg_ptr envp,
1527                               int flags)
1528 {
1529         char *pathbuf = NULL;
1530         struct linux_binprm *bprm;
1531         struct file *file;
1532         struct files_struct *displaced;
1533         int retval;
1534
1535         if (IS_ERR(filename))
1536                 return PTR_ERR(filename);
1537
1538         /*
1539          * We move the actual failure in case of RLIMIT_NPROC excess from
1540          * set*uid() to execve() because too many poorly written programs
1541          * don't check setuid() return code.  Here we additionally recheck
1542          * whether NPROC limit is still exceeded.
1543          */
1544         if ((current->flags & PF_NPROC_EXCEEDED) &&
1545             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1546                 retval = -EAGAIN;
1547                 goto out_ret;
1548         }
1549
1550         /* We're below the limit (still or again), so we don't want to make
1551          * further execve() calls fail. */
1552         current->flags &= ~PF_NPROC_EXCEEDED;
1553
1554         retval = unshare_files(&displaced);
1555         if (retval)
1556                 goto out_ret;
1557
1558         retval = -ENOMEM;
1559         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1560         if (!bprm)
1561                 goto out_files;
1562
1563         retval = prepare_bprm_creds(bprm);
1564         if (retval)
1565                 goto out_free;
1566
1567         check_unsafe_exec(bprm);
1568         current->in_execve = 1;
1569
1570         file = do_open_execat(fd, filename, flags);
1571         retval = PTR_ERR(file);
1572         if (IS_ERR(file))
1573                 goto out_unmark;
1574
1575         sched_exec();
1576
1577         bprm->file = file;
1578         if (fd == AT_FDCWD || filename->name[0] == '/') {
1579                 bprm->filename = filename->name;
1580         } else {
1581                 if (filename->name[0] == '\0')
1582                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1583                 else
1584                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1585                                             fd, filename->name);
1586                 if (!pathbuf) {
1587                         retval = -ENOMEM;
1588                         goto out_unmark;
1589                 }
1590                 /*
1591                  * Record that a name derived from an O_CLOEXEC fd will be
1592                  * inaccessible after exec. Relies on having exclusive access to
1593                  * current->files (due to unshare_files above).
1594                  */
1595                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1596                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1597                 bprm->filename = pathbuf;
1598         }
1599         bprm->interp = bprm->filename;
1600
1601         retval = bprm_mm_init(bprm);
1602         if (retval)
1603                 goto out_unmark;
1604
1605         bprm->argc = count(argv, MAX_ARG_STRINGS);
1606         if ((retval = bprm->argc) < 0)
1607                 goto out;
1608
1609         bprm->envc = count(envp, MAX_ARG_STRINGS);
1610         if ((retval = bprm->envc) < 0)
1611                 goto out;
1612
1613         retval = prepare_binprm(bprm);
1614         if (retval < 0)
1615                 goto out;
1616
1617         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1618         if (retval < 0)
1619                 goto out;
1620
1621         bprm->exec = bprm->p;
1622         retval = copy_strings(bprm->envc, envp, bprm);
1623         if (retval < 0)
1624                 goto out;
1625
1626         retval = copy_strings(bprm->argc, argv, bprm);
1627         if (retval < 0)
1628                 goto out;
1629
1630         would_dump(bprm, bprm->file);
1631
1632         retval = exec_binprm(bprm);
1633         if (retval < 0)
1634                 goto out;
1635
1636         /* execve succeeded */
1637         current->fs->in_exec = 0;
1638         current->in_execve = 0;
1639         acct_update_integrals(current);
1640         task_numa_free(current);
1641         free_bprm(bprm);
1642         kfree(pathbuf);
1643         putname(filename);
1644         if (displaced)
1645                 put_files_struct(displaced);
1646         return retval;
1647
1648 out:
1649         if (bprm->mm) {
1650                 acct_arg_size(bprm, 0);
1651                 mmput(bprm->mm);
1652         }
1653
1654 out_unmark:
1655         current->fs->in_exec = 0;
1656         current->in_execve = 0;
1657
1658 out_free:
1659         free_bprm(bprm);
1660         kfree(pathbuf);
1661
1662 out_files:
1663         if (displaced)
1664                 reset_files_struct(displaced);
1665 out_ret:
1666         putname(filename);
1667         return retval;
1668 }
1669
1670 int do_execve(struct filename *filename,
1671         const char __user *const __user *__argv,
1672         const char __user *const __user *__envp)
1673 {
1674         struct user_arg_ptr argv = { .ptr.native = __argv };
1675         struct user_arg_ptr envp = { .ptr.native = __envp };
1676         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1677 }
1678
1679 int do_execveat(int fd, struct filename *filename,
1680                 const char __user *const __user *__argv,
1681                 const char __user *const __user *__envp,
1682                 int flags)
1683 {
1684         struct user_arg_ptr argv = { .ptr.native = __argv };
1685         struct user_arg_ptr envp = { .ptr.native = __envp };
1686
1687         return do_execveat_common(fd, filename, argv, envp, flags);
1688 }
1689
1690 #ifdef CONFIG_COMPAT
1691 static int compat_do_execve(struct filename *filename,
1692         const compat_uptr_t __user *__argv,
1693         const compat_uptr_t __user *__envp)
1694 {
1695         struct user_arg_ptr argv = {
1696                 .is_compat = true,
1697                 .ptr.compat = __argv,
1698         };
1699         struct user_arg_ptr envp = {
1700                 .is_compat = true,
1701                 .ptr.compat = __envp,
1702         };
1703         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1704 }
1705
1706 static int compat_do_execveat(int fd, struct filename *filename,
1707                               const compat_uptr_t __user *__argv,
1708                               const compat_uptr_t __user *__envp,
1709                               int flags)
1710 {
1711         struct user_arg_ptr argv = {
1712                 .is_compat = true,
1713                 .ptr.compat = __argv,
1714         };
1715         struct user_arg_ptr envp = {
1716                 .is_compat = true,
1717                 .ptr.compat = __envp,
1718         };
1719         return do_execveat_common(fd, filename, argv, envp, flags);
1720 }
1721 #endif
1722
1723 void set_binfmt(struct linux_binfmt *new)
1724 {
1725         struct mm_struct *mm = current->mm;
1726
1727         if (mm->binfmt)
1728                 module_put(mm->binfmt->module);
1729
1730         mm->binfmt = new;
1731         if (new)
1732                 __module_get(new->module);
1733 }
1734 EXPORT_SYMBOL(set_binfmt);
1735
1736 /*
1737  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1738  */
1739 void set_dumpable(struct mm_struct *mm, int value)
1740 {
1741         unsigned long old, new;
1742
1743         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1744                 return;
1745
1746         do {
1747                 old = ACCESS_ONCE(mm->flags);
1748                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1749         } while (cmpxchg(&mm->flags, old, new) != old);
1750 }
1751
1752 SYSCALL_DEFINE3(execve,
1753                 const char __user *, filename,
1754                 const char __user *const __user *, argv,
1755                 const char __user *const __user *, envp)
1756 {
1757         return do_execve(getname(filename), argv, envp);
1758 }
1759
1760 SYSCALL_DEFINE5(execveat,
1761                 int, fd, const char __user *, filename,
1762                 const char __user *const __user *, argv,
1763                 const char __user *const __user *, envp,
1764                 int, flags)
1765 {
1766         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1767
1768         return do_execveat(fd,
1769                            getname_flags(filename, lookup_flags, NULL),
1770                            argv, envp, flags);
1771 }
1772
1773 #ifdef CONFIG_COMPAT
1774 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1775         const compat_uptr_t __user *, argv,
1776         const compat_uptr_t __user *, envp)
1777 {
1778         return compat_do_execve(getname(filename), argv, envp);
1779 }
1780
1781 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1782                        const char __user *, filename,
1783                        const compat_uptr_t __user *, argv,
1784                        const compat_uptr_t __user *, envp,
1785                        int,  flags)
1786 {
1787         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1788
1789         return compat_do_execveat(fd,
1790                                   getname_flags(filename, lookup_flags, NULL),
1791                                   argv, envp, flags);
1792 }
1793 #endif