fs/exec.c: restrict initial stack space expansion to rlimit
[firefly-linux-kernel-4.4.55.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/ima.h>
50 #include <linux/syscalls.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 #include <linux/tracehook.h>
55 #include <linux/kmod.h>
56 #include <linux/fsnotify.h>
57 #include <linux/fs_struct.h>
58 #include <linux/pipe_fs_i.h>
59
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63 #include "internal.h"
64
65 int core_uses_pid;
66 char core_pattern[CORENAME_MAX_SIZE] = "core";
67 unsigned int core_pipe_limit;
68 int suid_dumpable = 0;
69
70 /* The maximal length of core_pattern is also specified in sysctl.c */
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 int __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77         if (!fmt)
78                 return -EINVAL;
79         write_lock(&binfmt_lock);
80         insert ? list_add(&fmt->lh, &formats) :
81                  list_add_tail(&fmt->lh, &formats);
82         write_unlock(&binfmt_lock);
83         return 0;       
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90         write_lock(&binfmt_lock);
91         list_del(&fmt->lh);
92         write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99         module_put(fmt->module);
100 }
101
102 /*
103  * Note that a shared library must be both readable and executable due to
104  * security reasons.
105  *
106  * Also note that we take the address to load from from the file itself.
107  */
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 {
110         struct file *file;
111         char *tmp = getname(library);
112         int error = PTR_ERR(tmp);
113
114         if (IS_ERR(tmp))
115                 goto out;
116
117         file = do_filp_open(AT_FDCWD, tmp,
118                                 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
119                                 MAY_READ | MAY_EXEC | MAY_OPEN);
120         putname(tmp);
121         error = PTR_ERR(file);
122         if (IS_ERR(file))
123                 goto out;
124
125         error = -EINVAL;
126         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
127                 goto exit;
128
129         error = -EACCES;
130         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
131                 goto exit;
132
133         fsnotify_open(file->f_path.dentry);
134
135         error = -ENOEXEC;
136         if(file->f_op) {
137                 struct linux_binfmt * fmt;
138
139                 read_lock(&binfmt_lock);
140                 list_for_each_entry(fmt, &formats, lh) {
141                         if (!fmt->load_shlib)
142                                 continue;
143                         if (!try_module_get(fmt->module))
144                                 continue;
145                         read_unlock(&binfmt_lock);
146                         error = fmt->load_shlib(file);
147                         read_lock(&binfmt_lock);
148                         put_binfmt(fmt);
149                         if (error != -ENOEXEC)
150                                 break;
151                 }
152                 read_unlock(&binfmt_lock);
153         }
154 exit:
155         fput(file);
156 out:
157         return error;
158 }
159
160 #ifdef CONFIG_MMU
161
162 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
163                 int write)
164 {
165         struct page *page;
166         int ret;
167
168 #ifdef CONFIG_STACK_GROWSUP
169         if (write) {
170                 ret = expand_stack_downwards(bprm->vma, pos);
171                 if (ret < 0)
172                         return NULL;
173         }
174 #endif
175         ret = get_user_pages(current, bprm->mm, pos,
176                         1, write, 1, &page, NULL);
177         if (ret <= 0)
178                 return NULL;
179
180         if (write) {
181                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
182                 struct rlimit *rlim;
183
184                 /*
185                  * We've historically supported up to 32 pages (ARG_MAX)
186                  * of argument strings even with small stacks
187                  */
188                 if (size <= ARG_MAX)
189                         return page;
190
191                 /*
192                  * Limit to 1/4-th the stack size for the argv+env strings.
193                  * This ensures that:
194                  *  - the remaining binfmt code will not run out of stack space,
195                  *  - the program will have a reasonable amount of stack left
196                  *    to work from.
197                  */
198                 rlim = current->signal->rlim;
199                 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
200                         put_page(page);
201                         return NULL;
202                 }
203         }
204
205         return page;
206 }
207
208 static void put_arg_page(struct page *page)
209 {
210         put_page(page);
211 }
212
213 static void free_arg_page(struct linux_binprm *bprm, int i)
214 {
215 }
216
217 static void free_arg_pages(struct linux_binprm *bprm)
218 {
219 }
220
221 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
222                 struct page *page)
223 {
224         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
225 }
226
227 static int __bprm_mm_init(struct linux_binprm *bprm)
228 {
229         int err;
230         struct vm_area_struct *vma = NULL;
231         struct mm_struct *mm = bprm->mm;
232
233         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
234         if (!vma)
235                 return -ENOMEM;
236
237         down_write(&mm->mmap_sem);
238         vma->vm_mm = mm;
239
240         /*
241          * Place the stack at the largest stack address the architecture
242          * supports. Later, we'll move this to an appropriate place. We don't
243          * use STACK_TOP because that can depend on attributes which aren't
244          * configured yet.
245          */
246         vma->vm_end = STACK_TOP_MAX;
247         vma->vm_start = vma->vm_end - PAGE_SIZE;
248         vma->vm_flags = VM_STACK_FLAGS;
249         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
250         err = insert_vm_struct(mm, vma);
251         if (err)
252                 goto err;
253
254         mm->stack_vm = mm->total_vm = 1;
255         up_write(&mm->mmap_sem);
256         bprm->p = vma->vm_end - sizeof(void *);
257         return 0;
258 err:
259         up_write(&mm->mmap_sem);
260         bprm->vma = NULL;
261         kmem_cache_free(vm_area_cachep, vma);
262         return err;
263 }
264
265 static bool valid_arg_len(struct linux_binprm *bprm, long len)
266 {
267         return len <= MAX_ARG_STRLEN;
268 }
269
270 #else
271
272 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
273                 int write)
274 {
275         struct page *page;
276
277         page = bprm->page[pos / PAGE_SIZE];
278         if (!page && write) {
279                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
280                 if (!page)
281                         return NULL;
282                 bprm->page[pos / PAGE_SIZE] = page;
283         }
284
285         return page;
286 }
287
288 static void put_arg_page(struct page *page)
289 {
290 }
291
292 static void free_arg_page(struct linux_binprm *bprm, int i)
293 {
294         if (bprm->page[i]) {
295                 __free_page(bprm->page[i]);
296                 bprm->page[i] = NULL;
297         }
298 }
299
300 static void free_arg_pages(struct linux_binprm *bprm)
301 {
302         int i;
303
304         for (i = 0; i < MAX_ARG_PAGES; i++)
305                 free_arg_page(bprm, i);
306 }
307
308 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
309                 struct page *page)
310 {
311 }
312
313 static int __bprm_mm_init(struct linux_binprm *bprm)
314 {
315         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
316         return 0;
317 }
318
319 static bool valid_arg_len(struct linux_binprm *bprm, long len)
320 {
321         return len <= bprm->p;
322 }
323
324 #endif /* CONFIG_MMU */
325
326 /*
327  * Create a new mm_struct and populate it with a temporary stack
328  * vm_area_struct.  We don't have enough context at this point to set the stack
329  * flags, permissions, and offset, so we use temporary values.  We'll update
330  * them later in setup_arg_pages().
331  */
332 int bprm_mm_init(struct linux_binprm *bprm)
333 {
334         int err;
335         struct mm_struct *mm = NULL;
336
337         bprm->mm = mm = mm_alloc();
338         err = -ENOMEM;
339         if (!mm)
340                 goto err;
341
342         err = init_new_context(current, mm);
343         if (err)
344                 goto err;
345
346         err = __bprm_mm_init(bprm);
347         if (err)
348                 goto err;
349
350         return 0;
351
352 err:
353         if (mm) {
354                 bprm->mm = NULL;
355                 mmdrop(mm);
356         }
357
358         return err;
359 }
360
361 /*
362  * count() counts the number of strings in array ARGV.
363  */
364 static int count(char __user * __user * argv, int max)
365 {
366         int i = 0;
367
368         if (argv != NULL) {
369                 for (;;) {
370                         char __user * p;
371
372                         if (get_user(p, argv))
373                                 return -EFAULT;
374                         if (!p)
375                                 break;
376                         argv++;
377                         if (i++ >= max)
378                                 return -E2BIG;
379                         cond_resched();
380                 }
381         }
382         return i;
383 }
384
385 /*
386  * 'copy_strings()' copies argument/environment strings from the old
387  * processes's memory to the new process's stack.  The call to get_user_pages()
388  * ensures the destination page is created and not swapped out.
389  */
390 static int copy_strings(int argc, char __user * __user * argv,
391                         struct linux_binprm *bprm)
392 {
393         struct page *kmapped_page = NULL;
394         char *kaddr = NULL;
395         unsigned long kpos = 0;
396         int ret;
397
398         while (argc-- > 0) {
399                 char __user *str;
400                 int len;
401                 unsigned long pos;
402
403                 if (get_user(str, argv+argc) ||
404                                 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
405                         ret = -EFAULT;
406                         goto out;
407                 }
408
409                 if (!valid_arg_len(bprm, len)) {
410                         ret = -E2BIG;
411                         goto out;
412                 }
413
414                 /* We're going to work our way backwords. */
415                 pos = bprm->p;
416                 str += len;
417                 bprm->p -= len;
418
419                 while (len > 0) {
420                         int offset, bytes_to_copy;
421
422                         offset = pos % PAGE_SIZE;
423                         if (offset == 0)
424                                 offset = PAGE_SIZE;
425
426                         bytes_to_copy = offset;
427                         if (bytes_to_copy > len)
428                                 bytes_to_copy = len;
429
430                         offset -= bytes_to_copy;
431                         pos -= bytes_to_copy;
432                         str -= bytes_to_copy;
433                         len -= bytes_to_copy;
434
435                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
436                                 struct page *page;
437
438                                 page = get_arg_page(bprm, pos, 1);
439                                 if (!page) {
440                                         ret = -E2BIG;
441                                         goto out;
442                                 }
443
444                                 if (kmapped_page) {
445                                         flush_kernel_dcache_page(kmapped_page);
446                                         kunmap(kmapped_page);
447                                         put_arg_page(kmapped_page);
448                                 }
449                                 kmapped_page = page;
450                                 kaddr = kmap(kmapped_page);
451                                 kpos = pos & PAGE_MASK;
452                                 flush_arg_page(bprm, kpos, kmapped_page);
453                         }
454                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
455                                 ret = -EFAULT;
456                                 goto out;
457                         }
458                 }
459         }
460         ret = 0;
461 out:
462         if (kmapped_page) {
463                 flush_kernel_dcache_page(kmapped_page);
464                 kunmap(kmapped_page);
465                 put_arg_page(kmapped_page);
466         }
467         return ret;
468 }
469
470 /*
471  * Like copy_strings, but get argv and its values from kernel memory.
472  */
473 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
474 {
475         int r;
476         mm_segment_t oldfs = get_fs();
477         set_fs(KERNEL_DS);
478         r = copy_strings(argc, (char __user * __user *)argv, bprm);
479         set_fs(oldfs);
480         return r;
481 }
482 EXPORT_SYMBOL(copy_strings_kernel);
483
484 #ifdef CONFIG_MMU
485
486 /*
487  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
488  * the binfmt code determines where the new stack should reside, we shift it to
489  * its final location.  The process proceeds as follows:
490  *
491  * 1) Use shift to calculate the new vma endpoints.
492  * 2) Extend vma to cover both the old and new ranges.  This ensures the
493  *    arguments passed to subsequent functions are consistent.
494  * 3) Move vma's page tables to the new range.
495  * 4) Free up any cleared pgd range.
496  * 5) Shrink the vma to cover only the new range.
497  */
498 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
499 {
500         struct mm_struct *mm = vma->vm_mm;
501         unsigned long old_start = vma->vm_start;
502         unsigned long old_end = vma->vm_end;
503         unsigned long length = old_end - old_start;
504         unsigned long new_start = old_start - shift;
505         unsigned long new_end = old_end - shift;
506         struct mmu_gather *tlb;
507
508         BUG_ON(new_start > new_end);
509
510         /*
511          * ensure there are no vmas between where we want to go
512          * and where we are
513          */
514         if (vma != find_vma(mm, new_start))
515                 return -EFAULT;
516
517         /*
518          * cover the whole range: [new_start, old_end)
519          */
520         vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
521
522         /*
523          * move the page tables downwards, on failure we rely on
524          * process cleanup to remove whatever mess we made.
525          */
526         if (length != move_page_tables(vma, old_start,
527                                        vma, new_start, length))
528                 return -ENOMEM;
529
530         lru_add_drain();
531         tlb = tlb_gather_mmu(mm, 0);
532         if (new_end > old_start) {
533                 /*
534                  * when the old and new regions overlap clear from new_end.
535                  */
536                 free_pgd_range(tlb, new_end, old_end, new_end,
537                         vma->vm_next ? vma->vm_next->vm_start : 0);
538         } else {
539                 /*
540                  * otherwise, clean from old_start; this is done to not touch
541                  * the address space in [new_end, old_start) some architectures
542                  * have constraints on va-space that make this illegal (IA64) -
543                  * for the others its just a little faster.
544                  */
545                 free_pgd_range(tlb, old_start, old_end, new_end,
546                         vma->vm_next ? vma->vm_next->vm_start : 0);
547         }
548         tlb_finish_mmu(tlb, new_end, old_end);
549
550         /*
551          * shrink the vma to just the new range.
552          */
553         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
554
555         return 0;
556 }
557
558 #define EXTRA_STACK_VM_PAGES    20      /* random */
559
560 /*
561  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
562  * the stack is optionally relocated, and some extra space is added.
563  */
564 int setup_arg_pages(struct linux_binprm *bprm,
565                     unsigned long stack_top,
566                     int executable_stack)
567 {
568         unsigned long ret;
569         unsigned long stack_shift;
570         struct mm_struct *mm = current->mm;
571         struct vm_area_struct *vma = bprm->vma;
572         struct vm_area_struct *prev = NULL;
573         unsigned long vm_flags;
574         unsigned long stack_base;
575         unsigned long stack_size;
576         unsigned long stack_expand;
577         unsigned long rlim_stack;
578
579 #ifdef CONFIG_STACK_GROWSUP
580         /* Limit stack size to 1GB */
581         stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
582         if (stack_base > (1 << 30))
583                 stack_base = 1 << 30;
584
585         /* Make sure we didn't let the argument array grow too large. */
586         if (vma->vm_end - vma->vm_start > stack_base)
587                 return -ENOMEM;
588
589         stack_base = PAGE_ALIGN(stack_top - stack_base);
590
591         stack_shift = vma->vm_start - stack_base;
592         mm->arg_start = bprm->p - stack_shift;
593         bprm->p = vma->vm_end - stack_shift;
594 #else
595         stack_top = arch_align_stack(stack_top);
596         stack_top = PAGE_ALIGN(stack_top);
597         stack_shift = vma->vm_end - stack_top;
598
599         bprm->p -= stack_shift;
600         mm->arg_start = bprm->p;
601 #endif
602
603         if (bprm->loader)
604                 bprm->loader -= stack_shift;
605         bprm->exec -= stack_shift;
606
607         down_write(&mm->mmap_sem);
608         vm_flags = VM_STACK_FLAGS;
609
610         /*
611          * Adjust stack execute permissions; explicitly enable for
612          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
613          * (arch default) otherwise.
614          */
615         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
616                 vm_flags |= VM_EXEC;
617         else if (executable_stack == EXSTACK_DISABLE_X)
618                 vm_flags &= ~VM_EXEC;
619         vm_flags |= mm->def_flags;
620
621         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
622                         vm_flags);
623         if (ret)
624                 goto out_unlock;
625         BUG_ON(prev != vma);
626
627         /* Move stack pages down in memory. */
628         if (stack_shift) {
629                 ret = shift_arg_pages(vma, stack_shift);
630                 if (ret)
631                         goto out_unlock;
632         }
633
634         stack_expand = EXTRA_STACK_VM_PAGES * PAGE_SIZE;
635         stack_size = vma->vm_end - vma->vm_start;
636         /*
637          * Align this down to a page boundary as expand_stack
638          * will align it up.
639          */
640         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
641         rlim_stack = min(rlim_stack, stack_size);
642 #ifdef CONFIG_STACK_GROWSUP
643         if (stack_size + stack_expand > rlim_stack)
644                 stack_base = vma->vm_start + rlim_stack;
645         else
646                 stack_base = vma->vm_end + stack_expand;
647 #else
648         if (stack_size + stack_expand > rlim_stack)
649                 stack_base = vma->vm_end - rlim_stack;
650         else
651                 stack_base = vma->vm_start - stack_expand;
652 #endif
653         ret = expand_stack(vma, stack_base);
654         if (ret)
655                 ret = -EFAULT;
656
657 out_unlock:
658         up_write(&mm->mmap_sem);
659         return ret;
660 }
661 EXPORT_SYMBOL(setup_arg_pages);
662
663 #endif /* CONFIG_MMU */
664
665 struct file *open_exec(const char *name)
666 {
667         struct file *file;
668         int err;
669
670         file = do_filp_open(AT_FDCWD, name,
671                                 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
672                                 MAY_EXEC | MAY_OPEN);
673         if (IS_ERR(file))
674                 goto out;
675
676         err = -EACCES;
677         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
678                 goto exit;
679
680         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
681                 goto exit;
682
683         fsnotify_open(file->f_path.dentry);
684
685         err = deny_write_access(file);
686         if (err)
687                 goto exit;
688
689 out:
690         return file;
691
692 exit:
693         fput(file);
694         return ERR_PTR(err);
695 }
696 EXPORT_SYMBOL(open_exec);
697
698 int kernel_read(struct file *file, loff_t offset,
699                 char *addr, unsigned long count)
700 {
701         mm_segment_t old_fs;
702         loff_t pos = offset;
703         int result;
704
705         old_fs = get_fs();
706         set_fs(get_ds());
707         /* The cast to a user pointer is valid due to the set_fs() */
708         result = vfs_read(file, (void __user *)addr, count, &pos);
709         set_fs(old_fs);
710         return result;
711 }
712
713 EXPORT_SYMBOL(kernel_read);
714
715 static int exec_mmap(struct mm_struct *mm)
716 {
717         struct task_struct *tsk;
718         struct mm_struct * old_mm, *active_mm;
719
720         /* Notify parent that we're no longer interested in the old VM */
721         tsk = current;
722         old_mm = current->mm;
723         mm_release(tsk, old_mm);
724
725         if (old_mm) {
726                 /*
727                  * Make sure that if there is a core dump in progress
728                  * for the old mm, we get out and die instead of going
729                  * through with the exec.  We must hold mmap_sem around
730                  * checking core_state and changing tsk->mm.
731                  */
732                 down_read(&old_mm->mmap_sem);
733                 if (unlikely(old_mm->core_state)) {
734                         up_read(&old_mm->mmap_sem);
735                         return -EINTR;
736                 }
737         }
738         task_lock(tsk);
739         active_mm = tsk->active_mm;
740         tsk->mm = mm;
741         tsk->active_mm = mm;
742         activate_mm(active_mm, mm);
743         task_unlock(tsk);
744         arch_pick_mmap_layout(mm);
745         if (old_mm) {
746                 up_read(&old_mm->mmap_sem);
747                 BUG_ON(active_mm != old_mm);
748                 mm_update_next_owner(old_mm);
749                 mmput(old_mm);
750                 return 0;
751         }
752         mmdrop(active_mm);
753         return 0;
754 }
755
756 /*
757  * This function makes sure the current process has its own signal table,
758  * so that flush_signal_handlers can later reset the handlers without
759  * disturbing other processes.  (Other processes might share the signal
760  * table via the CLONE_SIGHAND option to clone().)
761  */
762 static int de_thread(struct task_struct *tsk)
763 {
764         struct signal_struct *sig = tsk->signal;
765         struct sighand_struct *oldsighand = tsk->sighand;
766         spinlock_t *lock = &oldsighand->siglock;
767         int count;
768
769         if (thread_group_empty(tsk))
770                 goto no_thread_group;
771
772         /*
773          * Kill all other threads in the thread group.
774          */
775         spin_lock_irq(lock);
776         if (signal_group_exit(sig)) {
777                 /*
778                  * Another group action in progress, just
779                  * return so that the signal is processed.
780                  */
781                 spin_unlock_irq(lock);
782                 return -EAGAIN;
783         }
784         sig->group_exit_task = tsk;
785         zap_other_threads(tsk);
786
787         /* Account for the thread group leader hanging around: */
788         count = thread_group_leader(tsk) ? 1 : 2;
789         sig->notify_count = count;
790         while (atomic_read(&sig->count) > count) {
791                 __set_current_state(TASK_UNINTERRUPTIBLE);
792                 spin_unlock_irq(lock);
793                 schedule();
794                 spin_lock_irq(lock);
795         }
796         spin_unlock_irq(lock);
797
798         /*
799          * At this point all other threads have exited, all we have to
800          * do is to wait for the thread group leader to become inactive,
801          * and to assume its PID:
802          */
803         if (!thread_group_leader(tsk)) {
804                 struct task_struct *leader = tsk->group_leader;
805
806                 sig->notify_count = -1; /* for exit_notify() */
807                 for (;;) {
808                         write_lock_irq(&tasklist_lock);
809                         if (likely(leader->exit_state))
810                                 break;
811                         __set_current_state(TASK_UNINTERRUPTIBLE);
812                         write_unlock_irq(&tasklist_lock);
813                         schedule();
814                 }
815
816                 /*
817                  * The only record we have of the real-time age of a
818                  * process, regardless of execs it's done, is start_time.
819                  * All the past CPU time is accumulated in signal_struct
820                  * from sister threads now dead.  But in this non-leader
821                  * exec, nothing survives from the original leader thread,
822                  * whose birth marks the true age of this process now.
823                  * When we take on its identity by switching to its PID, we
824                  * also take its birthdate (always earlier than our own).
825                  */
826                 tsk->start_time = leader->start_time;
827
828                 BUG_ON(!same_thread_group(leader, tsk));
829                 BUG_ON(has_group_leader_pid(tsk));
830                 /*
831                  * An exec() starts a new thread group with the
832                  * TGID of the previous thread group. Rehash the
833                  * two threads with a switched PID, and release
834                  * the former thread group leader:
835                  */
836
837                 /* Become a process group leader with the old leader's pid.
838                  * The old leader becomes a thread of the this thread group.
839                  * Note: The old leader also uses this pid until release_task
840                  *       is called.  Odd but simple and correct.
841                  */
842                 detach_pid(tsk, PIDTYPE_PID);
843                 tsk->pid = leader->pid;
844                 attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
845                 transfer_pid(leader, tsk, PIDTYPE_PGID);
846                 transfer_pid(leader, tsk, PIDTYPE_SID);
847                 list_replace_rcu(&leader->tasks, &tsk->tasks);
848
849                 tsk->group_leader = tsk;
850                 leader->group_leader = tsk;
851
852                 tsk->exit_signal = SIGCHLD;
853
854                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
855                 leader->exit_state = EXIT_DEAD;
856                 write_unlock_irq(&tasklist_lock);
857
858                 release_task(leader);
859         }
860
861         sig->group_exit_task = NULL;
862         sig->notify_count = 0;
863
864 no_thread_group:
865         if (current->mm)
866                 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
867
868         exit_itimers(sig);
869         flush_itimer_signals();
870
871         if (atomic_read(&oldsighand->count) != 1) {
872                 struct sighand_struct *newsighand;
873                 /*
874                  * This ->sighand is shared with the CLONE_SIGHAND
875                  * but not CLONE_THREAD task, switch to the new one.
876                  */
877                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
878                 if (!newsighand)
879                         return -ENOMEM;
880
881                 atomic_set(&newsighand->count, 1);
882                 memcpy(newsighand->action, oldsighand->action,
883                        sizeof(newsighand->action));
884
885                 write_lock_irq(&tasklist_lock);
886                 spin_lock(&oldsighand->siglock);
887                 rcu_assign_pointer(tsk->sighand, newsighand);
888                 spin_unlock(&oldsighand->siglock);
889                 write_unlock_irq(&tasklist_lock);
890
891                 __cleanup_sighand(oldsighand);
892         }
893
894         BUG_ON(!thread_group_leader(tsk));
895         return 0;
896 }
897
898 /*
899  * These functions flushes out all traces of the currently running executable
900  * so that a new one can be started
901  */
902 static void flush_old_files(struct files_struct * files)
903 {
904         long j = -1;
905         struct fdtable *fdt;
906
907         spin_lock(&files->file_lock);
908         for (;;) {
909                 unsigned long set, i;
910
911                 j++;
912                 i = j * __NFDBITS;
913                 fdt = files_fdtable(files);
914                 if (i >= fdt->max_fds)
915                         break;
916                 set = fdt->close_on_exec->fds_bits[j];
917                 if (!set)
918                         continue;
919                 fdt->close_on_exec->fds_bits[j] = 0;
920                 spin_unlock(&files->file_lock);
921                 for ( ; set ; i++,set >>= 1) {
922                         if (set & 1) {
923                                 sys_close(i);
924                         }
925                 }
926                 spin_lock(&files->file_lock);
927
928         }
929         spin_unlock(&files->file_lock);
930 }
931
932 char *get_task_comm(char *buf, struct task_struct *tsk)
933 {
934         /* buf must be at least sizeof(tsk->comm) in size */
935         task_lock(tsk);
936         strncpy(buf, tsk->comm, sizeof(tsk->comm));
937         task_unlock(tsk);
938         return buf;
939 }
940
941 void set_task_comm(struct task_struct *tsk, char *buf)
942 {
943         task_lock(tsk);
944         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
945         task_unlock(tsk);
946         perf_event_comm(tsk);
947 }
948
949 int flush_old_exec(struct linux_binprm * bprm)
950 {
951         int retval;
952
953         /*
954          * Make sure we have a private signal table and that
955          * we are unassociated from the previous thread group.
956          */
957         retval = de_thread(current);
958         if (retval)
959                 goto out;
960
961         set_mm_exe_file(bprm->mm, bprm->file);
962
963         /*
964          * Release all of the old mmap stuff
965          */
966         retval = exec_mmap(bprm->mm);
967         if (retval)
968                 goto out;
969
970         bprm->mm = NULL;                /* We're using it now */
971
972         current->flags &= ~PF_RANDOMIZE;
973         flush_thread();
974         current->personality &= ~bprm->per_clear;
975
976         return 0;
977
978 out:
979         return retval;
980 }
981 EXPORT_SYMBOL(flush_old_exec);
982
983 void setup_new_exec(struct linux_binprm * bprm)
984 {
985         int i, ch;
986         char * name;
987         char tcomm[sizeof(current->comm)];
988
989         arch_pick_mmap_layout(current->mm);
990
991         /* This is the point of no return */
992         current->sas_ss_sp = current->sas_ss_size = 0;
993
994         if (current_euid() == current_uid() && current_egid() == current_gid())
995                 set_dumpable(current->mm, 1);
996         else
997                 set_dumpable(current->mm, suid_dumpable);
998
999         name = bprm->filename;
1000
1001         /* Copies the binary name from after last slash */
1002         for (i=0; (ch = *(name++)) != '\0';) {
1003                 if (ch == '/')
1004                         i = 0; /* overwrite what we wrote */
1005                 else
1006                         if (i < (sizeof(tcomm) - 1))
1007                                 tcomm[i++] = ch;
1008         }
1009         tcomm[i] = '\0';
1010         set_task_comm(current, tcomm);
1011
1012         /* Set the new mm task size. We have to do that late because it may
1013          * depend on TIF_32BIT which is only updated in flush_thread() on
1014          * some architectures like powerpc
1015          */
1016         current->mm->task_size = TASK_SIZE;
1017
1018         /* install the new credentials */
1019         if (bprm->cred->uid != current_euid() ||
1020             bprm->cred->gid != current_egid()) {
1021                 current->pdeath_signal = 0;
1022         } else if (file_permission(bprm->file, MAY_READ) ||
1023                    bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1024                 set_dumpable(current->mm, suid_dumpable);
1025         }
1026
1027         /*
1028          * Flush performance counters when crossing a
1029          * security domain:
1030          */
1031         if (!get_dumpable(current->mm))
1032                 perf_event_exit_task(current);
1033
1034         /* An exec changes our domain. We are no longer part of the thread
1035            group */
1036
1037         current->self_exec_id++;
1038                         
1039         flush_signal_handlers(current, 0);
1040         flush_old_files(current->files);
1041 }
1042 EXPORT_SYMBOL(setup_new_exec);
1043
1044 /*
1045  * Prepare credentials and lock ->cred_guard_mutex.
1046  * install_exec_creds() commits the new creds and drops the lock.
1047  * Or, if exec fails before, free_bprm() should release ->cred and
1048  * and unlock.
1049  */
1050 int prepare_bprm_creds(struct linux_binprm *bprm)
1051 {
1052         if (mutex_lock_interruptible(&current->cred_guard_mutex))
1053                 return -ERESTARTNOINTR;
1054
1055         bprm->cred = prepare_exec_creds();
1056         if (likely(bprm->cred))
1057                 return 0;
1058
1059         mutex_unlock(&current->cred_guard_mutex);
1060         return -ENOMEM;
1061 }
1062
1063 void free_bprm(struct linux_binprm *bprm)
1064 {
1065         free_arg_pages(bprm);
1066         if (bprm->cred) {
1067                 mutex_unlock(&current->cred_guard_mutex);
1068                 abort_creds(bprm->cred);
1069         }
1070         kfree(bprm);
1071 }
1072
1073 /*
1074  * install the new credentials for this executable
1075  */
1076 void install_exec_creds(struct linux_binprm *bprm)
1077 {
1078         security_bprm_committing_creds(bprm);
1079
1080         commit_creds(bprm->cred);
1081         bprm->cred = NULL;
1082         /*
1083          * cred_guard_mutex must be held at least to this point to prevent
1084          * ptrace_attach() from altering our determination of the task's
1085          * credentials; any time after this it may be unlocked.
1086          */
1087         security_bprm_committed_creds(bprm);
1088         mutex_unlock(&current->cred_guard_mutex);
1089 }
1090 EXPORT_SYMBOL(install_exec_creds);
1091
1092 /*
1093  * determine how safe it is to execute the proposed program
1094  * - the caller must hold current->cred_guard_mutex to protect against
1095  *   PTRACE_ATTACH
1096  */
1097 int check_unsafe_exec(struct linux_binprm *bprm)
1098 {
1099         struct task_struct *p = current, *t;
1100         unsigned n_fs;
1101         int res = 0;
1102
1103         bprm->unsafe = tracehook_unsafe_exec(p);
1104
1105         n_fs = 1;
1106         write_lock(&p->fs->lock);
1107         rcu_read_lock();
1108         for (t = next_thread(p); t != p; t = next_thread(t)) {
1109                 if (t->fs == p->fs)
1110                         n_fs++;
1111         }
1112         rcu_read_unlock();
1113
1114         if (p->fs->users > n_fs) {
1115                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1116         } else {
1117                 res = -EAGAIN;
1118                 if (!p->fs->in_exec) {
1119                         p->fs->in_exec = 1;
1120                         res = 1;
1121                 }
1122         }
1123         write_unlock(&p->fs->lock);
1124
1125         return res;
1126 }
1127
1128 /* 
1129  * Fill the binprm structure from the inode. 
1130  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1131  *
1132  * This may be called multiple times for binary chains (scripts for example).
1133  */
1134 int prepare_binprm(struct linux_binprm *bprm)
1135 {
1136         umode_t mode;
1137         struct inode * inode = bprm->file->f_path.dentry->d_inode;
1138         int retval;
1139
1140         mode = inode->i_mode;
1141         if (bprm->file->f_op == NULL)
1142                 return -EACCES;
1143
1144         /* clear any previous set[ug]id data from a previous binary */
1145         bprm->cred->euid = current_euid();
1146         bprm->cred->egid = current_egid();
1147
1148         if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1149                 /* Set-uid? */
1150                 if (mode & S_ISUID) {
1151                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1152                         bprm->cred->euid = inode->i_uid;
1153                 }
1154
1155                 /* Set-gid? */
1156                 /*
1157                  * If setgid is set but no group execute bit then this
1158                  * is a candidate for mandatory locking, not a setgid
1159                  * executable.
1160                  */
1161                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1162                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1163                         bprm->cred->egid = inode->i_gid;
1164                 }
1165         }
1166
1167         /* fill in binprm security blob */
1168         retval = security_bprm_set_creds(bprm);
1169         if (retval)
1170                 return retval;
1171         bprm->cred_prepared = 1;
1172
1173         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1174         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1175 }
1176
1177 EXPORT_SYMBOL(prepare_binprm);
1178
1179 /*
1180  * Arguments are '\0' separated strings found at the location bprm->p
1181  * points to; chop off the first by relocating brpm->p to right after
1182  * the first '\0' encountered.
1183  */
1184 int remove_arg_zero(struct linux_binprm *bprm)
1185 {
1186         int ret = 0;
1187         unsigned long offset;
1188         char *kaddr;
1189         struct page *page;
1190
1191         if (!bprm->argc)
1192                 return 0;
1193
1194         do {
1195                 offset = bprm->p & ~PAGE_MASK;
1196                 page = get_arg_page(bprm, bprm->p, 0);
1197                 if (!page) {
1198                         ret = -EFAULT;
1199                         goto out;
1200                 }
1201                 kaddr = kmap_atomic(page, KM_USER0);
1202
1203                 for (; offset < PAGE_SIZE && kaddr[offset];
1204                                 offset++, bprm->p++)
1205                         ;
1206
1207                 kunmap_atomic(kaddr, KM_USER0);
1208                 put_arg_page(page);
1209
1210                 if (offset == PAGE_SIZE)
1211                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1212         } while (offset == PAGE_SIZE);
1213
1214         bprm->p++;
1215         bprm->argc--;
1216         ret = 0;
1217
1218 out:
1219         return ret;
1220 }
1221 EXPORT_SYMBOL(remove_arg_zero);
1222
1223 /*
1224  * cycle the list of binary formats handler, until one recognizes the image
1225  */
1226 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1227 {
1228         unsigned int depth = bprm->recursion_depth;
1229         int try,retval;
1230         struct linux_binfmt *fmt;
1231
1232         retval = security_bprm_check(bprm);
1233         if (retval)
1234                 return retval;
1235         retval = ima_bprm_check(bprm);
1236         if (retval)
1237                 return retval;
1238
1239         /* kernel module loader fixup */
1240         /* so we don't try to load run modprobe in kernel space. */
1241         set_fs(USER_DS);
1242
1243         retval = audit_bprm(bprm);
1244         if (retval)
1245                 return retval;
1246
1247         retval = -ENOENT;
1248         for (try=0; try<2; try++) {
1249                 read_lock(&binfmt_lock);
1250                 list_for_each_entry(fmt, &formats, lh) {
1251                         int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1252                         if (!fn)
1253                                 continue;
1254                         if (!try_module_get(fmt->module))
1255                                 continue;
1256                         read_unlock(&binfmt_lock);
1257                         retval = fn(bprm, regs);
1258                         /*
1259                          * Restore the depth counter to its starting value
1260                          * in this call, so we don't have to rely on every
1261                          * load_binary function to restore it on return.
1262                          */
1263                         bprm->recursion_depth = depth;
1264                         if (retval >= 0) {
1265                                 if (depth == 0)
1266                                         tracehook_report_exec(fmt, bprm, regs);
1267                                 put_binfmt(fmt);
1268                                 allow_write_access(bprm->file);
1269                                 if (bprm->file)
1270                                         fput(bprm->file);
1271                                 bprm->file = NULL;
1272                                 current->did_exec = 1;
1273                                 proc_exec_connector(current);
1274                                 return retval;
1275                         }
1276                         read_lock(&binfmt_lock);
1277                         put_binfmt(fmt);
1278                         if (retval != -ENOEXEC || bprm->mm == NULL)
1279                                 break;
1280                         if (!bprm->file) {
1281                                 read_unlock(&binfmt_lock);
1282                                 return retval;
1283                         }
1284                 }
1285                 read_unlock(&binfmt_lock);
1286                 if (retval != -ENOEXEC || bprm->mm == NULL) {
1287                         break;
1288 #ifdef CONFIG_MODULES
1289                 } else {
1290 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1291                         if (printable(bprm->buf[0]) &&
1292                             printable(bprm->buf[1]) &&
1293                             printable(bprm->buf[2]) &&
1294                             printable(bprm->buf[3]))
1295                                 break; /* -ENOEXEC */
1296                         request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1297 #endif
1298                 }
1299         }
1300         return retval;
1301 }
1302
1303 EXPORT_SYMBOL(search_binary_handler);
1304
1305 /*
1306  * sys_execve() executes a new program.
1307  */
1308 int do_execve(char * filename,
1309         char __user *__user *argv,
1310         char __user *__user *envp,
1311         struct pt_regs * regs)
1312 {
1313         struct linux_binprm *bprm;
1314         struct file *file;
1315         struct files_struct *displaced;
1316         bool clear_in_exec;
1317         int retval;
1318
1319         retval = unshare_files(&displaced);
1320         if (retval)
1321                 goto out_ret;
1322
1323         retval = -ENOMEM;
1324         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1325         if (!bprm)
1326                 goto out_files;
1327
1328         retval = prepare_bprm_creds(bprm);
1329         if (retval)
1330                 goto out_free;
1331
1332         retval = check_unsafe_exec(bprm);
1333         if (retval < 0)
1334                 goto out_free;
1335         clear_in_exec = retval;
1336         current->in_execve = 1;
1337
1338         file = open_exec(filename);
1339         retval = PTR_ERR(file);
1340         if (IS_ERR(file))
1341                 goto out_unmark;
1342
1343         sched_exec();
1344
1345         bprm->file = file;
1346         bprm->filename = filename;
1347         bprm->interp = filename;
1348
1349         retval = bprm_mm_init(bprm);
1350         if (retval)
1351                 goto out_file;
1352
1353         bprm->argc = count(argv, MAX_ARG_STRINGS);
1354         if ((retval = bprm->argc) < 0)
1355                 goto out;
1356
1357         bprm->envc = count(envp, MAX_ARG_STRINGS);
1358         if ((retval = bprm->envc) < 0)
1359                 goto out;
1360
1361         retval = prepare_binprm(bprm);
1362         if (retval < 0)
1363                 goto out;
1364
1365         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1366         if (retval < 0)
1367                 goto out;
1368
1369         bprm->exec = bprm->p;
1370         retval = copy_strings(bprm->envc, envp, bprm);
1371         if (retval < 0)
1372                 goto out;
1373
1374         retval = copy_strings(bprm->argc, argv, bprm);
1375         if (retval < 0)
1376                 goto out;
1377
1378         current->flags &= ~PF_KTHREAD;
1379         retval = search_binary_handler(bprm,regs);
1380         if (retval < 0)
1381                 goto out;
1382
1383         current->stack_start = current->mm->start_stack;
1384
1385         /* execve succeeded */
1386         current->fs->in_exec = 0;
1387         current->in_execve = 0;
1388         acct_update_integrals(current);
1389         free_bprm(bprm);
1390         if (displaced)
1391                 put_files_struct(displaced);
1392         return retval;
1393
1394 out:
1395         if (bprm->mm)
1396                 mmput (bprm->mm);
1397
1398 out_file:
1399         if (bprm->file) {
1400                 allow_write_access(bprm->file);
1401                 fput(bprm->file);
1402         }
1403
1404 out_unmark:
1405         if (clear_in_exec)
1406                 current->fs->in_exec = 0;
1407         current->in_execve = 0;
1408
1409 out_free:
1410         free_bprm(bprm);
1411
1412 out_files:
1413         if (displaced)
1414                 reset_files_struct(displaced);
1415 out_ret:
1416         return retval;
1417 }
1418
1419 void set_binfmt(struct linux_binfmt *new)
1420 {
1421         struct mm_struct *mm = current->mm;
1422
1423         if (mm->binfmt)
1424                 module_put(mm->binfmt->module);
1425
1426         mm->binfmt = new;
1427         if (new)
1428                 __module_get(new->module);
1429 }
1430
1431 EXPORT_SYMBOL(set_binfmt);
1432
1433 /* format_corename will inspect the pattern parameter, and output a
1434  * name into corename, which must have space for at least
1435  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1436  */
1437 static int format_corename(char *corename, long signr)
1438 {
1439         const struct cred *cred = current_cred();
1440         const char *pat_ptr = core_pattern;
1441         int ispipe = (*pat_ptr == '|');
1442         char *out_ptr = corename;
1443         char *const out_end = corename + CORENAME_MAX_SIZE;
1444         int rc;
1445         int pid_in_pattern = 0;
1446
1447         /* Repeat as long as we have more pattern to process and more output
1448            space */
1449         while (*pat_ptr) {
1450                 if (*pat_ptr != '%') {
1451                         if (out_ptr == out_end)
1452                                 goto out;
1453                         *out_ptr++ = *pat_ptr++;
1454                 } else {
1455                         switch (*++pat_ptr) {
1456                         case 0:
1457                                 goto out;
1458                         /* Double percent, output one percent */
1459                         case '%':
1460                                 if (out_ptr == out_end)
1461                                         goto out;
1462                                 *out_ptr++ = '%';
1463                                 break;
1464                         /* pid */
1465                         case 'p':
1466                                 pid_in_pattern = 1;
1467                                 rc = snprintf(out_ptr, out_end - out_ptr,
1468                                               "%d", task_tgid_vnr(current));
1469                                 if (rc > out_end - out_ptr)
1470                                         goto out;
1471                                 out_ptr += rc;
1472                                 break;
1473                         /* uid */
1474                         case 'u':
1475                                 rc = snprintf(out_ptr, out_end - out_ptr,
1476                                               "%d", cred->uid);
1477                                 if (rc > out_end - out_ptr)
1478                                         goto out;
1479                                 out_ptr += rc;
1480                                 break;
1481                         /* gid */
1482                         case 'g':
1483                                 rc = snprintf(out_ptr, out_end - out_ptr,
1484                                               "%d", cred->gid);
1485                                 if (rc > out_end - out_ptr)
1486                                         goto out;
1487                                 out_ptr += rc;
1488                                 break;
1489                         /* signal that caused the coredump */
1490                         case 's':
1491                                 rc = snprintf(out_ptr, out_end - out_ptr,
1492                                               "%ld", signr);
1493                                 if (rc > out_end - out_ptr)
1494                                         goto out;
1495                                 out_ptr += rc;
1496                                 break;
1497                         /* UNIX time of coredump */
1498                         case 't': {
1499                                 struct timeval tv;
1500                                 do_gettimeofday(&tv);
1501                                 rc = snprintf(out_ptr, out_end - out_ptr,
1502                                               "%lu", tv.tv_sec);
1503                                 if (rc > out_end - out_ptr)
1504                                         goto out;
1505                                 out_ptr += rc;
1506                                 break;
1507                         }
1508                         /* hostname */
1509                         case 'h':
1510                                 down_read(&uts_sem);
1511                                 rc = snprintf(out_ptr, out_end - out_ptr,
1512                                               "%s", utsname()->nodename);
1513                                 up_read(&uts_sem);
1514                                 if (rc > out_end - out_ptr)
1515                                         goto out;
1516                                 out_ptr += rc;
1517                                 break;
1518                         /* executable */
1519                         case 'e':
1520                                 rc = snprintf(out_ptr, out_end - out_ptr,
1521                                               "%s", current->comm);
1522                                 if (rc > out_end - out_ptr)
1523                                         goto out;
1524                                 out_ptr += rc;
1525                                 break;
1526                         /* core limit size */
1527                         case 'c':
1528                                 rc = snprintf(out_ptr, out_end - out_ptr,
1529                                               "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1530                                 if (rc > out_end - out_ptr)
1531                                         goto out;
1532                                 out_ptr += rc;
1533                                 break;
1534                         default:
1535                                 break;
1536                         }
1537                         ++pat_ptr;
1538                 }
1539         }
1540         /* Backward compatibility with core_uses_pid:
1541          *
1542          * If core_pattern does not include a %p (as is the default)
1543          * and core_uses_pid is set, then .%pid will be appended to
1544          * the filename. Do not do this for piped commands. */
1545         if (!ispipe && !pid_in_pattern && core_uses_pid) {
1546                 rc = snprintf(out_ptr, out_end - out_ptr,
1547                               ".%d", task_tgid_vnr(current));
1548                 if (rc > out_end - out_ptr)
1549                         goto out;
1550                 out_ptr += rc;
1551         }
1552 out:
1553         *out_ptr = 0;
1554         return ispipe;
1555 }
1556
1557 static int zap_process(struct task_struct *start)
1558 {
1559         struct task_struct *t;
1560         int nr = 0;
1561
1562         start->signal->flags = SIGNAL_GROUP_EXIT;
1563         start->signal->group_stop_count = 0;
1564
1565         t = start;
1566         do {
1567                 if (t != current && t->mm) {
1568                         sigaddset(&t->pending.signal, SIGKILL);
1569                         signal_wake_up(t, 1);
1570                         nr++;
1571                 }
1572         } while_each_thread(start, t);
1573
1574         return nr;
1575 }
1576
1577 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1578                                 struct core_state *core_state, int exit_code)
1579 {
1580         struct task_struct *g, *p;
1581         unsigned long flags;
1582         int nr = -EAGAIN;
1583
1584         spin_lock_irq(&tsk->sighand->siglock);
1585         if (!signal_group_exit(tsk->signal)) {
1586                 mm->core_state = core_state;
1587                 tsk->signal->group_exit_code = exit_code;
1588                 nr = zap_process(tsk);
1589         }
1590         spin_unlock_irq(&tsk->sighand->siglock);
1591         if (unlikely(nr < 0))
1592                 return nr;
1593
1594         if (atomic_read(&mm->mm_users) == nr + 1)
1595                 goto done;
1596         /*
1597          * We should find and kill all tasks which use this mm, and we should
1598          * count them correctly into ->nr_threads. We don't take tasklist
1599          * lock, but this is safe wrt:
1600          *
1601          * fork:
1602          *      None of sub-threads can fork after zap_process(leader). All
1603          *      processes which were created before this point should be
1604          *      visible to zap_threads() because copy_process() adds the new
1605          *      process to the tail of init_task.tasks list, and lock/unlock
1606          *      of ->siglock provides a memory barrier.
1607          *
1608          * do_exit:
1609          *      The caller holds mm->mmap_sem. This means that the task which
1610          *      uses this mm can't pass exit_mm(), so it can't exit or clear
1611          *      its ->mm.
1612          *
1613          * de_thread:
1614          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
1615          *      we must see either old or new leader, this does not matter.
1616          *      However, it can change p->sighand, so lock_task_sighand(p)
1617          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
1618          *      it can't fail.
1619          *
1620          *      Note also that "g" can be the old leader with ->mm == NULL
1621          *      and already unhashed and thus removed from ->thread_group.
1622          *      This is OK, __unhash_process()->list_del_rcu() does not
1623          *      clear the ->next pointer, we will find the new leader via
1624          *      next_thread().
1625          */
1626         rcu_read_lock();
1627         for_each_process(g) {
1628                 if (g == tsk->group_leader)
1629                         continue;
1630                 if (g->flags & PF_KTHREAD)
1631                         continue;
1632                 p = g;
1633                 do {
1634                         if (p->mm) {
1635                                 if (unlikely(p->mm == mm)) {
1636                                         lock_task_sighand(p, &flags);
1637                                         nr += zap_process(p);
1638                                         unlock_task_sighand(p, &flags);
1639                                 }
1640                                 break;
1641                         }
1642                 } while_each_thread(g, p);
1643         }
1644         rcu_read_unlock();
1645 done:
1646         atomic_set(&core_state->nr_threads, nr);
1647         return nr;
1648 }
1649
1650 static int coredump_wait(int exit_code, struct core_state *core_state)
1651 {
1652         struct task_struct *tsk = current;
1653         struct mm_struct *mm = tsk->mm;
1654         struct completion *vfork_done;
1655         int core_waiters;
1656
1657         init_completion(&core_state->startup);
1658         core_state->dumper.task = tsk;
1659         core_state->dumper.next = NULL;
1660         core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1661         up_write(&mm->mmap_sem);
1662
1663         if (unlikely(core_waiters < 0))
1664                 goto fail;
1665
1666         /*
1667          * Make sure nobody is waiting for us to release the VM,
1668          * otherwise we can deadlock when we wait on each other
1669          */
1670         vfork_done = tsk->vfork_done;
1671         if (vfork_done) {
1672                 tsk->vfork_done = NULL;
1673                 complete(vfork_done);
1674         }
1675
1676         if (core_waiters)
1677                 wait_for_completion(&core_state->startup);
1678 fail:
1679         return core_waiters;
1680 }
1681
1682 static void coredump_finish(struct mm_struct *mm)
1683 {
1684         struct core_thread *curr, *next;
1685         struct task_struct *task;
1686
1687         next = mm->core_state->dumper.next;
1688         while ((curr = next) != NULL) {
1689                 next = curr->next;
1690                 task = curr->task;
1691                 /*
1692                  * see exit_mm(), curr->task must not see
1693                  * ->task == NULL before we read ->next.
1694                  */
1695                 smp_mb();
1696                 curr->task = NULL;
1697                 wake_up_process(task);
1698         }
1699
1700         mm->core_state = NULL;
1701 }
1702
1703 /*
1704  * set_dumpable converts traditional three-value dumpable to two flags and
1705  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1706  * these bits are not changed atomically.  So get_dumpable can observe the
1707  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1708  * return either old dumpable or new one by paying attention to the order of
1709  * modifying the bits.
1710  *
1711  * dumpable |   mm->flags (binary)
1712  * old  new | initial interim  final
1713  * ---------+-----------------------
1714  *  0    1  |   00      01      01
1715  *  0    2  |   00      10(*)   11
1716  *  1    0  |   01      00      00
1717  *  1    2  |   01      11      11
1718  *  2    0  |   11      10(*)   00
1719  *  2    1  |   11      11      01
1720  *
1721  * (*) get_dumpable regards interim value of 10 as 11.
1722  */
1723 void set_dumpable(struct mm_struct *mm, int value)
1724 {
1725         switch (value) {
1726         case 0:
1727                 clear_bit(MMF_DUMPABLE, &mm->flags);
1728                 smp_wmb();
1729                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1730                 break;
1731         case 1:
1732                 set_bit(MMF_DUMPABLE, &mm->flags);
1733                 smp_wmb();
1734                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1735                 break;
1736         case 2:
1737                 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1738                 smp_wmb();
1739                 set_bit(MMF_DUMPABLE, &mm->flags);
1740                 break;
1741         }
1742 }
1743
1744 int get_dumpable(struct mm_struct *mm)
1745 {
1746         int ret;
1747
1748         ret = mm->flags & 0x3;
1749         return (ret >= 2) ? 2 : ret;
1750 }
1751
1752 static void wait_for_dump_helpers(struct file *file)
1753 {
1754         struct pipe_inode_info *pipe;
1755
1756         pipe = file->f_path.dentry->d_inode->i_pipe;
1757
1758         pipe_lock(pipe);
1759         pipe->readers++;
1760         pipe->writers--;
1761
1762         while ((pipe->readers > 1) && (!signal_pending(current))) {
1763                 wake_up_interruptible_sync(&pipe->wait);
1764                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1765                 pipe_wait(pipe);
1766         }
1767
1768         pipe->readers--;
1769         pipe->writers++;
1770         pipe_unlock(pipe);
1771
1772 }
1773
1774
1775 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1776 {
1777         struct core_state core_state;
1778         char corename[CORENAME_MAX_SIZE + 1];
1779         struct mm_struct *mm = current->mm;
1780         struct linux_binfmt * binfmt;
1781         struct inode * inode;
1782         struct file * file;
1783         const struct cred *old_cred;
1784         struct cred *cred;
1785         int retval = 0;
1786         int flag = 0;
1787         int ispipe = 0;
1788         unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1789         char **helper_argv = NULL;
1790         int helper_argc = 0;
1791         int dump_count = 0;
1792         static atomic_t core_dump_count = ATOMIC_INIT(0);
1793
1794         audit_core_dumps(signr);
1795
1796         binfmt = mm->binfmt;
1797         if (!binfmt || !binfmt->core_dump)
1798                 goto fail;
1799
1800         cred = prepare_creds();
1801         if (!cred) {
1802                 retval = -ENOMEM;
1803                 goto fail;
1804         }
1805
1806         down_write(&mm->mmap_sem);
1807         /*
1808          * If another thread got here first, or we are not dumpable, bail out.
1809          */
1810         if (mm->core_state || !get_dumpable(mm)) {
1811                 up_write(&mm->mmap_sem);
1812                 put_cred(cred);
1813                 goto fail;
1814         }
1815
1816         /*
1817          *      We cannot trust fsuid as being the "true" uid of the
1818          *      process nor do we know its entire history. We only know it
1819          *      was tainted so we dump it as root in mode 2.
1820          */
1821         if (get_dumpable(mm) == 2) {    /* Setuid core dump mode */
1822                 flag = O_EXCL;          /* Stop rewrite attacks */
1823                 cred->fsuid = 0;        /* Dump root private */
1824         }
1825
1826         retval = coredump_wait(exit_code, &core_state);
1827         if (retval < 0) {
1828                 put_cred(cred);
1829                 goto fail;
1830         }
1831
1832         old_cred = override_creds(cred);
1833
1834         /*
1835          * Clear any false indication of pending signals that might
1836          * be seen by the filesystem code called to write the core file.
1837          */
1838         clear_thread_flag(TIF_SIGPENDING);
1839
1840         /*
1841          * lock_kernel() because format_corename() is controlled by sysctl, which
1842          * uses lock_kernel()
1843          */
1844         lock_kernel();
1845         ispipe = format_corename(corename, signr);
1846         unlock_kernel();
1847
1848         if ((!ispipe) && (core_limit < binfmt->min_coredump))
1849                 goto fail_unlock;
1850
1851         if (ispipe) {
1852                 if (core_limit == 0) {
1853                         /*
1854                          * Normally core limits are irrelevant to pipes, since
1855                          * we're not writing to the file system, but we use
1856                          * core_limit of 0 here as a speacial value. Any
1857                          * non-zero limit gets set to RLIM_INFINITY below, but
1858                          * a limit of 0 skips the dump.  This is a consistent
1859                          * way to catch recursive crashes.  We can still crash
1860                          * if the core_pattern binary sets RLIM_CORE =  !0
1861                          * but it runs as root, and can do lots of stupid things
1862                          * Note that we use task_tgid_vnr here to grab the pid
1863                          * of the process group leader.  That way we get the
1864                          * right pid if a thread in a multi-threaded
1865                          * core_pattern process dies.
1866                          */
1867                         printk(KERN_WARNING
1868                                 "Process %d(%s) has RLIMIT_CORE set to 0\n",
1869                                 task_tgid_vnr(current), current->comm);
1870                         printk(KERN_WARNING "Aborting core\n");
1871                         goto fail_unlock;
1872                 }
1873
1874                 dump_count = atomic_inc_return(&core_dump_count);
1875                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1876                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1877                                task_tgid_vnr(current), current->comm);
1878                         printk(KERN_WARNING "Skipping core dump\n");
1879                         goto fail_dropcount;
1880                 }
1881
1882                 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1883                 if (!helper_argv) {
1884                         printk(KERN_WARNING "%s failed to allocate memory\n",
1885                                __func__);
1886                         goto fail_dropcount;
1887                 }
1888
1889                 core_limit = RLIM_INFINITY;
1890
1891                 /* SIGPIPE can happen, but it's just never processed */
1892                 if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1893                                 &file)) {
1894                         printk(KERN_INFO "Core dump to %s pipe failed\n",
1895                                corename);
1896                         goto fail_dropcount;
1897                 }
1898         } else
1899                 file = filp_open(corename,
1900                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1901                                  0600);
1902         if (IS_ERR(file))
1903                 goto fail_dropcount;
1904         inode = file->f_path.dentry->d_inode;
1905         if (inode->i_nlink > 1)
1906                 goto close_fail;        /* multiple links - don't dump */
1907         if (!ispipe && d_unhashed(file->f_path.dentry))
1908                 goto close_fail;
1909
1910         /* AK: actually i see no reason to not allow this for named pipes etc.,
1911            but keep the previous behaviour for now. */
1912         if (!ispipe && !S_ISREG(inode->i_mode))
1913                 goto close_fail;
1914         /*
1915          * Dont allow local users get cute and trick others to coredump
1916          * into their pre-created files:
1917          */
1918         if (inode->i_uid != current_fsuid())
1919                 goto close_fail;
1920         if (!file->f_op)
1921                 goto close_fail;
1922         if (!file->f_op->write)
1923                 goto close_fail;
1924         if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1925                 goto close_fail;
1926
1927         retval = binfmt->core_dump(signr, regs, file, core_limit);
1928
1929         if (retval)
1930                 current->signal->group_exit_code |= 0x80;
1931 close_fail:
1932         if (ispipe && core_pipe_limit)
1933                 wait_for_dump_helpers(file);
1934         filp_close(file, NULL);
1935 fail_dropcount:
1936         if (dump_count)
1937                 atomic_dec(&core_dump_count);
1938 fail_unlock:
1939         if (helper_argv)
1940                 argv_free(helper_argv);
1941
1942         revert_creds(old_cred);
1943         put_cred(cred);
1944         coredump_finish(mm);
1945 fail:
1946         return;
1947 }