execve: improve interactivity with large arguments
[firefly-linux-kernel-4.4.55.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/ima.h>
50 #include <linux/syscalls.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 #include <linux/tracehook.h>
55 #include <linux/kmod.h>
56 #include <linux/fsnotify.h>
57 #include <linux/fs_struct.h>
58 #include <linux/pipe_fs_i.h>
59
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63 #include "internal.h"
64
65 int core_uses_pid;
66 char core_pattern[CORENAME_MAX_SIZE] = "core";
67 unsigned int core_pipe_limit;
68 int suid_dumpable = 0;
69
70 /* The maximal length of core_pattern is also specified in sysctl.c */
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 int __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77         if (!fmt)
78                 return -EINVAL;
79         write_lock(&binfmt_lock);
80         insert ? list_add(&fmt->lh, &formats) :
81                  list_add_tail(&fmt->lh, &formats);
82         write_unlock(&binfmt_lock);
83         return 0;       
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90         write_lock(&binfmt_lock);
91         list_del(&fmt->lh);
92         write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99         module_put(fmt->module);
100 }
101
102 /*
103  * Note that a shared library must be both readable and executable due to
104  * security reasons.
105  *
106  * Also note that we take the address to load from from the file itself.
107  */
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 {
110         struct file *file;
111         char *tmp = getname(library);
112         int error = PTR_ERR(tmp);
113
114         if (IS_ERR(tmp))
115                 goto out;
116
117         file = do_filp_open(AT_FDCWD, tmp,
118                                 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
119                                 MAY_READ | MAY_EXEC | MAY_OPEN);
120         putname(tmp);
121         error = PTR_ERR(file);
122         if (IS_ERR(file))
123                 goto out;
124
125         error = -EINVAL;
126         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
127                 goto exit;
128
129         error = -EACCES;
130         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
131                 goto exit;
132
133         fsnotify_open(file->f_path.dentry);
134
135         error = -ENOEXEC;
136         if(file->f_op) {
137                 struct linux_binfmt * fmt;
138
139                 read_lock(&binfmt_lock);
140                 list_for_each_entry(fmt, &formats, lh) {
141                         if (!fmt->load_shlib)
142                                 continue;
143                         if (!try_module_get(fmt->module))
144                                 continue;
145                         read_unlock(&binfmt_lock);
146                         error = fmt->load_shlib(file);
147                         read_lock(&binfmt_lock);
148                         put_binfmt(fmt);
149                         if (error != -ENOEXEC)
150                                 break;
151                 }
152                 read_unlock(&binfmt_lock);
153         }
154 exit:
155         fput(file);
156 out:
157         return error;
158 }
159
160 #ifdef CONFIG_MMU
161
162 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
163                 int write)
164 {
165         struct page *page;
166         int ret;
167
168 #ifdef CONFIG_STACK_GROWSUP
169         if (write) {
170                 ret = expand_stack_downwards(bprm->vma, pos);
171                 if (ret < 0)
172                         return NULL;
173         }
174 #endif
175         ret = get_user_pages(current, bprm->mm, pos,
176                         1, write, 1, &page, NULL);
177         if (ret <= 0)
178                 return NULL;
179
180         if (write) {
181                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
182                 struct rlimit *rlim;
183
184                 /*
185                  * We've historically supported up to 32 pages (ARG_MAX)
186                  * of argument strings even with small stacks
187                  */
188                 if (size <= ARG_MAX)
189                         return page;
190
191                 /*
192                  * Limit to 1/4-th the stack size for the argv+env strings.
193                  * This ensures that:
194                  *  - the remaining binfmt code will not run out of stack space,
195                  *  - the program will have a reasonable amount of stack left
196                  *    to work from.
197                  */
198                 rlim = current->signal->rlim;
199                 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
200                         put_page(page);
201                         return NULL;
202                 }
203         }
204
205         return page;
206 }
207
208 static void put_arg_page(struct page *page)
209 {
210         put_page(page);
211 }
212
213 static void free_arg_page(struct linux_binprm *bprm, int i)
214 {
215 }
216
217 static void free_arg_pages(struct linux_binprm *bprm)
218 {
219 }
220
221 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
222                 struct page *page)
223 {
224         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
225 }
226
227 static int __bprm_mm_init(struct linux_binprm *bprm)
228 {
229         int err;
230         struct vm_area_struct *vma = NULL;
231         struct mm_struct *mm = bprm->mm;
232
233         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
234         if (!vma)
235                 return -ENOMEM;
236
237         down_write(&mm->mmap_sem);
238         vma->vm_mm = mm;
239
240         /*
241          * Place the stack at the largest stack address the architecture
242          * supports. Later, we'll move this to an appropriate place. We don't
243          * use STACK_TOP because that can depend on attributes which aren't
244          * configured yet.
245          */
246         vma->vm_end = STACK_TOP_MAX;
247         vma->vm_start = vma->vm_end - PAGE_SIZE;
248         vma->vm_flags = VM_STACK_FLAGS;
249         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
250         err = insert_vm_struct(mm, vma);
251         if (err)
252                 goto err;
253
254         mm->stack_vm = mm->total_vm = 1;
255         up_write(&mm->mmap_sem);
256         bprm->p = vma->vm_end - sizeof(void *);
257         return 0;
258 err:
259         up_write(&mm->mmap_sem);
260         bprm->vma = NULL;
261         kmem_cache_free(vm_area_cachep, vma);
262         return err;
263 }
264
265 static bool valid_arg_len(struct linux_binprm *bprm, long len)
266 {
267         return len <= MAX_ARG_STRLEN;
268 }
269
270 #else
271
272 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
273                 int write)
274 {
275         struct page *page;
276
277         page = bprm->page[pos / PAGE_SIZE];
278         if (!page && write) {
279                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
280                 if (!page)
281                         return NULL;
282                 bprm->page[pos / PAGE_SIZE] = page;
283         }
284
285         return page;
286 }
287
288 static void put_arg_page(struct page *page)
289 {
290 }
291
292 static void free_arg_page(struct linux_binprm *bprm, int i)
293 {
294         if (bprm->page[i]) {
295                 __free_page(bprm->page[i]);
296                 bprm->page[i] = NULL;
297         }
298 }
299
300 static void free_arg_pages(struct linux_binprm *bprm)
301 {
302         int i;
303
304         for (i = 0; i < MAX_ARG_PAGES; i++)
305                 free_arg_page(bprm, i);
306 }
307
308 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
309                 struct page *page)
310 {
311 }
312
313 static int __bprm_mm_init(struct linux_binprm *bprm)
314 {
315         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
316         return 0;
317 }
318
319 static bool valid_arg_len(struct linux_binprm *bprm, long len)
320 {
321         return len <= bprm->p;
322 }
323
324 #endif /* CONFIG_MMU */
325
326 /*
327  * Create a new mm_struct and populate it with a temporary stack
328  * vm_area_struct.  We don't have enough context at this point to set the stack
329  * flags, permissions, and offset, so we use temporary values.  We'll update
330  * them later in setup_arg_pages().
331  */
332 int bprm_mm_init(struct linux_binprm *bprm)
333 {
334         int err;
335         struct mm_struct *mm = NULL;
336
337         bprm->mm = mm = mm_alloc();
338         err = -ENOMEM;
339         if (!mm)
340                 goto err;
341
342         err = init_new_context(current, mm);
343         if (err)
344                 goto err;
345
346         err = __bprm_mm_init(bprm);
347         if (err)
348                 goto err;
349
350         return 0;
351
352 err:
353         if (mm) {
354                 bprm->mm = NULL;
355                 mmdrop(mm);
356         }
357
358         return err;
359 }
360
361 /*
362  * count() counts the number of strings in array ARGV.
363  */
364 static int count(char __user * __user * argv, int max)
365 {
366         int i = 0;
367
368         if (argv != NULL) {
369                 for (;;) {
370                         char __user * p;
371
372                         if (get_user(p, argv))
373                                 return -EFAULT;
374                         if (!p)
375                                 break;
376                         argv++;
377                         if (i++ >= max)
378                                 return -E2BIG;
379                         cond_resched();
380                 }
381         }
382         return i;
383 }
384
385 /*
386  * 'copy_strings()' copies argument/environment strings from the old
387  * processes's memory to the new process's stack.  The call to get_user_pages()
388  * ensures the destination page is created and not swapped out.
389  */
390 static int copy_strings(int argc, char __user * __user * argv,
391                         struct linux_binprm *bprm)
392 {
393         struct page *kmapped_page = NULL;
394         char *kaddr = NULL;
395         unsigned long kpos = 0;
396         int ret;
397
398         while (argc-- > 0) {
399                 char __user *str;
400                 int len;
401                 unsigned long pos;
402
403                 if (get_user(str, argv+argc) ||
404                                 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
405                         ret = -EFAULT;
406                         goto out;
407                 }
408
409                 if (!valid_arg_len(bprm, len)) {
410                         ret = -E2BIG;
411                         goto out;
412                 }
413
414                 /* We're going to work our way backwords. */
415                 pos = bprm->p;
416                 str += len;
417                 bprm->p -= len;
418
419                 while (len > 0) {
420                         int offset, bytes_to_copy;
421
422                         cond_resched();
423
424                         offset = pos % PAGE_SIZE;
425                         if (offset == 0)
426                                 offset = PAGE_SIZE;
427
428                         bytes_to_copy = offset;
429                         if (bytes_to_copy > len)
430                                 bytes_to_copy = len;
431
432                         offset -= bytes_to_copy;
433                         pos -= bytes_to_copy;
434                         str -= bytes_to_copy;
435                         len -= bytes_to_copy;
436
437                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
438                                 struct page *page;
439
440                                 page = get_arg_page(bprm, pos, 1);
441                                 if (!page) {
442                                         ret = -E2BIG;
443                                         goto out;
444                                 }
445
446                                 if (kmapped_page) {
447                                         flush_kernel_dcache_page(kmapped_page);
448                                         kunmap(kmapped_page);
449                                         put_arg_page(kmapped_page);
450                                 }
451                                 kmapped_page = page;
452                                 kaddr = kmap(kmapped_page);
453                                 kpos = pos & PAGE_MASK;
454                                 flush_arg_page(bprm, kpos, kmapped_page);
455                         }
456                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
457                                 ret = -EFAULT;
458                                 goto out;
459                         }
460                 }
461         }
462         ret = 0;
463 out:
464         if (kmapped_page) {
465                 flush_kernel_dcache_page(kmapped_page);
466                 kunmap(kmapped_page);
467                 put_arg_page(kmapped_page);
468         }
469         return ret;
470 }
471
472 /*
473  * Like copy_strings, but get argv and its values from kernel memory.
474  */
475 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
476 {
477         int r;
478         mm_segment_t oldfs = get_fs();
479         set_fs(KERNEL_DS);
480         r = copy_strings(argc, (char __user * __user *)argv, bprm);
481         set_fs(oldfs);
482         return r;
483 }
484 EXPORT_SYMBOL(copy_strings_kernel);
485
486 #ifdef CONFIG_MMU
487
488 /*
489  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
490  * the binfmt code determines where the new stack should reside, we shift it to
491  * its final location.  The process proceeds as follows:
492  *
493  * 1) Use shift to calculate the new vma endpoints.
494  * 2) Extend vma to cover both the old and new ranges.  This ensures the
495  *    arguments passed to subsequent functions are consistent.
496  * 3) Move vma's page tables to the new range.
497  * 4) Free up any cleared pgd range.
498  * 5) Shrink the vma to cover only the new range.
499  */
500 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
501 {
502         struct mm_struct *mm = vma->vm_mm;
503         unsigned long old_start = vma->vm_start;
504         unsigned long old_end = vma->vm_end;
505         unsigned long length = old_end - old_start;
506         unsigned long new_start = old_start - shift;
507         unsigned long new_end = old_end - shift;
508         struct mmu_gather *tlb;
509
510         BUG_ON(new_start > new_end);
511
512         /*
513          * ensure there are no vmas between where we want to go
514          * and where we are
515          */
516         if (vma != find_vma(mm, new_start))
517                 return -EFAULT;
518
519         /*
520          * cover the whole range: [new_start, old_end)
521          */
522         vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
523
524         /*
525          * move the page tables downwards, on failure we rely on
526          * process cleanup to remove whatever mess we made.
527          */
528         if (length != move_page_tables(vma, old_start,
529                                        vma, new_start, length))
530                 return -ENOMEM;
531
532         lru_add_drain();
533         tlb = tlb_gather_mmu(mm, 0);
534         if (new_end > old_start) {
535                 /*
536                  * when the old and new regions overlap clear from new_end.
537                  */
538                 free_pgd_range(tlb, new_end, old_end, new_end,
539                         vma->vm_next ? vma->vm_next->vm_start : 0);
540         } else {
541                 /*
542                  * otherwise, clean from old_start; this is done to not touch
543                  * the address space in [new_end, old_start) some architectures
544                  * have constraints on va-space that make this illegal (IA64) -
545                  * for the others its just a little faster.
546                  */
547                 free_pgd_range(tlb, old_start, old_end, new_end,
548                         vma->vm_next ? vma->vm_next->vm_start : 0);
549         }
550         tlb_finish_mmu(tlb, new_end, old_end);
551
552         /*
553          * shrink the vma to just the new range.
554          */
555         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
556
557         return 0;
558 }
559
560 #define EXTRA_STACK_VM_PAGES    20      /* random */
561
562 /*
563  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
564  * the stack is optionally relocated, and some extra space is added.
565  */
566 int setup_arg_pages(struct linux_binprm *bprm,
567                     unsigned long stack_top,
568                     int executable_stack)
569 {
570         unsigned long ret;
571         unsigned long stack_shift;
572         struct mm_struct *mm = current->mm;
573         struct vm_area_struct *vma = bprm->vma;
574         struct vm_area_struct *prev = NULL;
575         unsigned long vm_flags;
576         unsigned long stack_base;
577         unsigned long stack_size;
578         unsigned long stack_expand;
579         unsigned long rlim_stack;
580
581 #ifdef CONFIG_STACK_GROWSUP
582         /* Limit stack size to 1GB */
583         stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
584         if (stack_base > (1 << 30))
585                 stack_base = 1 << 30;
586
587         /* Make sure we didn't let the argument array grow too large. */
588         if (vma->vm_end - vma->vm_start > stack_base)
589                 return -ENOMEM;
590
591         stack_base = PAGE_ALIGN(stack_top - stack_base);
592
593         stack_shift = vma->vm_start - stack_base;
594         mm->arg_start = bprm->p - stack_shift;
595         bprm->p = vma->vm_end - stack_shift;
596 #else
597         stack_top = arch_align_stack(stack_top);
598         stack_top = PAGE_ALIGN(stack_top);
599
600         if (unlikely(stack_top < mmap_min_addr) ||
601             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
602                 return -ENOMEM;
603
604         stack_shift = vma->vm_end - stack_top;
605
606         bprm->p -= stack_shift;
607         mm->arg_start = bprm->p;
608 #endif
609
610         if (bprm->loader)
611                 bprm->loader -= stack_shift;
612         bprm->exec -= stack_shift;
613
614         down_write(&mm->mmap_sem);
615         vm_flags = VM_STACK_FLAGS;
616
617         /*
618          * Adjust stack execute permissions; explicitly enable for
619          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
620          * (arch default) otherwise.
621          */
622         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
623                 vm_flags |= VM_EXEC;
624         else if (executable_stack == EXSTACK_DISABLE_X)
625                 vm_flags &= ~VM_EXEC;
626         vm_flags |= mm->def_flags;
627
628         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
629                         vm_flags);
630         if (ret)
631                 goto out_unlock;
632         BUG_ON(prev != vma);
633
634         /* Move stack pages down in memory. */
635         if (stack_shift) {
636                 ret = shift_arg_pages(vma, stack_shift);
637                 if (ret)
638                         goto out_unlock;
639         }
640
641         stack_expand = EXTRA_STACK_VM_PAGES * PAGE_SIZE;
642         stack_size = vma->vm_end - vma->vm_start;
643         /*
644          * Align this down to a page boundary as expand_stack
645          * will align it up.
646          */
647         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
648 #ifdef CONFIG_STACK_GROWSUP
649         if (stack_size + stack_expand > rlim_stack)
650                 stack_base = vma->vm_start + rlim_stack;
651         else
652                 stack_base = vma->vm_end + stack_expand;
653 #else
654         if (stack_size + stack_expand > rlim_stack)
655                 stack_base = vma->vm_end - rlim_stack;
656         else
657                 stack_base = vma->vm_start - stack_expand;
658 #endif
659         ret = expand_stack(vma, stack_base);
660         if (ret)
661                 ret = -EFAULT;
662
663 out_unlock:
664         up_write(&mm->mmap_sem);
665         return ret;
666 }
667 EXPORT_SYMBOL(setup_arg_pages);
668
669 #endif /* CONFIG_MMU */
670
671 struct file *open_exec(const char *name)
672 {
673         struct file *file;
674         int err;
675
676         file = do_filp_open(AT_FDCWD, name,
677                                 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
678                                 MAY_EXEC | MAY_OPEN);
679         if (IS_ERR(file))
680                 goto out;
681
682         err = -EACCES;
683         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
684                 goto exit;
685
686         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
687                 goto exit;
688
689         fsnotify_open(file->f_path.dentry);
690
691         err = deny_write_access(file);
692         if (err)
693                 goto exit;
694
695 out:
696         return file;
697
698 exit:
699         fput(file);
700         return ERR_PTR(err);
701 }
702 EXPORT_SYMBOL(open_exec);
703
704 int kernel_read(struct file *file, loff_t offset,
705                 char *addr, unsigned long count)
706 {
707         mm_segment_t old_fs;
708         loff_t pos = offset;
709         int result;
710
711         old_fs = get_fs();
712         set_fs(get_ds());
713         /* The cast to a user pointer is valid due to the set_fs() */
714         result = vfs_read(file, (void __user *)addr, count, &pos);
715         set_fs(old_fs);
716         return result;
717 }
718
719 EXPORT_SYMBOL(kernel_read);
720
721 static int exec_mmap(struct mm_struct *mm)
722 {
723         struct task_struct *tsk;
724         struct mm_struct * old_mm, *active_mm;
725
726         /* Notify parent that we're no longer interested in the old VM */
727         tsk = current;
728         old_mm = current->mm;
729         mm_release(tsk, old_mm);
730
731         if (old_mm) {
732                 /*
733                  * Make sure that if there is a core dump in progress
734                  * for the old mm, we get out and die instead of going
735                  * through with the exec.  We must hold mmap_sem around
736                  * checking core_state and changing tsk->mm.
737                  */
738                 down_read(&old_mm->mmap_sem);
739                 if (unlikely(old_mm->core_state)) {
740                         up_read(&old_mm->mmap_sem);
741                         return -EINTR;
742                 }
743         }
744         task_lock(tsk);
745         active_mm = tsk->active_mm;
746         tsk->mm = mm;
747         tsk->active_mm = mm;
748         activate_mm(active_mm, mm);
749         task_unlock(tsk);
750         arch_pick_mmap_layout(mm);
751         if (old_mm) {
752                 up_read(&old_mm->mmap_sem);
753                 BUG_ON(active_mm != old_mm);
754                 mm_update_next_owner(old_mm);
755                 mmput(old_mm);
756                 return 0;
757         }
758         mmdrop(active_mm);
759         return 0;
760 }
761
762 /*
763  * This function makes sure the current process has its own signal table,
764  * so that flush_signal_handlers can later reset the handlers without
765  * disturbing other processes.  (Other processes might share the signal
766  * table via the CLONE_SIGHAND option to clone().)
767  */
768 static int de_thread(struct task_struct *tsk)
769 {
770         struct signal_struct *sig = tsk->signal;
771         struct sighand_struct *oldsighand = tsk->sighand;
772         spinlock_t *lock = &oldsighand->siglock;
773         int count;
774
775         if (thread_group_empty(tsk))
776                 goto no_thread_group;
777
778         /*
779          * Kill all other threads in the thread group.
780          */
781         spin_lock_irq(lock);
782         if (signal_group_exit(sig)) {
783                 /*
784                  * Another group action in progress, just
785                  * return so that the signal is processed.
786                  */
787                 spin_unlock_irq(lock);
788                 return -EAGAIN;
789         }
790         sig->group_exit_task = tsk;
791         zap_other_threads(tsk);
792
793         /* Account for the thread group leader hanging around: */
794         count = thread_group_leader(tsk) ? 1 : 2;
795         sig->notify_count = count;
796         while (atomic_read(&sig->count) > count) {
797                 __set_current_state(TASK_UNINTERRUPTIBLE);
798                 spin_unlock_irq(lock);
799                 schedule();
800                 spin_lock_irq(lock);
801         }
802         spin_unlock_irq(lock);
803
804         /*
805          * At this point all other threads have exited, all we have to
806          * do is to wait for the thread group leader to become inactive,
807          * and to assume its PID:
808          */
809         if (!thread_group_leader(tsk)) {
810                 struct task_struct *leader = tsk->group_leader;
811
812                 sig->notify_count = -1; /* for exit_notify() */
813                 for (;;) {
814                         write_lock_irq(&tasklist_lock);
815                         if (likely(leader->exit_state))
816                                 break;
817                         __set_current_state(TASK_UNINTERRUPTIBLE);
818                         write_unlock_irq(&tasklist_lock);
819                         schedule();
820                 }
821
822                 /*
823                  * The only record we have of the real-time age of a
824                  * process, regardless of execs it's done, is start_time.
825                  * All the past CPU time is accumulated in signal_struct
826                  * from sister threads now dead.  But in this non-leader
827                  * exec, nothing survives from the original leader thread,
828                  * whose birth marks the true age of this process now.
829                  * When we take on its identity by switching to its PID, we
830                  * also take its birthdate (always earlier than our own).
831                  */
832                 tsk->start_time = leader->start_time;
833
834                 BUG_ON(!same_thread_group(leader, tsk));
835                 BUG_ON(has_group_leader_pid(tsk));
836                 /*
837                  * An exec() starts a new thread group with the
838                  * TGID of the previous thread group. Rehash the
839                  * two threads with a switched PID, and release
840                  * the former thread group leader:
841                  */
842
843                 /* Become a process group leader with the old leader's pid.
844                  * The old leader becomes a thread of the this thread group.
845                  * Note: The old leader also uses this pid until release_task
846                  *       is called.  Odd but simple and correct.
847                  */
848                 detach_pid(tsk, PIDTYPE_PID);
849                 tsk->pid = leader->pid;
850                 attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
851                 transfer_pid(leader, tsk, PIDTYPE_PGID);
852                 transfer_pid(leader, tsk, PIDTYPE_SID);
853                 list_replace_rcu(&leader->tasks, &tsk->tasks);
854
855                 tsk->group_leader = tsk;
856                 leader->group_leader = tsk;
857
858                 tsk->exit_signal = SIGCHLD;
859
860                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
861                 leader->exit_state = EXIT_DEAD;
862                 write_unlock_irq(&tasklist_lock);
863
864                 release_task(leader);
865         }
866
867         sig->group_exit_task = NULL;
868         sig->notify_count = 0;
869
870 no_thread_group:
871         if (current->mm)
872                 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
873
874         exit_itimers(sig);
875         flush_itimer_signals();
876
877         if (atomic_read(&oldsighand->count) != 1) {
878                 struct sighand_struct *newsighand;
879                 /*
880                  * This ->sighand is shared with the CLONE_SIGHAND
881                  * but not CLONE_THREAD task, switch to the new one.
882                  */
883                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
884                 if (!newsighand)
885                         return -ENOMEM;
886
887                 atomic_set(&newsighand->count, 1);
888                 memcpy(newsighand->action, oldsighand->action,
889                        sizeof(newsighand->action));
890
891                 write_lock_irq(&tasklist_lock);
892                 spin_lock(&oldsighand->siglock);
893                 rcu_assign_pointer(tsk->sighand, newsighand);
894                 spin_unlock(&oldsighand->siglock);
895                 write_unlock_irq(&tasklist_lock);
896
897                 __cleanup_sighand(oldsighand);
898         }
899
900         BUG_ON(!thread_group_leader(tsk));
901         return 0;
902 }
903
904 /*
905  * These functions flushes out all traces of the currently running executable
906  * so that a new one can be started
907  */
908 static void flush_old_files(struct files_struct * files)
909 {
910         long j = -1;
911         struct fdtable *fdt;
912
913         spin_lock(&files->file_lock);
914         for (;;) {
915                 unsigned long set, i;
916
917                 j++;
918                 i = j * __NFDBITS;
919                 fdt = files_fdtable(files);
920                 if (i >= fdt->max_fds)
921                         break;
922                 set = fdt->close_on_exec->fds_bits[j];
923                 if (!set)
924                         continue;
925                 fdt->close_on_exec->fds_bits[j] = 0;
926                 spin_unlock(&files->file_lock);
927                 for ( ; set ; i++,set >>= 1) {
928                         if (set & 1) {
929                                 sys_close(i);
930                         }
931                 }
932                 spin_lock(&files->file_lock);
933
934         }
935         spin_unlock(&files->file_lock);
936 }
937
938 char *get_task_comm(char *buf, struct task_struct *tsk)
939 {
940         /* buf must be at least sizeof(tsk->comm) in size */
941         task_lock(tsk);
942         strncpy(buf, tsk->comm, sizeof(tsk->comm));
943         task_unlock(tsk);
944         return buf;
945 }
946
947 void set_task_comm(struct task_struct *tsk, char *buf)
948 {
949         task_lock(tsk);
950         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
951         task_unlock(tsk);
952         perf_event_comm(tsk);
953 }
954
955 int flush_old_exec(struct linux_binprm * bprm)
956 {
957         int retval;
958
959         /*
960          * Make sure we have a private signal table and that
961          * we are unassociated from the previous thread group.
962          */
963         retval = de_thread(current);
964         if (retval)
965                 goto out;
966
967         set_mm_exe_file(bprm->mm, bprm->file);
968
969         /*
970          * Release all of the old mmap stuff
971          */
972         retval = exec_mmap(bprm->mm);
973         if (retval)
974                 goto out;
975
976         bprm->mm = NULL;                /* We're using it now */
977
978         current->flags &= ~PF_RANDOMIZE;
979         flush_thread();
980         current->personality &= ~bprm->per_clear;
981
982         return 0;
983
984 out:
985         return retval;
986 }
987 EXPORT_SYMBOL(flush_old_exec);
988
989 void setup_new_exec(struct linux_binprm * bprm)
990 {
991         int i, ch;
992         char * name;
993         char tcomm[sizeof(current->comm)];
994
995         arch_pick_mmap_layout(current->mm);
996
997         /* This is the point of no return */
998         current->sas_ss_sp = current->sas_ss_size = 0;
999
1000         if (current_euid() == current_uid() && current_egid() == current_gid())
1001                 set_dumpable(current->mm, 1);
1002         else
1003                 set_dumpable(current->mm, suid_dumpable);
1004
1005         name = bprm->filename;
1006
1007         /* Copies the binary name from after last slash */
1008         for (i=0; (ch = *(name++)) != '\0';) {
1009                 if (ch == '/')
1010                         i = 0; /* overwrite what we wrote */
1011                 else
1012                         if (i < (sizeof(tcomm) - 1))
1013                                 tcomm[i++] = ch;
1014         }
1015         tcomm[i] = '\0';
1016         set_task_comm(current, tcomm);
1017
1018         /* Set the new mm task size. We have to do that late because it may
1019          * depend on TIF_32BIT which is only updated in flush_thread() on
1020          * some architectures like powerpc
1021          */
1022         current->mm->task_size = TASK_SIZE;
1023
1024         /* install the new credentials */
1025         if (bprm->cred->uid != current_euid() ||
1026             bprm->cred->gid != current_egid()) {
1027                 current->pdeath_signal = 0;
1028         } else if (file_permission(bprm->file, MAY_READ) ||
1029                    bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1030                 set_dumpable(current->mm, suid_dumpable);
1031         }
1032
1033         /*
1034          * Flush performance counters when crossing a
1035          * security domain:
1036          */
1037         if (!get_dumpable(current->mm))
1038                 perf_event_exit_task(current);
1039
1040         /* An exec changes our domain. We are no longer part of the thread
1041            group */
1042
1043         current->self_exec_id++;
1044                         
1045         flush_signal_handlers(current, 0);
1046         flush_old_files(current->files);
1047 }
1048 EXPORT_SYMBOL(setup_new_exec);
1049
1050 /*
1051  * Prepare credentials and lock ->cred_guard_mutex.
1052  * install_exec_creds() commits the new creds and drops the lock.
1053  * Or, if exec fails before, free_bprm() should release ->cred and
1054  * and unlock.
1055  */
1056 int prepare_bprm_creds(struct linux_binprm *bprm)
1057 {
1058         if (mutex_lock_interruptible(&current->cred_guard_mutex))
1059                 return -ERESTARTNOINTR;
1060
1061         bprm->cred = prepare_exec_creds();
1062         if (likely(bprm->cred))
1063                 return 0;
1064
1065         mutex_unlock(&current->cred_guard_mutex);
1066         return -ENOMEM;
1067 }
1068
1069 void free_bprm(struct linux_binprm *bprm)
1070 {
1071         free_arg_pages(bprm);
1072         if (bprm->cred) {
1073                 mutex_unlock(&current->cred_guard_mutex);
1074                 abort_creds(bprm->cred);
1075         }
1076         kfree(bprm);
1077 }
1078
1079 /*
1080  * install the new credentials for this executable
1081  */
1082 void install_exec_creds(struct linux_binprm *bprm)
1083 {
1084         security_bprm_committing_creds(bprm);
1085
1086         commit_creds(bprm->cred);
1087         bprm->cred = NULL;
1088         /*
1089          * cred_guard_mutex must be held at least to this point to prevent
1090          * ptrace_attach() from altering our determination of the task's
1091          * credentials; any time after this it may be unlocked.
1092          */
1093         security_bprm_committed_creds(bprm);
1094         mutex_unlock(&current->cred_guard_mutex);
1095 }
1096 EXPORT_SYMBOL(install_exec_creds);
1097
1098 /*
1099  * determine how safe it is to execute the proposed program
1100  * - the caller must hold current->cred_guard_mutex to protect against
1101  *   PTRACE_ATTACH
1102  */
1103 int check_unsafe_exec(struct linux_binprm *bprm)
1104 {
1105         struct task_struct *p = current, *t;
1106         unsigned n_fs;
1107         int res = 0;
1108
1109         bprm->unsafe = tracehook_unsafe_exec(p);
1110
1111         n_fs = 1;
1112         write_lock(&p->fs->lock);
1113         rcu_read_lock();
1114         for (t = next_thread(p); t != p; t = next_thread(t)) {
1115                 if (t->fs == p->fs)
1116                         n_fs++;
1117         }
1118         rcu_read_unlock();
1119
1120         if (p->fs->users > n_fs) {
1121                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1122         } else {
1123                 res = -EAGAIN;
1124                 if (!p->fs->in_exec) {
1125                         p->fs->in_exec = 1;
1126                         res = 1;
1127                 }
1128         }
1129         write_unlock(&p->fs->lock);
1130
1131         return res;
1132 }
1133
1134 /* 
1135  * Fill the binprm structure from the inode. 
1136  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1137  *
1138  * This may be called multiple times for binary chains (scripts for example).
1139  */
1140 int prepare_binprm(struct linux_binprm *bprm)
1141 {
1142         umode_t mode;
1143         struct inode * inode = bprm->file->f_path.dentry->d_inode;
1144         int retval;
1145
1146         mode = inode->i_mode;
1147         if (bprm->file->f_op == NULL)
1148                 return -EACCES;
1149
1150         /* clear any previous set[ug]id data from a previous binary */
1151         bprm->cred->euid = current_euid();
1152         bprm->cred->egid = current_egid();
1153
1154         if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1155                 /* Set-uid? */
1156                 if (mode & S_ISUID) {
1157                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1158                         bprm->cred->euid = inode->i_uid;
1159                 }
1160
1161                 /* Set-gid? */
1162                 /*
1163                  * If setgid is set but no group execute bit then this
1164                  * is a candidate for mandatory locking, not a setgid
1165                  * executable.
1166                  */
1167                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1168                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1169                         bprm->cred->egid = inode->i_gid;
1170                 }
1171         }
1172
1173         /* fill in binprm security blob */
1174         retval = security_bprm_set_creds(bprm);
1175         if (retval)
1176                 return retval;
1177         bprm->cred_prepared = 1;
1178
1179         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1180         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1181 }
1182
1183 EXPORT_SYMBOL(prepare_binprm);
1184
1185 /*
1186  * Arguments are '\0' separated strings found at the location bprm->p
1187  * points to; chop off the first by relocating brpm->p to right after
1188  * the first '\0' encountered.
1189  */
1190 int remove_arg_zero(struct linux_binprm *bprm)
1191 {
1192         int ret = 0;
1193         unsigned long offset;
1194         char *kaddr;
1195         struct page *page;
1196
1197         if (!bprm->argc)
1198                 return 0;
1199
1200         do {
1201                 offset = bprm->p & ~PAGE_MASK;
1202                 page = get_arg_page(bprm, bprm->p, 0);
1203                 if (!page) {
1204                         ret = -EFAULT;
1205                         goto out;
1206                 }
1207                 kaddr = kmap_atomic(page, KM_USER0);
1208
1209                 for (; offset < PAGE_SIZE && kaddr[offset];
1210                                 offset++, bprm->p++)
1211                         ;
1212
1213                 kunmap_atomic(kaddr, KM_USER0);
1214                 put_arg_page(page);
1215
1216                 if (offset == PAGE_SIZE)
1217                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1218         } while (offset == PAGE_SIZE);
1219
1220         bprm->p++;
1221         bprm->argc--;
1222         ret = 0;
1223
1224 out:
1225         return ret;
1226 }
1227 EXPORT_SYMBOL(remove_arg_zero);
1228
1229 /*
1230  * cycle the list of binary formats handler, until one recognizes the image
1231  */
1232 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1233 {
1234         unsigned int depth = bprm->recursion_depth;
1235         int try,retval;
1236         struct linux_binfmt *fmt;
1237
1238         retval = security_bprm_check(bprm);
1239         if (retval)
1240                 return retval;
1241         retval = ima_bprm_check(bprm);
1242         if (retval)
1243                 return retval;
1244
1245         /* kernel module loader fixup */
1246         /* so we don't try to load run modprobe in kernel space. */
1247         set_fs(USER_DS);
1248
1249         retval = audit_bprm(bprm);
1250         if (retval)
1251                 return retval;
1252
1253         retval = -ENOENT;
1254         for (try=0; try<2; try++) {
1255                 read_lock(&binfmt_lock);
1256                 list_for_each_entry(fmt, &formats, lh) {
1257                         int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1258                         if (!fn)
1259                                 continue;
1260                         if (!try_module_get(fmt->module))
1261                                 continue;
1262                         read_unlock(&binfmt_lock);
1263                         retval = fn(bprm, regs);
1264                         /*
1265                          * Restore the depth counter to its starting value
1266                          * in this call, so we don't have to rely on every
1267                          * load_binary function to restore it on return.
1268                          */
1269                         bprm->recursion_depth = depth;
1270                         if (retval >= 0) {
1271                                 if (depth == 0)
1272                                         tracehook_report_exec(fmt, bprm, regs);
1273                                 put_binfmt(fmt);
1274                                 allow_write_access(bprm->file);
1275                                 if (bprm->file)
1276                                         fput(bprm->file);
1277                                 bprm->file = NULL;
1278                                 current->did_exec = 1;
1279                                 proc_exec_connector(current);
1280                                 return retval;
1281                         }
1282                         read_lock(&binfmt_lock);
1283                         put_binfmt(fmt);
1284                         if (retval != -ENOEXEC || bprm->mm == NULL)
1285                                 break;
1286                         if (!bprm->file) {
1287                                 read_unlock(&binfmt_lock);
1288                                 return retval;
1289                         }
1290                 }
1291                 read_unlock(&binfmt_lock);
1292                 if (retval != -ENOEXEC || bprm->mm == NULL) {
1293                         break;
1294 #ifdef CONFIG_MODULES
1295                 } else {
1296 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1297                         if (printable(bprm->buf[0]) &&
1298                             printable(bprm->buf[1]) &&
1299                             printable(bprm->buf[2]) &&
1300                             printable(bprm->buf[3]))
1301                                 break; /* -ENOEXEC */
1302                         request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1303 #endif
1304                 }
1305         }
1306         return retval;
1307 }
1308
1309 EXPORT_SYMBOL(search_binary_handler);
1310
1311 /*
1312  * sys_execve() executes a new program.
1313  */
1314 int do_execve(char * filename,
1315         char __user *__user *argv,
1316         char __user *__user *envp,
1317         struct pt_regs * regs)
1318 {
1319         struct linux_binprm *bprm;
1320         struct file *file;
1321         struct files_struct *displaced;
1322         bool clear_in_exec;
1323         int retval;
1324
1325         retval = unshare_files(&displaced);
1326         if (retval)
1327                 goto out_ret;
1328
1329         retval = -ENOMEM;
1330         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1331         if (!bprm)
1332                 goto out_files;
1333
1334         retval = prepare_bprm_creds(bprm);
1335         if (retval)
1336                 goto out_free;
1337
1338         retval = check_unsafe_exec(bprm);
1339         if (retval < 0)
1340                 goto out_free;
1341         clear_in_exec = retval;
1342         current->in_execve = 1;
1343
1344         file = open_exec(filename);
1345         retval = PTR_ERR(file);
1346         if (IS_ERR(file))
1347                 goto out_unmark;
1348
1349         sched_exec();
1350
1351         bprm->file = file;
1352         bprm->filename = filename;
1353         bprm->interp = filename;
1354
1355         retval = bprm_mm_init(bprm);
1356         if (retval)
1357                 goto out_file;
1358
1359         bprm->argc = count(argv, MAX_ARG_STRINGS);
1360         if ((retval = bprm->argc) < 0)
1361                 goto out;
1362
1363         bprm->envc = count(envp, MAX_ARG_STRINGS);
1364         if ((retval = bprm->envc) < 0)
1365                 goto out;
1366
1367         retval = prepare_binprm(bprm);
1368         if (retval < 0)
1369                 goto out;
1370
1371         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1372         if (retval < 0)
1373                 goto out;
1374
1375         bprm->exec = bprm->p;
1376         retval = copy_strings(bprm->envc, envp, bprm);
1377         if (retval < 0)
1378                 goto out;
1379
1380         retval = copy_strings(bprm->argc, argv, bprm);
1381         if (retval < 0)
1382                 goto out;
1383
1384         current->flags &= ~PF_KTHREAD;
1385         retval = search_binary_handler(bprm,regs);
1386         if (retval < 0)
1387                 goto out;
1388
1389         /* execve succeeded */
1390         current->fs->in_exec = 0;
1391         current->in_execve = 0;
1392         acct_update_integrals(current);
1393         free_bprm(bprm);
1394         if (displaced)
1395                 put_files_struct(displaced);
1396         return retval;
1397
1398 out:
1399         if (bprm->mm)
1400                 mmput (bprm->mm);
1401
1402 out_file:
1403         if (bprm->file) {
1404                 allow_write_access(bprm->file);
1405                 fput(bprm->file);
1406         }
1407
1408 out_unmark:
1409         if (clear_in_exec)
1410                 current->fs->in_exec = 0;
1411         current->in_execve = 0;
1412
1413 out_free:
1414         free_bprm(bprm);
1415
1416 out_files:
1417         if (displaced)
1418                 reset_files_struct(displaced);
1419 out_ret:
1420         return retval;
1421 }
1422
1423 void set_binfmt(struct linux_binfmt *new)
1424 {
1425         struct mm_struct *mm = current->mm;
1426
1427         if (mm->binfmt)
1428                 module_put(mm->binfmt->module);
1429
1430         mm->binfmt = new;
1431         if (new)
1432                 __module_get(new->module);
1433 }
1434
1435 EXPORT_SYMBOL(set_binfmt);
1436
1437 /* format_corename will inspect the pattern parameter, and output a
1438  * name into corename, which must have space for at least
1439  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1440  */
1441 static int format_corename(char *corename, long signr)
1442 {
1443         const struct cred *cred = current_cred();
1444         const char *pat_ptr = core_pattern;
1445         int ispipe = (*pat_ptr == '|');
1446         char *out_ptr = corename;
1447         char *const out_end = corename + CORENAME_MAX_SIZE;
1448         int rc;
1449         int pid_in_pattern = 0;
1450
1451         /* Repeat as long as we have more pattern to process and more output
1452            space */
1453         while (*pat_ptr) {
1454                 if (*pat_ptr != '%') {
1455                         if (out_ptr == out_end)
1456                                 goto out;
1457                         *out_ptr++ = *pat_ptr++;
1458                 } else {
1459                         switch (*++pat_ptr) {
1460                         case 0:
1461                                 goto out;
1462                         /* Double percent, output one percent */
1463                         case '%':
1464                                 if (out_ptr == out_end)
1465                                         goto out;
1466                                 *out_ptr++ = '%';
1467                                 break;
1468                         /* pid */
1469                         case 'p':
1470                                 pid_in_pattern = 1;
1471                                 rc = snprintf(out_ptr, out_end - out_ptr,
1472                                               "%d", task_tgid_vnr(current));
1473                                 if (rc > out_end - out_ptr)
1474                                         goto out;
1475                                 out_ptr += rc;
1476                                 break;
1477                         /* uid */
1478                         case 'u':
1479                                 rc = snprintf(out_ptr, out_end - out_ptr,
1480                                               "%d", cred->uid);
1481                                 if (rc > out_end - out_ptr)
1482                                         goto out;
1483                                 out_ptr += rc;
1484                                 break;
1485                         /* gid */
1486                         case 'g':
1487                                 rc = snprintf(out_ptr, out_end - out_ptr,
1488                                               "%d", cred->gid);
1489                                 if (rc > out_end - out_ptr)
1490                                         goto out;
1491                                 out_ptr += rc;
1492                                 break;
1493                         /* signal that caused the coredump */
1494                         case 's':
1495                                 rc = snprintf(out_ptr, out_end - out_ptr,
1496                                               "%ld", signr);
1497                                 if (rc > out_end - out_ptr)
1498                                         goto out;
1499                                 out_ptr += rc;
1500                                 break;
1501                         /* UNIX time of coredump */
1502                         case 't': {
1503                                 struct timeval tv;
1504                                 do_gettimeofday(&tv);
1505                                 rc = snprintf(out_ptr, out_end - out_ptr,
1506                                               "%lu", tv.tv_sec);
1507                                 if (rc > out_end - out_ptr)
1508                                         goto out;
1509                                 out_ptr += rc;
1510                                 break;
1511                         }
1512                         /* hostname */
1513                         case 'h':
1514                                 down_read(&uts_sem);
1515                                 rc = snprintf(out_ptr, out_end - out_ptr,
1516                                               "%s", utsname()->nodename);
1517                                 up_read(&uts_sem);
1518                                 if (rc > out_end - out_ptr)
1519                                         goto out;
1520                                 out_ptr += rc;
1521                                 break;
1522                         /* executable */
1523                         case 'e':
1524                                 rc = snprintf(out_ptr, out_end - out_ptr,
1525                                               "%s", current->comm);
1526                                 if (rc > out_end - out_ptr)
1527                                         goto out;
1528                                 out_ptr += rc;
1529                                 break;
1530                         /* core limit size */
1531                         case 'c':
1532                                 rc = snprintf(out_ptr, out_end - out_ptr,
1533                                               "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1534                                 if (rc > out_end - out_ptr)
1535                                         goto out;
1536                                 out_ptr += rc;
1537                                 break;
1538                         default:
1539                                 break;
1540                         }
1541                         ++pat_ptr;
1542                 }
1543         }
1544         /* Backward compatibility with core_uses_pid:
1545          *
1546          * If core_pattern does not include a %p (as is the default)
1547          * and core_uses_pid is set, then .%pid will be appended to
1548          * the filename. Do not do this for piped commands. */
1549         if (!ispipe && !pid_in_pattern && core_uses_pid) {
1550                 rc = snprintf(out_ptr, out_end - out_ptr,
1551                               ".%d", task_tgid_vnr(current));
1552                 if (rc > out_end - out_ptr)
1553                         goto out;
1554                 out_ptr += rc;
1555         }
1556 out:
1557         *out_ptr = 0;
1558         return ispipe;
1559 }
1560
1561 static int zap_process(struct task_struct *start)
1562 {
1563         struct task_struct *t;
1564         int nr = 0;
1565
1566         start->signal->flags = SIGNAL_GROUP_EXIT;
1567         start->signal->group_stop_count = 0;
1568
1569         t = start;
1570         do {
1571                 if (t != current && t->mm) {
1572                         sigaddset(&t->pending.signal, SIGKILL);
1573                         signal_wake_up(t, 1);
1574                         nr++;
1575                 }
1576         } while_each_thread(start, t);
1577
1578         return nr;
1579 }
1580
1581 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1582                                 struct core_state *core_state, int exit_code)
1583 {
1584         struct task_struct *g, *p;
1585         unsigned long flags;
1586         int nr = -EAGAIN;
1587
1588         spin_lock_irq(&tsk->sighand->siglock);
1589         if (!signal_group_exit(tsk->signal)) {
1590                 mm->core_state = core_state;
1591                 tsk->signal->group_exit_code = exit_code;
1592                 nr = zap_process(tsk);
1593         }
1594         spin_unlock_irq(&tsk->sighand->siglock);
1595         if (unlikely(nr < 0))
1596                 return nr;
1597
1598         if (atomic_read(&mm->mm_users) == nr + 1)
1599                 goto done;
1600         /*
1601          * We should find and kill all tasks which use this mm, and we should
1602          * count them correctly into ->nr_threads. We don't take tasklist
1603          * lock, but this is safe wrt:
1604          *
1605          * fork:
1606          *      None of sub-threads can fork after zap_process(leader). All
1607          *      processes which were created before this point should be
1608          *      visible to zap_threads() because copy_process() adds the new
1609          *      process to the tail of init_task.tasks list, and lock/unlock
1610          *      of ->siglock provides a memory barrier.
1611          *
1612          * do_exit:
1613          *      The caller holds mm->mmap_sem. This means that the task which
1614          *      uses this mm can't pass exit_mm(), so it can't exit or clear
1615          *      its ->mm.
1616          *
1617          * de_thread:
1618          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
1619          *      we must see either old or new leader, this does not matter.
1620          *      However, it can change p->sighand, so lock_task_sighand(p)
1621          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
1622          *      it can't fail.
1623          *
1624          *      Note also that "g" can be the old leader with ->mm == NULL
1625          *      and already unhashed and thus removed from ->thread_group.
1626          *      This is OK, __unhash_process()->list_del_rcu() does not
1627          *      clear the ->next pointer, we will find the new leader via
1628          *      next_thread().
1629          */
1630         rcu_read_lock();
1631         for_each_process(g) {
1632                 if (g == tsk->group_leader)
1633                         continue;
1634                 if (g->flags & PF_KTHREAD)
1635                         continue;
1636                 p = g;
1637                 do {
1638                         if (p->mm) {
1639                                 if (unlikely(p->mm == mm)) {
1640                                         lock_task_sighand(p, &flags);
1641                                         nr += zap_process(p);
1642                                         unlock_task_sighand(p, &flags);
1643                                 }
1644                                 break;
1645                         }
1646                 } while_each_thread(g, p);
1647         }
1648         rcu_read_unlock();
1649 done:
1650         atomic_set(&core_state->nr_threads, nr);
1651         return nr;
1652 }
1653
1654 static int coredump_wait(int exit_code, struct core_state *core_state)
1655 {
1656         struct task_struct *tsk = current;
1657         struct mm_struct *mm = tsk->mm;
1658         struct completion *vfork_done;
1659         int core_waiters;
1660
1661         init_completion(&core_state->startup);
1662         core_state->dumper.task = tsk;
1663         core_state->dumper.next = NULL;
1664         core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1665         up_write(&mm->mmap_sem);
1666
1667         if (unlikely(core_waiters < 0))
1668                 goto fail;
1669
1670         /*
1671          * Make sure nobody is waiting for us to release the VM,
1672          * otherwise we can deadlock when we wait on each other
1673          */
1674         vfork_done = tsk->vfork_done;
1675         if (vfork_done) {
1676                 tsk->vfork_done = NULL;
1677                 complete(vfork_done);
1678         }
1679
1680         if (core_waiters)
1681                 wait_for_completion(&core_state->startup);
1682 fail:
1683         return core_waiters;
1684 }
1685
1686 static void coredump_finish(struct mm_struct *mm)
1687 {
1688         struct core_thread *curr, *next;
1689         struct task_struct *task;
1690
1691         next = mm->core_state->dumper.next;
1692         while ((curr = next) != NULL) {
1693                 next = curr->next;
1694                 task = curr->task;
1695                 /*
1696                  * see exit_mm(), curr->task must not see
1697                  * ->task == NULL before we read ->next.
1698                  */
1699                 smp_mb();
1700                 curr->task = NULL;
1701                 wake_up_process(task);
1702         }
1703
1704         mm->core_state = NULL;
1705 }
1706
1707 /*
1708  * set_dumpable converts traditional three-value dumpable to two flags and
1709  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1710  * these bits are not changed atomically.  So get_dumpable can observe the
1711  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1712  * return either old dumpable or new one by paying attention to the order of
1713  * modifying the bits.
1714  *
1715  * dumpable |   mm->flags (binary)
1716  * old  new | initial interim  final
1717  * ---------+-----------------------
1718  *  0    1  |   00      01      01
1719  *  0    2  |   00      10(*)   11
1720  *  1    0  |   01      00      00
1721  *  1    2  |   01      11      11
1722  *  2    0  |   11      10(*)   00
1723  *  2    1  |   11      11      01
1724  *
1725  * (*) get_dumpable regards interim value of 10 as 11.
1726  */
1727 void set_dumpable(struct mm_struct *mm, int value)
1728 {
1729         switch (value) {
1730         case 0:
1731                 clear_bit(MMF_DUMPABLE, &mm->flags);
1732                 smp_wmb();
1733                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1734                 break;
1735         case 1:
1736                 set_bit(MMF_DUMPABLE, &mm->flags);
1737                 smp_wmb();
1738                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1739                 break;
1740         case 2:
1741                 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1742                 smp_wmb();
1743                 set_bit(MMF_DUMPABLE, &mm->flags);
1744                 break;
1745         }
1746 }
1747
1748 int get_dumpable(struct mm_struct *mm)
1749 {
1750         int ret;
1751
1752         ret = mm->flags & 0x3;
1753         return (ret >= 2) ? 2 : ret;
1754 }
1755
1756 static void wait_for_dump_helpers(struct file *file)
1757 {
1758         struct pipe_inode_info *pipe;
1759
1760         pipe = file->f_path.dentry->d_inode->i_pipe;
1761
1762         pipe_lock(pipe);
1763         pipe->readers++;
1764         pipe->writers--;
1765
1766         while ((pipe->readers > 1) && (!signal_pending(current))) {
1767                 wake_up_interruptible_sync(&pipe->wait);
1768                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1769                 pipe_wait(pipe);
1770         }
1771
1772         pipe->readers--;
1773         pipe->writers++;
1774         pipe_unlock(pipe);
1775
1776 }
1777
1778
1779 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1780 {
1781         struct core_state core_state;
1782         char corename[CORENAME_MAX_SIZE + 1];
1783         struct mm_struct *mm = current->mm;
1784         struct linux_binfmt * binfmt;
1785         struct inode * inode;
1786         struct file * file;
1787         const struct cred *old_cred;
1788         struct cred *cred;
1789         int retval = 0;
1790         int flag = 0;
1791         int ispipe = 0;
1792         unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1793         char **helper_argv = NULL;
1794         int helper_argc = 0;
1795         int dump_count = 0;
1796         static atomic_t core_dump_count = ATOMIC_INIT(0);
1797
1798         audit_core_dumps(signr);
1799
1800         binfmt = mm->binfmt;
1801         if (!binfmt || !binfmt->core_dump)
1802                 goto fail;
1803
1804         cred = prepare_creds();
1805         if (!cred) {
1806                 retval = -ENOMEM;
1807                 goto fail;
1808         }
1809
1810         down_write(&mm->mmap_sem);
1811         /*
1812          * If another thread got here first, or we are not dumpable, bail out.
1813          */
1814         if (mm->core_state || !get_dumpable(mm)) {
1815                 up_write(&mm->mmap_sem);
1816                 put_cred(cred);
1817                 goto fail;
1818         }
1819
1820         /*
1821          *      We cannot trust fsuid as being the "true" uid of the
1822          *      process nor do we know its entire history. We only know it
1823          *      was tainted so we dump it as root in mode 2.
1824          */
1825         if (get_dumpable(mm) == 2) {    /* Setuid core dump mode */
1826                 flag = O_EXCL;          /* Stop rewrite attacks */
1827                 cred->fsuid = 0;        /* Dump root private */
1828         }
1829
1830         retval = coredump_wait(exit_code, &core_state);
1831         if (retval < 0) {
1832                 put_cred(cred);
1833                 goto fail;
1834         }
1835
1836         old_cred = override_creds(cred);
1837
1838         /*
1839          * Clear any false indication of pending signals that might
1840          * be seen by the filesystem code called to write the core file.
1841          */
1842         clear_thread_flag(TIF_SIGPENDING);
1843
1844         /*
1845          * lock_kernel() because format_corename() is controlled by sysctl, which
1846          * uses lock_kernel()
1847          */
1848         lock_kernel();
1849         ispipe = format_corename(corename, signr);
1850         unlock_kernel();
1851
1852         if ((!ispipe) && (core_limit < binfmt->min_coredump))
1853                 goto fail_unlock;
1854
1855         if (ispipe) {
1856                 if (core_limit == 0) {
1857                         /*
1858                          * Normally core limits are irrelevant to pipes, since
1859                          * we're not writing to the file system, but we use
1860                          * core_limit of 0 here as a speacial value. Any
1861                          * non-zero limit gets set to RLIM_INFINITY below, but
1862                          * a limit of 0 skips the dump.  This is a consistent
1863                          * way to catch recursive crashes.  We can still crash
1864                          * if the core_pattern binary sets RLIM_CORE =  !0
1865                          * but it runs as root, and can do lots of stupid things
1866                          * Note that we use task_tgid_vnr here to grab the pid
1867                          * of the process group leader.  That way we get the
1868                          * right pid if a thread in a multi-threaded
1869                          * core_pattern process dies.
1870                          */
1871                         printk(KERN_WARNING
1872                                 "Process %d(%s) has RLIMIT_CORE set to 0\n",
1873                                 task_tgid_vnr(current), current->comm);
1874                         printk(KERN_WARNING "Aborting core\n");
1875                         goto fail_unlock;
1876                 }
1877
1878                 dump_count = atomic_inc_return(&core_dump_count);
1879                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1880                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1881                                task_tgid_vnr(current), current->comm);
1882                         printk(KERN_WARNING "Skipping core dump\n");
1883                         goto fail_dropcount;
1884                 }
1885
1886                 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1887                 if (!helper_argv) {
1888                         printk(KERN_WARNING "%s failed to allocate memory\n",
1889                                __func__);
1890                         goto fail_dropcount;
1891                 }
1892
1893                 core_limit = RLIM_INFINITY;
1894
1895                 /* SIGPIPE can happen, but it's just never processed */
1896                 if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1897                                 &file)) {
1898                         printk(KERN_INFO "Core dump to %s pipe failed\n",
1899                                corename);
1900                         goto fail_dropcount;
1901                 }
1902         } else
1903                 file = filp_open(corename,
1904                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1905                                  0600);
1906         if (IS_ERR(file))
1907                 goto fail_dropcount;
1908         inode = file->f_path.dentry->d_inode;
1909         if (inode->i_nlink > 1)
1910                 goto close_fail;        /* multiple links - don't dump */
1911         if (!ispipe && d_unhashed(file->f_path.dentry))
1912                 goto close_fail;
1913
1914         /* AK: actually i see no reason to not allow this for named pipes etc.,
1915            but keep the previous behaviour for now. */
1916         if (!ispipe && !S_ISREG(inode->i_mode))
1917                 goto close_fail;
1918         /*
1919          * Dont allow local users get cute and trick others to coredump
1920          * into their pre-created files:
1921          * Note, this is not relevant for pipes
1922          */
1923         if (!ispipe && (inode->i_uid != current_fsuid()))
1924                 goto close_fail;
1925         if (!file->f_op)
1926                 goto close_fail;
1927         if (!file->f_op->write)
1928                 goto close_fail;
1929         if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1930                 goto close_fail;
1931
1932         retval = binfmt->core_dump(signr, regs, file, core_limit);
1933
1934         if (retval)
1935                 current->signal->group_exit_code |= 0x80;
1936 close_fail:
1937         if (ispipe && core_pipe_limit)
1938                 wait_for_dump_helpers(file);
1939         filp_close(file, NULL);
1940 fail_dropcount:
1941         if (dump_count)
1942                 atomic_dec(&core_dump_count);
1943 fail_unlock:
1944         if (helper_argv)
1945                 argv_free(helper_argv);
1946
1947         revert_creds(old_cred);
1948         put_cred(cred);
1949         coredump_finish(mm);
1950 fail:
1951         return;
1952 }