[PATCH] ext4: allow larger descriptor size
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / balloc.c
1 /*
2  *  linux/fs/ext4/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/ext4_fs.h>
19 #include <linux/ext4_jbd2.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22
23 /*
24  * balloc.c contains the blocks allocation and deallocation routines
25  */
26
27 /*
28  * The free blocks are managed by bitmaps.  A file system contains several
29  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
30  * block for inodes, N blocks for the inode table and data blocks.
31  *
32  * The file system contains group descriptors which are located after the
33  * super block.  Each descriptor contains the number of the bitmap block and
34  * the free blocks count in the block.  The descriptors are loaded in memory
35  * when a file system is mounted (see ext4_read_super).
36  */
37
38
39 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
40
41 /**
42  * ext4_get_group_desc() -- load group descriptor from disk
43  * @sb:                 super block
44  * @block_group:        given block group
45  * @bh:                 pointer to the buffer head to store the block
46  *                      group descriptor
47  */
48 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
49                                              unsigned int block_group,
50                                              struct buffer_head ** bh)
51 {
52         unsigned long group_desc;
53         unsigned long offset;
54         struct ext4_group_desc * desc;
55         struct ext4_sb_info *sbi = EXT4_SB(sb);
56
57         if (block_group >= sbi->s_groups_count) {
58                 ext4_error (sb, "ext4_get_group_desc",
59                             "block_group >= groups_count - "
60                             "block_group = %d, groups_count = %lu",
61                             block_group, sbi->s_groups_count);
62
63                 return NULL;
64         }
65         smp_rmb();
66
67         group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
68         offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
69         if (!sbi->s_group_desc[group_desc]) {
70                 ext4_error (sb, "ext4_get_group_desc",
71                             "Group descriptor not loaded - "
72                             "block_group = %d, group_desc = %lu, desc = %lu",
73                              block_group, group_desc, offset);
74                 return NULL;
75         }
76
77         desc = (struct ext4_group_desc *)(
78                 (__u8 *)sbi->s_group_desc[group_desc]->b_data +
79                 offset * EXT4_DESC_SIZE(sb));
80         if (bh)
81                 *bh = sbi->s_group_desc[group_desc];
82         return desc;
83 }
84
85 /**
86  * read_block_bitmap()
87  * @sb:                 super block
88  * @block_group:        given block group
89  *
90  * Read the bitmap for a given block_group, reading into the specified
91  * slot in the superblock's bitmap cache.
92  *
93  * Return buffer_head on success or NULL in case of failure.
94  */
95 static struct buffer_head *
96 read_block_bitmap(struct super_block *sb, unsigned int block_group)
97 {
98         struct ext4_group_desc * desc;
99         struct buffer_head * bh = NULL;
100
101         desc = ext4_get_group_desc (sb, block_group, NULL);
102         if (!desc)
103                 goto error_out;
104         bh = sb_bread(sb, ext4_block_bitmap(desc));
105         if (!bh)
106                 ext4_error (sb, "read_block_bitmap",
107                             "Cannot read block bitmap - "
108                             "block_group = %d, block_bitmap = %llu",
109                             block_group,
110                             ext4_block_bitmap(desc));
111 error_out:
112         return bh;
113 }
114 /*
115  * The reservation window structure operations
116  * --------------------------------------------
117  * Operations include:
118  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
119  *
120  * We use a red-black tree to represent per-filesystem reservation
121  * windows.
122  *
123  */
124
125 /**
126  * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
127  * @rb_root:            root of per-filesystem reservation rb tree
128  * @verbose:            verbose mode
129  * @fn:                 function which wishes to dump the reservation map
130  *
131  * If verbose is turned on, it will print the whole block reservation
132  * windows(start, end). Otherwise, it will only print out the "bad" windows,
133  * those windows that overlap with their immediate neighbors.
134  */
135 #if 1
136 static void __rsv_window_dump(struct rb_root *root, int verbose,
137                               const char *fn)
138 {
139         struct rb_node *n;
140         struct ext4_reserve_window_node *rsv, *prev;
141         int bad;
142
143 restart:
144         n = rb_first(root);
145         bad = 0;
146         prev = NULL;
147
148         printk("Block Allocation Reservation Windows Map (%s):\n", fn);
149         while (n) {
150                 rsv = list_entry(n, struct ext4_reserve_window_node, rsv_node);
151                 if (verbose)
152                         printk("reservation window 0x%p "
153                                "start:  %llu, end:  %llu\n",
154                                rsv, rsv->rsv_start, rsv->rsv_end);
155                 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
156                         printk("Bad reservation %p (start >= end)\n",
157                                rsv);
158                         bad = 1;
159                 }
160                 if (prev && prev->rsv_end >= rsv->rsv_start) {
161                         printk("Bad reservation %p (prev->end >= start)\n",
162                                rsv);
163                         bad = 1;
164                 }
165                 if (bad) {
166                         if (!verbose) {
167                                 printk("Restarting reservation walk in verbose mode\n");
168                                 verbose = 1;
169                                 goto restart;
170                         }
171                 }
172                 n = rb_next(n);
173                 prev = rsv;
174         }
175         printk("Window map complete.\n");
176         if (bad)
177                 BUG();
178 }
179 #define rsv_window_dump(root, verbose) \
180         __rsv_window_dump((root), (verbose), __FUNCTION__)
181 #else
182 #define rsv_window_dump(root, verbose) do {} while (0)
183 #endif
184
185 /**
186  * goal_in_my_reservation()
187  * @rsv:                inode's reservation window
188  * @grp_goal:           given goal block relative to the allocation block group
189  * @group:              the current allocation block group
190  * @sb:                 filesystem super block
191  *
192  * Test if the given goal block (group relative) is within the file's
193  * own block reservation window range.
194  *
195  * If the reservation window is outside the goal allocation group, return 0;
196  * grp_goal (given goal block) could be -1, which means no specific
197  * goal block. In this case, always return 1.
198  * If the goal block is within the reservation window, return 1;
199  * otherwise, return 0;
200  */
201 static int
202 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
203                         unsigned int group, struct super_block * sb)
204 {
205         ext4_fsblk_t group_first_block, group_last_block;
206
207         group_first_block = ext4_group_first_block_no(sb, group);
208         group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
209
210         if ((rsv->_rsv_start > group_last_block) ||
211             (rsv->_rsv_end < group_first_block))
212                 return 0;
213         if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
214                 || (grp_goal + group_first_block > rsv->_rsv_end)))
215                 return 0;
216         return 1;
217 }
218
219 /**
220  * search_reserve_window()
221  * @rb_root:            root of reservation tree
222  * @goal:               target allocation block
223  *
224  * Find the reserved window which includes the goal, or the previous one
225  * if the goal is not in any window.
226  * Returns NULL if there are no windows or if all windows start after the goal.
227  */
228 static struct ext4_reserve_window_node *
229 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
230 {
231         struct rb_node *n = root->rb_node;
232         struct ext4_reserve_window_node *rsv;
233
234         if (!n)
235                 return NULL;
236
237         do {
238                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
239
240                 if (goal < rsv->rsv_start)
241                         n = n->rb_left;
242                 else if (goal > rsv->rsv_end)
243                         n = n->rb_right;
244                 else
245                         return rsv;
246         } while (n);
247         /*
248          * We've fallen off the end of the tree: the goal wasn't inside
249          * any particular node.  OK, the previous node must be to one
250          * side of the interval containing the goal.  If it's the RHS,
251          * we need to back up one.
252          */
253         if (rsv->rsv_start > goal) {
254                 n = rb_prev(&rsv->rsv_node);
255                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
256         }
257         return rsv;
258 }
259
260 /**
261  * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
262  * @sb:                 super block
263  * @rsv:                reservation window to add
264  *
265  * Must be called with rsv_lock hold.
266  */
267 void ext4_rsv_window_add(struct super_block *sb,
268                     struct ext4_reserve_window_node *rsv)
269 {
270         struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
271         struct rb_node *node = &rsv->rsv_node;
272         ext4_fsblk_t start = rsv->rsv_start;
273
274         struct rb_node ** p = &root->rb_node;
275         struct rb_node * parent = NULL;
276         struct ext4_reserve_window_node *this;
277
278         while (*p)
279         {
280                 parent = *p;
281                 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
282
283                 if (start < this->rsv_start)
284                         p = &(*p)->rb_left;
285                 else if (start > this->rsv_end)
286                         p = &(*p)->rb_right;
287                 else {
288                         rsv_window_dump(root, 1);
289                         BUG();
290                 }
291         }
292
293         rb_link_node(node, parent, p);
294         rb_insert_color(node, root);
295 }
296
297 /**
298  * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
299  * @sb:                 super block
300  * @rsv:                reservation window to remove
301  *
302  * Mark the block reservation window as not allocated, and unlink it
303  * from the filesystem reservation window rb tree. Must be called with
304  * rsv_lock hold.
305  */
306 static void rsv_window_remove(struct super_block *sb,
307                               struct ext4_reserve_window_node *rsv)
308 {
309         rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
310         rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
311         rsv->rsv_alloc_hit = 0;
312         rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
313 }
314
315 /*
316  * rsv_is_empty() -- Check if the reservation window is allocated.
317  * @rsv:                given reservation window to check
318  *
319  * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
320  */
321 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
322 {
323         /* a valid reservation end block could not be 0 */
324         return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
325 }
326
327 /**
328  * ext4_init_block_alloc_info()
329  * @inode:              file inode structure
330  *
331  * Allocate and initialize the  reservation window structure, and
332  * link the window to the ext4 inode structure at last
333  *
334  * The reservation window structure is only dynamically allocated
335  * and linked to ext4 inode the first time the open file
336  * needs a new block. So, before every ext4_new_block(s) call, for
337  * regular files, we should check whether the reservation window
338  * structure exists or not. In the latter case, this function is called.
339  * Fail to do so will result in block reservation being turned off for that
340  * open file.
341  *
342  * This function is called from ext4_get_blocks_handle(), also called
343  * when setting the reservation window size through ioctl before the file
344  * is open for write (needs block allocation).
345  *
346  * Needs truncate_mutex protection prior to call this function.
347  */
348 void ext4_init_block_alloc_info(struct inode *inode)
349 {
350         struct ext4_inode_info *ei = EXT4_I(inode);
351         struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
352         struct super_block *sb = inode->i_sb;
353
354         block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
355         if (block_i) {
356                 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
357
358                 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
359                 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
360
361                 /*
362                  * if filesystem is mounted with NORESERVATION, the goal
363                  * reservation window size is set to zero to indicate
364                  * block reservation is off
365                  */
366                 if (!test_opt(sb, RESERVATION))
367                         rsv->rsv_goal_size = 0;
368                 else
369                         rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
370                 rsv->rsv_alloc_hit = 0;
371                 block_i->last_alloc_logical_block = 0;
372                 block_i->last_alloc_physical_block = 0;
373         }
374         ei->i_block_alloc_info = block_i;
375 }
376
377 /**
378  * ext4_discard_reservation()
379  * @inode:              inode
380  *
381  * Discard(free) block reservation window on last file close, or truncate
382  * or at last iput().
383  *
384  * It is being called in three cases:
385  *      ext4_release_file(): last writer close the file
386  *      ext4_clear_inode(): last iput(), when nobody link to this file.
387  *      ext4_truncate(): when the block indirect map is about to change.
388  *
389  */
390 void ext4_discard_reservation(struct inode *inode)
391 {
392         struct ext4_inode_info *ei = EXT4_I(inode);
393         struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
394         struct ext4_reserve_window_node *rsv;
395         spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
396
397         if (!block_i)
398                 return;
399
400         rsv = &block_i->rsv_window_node;
401         if (!rsv_is_empty(&rsv->rsv_window)) {
402                 spin_lock(rsv_lock);
403                 if (!rsv_is_empty(&rsv->rsv_window))
404                         rsv_window_remove(inode->i_sb, rsv);
405                 spin_unlock(rsv_lock);
406         }
407 }
408
409 /**
410  * ext4_free_blocks_sb() -- Free given blocks and update quota
411  * @handle:                     handle to this transaction
412  * @sb:                         super block
413  * @block:                      start physcial block to free
414  * @count:                      number of blocks to free
415  * @pdquot_freed_blocks:        pointer to quota
416  */
417 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
418                          ext4_fsblk_t block, unsigned long count,
419                          unsigned long *pdquot_freed_blocks)
420 {
421         struct buffer_head *bitmap_bh = NULL;
422         struct buffer_head *gd_bh;
423         unsigned long block_group;
424         ext4_grpblk_t bit;
425         unsigned long i;
426         unsigned long overflow;
427         struct ext4_group_desc * desc;
428         struct ext4_super_block * es;
429         struct ext4_sb_info *sbi;
430         int err = 0, ret;
431         ext4_grpblk_t group_freed;
432
433         *pdquot_freed_blocks = 0;
434         sbi = EXT4_SB(sb);
435         es = sbi->s_es;
436         if (block < le32_to_cpu(es->s_first_data_block) ||
437             block + count < block ||
438             block + count > ext4_blocks_count(es)) {
439                 ext4_error (sb, "ext4_free_blocks",
440                             "Freeing blocks not in datazone - "
441                             "block = %llu, count = %lu", block, count);
442                 goto error_return;
443         }
444
445         ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
446
447 do_more:
448         overflow = 0;
449         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
450         /*
451          * Check to see if we are freeing blocks across a group
452          * boundary.
453          */
454         if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
455                 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
456                 count -= overflow;
457         }
458         brelse(bitmap_bh);
459         bitmap_bh = read_block_bitmap(sb, block_group);
460         if (!bitmap_bh)
461                 goto error_return;
462         desc = ext4_get_group_desc (sb, block_group, &gd_bh);
463         if (!desc)
464                 goto error_return;
465
466         if (in_range(ext4_block_bitmap(desc), block, count) ||
467             in_range(ext4_inode_bitmap(desc), block, count) ||
468             in_range(block, ext4_inode_table(desc), sbi->s_itb_per_group) ||
469             in_range(block + count - 1, ext4_inode_table(desc),
470                      sbi->s_itb_per_group))
471                 ext4_error (sb, "ext4_free_blocks",
472                             "Freeing blocks in system zones - "
473                             "Block = %llu, count = %lu",
474                             block, count);
475
476         /*
477          * We are about to start releasing blocks in the bitmap,
478          * so we need undo access.
479          */
480         /* @@@ check errors */
481         BUFFER_TRACE(bitmap_bh, "getting undo access");
482         err = ext4_journal_get_undo_access(handle, bitmap_bh);
483         if (err)
484                 goto error_return;
485
486         /*
487          * We are about to modify some metadata.  Call the journal APIs
488          * to unshare ->b_data if a currently-committing transaction is
489          * using it
490          */
491         BUFFER_TRACE(gd_bh, "get_write_access");
492         err = ext4_journal_get_write_access(handle, gd_bh);
493         if (err)
494                 goto error_return;
495
496         jbd_lock_bh_state(bitmap_bh);
497
498         for (i = 0, group_freed = 0; i < count; i++) {
499                 /*
500                  * An HJ special.  This is expensive...
501                  */
502 #ifdef CONFIG_JBD_DEBUG
503                 jbd_unlock_bh_state(bitmap_bh);
504                 {
505                         struct buffer_head *debug_bh;
506                         debug_bh = sb_find_get_block(sb, block + i);
507                         if (debug_bh) {
508                                 BUFFER_TRACE(debug_bh, "Deleted!");
509                                 if (!bh2jh(bitmap_bh)->b_committed_data)
510                                         BUFFER_TRACE(debug_bh,
511                                                 "No commited data in bitmap");
512                                 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
513                                 __brelse(debug_bh);
514                         }
515                 }
516                 jbd_lock_bh_state(bitmap_bh);
517 #endif
518                 if (need_resched()) {
519                         jbd_unlock_bh_state(bitmap_bh);
520                         cond_resched();
521                         jbd_lock_bh_state(bitmap_bh);
522                 }
523                 /* @@@ This prevents newly-allocated data from being
524                  * freed and then reallocated within the same
525                  * transaction.
526                  *
527                  * Ideally we would want to allow that to happen, but to
528                  * do so requires making jbd2_journal_forget() capable of
529                  * revoking the queued write of a data block, which
530                  * implies blocking on the journal lock.  *forget()
531                  * cannot block due to truncate races.
532                  *
533                  * Eventually we can fix this by making jbd2_journal_forget()
534                  * return a status indicating whether or not it was able
535                  * to revoke the buffer.  On successful revoke, it is
536                  * safe not to set the allocation bit in the committed
537                  * bitmap, because we know that there is no outstanding
538                  * activity on the buffer any more and so it is safe to
539                  * reallocate it.
540                  */
541                 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
542                 J_ASSERT_BH(bitmap_bh,
543                                 bh2jh(bitmap_bh)->b_committed_data != NULL);
544                 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
545                                 bh2jh(bitmap_bh)->b_committed_data);
546
547                 /*
548                  * We clear the bit in the bitmap after setting the committed
549                  * data bit, because this is the reverse order to that which
550                  * the allocator uses.
551                  */
552                 BUFFER_TRACE(bitmap_bh, "clear bit");
553                 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
554                                                 bit + i, bitmap_bh->b_data)) {
555                         jbd_unlock_bh_state(bitmap_bh);
556                         ext4_error(sb, __FUNCTION__,
557                                    "bit already cleared for block %llu",
558                                    (ext4_fsblk_t)(block + i));
559                         jbd_lock_bh_state(bitmap_bh);
560                         BUFFER_TRACE(bitmap_bh, "bit already cleared");
561                 } else {
562                         group_freed++;
563                 }
564         }
565         jbd_unlock_bh_state(bitmap_bh);
566
567         spin_lock(sb_bgl_lock(sbi, block_group));
568         desc->bg_free_blocks_count =
569                 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
570                         group_freed);
571         spin_unlock(sb_bgl_lock(sbi, block_group));
572         percpu_counter_mod(&sbi->s_freeblocks_counter, count);
573
574         /* We dirtied the bitmap block */
575         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
576         err = ext4_journal_dirty_metadata(handle, bitmap_bh);
577
578         /* And the group descriptor block */
579         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
580         ret = ext4_journal_dirty_metadata(handle, gd_bh);
581         if (!err) err = ret;
582         *pdquot_freed_blocks += group_freed;
583
584         if (overflow && !err) {
585                 block += count;
586                 count = overflow;
587                 goto do_more;
588         }
589         sb->s_dirt = 1;
590 error_return:
591         brelse(bitmap_bh);
592         ext4_std_error(sb, err);
593         return;
594 }
595
596 /**
597  * ext4_free_blocks() -- Free given blocks and update quota
598  * @handle:             handle for this transaction
599  * @inode:              inode
600  * @block:              start physical block to free
601  * @count:              number of blocks to count
602  */
603 void ext4_free_blocks(handle_t *handle, struct inode *inode,
604                         ext4_fsblk_t block, unsigned long count)
605 {
606         struct super_block * sb;
607         unsigned long dquot_freed_blocks;
608
609         sb = inode->i_sb;
610         if (!sb) {
611                 printk ("ext4_free_blocks: nonexistent device");
612                 return;
613         }
614         ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
615         if (dquot_freed_blocks)
616                 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
617         return;
618 }
619
620 /**
621  * ext4_test_allocatable()
622  * @nr:                 given allocation block group
623  * @bh:                 bufferhead contains the bitmap of the given block group
624  *
625  * For ext4 allocations, we must not reuse any blocks which are
626  * allocated in the bitmap buffer's "last committed data" copy.  This
627  * prevents deletes from freeing up the page for reuse until we have
628  * committed the delete transaction.
629  *
630  * If we didn't do this, then deleting something and reallocating it as
631  * data would allow the old block to be overwritten before the
632  * transaction committed (because we force data to disk before commit).
633  * This would lead to corruption if we crashed between overwriting the
634  * data and committing the delete.
635  *
636  * @@@ We may want to make this allocation behaviour conditional on
637  * data-writes at some point, and disable it for metadata allocations or
638  * sync-data inodes.
639  */
640 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
641 {
642         int ret;
643         struct journal_head *jh = bh2jh(bh);
644
645         if (ext4_test_bit(nr, bh->b_data))
646                 return 0;
647
648         jbd_lock_bh_state(bh);
649         if (!jh->b_committed_data)
650                 ret = 1;
651         else
652                 ret = !ext4_test_bit(nr, jh->b_committed_data);
653         jbd_unlock_bh_state(bh);
654         return ret;
655 }
656
657 /**
658  * bitmap_search_next_usable_block()
659  * @start:              the starting block (group relative) of the search
660  * @bh:                 bufferhead contains the block group bitmap
661  * @maxblocks:          the ending block (group relative) of the reservation
662  *
663  * The bitmap search --- search forward alternately through the actual
664  * bitmap on disk and the last-committed copy in journal, until we find a
665  * bit free in both bitmaps.
666  */
667 static ext4_grpblk_t
668 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
669                                         ext4_grpblk_t maxblocks)
670 {
671         ext4_grpblk_t next;
672         struct journal_head *jh = bh2jh(bh);
673
674         while (start < maxblocks) {
675                 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
676                 if (next >= maxblocks)
677                         return -1;
678                 if (ext4_test_allocatable(next, bh))
679                         return next;
680                 jbd_lock_bh_state(bh);
681                 if (jh->b_committed_data)
682                         start = ext4_find_next_zero_bit(jh->b_committed_data,
683                                                         maxblocks, next);
684                 jbd_unlock_bh_state(bh);
685         }
686         return -1;
687 }
688
689 /**
690  * find_next_usable_block()
691  * @start:              the starting block (group relative) to find next
692  *                      allocatable block in bitmap.
693  * @bh:                 bufferhead contains the block group bitmap
694  * @maxblocks:          the ending block (group relative) for the search
695  *
696  * Find an allocatable block in a bitmap.  We honor both the bitmap and
697  * its last-committed copy (if that exists), and perform the "most
698  * appropriate allocation" algorithm of looking for a free block near
699  * the initial goal; then for a free byte somewhere in the bitmap; then
700  * for any free bit in the bitmap.
701  */
702 static ext4_grpblk_t
703 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
704                         ext4_grpblk_t maxblocks)
705 {
706         ext4_grpblk_t here, next;
707         char *p, *r;
708
709         if (start > 0) {
710                 /*
711                  * The goal was occupied; search forward for a free
712                  * block within the next XX blocks.
713                  *
714                  * end_goal is more or less random, but it has to be
715                  * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
716                  * next 64-bit boundary is simple..
717                  */
718                 ext4_grpblk_t end_goal = (start + 63) & ~63;
719                 if (end_goal > maxblocks)
720                         end_goal = maxblocks;
721                 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
722                 if (here < end_goal && ext4_test_allocatable(here, bh))
723                         return here;
724                 ext4_debug("Bit not found near goal\n");
725         }
726
727         here = start;
728         if (here < 0)
729                 here = 0;
730
731         p = ((char *)bh->b_data) + (here >> 3);
732         r = memscan(p, 0, (maxblocks - here + 7) >> 3);
733         next = (r - ((char *)bh->b_data)) << 3;
734
735         if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
736                 return next;
737
738         /*
739          * The bitmap search --- search forward alternately through the actual
740          * bitmap and the last-committed copy until we find a bit free in
741          * both
742          */
743         here = bitmap_search_next_usable_block(here, bh, maxblocks);
744         return here;
745 }
746
747 /**
748  * claim_block()
749  * @block:              the free block (group relative) to allocate
750  * @bh:                 the bufferhead containts the block group bitmap
751  *
752  * We think we can allocate this block in this bitmap.  Try to set the bit.
753  * If that succeeds then check that nobody has allocated and then freed the
754  * block since we saw that is was not marked in b_committed_data.  If it _was_
755  * allocated and freed then clear the bit in the bitmap again and return
756  * zero (failure).
757  */
758 static inline int
759 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
760 {
761         struct journal_head *jh = bh2jh(bh);
762         int ret;
763
764         if (ext4_set_bit_atomic(lock, block, bh->b_data))
765                 return 0;
766         jbd_lock_bh_state(bh);
767         if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
768                 ext4_clear_bit_atomic(lock, block, bh->b_data);
769                 ret = 0;
770         } else {
771                 ret = 1;
772         }
773         jbd_unlock_bh_state(bh);
774         return ret;
775 }
776
777 /**
778  * ext4_try_to_allocate()
779  * @sb:                 superblock
780  * @handle:             handle to this transaction
781  * @group:              given allocation block group
782  * @bitmap_bh:          bufferhead holds the block bitmap
783  * @grp_goal:           given target block within the group
784  * @count:              target number of blocks to allocate
785  * @my_rsv:             reservation window
786  *
787  * Attempt to allocate blocks within a give range. Set the range of allocation
788  * first, then find the first free bit(s) from the bitmap (within the range),
789  * and at last, allocate the blocks by claiming the found free bit as allocated.
790  *
791  * To set the range of this allocation:
792  *      if there is a reservation window, only try to allocate block(s) from the
793  *      file's own reservation window;
794  *      Otherwise, the allocation range starts from the give goal block, ends at
795  *      the block group's last block.
796  *
797  * If we failed to allocate the desired block then we may end up crossing to a
798  * new bitmap.  In that case we must release write access to the old one via
799  * ext4_journal_release_buffer(), else we'll run out of credits.
800  */
801 static ext4_grpblk_t
802 ext4_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
803                         struct buffer_head *bitmap_bh, ext4_grpblk_t grp_goal,
804                         unsigned long *count, struct ext4_reserve_window *my_rsv)
805 {
806         ext4_fsblk_t group_first_block;
807         ext4_grpblk_t start, end;
808         unsigned long num = 0;
809
810         /* we do allocation within the reservation window if we have a window */
811         if (my_rsv) {
812                 group_first_block = ext4_group_first_block_no(sb, group);
813                 if (my_rsv->_rsv_start >= group_first_block)
814                         start = my_rsv->_rsv_start - group_first_block;
815                 else
816                         /* reservation window cross group boundary */
817                         start = 0;
818                 end = my_rsv->_rsv_end - group_first_block + 1;
819                 if (end > EXT4_BLOCKS_PER_GROUP(sb))
820                         /* reservation window crosses group boundary */
821                         end = EXT4_BLOCKS_PER_GROUP(sb);
822                 if ((start <= grp_goal) && (grp_goal < end))
823                         start = grp_goal;
824                 else
825                         grp_goal = -1;
826         } else {
827                 if (grp_goal > 0)
828                         start = grp_goal;
829                 else
830                         start = 0;
831                 end = EXT4_BLOCKS_PER_GROUP(sb);
832         }
833
834         BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
835
836 repeat:
837         if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
838                 grp_goal = find_next_usable_block(start, bitmap_bh, end);
839                 if (grp_goal < 0)
840                         goto fail_access;
841                 if (!my_rsv) {
842                         int i;
843
844                         for (i = 0; i < 7 && grp_goal > start &&
845                                         ext4_test_allocatable(grp_goal - 1,
846                                                                 bitmap_bh);
847                                         i++, grp_goal--)
848                                 ;
849                 }
850         }
851         start = grp_goal;
852
853         if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
854                 grp_goal, bitmap_bh)) {
855                 /*
856                  * The block was allocated by another thread, or it was
857                  * allocated and then freed by another thread
858                  */
859                 start++;
860                 grp_goal++;
861                 if (start >= end)
862                         goto fail_access;
863                 goto repeat;
864         }
865         num++;
866         grp_goal++;
867         while (num < *count && grp_goal < end
868                 && ext4_test_allocatable(grp_goal, bitmap_bh)
869                 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
870                                 grp_goal, bitmap_bh)) {
871                 num++;
872                 grp_goal++;
873         }
874         *count = num;
875         return grp_goal - num;
876 fail_access:
877         *count = num;
878         return -1;
879 }
880
881 /**
882  *      find_next_reservable_window():
883  *              find a reservable space within the given range.
884  *              It does not allocate the reservation window for now:
885  *              alloc_new_reservation() will do the work later.
886  *
887  *      @search_head: the head of the searching list;
888  *              This is not necessarily the list head of the whole filesystem
889  *
890  *              We have both head and start_block to assist the search
891  *              for the reservable space. The list starts from head,
892  *              but we will shift to the place where start_block is,
893  *              then start from there, when looking for a reservable space.
894  *
895  *      @size: the target new reservation window size
896  *
897  *      @group_first_block: the first block we consider to start
898  *                      the real search from
899  *
900  *      @last_block:
901  *              the maximum block number that our goal reservable space
902  *              could start from. This is normally the last block in this
903  *              group. The search will end when we found the start of next
904  *              possible reservable space is out of this boundary.
905  *              This could handle the cross boundary reservation window
906  *              request.
907  *
908  *      basically we search from the given range, rather than the whole
909  *      reservation double linked list, (start_block, last_block)
910  *      to find a free region that is of my size and has not
911  *      been reserved.
912  *
913  */
914 static int find_next_reservable_window(
915                                 struct ext4_reserve_window_node *search_head,
916                                 struct ext4_reserve_window_node *my_rsv,
917                                 struct super_block * sb,
918                                 ext4_fsblk_t start_block,
919                                 ext4_fsblk_t last_block)
920 {
921         struct rb_node *next;
922         struct ext4_reserve_window_node *rsv, *prev;
923         ext4_fsblk_t cur;
924         int size = my_rsv->rsv_goal_size;
925
926         /* TODO: make the start of the reservation window byte-aligned */
927         /* cur = *start_block & ~7;*/
928         cur = start_block;
929         rsv = search_head;
930         if (!rsv)
931                 return -1;
932
933         while (1) {
934                 if (cur <= rsv->rsv_end)
935                         cur = rsv->rsv_end + 1;
936
937                 /* TODO?
938                  * in the case we could not find a reservable space
939                  * that is what is expected, during the re-search, we could
940                  * remember what's the largest reservable space we could have
941                  * and return that one.
942                  *
943                  * For now it will fail if we could not find the reservable
944                  * space with expected-size (or more)...
945                  */
946                 if (cur > last_block)
947                         return -1;              /* fail */
948
949                 prev = rsv;
950                 next = rb_next(&rsv->rsv_node);
951                 rsv = list_entry(next,struct ext4_reserve_window_node,rsv_node);
952
953                 /*
954                  * Reached the last reservation, we can just append to the
955                  * previous one.
956                  */
957                 if (!next)
958                         break;
959
960                 if (cur + size <= rsv->rsv_start) {
961                         /*
962                          * Found a reserveable space big enough.  We could
963                          * have a reservation across the group boundary here
964                          */
965                         break;
966                 }
967         }
968         /*
969          * we come here either :
970          * when we reach the end of the whole list,
971          * and there is empty reservable space after last entry in the list.
972          * append it to the end of the list.
973          *
974          * or we found one reservable space in the middle of the list,
975          * return the reservation window that we could append to.
976          * succeed.
977          */
978
979         if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
980                 rsv_window_remove(sb, my_rsv);
981
982         /*
983          * Let's book the whole avaliable window for now.  We will check the
984          * disk bitmap later and then, if there are free blocks then we adjust
985          * the window size if it's larger than requested.
986          * Otherwise, we will remove this node from the tree next time
987          * call find_next_reservable_window.
988          */
989         my_rsv->rsv_start = cur;
990         my_rsv->rsv_end = cur + size - 1;
991         my_rsv->rsv_alloc_hit = 0;
992
993         if (prev != my_rsv)
994                 ext4_rsv_window_add(sb, my_rsv);
995
996         return 0;
997 }
998
999 /**
1000  *      alloc_new_reservation()--allocate a new reservation window
1001  *
1002  *              To make a new reservation, we search part of the filesystem
1003  *              reservation list (the list that inside the group). We try to
1004  *              allocate a new reservation window near the allocation goal,
1005  *              or the beginning of the group, if there is no goal.
1006  *
1007  *              We first find a reservable space after the goal, then from
1008  *              there, we check the bitmap for the first free block after
1009  *              it. If there is no free block until the end of group, then the
1010  *              whole group is full, we failed. Otherwise, check if the free
1011  *              block is inside the expected reservable space, if so, we
1012  *              succeed.
1013  *              If the first free block is outside the reservable space, then
1014  *              start from the first free block, we search for next available
1015  *              space, and go on.
1016  *
1017  *      on succeed, a new reservation will be found and inserted into the list
1018  *      It contains at least one free block, and it does not overlap with other
1019  *      reservation windows.
1020  *
1021  *      failed: we failed to find a reservation window in this group
1022  *
1023  *      @rsv: the reservation
1024  *
1025  *      @grp_goal: The goal (group-relative).  It is where the search for a
1026  *              free reservable space should start from.
1027  *              if we have a grp_goal(grp_goal >0 ), then start from there,
1028  *              no grp_goal(grp_goal = -1), we start from the first block
1029  *              of the group.
1030  *
1031  *      @sb: the super block
1032  *      @group: the group we are trying to allocate in
1033  *      @bitmap_bh: the block group block bitmap
1034  *
1035  */
1036 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1037                 ext4_grpblk_t grp_goal, struct super_block *sb,
1038                 unsigned int group, struct buffer_head *bitmap_bh)
1039 {
1040         struct ext4_reserve_window_node *search_head;
1041         ext4_fsblk_t group_first_block, group_end_block, start_block;
1042         ext4_grpblk_t first_free_block;
1043         struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1044         unsigned long size;
1045         int ret;
1046         spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1047
1048         group_first_block = ext4_group_first_block_no(sb, group);
1049         group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1050
1051         if (grp_goal < 0)
1052                 start_block = group_first_block;
1053         else
1054                 start_block = grp_goal + group_first_block;
1055
1056         size = my_rsv->rsv_goal_size;
1057
1058         if (!rsv_is_empty(&my_rsv->rsv_window)) {
1059                 /*
1060                  * if the old reservation is cross group boundary
1061                  * and if the goal is inside the old reservation window,
1062                  * we will come here when we just failed to allocate from
1063                  * the first part of the window. We still have another part
1064                  * that belongs to the next group. In this case, there is no
1065                  * point to discard our window and try to allocate a new one
1066                  * in this group(which will fail). we should
1067                  * keep the reservation window, just simply move on.
1068                  *
1069                  * Maybe we could shift the start block of the reservation
1070                  * window to the first block of next group.
1071                  */
1072
1073                 if ((my_rsv->rsv_start <= group_end_block) &&
1074                                 (my_rsv->rsv_end > group_end_block) &&
1075                                 (start_block >= my_rsv->rsv_start))
1076                         return -1;
1077
1078                 if ((my_rsv->rsv_alloc_hit >
1079                      (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1080                         /*
1081                          * if the previously allocation hit ratio is
1082                          * greater than 1/2, then we double the size of
1083                          * the reservation window the next time,
1084                          * otherwise we keep the same size window
1085                          */
1086                         size = size * 2;
1087                         if (size > EXT4_MAX_RESERVE_BLOCKS)
1088                                 size = EXT4_MAX_RESERVE_BLOCKS;
1089                         my_rsv->rsv_goal_size= size;
1090                 }
1091         }
1092
1093         spin_lock(rsv_lock);
1094         /*
1095          * shift the search start to the window near the goal block
1096          */
1097         search_head = search_reserve_window(fs_rsv_root, start_block);
1098
1099         /*
1100          * find_next_reservable_window() simply finds a reservable window
1101          * inside the given range(start_block, group_end_block).
1102          *
1103          * To make sure the reservation window has a free bit inside it, we
1104          * need to check the bitmap after we found a reservable window.
1105          */
1106 retry:
1107         ret = find_next_reservable_window(search_head, my_rsv, sb,
1108                                                 start_block, group_end_block);
1109
1110         if (ret == -1) {
1111                 if (!rsv_is_empty(&my_rsv->rsv_window))
1112                         rsv_window_remove(sb, my_rsv);
1113                 spin_unlock(rsv_lock);
1114                 return -1;
1115         }
1116
1117         /*
1118          * On success, find_next_reservable_window() returns the
1119          * reservation window where there is a reservable space after it.
1120          * Before we reserve this reservable space, we need
1121          * to make sure there is at least a free block inside this region.
1122          *
1123          * searching the first free bit on the block bitmap and copy of
1124          * last committed bitmap alternatively, until we found a allocatable
1125          * block. Search start from the start block of the reservable space
1126          * we just found.
1127          */
1128         spin_unlock(rsv_lock);
1129         first_free_block = bitmap_search_next_usable_block(
1130                         my_rsv->rsv_start - group_first_block,
1131                         bitmap_bh, group_end_block - group_first_block + 1);
1132
1133         if (first_free_block < 0) {
1134                 /*
1135                  * no free block left on the bitmap, no point
1136                  * to reserve the space. return failed.
1137                  */
1138                 spin_lock(rsv_lock);
1139                 if (!rsv_is_empty(&my_rsv->rsv_window))
1140                         rsv_window_remove(sb, my_rsv);
1141                 spin_unlock(rsv_lock);
1142                 return -1;              /* failed */
1143         }
1144
1145         start_block = first_free_block + group_first_block;
1146         /*
1147          * check if the first free block is within the
1148          * free space we just reserved
1149          */
1150         if (start_block >= my_rsv->rsv_start && start_block < my_rsv->rsv_end)
1151                 return 0;               /* success */
1152         /*
1153          * if the first free bit we found is out of the reservable space
1154          * continue search for next reservable space,
1155          * start from where the free block is,
1156          * we also shift the list head to where we stopped last time
1157          */
1158         search_head = my_rsv;
1159         spin_lock(rsv_lock);
1160         goto retry;
1161 }
1162
1163 /**
1164  * try_to_extend_reservation()
1165  * @my_rsv:             given reservation window
1166  * @sb:                 super block
1167  * @size:               the delta to extend
1168  *
1169  * Attempt to expand the reservation window large enough to have
1170  * required number of free blocks
1171  *
1172  * Since ext4_try_to_allocate() will always allocate blocks within
1173  * the reservation window range, if the window size is too small,
1174  * multiple blocks allocation has to stop at the end of the reservation
1175  * window. To make this more efficient, given the total number of
1176  * blocks needed and the current size of the window, we try to
1177  * expand the reservation window size if necessary on a best-effort
1178  * basis before ext4_new_blocks() tries to allocate blocks,
1179  */
1180 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1181                         struct super_block *sb, int size)
1182 {
1183         struct ext4_reserve_window_node *next_rsv;
1184         struct rb_node *next;
1185         spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1186
1187         if (!spin_trylock(rsv_lock))
1188                 return;
1189
1190         next = rb_next(&my_rsv->rsv_node);
1191
1192         if (!next)
1193                 my_rsv->rsv_end += size;
1194         else {
1195                 next_rsv = list_entry(next, struct ext4_reserve_window_node, rsv_node);
1196
1197                 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1198                         my_rsv->rsv_end += size;
1199                 else
1200                         my_rsv->rsv_end = next_rsv->rsv_start - 1;
1201         }
1202         spin_unlock(rsv_lock);
1203 }
1204
1205 /**
1206  * ext4_try_to_allocate_with_rsv()
1207  * @sb:                 superblock
1208  * @handle:             handle to this transaction
1209  * @group:              given allocation block group
1210  * @bitmap_bh:          bufferhead holds the block bitmap
1211  * @grp_goal:           given target block within the group
1212  * @count:              target number of blocks to allocate
1213  * @my_rsv:             reservation window
1214  * @errp:               pointer to store the error code
1215  *
1216  * This is the main function used to allocate a new block and its reservation
1217  * window.
1218  *
1219  * Each time when a new block allocation is need, first try to allocate from
1220  * its own reservation.  If it does not have a reservation window, instead of
1221  * looking for a free bit on bitmap first, then look up the reservation list to
1222  * see if it is inside somebody else's reservation window, we try to allocate a
1223  * reservation window for it starting from the goal first. Then do the block
1224  * allocation within the reservation window.
1225  *
1226  * This will avoid keeping on searching the reservation list again and
1227  * again when somebody is looking for a free block (without
1228  * reservation), and there are lots of free blocks, but they are all
1229  * being reserved.
1230  *
1231  * We use a red-black tree for the per-filesystem reservation list.
1232  *
1233  */
1234 static ext4_grpblk_t
1235 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1236                         unsigned int group, struct buffer_head *bitmap_bh,
1237                         ext4_grpblk_t grp_goal,
1238                         struct ext4_reserve_window_node * my_rsv,
1239                         unsigned long *count, int *errp)
1240 {
1241         ext4_fsblk_t group_first_block, group_last_block;
1242         ext4_grpblk_t ret = 0;
1243         int fatal;
1244         unsigned long num = *count;
1245
1246         *errp = 0;
1247
1248         /*
1249          * Make sure we use undo access for the bitmap, because it is critical
1250          * that we do the frozen_data COW on bitmap buffers in all cases even
1251          * if the buffer is in BJ_Forget state in the committing transaction.
1252          */
1253         BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1254         fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1255         if (fatal) {
1256                 *errp = fatal;
1257                 return -1;
1258         }
1259
1260         /*
1261          * we don't deal with reservation when
1262          * filesystem is mounted without reservation
1263          * or the file is not a regular file
1264          * or last attempt to allocate a block with reservation turned on failed
1265          */
1266         if (my_rsv == NULL ) {
1267                 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1268                                                 grp_goal, count, NULL);
1269                 goto out;
1270         }
1271         /*
1272          * grp_goal is a group relative block number (if there is a goal)
1273          * 0 < grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1274          * first block is a filesystem wide block number
1275          * first block is the block number of the first block in this group
1276          */
1277         group_first_block = ext4_group_first_block_no(sb, group);
1278         group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1279
1280         /*
1281          * Basically we will allocate a new block from inode's reservation
1282          * window.
1283          *
1284          * We need to allocate a new reservation window, if:
1285          * a) inode does not have a reservation window; or
1286          * b) last attempt to allocate a block from existing reservation
1287          *    failed; or
1288          * c) we come here with a goal and with a reservation window
1289          *
1290          * We do not need to allocate a new reservation window if we come here
1291          * at the beginning with a goal and the goal is inside the window, or
1292          * we don't have a goal but already have a reservation window.
1293          * then we could go to allocate from the reservation window directly.
1294          */
1295         while (1) {
1296                 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1297                         !goal_in_my_reservation(&my_rsv->rsv_window,
1298                                                 grp_goal, group, sb)) {
1299                         if (my_rsv->rsv_goal_size < *count)
1300                                 my_rsv->rsv_goal_size = *count;
1301                         ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1302                                                         group, bitmap_bh);
1303                         if (ret < 0)
1304                                 break;                  /* failed */
1305
1306                         if (!goal_in_my_reservation(&my_rsv->rsv_window,
1307                                                         grp_goal, group, sb))
1308                                 grp_goal = -1;
1309                 } else if (grp_goal > 0 &&
1310                           (my_rsv->rsv_end-grp_goal+1) < *count)
1311                         try_to_extend_reservation(my_rsv, sb,
1312                                         *count-my_rsv->rsv_end + grp_goal - 1);
1313
1314                 if ((my_rsv->rsv_start > group_last_block) ||
1315                                 (my_rsv->rsv_end < group_first_block)) {
1316                         rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1317                         BUG();
1318                 }
1319                 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1320                                            grp_goal, &num, &my_rsv->rsv_window);
1321                 if (ret >= 0) {
1322                         my_rsv->rsv_alloc_hit += num;
1323                         *count = num;
1324                         break;                          /* succeed */
1325                 }
1326                 num = *count;
1327         }
1328 out:
1329         if (ret >= 0) {
1330                 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1331                                         "bitmap block");
1332                 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1333                 if (fatal) {
1334                         *errp = fatal;
1335                         return -1;
1336                 }
1337                 return ret;
1338         }
1339
1340         BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1341         ext4_journal_release_buffer(handle, bitmap_bh);
1342         return ret;
1343 }
1344
1345 /**
1346  * ext4_has_free_blocks()
1347  * @sbi:                in-core super block structure.
1348  *
1349  * Check if filesystem has at least 1 free block available for allocation.
1350  */
1351 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1352 {
1353         ext4_fsblk_t free_blocks, root_blocks;
1354
1355         free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1356         root_blocks = ext4_r_blocks_count(sbi->s_es);
1357         if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1358                 sbi->s_resuid != current->fsuid &&
1359                 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1360                 return 0;
1361         }
1362         return 1;
1363 }
1364
1365 /**
1366  * ext4_should_retry_alloc()
1367  * @sb:                 super block
1368  * @retries             number of attemps has been made
1369  *
1370  * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1371  * it is profitable to retry the operation, this function will wait
1372  * for the current or commiting transaction to complete, and then
1373  * return TRUE.
1374  *
1375  * if the total number of retries exceed three times, return FALSE.
1376  */
1377 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1378 {
1379         if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1380                 return 0;
1381
1382         jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1383
1384         return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1385 }
1386
1387 /**
1388  * ext4_new_blocks() -- core block(s) allocation function
1389  * @handle:             handle to this transaction
1390  * @inode:              file inode
1391  * @goal:               given target block(filesystem wide)
1392  * @count:              target number of blocks to allocate
1393  * @errp:               error code
1394  *
1395  * ext4_new_blocks uses a goal block to assist allocation.  It tries to
1396  * allocate block(s) from the block group contains the goal block first. If that
1397  * fails, it will try to allocate block(s) from other block groups without
1398  * any specific goal block.
1399  *
1400  */
1401 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1402                         ext4_fsblk_t goal, unsigned long *count, int *errp)
1403 {
1404         struct buffer_head *bitmap_bh = NULL;
1405         struct buffer_head *gdp_bh;
1406         unsigned long group_no;
1407         int goal_group;
1408         ext4_grpblk_t grp_target_blk;   /* blockgroup relative goal block */
1409         ext4_grpblk_t grp_alloc_blk;    /* blockgroup-relative allocated block*/
1410         ext4_fsblk_t ret_block;         /* filesyetem-wide allocated block */
1411         int bgi;                        /* blockgroup iteration index */
1412         int fatal = 0, err;
1413         int performed_allocation = 0;
1414         ext4_grpblk_t free_blocks;      /* number of free blocks in a group */
1415         struct super_block *sb;
1416         struct ext4_group_desc *gdp;
1417         struct ext4_super_block *es;
1418         struct ext4_sb_info *sbi;
1419         struct ext4_reserve_window_node *my_rsv = NULL;
1420         struct ext4_block_alloc_info *block_i;
1421         unsigned short windowsz = 0;
1422 #ifdef EXT4FS_DEBUG
1423         static int goal_hits, goal_attempts;
1424 #endif
1425         unsigned long ngroups;
1426         unsigned long num = *count;
1427
1428         *errp = -ENOSPC;
1429         sb = inode->i_sb;
1430         if (!sb) {
1431                 printk("ext4_new_block: nonexistent device");
1432                 return 0;
1433         }
1434
1435         /*
1436          * Check quota for allocation of this block.
1437          */
1438         if (DQUOT_ALLOC_BLOCK(inode, num)) {
1439                 *errp = -EDQUOT;
1440                 return 0;
1441         }
1442
1443         sbi = EXT4_SB(sb);
1444         es = EXT4_SB(sb)->s_es;
1445         ext4_debug("goal=%lu.\n", goal);
1446         /*
1447          * Allocate a block from reservation only when
1448          * filesystem is mounted with reservation(default,-o reservation), and
1449          * it's a regular file, and
1450          * the desired window size is greater than 0 (One could use ioctl
1451          * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1452          * reservation on that particular file)
1453          */
1454         block_i = EXT4_I(inode)->i_block_alloc_info;
1455         if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1456                 my_rsv = &block_i->rsv_window_node;
1457
1458         if (!ext4_has_free_blocks(sbi)) {
1459                 *errp = -ENOSPC;
1460                 goto out;
1461         }
1462
1463         /*
1464          * First, test whether the goal block is free.
1465          */
1466         if (goal < le32_to_cpu(es->s_first_data_block) ||
1467             goal >= ext4_blocks_count(es))
1468                 goal = le32_to_cpu(es->s_first_data_block);
1469         ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1470         goal_group = group_no;
1471 retry_alloc:
1472         gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1473         if (!gdp)
1474                 goto io_error;
1475
1476         free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1477         /*
1478          * if there is not enough free blocks to make a new resevation
1479          * turn off reservation for this allocation
1480          */
1481         if (my_rsv && (free_blocks < windowsz)
1482                 && (rsv_is_empty(&my_rsv->rsv_window)))
1483                 my_rsv = NULL;
1484
1485         if (free_blocks > 0) {
1486                 bitmap_bh = read_block_bitmap(sb, group_no);
1487                 if (!bitmap_bh)
1488                         goto io_error;
1489                 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1490                                         group_no, bitmap_bh, grp_target_blk,
1491                                         my_rsv, &num, &fatal);
1492                 if (fatal)
1493                         goto out;
1494                 if (grp_alloc_blk >= 0)
1495                         goto allocated;
1496         }
1497
1498         ngroups = EXT4_SB(sb)->s_groups_count;
1499         smp_rmb();
1500
1501         /*
1502          * Now search the rest of the groups.  We assume that
1503          * i and gdp correctly point to the last group visited.
1504          */
1505         for (bgi = 0; bgi < ngroups; bgi++) {
1506                 group_no++;
1507                 if (group_no >= ngroups)
1508                         group_no = 0;
1509                 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1510                 if (!gdp) {
1511                         *errp = -EIO;
1512                         goto out;
1513                 }
1514                 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1515                 /*
1516                  * skip this group if the number of
1517                  * free blocks is less than half of the reservation
1518                  * window size.
1519                  */
1520                 if (free_blocks <= (windowsz/2))
1521                         continue;
1522
1523                 brelse(bitmap_bh);
1524                 bitmap_bh = read_block_bitmap(sb, group_no);
1525                 if (!bitmap_bh)
1526                         goto io_error;
1527                 /*
1528                  * try to allocate block(s) from this group, without a goal(-1).
1529                  */
1530                 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1531                                         group_no, bitmap_bh, -1, my_rsv,
1532                                         &num, &fatal);
1533                 if (fatal)
1534                         goto out;
1535                 if (grp_alloc_blk >= 0)
1536                         goto allocated;
1537         }
1538         /*
1539          * We may end up a bogus ealier ENOSPC error due to
1540          * filesystem is "full" of reservations, but
1541          * there maybe indeed free blocks avaliable on disk
1542          * In this case, we just forget about the reservations
1543          * just do block allocation as without reservations.
1544          */
1545         if (my_rsv) {
1546                 my_rsv = NULL;
1547                 group_no = goal_group;
1548                 goto retry_alloc;
1549         }
1550         /* No space left on the device */
1551         *errp = -ENOSPC;
1552         goto out;
1553
1554 allocated:
1555
1556         ext4_debug("using block group %d(%d)\n",
1557                         group_no, gdp->bg_free_blocks_count);
1558
1559         BUFFER_TRACE(gdp_bh, "get_write_access");
1560         fatal = ext4_journal_get_write_access(handle, gdp_bh);
1561         if (fatal)
1562                 goto out;
1563
1564         ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1565
1566         if (in_range(ext4_block_bitmap(gdp), ret_block, num) ||
1567             in_range(ext4_block_bitmap(gdp), ret_block, num) ||
1568             in_range(ret_block, ext4_inode_table(gdp),
1569                      EXT4_SB(sb)->s_itb_per_group) ||
1570             in_range(ret_block + num - 1, ext4_inode_table(gdp),
1571                      EXT4_SB(sb)->s_itb_per_group))
1572                 ext4_error(sb, "ext4_new_block",
1573                             "Allocating block in system zone - "
1574                             "blocks from %llu, length %lu",
1575                              ret_block, num);
1576
1577         performed_allocation = 1;
1578
1579 #ifdef CONFIG_JBD_DEBUG
1580         {
1581                 struct buffer_head *debug_bh;
1582
1583                 /* Record bitmap buffer state in the newly allocated block */
1584                 debug_bh = sb_find_get_block(sb, ret_block);
1585                 if (debug_bh) {
1586                         BUFFER_TRACE(debug_bh, "state when allocated");
1587                         BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1588                         brelse(debug_bh);
1589                 }
1590         }
1591         jbd_lock_bh_state(bitmap_bh);
1592         spin_lock(sb_bgl_lock(sbi, group_no));
1593         if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1594                 int i;
1595
1596                 for (i = 0; i < num; i++) {
1597                         if (ext4_test_bit(grp_alloc_blk+i,
1598                                         bh2jh(bitmap_bh)->b_committed_data)) {
1599                                 printk("%s: block was unexpectedly set in "
1600                                         "b_committed_data\n", __FUNCTION__);
1601                         }
1602                 }
1603         }
1604         ext4_debug("found bit %d\n", grp_alloc_blk);
1605         spin_unlock(sb_bgl_lock(sbi, group_no));
1606         jbd_unlock_bh_state(bitmap_bh);
1607 #endif
1608
1609         if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1610                 ext4_error(sb, "ext4_new_block",
1611                             "block(%llu) >= blocks count(%llu) - "
1612                             "block_group = %lu, es == %p ", ret_block,
1613                         ext4_blocks_count(es), group_no, es);
1614                 goto out;
1615         }
1616
1617         /*
1618          * It is up to the caller to add the new buffer to a journal
1619          * list of some description.  We don't know in advance whether
1620          * the caller wants to use it as metadata or data.
1621          */
1622         ext4_debug("allocating block %lu. Goal hits %d of %d.\n",
1623                         ret_block, goal_hits, goal_attempts);
1624
1625         spin_lock(sb_bgl_lock(sbi, group_no));
1626         gdp->bg_free_blocks_count =
1627                         cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num);
1628         spin_unlock(sb_bgl_lock(sbi, group_no));
1629         percpu_counter_mod(&sbi->s_freeblocks_counter, -num);
1630
1631         BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1632         err = ext4_journal_dirty_metadata(handle, gdp_bh);
1633         if (!fatal)
1634                 fatal = err;
1635
1636         sb->s_dirt = 1;
1637         if (fatal)
1638                 goto out;
1639
1640         *errp = 0;
1641         brelse(bitmap_bh);
1642         DQUOT_FREE_BLOCK(inode, *count-num);
1643         *count = num;
1644         return ret_block;
1645
1646 io_error:
1647         *errp = -EIO;
1648 out:
1649         if (fatal) {
1650                 *errp = fatal;
1651                 ext4_std_error(sb, fatal);
1652         }
1653         /*
1654          * Undo the block allocation
1655          */
1656         if (!performed_allocation)
1657                 DQUOT_FREE_BLOCK(inode, *count);
1658         brelse(bitmap_bh);
1659         return 0;
1660 }
1661
1662 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1663                         ext4_fsblk_t goal, int *errp)
1664 {
1665         unsigned long count = 1;
1666
1667         return ext4_new_blocks(handle, inode, goal, &count, errp);
1668 }
1669
1670 /**
1671  * ext4_count_free_blocks() -- count filesystem free blocks
1672  * @sb:         superblock
1673  *
1674  * Adds up the number of free blocks from each block group.
1675  */
1676 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1677 {
1678         ext4_fsblk_t desc_count;
1679         struct ext4_group_desc *gdp;
1680         int i;
1681         unsigned long ngroups = EXT4_SB(sb)->s_groups_count;
1682 #ifdef EXT4FS_DEBUG
1683         struct ext4_super_block *es;
1684         ext4_fsblk_t bitmap_count;
1685         unsigned long x;
1686         struct buffer_head *bitmap_bh = NULL;
1687
1688         es = EXT4_SB(sb)->s_es;
1689         desc_count = 0;
1690         bitmap_count = 0;
1691         gdp = NULL;
1692
1693         smp_rmb();
1694         for (i = 0; i < ngroups; i++) {
1695                 gdp = ext4_get_group_desc(sb, i, NULL);
1696                 if (!gdp)
1697                         continue;
1698                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1699                 brelse(bitmap_bh);
1700                 bitmap_bh = read_block_bitmap(sb, i);
1701                 if (bitmap_bh == NULL)
1702                         continue;
1703
1704                 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1705                 printk("group %d: stored = %d, counted = %lu\n",
1706                         i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1707                 bitmap_count += x;
1708         }
1709         brelse(bitmap_bh);
1710         printk("ext4_count_free_blocks: stored = %llu"
1711                 ", computed = %llu, %llu\n",
1712                EXT4_FREE_BLOCKS_COUNT(es),
1713                 desc_count, bitmap_count);
1714         return bitmap_count;
1715 #else
1716         desc_count = 0;
1717         smp_rmb();
1718         for (i = 0; i < ngroups; i++) {
1719                 gdp = ext4_get_group_desc(sb, i, NULL);
1720                 if (!gdp)
1721                         continue;
1722                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1723         }
1724
1725         return desc_count;
1726 #endif
1727 }
1728
1729 static inline int
1730 block_in_use(ext4_fsblk_t block, struct super_block *sb, unsigned char *map)
1731 {
1732         ext4_grpblk_t offset;
1733
1734         ext4_get_group_no_and_offset(sb, block, NULL, &offset);
1735         return ext4_test_bit (offset, map);
1736 }
1737
1738 static inline int test_root(int a, int b)
1739 {
1740         int num = b;
1741
1742         while (a > num)
1743                 num *= b;
1744         return num == a;
1745 }
1746
1747 static int ext4_group_sparse(int group)
1748 {
1749         if (group <= 1)
1750                 return 1;
1751         if (!(group & 1))
1752                 return 0;
1753         return (test_root(group, 7) || test_root(group, 5) ||
1754                 test_root(group, 3));
1755 }
1756
1757 /**
1758  *      ext4_bg_has_super - number of blocks used by the superblock in group
1759  *      @sb: superblock for filesystem
1760  *      @group: group number to check
1761  *
1762  *      Return the number of blocks used by the superblock (primary or backup)
1763  *      in this group.  Currently this will be only 0 or 1.
1764  */
1765 int ext4_bg_has_super(struct super_block *sb, int group)
1766 {
1767         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1768                                 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1769                         !ext4_group_sparse(group))
1770                 return 0;
1771         return 1;
1772 }
1773
1774 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb, int group)
1775 {
1776         unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1777         unsigned long first = metagroup * EXT4_DESC_PER_BLOCK(sb);
1778         unsigned long last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
1779
1780         if (group == first || group == first + 1 || group == last)
1781                 return 1;
1782         return 0;
1783 }
1784
1785 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb, int group)
1786 {
1787         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1788                                 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1789                         !ext4_group_sparse(group))
1790                 return 0;
1791         return EXT4_SB(sb)->s_gdb_count;
1792 }
1793
1794 /**
1795  *      ext4_bg_num_gdb - number of blocks used by the group table in group
1796  *      @sb: superblock for filesystem
1797  *      @group: group number to check
1798  *
1799  *      Return the number of blocks used by the group descriptor table
1800  *      (primary or backup) in this group.  In the future there may be a
1801  *      different number of descriptor blocks in each group.
1802  */
1803 unsigned long ext4_bg_num_gdb(struct super_block *sb, int group)
1804 {
1805         unsigned long first_meta_bg =
1806                         le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
1807         unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1808
1809         if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
1810                         metagroup < first_meta_bg)
1811                 return ext4_bg_num_gdb_nometa(sb,group);
1812
1813         return ext4_bg_num_gdb_meta(sb,group);
1814
1815 }