2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
50 * used by extent splitting.
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 struct ext4_extent_header *eh)
63 struct ext4_inode_info *ei = EXT4_I(inode);
64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 EXT4_EXTENT_TAIL_OFFSET(eh));
69 return cpu_to_le32(csum);
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 struct ext4_extent_header *eh)
75 struct ext4_extent_tail *et;
77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
81 et = find_ext4_extent_tail(eh);
82 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 struct ext4_extent_header *eh)
90 struct ext4_extent_tail *et;
92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
96 et = find_ext4_extent_tail(eh);
97 et->et_checksum = ext4_extent_block_csum(inode, eh);
100 static int ext4_split_extent(handle_t *handle,
102 struct ext4_ext_path *path,
103 struct ext4_map_blocks *map,
107 static int ext4_split_extent_at(handle_t *handle,
109 struct ext4_ext_path *path,
114 static int ext4_find_delayed_extent(struct inode *inode,
115 struct extent_status *newes);
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
123 if (!ext4_handle_valid(handle))
125 if (handle->h_buffer_credits > needed)
127 err = ext4_journal_extend(handle, needed);
130 err = ext4_truncate_restart_trans(handle, inode, needed);
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 struct ext4_ext_path *path)
146 /* path points to block */
147 return ext4_journal_get_write_access(handle, path->p_bh);
149 /* path points to leaf/index in inode body */
150 /* we use in-core data, no need to protect them */
160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161 struct inode *inode, struct ext4_ext_path *path)
165 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166 /* path points to block */
167 err = __ext4_handle_dirty_metadata(where, line, handle,
170 /* path points to leaf/index in inode body */
171 err = ext4_mark_inode_dirty(handle, inode);
176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177 struct ext4_ext_path *path,
181 int depth = path->p_depth;
182 struct ext4_extent *ex;
185 * Try to predict block placement assuming that we are
186 * filling in a file which will eventually be
187 * non-sparse --- i.e., in the case of libbfd writing
188 * an ELF object sections out-of-order but in a way
189 * the eventually results in a contiguous object or
190 * executable file, or some database extending a table
191 * space file. However, this is actually somewhat
192 * non-ideal if we are writing a sparse file such as
193 * qemu or KVM writing a raw image file that is going
194 * to stay fairly sparse, since it will end up
195 * fragmenting the file system's free space. Maybe we
196 * should have some hueristics or some way to allow
197 * userspace to pass a hint to file system,
198 * especially if the latter case turns out to be
201 ex = path[depth].p_ext;
203 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
206 if (block > ext_block)
207 return ext_pblk + (block - ext_block);
209 return ext_pblk - (ext_block - block);
212 /* it looks like index is empty;
213 * try to find starting block from index itself */
214 if (path[depth].p_bh)
215 return path[depth].p_bh->b_blocknr;
218 /* OK. use inode's group */
219 return ext4_inode_to_goal_block(inode);
223 * Allocation for a meta data block
226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227 struct ext4_ext_path *path,
228 struct ext4_extent *ex, int *err, unsigned int flags)
230 ext4_fsblk_t goal, newblock;
232 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
238 static inline int ext4_ext_space_block(struct inode *inode, int check)
242 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243 / sizeof(struct ext4_extent);
244 #ifdef AGGRESSIVE_TEST
245 if (!check && size > 6)
251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
255 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256 / sizeof(struct ext4_extent_idx);
257 #ifdef AGGRESSIVE_TEST
258 if (!check && size > 5)
264 static inline int ext4_ext_space_root(struct inode *inode, int check)
268 size = sizeof(EXT4_I(inode)->i_data);
269 size -= sizeof(struct ext4_extent_header);
270 size /= sizeof(struct ext4_extent);
271 #ifdef AGGRESSIVE_TEST
272 if (!check && size > 3)
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
282 size = sizeof(EXT4_I(inode)->i_data);
283 size -= sizeof(struct ext4_extent_header);
284 size /= sizeof(struct ext4_extent_idx);
285 #ifdef AGGRESSIVE_TEST
286 if (!check && size > 4)
293 * Calculate the number of metadata blocks needed
294 * to allocate @blocks
295 * Worse case is one block per extent
297 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
299 struct ext4_inode_info *ei = EXT4_I(inode);
302 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
303 / sizeof(struct ext4_extent_idx));
306 * If the new delayed allocation block is contiguous with the
307 * previous da block, it can share index blocks with the
308 * previous block, so we only need to allocate a new index
309 * block every idxs leaf blocks. At ldxs**2 blocks, we need
310 * an additional index block, and at ldxs**3 blocks, yet
311 * another index blocks.
313 if (ei->i_da_metadata_calc_len &&
314 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
317 if ((ei->i_da_metadata_calc_len % idxs) == 0)
319 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
321 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
323 ei->i_da_metadata_calc_len = 0;
325 ei->i_da_metadata_calc_len++;
326 ei->i_da_metadata_calc_last_lblock++;
331 * In the worst case we need a new set of index blocks at
332 * every level of the inode's extent tree.
334 ei->i_da_metadata_calc_len = 1;
335 ei->i_da_metadata_calc_last_lblock = lblock;
336 return ext_depth(inode) + 1;
340 ext4_ext_max_entries(struct inode *inode, int depth)
344 if (depth == ext_depth(inode)) {
346 max = ext4_ext_space_root(inode, 1);
348 max = ext4_ext_space_root_idx(inode, 1);
351 max = ext4_ext_space_block(inode, 1);
353 max = ext4_ext_space_block_idx(inode, 1);
359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
361 ext4_fsblk_t block = ext4_ext_pblock(ext);
362 int len = ext4_ext_get_actual_len(ext);
366 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
369 static int ext4_valid_extent_idx(struct inode *inode,
370 struct ext4_extent_idx *ext_idx)
372 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
374 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
377 static int ext4_valid_extent_entries(struct inode *inode,
378 struct ext4_extent_header *eh,
381 unsigned short entries;
382 if (eh->eh_entries == 0)
385 entries = le16_to_cpu(eh->eh_entries);
389 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
391 if (!ext4_valid_extent(inode, ext))
397 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
399 if (!ext4_valid_extent_idx(inode, ext_idx))
408 static int __ext4_ext_check(const char *function, unsigned int line,
409 struct inode *inode, struct ext4_extent_header *eh,
412 const char *error_msg;
415 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
416 error_msg = "invalid magic";
419 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
420 error_msg = "unexpected eh_depth";
423 if (unlikely(eh->eh_max == 0)) {
424 error_msg = "invalid eh_max";
427 max = ext4_ext_max_entries(inode, depth);
428 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
429 error_msg = "too large eh_max";
432 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
433 error_msg = "invalid eh_entries";
436 if (!ext4_valid_extent_entries(inode, eh, depth)) {
437 error_msg = "invalid extent entries";
440 /* Verify checksum on non-root extent tree nodes */
441 if (ext_depth(inode) != depth &&
442 !ext4_extent_block_csum_verify(inode, eh)) {
443 error_msg = "extent tree corrupted";
449 ext4_error_inode(inode, function, line, 0,
450 "bad header/extent: %s - magic %x, "
451 "entries %u, max %u(%u), depth %u(%u)",
452 error_msg, le16_to_cpu(eh->eh_magic),
453 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
454 max, le16_to_cpu(eh->eh_depth), depth);
459 #define ext4_ext_check(inode, eh, depth) \
460 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
462 int ext4_ext_check_inode(struct inode *inode)
464 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
467 static int __ext4_ext_check_block(const char *function, unsigned int line,
469 struct ext4_extent_header *eh,
471 struct buffer_head *bh)
475 if (buffer_verified(bh))
477 ret = ext4_ext_check(inode, eh, depth);
480 set_buffer_verified(bh);
484 #define ext4_ext_check_block(inode, eh, depth, bh) \
485 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
488 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
490 int k, l = path->p_depth;
493 for (k = 0; k <= l; k++, path++) {
495 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
496 ext4_idx_pblock(path->p_idx));
497 } else if (path->p_ext) {
498 ext_debug(" %d:[%d]%d:%llu ",
499 le32_to_cpu(path->p_ext->ee_block),
500 ext4_ext_is_uninitialized(path->p_ext),
501 ext4_ext_get_actual_len(path->p_ext),
502 ext4_ext_pblock(path->p_ext));
509 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
511 int depth = ext_depth(inode);
512 struct ext4_extent_header *eh;
513 struct ext4_extent *ex;
519 eh = path[depth].p_hdr;
520 ex = EXT_FIRST_EXTENT(eh);
522 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
524 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
525 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
526 ext4_ext_is_uninitialized(ex),
527 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
532 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
533 ext4_fsblk_t newblock, int level)
535 int depth = ext_depth(inode);
536 struct ext4_extent *ex;
538 if (depth != level) {
539 struct ext4_extent_idx *idx;
540 idx = path[level].p_idx;
541 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
542 ext_debug("%d: move %d:%llu in new index %llu\n", level,
543 le32_to_cpu(idx->ei_block),
544 ext4_idx_pblock(idx),
552 ex = path[depth].p_ext;
553 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
554 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
555 le32_to_cpu(ex->ee_block),
557 ext4_ext_is_uninitialized(ex),
558 ext4_ext_get_actual_len(ex),
565 #define ext4_ext_show_path(inode, path)
566 #define ext4_ext_show_leaf(inode, path)
567 #define ext4_ext_show_move(inode, path, newblock, level)
570 void ext4_ext_drop_refs(struct ext4_ext_path *path)
572 int depth = path->p_depth;
575 for (i = 0; i <= depth; i++, path++)
583 * ext4_ext_binsearch_idx:
584 * binary search for the closest index of the given block
585 * the header must be checked before calling this
588 ext4_ext_binsearch_idx(struct inode *inode,
589 struct ext4_ext_path *path, ext4_lblk_t block)
591 struct ext4_extent_header *eh = path->p_hdr;
592 struct ext4_extent_idx *r, *l, *m;
595 ext_debug("binsearch for %u(idx): ", block);
597 l = EXT_FIRST_INDEX(eh) + 1;
598 r = EXT_LAST_INDEX(eh);
601 if (block < le32_to_cpu(m->ei_block))
605 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
606 m, le32_to_cpu(m->ei_block),
607 r, le32_to_cpu(r->ei_block));
611 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
612 ext4_idx_pblock(path->p_idx));
614 #ifdef CHECK_BINSEARCH
616 struct ext4_extent_idx *chix, *ix;
619 chix = ix = EXT_FIRST_INDEX(eh);
620 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
622 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
623 printk(KERN_DEBUG "k=%d, ix=0x%p, "
625 ix, EXT_FIRST_INDEX(eh));
626 printk(KERN_DEBUG "%u <= %u\n",
627 le32_to_cpu(ix->ei_block),
628 le32_to_cpu(ix[-1].ei_block));
630 BUG_ON(k && le32_to_cpu(ix->ei_block)
631 <= le32_to_cpu(ix[-1].ei_block));
632 if (block < le32_to_cpu(ix->ei_block))
636 BUG_ON(chix != path->p_idx);
643 * ext4_ext_binsearch:
644 * binary search for closest extent of the given block
645 * the header must be checked before calling this
648 ext4_ext_binsearch(struct inode *inode,
649 struct ext4_ext_path *path, ext4_lblk_t block)
651 struct ext4_extent_header *eh = path->p_hdr;
652 struct ext4_extent *r, *l, *m;
654 if (eh->eh_entries == 0) {
656 * this leaf is empty:
657 * we get such a leaf in split/add case
662 ext_debug("binsearch for %u: ", block);
664 l = EXT_FIRST_EXTENT(eh) + 1;
665 r = EXT_LAST_EXTENT(eh);
669 if (block < le32_to_cpu(m->ee_block))
673 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
674 m, le32_to_cpu(m->ee_block),
675 r, le32_to_cpu(r->ee_block));
679 ext_debug(" -> %d:%llu:[%d]%d ",
680 le32_to_cpu(path->p_ext->ee_block),
681 ext4_ext_pblock(path->p_ext),
682 ext4_ext_is_uninitialized(path->p_ext),
683 ext4_ext_get_actual_len(path->p_ext));
685 #ifdef CHECK_BINSEARCH
687 struct ext4_extent *chex, *ex;
690 chex = ex = EXT_FIRST_EXTENT(eh);
691 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
692 BUG_ON(k && le32_to_cpu(ex->ee_block)
693 <= le32_to_cpu(ex[-1].ee_block));
694 if (block < le32_to_cpu(ex->ee_block))
698 BUG_ON(chex != path->p_ext);
704 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
706 struct ext4_extent_header *eh;
708 eh = ext_inode_hdr(inode);
711 eh->eh_magic = EXT4_EXT_MAGIC;
712 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
713 ext4_mark_inode_dirty(handle, inode);
717 struct ext4_ext_path *
718 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
719 struct ext4_ext_path *path)
721 struct ext4_extent_header *eh;
722 struct buffer_head *bh;
723 short int depth, i, ppos = 0, alloc = 0;
726 eh = ext_inode_hdr(inode);
727 depth = ext_depth(inode);
729 /* account possible depth increase */
731 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
734 return ERR_PTR(-ENOMEM);
741 /* walk through the tree */
743 ext_debug("depth %d: num %d, max %d\n",
744 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
746 ext4_ext_binsearch_idx(inode, path + ppos, block);
747 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
748 path[ppos].p_depth = i;
749 path[ppos].p_ext = NULL;
751 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
756 if (!bh_uptodate_or_lock(bh)) {
757 trace_ext4_ext_load_extent(inode, block,
759 ret = bh_submit_read(bh);
765 eh = ext_block_hdr(bh);
767 if (unlikely(ppos > depth)) {
769 EXT4_ERROR_INODE(inode,
770 "ppos %d > depth %d", ppos, depth);
774 path[ppos].p_bh = bh;
775 path[ppos].p_hdr = eh;
778 ret = ext4_ext_check_block(inode, eh, i, bh);
783 path[ppos].p_depth = i;
784 path[ppos].p_ext = NULL;
785 path[ppos].p_idx = NULL;
788 ext4_ext_binsearch(inode, path + ppos, block);
789 /* if not an empty leaf */
790 if (path[ppos].p_ext)
791 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
793 ext4_ext_show_path(inode, path);
798 ext4_ext_drop_refs(path);
805 * ext4_ext_insert_index:
806 * insert new index [@logical;@ptr] into the block at @curp;
807 * check where to insert: before @curp or after @curp
809 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
810 struct ext4_ext_path *curp,
811 int logical, ext4_fsblk_t ptr)
813 struct ext4_extent_idx *ix;
816 err = ext4_ext_get_access(handle, inode, curp);
820 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
821 EXT4_ERROR_INODE(inode,
822 "logical %d == ei_block %d!",
823 logical, le32_to_cpu(curp->p_idx->ei_block));
827 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
828 >= le16_to_cpu(curp->p_hdr->eh_max))) {
829 EXT4_ERROR_INODE(inode,
830 "eh_entries %d >= eh_max %d!",
831 le16_to_cpu(curp->p_hdr->eh_entries),
832 le16_to_cpu(curp->p_hdr->eh_max));
836 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
838 ext_debug("insert new index %d after: %llu\n", logical, ptr);
839 ix = curp->p_idx + 1;
842 ext_debug("insert new index %d before: %llu\n", logical, ptr);
846 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
849 ext_debug("insert new index %d: "
850 "move %d indices from 0x%p to 0x%p\n",
851 logical, len, ix, ix + 1);
852 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
855 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
856 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
860 ix->ei_block = cpu_to_le32(logical);
861 ext4_idx_store_pblock(ix, ptr);
862 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
864 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
865 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
869 err = ext4_ext_dirty(handle, inode, curp);
870 ext4_std_error(inode->i_sb, err);
877 * inserts new subtree into the path, using free index entry
879 * - allocates all needed blocks (new leaf and all intermediate index blocks)
880 * - makes decision where to split
881 * - moves remaining extents and index entries (right to the split point)
882 * into the newly allocated blocks
883 * - initializes subtree
885 static int ext4_ext_split(handle_t *handle, struct inode *inode,
887 struct ext4_ext_path *path,
888 struct ext4_extent *newext, int at)
890 struct buffer_head *bh = NULL;
891 int depth = ext_depth(inode);
892 struct ext4_extent_header *neh;
893 struct ext4_extent_idx *fidx;
895 ext4_fsblk_t newblock, oldblock;
897 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
900 /* make decision: where to split? */
901 /* FIXME: now decision is simplest: at current extent */
903 /* if current leaf will be split, then we should use
904 * border from split point */
905 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
906 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
909 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
910 border = path[depth].p_ext[1].ee_block;
911 ext_debug("leaf will be split."
912 " next leaf starts at %d\n",
913 le32_to_cpu(border));
915 border = newext->ee_block;
916 ext_debug("leaf will be added."
917 " next leaf starts at %d\n",
918 le32_to_cpu(border));
922 * If error occurs, then we break processing
923 * and mark filesystem read-only. index won't
924 * be inserted and tree will be in consistent
925 * state. Next mount will repair buffers too.
929 * Get array to track all allocated blocks.
930 * We need this to handle errors and free blocks
933 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
937 /* allocate all needed blocks */
938 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
939 for (a = 0; a < depth - at; a++) {
940 newblock = ext4_ext_new_meta_block(handle, inode, path,
941 newext, &err, flags);
944 ablocks[a] = newblock;
947 /* initialize new leaf */
948 newblock = ablocks[--a];
949 if (unlikely(newblock == 0)) {
950 EXT4_ERROR_INODE(inode, "newblock == 0!");
954 bh = sb_getblk(inode->i_sb, newblock);
961 err = ext4_journal_get_create_access(handle, bh);
965 neh = ext_block_hdr(bh);
967 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
968 neh->eh_magic = EXT4_EXT_MAGIC;
971 /* move remainder of path[depth] to the new leaf */
972 if (unlikely(path[depth].p_hdr->eh_entries !=
973 path[depth].p_hdr->eh_max)) {
974 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
975 path[depth].p_hdr->eh_entries,
976 path[depth].p_hdr->eh_max);
980 /* start copy from next extent */
981 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
982 ext4_ext_show_move(inode, path, newblock, depth);
984 struct ext4_extent *ex;
985 ex = EXT_FIRST_EXTENT(neh);
986 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
987 le16_add_cpu(&neh->eh_entries, m);
990 ext4_extent_block_csum_set(inode, neh);
991 set_buffer_uptodate(bh);
994 err = ext4_handle_dirty_metadata(handle, inode, bh);
1000 /* correct old leaf */
1002 err = ext4_ext_get_access(handle, inode, path + depth);
1005 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1006 err = ext4_ext_dirty(handle, inode, path + depth);
1012 /* create intermediate indexes */
1014 if (unlikely(k < 0)) {
1015 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1020 ext_debug("create %d intermediate indices\n", k);
1021 /* insert new index into current index block */
1022 /* current depth stored in i var */
1025 oldblock = newblock;
1026 newblock = ablocks[--a];
1027 bh = sb_getblk(inode->i_sb, newblock);
1028 if (unlikely(!bh)) {
1034 err = ext4_journal_get_create_access(handle, bh);
1038 neh = ext_block_hdr(bh);
1039 neh->eh_entries = cpu_to_le16(1);
1040 neh->eh_magic = EXT4_EXT_MAGIC;
1041 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1042 neh->eh_depth = cpu_to_le16(depth - i);
1043 fidx = EXT_FIRST_INDEX(neh);
1044 fidx->ei_block = border;
1045 ext4_idx_store_pblock(fidx, oldblock);
1047 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1048 i, newblock, le32_to_cpu(border), oldblock);
1050 /* move remainder of path[i] to the new index block */
1051 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1052 EXT_LAST_INDEX(path[i].p_hdr))) {
1053 EXT4_ERROR_INODE(inode,
1054 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1055 le32_to_cpu(path[i].p_ext->ee_block));
1059 /* start copy indexes */
1060 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1061 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1062 EXT_MAX_INDEX(path[i].p_hdr));
1063 ext4_ext_show_move(inode, path, newblock, i);
1065 memmove(++fidx, path[i].p_idx,
1066 sizeof(struct ext4_extent_idx) * m);
1067 le16_add_cpu(&neh->eh_entries, m);
1069 ext4_extent_block_csum_set(inode, neh);
1070 set_buffer_uptodate(bh);
1073 err = ext4_handle_dirty_metadata(handle, inode, bh);
1079 /* correct old index */
1081 err = ext4_ext_get_access(handle, inode, path + i);
1084 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1085 err = ext4_ext_dirty(handle, inode, path + i);
1093 /* insert new index */
1094 err = ext4_ext_insert_index(handle, inode, path + at,
1095 le32_to_cpu(border), newblock);
1099 if (buffer_locked(bh))
1105 /* free all allocated blocks in error case */
1106 for (i = 0; i < depth; i++) {
1109 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1110 EXT4_FREE_BLOCKS_METADATA);
1119 * ext4_ext_grow_indepth:
1120 * implements tree growing procedure:
1121 * - allocates new block
1122 * - moves top-level data (index block or leaf) into the new block
1123 * - initializes new top-level, creating index that points to the
1124 * just created block
1126 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1128 struct ext4_extent *newext)
1130 struct ext4_extent_header *neh;
1131 struct buffer_head *bh;
1132 ext4_fsblk_t newblock;
1135 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1136 newext, &err, flags);
1140 bh = sb_getblk(inode->i_sb, newblock);
1145 err = ext4_journal_get_create_access(handle, bh);
1151 /* move top-level index/leaf into new block */
1152 memmove(bh->b_data, EXT4_I(inode)->i_data,
1153 sizeof(EXT4_I(inode)->i_data));
1155 /* set size of new block */
1156 neh = ext_block_hdr(bh);
1157 /* old root could have indexes or leaves
1158 * so calculate e_max right way */
1159 if (ext_depth(inode))
1160 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1162 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1163 neh->eh_magic = EXT4_EXT_MAGIC;
1164 ext4_extent_block_csum_set(inode, neh);
1165 set_buffer_uptodate(bh);
1168 err = ext4_handle_dirty_metadata(handle, inode, bh);
1172 /* Update top-level index: num,max,pointer */
1173 neh = ext_inode_hdr(inode);
1174 neh->eh_entries = cpu_to_le16(1);
1175 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1176 if (neh->eh_depth == 0) {
1177 /* Root extent block becomes index block */
1178 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1179 EXT_FIRST_INDEX(neh)->ei_block =
1180 EXT_FIRST_EXTENT(neh)->ee_block;
1182 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1183 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1184 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1185 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1187 le16_add_cpu(&neh->eh_depth, 1);
1188 ext4_mark_inode_dirty(handle, inode);
1196 * ext4_ext_create_new_leaf:
1197 * finds empty index and adds new leaf.
1198 * if no free index is found, then it requests in-depth growing.
1200 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1202 struct ext4_ext_path *path,
1203 struct ext4_extent *newext)
1205 struct ext4_ext_path *curp;
1206 int depth, i, err = 0;
1209 i = depth = ext_depth(inode);
1211 /* walk up to the tree and look for free index entry */
1212 curp = path + depth;
1213 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1218 /* we use already allocated block for index block,
1219 * so subsequent data blocks should be contiguous */
1220 if (EXT_HAS_FREE_INDEX(curp)) {
1221 /* if we found index with free entry, then use that
1222 * entry: create all needed subtree and add new leaf */
1223 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1228 ext4_ext_drop_refs(path);
1229 path = ext4_ext_find_extent(inode,
1230 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1233 err = PTR_ERR(path);
1235 /* tree is full, time to grow in depth */
1236 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1241 ext4_ext_drop_refs(path);
1242 path = ext4_ext_find_extent(inode,
1243 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1246 err = PTR_ERR(path);
1251 * only first (depth 0 -> 1) produces free space;
1252 * in all other cases we have to split the grown tree
1254 depth = ext_depth(inode);
1255 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1256 /* now we need to split */
1266 * search the closest allocated block to the left for *logical
1267 * and returns it at @logical + it's physical address at @phys
1268 * if *logical is the smallest allocated block, the function
1269 * returns 0 at @phys
1270 * return value contains 0 (success) or error code
1272 static int ext4_ext_search_left(struct inode *inode,
1273 struct ext4_ext_path *path,
1274 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1276 struct ext4_extent_idx *ix;
1277 struct ext4_extent *ex;
1280 if (unlikely(path == NULL)) {
1281 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1284 depth = path->p_depth;
1287 if (depth == 0 && path->p_ext == NULL)
1290 /* usually extent in the path covers blocks smaller
1291 * then *logical, but it can be that extent is the
1292 * first one in the file */
1294 ex = path[depth].p_ext;
1295 ee_len = ext4_ext_get_actual_len(ex);
1296 if (*logical < le32_to_cpu(ex->ee_block)) {
1297 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1298 EXT4_ERROR_INODE(inode,
1299 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1300 *logical, le32_to_cpu(ex->ee_block));
1303 while (--depth >= 0) {
1304 ix = path[depth].p_idx;
1305 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1306 EXT4_ERROR_INODE(inode,
1307 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1308 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1309 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1310 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1318 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1319 EXT4_ERROR_INODE(inode,
1320 "logical %d < ee_block %d + ee_len %d!",
1321 *logical, le32_to_cpu(ex->ee_block), ee_len);
1325 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1326 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1331 * search the closest allocated block to the right for *logical
1332 * and returns it at @logical + it's physical address at @phys
1333 * if *logical is the largest allocated block, the function
1334 * returns 0 at @phys
1335 * return value contains 0 (success) or error code
1337 static int ext4_ext_search_right(struct inode *inode,
1338 struct ext4_ext_path *path,
1339 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1340 struct ext4_extent **ret_ex)
1342 struct buffer_head *bh = NULL;
1343 struct ext4_extent_header *eh;
1344 struct ext4_extent_idx *ix;
1345 struct ext4_extent *ex;
1347 int depth; /* Note, NOT eh_depth; depth from top of tree */
1350 if (unlikely(path == NULL)) {
1351 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1354 depth = path->p_depth;
1357 if (depth == 0 && path->p_ext == NULL)
1360 /* usually extent in the path covers blocks smaller
1361 * then *logical, but it can be that extent is the
1362 * first one in the file */
1364 ex = path[depth].p_ext;
1365 ee_len = ext4_ext_get_actual_len(ex);
1366 if (*logical < le32_to_cpu(ex->ee_block)) {
1367 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1368 EXT4_ERROR_INODE(inode,
1369 "first_extent(path[%d].p_hdr) != ex",
1373 while (--depth >= 0) {
1374 ix = path[depth].p_idx;
1375 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1376 EXT4_ERROR_INODE(inode,
1377 "ix != EXT_FIRST_INDEX *logical %d!",
1385 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1386 EXT4_ERROR_INODE(inode,
1387 "logical %d < ee_block %d + ee_len %d!",
1388 *logical, le32_to_cpu(ex->ee_block), ee_len);
1392 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1393 /* next allocated block in this leaf */
1398 /* go up and search for index to the right */
1399 while (--depth >= 0) {
1400 ix = path[depth].p_idx;
1401 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1405 /* we've gone up to the root and found no index to the right */
1409 /* we've found index to the right, let's
1410 * follow it and find the closest allocated
1411 * block to the right */
1413 block = ext4_idx_pblock(ix);
1414 while (++depth < path->p_depth) {
1415 bh = sb_bread(inode->i_sb, block);
1418 eh = ext_block_hdr(bh);
1419 /* subtract from p_depth to get proper eh_depth */
1420 if (ext4_ext_check_block(inode, eh,
1421 path->p_depth - depth, bh)) {
1425 ix = EXT_FIRST_INDEX(eh);
1426 block = ext4_idx_pblock(ix);
1430 bh = sb_bread(inode->i_sb, block);
1433 eh = ext_block_hdr(bh);
1434 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1438 ex = EXT_FIRST_EXTENT(eh);
1440 *logical = le32_to_cpu(ex->ee_block);
1441 *phys = ext4_ext_pblock(ex);
1449 * ext4_ext_next_allocated_block:
1450 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1451 * NOTE: it considers block number from index entry as
1452 * allocated block. Thus, index entries have to be consistent
1456 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1460 BUG_ON(path == NULL);
1461 depth = path->p_depth;
1463 if (depth == 0 && path->p_ext == NULL)
1464 return EXT_MAX_BLOCKS;
1466 while (depth >= 0) {
1467 if (depth == path->p_depth) {
1469 if (path[depth].p_ext &&
1470 path[depth].p_ext !=
1471 EXT_LAST_EXTENT(path[depth].p_hdr))
1472 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1475 if (path[depth].p_idx !=
1476 EXT_LAST_INDEX(path[depth].p_hdr))
1477 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1482 return EXT_MAX_BLOCKS;
1486 * ext4_ext_next_leaf_block:
1487 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1489 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1493 BUG_ON(path == NULL);
1494 depth = path->p_depth;
1496 /* zero-tree has no leaf blocks at all */
1498 return EXT_MAX_BLOCKS;
1500 /* go to index block */
1503 while (depth >= 0) {
1504 if (path[depth].p_idx !=
1505 EXT_LAST_INDEX(path[depth].p_hdr))
1506 return (ext4_lblk_t)
1507 le32_to_cpu(path[depth].p_idx[1].ei_block);
1511 return EXT_MAX_BLOCKS;
1515 * ext4_ext_correct_indexes:
1516 * if leaf gets modified and modified extent is first in the leaf,
1517 * then we have to correct all indexes above.
1518 * TODO: do we need to correct tree in all cases?
1520 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1521 struct ext4_ext_path *path)
1523 struct ext4_extent_header *eh;
1524 int depth = ext_depth(inode);
1525 struct ext4_extent *ex;
1529 eh = path[depth].p_hdr;
1530 ex = path[depth].p_ext;
1532 if (unlikely(ex == NULL || eh == NULL)) {
1533 EXT4_ERROR_INODE(inode,
1534 "ex %p == NULL or eh %p == NULL", ex, eh);
1539 /* there is no tree at all */
1543 if (ex != EXT_FIRST_EXTENT(eh)) {
1544 /* we correct tree if first leaf got modified only */
1549 * TODO: we need correction if border is smaller than current one
1552 border = path[depth].p_ext->ee_block;
1553 err = ext4_ext_get_access(handle, inode, path + k);
1556 path[k].p_idx->ei_block = border;
1557 err = ext4_ext_dirty(handle, inode, path + k);
1562 /* change all left-side indexes */
1563 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1565 err = ext4_ext_get_access(handle, inode, path + k);
1568 path[k].p_idx->ei_block = border;
1569 err = ext4_ext_dirty(handle, inode, path + k);
1578 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1579 struct ext4_extent *ex2)
1581 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1584 * Make sure that both extents are initialized. We don't merge
1585 * uninitialized extents so that we can be sure that end_io code has
1586 * the extent that was written properly split out and conversion to
1587 * initialized is trivial.
1589 if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
1592 if (ext4_ext_is_uninitialized(ex1))
1593 max_len = EXT_UNINIT_MAX_LEN;
1595 max_len = EXT_INIT_MAX_LEN;
1597 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1598 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1600 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1601 le32_to_cpu(ex2->ee_block))
1605 * To allow future support for preallocated extents to be added
1606 * as an RO_COMPAT feature, refuse to merge to extents if
1607 * this can result in the top bit of ee_len being set.
1609 if (ext1_ee_len + ext2_ee_len > max_len)
1611 #ifdef AGGRESSIVE_TEST
1612 if (ext1_ee_len >= 4)
1616 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1622 * This function tries to merge the "ex" extent to the next extent in the tree.
1623 * It always tries to merge towards right. If you want to merge towards
1624 * left, pass "ex - 1" as argument instead of "ex".
1625 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1626 * 1 if they got merged.
1628 static int ext4_ext_try_to_merge_right(struct inode *inode,
1629 struct ext4_ext_path *path,
1630 struct ext4_extent *ex)
1632 struct ext4_extent_header *eh;
1633 unsigned int depth, len;
1635 int uninitialized = 0;
1637 depth = ext_depth(inode);
1638 BUG_ON(path[depth].p_hdr == NULL);
1639 eh = path[depth].p_hdr;
1641 while (ex < EXT_LAST_EXTENT(eh)) {
1642 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1644 /* merge with next extent! */
1645 if (ext4_ext_is_uninitialized(ex))
1647 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1648 + ext4_ext_get_actual_len(ex + 1));
1650 ext4_ext_mark_uninitialized(ex);
1652 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1653 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1654 * sizeof(struct ext4_extent);
1655 memmove(ex + 1, ex + 2, len);
1657 le16_add_cpu(&eh->eh_entries, -1);
1659 WARN_ON(eh->eh_entries == 0);
1660 if (!eh->eh_entries)
1661 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1668 * This function does a very simple check to see if we can collapse
1669 * an extent tree with a single extent tree leaf block into the inode.
1671 static void ext4_ext_try_to_merge_up(handle_t *handle,
1672 struct inode *inode,
1673 struct ext4_ext_path *path)
1676 unsigned max_root = ext4_ext_space_root(inode, 0);
1679 if ((path[0].p_depth != 1) ||
1680 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1681 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1685 * We need to modify the block allocation bitmap and the block
1686 * group descriptor to release the extent tree block. If we
1687 * can't get the journal credits, give up.
1689 if (ext4_journal_extend(handle, 2))
1693 * Copy the extent data up to the inode
1695 blk = ext4_idx_pblock(path[0].p_idx);
1696 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1697 sizeof(struct ext4_extent_idx);
1698 s += sizeof(struct ext4_extent_header);
1700 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1701 path[0].p_depth = 0;
1702 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1703 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1704 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1706 brelse(path[1].p_bh);
1707 ext4_free_blocks(handle, inode, NULL, blk, 1,
1708 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1712 * This function tries to merge the @ex extent to neighbours in the tree.
1713 * return 1 if merge left else 0.
1715 static void ext4_ext_try_to_merge(handle_t *handle,
1716 struct inode *inode,
1717 struct ext4_ext_path *path,
1718 struct ext4_extent *ex) {
1719 struct ext4_extent_header *eh;
1723 depth = ext_depth(inode);
1724 BUG_ON(path[depth].p_hdr == NULL);
1725 eh = path[depth].p_hdr;
1727 if (ex > EXT_FIRST_EXTENT(eh))
1728 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1731 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1733 ext4_ext_try_to_merge_up(handle, inode, path);
1737 * check if a portion of the "newext" extent overlaps with an
1740 * If there is an overlap discovered, it updates the length of the newext
1741 * such that there will be no overlap, and then returns 1.
1742 * If there is no overlap found, it returns 0.
1744 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1745 struct inode *inode,
1746 struct ext4_extent *newext,
1747 struct ext4_ext_path *path)
1750 unsigned int depth, len1;
1751 unsigned int ret = 0;
1753 b1 = le32_to_cpu(newext->ee_block);
1754 len1 = ext4_ext_get_actual_len(newext);
1755 depth = ext_depth(inode);
1756 if (!path[depth].p_ext)
1758 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1759 b2 &= ~(sbi->s_cluster_ratio - 1);
1762 * get the next allocated block if the extent in the path
1763 * is before the requested block(s)
1766 b2 = ext4_ext_next_allocated_block(path);
1767 if (b2 == EXT_MAX_BLOCKS)
1769 b2 &= ~(sbi->s_cluster_ratio - 1);
1772 /* check for wrap through zero on extent logical start block*/
1773 if (b1 + len1 < b1) {
1774 len1 = EXT_MAX_BLOCKS - b1;
1775 newext->ee_len = cpu_to_le16(len1);
1779 /* check for overlap */
1780 if (b1 + len1 > b2) {
1781 newext->ee_len = cpu_to_le16(b2 - b1);
1789 * ext4_ext_insert_extent:
1790 * tries to merge requsted extent into the existing extent or
1791 * inserts requested extent as new one into the tree,
1792 * creating new leaf in the no-space case.
1794 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1795 struct ext4_ext_path *path,
1796 struct ext4_extent *newext, int flag)
1798 struct ext4_extent_header *eh;
1799 struct ext4_extent *ex, *fex;
1800 struct ext4_extent *nearex; /* nearest extent */
1801 struct ext4_ext_path *npath = NULL;
1802 int depth, len, err;
1804 unsigned uninitialized = 0;
1807 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1808 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1811 depth = ext_depth(inode);
1812 ex = path[depth].p_ext;
1813 eh = path[depth].p_hdr;
1814 if (unlikely(path[depth].p_hdr == NULL)) {
1815 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1819 /* try to insert block into found extent and return */
1820 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)) {
1823 * Try to see whether we should rather test the extent on
1824 * right from ex, or from the left of ex. This is because
1825 * ext4_ext_find_extent() can return either extent on the
1826 * left, or on the right from the searched position. This
1827 * will make merging more effective.
1829 if (ex < EXT_LAST_EXTENT(eh) &&
1830 (le32_to_cpu(ex->ee_block) +
1831 ext4_ext_get_actual_len(ex) <
1832 le32_to_cpu(newext->ee_block))) {
1835 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1836 (le32_to_cpu(newext->ee_block) +
1837 ext4_ext_get_actual_len(newext) <
1838 le32_to_cpu(ex->ee_block)))
1841 /* Try to append newex to the ex */
1842 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1843 ext_debug("append [%d]%d block to %u:[%d]%d"
1845 ext4_ext_is_uninitialized(newext),
1846 ext4_ext_get_actual_len(newext),
1847 le32_to_cpu(ex->ee_block),
1848 ext4_ext_is_uninitialized(ex),
1849 ext4_ext_get_actual_len(ex),
1850 ext4_ext_pblock(ex));
1851 err = ext4_ext_get_access(handle, inode,
1857 * ext4_can_extents_be_merged should have checked
1858 * that either both extents are uninitialized, or
1859 * both aren't. Thus we need to check only one of
1862 if (ext4_ext_is_uninitialized(ex))
1864 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1865 + ext4_ext_get_actual_len(newext));
1867 ext4_ext_mark_uninitialized(ex);
1868 eh = path[depth].p_hdr;
1874 /* Try to prepend newex to the ex */
1875 if (ext4_can_extents_be_merged(inode, newext, ex)) {
1876 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1878 le32_to_cpu(newext->ee_block),
1879 ext4_ext_is_uninitialized(newext),
1880 ext4_ext_get_actual_len(newext),
1881 le32_to_cpu(ex->ee_block),
1882 ext4_ext_is_uninitialized(ex),
1883 ext4_ext_get_actual_len(ex),
1884 ext4_ext_pblock(ex));
1885 err = ext4_ext_get_access(handle, inode,
1891 * ext4_can_extents_be_merged should have checked
1892 * that either both extents are uninitialized, or
1893 * both aren't. Thus we need to check only one of
1896 if (ext4_ext_is_uninitialized(ex))
1898 ex->ee_block = newext->ee_block;
1899 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1900 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1901 + ext4_ext_get_actual_len(newext));
1903 ext4_ext_mark_uninitialized(ex);
1904 eh = path[depth].p_hdr;
1910 depth = ext_depth(inode);
1911 eh = path[depth].p_hdr;
1912 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1915 /* probably next leaf has space for us? */
1916 fex = EXT_LAST_EXTENT(eh);
1917 next = EXT_MAX_BLOCKS;
1918 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1919 next = ext4_ext_next_leaf_block(path);
1920 if (next != EXT_MAX_BLOCKS) {
1921 ext_debug("next leaf block - %u\n", next);
1922 BUG_ON(npath != NULL);
1923 npath = ext4_ext_find_extent(inode, next, NULL);
1925 return PTR_ERR(npath);
1926 BUG_ON(npath->p_depth != path->p_depth);
1927 eh = npath[depth].p_hdr;
1928 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1929 ext_debug("next leaf isn't full(%d)\n",
1930 le16_to_cpu(eh->eh_entries));
1934 ext_debug("next leaf has no free space(%d,%d)\n",
1935 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1939 * There is no free space in the found leaf.
1940 * We're gonna add a new leaf in the tree.
1942 if (flag & EXT4_GET_BLOCKS_METADATA_NOFAIL)
1943 flags = EXT4_MB_USE_RESERVED;
1944 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1947 depth = ext_depth(inode);
1948 eh = path[depth].p_hdr;
1951 nearex = path[depth].p_ext;
1953 err = ext4_ext_get_access(handle, inode, path + depth);
1958 /* there is no extent in this leaf, create first one */
1959 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1960 le32_to_cpu(newext->ee_block),
1961 ext4_ext_pblock(newext),
1962 ext4_ext_is_uninitialized(newext),
1963 ext4_ext_get_actual_len(newext));
1964 nearex = EXT_FIRST_EXTENT(eh);
1966 if (le32_to_cpu(newext->ee_block)
1967 > le32_to_cpu(nearex->ee_block)) {
1969 ext_debug("insert %u:%llu:[%d]%d before: "
1971 le32_to_cpu(newext->ee_block),
1972 ext4_ext_pblock(newext),
1973 ext4_ext_is_uninitialized(newext),
1974 ext4_ext_get_actual_len(newext),
1979 BUG_ON(newext->ee_block == nearex->ee_block);
1980 ext_debug("insert %u:%llu:[%d]%d after: "
1982 le32_to_cpu(newext->ee_block),
1983 ext4_ext_pblock(newext),
1984 ext4_ext_is_uninitialized(newext),
1985 ext4_ext_get_actual_len(newext),
1988 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1990 ext_debug("insert %u:%llu:[%d]%d: "
1991 "move %d extents from 0x%p to 0x%p\n",
1992 le32_to_cpu(newext->ee_block),
1993 ext4_ext_pblock(newext),
1994 ext4_ext_is_uninitialized(newext),
1995 ext4_ext_get_actual_len(newext),
1996 len, nearex, nearex + 1);
1997 memmove(nearex + 1, nearex,
1998 len * sizeof(struct ext4_extent));
2002 le16_add_cpu(&eh->eh_entries, 1);
2003 path[depth].p_ext = nearex;
2004 nearex->ee_block = newext->ee_block;
2005 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2006 nearex->ee_len = newext->ee_len;
2009 /* try to merge extents */
2010 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
2011 ext4_ext_try_to_merge(handle, inode, path, nearex);
2014 /* time to correct all indexes above */
2015 err = ext4_ext_correct_indexes(handle, inode, path);
2019 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2023 ext4_ext_drop_refs(npath);
2029 static int ext4_fill_fiemap_extents(struct inode *inode,
2030 ext4_lblk_t block, ext4_lblk_t num,
2031 struct fiemap_extent_info *fieinfo)
2033 struct ext4_ext_path *path = NULL;
2034 struct ext4_extent *ex;
2035 struct extent_status es;
2036 ext4_lblk_t next, next_del, start = 0, end = 0;
2037 ext4_lblk_t last = block + num;
2038 int exists, depth = 0, err = 0;
2039 unsigned int flags = 0;
2040 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2042 while (block < last && block != EXT_MAX_BLOCKS) {
2044 /* find extent for this block */
2045 down_read(&EXT4_I(inode)->i_data_sem);
2047 if (path && ext_depth(inode) != depth) {
2048 /* depth was changed. we have to realloc path */
2053 path = ext4_ext_find_extent(inode, block, path);
2055 up_read(&EXT4_I(inode)->i_data_sem);
2056 err = PTR_ERR(path);
2061 depth = ext_depth(inode);
2062 if (unlikely(path[depth].p_hdr == NULL)) {
2063 up_read(&EXT4_I(inode)->i_data_sem);
2064 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2068 ex = path[depth].p_ext;
2069 next = ext4_ext_next_allocated_block(path);
2070 ext4_ext_drop_refs(path);
2075 /* there is no extent yet, so try to allocate
2076 * all requested space */
2079 } else if (le32_to_cpu(ex->ee_block) > block) {
2080 /* need to allocate space before found extent */
2082 end = le32_to_cpu(ex->ee_block);
2083 if (block + num < end)
2085 } else if (block >= le32_to_cpu(ex->ee_block)
2086 + ext4_ext_get_actual_len(ex)) {
2087 /* need to allocate space after found extent */
2092 } else if (block >= le32_to_cpu(ex->ee_block)) {
2094 * some part of requested space is covered
2098 end = le32_to_cpu(ex->ee_block)
2099 + ext4_ext_get_actual_len(ex);
2100 if (block + num < end)
2106 BUG_ON(end <= start);
2110 es.es_len = end - start;
2113 es.es_lblk = le32_to_cpu(ex->ee_block);
2114 es.es_len = ext4_ext_get_actual_len(ex);
2115 es.es_pblk = ext4_ext_pblock(ex);
2116 if (ext4_ext_is_uninitialized(ex))
2117 flags |= FIEMAP_EXTENT_UNWRITTEN;
2121 * Find delayed extent and update es accordingly. We call
2122 * it even in !exists case to find out whether es is the
2123 * last existing extent or not.
2125 next_del = ext4_find_delayed_extent(inode, &es);
2126 if (!exists && next_del) {
2128 flags |= (FIEMAP_EXTENT_DELALLOC |
2129 FIEMAP_EXTENT_UNKNOWN);
2131 up_read(&EXT4_I(inode)->i_data_sem);
2133 if (unlikely(es.es_len == 0)) {
2134 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2140 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2141 * we need to check next == EXT_MAX_BLOCKS because it is
2142 * possible that an extent is with unwritten and delayed
2143 * status due to when an extent is delayed allocated and
2144 * is allocated by fallocate status tree will track both of
2147 * So we could return a unwritten and delayed extent, and
2148 * its block is equal to 'next'.
2150 if (next == next_del && next == EXT_MAX_BLOCKS) {
2151 flags |= FIEMAP_EXTENT_LAST;
2152 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2153 next != EXT_MAX_BLOCKS)) {
2154 EXT4_ERROR_INODE(inode,
2155 "next extent == %u, next "
2156 "delalloc extent = %u",
2164 err = fiemap_fill_next_extent(fieinfo,
2165 (__u64)es.es_lblk << blksize_bits,
2166 (__u64)es.es_pblk << blksize_bits,
2167 (__u64)es.es_len << blksize_bits,
2177 block = es.es_lblk + es.es_len;
2181 ext4_ext_drop_refs(path);
2189 * ext4_ext_put_gap_in_cache:
2190 * calculate boundaries of the gap that the requested block fits into
2191 * and cache this gap
2194 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2197 int depth = ext_depth(inode);
2200 struct ext4_extent *ex;
2202 ex = path[depth].p_ext;
2205 * there is no extent yet, so gap is [0;-] and we
2208 ext_debug("cache gap(whole file):");
2209 } else if (block < le32_to_cpu(ex->ee_block)) {
2211 len = le32_to_cpu(ex->ee_block) - block;
2212 ext_debug("cache gap(before): %u [%u:%u]",
2214 le32_to_cpu(ex->ee_block),
2215 ext4_ext_get_actual_len(ex));
2216 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2217 ext4_es_insert_extent(inode, lblock, len, ~0,
2218 EXTENT_STATUS_HOLE);
2219 } else if (block >= le32_to_cpu(ex->ee_block)
2220 + ext4_ext_get_actual_len(ex)) {
2222 lblock = le32_to_cpu(ex->ee_block)
2223 + ext4_ext_get_actual_len(ex);
2225 next = ext4_ext_next_allocated_block(path);
2226 ext_debug("cache gap(after): [%u:%u] %u",
2227 le32_to_cpu(ex->ee_block),
2228 ext4_ext_get_actual_len(ex),
2230 BUG_ON(next == lblock);
2231 len = next - lblock;
2232 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2233 ext4_es_insert_extent(inode, lblock, len, ~0,
2234 EXTENT_STATUS_HOLE);
2240 ext_debug(" -> %u:%lu\n", lblock, len);
2245 * removes index from the index block.
2247 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2248 struct ext4_ext_path *path, int depth)
2253 /* free index block */
2255 path = path + depth;
2256 leaf = ext4_idx_pblock(path->p_idx);
2257 if (unlikely(path->p_hdr->eh_entries == 0)) {
2258 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2261 err = ext4_ext_get_access(handle, inode, path);
2265 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2266 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2267 len *= sizeof(struct ext4_extent_idx);
2268 memmove(path->p_idx, path->p_idx + 1, len);
2271 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2272 err = ext4_ext_dirty(handle, inode, path);
2275 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2276 trace_ext4_ext_rm_idx(inode, leaf);
2278 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2279 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2281 while (--depth >= 0) {
2282 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2285 err = ext4_ext_get_access(handle, inode, path);
2288 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2289 err = ext4_ext_dirty(handle, inode, path);
2297 * ext4_ext_calc_credits_for_single_extent:
2298 * This routine returns max. credits that needed to insert an extent
2299 * to the extent tree.
2300 * When pass the actual path, the caller should calculate credits
2303 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2304 struct ext4_ext_path *path)
2307 int depth = ext_depth(inode);
2310 /* probably there is space in leaf? */
2311 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2312 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2315 * There are some space in the leaf tree, no
2316 * need to account for leaf block credit
2318 * bitmaps and block group descriptor blocks
2319 * and other metadata blocks still need to be
2322 /* 1 bitmap, 1 block group descriptor */
2323 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2328 return ext4_chunk_trans_blocks(inode, nrblocks);
2332 * How many index/leaf blocks need to change/allocate to add @extents extents?
2334 * If we add a single extent, then in the worse case, each tree level
2335 * index/leaf need to be changed in case of the tree split.
2337 * If more extents are inserted, they could cause the whole tree split more
2338 * than once, but this is really rare.
2340 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2345 /* If we are converting the inline data, only one is needed here. */
2346 if (ext4_has_inline_data(inode))
2349 depth = ext_depth(inode);
2359 static inline int get_default_free_blocks_flags(struct inode *inode)
2361 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2362 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2363 else if (ext4_should_journal_data(inode))
2364 return EXT4_FREE_BLOCKS_FORGET;
2368 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2369 struct ext4_extent *ex,
2370 long long *partial_cluster,
2371 ext4_lblk_t from, ext4_lblk_t to)
2373 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2374 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2376 int flags = get_default_free_blocks_flags(inode);
2379 * For bigalloc file systems, we never free a partial cluster
2380 * at the beginning of the extent. Instead, we make a note
2381 * that we tried freeing the cluster, and check to see if we
2382 * need to free it on a subsequent call to ext4_remove_blocks,
2383 * or at the end of the ext4_truncate() operation.
2385 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2387 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2389 * If we have a partial cluster, and it's different from the
2390 * cluster of the last block, we need to explicitly free the
2391 * partial cluster here.
2393 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2394 if ((*partial_cluster > 0) &&
2395 (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2396 ext4_free_blocks(handle, inode, NULL,
2397 EXT4_C2B(sbi, *partial_cluster),
2398 sbi->s_cluster_ratio, flags);
2399 *partial_cluster = 0;
2402 #ifdef EXTENTS_STATS
2404 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2405 spin_lock(&sbi->s_ext_stats_lock);
2406 sbi->s_ext_blocks += ee_len;
2407 sbi->s_ext_extents++;
2408 if (ee_len < sbi->s_ext_min)
2409 sbi->s_ext_min = ee_len;
2410 if (ee_len > sbi->s_ext_max)
2411 sbi->s_ext_max = ee_len;
2412 if (ext_depth(inode) > sbi->s_depth_max)
2413 sbi->s_depth_max = ext_depth(inode);
2414 spin_unlock(&sbi->s_ext_stats_lock);
2417 if (from >= le32_to_cpu(ex->ee_block)
2418 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2421 unsigned int unaligned;
2423 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2424 pblk = ext4_ext_pblock(ex) + ee_len - num;
2426 * Usually we want to free partial cluster at the end of the
2427 * extent, except for the situation when the cluster is still
2428 * used by any other extent (partial_cluster is negative).
2430 if (*partial_cluster < 0 &&
2431 -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2432 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2434 ext_debug("free last %u blocks starting %llu partial %lld\n",
2435 num, pblk, *partial_cluster);
2436 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2438 * If the block range to be freed didn't start at the
2439 * beginning of a cluster, and we removed the entire
2440 * extent and the cluster is not used by any other extent,
2441 * save the partial cluster here, since we might need to
2442 * delete if we determine that the truncate operation has
2443 * removed all of the blocks in the cluster.
2445 * On the other hand, if we did not manage to free the whole
2446 * extent, we have to mark the cluster as used (store negative
2447 * cluster number in partial_cluster).
2449 unaligned = pblk & (sbi->s_cluster_ratio - 1);
2450 if (unaligned && (ee_len == num) &&
2451 (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2452 *partial_cluster = EXT4_B2C(sbi, pblk);
2454 *partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2455 else if (*partial_cluster > 0)
2456 *partial_cluster = 0;
2458 ext4_error(sbi->s_sb, "strange request: removal(2) "
2459 "%u-%u from %u:%u\n",
2460 from, to, le32_to_cpu(ex->ee_block), ee_len);
2466 * ext4_ext_rm_leaf() Removes the extents associated with the
2467 * blocks appearing between "start" and "end", and splits the extents
2468 * if "start" and "end" appear in the same extent
2470 * @handle: The journal handle
2471 * @inode: The files inode
2472 * @path: The path to the leaf
2473 * @partial_cluster: The cluster which we'll have to free if all extents
2474 * has been released from it. It gets negative in case
2475 * that the cluster is still used.
2476 * @start: The first block to remove
2477 * @end: The last block to remove
2480 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2481 struct ext4_ext_path *path,
2482 long long *partial_cluster,
2483 ext4_lblk_t start, ext4_lblk_t end)
2485 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2486 int err = 0, correct_index = 0;
2487 int depth = ext_depth(inode), credits;
2488 struct ext4_extent_header *eh;
2491 ext4_lblk_t ex_ee_block;
2492 unsigned short ex_ee_len;
2493 unsigned uninitialized = 0;
2494 struct ext4_extent *ex;
2497 /* the header must be checked already in ext4_ext_remove_space() */
2498 ext_debug("truncate since %u in leaf to %u\n", start, end);
2499 if (!path[depth].p_hdr)
2500 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2501 eh = path[depth].p_hdr;
2502 if (unlikely(path[depth].p_hdr == NULL)) {
2503 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2506 /* find where to start removing */
2507 ex = path[depth].p_ext;
2509 ex = EXT_LAST_EXTENT(eh);
2511 ex_ee_block = le32_to_cpu(ex->ee_block);
2512 ex_ee_len = ext4_ext_get_actual_len(ex);
2514 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2516 while (ex >= EXT_FIRST_EXTENT(eh) &&
2517 ex_ee_block + ex_ee_len > start) {
2519 if (ext4_ext_is_uninitialized(ex))
2524 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2525 uninitialized, ex_ee_len);
2526 path[depth].p_ext = ex;
2528 a = ex_ee_block > start ? ex_ee_block : start;
2529 b = ex_ee_block+ex_ee_len - 1 < end ?
2530 ex_ee_block+ex_ee_len - 1 : end;
2532 ext_debug(" border %u:%u\n", a, b);
2534 /* If this extent is beyond the end of the hole, skip it */
2535 if (end < ex_ee_block) {
2537 * We're going to skip this extent and move to another,
2538 * so if this extent is not cluster aligned we have
2539 * to mark the current cluster as used to avoid
2540 * accidentally freeing it later on
2542 pblk = ext4_ext_pblock(ex);
2543 if (pblk & (sbi->s_cluster_ratio - 1))
2545 -((long long)EXT4_B2C(sbi, pblk));
2547 ex_ee_block = le32_to_cpu(ex->ee_block);
2548 ex_ee_len = ext4_ext_get_actual_len(ex);
2550 } else if (b != ex_ee_block + ex_ee_len - 1) {
2551 EXT4_ERROR_INODE(inode,
2552 "can not handle truncate %u:%u "
2554 start, end, ex_ee_block,
2555 ex_ee_block + ex_ee_len - 1);
2558 } else if (a != ex_ee_block) {
2559 /* remove tail of the extent */
2560 num = a - ex_ee_block;
2562 /* remove whole extent: excellent! */
2566 * 3 for leaf, sb, and inode plus 2 (bmap and group
2567 * descriptor) for each block group; assume two block
2568 * groups plus ex_ee_len/blocks_per_block_group for
2571 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2572 if (ex == EXT_FIRST_EXTENT(eh)) {
2574 credits += (ext_depth(inode)) + 1;
2576 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2578 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2582 err = ext4_ext_get_access(handle, inode, path + depth);
2586 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2592 /* this extent is removed; mark slot entirely unused */
2593 ext4_ext_store_pblock(ex, 0);
2595 ex->ee_len = cpu_to_le16(num);
2597 * Do not mark uninitialized if all the blocks in the
2598 * extent have been removed.
2600 if (uninitialized && num)
2601 ext4_ext_mark_uninitialized(ex);
2603 * If the extent was completely released,
2604 * we need to remove it from the leaf
2607 if (end != EXT_MAX_BLOCKS - 1) {
2609 * For hole punching, we need to scoot all the
2610 * extents up when an extent is removed so that
2611 * we dont have blank extents in the middle
2613 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2614 sizeof(struct ext4_extent));
2616 /* Now get rid of the one at the end */
2617 memset(EXT_LAST_EXTENT(eh), 0,
2618 sizeof(struct ext4_extent));
2620 le16_add_cpu(&eh->eh_entries, -1);
2621 } else if (*partial_cluster > 0)
2622 *partial_cluster = 0;
2624 err = ext4_ext_dirty(handle, inode, path + depth);
2628 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2629 ext4_ext_pblock(ex));
2631 ex_ee_block = le32_to_cpu(ex->ee_block);
2632 ex_ee_len = ext4_ext_get_actual_len(ex);
2635 if (correct_index && eh->eh_entries)
2636 err = ext4_ext_correct_indexes(handle, inode, path);
2639 * Free the partial cluster only if the current extent does not
2640 * reference it. Otherwise we might free used cluster.
2642 if (*partial_cluster > 0 &&
2643 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2644 *partial_cluster)) {
2645 int flags = get_default_free_blocks_flags(inode);
2647 ext4_free_blocks(handle, inode, NULL,
2648 EXT4_C2B(sbi, *partial_cluster),
2649 sbi->s_cluster_ratio, flags);
2650 *partial_cluster = 0;
2653 /* if this leaf is free, then we should
2654 * remove it from index block above */
2655 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2656 err = ext4_ext_rm_idx(handle, inode, path, depth);
2663 * ext4_ext_more_to_rm:
2664 * returns 1 if current index has to be freed (even partial)
2667 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2669 BUG_ON(path->p_idx == NULL);
2671 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2675 * if truncate on deeper level happened, it wasn't partial,
2676 * so we have to consider current index for truncation
2678 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2683 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2686 struct super_block *sb = inode->i_sb;
2687 int depth = ext_depth(inode);
2688 struct ext4_ext_path *path = NULL;
2689 long long partial_cluster = 0;
2693 ext_debug("truncate since %u to %u\n", start, end);
2695 /* probably first extent we're gonna free will be last in block */
2696 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2698 return PTR_ERR(handle);
2701 trace_ext4_ext_remove_space(inode, start, end, depth);
2704 * Check if we are removing extents inside the extent tree. If that
2705 * is the case, we are going to punch a hole inside the extent tree
2706 * so we have to check whether we need to split the extent covering
2707 * the last block to remove so we can easily remove the part of it
2708 * in ext4_ext_rm_leaf().
2710 if (end < EXT_MAX_BLOCKS - 1) {
2711 struct ext4_extent *ex;
2712 ext4_lblk_t ee_block;
2714 /* find extent for this block */
2715 path = ext4_ext_find_extent(inode, end, NULL);
2717 ext4_journal_stop(handle);
2718 return PTR_ERR(path);
2720 depth = ext_depth(inode);
2721 /* Leaf not may not exist only if inode has no blocks at all */
2722 ex = path[depth].p_ext;
2725 EXT4_ERROR_INODE(inode,
2726 "path[%d].p_hdr == NULL",
2733 ee_block = le32_to_cpu(ex->ee_block);
2736 * See if the last block is inside the extent, if so split
2737 * the extent at 'end' block so we can easily remove the
2738 * tail of the first part of the split extent in
2739 * ext4_ext_rm_leaf().
2741 if (end >= ee_block &&
2742 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2745 if (ext4_ext_is_uninitialized(ex))
2746 split_flag = EXT4_EXT_MARK_UNINIT1 |
2747 EXT4_EXT_MARK_UNINIT2;
2750 * Split the extent in two so that 'end' is the last
2751 * block in the first new extent. Also we should not
2752 * fail removing space due to ENOSPC so try to use
2753 * reserved block if that happens.
2755 err = ext4_split_extent_at(handle, inode, path,
2756 end + 1, split_flag,
2757 EXT4_GET_BLOCKS_PRE_IO |
2758 EXT4_GET_BLOCKS_METADATA_NOFAIL);
2765 * We start scanning from right side, freeing all the blocks
2766 * after i_size and walking into the tree depth-wise.
2768 depth = ext_depth(inode);
2773 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2775 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2778 ext4_journal_stop(handle);
2781 path[0].p_depth = depth;
2782 path[0].p_hdr = ext_inode_hdr(inode);
2785 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2792 while (i >= 0 && err == 0) {
2794 /* this is leaf block */
2795 err = ext4_ext_rm_leaf(handle, inode, path,
2796 &partial_cluster, start,
2798 /* root level has p_bh == NULL, brelse() eats this */
2799 brelse(path[i].p_bh);
2800 path[i].p_bh = NULL;
2805 /* this is index block */
2806 if (!path[i].p_hdr) {
2807 ext_debug("initialize header\n");
2808 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2811 if (!path[i].p_idx) {
2812 /* this level hasn't been touched yet */
2813 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2814 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2815 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2817 le16_to_cpu(path[i].p_hdr->eh_entries));
2819 /* we were already here, see at next index */
2823 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2824 i, EXT_FIRST_INDEX(path[i].p_hdr),
2826 if (ext4_ext_more_to_rm(path + i)) {
2827 struct buffer_head *bh;
2828 /* go to the next level */
2829 ext_debug("move to level %d (block %llu)\n",
2830 i + 1, ext4_idx_pblock(path[i].p_idx));
2831 memset(path + i + 1, 0, sizeof(*path));
2832 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2834 /* should we reset i_size? */
2838 if (WARN_ON(i + 1 > depth)) {
2842 if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2843 depth - i - 1, bh)) {
2847 path[i + 1].p_bh = bh;
2849 /* save actual number of indexes since this
2850 * number is changed at the next iteration */
2851 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2854 /* we finished processing this index, go up */
2855 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2856 /* index is empty, remove it;
2857 * handle must be already prepared by the
2858 * truncatei_leaf() */
2859 err = ext4_ext_rm_idx(handle, inode, path, i);
2861 /* root level has p_bh == NULL, brelse() eats this */
2862 brelse(path[i].p_bh);
2863 path[i].p_bh = NULL;
2865 ext_debug("return to level %d\n", i);
2869 trace_ext4_ext_remove_space_done(inode, start, end, depth,
2870 partial_cluster, path->p_hdr->eh_entries);
2872 /* If we still have something in the partial cluster and we have removed
2873 * even the first extent, then we should free the blocks in the partial
2874 * cluster as well. */
2875 if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2876 int flags = get_default_free_blocks_flags(inode);
2878 ext4_free_blocks(handle, inode, NULL,
2879 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2880 EXT4_SB(sb)->s_cluster_ratio, flags);
2881 partial_cluster = 0;
2884 /* TODO: flexible tree reduction should be here */
2885 if (path->p_hdr->eh_entries == 0) {
2887 * truncate to zero freed all the tree,
2888 * so we need to correct eh_depth
2890 err = ext4_ext_get_access(handle, inode, path);
2892 ext_inode_hdr(inode)->eh_depth = 0;
2893 ext_inode_hdr(inode)->eh_max =
2894 cpu_to_le16(ext4_ext_space_root(inode, 0));
2895 err = ext4_ext_dirty(handle, inode, path);
2899 ext4_ext_drop_refs(path);
2901 if (err == -EAGAIN) {
2905 ext4_journal_stop(handle);
2911 * called at mount time
2913 void ext4_ext_init(struct super_block *sb)
2916 * possible initialization would be here
2919 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2920 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2921 printk(KERN_INFO "EXT4-fs: file extents enabled"
2922 #ifdef AGGRESSIVE_TEST
2923 ", aggressive tests"
2925 #ifdef CHECK_BINSEARCH
2928 #ifdef EXTENTS_STATS
2933 #ifdef EXTENTS_STATS
2934 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2935 EXT4_SB(sb)->s_ext_min = 1 << 30;
2936 EXT4_SB(sb)->s_ext_max = 0;
2942 * called at umount time
2944 void ext4_ext_release(struct super_block *sb)
2946 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2949 #ifdef EXTENTS_STATS
2950 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2951 struct ext4_sb_info *sbi = EXT4_SB(sb);
2952 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2953 sbi->s_ext_blocks, sbi->s_ext_extents,
2954 sbi->s_ext_blocks / sbi->s_ext_extents);
2955 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2956 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2961 /* FIXME!! we need to try to merge to left or right after zero-out */
2962 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2964 ext4_fsblk_t ee_pblock;
2965 unsigned int ee_len;
2968 ee_len = ext4_ext_get_actual_len(ex);
2969 ee_pblock = ext4_ext_pblock(ex);
2971 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2979 * ext4_split_extent_at() splits an extent at given block.
2981 * @handle: the journal handle
2982 * @inode: the file inode
2983 * @path: the path to the extent
2984 * @split: the logical block where the extent is splitted.
2985 * @split_flags: indicates if the extent could be zeroout if split fails, and
2986 * the states(init or uninit) of new extents.
2987 * @flags: flags used to insert new extent to extent tree.
2990 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2991 * of which are deterimined by split_flag.
2993 * There are two cases:
2994 * a> the extent are splitted into two extent.
2995 * b> split is not needed, and just mark the extent.
2997 * return 0 on success.
2999 static int ext4_split_extent_at(handle_t *handle,
3000 struct inode *inode,
3001 struct ext4_ext_path *path,
3006 ext4_fsblk_t newblock;
3007 ext4_lblk_t ee_block;
3008 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3009 struct ext4_extent *ex2 = NULL;
3010 unsigned int ee_len, depth;
3013 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3014 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3016 ext_debug("ext4_split_extents_at: inode %lu, logical"
3017 "block %llu\n", inode->i_ino, (unsigned long long)split);
3019 ext4_ext_show_leaf(inode, path);
3021 depth = ext_depth(inode);
3022 ex = path[depth].p_ext;
3023 ee_block = le32_to_cpu(ex->ee_block);
3024 ee_len = ext4_ext_get_actual_len(ex);
3025 newblock = split - ee_block + ext4_ext_pblock(ex);
3027 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3028 BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3029 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3030 EXT4_EXT_MARK_UNINIT1 |
3031 EXT4_EXT_MARK_UNINIT2));
3033 err = ext4_ext_get_access(handle, inode, path + depth);
3037 if (split == ee_block) {
3039 * case b: block @split is the block that the extent begins with
3040 * then we just change the state of the extent, and splitting
3043 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3044 ext4_ext_mark_uninitialized(ex);
3046 ext4_ext_mark_initialized(ex);
3048 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3049 ext4_ext_try_to_merge(handle, inode, path, ex);
3051 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3056 memcpy(&orig_ex, ex, sizeof(orig_ex));
3057 ex->ee_len = cpu_to_le16(split - ee_block);
3058 if (split_flag & EXT4_EXT_MARK_UNINIT1)
3059 ext4_ext_mark_uninitialized(ex);
3062 * path may lead to new leaf, not to original leaf any more
3063 * after ext4_ext_insert_extent() returns,
3065 err = ext4_ext_dirty(handle, inode, path + depth);
3067 goto fix_extent_len;
3070 ex2->ee_block = cpu_to_le32(split);
3071 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3072 ext4_ext_store_pblock(ex2, newblock);
3073 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3074 ext4_ext_mark_uninitialized(ex2);
3076 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3077 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3078 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3079 if (split_flag & EXT4_EXT_DATA_VALID1) {
3080 err = ext4_ext_zeroout(inode, ex2);
3081 zero_ex.ee_block = ex2->ee_block;
3082 zero_ex.ee_len = cpu_to_le16(
3083 ext4_ext_get_actual_len(ex2));
3084 ext4_ext_store_pblock(&zero_ex,
3085 ext4_ext_pblock(ex2));
3087 err = ext4_ext_zeroout(inode, ex);
3088 zero_ex.ee_block = ex->ee_block;
3089 zero_ex.ee_len = cpu_to_le16(
3090 ext4_ext_get_actual_len(ex));
3091 ext4_ext_store_pblock(&zero_ex,
3092 ext4_ext_pblock(ex));
3095 err = ext4_ext_zeroout(inode, &orig_ex);
3096 zero_ex.ee_block = orig_ex.ee_block;
3097 zero_ex.ee_len = cpu_to_le16(
3098 ext4_ext_get_actual_len(&orig_ex));
3099 ext4_ext_store_pblock(&zero_ex,
3100 ext4_ext_pblock(&orig_ex));
3104 goto fix_extent_len;
3105 /* update the extent length and mark as initialized */
3106 ex->ee_len = cpu_to_le16(ee_len);
3107 ext4_ext_try_to_merge(handle, inode, path, ex);
3108 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3110 goto fix_extent_len;
3112 /* update extent status tree */
3113 err = ext4_es_zeroout(inode, &zero_ex);
3117 goto fix_extent_len;
3120 ext4_ext_show_leaf(inode, path);
3124 ex->ee_len = orig_ex.ee_len;
3125 ext4_ext_dirty(handle, inode, path + depth);
3130 * ext4_split_extents() splits an extent and mark extent which is covered
3131 * by @map as split_flags indicates
3133 * It may result in splitting the extent into multiple extents (upto three)
3134 * There are three possibilities:
3135 * a> There is no split required
3136 * b> Splits in two extents: Split is happening at either end of the extent
3137 * c> Splits in three extents: Somone is splitting in middle of the extent
3140 static int ext4_split_extent(handle_t *handle,
3141 struct inode *inode,
3142 struct ext4_ext_path *path,
3143 struct ext4_map_blocks *map,
3147 ext4_lblk_t ee_block;
3148 struct ext4_extent *ex;
3149 unsigned int ee_len, depth;
3152 int split_flag1, flags1;
3153 int allocated = map->m_len;
3155 depth = ext_depth(inode);
3156 ex = path[depth].p_ext;
3157 ee_block = le32_to_cpu(ex->ee_block);
3158 ee_len = ext4_ext_get_actual_len(ex);
3159 uninitialized = ext4_ext_is_uninitialized(ex);
3161 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3162 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3163 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3165 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3166 EXT4_EXT_MARK_UNINIT2;
3167 if (split_flag & EXT4_EXT_DATA_VALID2)
3168 split_flag1 |= EXT4_EXT_DATA_VALID1;
3169 err = ext4_split_extent_at(handle, inode, path,
3170 map->m_lblk + map->m_len, split_flag1, flags1);
3174 allocated = ee_len - (map->m_lblk - ee_block);
3177 * Update path is required because previous ext4_split_extent_at() may
3178 * result in split of original leaf or extent zeroout.
3180 ext4_ext_drop_refs(path);
3181 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3183 return PTR_ERR(path);
3184 depth = ext_depth(inode);
3185 ex = path[depth].p_ext;
3186 uninitialized = ext4_ext_is_uninitialized(ex);
3189 if (map->m_lblk >= ee_block) {
3190 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3191 if (uninitialized) {
3192 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3193 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3194 EXT4_EXT_MARK_UNINIT2);
3196 err = ext4_split_extent_at(handle, inode, path,
3197 map->m_lblk, split_flag1, flags);
3202 ext4_ext_show_leaf(inode, path);
3204 return err ? err : allocated;
3208 * This function is called by ext4_ext_map_blocks() if someone tries to write
3209 * to an uninitialized extent. It may result in splitting the uninitialized
3210 * extent into multiple extents (up to three - one initialized and two
3212 * There are three possibilities:
3213 * a> There is no split required: Entire extent should be initialized
3214 * b> Splits in two extents: Write is happening at either end of the extent
3215 * c> Splits in three extents: Somone is writing in middle of the extent
3218 * - The extent pointed to by 'path' is uninitialized.
3219 * - The extent pointed to by 'path' contains a superset
3220 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3222 * Post-conditions on success:
3223 * - the returned value is the number of blocks beyond map->l_lblk
3224 * that are allocated and initialized.
3225 * It is guaranteed to be >= map->m_len.
3227 static int ext4_ext_convert_to_initialized(handle_t *handle,
3228 struct inode *inode,
3229 struct ext4_map_blocks *map,
3230 struct ext4_ext_path *path,
3233 struct ext4_sb_info *sbi;
3234 struct ext4_extent_header *eh;
3235 struct ext4_map_blocks split_map;
3236 struct ext4_extent zero_ex;
3237 struct ext4_extent *ex, *abut_ex;
3238 ext4_lblk_t ee_block, eof_block;
3239 unsigned int ee_len, depth, map_len = map->m_len;
3240 int allocated = 0, max_zeroout = 0;
3244 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3245 "block %llu, max_blocks %u\n", inode->i_ino,
3246 (unsigned long long)map->m_lblk, map_len);
3248 sbi = EXT4_SB(inode->i_sb);
3249 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3250 inode->i_sb->s_blocksize_bits;
3251 if (eof_block < map->m_lblk + map_len)
3252 eof_block = map->m_lblk + map_len;
3254 depth = ext_depth(inode);
3255 eh = path[depth].p_hdr;
3256 ex = path[depth].p_ext;
3257 ee_block = le32_to_cpu(ex->ee_block);
3258 ee_len = ext4_ext_get_actual_len(ex);
3261 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3263 /* Pre-conditions */
3264 BUG_ON(!ext4_ext_is_uninitialized(ex));
3265 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3268 * Attempt to transfer newly initialized blocks from the currently
3269 * uninitialized extent to its neighbor. This is much cheaper
3270 * than an insertion followed by a merge as those involve costly
3271 * memmove() calls. Transferring to the left is the common case in
3272 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3273 * followed by append writes.
3275 * Limitations of the current logic:
3276 * - L1: we do not deal with writes covering the whole extent.
3277 * This would require removing the extent if the transfer
3279 * - L2: we only attempt to merge with an extent stored in the
3280 * same extent tree node.
3282 if ((map->m_lblk == ee_block) &&
3283 /* See if we can merge left */
3284 (map_len < ee_len) && /*L1*/
3285 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3286 ext4_lblk_t prev_lblk;
3287 ext4_fsblk_t prev_pblk, ee_pblk;
3288 unsigned int prev_len;
3291 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3292 prev_len = ext4_ext_get_actual_len(abut_ex);
3293 prev_pblk = ext4_ext_pblock(abut_ex);
3294 ee_pblk = ext4_ext_pblock(ex);
3297 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3298 * upon those conditions:
3299 * - C1: abut_ex is initialized,
3300 * - C2: abut_ex is logically abutting ex,
3301 * - C3: abut_ex is physically abutting ex,
3302 * - C4: abut_ex can receive the additional blocks without
3303 * overflowing the (initialized) length limit.
3305 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3306 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3307 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3308 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3309 err = ext4_ext_get_access(handle, inode, path + depth);
3313 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3316 /* Shift the start of ex by 'map_len' blocks */
3317 ex->ee_block = cpu_to_le32(ee_block + map_len);
3318 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3319 ex->ee_len = cpu_to_le16(ee_len - map_len);
3320 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3322 /* Extend abut_ex by 'map_len' blocks */
3323 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3325 /* Result: number of initialized blocks past m_lblk */
3326 allocated = map_len;
3328 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3329 (map_len < ee_len) && /*L1*/
3330 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3331 /* See if we can merge right */
3332 ext4_lblk_t next_lblk;
3333 ext4_fsblk_t next_pblk, ee_pblk;
3334 unsigned int next_len;
3337 next_lblk = le32_to_cpu(abut_ex->ee_block);
3338 next_len = ext4_ext_get_actual_len(abut_ex);
3339 next_pblk = ext4_ext_pblock(abut_ex);
3340 ee_pblk = ext4_ext_pblock(ex);
3343 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3344 * upon those conditions:
3345 * - C1: abut_ex is initialized,
3346 * - C2: abut_ex is logically abutting ex,
3347 * - C3: abut_ex is physically abutting ex,
3348 * - C4: abut_ex can receive the additional blocks without
3349 * overflowing the (initialized) length limit.
3351 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3352 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3353 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3354 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3355 err = ext4_ext_get_access(handle, inode, path + depth);
3359 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3362 /* Shift the start of abut_ex by 'map_len' blocks */
3363 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3364 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3365 ex->ee_len = cpu_to_le16(ee_len - map_len);
3366 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3368 /* Extend abut_ex by 'map_len' blocks */
3369 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3371 /* Result: number of initialized blocks past m_lblk */
3372 allocated = map_len;
3376 /* Mark the block containing both extents as dirty */
3377 ext4_ext_dirty(handle, inode, path + depth);
3379 /* Update path to point to the right extent */
3380 path[depth].p_ext = abut_ex;
3383 allocated = ee_len - (map->m_lblk - ee_block);
3385 WARN_ON(map->m_lblk < ee_block);
3387 * It is safe to convert extent to initialized via explicit
3388 * zeroout only if extent is fully insde i_size or new_size.
3390 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3392 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3393 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3394 (inode->i_sb->s_blocksize_bits - 10);
3396 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3397 if (max_zeroout && (ee_len <= max_zeroout)) {
3398 err = ext4_ext_zeroout(inode, ex);
3401 zero_ex.ee_block = ex->ee_block;
3402 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3403 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3405 err = ext4_ext_get_access(handle, inode, path + depth);
3408 ext4_ext_mark_initialized(ex);
3409 ext4_ext_try_to_merge(handle, inode, path, ex);
3410 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3416 * 1. split the extent into three extents.
3417 * 2. split the extent into two extents, zeroout the first half.
3418 * 3. split the extent into two extents, zeroout the second half.
3419 * 4. split the extent into two extents with out zeroout.
3421 split_map.m_lblk = map->m_lblk;
3422 split_map.m_len = map->m_len;
3424 if (max_zeroout && (allocated > map->m_len)) {
3425 if (allocated <= max_zeroout) {
3428 cpu_to_le32(map->m_lblk);
3429 zero_ex.ee_len = cpu_to_le16(allocated);
3430 ext4_ext_store_pblock(&zero_ex,
3431 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3432 err = ext4_ext_zeroout(inode, &zero_ex);
3435 split_map.m_lblk = map->m_lblk;
3436 split_map.m_len = allocated;
3437 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3439 if (map->m_lblk != ee_block) {
3440 zero_ex.ee_block = ex->ee_block;
3441 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3443 ext4_ext_store_pblock(&zero_ex,
3444 ext4_ext_pblock(ex));
3445 err = ext4_ext_zeroout(inode, &zero_ex);
3450 split_map.m_lblk = ee_block;
3451 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3452 allocated = map->m_len;
3456 allocated = ext4_split_extent(handle, inode, path,
3457 &split_map, split_flag, flags);
3462 /* If we have gotten a failure, don't zero out status tree */
3464 err = ext4_es_zeroout(inode, &zero_ex);
3465 return err ? err : allocated;
3469 * This function is called by ext4_ext_map_blocks() from
3470 * ext4_get_blocks_dio_write() when DIO to write
3471 * to an uninitialized extent.
3473 * Writing to an uninitialized extent may result in splitting the uninitialized
3474 * extent into multiple initialized/uninitialized extents (up to three)
3475 * There are three possibilities:
3476 * a> There is no split required: Entire extent should be uninitialized
3477 * b> Splits in two extents: Write is happening at either end of the extent
3478 * c> Splits in three extents: Somone is writing in middle of the extent
3480 * One of more index blocks maybe needed if the extent tree grow after
3481 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3482 * complete, we need to split the uninitialized extent before DIO submit
3483 * the IO. The uninitialized extent called at this time will be split
3484 * into three uninitialized extent(at most). After IO complete, the part
3485 * being filled will be convert to initialized by the end_io callback function
3486 * via ext4_convert_unwritten_extents().
3488 * Returns the size of uninitialized extent to be written on success.
3490 static int ext4_split_unwritten_extents(handle_t *handle,
3491 struct inode *inode,
3492 struct ext4_map_blocks *map,
3493 struct ext4_ext_path *path,
3496 ext4_lblk_t eof_block;
3497 ext4_lblk_t ee_block;
3498 struct ext4_extent *ex;
3499 unsigned int ee_len;
3500 int split_flag = 0, depth;
3502 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3503 "block %llu, max_blocks %u\n", inode->i_ino,
3504 (unsigned long long)map->m_lblk, map->m_len);
3506 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3507 inode->i_sb->s_blocksize_bits;
3508 if (eof_block < map->m_lblk + map->m_len)
3509 eof_block = map->m_lblk + map->m_len;
3511 * It is safe to convert extent to initialized via explicit
3512 * zeroout only if extent is fully insde i_size or new_size.
3514 depth = ext_depth(inode);
3515 ex = path[depth].p_ext;
3516 ee_block = le32_to_cpu(ex->ee_block);
3517 ee_len = ext4_ext_get_actual_len(ex);
3519 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3520 split_flag |= EXT4_EXT_MARK_UNINIT2;
3521 if (flags & EXT4_GET_BLOCKS_CONVERT)
3522 split_flag |= EXT4_EXT_DATA_VALID2;
3523 flags |= EXT4_GET_BLOCKS_PRE_IO;
3524 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3527 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3528 struct inode *inode,
3529 struct ext4_map_blocks *map,
3530 struct ext4_ext_path *path)
3532 struct ext4_extent *ex;
3533 ext4_lblk_t ee_block;
3534 unsigned int ee_len;
3538 depth = ext_depth(inode);
3539 ex = path[depth].p_ext;
3540 ee_block = le32_to_cpu(ex->ee_block);
3541 ee_len = ext4_ext_get_actual_len(ex);
3543 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3544 "block %llu, max_blocks %u\n", inode->i_ino,
3545 (unsigned long long)ee_block, ee_len);
3547 /* If extent is larger than requested it is a clear sign that we still
3548 * have some extent state machine issues left. So extent_split is still
3550 * TODO: Once all related issues will be fixed this situation should be
3553 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3555 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3556 " len %u; IO logical block %llu, len %u\n",
3557 inode->i_ino, (unsigned long long)ee_block, ee_len,
3558 (unsigned long long)map->m_lblk, map->m_len);
3560 err = ext4_split_unwritten_extents(handle, inode, map, path,
3561 EXT4_GET_BLOCKS_CONVERT);
3564 ext4_ext_drop_refs(path);
3565 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3567 err = PTR_ERR(path);
3570 depth = ext_depth(inode);
3571 ex = path[depth].p_ext;
3574 err = ext4_ext_get_access(handle, inode, path + depth);
3577 /* first mark the extent as initialized */
3578 ext4_ext_mark_initialized(ex);
3580 /* note: ext4_ext_correct_indexes() isn't needed here because
3581 * borders are not changed
3583 ext4_ext_try_to_merge(handle, inode, path, ex);
3585 /* Mark modified extent as dirty */
3586 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3588 ext4_ext_show_leaf(inode, path);
3592 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3593 sector_t block, int count)
3596 for (i = 0; i < count; i++)
3597 unmap_underlying_metadata(bdev, block + i);
3601 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3603 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3605 struct ext4_ext_path *path,
3609 struct ext4_extent_header *eh;
3610 struct ext4_extent *last_ex;
3612 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3615 depth = ext_depth(inode);
3616 eh = path[depth].p_hdr;
3619 * We're going to remove EOFBLOCKS_FL entirely in future so we
3620 * do not care for this case anymore. Simply remove the flag
3621 * if there are no extents.
3623 if (unlikely(!eh->eh_entries))
3625 last_ex = EXT_LAST_EXTENT(eh);
3627 * We should clear the EOFBLOCKS_FL flag if we are writing the
3628 * last block in the last extent in the file. We test this by
3629 * first checking to see if the caller to
3630 * ext4_ext_get_blocks() was interested in the last block (or
3631 * a block beyond the last block) in the current extent. If
3632 * this turns out to be false, we can bail out from this
3633 * function immediately.
3635 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3636 ext4_ext_get_actual_len(last_ex))
3639 * If the caller does appear to be planning to write at or
3640 * beyond the end of the current extent, we then test to see
3641 * if the current extent is the last extent in the file, by
3642 * checking to make sure it was reached via the rightmost node
3643 * at each level of the tree.
3645 for (i = depth-1; i >= 0; i--)
3646 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3649 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3650 return ext4_mark_inode_dirty(handle, inode);
3654 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3656 * Return 1 if there is a delalloc block in the range, otherwise 0.
3658 int ext4_find_delalloc_range(struct inode *inode,
3659 ext4_lblk_t lblk_start,
3660 ext4_lblk_t lblk_end)
3662 struct extent_status es;
3664 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3666 return 0; /* there is no delay extent in this tree */
3667 else if (es.es_lblk <= lblk_start &&
3668 lblk_start < es.es_lblk + es.es_len)
3670 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3676 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3678 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3679 ext4_lblk_t lblk_start, lblk_end;
3680 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3681 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3683 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3687 * Determines how many complete clusters (out of those specified by the 'map')
3688 * are under delalloc and were reserved quota for.
3689 * This function is called when we are writing out the blocks that were
3690 * originally written with their allocation delayed, but then the space was
3691 * allocated using fallocate() before the delayed allocation could be resolved.
3692 * The cases to look for are:
3693 * ('=' indicated delayed allocated blocks
3694 * '-' indicates non-delayed allocated blocks)
3695 * (a) partial clusters towards beginning and/or end outside of allocated range
3696 * are not delalloc'ed.
3698 * |----c---=|====c====|====c====|===-c----|
3699 * |++++++ allocated ++++++|
3700 * ==> 4 complete clusters in above example
3702 * (b) partial cluster (outside of allocated range) towards either end is
3703 * marked for delayed allocation. In this case, we will exclude that
3706 * |----====c========|========c========|
3707 * |++++++ allocated ++++++|
3708 * ==> 1 complete clusters in above example
3711 * |================c================|
3712 * |++++++ allocated ++++++|
3713 * ==> 0 complete clusters in above example
3715 * The ext4_da_update_reserve_space will be called only if we
3716 * determine here that there were some "entire" clusters that span
3717 * this 'allocated' range.
3718 * In the non-bigalloc case, this function will just end up returning num_blks
3719 * without ever calling ext4_find_delalloc_range.
3722 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3723 unsigned int num_blks)
3725 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3726 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3727 ext4_lblk_t lblk_from, lblk_to, c_offset;
3728 unsigned int allocated_clusters = 0;
3730 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3731 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3733 /* max possible clusters for this allocation */
3734 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3736 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3738 /* Check towards left side */
3739 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3741 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3742 lblk_to = lblk_from + c_offset - 1;
3744 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3745 allocated_clusters--;
3748 /* Now check towards right. */
3749 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3750 if (allocated_clusters && c_offset) {
3751 lblk_from = lblk_start + num_blks;
3752 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3754 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3755 allocated_clusters--;
3758 return allocated_clusters;
3762 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3763 struct ext4_map_blocks *map,
3764 struct ext4_ext_path *path, int flags,
3765 unsigned int allocated, ext4_fsblk_t newblock)
3769 ext4_io_end_t *io = ext4_inode_aio(inode);
3771 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3772 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3773 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3775 ext4_ext_show_leaf(inode, path);
3778 * When writing into uninitialized space, we should not fail to
3779 * allocate metadata blocks for the new extent block if needed.
3781 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
3783 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3784 allocated, newblock);
3786 /* get_block() before submit the IO, split the extent */
3787 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3788 ret = ext4_split_unwritten_extents(handle, inode, map,
3793 * Flag the inode(non aio case) or end_io struct (aio case)
3794 * that this IO needs to conversion to written when IO is
3798 ext4_set_io_unwritten_flag(inode, io);
3800 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3801 map->m_flags |= EXT4_MAP_UNWRITTEN;
3802 if (ext4_should_dioread_nolock(inode))
3803 map->m_flags |= EXT4_MAP_UNINIT;
3806 /* IO end_io complete, convert the filled extent to written */
3807 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3808 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3811 ext4_update_inode_fsync_trans(handle, inode, 1);
3812 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3816 map->m_flags |= EXT4_MAP_MAPPED;
3817 if (allocated > map->m_len)
3818 allocated = map->m_len;
3819 map->m_len = allocated;
3822 /* buffered IO case */
3824 * repeat fallocate creation request
3825 * we already have an unwritten extent
3827 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3828 map->m_flags |= EXT4_MAP_UNWRITTEN;
3832 /* buffered READ or buffered write_begin() lookup */
3833 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3835 * We have blocks reserved already. We
3836 * return allocated blocks so that delalloc
3837 * won't do block reservation for us. But
3838 * the buffer head will be unmapped so that
3839 * a read from the block returns 0s.
3841 map->m_flags |= EXT4_MAP_UNWRITTEN;
3845 /* buffered write, writepage time, convert*/
3846 ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
3848 ext4_update_inode_fsync_trans(handle, inode, 1);
3855 map->m_flags |= EXT4_MAP_NEW;
3857 * if we allocated more blocks than requested
3858 * we need to make sure we unmap the extra block
3859 * allocated. The actual needed block will get
3860 * unmapped later when we find the buffer_head marked
3863 if (allocated > map->m_len) {
3864 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3865 newblock + map->m_len,
3866 allocated - map->m_len);
3867 allocated = map->m_len;
3869 map->m_len = allocated;
3872 * If we have done fallocate with the offset that is already
3873 * delayed allocated, we would have block reservation
3874 * and quota reservation done in the delayed write path.
3875 * But fallocate would have already updated quota and block
3876 * count for this offset. So cancel these reservation
3878 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3879 unsigned int reserved_clusters;
3880 reserved_clusters = get_reserved_cluster_alloc(inode,
3881 map->m_lblk, map->m_len);
3882 if (reserved_clusters)
3883 ext4_da_update_reserve_space(inode,
3889 map->m_flags |= EXT4_MAP_MAPPED;
3890 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3891 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3897 if (allocated > map->m_len)
3898 allocated = map->m_len;
3899 ext4_ext_show_leaf(inode, path);
3900 map->m_pblk = newblock;
3901 map->m_len = allocated;
3904 ext4_ext_drop_refs(path);
3907 return err ? err : allocated;
3911 * get_implied_cluster_alloc - check to see if the requested
3912 * allocation (in the map structure) overlaps with a cluster already
3913 * allocated in an extent.
3914 * @sb The filesystem superblock structure
3915 * @map The requested lblk->pblk mapping
3916 * @ex The extent structure which might contain an implied
3917 * cluster allocation
3919 * This function is called by ext4_ext_map_blocks() after we failed to
3920 * find blocks that were already in the inode's extent tree. Hence,
3921 * we know that the beginning of the requested region cannot overlap
3922 * the extent from the inode's extent tree. There are three cases we
3923 * want to catch. The first is this case:
3925 * |--- cluster # N--|
3926 * |--- extent ---| |---- requested region ---|
3929 * The second case that we need to test for is this one:
3931 * |--------- cluster # N ----------------|
3932 * |--- requested region --| |------- extent ----|
3933 * |=======================|
3935 * The third case is when the requested region lies between two extents
3936 * within the same cluster:
3937 * |------------- cluster # N-------------|
3938 * |----- ex -----| |---- ex_right ----|
3939 * |------ requested region ------|
3940 * |================|
3942 * In each of the above cases, we need to set the map->m_pblk and
3943 * map->m_len so it corresponds to the return the extent labelled as
3944 * "|====|" from cluster #N, since it is already in use for data in
3945 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3946 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3947 * as a new "allocated" block region. Otherwise, we will return 0 and
3948 * ext4_ext_map_blocks() will then allocate one or more new clusters
3949 * by calling ext4_mb_new_blocks().
3951 static int get_implied_cluster_alloc(struct super_block *sb,
3952 struct ext4_map_blocks *map,
3953 struct ext4_extent *ex,
3954 struct ext4_ext_path *path)
3956 struct ext4_sb_info *sbi = EXT4_SB(sb);
3957 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3958 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3959 ext4_lblk_t rr_cluster_start;
3960 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3961 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3962 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3964 /* The extent passed in that we are trying to match */
3965 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3966 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3968 /* The requested region passed into ext4_map_blocks() */
3969 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3971 if ((rr_cluster_start == ex_cluster_end) ||
3972 (rr_cluster_start == ex_cluster_start)) {
3973 if (rr_cluster_start == ex_cluster_end)
3974 ee_start += ee_len - 1;
3975 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3977 map->m_len = min(map->m_len,
3978 (unsigned) sbi->s_cluster_ratio - c_offset);
3980 * Check for and handle this case:
3982 * |--------- cluster # N-------------|
3983 * |------- extent ----|
3984 * |--- requested region ---|
3988 if (map->m_lblk < ee_block)
3989 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3992 * Check for the case where there is already another allocated
3993 * block to the right of 'ex' but before the end of the cluster.
3995 * |------------- cluster # N-------------|
3996 * |----- ex -----| |---- ex_right ----|
3997 * |------ requested region ------|
3998 * |================|
4000 if (map->m_lblk > ee_block) {
4001 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4002 map->m_len = min(map->m_len, next - map->m_lblk);
4005 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4009 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4015 * Block allocation/map/preallocation routine for extents based files
4018 * Need to be called with
4019 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4020 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4022 * return > 0, number of of blocks already mapped/allocated
4023 * if create == 0 and these are pre-allocated blocks
4024 * buffer head is unmapped
4025 * otherwise blocks are mapped
4027 * return = 0, if plain look up failed (blocks have not been allocated)
4028 * buffer head is unmapped
4030 * return < 0, error case.
4032 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4033 struct ext4_map_blocks *map, int flags)
4035 struct ext4_ext_path *path = NULL;
4036 struct ext4_extent newex, *ex, *ex2;
4037 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4038 ext4_fsblk_t newblock = 0;
4039 int free_on_err = 0, err = 0, depth;
4040 unsigned int allocated = 0, offset = 0;
4041 unsigned int allocated_clusters = 0;
4042 struct ext4_allocation_request ar;
4043 ext4_io_end_t *io = ext4_inode_aio(inode);
4044 ext4_lblk_t cluster_offset;
4045 int set_unwritten = 0;
4047 ext_debug("blocks %u/%u requested for inode %lu\n",
4048 map->m_lblk, map->m_len, inode->i_ino);
4049 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4051 /* find extent for this block */
4052 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
4054 err = PTR_ERR(path);
4059 depth = ext_depth(inode);
4062 * consistent leaf must not be empty;
4063 * this situation is possible, though, _during_ tree modification;
4064 * this is why assert can't be put in ext4_ext_find_extent()
4066 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4067 EXT4_ERROR_INODE(inode, "bad extent address "
4068 "lblock: %lu, depth: %d pblock %lld",
4069 (unsigned long) map->m_lblk, depth,
4070 path[depth].p_block);
4075 ex = path[depth].p_ext;
4077 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4078 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4079 unsigned short ee_len;
4082 * Uninitialized extents are treated as holes, except that
4083 * we split out initialized portions during a write.
4085 ee_len = ext4_ext_get_actual_len(ex);
4087 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4089 /* if found extent covers block, simply return it */
4090 if (in_range(map->m_lblk, ee_block, ee_len)) {
4091 newblock = map->m_lblk - ee_block + ee_start;
4092 /* number of remaining blocks in the extent */
4093 allocated = ee_len - (map->m_lblk - ee_block);
4094 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4095 ee_block, ee_len, newblock);
4097 if (!ext4_ext_is_uninitialized(ex))
4100 allocated = ext4_ext_handle_uninitialized_extents(
4101 handle, inode, map, path, flags,
4102 allocated, newblock);
4107 if ((sbi->s_cluster_ratio > 1) &&
4108 ext4_find_delalloc_cluster(inode, map->m_lblk))
4109 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4112 * requested block isn't allocated yet;
4113 * we couldn't try to create block if create flag is zero
4115 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4117 * put just found gap into cache to speed up
4118 * subsequent requests
4120 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4121 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4126 * Okay, we need to do block allocation.
4128 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4129 newex.ee_block = cpu_to_le32(map->m_lblk);
4130 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4133 * If we are doing bigalloc, check to see if the extent returned
4134 * by ext4_ext_find_extent() implies a cluster we can use.
4136 if (cluster_offset && ex &&
4137 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4138 ar.len = allocated = map->m_len;
4139 newblock = map->m_pblk;
4140 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4141 goto got_allocated_blocks;
4144 /* find neighbour allocated blocks */
4145 ar.lleft = map->m_lblk;
4146 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4149 ar.lright = map->m_lblk;
4151 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4155 /* Check if the extent after searching to the right implies a
4156 * cluster we can use. */
4157 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4158 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4159 ar.len = allocated = map->m_len;
4160 newblock = map->m_pblk;
4161 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4162 goto got_allocated_blocks;
4166 * See if request is beyond maximum number of blocks we can have in
4167 * a single extent. For an initialized extent this limit is
4168 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4169 * EXT_UNINIT_MAX_LEN.
4171 if (map->m_len > EXT_INIT_MAX_LEN &&
4172 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4173 map->m_len = EXT_INIT_MAX_LEN;
4174 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4175 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4176 map->m_len = EXT_UNINIT_MAX_LEN;
4178 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4179 newex.ee_len = cpu_to_le16(map->m_len);
4180 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4182 allocated = ext4_ext_get_actual_len(&newex);
4184 allocated = map->m_len;
4186 /* allocate new block */
4188 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4189 ar.logical = map->m_lblk;
4191 * We calculate the offset from the beginning of the cluster
4192 * for the logical block number, since when we allocate a
4193 * physical cluster, the physical block should start at the
4194 * same offset from the beginning of the cluster. This is
4195 * needed so that future calls to get_implied_cluster_alloc()
4198 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4199 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4201 ar.logical -= offset;
4202 if (S_ISREG(inode->i_mode))
4203 ar.flags = EXT4_MB_HINT_DATA;
4205 /* disable in-core preallocation for non-regular files */
4207 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4208 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4209 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4212 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4213 ar.goal, newblock, allocated);
4215 allocated_clusters = ar.len;
4216 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4217 if (ar.len > allocated)
4220 got_allocated_blocks:
4221 /* try to insert new extent into found leaf and return */
4222 ext4_ext_store_pblock(&newex, newblock + offset);
4223 newex.ee_len = cpu_to_le16(ar.len);
4224 /* Mark uninitialized */
4225 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4226 ext4_ext_mark_uninitialized(&newex);
4227 map->m_flags |= EXT4_MAP_UNWRITTEN;
4229 * io_end structure was created for every IO write to an
4230 * uninitialized extent. To avoid unnecessary conversion,
4231 * here we flag the IO that really needs the conversion.
4232 * For non asycn direct IO case, flag the inode state
4233 * that we need to perform conversion when IO is done.
4235 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4237 if (ext4_should_dioread_nolock(inode))
4238 map->m_flags |= EXT4_MAP_UNINIT;
4242 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4243 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4246 err = ext4_ext_insert_extent(handle, inode, path,
4249 if (!err && set_unwritten) {
4251 ext4_set_io_unwritten_flag(inode, io);
4253 ext4_set_inode_state(inode,
4254 EXT4_STATE_DIO_UNWRITTEN);
4257 if (err && free_on_err) {
4258 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4259 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4260 /* free data blocks we just allocated */
4261 /* not a good idea to call discard here directly,
4262 * but otherwise we'd need to call it every free() */
4263 ext4_discard_preallocations(inode);
4264 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4265 ext4_ext_get_actual_len(&newex), fb_flags);
4269 /* previous routine could use block we allocated */
4270 newblock = ext4_ext_pblock(&newex);
4271 allocated = ext4_ext_get_actual_len(&newex);
4272 if (allocated > map->m_len)
4273 allocated = map->m_len;
4274 map->m_flags |= EXT4_MAP_NEW;
4277 * Update reserved blocks/metadata blocks after successful
4278 * block allocation which had been deferred till now.
4280 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4281 unsigned int reserved_clusters;
4283 * Check how many clusters we had reserved this allocated range
4285 reserved_clusters = get_reserved_cluster_alloc(inode,
4286 map->m_lblk, allocated);
4287 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4288 if (reserved_clusters) {
4290 * We have clusters reserved for this range.
4291 * But since we are not doing actual allocation
4292 * and are simply using blocks from previously
4293 * allocated cluster, we should release the
4294 * reservation and not claim quota.
4296 ext4_da_update_reserve_space(inode,
4297 reserved_clusters, 0);
4300 BUG_ON(allocated_clusters < reserved_clusters);
4301 if (reserved_clusters < allocated_clusters) {
4302 struct ext4_inode_info *ei = EXT4_I(inode);
4303 int reservation = allocated_clusters -
4306 * It seems we claimed few clusters outside of
4307 * the range of this allocation. We should give
4308 * it back to the reservation pool. This can
4309 * happen in the following case:
4311 * * Suppose s_cluster_ratio is 4 (i.e., each
4312 * cluster has 4 blocks. Thus, the clusters
4313 * are [0-3],[4-7],[8-11]...
4314 * * First comes delayed allocation write for
4315 * logical blocks 10 & 11. Since there were no
4316 * previous delayed allocated blocks in the
4317 * range [8-11], we would reserve 1 cluster
4319 * * Next comes write for logical blocks 3 to 8.
4320 * In this case, we will reserve 2 clusters
4321 * (for [0-3] and [4-7]; and not for [8-11] as
4322 * that range has a delayed allocated blocks.
4323 * Thus total reserved clusters now becomes 3.
4324 * * Now, during the delayed allocation writeout
4325 * time, we will first write blocks [3-8] and
4326 * allocate 3 clusters for writing these
4327 * blocks. Also, we would claim all these
4328 * three clusters above.
4329 * * Now when we come here to writeout the
4330 * blocks [10-11], we would expect to claim
4331 * the reservation of 1 cluster we had made
4332 * (and we would claim it since there are no
4333 * more delayed allocated blocks in the range
4334 * [8-11]. But our reserved cluster count had
4335 * already gone to 0.
4337 * Thus, at the step 4 above when we determine
4338 * that there are still some unwritten delayed
4339 * allocated blocks outside of our current
4340 * block range, we should increment the
4341 * reserved clusters count so that when the
4342 * remaining blocks finally gets written, we
4345 dquot_reserve_block(inode,
4346 EXT4_C2B(sbi, reservation));
4347 spin_lock(&ei->i_block_reservation_lock);
4348 ei->i_reserved_data_blocks += reservation;
4349 spin_unlock(&ei->i_block_reservation_lock);
4352 * We will claim quota for all newly allocated blocks.
4353 * We're updating the reserved space *after* the
4354 * correction above so we do not accidentally free
4355 * all the metadata reservation because we might
4356 * actually need it later on.
4358 ext4_da_update_reserve_space(inode, allocated_clusters,
4364 * Cache the extent and update transaction to commit on fdatasync only
4365 * when it is _not_ an uninitialized extent.
4367 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4368 ext4_update_inode_fsync_trans(handle, inode, 1);
4370 ext4_update_inode_fsync_trans(handle, inode, 0);
4372 if (allocated > map->m_len)
4373 allocated = map->m_len;
4374 ext4_ext_show_leaf(inode, path);
4375 map->m_flags |= EXT4_MAP_MAPPED;
4376 map->m_pblk = newblock;
4377 map->m_len = allocated;
4380 ext4_ext_drop_refs(path);
4385 trace_ext4_ext_map_blocks_exit(inode, flags, map, err ? err : allocated);
4387 return err ? err : allocated;
4390 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4392 struct super_block *sb = inode->i_sb;
4393 ext4_lblk_t last_block;
4397 * TODO: optimization is possible here.
4398 * Probably we need not scan at all,
4399 * because page truncation is enough.
4402 /* we have to know where to truncate from in crash case */
4403 EXT4_I(inode)->i_disksize = inode->i_size;
4404 ext4_mark_inode_dirty(handle, inode);
4406 last_block = (inode->i_size + sb->s_blocksize - 1)
4407 >> EXT4_BLOCK_SIZE_BITS(sb);
4408 err = ext4_es_remove_extent(inode, last_block,
4409 EXT_MAX_BLOCKS - last_block);
4410 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4413 static void ext4_falloc_update_inode(struct inode *inode,
4414 int mode, loff_t new_size, int update_ctime)
4416 struct timespec now;
4419 now = current_fs_time(inode->i_sb);
4420 if (!timespec_equal(&inode->i_ctime, &now))
4421 inode->i_ctime = now;
4424 * Update only when preallocation was requested beyond
4427 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4428 if (new_size > i_size_read(inode))
4429 i_size_write(inode, new_size);
4430 if (new_size > EXT4_I(inode)->i_disksize)
4431 ext4_update_i_disksize(inode, new_size);
4434 * Mark that we allocate beyond EOF so the subsequent truncate
4435 * can proceed even if the new size is the same as i_size.
4437 if (new_size > i_size_read(inode))
4438 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4444 * preallocate space for a file. This implements ext4's fallocate file
4445 * operation, which gets called from sys_fallocate system call.
4446 * For block-mapped files, posix_fallocate should fall back to the method
4447 * of writing zeroes to the required new blocks (the same behavior which is
4448 * expected for file systems which do not support fallocate() system call).
4450 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4452 struct inode *inode = file_inode(file);
4455 unsigned int max_blocks;
4460 struct ext4_map_blocks map;
4461 unsigned int credits, blkbits = inode->i_blkbits;
4463 /* Return error if mode is not supported */
4464 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4467 if (mode & FALLOC_FL_PUNCH_HOLE)
4468 return ext4_punch_hole(inode, offset, len);
4470 ret = ext4_convert_inline_data(inode);
4475 * currently supporting (pre)allocate mode for extent-based
4478 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4481 trace_ext4_fallocate_enter(inode, offset, len, mode);
4482 map.m_lblk = offset >> blkbits;
4484 * We can't just convert len to max_blocks because
4485 * If blocksize = 4096 offset = 3072 and len = 2048
4487 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4490 * credits to insert 1 extent into extent tree
4492 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4493 mutex_lock(&inode->i_mutex);
4494 ret = inode_newsize_ok(inode, (len + offset));
4496 mutex_unlock(&inode->i_mutex);
4497 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4500 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4501 if (mode & FALLOC_FL_KEEP_SIZE)
4502 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4504 * Don't normalize the request if it can fit in one extent so
4505 * that it doesn't get unnecessarily split into multiple
4508 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4509 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4512 while (ret >= 0 && ret < max_blocks) {
4513 map.m_lblk = map.m_lblk + ret;
4514 map.m_len = max_blocks = max_blocks - ret;
4515 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4517 if (IS_ERR(handle)) {
4518 ret = PTR_ERR(handle);
4521 ret = ext4_map_blocks(handle, inode, &map, flags);
4524 ext4_warning(inode->i_sb,
4525 "inode #%lu: block %u: len %u: "
4526 "ext4_ext_map_blocks returned %d",
4527 inode->i_ino, map.m_lblk,
4530 ext4_mark_inode_dirty(handle, inode);
4531 ret2 = ext4_journal_stop(handle);
4534 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4535 blkbits) >> blkbits))
4536 new_size = offset + len;
4538 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4540 ext4_falloc_update_inode(inode, mode, new_size,
4541 (map.m_flags & EXT4_MAP_NEW));
4542 ext4_mark_inode_dirty(handle, inode);
4543 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4544 ext4_handle_sync(handle);
4545 ret2 = ext4_journal_stop(handle);
4549 if (ret == -ENOSPC &&
4550 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4554 mutex_unlock(&inode->i_mutex);
4555 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4556 ret > 0 ? ret2 : ret);
4557 return ret > 0 ? ret2 : ret;
4561 * This function convert a range of blocks to written extents
4562 * The caller of this function will pass the start offset and the size.
4563 * all unwritten extents within this range will be converted to
4566 * This function is called from the direct IO end io call back
4567 * function, to convert the fallocated extents after IO is completed.
4568 * Returns 0 on success.
4570 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4571 loff_t offset, ssize_t len)
4573 unsigned int max_blocks;
4576 struct ext4_map_blocks map;
4577 unsigned int credits, blkbits = inode->i_blkbits;
4579 map.m_lblk = offset >> blkbits;
4581 * We can't just convert len to max_blocks because
4582 * If blocksize = 4096 offset = 3072 and len = 2048
4584 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4587 * This is somewhat ugly but the idea is clear: When transaction is
4588 * reserved, everything goes into it. Otherwise we rather start several
4589 * smaller transactions for conversion of each extent separately.
4592 handle = ext4_journal_start_reserved(handle,
4593 EXT4_HT_EXT_CONVERT);
4595 return PTR_ERR(handle);
4599 * credits to insert 1 extent into extent tree
4601 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4603 while (ret >= 0 && ret < max_blocks) {
4605 map.m_len = (max_blocks -= ret);
4607 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4609 if (IS_ERR(handle)) {
4610 ret = PTR_ERR(handle);
4614 ret = ext4_map_blocks(handle, inode, &map,
4615 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4617 ext4_warning(inode->i_sb,
4618 "inode #%lu: block %u: len %u: "
4619 "ext4_ext_map_blocks returned %d",
4620 inode->i_ino, map.m_lblk,
4622 ext4_mark_inode_dirty(handle, inode);
4624 ret2 = ext4_journal_stop(handle);
4625 if (ret <= 0 || ret2)
4629 ret2 = ext4_journal_stop(handle);
4630 return ret > 0 ? ret2 : ret;
4634 * If newes is not existing extent (newes->ec_pblk equals zero) find
4635 * delayed extent at start of newes and update newes accordingly and
4636 * return start of the next delayed extent.
4638 * If newes is existing extent (newes->ec_pblk is not equal zero)
4639 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4640 * extent found. Leave newes unmodified.
4642 static int ext4_find_delayed_extent(struct inode *inode,
4643 struct extent_status *newes)
4645 struct extent_status es;
4646 ext4_lblk_t block, next_del;
4648 if (newes->es_pblk == 0) {
4649 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
4650 newes->es_lblk + newes->es_len - 1, &es);
4653 * No extent in extent-tree contains block @newes->es_pblk,
4654 * then the block may stay in 1)a hole or 2)delayed-extent.
4660 if (es.es_lblk > newes->es_lblk) {
4662 newes->es_len = min(es.es_lblk - newes->es_lblk,
4667 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4670 block = newes->es_lblk + newes->es_len;
4671 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
4673 next_del = EXT_MAX_BLOCKS;
4675 next_del = es.es_lblk;
4679 /* fiemap flags we can handle specified here */
4680 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4682 static int ext4_xattr_fiemap(struct inode *inode,
4683 struct fiemap_extent_info *fieinfo)
4687 __u32 flags = FIEMAP_EXTENT_LAST;
4688 int blockbits = inode->i_sb->s_blocksize_bits;
4692 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4693 struct ext4_iloc iloc;
4694 int offset; /* offset of xattr in inode */
4696 error = ext4_get_inode_loc(inode, &iloc);
4699 physical = (__u64)iloc.bh->b_blocknr << blockbits;
4700 offset = EXT4_GOOD_OLD_INODE_SIZE +
4701 EXT4_I(inode)->i_extra_isize;
4703 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4704 flags |= FIEMAP_EXTENT_DATA_INLINE;
4706 } else { /* external block */
4707 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4708 length = inode->i_sb->s_blocksize;
4712 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4714 return (error < 0 ? error : 0);
4717 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4718 __u64 start, __u64 len)
4720 ext4_lblk_t start_blk;
4723 if (ext4_has_inline_data(inode)) {
4726 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4732 /* fallback to generic here if not in extents fmt */
4733 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4734 return generic_block_fiemap(inode, fieinfo, start, len,
4737 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4740 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4741 error = ext4_xattr_fiemap(inode, fieinfo);
4743 ext4_lblk_t len_blks;
4746 start_blk = start >> inode->i_sb->s_blocksize_bits;
4747 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4748 if (last_blk >= EXT_MAX_BLOCKS)
4749 last_blk = EXT_MAX_BLOCKS-1;
4750 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4753 * Walk the extent tree gathering extent information
4754 * and pushing extents back to the user.
4756 error = ext4_fill_fiemap_extents(inode, start_blk,