ext4: ext4_inode_info diet
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / extents.c
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44
45 #include <trace/events/ext4.h>
46
47 /*
48  * used by extent splitting.
49  */
50 #define EXT4_EXT_MAY_ZEROOUT    0x1  /* safe to zeroout if split fails \
51                                         due to ENOSPC */
52 #define EXT4_EXT_MARK_UNINIT1   0x2  /* mark first half uninitialized */
53 #define EXT4_EXT_MARK_UNINIT2   0x4  /* mark second half uninitialized */
54
55 static __le32 ext4_extent_block_csum(struct inode *inode,
56                                      struct ext4_extent_header *eh)
57 {
58         struct ext4_inode_info *ei = EXT4_I(inode);
59         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
60         __u32 csum;
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
63                            EXT4_EXTENT_TAIL_OFFSET(eh));
64         return cpu_to_le32(csum);
65 }
66
67 static int ext4_extent_block_csum_verify(struct inode *inode,
68                                          struct ext4_extent_header *eh)
69 {
70         struct ext4_extent_tail *et;
71
72         if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
73                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
74                 return 1;
75
76         et = find_ext4_extent_tail(eh);
77         if (et->et_checksum != ext4_extent_block_csum(inode, eh))
78                 return 0;
79         return 1;
80 }
81
82 static void ext4_extent_block_csum_set(struct inode *inode,
83                                        struct ext4_extent_header *eh)
84 {
85         struct ext4_extent_tail *et;
86
87         if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
88                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
89                 return;
90
91         et = find_ext4_extent_tail(eh);
92         et->et_checksum = ext4_extent_block_csum(inode, eh);
93 }
94
95 static int ext4_split_extent(handle_t *handle,
96                                 struct inode *inode,
97                                 struct ext4_ext_path *path,
98                                 struct ext4_map_blocks *map,
99                                 int split_flag,
100                                 int flags);
101
102 static int ext4_split_extent_at(handle_t *handle,
103                              struct inode *inode,
104                              struct ext4_ext_path *path,
105                              ext4_lblk_t split,
106                              int split_flag,
107                              int flags);
108
109 static int ext4_ext_truncate_extend_restart(handle_t *handle,
110                                             struct inode *inode,
111                                             int needed)
112 {
113         int err;
114
115         if (!ext4_handle_valid(handle))
116                 return 0;
117         if (handle->h_buffer_credits > needed)
118                 return 0;
119         err = ext4_journal_extend(handle, needed);
120         if (err <= 0)
121                 return err;
122         err = ext4_truncate_restart_trans(handle, inode, needed);
123         if (err == 0)
124                 err = -EAGAIN;
125
126         return err;
127 }
128
129 /*
130  * could return:
131  *  - EROFS
132  *  - ENOMEM
133  */
134 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
135                                 struct ext4_ext_path *path)
136 {
137         if (path->p_bh) {
138                 /* path points to block */
139                 return ext4_journal_get_write_access(handle, path->p_bh);
140         }
141         /* path points to leaf/index in inode body */
142         /* we use in-core data, no need to protect them */
143         return 0;
144 }
145
146 /*
147  * could return:
148  *  - EROFS
149  *  - ENOMEM
150  *  - EIO
151  */
152 #define ext4_ext_dirty(handle, inode, path) \
153                 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
154 static int __ext4_ext_dirty(const char *where, unsigned int line,
155                             handle_t *handle, struct inode *inode,
156                             struct ext4_ext_path *path)
157 {
158         int err;
159         if (path->p_bh) {
160                 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
161                 /* path points to block */
162                 err = __ext4_handle_dirty_metadata(where, line, handle,
163                                                    inode, path->p_bh);
164         } else {
165                 /* path points to leaf/index in inode body */
166                 err = ext4_mark_inode_dirty(handle, inode);
167         }
168         return err;
169 }
170
171 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
172                               struct ext4_ext_path *path,
173                               ext4_lblk_t block)
174 {
175         if (path) {
176                 int depth = path->p_depth;
177                 struct ext4_extent *ex;
178
179                 /*
180                  * Try to predict block placement assuming that we are
181                  * filling in a file which will eventually be
182                  * non-sparse --- i.e., in the case of libbfd writing
183                  * an ELF object sections out-of-order but in a way
184                  * the eventually results in a contiguous object or
185                  * executable file, or some database extending a table
186                  * space file.  However, this is actually somewhat
187                  * non-ideal if we are writing a sparse file such as
188                  * qemu or KVM writing a raw image file that is going
189                  * to stay fairly sparse, since it will end up
190                  * fragmenting the file system's free space.  Maybe we
191                  * should have some hueristics or some way to allow
192                  * userspace to pass a hint to file system,
193                  * especially if the latter case turns out to be
194                  * common.
195                  */
196                 ex = path[depth].p_ext;
197                 if (ex) {
198                         ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
199                         ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
200
201                         if (block > ext_block)
202                                 return ext_pblk + (block - ext_block);
203                         else
204                                 return ext_pblk - (ext_block - block);
205                 }
206
207                 /* it looks like index is empty;
208                  * try to find starting block from index itself */
209                 if (path[depth].p_bh)
210                         return path[depth].p_bh->b_blocknr;
211         }
212
213         /* OK. use inode's group */
214         return ext4_inode_to_goal_block(inode);
215 }
216
217 /*
218  * Allocation for a meta data block
219  */
220 static ext4_fsblk_t
221 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
222                         struct ext4_ext_path *path,
223                         struct ext4_extent *ex, int *err, unsigned int flags)
224 {
225         ext4_fsblk_t goal, newblock;
226
227         goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
228         newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
229                                         NULL, err);
230         return newblock;
231 }
232
233 static inline int ext4_ext_space_block(struct inode *inode, int check)
234 {
235         int size;
236
237         size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
238                         / sizeof(struct ext4_extent);
239 #ifdef AGGRESSIVE_TEST
240         if (!check && size > 6)
241                 size = 6;
242 #endif
243         return size;
244 }
245
246 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
247 {
248         int size;
249
250         size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
251                         / sizeof(struct ext4_extent_idx);
252 #ifdef AGGRESSIVE_TEST
253         if (!check && size > 5)
254                 size = 5;
255 #endif
256         return size;
257 }
258
259 static inline int ext4_ext_space_root(struct inode *inode, int check)
260 {
261         int size;
262
263         size = sizeof(EXT4_I(inode)->i_data);
264         size -= sizeof(struct ext4_extent_header);
265         size /= sizeof(struct ext4_extent);
266 #ifdef AGGRESSIVE_TEST
267         if (!check && size > 3)
268                 size = 3;
269 #endif
270         return size;
271 }
272
273 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
274 {
275         int size;
276
277         size = sizeof(EXT4_I(inode)->i_data);
278         size -= sizeof(struct ext4_extent_header);
279         size /= sizeof(struct ext4_extent_idx);
280 #ifdef AGGRESSIVE_TEST
281         if (!check && size > 4)
282                 size = 4;
283 #endif
284         return size;
285 }
286
287 /*
288  * Calculate the number of metadata blocks needed
289  * to allocate @blocks
290  * Worse case is one block per extent
291  */
292 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
293 {
294         struct ext4_inode_info *ei = EXT4_I(inode);
295         int idxs;
296
297         idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
298                 / sizeof(struct ext4_extent_idx));
299
300         /*
301          * If the new delayed allocation block is contiguous with the
302          * previous da block, it can share index blocks with the
303          * previous block, so we only need to allocate a new index
304          * block every idxs leaf blocks.  At ldxs**2 blocks, we need
305          * an additional index block, and at ldxs**3 blocks, yet
306          * another index blocks.
307          */
308         if (ei->i_da_metadata_calc_len &&
309             ei->i_da_metadata_calc_last_lblock+1 == lblock) {
310                 int num = 0;
311
312                 if ((ei->i_da_metadata_calc_len % idxs) == 0)
313                         num++;
314                 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
315                         num++;
316                 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
317                         num++;
318                         ei->i_da_metadata_calc_len = 0;
319                 } else
320                         ei->i_da_metadata_calc_len++;
321                 ei->i_da_metadata_calc_last_lblock++;
322                 return num;
323         }
324
325         /*
326          * In the worst case we need a new set of index blocks at
327          * every level of the inode's extent tree.
328          */
329         ei->i_da_metadata_calc_len = 1;
330         ei->i_da_metadata_calc_last_lblock = lblock;
331         return ext_depth(inode) + 1;
332 }
333
334 static int
335 ext4_ext_max_entries(struct inode *inode, int depth)
336 {
337         int max;
338
339         if (depth == ext_depth(inode)) {
340                 if (depth == 0)
341                         max = ext4_ext_space_root(inode, 1);
342                 else
343                         max = ext4_ext_space_root_idx(inode, 1);
344         } else {
345                 if (depth == 0)
346                         max = ext4_ext_space_block(inode, 1);
347                 else
348                         max = ext4_ext_space_block_idx(inode, 1);
349         }
350
351         return max;
352 }
353
354 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
355 {
356         ext4_fsblk_t block = ext4_ext_pblock(ext);
357         int len = ext4_ext_get_actual_len(ext);
358
359         if (len == 0)
360                 return 0;
361         return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
362 }
363
364 static int ext4_valid_extent_idx(struct inode *inode,
365                                 struct ext4_extent_idx *ext_idx)
366 {
367         ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
368
369         return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
370 }
371
372 static int ext4_valid_extent_entries(struct inode *inode,
373                                 struct ext4_extent_header *eh,
374                                 int depth)
375 {
376         unsigned short entries;
377         if (eh->eh_entries == 0)
378                 return 1;
379
380         entries = le16_to_cpu(eh->eh_entries);
381
382         if (depth == 0) {
383                 /* leaf entries */
384                 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
385                 while (entries) {
386                         if (!ext4_valid_extent(inode, ext))
387                                 return 0;
388                         ext++;
389                         entries--;
390                 }
391         } else {
392                 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
393                 while (entries) {
394                         if (!ext4_valid_extent_idx(inode, ext_idx))
395                                 return 0;
396                         ext_idx++;
397                         entries--;
398                 }
399         }
400         return 1;
401 }
402
403 static int __ext4_ext_check(const char *function, unsigned int line,
404                             struct inode *inode, struct ext4_extent_header *eh,
405                             int depth)
406 {
407         const char *error_msg;
408         int max = 0;
409
410         if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
411                 error_msg = "invalid magic";
412                 goto corrupted;
413         }
414         if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
415                 error_msg = "unexpected eh_depth";
416                 goto corrupted;
417         }
418         if (unlikely(eh->eh_max == 0)) {
419                 error_msg = "invalid eh_max";
420                 goto corrupted;
421         }
422         max = ext4_ext_max_entries(inode, depth);
423         if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
424                 error_msg = "too large eh_max";
425                 goto corrupted;
426         }
427         if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
428                 error_msg = "invalid eh_entries";
429                 goto corrupted;
430         }
431         if (!ext4_valid_extent_entries(inode, eh, depth)) {
432                 error_msg = "invalid extent entries";
433                 goto corrupted;
434         }
435         /* Verify checksum on non-root extent tree nodes */
436         if (ext_depth(inode) != depth &&
437             !ext4_extent_block_csum_verify(inode, eh)) {
438                 error_msg = "extent tree corrupted";
439                 goto corrupted;
440         }
441         return 0;
442
443 corrupted:
444         ext4_error_inode(inode, function, line, 0,
445                         "bad header/extent: %s - magic %x, "
446                         "entries %u, max %u(%u), depth %u(%u)",
447                         error_msg, le16_to_cpu(eh->eh_magic),
448                         le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
449                         max, le16_to_cpu(eh->eh_depth), depth);
450
451         return -EIO;
452 }
453
454 #define ext4_ext_check(inode, eh, depth)        \
455         __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
456
457 int ext4_ext_check_inode(struct inode *inode)
458 {
459         return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
460 }
461
462 static int __ext4_ext_check_block(const char *function, unsigned int line,
463                                   struct inode *inode,
464                                   struct ext4_extent_header *eh,
465                                   int depth,
466                                   struct buffer_head *bh)
467 {
468         int ret;
469
470         if (buffer_verified(bh))
471                 return 0;
472         ret = ext4_ext_check(inode, eh, depth);
473         if (ret)
474                 return ret;
475         set_buffer_verified(bh);
476         return ret;
477 }
478
479 #define ext4_ext_check_block(inode, eh, depth, bh)      \
480         __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
481
482 #ifdef EXT_DEBUG
483 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
484 {
485         int k, l = path->p_depth;
486
487         ext_debug("path:");
488         for (k = 0; k <= l; k++, path++) {
489                 if (path->p_idx) {
490                   ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
491                             ext4_idx_pblock(path->p_idx));
492                 } else if (path->p_ext) {
493                         ext_debug("  %d:[%d]%d:%llu ",
494                                   le32_to_cpu(path->p_ext->ee_block),
495                                   ext4_ext_is_uninitialized(path->p_ext),
496                                   ext4_ext_get_actual_len(path->p_ext),
497                                   ext4_ext_pblock(path->p_ext));
498                 } else
499                         ext_debug("  []");
500         }
501         ext_debug("\n");
502 }
503
504 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
505 {
506         int depth = ext_depth(inode);
507         struct ext4_extent_header *eh;
508         struct ext4_extent *ex;
509         int i;
510
511         if (!path)
512                 return;
513
514         eh = path[depth].p_hdr;
515         ex = EXT_FIRST_EXTENT(eh);
516
517         ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
518
519         for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
520                 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
521                           ext4_ext_is_uninitialized(ex),
522                           ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
523         }
524         ext_debug("\n");
525 }
526
527 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
528                         ext4_fsblk_t newblock, int level)
529 {
530         int depth = ext_depth(inode);
531         struct ext4_extent *ex;
532
533         if (depth != level) {
534                 struct ext4_extent_idx *idx;
535                 idx = path[level].p_idx;
536                 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
537                         ext_debug("%d: move %d:%llu in new index %llu\n", level,
538                                         le32_to_cpu(idx->ei_block),
539                                         ext4_idx_pblock(idx),
540                                         newblock);
541                         idx++;
542                 }
543
544                 return;
545         }
546
547         ex = path[depth].p_ext;
548         while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
549                 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
550                                 le32_to_cpu(ex->ee_block),
551                                 ext4_ext_pblock(ex),
552                                 ext4_ext_is_uninitialized(ex),
553                                 ext4_ext_get_actual_len(ex),
554                                 newblock);
555                 ex++;
556         }
557 }
558
559 #else
560 #define ext4_ext_show_path(inode, path)
561 #define ext4_ext_show_leaf(inode, path)
562 #define ext4_ext_show_move(inode, path, newblock, level)
563 #endif
564
565 void ext4_ext_drop_refs(struct ext4_ext_path *path)
566 {
567         int depth = path->p_depth;
568         int i;
569
570         for (i = 0; i <= depth; i++, path++)
571                 if (path->p_bh) {
572                         brelse(path->p_bh);
573                         path->p_bh = NULL;
574                 }
575 }
576
577 /*
578  * ext4_ext_binsearch_idx:
579  * binary search for the closest index of the given block
580  * the header must be checked before calling this
581  */
582 static void
583 ext4_ext_binsearch_idx(struct inode *inode,
584                         struct ext4_ext_path *path, ext4_lblk_t block)
585 {
586         struct ext4_extent_header *eh = path->p_hdr;
587         struct ext4_extent_idx *r, *l, *m;
588
589
590         ext_debug("binsearch for %u(idx):  ", block);
591
592         l = EXT_FIRST_INDEX(eh) + 1;
593         r = EXT_LAST_INDEX(eh);
594         while (l <= r) {
595                 m = l + (r - l) / 2;
596                 if (block < le32_to_cpu(m->ei_block))
597                         r = m - 1;
598                 else
599                         l = m + 1;
600                 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
601                                 m, le32_to_cpu(m->ei_block),
602                                 r, le32_to_cpu(r->ei_block));
603         }
604
605         path->p_idx = l - 1;
606         ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
607                   ext4_idx_pblock(path->p_idx));
608
609 #ifdef CHECK_BINSEARCH
610         {
611                 struct ext4_extent_idx *chix, *ix;
612                 int k;
613
614                 chix = ix = EXT_FIRST_INDEX(eh);
615                 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
616                   if (k != 0 &&
617                       le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
618                                 printk(KERN_DEBUG "k=%d, ix=0x%p, "
619                                        "first=0x%p\n", k,
620                                        ix, EXT_FIRST_INDEX(eh));
621                                 printk(KERN_DEBUG "%u <= %u\n",
622                                        le32_to_cpu(ix->ei_block),
623                                        le32_to_cpu(ix[-1].ei_block));
624                         }
625                         BUG_ON(k && le32_to_cpu(ix->ei_block)
626                                            <= le32_to_cpu(ix[-1].ei_block));
627                         if (block < le32_to_cpu(ix->ei_block))
628                                 break;
629                         chix = ix;
630                 }
631                 BUG_ON(chix != path->p_idx);
632         }
633 #endif
634
635 }
636
637 /*
638  * ext4_ext_binsearch:
639  * binary search for closest extent of the given block
640  * the header must be checked before calling this
641  */
642 static void
643 ext4_ext_binsearch(struct inode *inode,
644                 struct ext4_ext_path *path, ext4_lblk_t block)
645 {
646         struct ext4_extent_header *eh = path->p_hdr;
647         struct ext4_extent *r, *l, *m;
648
649         if (eh->eh_entries == 0) {
650                 /*
651                  * this leaf is empty:
652                  * we get such a leaf in split/add case
653                  */
654                 return;
655         }
656
657         ext_debug("binsearch for %u:  ", block);
658
659         l = EXT_FIRST_EXTENT(eh) + 1;
660         r = EXT_LAST_EXTENT(eh);
661
662         while (l <= r) {
663                 m = l + (r - l) / 2;
664                 if (block < le32_to_cpu(m->ee_block))
665                         r = m - 1;
666                 else
667                         l = m + 1;
668                 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
669                                 m, le32_to_cpu(m->ee_block),
670                                 r, le32_to_cpu(r->ee_block));
671         }
672
673         path->p_ext = l - 1;
674         ext_debug("  -> %d:%llu:[%d]%d ",
675                         le32_to_cpu(path->p_ext->ee_block),
676                         ext4_ext_pblock(path->p_ext),
677                         ext4_ext_is_uninitialized(path->p_ext),
678                         ext4_ext_get_actual_len(path->p_ext));
679
680 #ifdef CHECK_BINSEARCH
681         {
682                 struct ext4_extent *chex, *ex;
683                 int k;
684
685                 chex = ex = EXT_FIRST_EXTENT(eh);
686                 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
687                         BUG_ON(k && le32_to_cpu(ex->ee_block)
688                                           <= le32_to_cpu(ex[-1].ee_block));
689                         if (block < le32_to_cpu(ex->ee_block))
690                                 break;
691                         chex = ex;
692                 }
693                 BUG_ON(chex != path->p_ext);
694         }
695 #endif
696
697 }
698
699 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
700 {
701         struct ext4_extent_header *eh;
702
703         eh = ext_inode_hdr(inode);
704         eh->eh_depth = 0;
705         eh->eh_entries = 0;
706         eh->eh_magic = EXT4_EXT_MAGIC;
707         eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
708         ext4_mark_inode_dirty(handle, inode);
709         ext4_ext_invalidate_cache(inode);
710         return 0;
711 }
712
713 struct ext4_ext_path *
714 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
715                                         struct ext4_ext_path *path)
716 {
717         struct ext4_extent_header *eh;
718         struct buffer_head *bh;
719         short int depth, i, ppos = 0, alloc = 0;
720
721         eh = ext_inode_hdr(inode);
722         depth = ext_depth(inode);
723
724         /* account possible depth increase */
725         if (!path) {
726                 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
727                                 GFP_NOFS);
728                 if (!path)
729                         return ERR_PTR(-ENOMEM);
730                 alloc = 1;
731         }
732         path[0].p_hdr = eh;
733         path[0].p_bh = NULL;
734
735         i = depth;
736         /* walk through the tree */
737         while (i) {
738                 ext_debug("depth %d: num %d, max %d\n",
739                           ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
740
741                 ext4_ext_binsearch_idx(inode, path + ppos, block);
742                 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
743                 path[ppos].p_depth = i;
744                 path[ppos].p_ext = NULL;
745
746                 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
747                 if (unlikely(!bh))
748                         goto err;
749                 if (!bh_uptodate_or_lock(bh)) {
750                         trace_ext4_ext_load_extent(inode, block,
751                                                 path[ppos].p_block);
752                         if (bh_submit_read(bh) < 0) {
753                                 put_bh(bh);
754                                 goto err;
755                         }
756                 }
757                 eh = ext_block_hdr(bh);
758                 ppos++;
759                 if (unlikely(ppos > depth)) {
760                         put_bh(bh);
761                         EXT4_ERROR_INODE(inode,
762                                          "ppos %d > depth %d", ppos, depth);
763                         goto err;
764                 }
765                 path[ppos].p_bh = bh;
766                 path[ppos].p_hdr = eh;
767                 i--;
768
769                 if (ext4_ext_check_block(inode, eh, i, bh))
770                         goto err;
771         }
772
773         path[ppos].p_depth = i;
774         path[ppos].p_ext = NULL;
775         path[ppos].p_idx = NULL;
776
777         /* find extent */
778         ext4_ext_binsearch(inode, path + ppos, block);
779         /* if not an empty leaf */
780         if (path[ppos].p_ext)
781                 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
782
783         ext4_ext_show_path(inode, path);
784
785         return path;
786
787 err:
788         ext4_ext_drop_refs(path);
789         if (alloc)
790                 kfree(path);
791         return ERR_PTR(-EIO);
792 }
793
794 /*
795  * ext4_ext_insert_index:
796  * insert new index [@logical;@ptr] into the block at @curp;
797  * check where to insert: before @curp or after @curp
798  */
799 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
800                                  struct ext4_ext_path *curp,
801                                  int logical, ext4_fsblk_t ptr)
802 {
803         struct ext4_extent_idx *ix;
804         int len, err;
805
806         err = ext4_ext_get_access(handle, inode, curp);
807         if (err)
808                 return err;
809
810         if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
811                 EXT4_ERROR_INODE(inode,
812                                  "logical %d == ei_block %d!",
813                                  logical, le32_to_cpu(curp->p_idx->ei_block));
814                 return -EIO;
815         }
816
817         if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
818                              >= le16_to_cpu(curp->p_hdr->eh_max))) {
819                 EXT4_ERROR_INODE(inode,
820                                  "eh_entries %d >= eh_max %d!",
821                                  le16_to_cpu(curp->p_hdr->eh_entries),
822                                  le16_to_cpu(curp->p_hdr->eh_max));
823                 return -EIO;
824         }
825
826         if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
827                 /* insert after */
828                 ext_debug("insert new index %d after: %llu\n", logical, ptr);
829                 ix = curp->p_idx + 1;
830         } else {
831                 /* insert before */
832                 ext_debug("insert new index %d before: %llu\n", logical, ptr);
833                 ix = curp->p_idx;
834         }
835
836         len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
837         BUG_ON(len < 0);
838         if (len > 0) {
839                 ext_debug("insert new index %d: "
840                                 "move %d indices from 0x%p to 0x%p\n",
841                                 logical, len, ix, ix + 1);
842                 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
843         }
844
845         if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
846                 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
847                 return -EIO;
848         }
849
850         ix->ei_block = cpu_to_le32(logical);
851         ext4_idx_store_pblock(ix, ptr);
852         le16_add_cpu(&curp->p_hdr->eh_entries, 1);
853
854         if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
855                 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
856                 return -EIO;
857         }
858
859         err = ext4_ext_dirty(handle, inode, curp);
860         ext4_std_error(inode->i_sb, err);
861
862         return err;
863 }
864
865 /*
866  * ext4_ext_split:
867  * inserts new subtree into the path, using free index entry
868  * at depth @at:
869  * - allocates all needed blocks (new leaf and all intermediate index blocks)
870  * - makes decision where to split
871  * - moves remaining extents and index entries (right to the split point)
872  *   into the newly allocated blocks
873  * - initializes subtree
874  */
875 static int ext4_ext_split(handle_t *handle, struct inode *inode,
876                           unsigned int flags,
877                           struct ext4_ext_path *path,
878                           struct ext4_extent *newext, int at)
879 {
880         struct buffer_head *bh = NULL;
881         int depth = ext_depth(inode);
882         struct ext4_extent_header *neh;
883         struct ext4_extent_idx *fidx;
884         int i = at, k, m, a;
885         ext4_fsblk_t newblock, oldblock;
886         __le32 border;
887         ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
888         int err = 0;
889
890         /* make decision: where to split? */
891         /* FIXME: now decision is simplest: at current extent */
892
893         /* if current leaf will be split, then we should use
894          * border from split point */
895         if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
896                 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
897                 return -EIO;
898         }
899         if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
900                 border = path[depth].p_ext[1].ee_block;
901                 ext_debug("leaf will be split."
902                                 " next leaf starts at %d\n",
903                                   le32_to_cpu(border));
904         } else {
905                 border = newext->ee_block;
906                 ext_debug("leaf will be added."
907                                 " next leaf starts at %d\n",
908                                 le32_to_cpu(border));
909         }
910
911         /*
912          * If error occurs, then we break processing
913          * and mark filesystem read-only. index won't
914          * be inserted and tree will be in consistent
915          * state. Next mount will repair buffers too.
916          */
917
918         /*
919          * Get array to track all allocated blocks.
920          * We need this to handle errors and free blocks
921          * upon them.
922          */
923         ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
924         if (!ablocks)
925                 return -ENOMEM;
926
927         /* allocate all needed blocks */
928         ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
929         for (a = 0; a < depth - at; a++) {
930                 newblock = ext4_ext_new_meta_block(handle, inode, path,
931                                                    newext, &err, flags);
932                 if (newblock == 0)
933                         goto cleanup;
934                 ablocks[a] = newblock;
935         }
936
937         /* initialize new leaf */
938         newblock = ablocks[--a];
939         if (unlikely(newblock == 0)) {
940                 EXT4_ERROR_INODE(inode, "newblock == 0!");
941                 err = -EIO;
942                 goto cleanup;
943         }
944         bh = sb_getblk(inode->i_sb, newblock);
945         if (!bh) {
946                 err = -EIO;
947                 goto cleanup;
948         }
949         lock_buffer(bh);
950
951         err = ext4_journal_get_create_access(handle, bh);
952         if (err)
953                 goto cleanup;
954
955         neh = ext_block_hdr(bh);
956         neh->eh_entries = 0;
957         neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
958         neh->eh_magic = EXT4_EXT_MAGIC;
959         neh->eh_depth = 0;
960
961         /* move remainder of path[depth] to the new leaf */
962         if (unlikely(path[depth].p_hdr->eh_entries !=
963                      path[depth].p_hdr->eh_max)) {
964                 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
965                                  path[depth].p_hdr->eh_entries,
966                                  path[depth].p_hdr->eh_max);
967                 err = -EIO;
968                 goto cleanup;
969         }
970         /* start copy from next extent */
971         m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
972         ext4_ext_show_move(inode, path, newblock, depth);
973         if (m) {
974                 struct ext4_extent *ex;
975                 ex = EXT_FIRST_EXTENT(neh);
976                 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
977                 le16_add_cpu(&neh->eh_entries, m);
978         }
979
980         ext4_extent_block_csum_set(inode, neh);
981         set_buffer_uptodate(bh);
982         unlock_buffer(bh);
983
984         err = ext4_handle_dirty_metadata(handle, inode, bh);
985         if (err)
986                 goto cleanup;
987         brelse(bh);
988         bh = NULL;
989
990         /* correct old leaf */
991         if (m) {
992                 err = ext4_ext_get_access(handle, inode, path + depth);
993                 if (err)
994                         goto cleanup;
995                 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
996                 err = ext4_ext_dirty(handle, inode, path + depth);
997                 if (err)
998                         goto cleanup;
999
1000         }
1001
1002         /* create intermediate indexes */
1003         k = depth - at - 1;
1004         if (unlikely(k < 0)) {
1005                 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1006                 err = -EIO;
1007                 goto cleanup;
1008         }
1009         if (k)
1010                 ext_debug("create %d intermediate indices\n", k);
1011         /* insert new index into current index block */
1012         /* current depth stored in i var */
1013         i = depth - 1;
1014         while (k--) {
1015                 oldblock = newblock;
1016                 newblock = ablocks[--a];
1017                 bh = sb_getblk(inode->i_sb, newblock);
1018                 if (!bh) {
1019                         err = -EIO;
1020                         goto cleanup;
1021                 }
1022                 lock_buffer(bh);
1023
1024                 err = ext4_journal_get_create_access(handle, bh);
1025                 if (err)
1026                         goto cleanup;
1027
1028                 neh = ext_block_hdr(bh);
1029                 neh->eh_entries = cpu_to_le16(1);
1030                 neh->eh_magic = EXT4_EXT_MAGIC;
1031                 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1032                 neh->eh_depth = cpu_to_le16(depth - i);
1033                 fidx = EXT_FIRST_INDEX(neh);
1034                 fidx->ei_block = border;
1035                 ext4_idx_store_pblock(fidx, oldblock);
1036
1037                 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1038                                 i, newblock, le32_to_cpu(border), oldblock);
1039
1040                 /* move remainder of path[i] to the new index block */
1041                 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1042                                         EXT_LAST_INDEX(path[i].p_hdr))) {
1043                         EXT4_ERROR_INODE(inode,
1044                                          "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1045                                          le32_to_cpu(path[i].p_ext->ee_block));
1046                         err = -EIO;
1047                         goto cleanup;
1048                 }
1049                 /* start copy indexes */
1050                 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1051                 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1052                                 EXT_MAX_INDEX(path[i].p_hdr));
1053                 ext4_ext_show_move(inode, path, newblock, i);
1054                 if (m) {
1055                         memmove(++fidx, path[i].p_idx,
1056                                 sizeof(struct ext4_extent_idx) * m);
1057                         le16_add_cpu(&neh->eh_entries, m);
1058                 }
1059                 ext4_extent_block_csum_set(inode, neh);
1060                 set_buffer_uptodate(bh);
1061                 unlock_buffer(bh);
1062
1063                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1064                 if (err)
1065                         goto cleanup;
1066                 brelse(bh);
1067                 bh = NULL;
1068
1069                 /* correct old index */
1070                 if (m) {
1071                         err = ext4_ext_get_access(handle, inode, path + i);
1072                         if (err)
1073                                 goto cleanup;
1074                         le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1075                         err = ext4_ext_dirty(handle, inode, path + i);
1076                         if (err)
1077                                 goto cleanup;
1078                 }
1079
1080                 i--;
1081         }
1082
1083         /* insert new index */
1084         err = ext4_ext_insert_index(handle, inode, path + at,
1085                                     le32_to_cpu(border), newblock);
1086
1087 cleanup:
1088         if (bh) {
1089                 if (buffer_locked(bh))
1090                         unlock_buffer(bh);
1091                 brelse(bh);
1092         }
1093
1094         if (err) {
1095                 /* free all allocated blocks in error case */
1096                 for (i = 0; i < depth; i++) {
1097                         if (!ablocks[i])
1098                                 continue;
1099                         ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1100                                          EXT4_FREE_BLOCKS_METADATA);
1101                 }
1102         }
1103         kfree(ablocks);
1104
1105         return err;
1106 }
1107
1108 /*
1109  * ext4_ext_grow_indepth:
1110  * implements tree growing procedure:
1111  * - allocates new block
1112  * - moves top-level data (index block or leaf) into the new block
1113  * - initializes new top-level, creating index that points to the
1114  *   just created block
1115  */
1116 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1117                                  unsigned int flags,
1118                                  struct ext4_extent *newext)
1119 {
1120         struct ext4_extent_header *neh;
1121         struct buffer_head *bh;
1122         ext4_fsblk_t newblock;
1123         int err = 0;
1124
1125         newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1126                 newext, &err, flags);
1127         if (newblock == 0)
1128                 return err;
1129
1130         bh = sb_getblk(inode->i_sb, newblock);
1131         if (!bh) {
1132                 err = -EIO;
1133                 ext4_std_error(inode->i_sb, err);
1134                 return err;
1135         }
1136         lock_buffer(bh);
1137
1138         err = ext4_journal_get_create_access(handle, bh);
1139         if (err) {
1140                 unlock_buffer(bh);
1141                 goto out;
1142         }
1143
1144         /* move top-level index/leaf into new block */
1145         memmove(bh->b_data, EXT4_I(inode)->i_data,
1146                 sizeof(EXT4_I(inode)->i_data));
1147
1148         /* set size of new block */
1149         neh = ext_block_hdr(bh);
1150         /* old root could have indexes or leaves
1151          * so calculate e_max right way */
1152         if (ext_depth(inode))
1153                 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1154         else
1155                 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1156         neh->eh_magic = EXT4_EXT_MAGIC;
1157         ext4_extent_block_csum_set(inode, neh);
1158         set_buffer_uptodate(bh);
1159         unlock_buffer(bh);
1160
1161         err = ext4_handle_dirty_metadata(handle, inode, bh);
1162         if (err)
1163                 goto out;
1164
1165         /* Update top-level index: num,max,pointer */
1166         neh = ext_inode_hdr(inode);
1167         neh->eh_entries = cpu_to_le16(1);
1168         ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1169         if (neh->eh_depth == 0) {
1170                 /* Root extent block becomes index block */
1171                 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1172                 EXT_FIRST_INDEX(neh)->ei_block =
1173                         EXT_FIRST_EXTENT(neh)->ee_block;
1174         }
1175         ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1176                   le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1177                   le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1178                   ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1179
1180         le16_add_cpu(&neh->eh_depth, 1);
1181         ext4_mark_inode_dirty(handle, inode);
1182 out:
1183         brelse(bh);
1184
1185         return err;
1186 }
1187
1188 /*
1189  * ext4_ext_create_new_leaf:
1190  * finds empty index and adds new leaf.
1191  * if no free index is found, then it requests in-depth growing.
1192  */
1193 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1194                                     unsigned int flags,
1195                                     struct ext4_ext_path *path,
1196                                     struct ext4_extent *newext)
1197 {
1198         struct ext4_ext_path *curp;
1199         int depth, i, err = 0;
1200
1201 repeat:
1202         i = depth = ext_depth(inode);
1203
1204         /* walk up to the tree and look for free index entry */
1205         curp = path + depth;
1206         while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1207                 i--;
1208                 curp--;
1209         }
1210
1211         /* we use already allocated block for index block,
1212          * so subsequent data blocks should be contiguous */
1213         if (EXT_HAS_FREE_INDEX(curp)) {
1214                 /* if we found index with free entry, then use that
1215                  * entry: create all needed subtree and add new leaf */
1216                 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1217                 if (err)
1218                         goto out;
1219
1220                 /* refill path */
1221                 ext4_ext_drop_refs(path);
1222                 path = ext4_ext_find_extent(inode,
1223                                     (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1224                                     path);
1225                 if (IS_ERR(path))
1226                         err = PTR_ERR(path);
1227         } else {
1228                 /* tree is full, time to grow in depth */
1229                 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1230                 if (err)
1231                         goto out;
1232
1233                 /* refill path */
1234                 ext4_ext_drop_refs(path);
1235                 path = ext4_ext_find_extent(inode,
1236                                    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1237                                     path);
1238                 if (IS_ERR(path)) {
1239                         err = PTR_ERR(path);
1240                         goto out;
1241                 }
1242
1243                 /*
1244                  * only first (depth 0 -> 1) produces free space;
1245                  * in all other cases we have to split the grown tree
1246                  */
1247                 depth = ext_depth(inode);
1248                 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1249                         /* now we need to split */
1250                         goto repeat;
1251                 }
1252         }
1253
1254 out:
1255         return err;
1256 }
1257
1258 /*
1259  * search the closest allocated block to the left for *logical
1260  * and returns it at @logical + it's physical address at @phys
1261  * if *logical is the smallest allocated block, the function
1262  * returns 0 at @phys
1263  * return value contains 0 (success) or error code
1264  */
1265 static int ext4_ext_search_left(struct inode *inode,
1266                                 struct ext4_ext_path *path,
1267                                 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1268 {
1269         struct ext4_extent_idx *ix;
1270         struct ext4_extent *ex;
1271         int depth, ee_len;
1272
1273         if (unlikely(path == NULL)) {
1274                 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1275                 return -EIO;
1276         }
1277         depth = path->p_depth;
1278         *phys = 0;
1279
1280         if (depth == 0 && path->p_ext == NULL)
1281                 return 0;
1282
1283         /* usually extent in the path covers blocks smaller
1284          * then *logical, but it can be that extent is the
1285          * first one in the file */
1286
1287         ex = path[depth].p_ext;
1288         ee_len = ext4_ext_get_actual_len(ex);
1289         if (*logical < le32_to_cpu(ex->ee_block)) {
1290                 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1291                         EXT4_ERROR_INODE(inode,
1292                                          "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1293                                          *logical, le32_to_cpu(ex->ee_block));
1294                         return -EIO;
1295                 }
1296                 while (--depth >= 0) {
1297                         ix = path[depth].p_idx;
1298                         if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1299                                 EXT4_ERROR_INODE(inode,
1300                                   "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1301                                   ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1302                                   EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1303                 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1304                                   depth);
1305                                 return -EIO;
1306                         }
1307                 }
1308                 return 0;
1309         }
1310
1311         if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1312                 EXT4_ERROR_INODE(inode,
1313                                  "logical %d < ee_block %d + ee_len %d!",
1314                                  *logical, le32_to_cpu(ex->ee_block), ee_len);
1315                 return -EIO;
1316         }
1317
1318         *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1319         *phys = ext4_ext_pblock(ex) + ee_len - 1;
1320         return 0;
1321 }
1322
1323 /*
1324  * search the closest allocated block to the right for *logical
1325  * and returns it at @logical + it's physical address at @phys
1326  * if *logical is the largest allocated block, the function
1327  * returns 0 at @phys
1328  * return value contains 0 (success) or error code
1329  */
1330 static int ext4_ext_search_right(struct inode *inode,
1331                                  struct ext4_ext_path *path,
1332                                  ext4_lblk_t *logical, ext4_fsblk_t *phys,
1333                                  struct ext4_extent **ret_ex)
1334 {
1335         struct buffer_head *bh = NULL;
1336         struct ext4_extent_header *eh;
1337         struct ext4_extent_idx *ix;
1338         struct ext4_extent *ex;
1339         ext4_fsblk_t block;
1340         int depth;      /* Note, NOT eh_depth; depth from top of tree */
1341         int ee_len;
1342
1343         if (unlikely(path == NULL)) {
1344                 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1345                 return -EIO;
1346         }
1347         depth = path->p_depth;
1348         *phys = 0;
1349
1350         if (depth == 0 && path->p_ext == NULL)
1351                 return 0;
1352
1353         /* usually extent in the path covers blocks smaller
1354          * then *logical, but it can be that extent is the
1355          * first one in the file */
1356
1357         ex = path[depth].p_ext;
1358         ee_len = ext4_ext_get_actual_len(ex);
1359         if (*logical < le32_to_cpu(ex->ee_block)) {
1360                 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1361                         EXT4_ERROR_INODE(inode,
1362                                          "first_extent(path[%d].p_hdr) != ex",
1363                                          depth);
1364                         return -EIO;
1365                 }
1366                 while (--depth >= 0) {
1367                         ix = path[depth].p_idx;
1368                         if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1369                                 EXT4_ERROR_INODE(inode,
1370                                                  "ix != EXT_FIRST_INDEX *logical %d!",
1371                                                  *logical);
1372                                 return -EIO;
1373                         }
1374                 }
1375                 goto found_extent;
1376         }
1377
1378         if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1379                 EXT4_ERROR_INODE(inode,
1380                                  "logical %d < ee_block %d + ee_len %d!",
1381                                  *logical, le32_to_cpu(ex->ee_block), ee_len);
1382                 return -EIO;
1383         }
1384
1385         if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1386                 /* next allocated block in this leaf */
1387                 ex++;
1388                 goto found_extent;
1389         }
1390
1391         /* go up and search for index to the right */
1392         while (--depth >= 0) {
1393                 ix = path[depth].p_idx;
1394                 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1395                         goto got_index;
1396         }
1397
1398         /* we've gone up to the root and found no index to the right */
1399         return 0;
1400
1401 got_index:
1402         /* we've found index to the right, let's
1403          * follow it and find the closest allocated
1404          * block to the right */
1405         ix++;
1406         block = ext4_idx_pblock(ix);
1407         while (++depth < path->p_depth) {
1408                 bh = sb_bread(inode->i_sb, block);
1409                 if (bh == NULL)
1410                         return -EIO;
1411                 eh = ext_block_hdr(bh);
1412                 /* subtract from p_depth to get proper eh_depth */
1413                 if (ext4_ext_check_block(inode, eh,
1414                                          path->p_depth - depth, bh)) {
1415                         put_bh(bh);
1416                         return -EIO;
1417                 }
1418                 ix = EXT_FIRST_INDEX(eh);
1419                 block = ext4_idx_pblock(ix);
1420                 put_bh(bh);
1421         }
1422
1423         bh = sb_bread(inode->i_sb, block);
1424         if (bh == NULL)
1425                 return -EIO;
1426         eh = ext_block_hdr(bh);
1427         if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1428                 put_bh(bh);
1429                 return -EIO;
1430         }
1431         ex = EXT_FIRST_EXTENT(eh);
1432 found_extent:
1433         *logical = le32_to_cpu(ex->ee_block);
1434         *phys = ext4_ext_pblock(ex);
1435         *ret_ex = ex;
1436         if (bh)
1437                 put_bh(bh);
1438         return 0;
1439 }
1440
1441 /*
1442  * ext4_ext_next_allocated_block:
1443  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1444  * NOTE: it considers block number from index entry as
1445  * allocated block. Thus, index entries have to be consistent
1446  * with leaves.
1447  */
1448 static ext4_lblk_t
1449 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1450 {
1451         int depth;
1452
1453         BUG_ON(path == NULL);
1454         depth = path->p_depth;
1455
1456         if (depth == 0 && path->p_ext == NULL)
1457                 return EXT_MAX_BLOCKS;
1458
1459         while (depth >= 0) {
1460                 if (depth == path->p_depth) {
1461                         /* leaf */
1462                         if (path[depth].p_ext &&
1463                                 path[depth].p_ext !=
1464                                         EXT_LAST_EXTENT(path[depth].p_hdr))
1465                           return le32_to_cpu(path[depth].p_ext[1].ee_block);
1466                 } else {
1467                         /* index */
1468                         if (path[depth].p_idx !=
1469                                         EXT_LAST_INDEX(path[depth].p_hdr))
1470                           return le32_to_cpu(path[depth].p_idx[1].ei_block);
1471                 }
1472                 depth--;
1473         }
1474
1475         return EXT_MAX_BLOCKS;
1476 }
1477
1478 /*
1479  * ext4_ext_next_leaf_block:
1480  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1481  */
1482 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1483 {
1484         int depth;
1485
1486         BUG_ON(path == NULL);
1487         depth = path->p_depth;
1488
1489         /* zero-tree has no leaf blocks at all */
1490         if (depth == 0)
1491                 return EXT_MAX_BLOCKS;
1492
1493         /* go to index block */
1494         depth--;
1495
1496         while (depth >= 0) {
1497                 if (path[depth].p_idx !=
1498                                 EXT_LAST_INDEX(path[depth].p_hdr))
1499                         return (ext4_lblk_t)
1500                                 le32_to_cpu(path[depth].p_idx[1].ei_block);
1501                 depth--;
1502         }
1503
1504         return EXT_MAX_BLOCKS;
1505 }
1506
1507 /*
1508  * ext4_ext_correct_indexes:
1509  * if leaf gets modified and modified extent is first in the leaf,
1510  * then we have to correct all indexes above.
1511  * TODO: do we need to correct tree in all cases?
1512  */
1513 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1514                                 struct ext4_ext_path *path)
1515 {
1516         struct ext4_extent_header *eh;
1517         int depth = ext_depth(inode);
1518         struct ext4_extent *ex;
1519         __le32 border;
1520         int k, err = 0;
1521
1522         eh = path[depth].p_hdr;
1523         ex = path[depth].p_ext;
1524
1525         if (unlikely(ex == NULL || eh == NULL)) {
1526                 EXT4_ERROR_INODE(inode,
1527                                  "ex %p == NULL or eh %p == NULL", ex, eh);
1528                 return -EIO;
1529         }
1530
1531         if (depth == 0) {
1532                 /* there is no tree at all */
1533                 return 0;
1534         }
1535
1536         if (ex != EXT_FIRST_EXTENT(eh)) {
1537                 /* we correct tree if first leaf got modified only */
1538                 return 0;
1539         }
1540
1541         /*
1542          * TODO: we need correction if border is smaller than current one
1543          */
1544         k = depth - 1;
1545         border = path[depth].p_ext->ee_block;
1546         err = ext4_ext_get_access(handle, inode, path + k);
1547         if (err)
1548                 return err;
1549         path[k].p_idx->ei_block = border;
1550         err = ext4_ext_dirty(handle, inode, path + k);
1551         if (err)
1552                 return err;
1553
1554         while (k--) {
1555                 /* change all left-side indexes */
1556                 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1557                         break;
1558                 err = ext4_ext_get_access(handle, inode, path + k);
1559                 if (err)
1560                         break;
1561                 path[k].p_idx->ei_block = border;
1562                 err = ext4_ext_dirty(handle, inode, path + k);
1563                 if (err)
1564                         break;
1565         }
1566
1567         return err;
1568 }
1569
1570 int
1571 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1572                                 struct ext4_extent *ex2)
1573 {
1574         unsigned short ext1_ee_len, ext2_ee_len, max_len;
1575
1576         /*
1577          * Make sure that either both extents are uninitialized, or
1578          * both are _not_.
1579          */
1580         if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1581                 return 0;
1582
1583         if (ext4_ext_is_uninitialized(ex1))
1584                 max_len = EXT_UNINIT_MAX_LEN;
1585         else
1586                 max_len = EXT_INIT_MAX_LEN;
1587
1588         ext1_ee_len = ext4_ext_get_actual_len(ex1);
1589         ext2_ee_len = ext4_ext_get_actual_len(ex2);
1590
1591         if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1592                         le32_to_cpu(ex2->ee_block))
1593                 return 0;
1594
1595         /*
1596          * To allow future support for preallocated extents to be added
1597          * as an RO_COMPAT feature, refuse to merge to extents if
1598          * this can result in the top bit of ee_len being set.
1599          */
1600         if (ext1_ee_len + ext2_ee_len > max_len)
1601                 return 0;
1602 #ifdef AGGRESSIVE_TEST
1603         if (ext1_ee_len >= 4)
1604                 return 0;
1605 #endif
1606
1607         if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1608                 return 1;
1609         return 0;
1610 }
1611
1612 /*
1613  * This function tries to merge the "ex" extent to the next extent in the tree.
1614  * It always tries to merge towards right. If you want to merge towards
1615  * left, pass "ex - 1" as argument instead of "ex".
1616  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1617  * 1 if they got merged.
1618  */
1619 static int ext4_ext_try_to_merge_right(struct inode *inode,
1620                                  struct ext4_ext_path *path,
1621                                  struct ext4_extent *ex)
1622 {
1623         struct ext4_extent_header *eh;
1624         unsigned int depth, len;
1625         int merge_done = 0;
1626         int uninitialized = 0;
1627
1628         depth = ext_depth(inode);
1629         BUG_ON(path[depth].p_hdr == NULL);
1630         eh = path[depth].p_hdr;
1631
1632         while (ex < EXT_LAST_EXTENT(eh)) {
1633                 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1634                         break;
1635                 /* merge with next extent! */
1636                 if (ext4_ext_is_uninitialized(ex))
1637                         uninitialized = 1;
1638                 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1639                                 + ext4_ext_get_actual_len(ex + 1));
1640                 if (uninitialized)
1641                         ext4_ext_mark_uninitialized(ex);
1642
1643                 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1644                         len = (EXT_LAST_EXTENT(eh) - ex - 1)
1645                                 * sizeof(struct ext4_extent);
1646                         memmove(ex + 1, ex + 2, len);
1647                 }
1648                 le16_add_cpu(&eh->eh_entries, -1);
1649                 merge_done = 1;
1650                 WARN_ON(eh->eh_entries == 0);
1651                 if (!eh->eh_entries)
1652                         EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1653         }
1654
1655         return merge_done;
1656 }
1657
1658 /*
1659  * This function does a very simple check to see if we can collapse
1660  * an extent tree with a single extent tree leaf block into the inode.
1661  */
1662 static void ext4_ext_try_to_merge_up(handle_t *handle,
1663                                      struct inode *inode,
1664                                      struct ext4_ext_path *path)
1665 {
1666         size_t s;
1667         unsigned max_root = ext4_ext_space_root(inode, 0);
1668         ext4_fsblk_t blk;
1669
1670         if ((path[0].p_depth != 1) ||
1671             (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1672             (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1673                 return;
1674
1675         /*
1676          * We need to modify the block allocation bitmap and the block
1677          * group descriptor to release the extent tree block.  If we
1678          * can't get the journal credits, give up.
1679          */
1680         if (ext4_journal_extend(handle, 2))
1681                 return;
1682
1683         /*
1684          * Copy the extent data up to the inode
1685          */
1686         blk = ext4_idx_pblock(path[0].p_idx);
1687         s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1688                 sizeof(struct ext4_extent_idx);
1689         s += sizeof(struct ext4_extent_header);
1690
1691         memcpy(path[0].p_hdr, path[1].p_hdr, s);
1692         path[0].p_depth = 0;
1693         path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1694                 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1695         path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1696
1697         brelse(path[1].p_bh);
1698         ext4_free_blocks(handle, inode, NULL, blk, 1,
1699                          EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1700 }
1701
1702 /*
1703  * This function tries to merge the @ex extent to neighbours in the tree.
1704  * return 1 if merge left else 0.
1705  */
1706 static void ext4_ext_try_to_merge(handle_t *handle,
1707                                   struct inode *inode,
1708                                   struct ext4_ext_path *path,
1709                                   struct ext4_extent *ex) {
1710         struct ext4_extent_header *eh;
1711         unsigned int depth;
1712         int merge_done = 0;
1713
1714         depth = ext_depth(inode);
1715         BUG_ON(path[depth].p_hdr == NULL);
1716         eh = path[depth].p_hdr;
1717
1718         if (ex > EXT_FIRST_EXTENT(eh))
1719                 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1720
1721         if (!merge_done)
1722                 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1723
1724         ext4_ext_try_to_merge_up(handle, inode, path);
1725 }
1726
1727 /*
1728  * check if a portion of the "newext" extent overlaps with an
1729  * existing extent.
1730  *
1731  * If there is an overlap discovered, it updates the length of the newext
1732  * such that there will be no overlap, and then returns 1.
1733  * If there is no overlap found, it returns 0.
1734  */
1735 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1736                                            struct inode *inode,
1737                                            struct ext4_extent *newext,
1738                                            struct ext4_ext_path *path)
1739 {
1740         ext4_lblk_t b1, b2;
1741         unsigned int depth, len1;
1742         unsigned int ret = 0;
1743
1744         b1 = le32_to_cpu(newext->ee_block);
1745         len1 = ext4_ext_get_actual_len(newext);
1746         depth = ext_depth(inode);
1747         if (!path[depth].p_ext)
1748                 goto out;
1749         b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1750         b2 &= ~(sbi->s_cluster_ratio - 1);
1751
1752         /*
1753          * get the next allocated block if the extent in the path
1754          * is before the requested block(s)
1755          */
1756         if (b2 < b1) {
1757                 b2 = ext4_ext_next_allocated_block(path);
1758                 if (b2 == EXT_MAX_BLOCKS)
1759                         goto out;
1760                 b2 &= ~(sbi->s_cluster_ratio - 1);
1761         }
1762
1763         /* check for wrap through zero on extent logical start block*/
1764         if (b1 + len1 < b1) {
1765                 len1 = EXT_MAX_BLOCKS - b1;
1766                 newext->ee_len = cpu_to_le16(len1);
1767                 ret = 1;
1768         }
1769
1770         /* check for overlap */
1771         if (b1 + len1 > b2) {
1772                 newext->ee_len = cpu_to_le16(b2 - b1);
1773                 ret = 1;
1774         }
1775 out:
1776         return ret;
1777 }
1778
1779 /*
1780  * ext4_ext_insert_extent:
1781  * tries to merge requsted extent into the existing extent or
1782  * inserts requested extent as new one into the tree,
1783  * creating new leaf in the no-space case.
1784  */
1785 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1786                                 struct ext4_ext_path *path,
1787                                 struct ext4_extent *newext, int flag)
1788 {
1789         struct ext4_extent_header *eh;
1790         struct ext4_extent *ex, *fex;
1791         struct ext4_extent *nearex; /* nearest extent */
1792         struct ext4_ext_path *npath = NULL;
1793         int depth, len, err;
1794         ext4_lblk_t next;
1795         unsigned uninitialized = 0;
1796         int flags = 0;
1797
1798         if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1799                 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1800                 return -EIO;
1801         }
1802         depth = ext_depth(inode);
1803         ex = path[depth].p_ext;
1804         if (unlikely(path[depth].p_hdr == NULL)) {
1805                 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1806                 return -EIO;
1807         }
1808
1809         /* try to insert block into found extent and return */
1810         if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1811                 && ext4_can_extents_be_merged(inode, ex, newext)) {
1812                 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1813                           ext4_ext_is_uninitialized(newext),
1814                           ext4_ext_get_actual_len(newext),
1815                           le32_to_cpu(ex->ee_block),
1816                           ext4_ext_is_uninitialized(ex),
1817                           ext4_ext_get_actual_len(ex),
1818                           ext4_ext_pblock(ex));
1819                 err = ext4_ext_get_access(handle, inode, path + depth);
1820                 if (err)
1821                         return err;
1822
1823                 /*
1824                  * ext4_can_extents_be_merged should have checked that either
1825                  * both extents are uninitialized, or both aren't. Thus we
1826                  * need to check only one of them here.
1827                  */
1828                 if (ext4_ext_is_uninitialized(ex))
1829                         uninitialized = 1;
1830                 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1831                                         + ext4_ext_get_actual_len(newext));
1832                 if (uninitialized)
1833                         ext4_ext_mark_uninitialized(ex);
1834                 eh = path[depth].p_hdr;
1835                 nearex = ex;
1836                 goto merge;
1837         }
1838
1839         depth = ext_depth(inode);
1840         eh = path[depth].p_hdr;
1841         if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1842                 goto has_space;
1843
1844         /* probably next leaf has space for us? */
1845         fex = EXT_LAST_EXTENT(eh);
1846         next = EXT_MAX_BLOCKS;
1847         if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1848                 next = ext4_ext_next_leaf_block(path);
1849         if (next != EXT_MAX_BLOCKS) {
1850                 ext_debug("next leaf block - %u\n", next);
1851                 BUG_ON(npath != NULL);
1852                 npath = ext4_ext_find_extent(inode, next, NULL);
1853                 if (IS_ERR(npath))
1854                         return PTR_ERR(npath);
1855                 BUG_ON(npath->p_depth != path->p_depth);
1856                 eh = npath[depth].p_hdr;
1857                 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1858                         ext_debug("next leaf isn't full(%d)\n",
1859                                   le16_to_cpu(eh->eh_entries));
1860                         path = npath;
1861                         goto has_space;
1862                 }
1863                 ext_debug("next leaf has no free space(%d,%d)\n",
1864                           le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1865         }
1866
1867         /*
1868          * There is no free space in the found leaf.
1869          * We're gonna add a new leaf in the tree.
1870          */
1871         if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1872                 flags = EXT4_MB_USE_ROOT_BLOCKS;
1873         err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1874         if (err)
1875                 goto cleanup;
1876         depth = ext_depth(inode);
1877         eh = path[depth].p_hdr;
1878
1879 has_space:
1880         nearex = path[depth].p_ext;
1881
1882         err = ext4_ext_get_access(handle, inode, path + depth);
1883         if (err)
1884                 goto cleanup;
1885
1886         if (!nearex) {
1887                 /* there is no extent in this leaf, create first one */
1888                 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1889                                 le32_to_cpu(newext->ee_block),
1890                                 ext4_ext_pblock(newext),
1891                                 ext4_ext_is_uninitialized(newext),
1892                                 ext4_ext_get_actual_len(newext));
1893                 nearex = EXT_FIRST_EXTENT(eh);
1894         } else {
1895                 if (le32_to_cpu(newext->ee_block)
1896                            > le32_to_cpu(nearex->ee_block)) {
1897                         /* Insert after */
1898                         ext_debug("insert %u:%llu:[%d]%d before: "
1899                                         "nearest %p\n",
1900                                         le32_to_cpu(newext->ee_block),
1901                                         ext4_ext_pblock(newext),
1902                                         ext4_ext_is_uninitialized(newext),
1903                                         ext4_ext_get_actual_len(newext),
1904                                         nearex);
1905                         nearex++;
1906                 } else {
1907                         /* Insert before */
1908                         BUG_ON(newext->ee_block == nearex->ee_block);
1909                         ext_debug("insert %u:%llu:[%d]%d after: "
1910                                         "nearest %p\n",
1911                                         le32_to_cpu(newext->ee_block),
1912                                         ext4_ext_pblock(newext),
1913                                         ext4_ext_is_uninitialized(newext),
1914                                         ext4_ext_get_actual_len(newext),
1915                                         nearex);
1916                 }
1917                 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1918                 if (len > 0) {
1919                         ext_debug("insert %u:%llu:[%d]%d: "
1920                                         "move %d extents from 0x%p to 0x%p\n",
1921                                         le32_to_cpu(newext->ee_block),
1922                                         ext4_ext_pblock(newext),
1923                                         ext4_ext_is_uninitialized(newext),
1924                                         ext4_ext_get_actual_len(newext),
1925                                         len, nearex, nearex + 1);
1926                         memmove(nearex + 1, nearex,
1927                                 len * sizeof(struct ext4_extent));
1928                 }
1929         }
1930
1931         le16_add_cpu(&eh->eh_entries, 1);
1932         path[depth].p_ext = nearex;
1933         nearex->ee_block = newext->ee_block;
1934         ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1935         nearex->ee_len = newext->ee_len;
1936
1937 merge:
1938         /* try to merge extents */
1939         if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1940                 ext4_ext_try_to_merge(handle, inode, path, nearex);
1941
1942
1943         /* time to correct all indexes above */
1944         err = ext4_ext_correct_indexes(handle, inode, path);
1945         if (err)
1946                 goto cleanup;
1947
1948         err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1949
1950 cleanup:
1951         if (npath) {
1952                 ext4_ext_drop_refs(npath);
1953                 kfree(npath);
1954         }
1955         ext4_ext_invalidate_cache(inode);
1956         return err;
1957 }
1958
1959 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1960                                ext4_lblk_t num, ext_prepare_callback func,
1961                                void *cbdata)
1962 {
1963         struct ext4_ext_path *path = NULL;
1964         struct ext4_ext_cache cbex;
1965         struct ext4_extent *ex;
1966         ext4_lblk_t next, start = 0, end = 0;
1967         ext4_lblk_t last = block + num;
1968         int depth, exists, err = 0;
1969
1970         BUG_ON(func == NULL);
1971         BUG_ON(inode == NULL);
1972
1973         while (block < last && block != EXT_MAX_BLOCKS) {
1974                 num = last - block;
1975                 /* find extent for this block */
1976                 down_read(&EXT4_I(inode)->i_data_sem);
1977                 path = ext4_ext_find_extent(inode, block, path);
1978                 up_read(&EXT4_I(inode)->i_data_sem);
1979                 if (IS_ERR(path)) {
1980                         err = PTR_ERR(path);
1981                         path = NULL;
1982                         break;
1983                 }
1984
1985                 depth = ext_depth(inode);
1986                 if (unlikely(path[depth].p_hdr == NULL)) {
1987                         EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1988                         err = -EIO;
1989                         break;
1990                 }
1991                 ex = path[depth].p_ext;
1992                 next = ext4_ext_next_allocated_block(path);
1993
1994                 exists = 0;
1995                 if (!ex) {
1996                         /* there is no extent yet, so try to allocate
1997                          * all requested space */
1998                         start = block;
1999                         end = block + num;
2000                 } else if (le32_to_cpu(ex->ee_block) > block) {
2001                         /* need to allocate space before found extent */
2002                         start = block;
2003                         end = le32_to_cpu(ex->ee_block);
2004                         if (block + num < end)
2005                                 end = block + num;
2006                 } else if (block >= le32_to_cpu(ex->ee_block)
2007                                         + ext4_ext_get_actual_len(ex)) {
2008                         /* need to allocate space after found extent */
2009                         start = block;
2010                         end = block + num;
2011                         if (end >= next)
2012                                 end = next;
2013                 } else if (block >= le32_to_cpu(ex->ee_block)) {
2014                         /*
2015                          * some part of requested space is covered
2016                          * by found extent
2017                          */
2018                         start = block;
2019                         end = le32_to_cpu(ex->ee_block)
2020                                 + ext4_ext_get_actual_len(ex);
2021                         if (block + num < end)
2022                                 end = block + num;
2023                         exists = 1;
2024                 } else {
2025                         BUG();
2026                 }
2027                 BUG_ON(end <= start);
2028
2029                 if (!exists) {
2030                         cbex.ec_block = start;
2031                         cbex.ec_len = end - start;
2032                         cbex.ec_start = 0;
2033                 } else {
2034                         cbex.ec_block = le32_to_cpu(ex->ee_block);
2035                         cbex.ec_len = ext4_ext_get_actual_len(ex);
2036                         cbex.ec_start = ext4_ext_pblock(ex);
2037                 }
2038
2039                 if (unlikely(cbex.ec_len == 0)) {
2040                         EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
2041                         err = -EIO;
2042                         break;
2043                 }
2044                 err = func(inode, next, &cbex, ex, cbdata);
2045                 ext4_ext_drop_refs(path);
2046
2047                 if (err < 0)
2048                         break;
2049
2050                 if (err == EXT_REPEAT)
2051                         continue;
2052                 else if (err == EXT_BREAK) {
2053                         err = 0;
2054                         break;
2055                 }
2056
2057                 if (ext_depth(inode) != depth) {
2058                         /* depth was changed. we have to realloc path */
2059                         kfree(path);
2060                         path = NULL;
2061                 }
2062
2063                 block = cbex.ec_block + cbex.ec_len;
2064         }
2065
2066         if (path) {
2067                 ext4_ext_drop_refs(path);
2068                 kfree(path);
2069         }
2070
2071         return err;
2072 }
2073
2074 static void
2075 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2076                         __u32 len, ext4_fsblk_t start)
2077 {
2078         struct ext4_ext_cache *cex;
2079         BUG_ON(len == 0);
2080         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2081         trace_ext4_ext_put_in_cache(inode, block, len, start);
2082         cex = &EXT4_I(inode)->i_cached_extent;
2083         cex->ec_block = block;
2084         cex->ec_len = len;
2085         cex->ec_start = start;
2086         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2087 }
2088
2089 /*
2090  * ext4_ext_put_gap_in_cache:
2091  * calculate boundaries of the gap that the requested block fits into
2092  * and cache this gap
2093  */
2094 static void
2095 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2096                                 ext4_lblk_t block)
2097 {
2098         int depth = ext_depth(inode);
2099         unsigned long len;
2100         ext4_lblk_t lblock;
2101         struct ext4_extent *ex;
2102
2103         ex = path[depth].p_ext;
2104         if (ex == NULL) {
2105                 /* there is no extent yet, so gap is [0;-] */
2106                 lblock = 0;
2107                 len = EXT_MAX_BLOCKS;
2108                 ext_debug("cache gap(whole file):");
2109         } else if (block < le32_to_cpu(ex->ee_block)) {
2110                 lblock = block;
2111                 len = le32_to_cpu(ex->ee_block) - block;
2112                 ext_debug("cache gap(before): %u [%u:%u]",
2113                                 block,
2114                                 le32_to_cpu(ex->ee_block),
2115                                  ext4_ext_get_actual_len(ex));
2116         } else if (block >= le32_to_cpu(ex->ee_block)
2117                         + ext4_ext_get_actual_len(ex)) {
2118                 ext4_lblk_t next;
2119                 lblock = le32_to_cpu(ex->ee_block)
2120                         + ext4_ext_get_actual_len(ex);
2121
2122                 next = ext4_ext_next_allocated_block(path);
2123                 ext_debug("cache gap(after): [%u:%u] %u",
2124                                 le32_to_cpu(ex->ee_block),
2125                                 ext4_ext_get_actual_len(ex),
2126                                 block);
2127                 BUG_ON(next == lblock);
2128                 len = next - lblock;
2129         } else {
2130                 lblock = len = 0;
2131                 BUG();
2132         }
2133
2134         ext_debug(" -> %u:%lu\n", lblock, len);
2135         ext4_ext_put_in_cache(inode, lblock, len, 0);
2136 }
2137
2138 /*
2139  * ext4_ext_in_cache()
2140  * Checks to see if the given block is in the cache.
2141  * If it is, the cached extent is stored in the given
2142  * cache extent pointer.
2143  *
2144  * @inode: The files inode
2145  * @block: The block to look for in the cache
2146  * @ex:    Pointer where the cached extent will be stored
2147  *         if it contains block
2148  *
2149  * Return 0 if cache is invalid; 1 if the cache is valid
2150  */
2151 static int
2152 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2153                   struct ext4_extent *ex)
2154 {
2155         struct ext4_ext_cache *cex;
2156         struct ext4_sb_info *sbi;
2157         int ret = 0;
2158
2159         /*
2160          * We borrow i_block_reservation_lock to protect i_cached_extent
2161          */
2162         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2163         cex = &EXT4_I(inode)->i_cached_extent;
2164         sbi = EXT4_SB(inode->i_sb);
2165
2166         /* has cache valid data? */
2167         if (cex->ec_len == 0)
2168                 goto errout;
2169
2170         if (in_range(block, cex->ec_block, cex->ec_len)) {
2171                 ex->ee_block = cpu_to_le32(cex->ec_block);
2172                 ext4_ext_store_pblock(ex, cex->ec_start);
2173                 ex->ee_len = cpu_to_le16(cex->ec_len);
2174                 ext_debug("%u cached by %u:%u:%llu\n",
2175                                 block,
2176                                 cex->ec_block, cex->ec_len, cex->ec_start);
2177                 ret = 1;
2178         }
2179 errout:
2180         trace_ext4_ext_in_cache(inode, block, ret);
2181         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2182         return ret;
2183 }
2184
2185 /*
2186  * ext4_ext_rm_idx:
2187  * removes index from the index block.
2188  */
2189 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2190                         struct ext4_ext_path *path)
2191 {
2192         int err;
2193         ext4_fsblk_t leaf;
2194
2195         /* free index block */
2196         path--;
2197         leaf = ext4_idx_pblock(path->p_idx);
2198         if (unlikely(path->p_hdr->eh_entries == 0)) {
2199                 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2200                 return -EIO;
2201         }
2202         err = ext4_ext_get_access(handle, inode, path);
2203         if (err)
2204                 return err;
2205
2206         if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2207                 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2208                 len *= sizeof(struct ext4_extent_idx);
2209                 memmove(path->p_idx, path->p_idx + 1, len);
2210         }
2211
2212         le16_add_cpu(&path->p_hdr->eh_entries, -1);
2213         err = ext4_ext_dirty(handle, inode, path);
2214         if (err)
2215                 return err;
2216         ext_debug("index is empty, remove it, free block %llu\n", leaf);
2217         trace_ext4_ext_rm_idx(inode, leaf);
2218
2219         ext4_free_blocks(handle, inode, NULL, leaf, 1,
2220                          EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2221         return err;
2222 }
2223
2224 /*
2225  * ext4_ext_calc_credits_for_single_extent:
2226  * This routine returns max. credits that needed to insert an extent
2227  * to the extent tree.
2228  * When pass the actual path, the caller should calculate credits
2229  * under i_data_sem.
2230  */
2231 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2232                                                 struct ext4_ext_path *path)
2233 {
2234         if (path) {
2235                 int depth = ext_depth(inode);
2236                 int ret = 0;
2237
2238                 /* probably there is space in leaf? */
2239                 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2240                                 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2241
2242                         /*
2243                          *  There are some space in the leaf tree, no
2244                          *  need to account for leaf block credit
2245                          *
2246                          *  bitmaps and block group descriptor blocks
2247                          *  and other metadata blocks still need to be
2248                          *  accounted.
2249                          */
2250                         /* 1 bitmap, 1 block group descriptor */
2251                         ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2252                         return ret;
2253                 }
2254         }
2255
2256         return ext4_chunk_trans_blocks(inode, nrblocks);
2257 }
2258
2259 /*
2260  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2261  *
2262  * if nrblocks are fit in a single extent (chunk flag is 1), then
2263  * in the worse case, each tree level index/leaf need to be changed
2264  * if the tree split due to insert a new extent, then the old tree
2265  * index/leaf need to be updated too
2266  *
2267  * If the nrblocks are discontiguous, they could cause
2268  * the whole tree split more than once, but this is really rare.
2269  */
2270 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2271 {
2272         int index;
2273         int depth = ext_depth(inode);
2274
2275         if (chunk)
2276                 index = depth * 2;
2277         else
2278                 index = depth * 3;
2279
2280         return index;
2281 }
2282
2283 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2284                               struct ext4_extent *ex,
2285                               ext4_fsblk_t *partial_cluster,
2286                               ext4_lblk_t from, ext4_lblk_t to)
2287 {
2288         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2289         unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2290         ext4_fsblk_t pblk;
2291         int flags = 0;
2292
2293         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2294                 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2295         else if (ext4_should_journal_data(inode))
2296                 flags |= EXT4_FREE_BLOCKS_FORGET;
2297
2298         /*
2299          * For bigalloc file systems, we never free a partial cluster
2300          * at the beginning of the extent.  Instead, we make a note
2301          * that we tried freeing the cluster, and check to see if we
2302          * need to free it on a subsequent call to ext4_remove_blocks,
2303          * or at the end of the ext4_truncate() operation.
2304          */
2305         flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2306
2307         trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2308         /*
2309          * If we have a partial cluster, and it's different from the
2310          * cluster of the last block, we need to explicitly free the
2311          * partial cluster here.
2312          */
2313         pblk = ext4_ext_pblock(ex) + ee_len - 1;
2314         if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2315                 ext4_free_blocks(handle, inode, NULL,
2316                                  EXT4_C2B(sbi, *partial_cluster),
2317                                  sbi->s_cluster_ratio, flags);
2318                 *partial_cluster = 0;
2319         }
2320
2321 #ifdef EXTENTS_STATS
2322         {
2323                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2324                 spin_lock(&sbi->s_ext_stats_lock);
2325                 sbi->s_ext_blocks += ee_len;
2326                 sbi->s_ext_extents++;
2327                 if (ee_len < sbi->s_ext_min)
2328                         sbi->s_ext_min = ee_len;
2329                 if (ee_len > sbi->s_ext_max)
2330                         sbi->s_ext_max = ee_len;
2331                 if (ext_depth(inode) > sbi->s_depth_max)
2332                         sbi->s_depth_max = ext_depth(inode);
2333                 spin_unlock(&sbi->s_ext_stats_lock);
2334         }
2335 #endif
2336         if (from >= le32_to_cpu(ex->ee_block)
2337             && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2338                 /* tail removal */
2339                 ext4_lblk_t num;
2340
2341                 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2342                 pblk = ext4_ext_pblock(ex) + ee_len - num;
2343                 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2344                 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2345                 /*
2346                  * If the block range to be freed didn't start at the
2347                  * beginning of a cluster, and we removed the entire
2348                  * extent, save the partial cluster here, since we
2349                  * might need to delete if we determine that the
2350                  * truncate operation has removed all of the blocks in
2351                  * the cluster.
2352                  */
2353                 if (pblk & (sbi->s_cluster_ratio - 1) &&
2354                     (ee_len == num))
2355                         *partial_cluster = EXT4_B2C(sbi, pblk);
2356                 else
2357                         *partial_cluster = 0;
2358         } else if (from == le32_to_cpu(ex->ee_block)
2359                    && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2360                 /* head removal */
2361                 ext4_lblk_t num;
2362                 ext4_fsblk_t start;
2363
2364                 num = to - from;
2365                 start = ext4_ext_pblock(ex);
2366
2367                 ext_debug("free first %u blocks starting %llu\n", num, start);
2368                 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2369
2370         } else {
2371                 printk(KERN_INFO "strange request: removal(2) "
2372                                 "%u-%u from %u:%u\n",
2373                                 from, to, le32_to_cpu(ex->ee_block), ee_len);
2374         }
2375         return 0;
2376 }
2377
2378
2379 /*
2380  * ext4_ext_rm_leaf() Removes the extents associated with the
2381  * blocks appearing between "start" and "end", and splits the extents
2382  * if "start" and "end" appear in the same extent
2383  *
2384  * @handle: The journal handle
2385  * @inode:  The files inode
2386  * @path:   The path to the leaf
2387  * @start:  The first block to remove
2388  * @end:   The last block to remove
2389  */
2390 static int
2391 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2392                  struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2393                  ext4_lblk_t start, ext4_lblk_t end)
2394 {
2395         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2396         int err = 0, correct_index = 0;
2397         int depth = ext_depth(inode), credits;
2398         struct ext4_extent_header *eh;
2399         ext4_lblk_t a, b;
2400         unsigned num;
2401         ext4_lblk_t ex_ee_block;
2402         unsigned short ex_ee_len;
2403         unsigned uninitialized = 0;
2404         struct ext4_extent *ex;
2405
2406         /* the header must be checked already in ext4_ext_remove_space() */
2407         ext_debug("truncate since %u in leaf to %u\n", start, end);
2408         if (!path[depth].p_hdr)
2409                 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2410         eh = path[depth].p_hdr;
2411         if (unlikely(path[depth].p_hdr == NULL)) {
2412                 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2413                 return -EIO;
2414         }
2415         /* find where to start removing */
2416         ex = EXT_LAST_EXTENT(eh);
2417
2418         ex_ee_block = le32_to_cpu(ex->ee_block);
2419         ex_ee_len = ext4_ext_get_actual_len(ex);
2420
2421         trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2422
2423         while (ex >= EXT_FIRST_EXTENT(eh) &&
2424                         ex_ee_block + ex_ee_len > start) {
2425
2426                 if (ext4_ext_is_uninitialized(ex))
2427                         uninitialized = 1;
2428                 else
2429                         uninitialized = 0;
2430
2431                 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2432                          uninitialized, ex_ee_len);
2433                 path[depth].p_ext = ex;
2434
2435                 a = ex_ee_block > start ? ex_ee_block : start;
2436                 b = ex_ee_block+ex_ee_len - 1 < end ?
2437                         ex_ee_block+ex_ee_len - 1 : end;
2438
2439                 ext_debug("  border %u:%u\n", a, b);
2440
2441                 /* If this extent is beyond the end of the hole, skip it */
2442                 if (end < ex_ee_block) {
2443                         ex--;
2444                         ex_ee_block = le32_to_cpu(ex->ee_block);
2445                         ex_ee_len = ext4_ext_get_actual_len(ex);
2446                         continue;
2447                 } else if (b != ex_ee_block + ex_ee_len - 1) {
2448                         EXT4_ERROR_INODE(inode,
2449                                          "can not handle truncate %u:%u "
2450                                          "on extent %u:%u",
2451                                          start, end, ex_ee_block,
2452                                          ex_ee_block + ex_ee_len - 1);
2453                         err = -EIO;
2454                         goto out;
2455                 } else if (a != ex_ee_block) {
2456                         /* remove tail of the extent */
2457                         num = a - ex_ee_block;
2458                 } else {
2459                         /* remove whole extent: excellent! */
2460                         num = 0;
2461                 }
2462                 /*
2463                  * 3 for leaf, sb, and inode plus 2 (bmap and group
2464                  * descriptor) for each block group; assume two block
2465                  * groups plus ex_ee_len/blocks_per_block_group for
2466                  * the worst case
2467                  */
2468                 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2469                 if (ex == EXT_FIRST_EXTENT(eh)) {
2470                         correct_index = 1;
2471                         credits += (ext_depth(inode)) + 1;
2472                 }
2473                 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2474
2475                 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2476                 if (err)
2477                         goto out;
2478
2479                 err = ext4_ext_get_access(handle, inode, path + depth);
2480                 if (err)
2481                         goto out;
2482
2483                 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2484                                          a, b);
2485                 if (err)
2486                         goto out;
2487
2488                 if (num == 0)
2489                         /* this extent is removed; mark slot entirely unused */
2490                         ext4_ext_store_pblock(ex, 0);
2491
2492                 ex->ee_len = cpu_to_le16(num);
2493                 /*
2494                  * Do not mark uninitialized if all the blocks in the
2495                  * extent have been removed.
2496                  */
2497                 if (uninitialized && num)
2498                         ext4_ext_mark_uninitialized(ex);
2499                 /*
2500                  * If the extent was completely released,
2501                  * we need to remove it from the leaf
2502                  */
2503                 if (num == 0) {
2504                         if (end != EXT_MAX_BLOCKS - 1) {
2505                                 /*
2506                                  * For hole punching, we need to scoot all the
2507                                  * extents up when an extent is removed so that
2508                                  * we dont have blank extents in the middle
2509                                  */
2510                                 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2511                                         sizeof(struct ext4_extent));
2512
2513                                 /* Now get rid of the one at the end */
2514                                 memset(EXT_LAST_EXTENT(eh), 0,
2515                                         sizeof(struct ext4_extent));
2516                         }
2517                         le16_add_cpu(&eh->eh_entries, -1);
2518                 } else
2519                         *partial_cluster = 0;
2520
2521                 err = ext4_ext_dirty(handle, inode, path + depth);
2522                 if (err)
2523                         goto out;
2524
2525                 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2526                                 ext4_ext_pblock(ex));
2527                 ex--;
2528                 ex_ee_block = le32_to_cpu(ex->ee_block);
2529                 ex_ee_len = ext4_ext_get_actual_len(ex);
2530         }
2531
2532         if (correct_index && eh->eh_entries)
2533                 err = ext4_ext_correct_indexes(handle, inode, path);
2534
2535         /*
2536          * If there is still a entry in the leaf node, check to see if
2537          * it references the partial cluster.  This is the only place
2538          * where it could; if it doesn't, we can free the cluster.
2539          */
2540         if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2541             (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2542              *partial_cluster)) {
2543                 int flags = EXT4_FREE_BLOCKS_FORGET;
2544
2545                 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2546                         flags |= EXT4_FREE_BLOCKS_METADATA;
2547
2548                 ext4_free_blocks(handle, inode, NULL,
2549                                  EXT4_C2B(sbi, *partial_cluster),
2550                                  sbi->s_cluster_ratio, flags);
2551                 *partial_cluster = 0;
2552         }
2553
2554         /* if this leaf is free, then we should
2555          * remove it from index block above */
2556         if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2557                 err = ext4_ext_rm_idx(handle, inode, path + depth);
2558
2559 out:
2560         return err;
2561 }
2562
2563 /*
2564  * ext4_ext_more_to_rm:
2565  * returns 1 if current index has to be freed (even partial)
2566  */
2567 static int
2568 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2569 {
2570         BUG_ON(path->p_idx == NULL);
2571
2572         if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2573                 return 0;
2574
2575         /*
2576          * if truncate on deeper level happened, it wasn't partial,
2577          * so we have to consider current index for truncation
2578          */
2579         if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2580                 return 0;
2581         return 1;
2582 }
2583
2584 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2585                                  ext4_lblk_t end)
2586 {
2587         struct super_block *sb = inode->i_sb;
2588         int depth = ext_depth(inode);
2589         struct ext4_ext_path *path = NULL;
2590         ext4_fsblk_t partial_cluster = 0;
2591         handle_t *handle;
2592         int i = 0, err;
2593
2594         ext_debug("truncate since %u to %u\n", start, end);
2595
2596         /* probably first extent we're gonna free will be last in block */
2597         handle = ext4_journal_start(inode, depth + 1);
2598         if (IS_ERR(handle))
2599                 return PTR_ERR(handle);
2600
2601 again:
2602         ext4_ext_invalidate_cache(inode);
2603
2604         trace_ext4_ext_remove_space(inode, start, depth);
2605
2606         /*
2607          * Check if we are removing extents inside the extent tree. If that
2608          * is the case, we are going to punch a hole inside the extent tree
2609          * so we have to check whether we need to split the extent covering
2610          * the last block to remove so we can easily remove the part of it
2611          * in ext4_ext_rm_leaf().
2612          */
2613         if (end < EXT_MAX_BLOCKS - 1) {
2614                 struct ext4_extent *ex;
2615                 ext4_lblk_t ee_block;
2616
2617                 /* find extent for this block */
2618                 path = ext4_ext_find_extent(inode, end, NULL);
2619                 if (IS_ERR(path)) {
2620                         ext4_journal_stop(handle);
2621                         return PTR_ERR(path);
2622                 }
2623                 depth = ext_depth(inode);
2624                 ex = path[depth].p_ext;
2625                 if (!ex) {
2626                         ext4_ext_drop_refs(path);
2627                         kfree(path);
2628                         path = NULL;
2629                         goto cont;
2630                 }
2631
2632                 ee_block = le32_to_cpu(ex->ee_block);
2633
2634                 /*
2635                  * See if the last block is inside the extent, if so split
2636                  * the extent at 'end' block so we can easily remove the
2637                  * tail of the first part of the split extent in
2638                  * ext4_ext_rm_leaf().
2639                  */
2640                 if (end >= ee_block &&
2641                     end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2642                         int split_flag = 0;
2643
2644                         if (ext4_ext_is_uninitialized(ex))
2645                                 split_flag = EXT4_EXT_MARK_UNINIT1 |
2646                                              EXT4_EXT_MARK_UNINIT2;
2647
2648                         /*
2649                          * Split the extent in two so that 'end' is the last
2650                          * block in the first new extent
2651                          */
2652                         err = ext4_split_extent_at(handle, inode, path,
2653                                                 end + 1, split_flag,
2654                                                 EXT4_GET_BLOCKS_PRE_IO |
2655                                                 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2656
2657                         if (err < 0)
2658                                 goto out;
2659                 }
2660         }
2661 cont:
2662
2663         /*
2664          * We start scanning from right side, freeing all the blocks
2665          * after i_size and walking into the tree depth-wise.
2666          */
2667         depth = ext_depth(inode);
2668         if (path) {
2669                 int k = i = depth;
2670                 while (--k > 0)
2671                         path[k].p_block =
2672                                 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2673         } else {
2674                 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2675                                GFP_NOFS);
2676                 if (path == NULL) {
2677                         ext4_journal_stop(handle);
2678                         return -ENOMEM;
2679                 }
2680                 path[0].p_depth = depth;
2681                 path[0].p_hdr = ext_inode_hdr(inode);
2682                 i = 0;
2683
2684                 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2685                         err = -EIO;
2686                         goto out;
2687                 }
2688         }
2689         err = 0;
2690
2691         while (i >= 0 && err == 0) {
2692                 if (i == depth) {
2693                         /* this is leaf block */
2694                         err = ext4_ext_rm_leaf(handle, inode, path,
2695                                                &partial_cluster, start,
2696                                                end);
2697                         /* root level has p_bh == NULL, brelse() eats this */
2698                         brelse(path[i].p_bh);
2699                         path[i].p_bh = NULL;
2700                         i--;
2701                         continue;
2702                 }
2703
2704                 /* this is index block */
2705                 if (!path[i].p_hdr) {
2706                         ext_debug("initialize header\n");
2707                         path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2708                 }
2709
2710                 if (!path[i].p_idx) {
2711                         /* this level hasn't been touched yet */
2712                         path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2713                         path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2714                         ext_debug("init index ptr: hdr 0x%p, num %d\n",
2715                                   path[i].p_hdr,
2716                                   le16_to_cpu(path[i].p_hdr->eh_entries));
2717                 } else {
2718                         /* we were already here, see at next index */
2719                         path[i].p_idx--;
2720                 }
2721
2722                 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2723                                 i, EXT_FIRST_INDEX(path[i].p_hdr),
2724                                 path[i].p_idx);
2725                 if (ext4_ext_more_to_rm(path + i)) {
2726                         struct buffer_head *bh;
2727                         /* go to the next level */
2728                         ext_debug("move to level %d (block %llu)\n",
2729                                   i + 1, ext4_idx_pblock(path[i].p_idx));
2730                         memset(path + i + 1, 0, sizeof(*path));
2731                         bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2732                         if (!bh) {
2733                                 /* should we reset i_size? */
2734                                 err = -EIO;
2735                                 break;
2736                         }
2737                         if (WARN_ON(i + 1 > depth)) {
2738                                 err = -EIO;
2739                                 break;
2740                         }
2741                         if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2742                                                         depth - i - 1, bh)) {
2743                                 err = -EIO;
2744                                 break;
2745                         }
2746                         path[i + 1].p_bh = bh;
2747
2748                         /* save actual number of indexes since this
2749                          * number is changed at the next iteration */
2750                         path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2751                         i++;
2752                 } else {
2753                         /* we finished processing this index, go up */
2754                         if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2755                                 /* index is empty, remove it;
2756                                  * handle must be already prepared by the
2757                                  * truncatei_leaf() */
2758                                 err = ext4_ext_rm_idx(handle, inode, path + i);
2759                         }
2760                         /* root level has p_bh == NULL, brelse() eats this */
2761                         brelse(path[i].p_bh);
2762                         path[i].p_bh = NULL;
2763                         i--;
2764                         ext_debug("return to level %d\n", i);
2765                 }
2766         }
2767
2768         trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2769                         path->p_hdr->eh_entries);
2770
2771         /* If we still have something in the partial cluster and we have removed
2772          * even the first extent, then we should free the blocks in the partial
2773          * cluster as well. */
2774         if (partial_cluster && path->p_hdr->eh_entries == 0) {
2775                 int flags = EXT4_FREE_BLOCKS_FORGET;
2776
2777                 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2778                         flags |= EXT4_FREE_BLOCKS_METADATA;
2779
2780                 ext4_free_blocks(handle, inode, NULL,
2781                                  EXT4_C2B(EXT4_SB(sb), partial_cluster),
2782                                  EXT4_SB(sb)->s_cluster_ratio, flags);
2783                 partial_cluster = 0;
2784         }
2785
2786         /* TODO: flexible tree reduction should be here */
2787         if (path->p_hdr->eh_entries == 0) {
2788                 /*
2789                  * truncate to zero freed all the tree,
2790                  * so we need to correct eh_depth
2791                  */
2792                 err = ext4_ext_get_access(handle, inode, path);
2793                 if (err == 0) {
2794                         ext_inode_hdr(inode)->eh_depth = 0;
2795                         ext_inode_hdr(inode)->eh_max =
2796                                 cpu_to_le16(ext4_ext_space_root(inode, 0));
2797                         err = ext4_ext_dirty(handle, inode, path);
2798                 }
2799         }
2800 out:
2801         ext4_ext_drop_refs(path);
2802         kfree(path);
2803         if (err == -EAGAIN) {
2804                 path = NULL;
2805                 goto again;
2806         }
2807         ext4_journal_stop(handle);
2808
2809         return err;
2810 }
2811
2812 /*
2813  * called at mount time
2814  */
2815 void ext4_ext_init(struct super_block *sb)
2816 {
2817         /*
2818          * possible initialization would be here
2819          */
2820
2821         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2822 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2823                 printk(KERN_INFO "EXT4-fs: file extents enabled"
2824 #ifdef AGGRESSIVE_TEST
2825                        ", aggressive tests"
2826 #endif
2827 #ifdef CHECK_BINSEARCH
2828                        ", check binsearch"
2829 #endif
2830 #ifdef EXTENTS_STATS
2831                        ", stats"
2832 #endif
2833                        "\n");
2834 #endif
2835 #ifdef EXTENTS_STATS
2836                 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2837                 EXT4_SB(sb)->s_ext_min = 1 << 30;
2838                 EXT4_SB(sb)->s_ext_max = 0;
2839 #endif
2840         }
2841 }
2842
2843 /*
2844  * called at umount time
2845  */
2846 void ext4_ext_release(struct super_block *sb)
2847 {
2848         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2849                 return;
2850
2851 #ifdef EXTENTS_STATS
2852         if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2853                 struct ext4_sb_info *sbi = EXT4_SB(sb);
2854                 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2855                         sbi->s_ext_blocks, sbi->s_ext_extents,
2856                         sbi->s_ext_blocks / sbi->s_ext_extents);
2857                 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2858                         sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2859         }
2860 #endif
2861 }
2862
2863 /* FIXME!! we need to try to merge to left or right after zero-out  */
2864 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2865 {
2866         ext4_fsblk_t ee_pblock;
2867         unsigned int ee_len;
2868         int ret;
2869
2870         ee_len    = ext4_ext_get_actual_len(ex);
2871         ee_pblock = ext4_ext_pblock(ex);
2872
2873         ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2874         if (ret > 0)
2875                 ret = 0;
2876
2877         return ret;
2878 }
2879
2880 /*
2881  * ext4_split_extent_at() splits an extent at given block.
2882  *
2883  * @handle: the journal handle
2884  * @inode: the file inode
2885  * @path: the path to the extent
2886  * @split: the logical block where the extent is splitted.
2887  * @split_flags: indicates if the extent could be zeroout if split fails, and
2888  *               the states(init or uninit) of new extents.
2889  * @flags: flags used to insert new extent to extent tree.
2890  *
2891  *
2892  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2893  * of which are deterimined by split_flag.
2894  *
2895  * There are two cases:
2896  *  a> the extent are splitted into two extent.
2897  *  b> split is not needed, and just mark the extent.
2898  *
2899  * return 0 on success.
2900  */
2901 static int ext4_split_extent_at(handle_t *handle,
2902                              struct inode *inode,
2903                              struct ext4_ext_path *path,
2904                              ext4_lblk_t split,
2905                              int split_flag,
2906                              int flags)
2907 {
2908         ext4_fsblk_t newblock;
2909         ext4_lblk_t ee_block;
2910         struct ext4_extent *ex, newex, orig_ex;
2911         struct ext4_extent *ex2 = NULL;
2912         unsigned int ee_len, depth;
2913         int err = 0;
2914
2915         ext_debug("ext4_split_extents_at: inode %lu, logical"
2916                 "block %llu\n", inode->i_ino, (unsigned long long)split);
2917
2918         ext4_ext_show_leaf(inode, path);
2919
2920         depth = ext_depth(inode);
2921         ex = path[depth].p_ext;
2922         ee_block = le32_to_cpu(ex->ee_block);
2923         ee_len = ext4_ext_get_actual_len(ex);
2924         newblock = split - ee_block + ext4_ext_pblock(ex);
2925
2926         BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2927
2928         err = ext4_ext_get_access(handle, inode, path + depth);
2929         if (err)
2930                 goto out;
2931
2932         if (split == ee_block) {
2933                 /*
2934                  * case b: block @split is the block that the extent begins with
2935                  * then we just change the state of the extent, and splitting
2936                  * is not needed.
2937                  */
2938                 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2939                         ext4_ext_mark_uninitialized(ex);
2940                 else
2941                         ext4_ext_mark_initialized(ex);
2942
2943                 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2944                         ext4_ext_try_to_merge(handle, inode, path, ex);
2945
2946                 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2947                 goto out;
2948         }
2949
2950         /* case a */
2951         memcpy(&orig_ex, ex, sizeof(orig_ex));
2952         ex->ee_len = cpu_to_le16(split - ee_block);
2953         if (split_flag & EXT4_EXT_MARK_UNINIT1)
2954                 ext4_ext_mark_uninitialized(ex);
2955
2956         /*
2957          * path may lead to new leaf, not to original leaf any more
2958          * after ext4_ext_insert_extent() returns,
2959          */
2960         err = ext4_ext_dirty(handle, inode, path + depth);
2961         if (err)
2962                 goto fix_extent_len;
2963
2964         ex2 = &newex;
2965         ex2->ee_block = cpu_to_le32(split);
2966         ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2967         ext4_ext_store_pblock(ex2, newblock);
2968         if (split_flag & EXT4_EXT_MARK_UNINIT2)
2969                 ext4_ext_mark_uninitialized(ex2);
2970
2971         err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2972         if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2973                 err = ext4_ext_zeroout(inode, &orig_ex);
2974                 if (err)
2975                         goto fix_extent_len;
2976                 /* update the extent length and mark as initialized */
2977                 ex->ee_len = cpu_to_le16(ee_len);
2978                 ext4_ext_try_to_merge(handle, inode, path, ex);
2979                 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2980                 goto out;
2981         } else if (err)
2982                 goto fix_extent_len;
2983
2984 out:
2985         ext4_ext_show_leaf(inode, path);
2986         return err;
2987
2988 fix_extent_len:
2989         ex->ee_len = orig_ex.ee_len;
2990         ext4_ext_dirty(handle, inode, path + depth);
2991         return err;
2992 }
2993
2994 /*
2995  * ext4_split_extents() splits an extent and mark extent which is covered
2996  * by @map as split_flags indicates
2997  *
2998  * It may result in splitting the extent into multiple extents (upto three)
2999  * There are three possibilities:
3000  *   a> There is no split required
3001  *   b> Splits in two extents: Split is happening at either end of the extent
3002  *   c> Splits in three extents: Somone is splitting in middle of the extent
3003  *
3004  */
3005 static int ext4_split_extent(handle_t *handle,
3006                               struct inode *inode,
3007                               struct ext4_ext_path *path,
3008                               struct ext4_map_blocks *map,
3009                               int split_flag,
3010                               int flags)
3011 {
3012         ext4_lblk_t ee_block;
3013         struct ext4_extent *ex;
3014         unsigned int ee_len, depth;
3015         int err = 0;
3016         int uninitialized;
3017         int split_flag1, flags1;
3018
3019         depth = ext_depth(inode);
3020         ex = path[depth].p_ext;
3021         ee_block = le32_to_cpu(ex->ee_block);
3022         ee_len = ext4_ext_get_actual_len(ex);
3023         uninitialized = ext4_ext_is_uninitialized(ex);
3024
3025         if (map->m_lblk + map->m_len < ee_block + ee_len) {
3026                 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
3027                               EXT4_EXT_MAY_ZEROOUT : 0;
3028                 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3029                 if (uninitialized)
3030                         split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3031                                        EXT4_EXT_MARK_UNINIT2;
3032                 err = ext4_split_extent_at(handle, inode, path,
3033                                 map->m_lblk + map->m_len, split_flag1, flags1);
3034                 if (err)
3035                         goto out;
3036         }
3037
3038         ext4_ext_drop_refs(path);
3039         path = ext4_ext_find_extent(inode, map->m_lblk, path);
3040         if (IS_ERR(path))
3041                 return PTR_ERR(path);
3042
3043         if (map->m_lblk >= ee_block) {
3044                 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
3045                               EXT4_EXT_MAY_ZEROOUT : 0;
3046                 if (uninitialized)
3047                         split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3048                 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3049                         split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3050                 err = ext4_split_extent_at(handle, inode, path,
3051                                 map->m_lblk, split_flag1, flags);
3052                 if (err)
3053                         goto out;
3054         }
3055
3056         ext4_ext_show_leaf(inode, path);
3057 out:
3058         return err ? err : map->m_len;
3059 }
3060
3061 /*
3062  * This function is called by ext4_ext_map_blocks() if someone tries to write
3063  * to an uninitialized extent. It may result in splitting the uninitialized
3064  * extent into multiple extents (up to three - one initialized and two
3065  * uninitialized).
3066  * There are three possibilities:
3067  *   a> There is no split required: Entire extent should be initialized
3068  *   b> Splits in two extents: Write is happening at either end of the extent
3069  *   c> Splits in three extents: Somone is writing in middle of the extent
3070  *
3071  * Pre-conditions:
3072  *  - The extent pointed to by 'path' is uninitialized.
3073  *  - The extent pointed to by 'path' contains a superset
3074  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3075  *
3076  * Post-conditions on success:
3077  *  - the returned value is the number of blocks beyond map->l_lblk
3078  *    that are allocated and initialized.
3079  *    It is guaranteed to be >= map->m_len.
3080  */
3081 static int ext4_ext_convert_to_initialized(handle_t *handle,
3082                                            struct inode *inode,
3083                                            struct ext4_map_blocks *map,
3084                                            struct ext4_ext_path *path)
3085 {
3086         struct ext4_sb_info *sbi;
3087         struct ext4_extent_header *eh;
3088         struct ext4_map_blocks split_map;
3089         struct ext4_extent zero_ex;
3090         struct ext4_extent *ex;
3091         ext4_lblk_t ee_block, eof_block;
3092         unsigned int ee_len, depth;
3093         int allocated, max_zeroout = 0;
3094         int err = 0;
3095         int split_flag = 0;
3096
3097         ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3098                 "block %llu, max_blocks %u\n", inode->i_ino,
3099                 (unsigned long long)map->m_lblk, map->m_len);
3100
3101         sbi = EXT4_SB(inode->i_sb);
3102         eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3103                 inode->i_sb->s_blocksize_bits;
3104         if (eof_block < map->m_lblk + map->m_len)
3105                 eof_block = map->m_lblk + map->m_len;
3106
3107         depth = ext_depth(inode);
3108         eh = path[depth].p_hdr;
3109         ex = path[depth].p_ext;
3110         ee_block = le32_to_cpu(ex->ee_block);
3111         ee_len = ext4_ext_get_actual_len(ex);
3112         allocated = ee_len - (map->m_lblk - ee_block);
3113
3114         trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3115
3116         /* Pre-conditions */
3117         BUG_ON(!ext4_ext_is_uninitialized(ex));
3118         BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3119
3120         /*
3121          * Attempt to transfer newly initialized blocks from the currently
3122          * uninitialized extent to its left neighbor. This is much cheaper
3123          * than an insertion followed by a merge as those involve costly
3124          * memmove() calls. This is the common case in steady state for
3125          * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3126          * writes.
3127          *
3128          * Limitations of the current logic:
3129          *  - L1: we only deal with writes at the start of the extent.
3130          *    The approach could be extended to writes at the end
3131          *    of the extent but this scenario was deemed less common.
3132          *  - L2: we do not deal with writes covering the whole extent.
3133          *    This would require removing the extent if the transfer
3134          *    is possible.
3135          *  - L3: we only attempt to merge with an extent stored in the
3136          *    same extent tree node.
3137          */
3138         if ((map->m_lblk == ee_block) &&        /*L1*/
3139                 (map->m_len < ee_len) &&        /*L2*/
3140                 (ex > EXT_FIRST_EXTENT(eh))) {  /*L3*/
3141                 struct ext4_extent *prev_ex;
3142                 ext4_lblk_t prev_lblk;
3143                 ext4_fsblk_t prev_pblk, ee_pblk;
3144                 unsigned int prev_len, write_len;
3145
3146                 prev_ex = ex - 1;
3147                 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3148                 prev_len = ext4_ext_get_actual_len(prev_ex);
3149                 prev_pblk = ext4_ext_pblock(prev_ex);
3150                 ee_pblk = ext4_ext_pblock(ex);
3151                 write_len = map->m_len;
3152
3153                 /*
3154                  * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3155                  * upon those conditions:
3156                  * - C1: prev_ex is initialized,
3157                  * - C2: prev_ex is logically abutting ex,
3158                  * - C3: prev_ex is physically abutting ex,
3159                  * - C4: prev_ex can receive the additional blocks without
3160                  *   overflowing the (initialized) length limit.
3161                  */
3162                 if ((!ext4_ext_is_uninitialized(prev_ex)) &&            /*C1*/
3163                         ((prev_lblk + prev_len) == ee_block) &&         /*C2*/
3164                         ((prev_pblk + prev_len) == ee_pblk) &&          /*C3*/
3165                         (prev_len < (EXT_INIT_MAX_LEN - write_len))) {  /*C4*/
3166                         err = ext4_ext_get_access(handle, inode, path + depth);
3167                         if (err)
3168                                 goto out;
3169
3170                         trace_ext4_ext_convert_to_initialized_fastpath(inode,
3171                                 map, ex, prev_ex);
3172
3173                         /* Shift the start of ex by 'write_len' blocks */
3174                         ex->ee_block = cpu_to_le32(ee_block + write_len);
3175                         ext4_ext_store_pblock(ex, ee_pblk + write_len);
3176                         ex->ee_len = cpu_to_le16(ee_len - write_len);
3177                         ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3178
3179                         /* Extend prev_ex by 'write_len' blocks */
3180                         prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3181
3182                         /* Mark the block containing both extents as dirty */
3183                         ext4_ext_dirty(handle, inode, path + depth);
3184
3185                         /* Update path to point to the right extent */
3186                         path[depth].p_ext = prev_ex;
3187
3188                         /* Result: number of initialized blocks past m_lblk */
3189                         allocated = write_len;
3190                         goto out;
3191                 }
3192         }
3193
3194         WARN_ON(map->m_lblk < ee_block);
3195         /*
3196          * It is safe to convert extent to initialized via explicit
3197          * zeroout only if extent is fully insde i_size or new_size.
3198          */
3199         split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3200
3201         if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3202                 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3203                         inode->i_sb->s_blocksize_bits;
3204
3205         /* If extent is less than s_max_zeroout_kb, zeroout directly */
3206         if (max_zeroout && (ee_len <= max_zeroout)) {
3207                 err = ext4_ext_zeroout(inode, ex);
3208                 if (err)
3209                         goto out;
3210
3211                 err = ext4_ext_get_access(handle, inode, path + depth);
3212                 if (err)
3213                         goto out;
3214                 ext4_ext_mark_initialized(ex);
3215                 ext4_ext_try_to_merge(handle, inode, path, ex);
3216                 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3217                 goto out;
3218         }
3219
3220         /*
3221          * four cases:
3222          * 1. split the extent into three extents.
3223          * 2. split the extent into two extents, zeroout the first half.
3224          * 3. split the extent into two extents, zeroout the second half.
3225          * 4. split the extent into two extents with out zeroout.
3226          */
3227         split_map.m_lblk = map->m_lblk;
3228         split_map.m_len = map->m_len;
3229
3230         if (max_zeroout && (allocated > map->m_len)) {
3231                 if (allocated <= max_zeroout) {
3232                         /* case 3 */
3233                         zero_ex.ee_block =
3234                                          cpu_to_le32(map->m_lblk);
3235                         zero_ex.ee_len = cpu_to_le16(allocated);
3236                         ext4_ext_store_pblock(&zero_ex,
3237                                 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3238                         err = ext4_ext_zeroout(inode, &zero_ex);
3239                         if (err)
3240                                 goto out;
3241                         split_map.m_lblk = map->m_lblk;
3242                         split_map.m_len = allocated;
3243                 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3244                         /* case 2 */
3245                         if (map->m_lblk != ee_block) {
3246                                 zero_ex.ee_block = ex->ee_block;
3247                                 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3248                                                         ee_block);
3249                                 ext4_ext_store_pblock(&zero_ex,
3250                                                       ext4_ext_pblock(ex));
3251                                 err = ext4_ext_zeroout(inode, &zero_ex);
3252                                 if (err)
3253                                         goto out;
3254                         }
3255
3256                         split_map.m_lblk = ee_block;
3257                         split_map.m_len = map->m_lblk - ee_block + map->m_len;
3258                         allocated = map->m_len;
3259                 }
3260         }
3261
3262         allocated = ext4_split_extent(handle, inode, path,
3263                                       &split_map, split_flag, 0);
3264         if (allocated < 0)
3265                 err = allocated;
3266
3267 out:
3268         return err ? err : allocated;
3269 }
3270
3271 /*
3272  * This function is called by ext4_ext_map_blocks() from
3273  * ext4_get_blocks_dio_write() when DIO to write
3274  * to an uninitialized extent.
3275  *
3276  * Writing to an uninitialized extent may result in splitting the uninitialized
3277  * extent into multiple initialized/uninitialized extents (up to three)
3278  * There are three possibilities:
3279  *   a> There is no split required: Entire extent should be uninitialized
3280  *   b> Splits in two extents: Write is happening at either end of the extent
3281  *   c> Splits in three extents: Somone is writing in middle of the extent
3282  *
3283  * One of more index blocks maybe needed if the extent tree grow after
3284  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3285  * complete, we need to split the uninitialized extent before DIO submit
3286  * the IO. The uninitialized extent called at this time will be split
3287  * into three uninitialized extent(at most). After IO complete, the part
3288  * being filled will be convert to initialized by the end_io callback function
3289  * via ext4_convert_unwritten_extents().
3290  *
3291  * Returns the size of uninitialized extent to be written on success.
3292  */
3293 static int ext4_split_unwritten_extents(handle_t *handle,
3294                                         struct inode *inode,
3295                                         struct ext4_map_blocks *map,
3296                                         struct ext4_ext_path *path,
3297                                         int flags)
3298 {
3299         ext4_lblk_t eof_block;
3300         ext4_lblk_t ee_block;
3301         struct ext4_extent *ex;
3302         unsigned int ee_len;
3303         int split_flag = 0, depth;
3304
3305         ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3306                 "block %llu, max_blocks %u\n", inode->i_ino,
3307                 (unsigned long long)map->m_lblk, map->m_len);
3308
3309         eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3310                 inode->i_sb->s_blocksize_bits;
3311         if (eof_block < map->m_lblk + map->m_len)
3312                 eof_block = map->m_lblk + map->m_len;
3313         /*
3314          * It is safe to convert extent to initialized via explicit
3315          * zeroout only if extent is fully insde i_size or new_size.
3316          */
3317         depth = ext_depth(inode);
3318         ex = path[depth].p_ext;
3319         ee_block = le32_to_cpu(ex->ee_block);
3320         ee_len = ext4_ext_get_actual_len(ex);
3321
3322         split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3323         split_flag |= EXT4_EXT_MARK_UNINIT2;
3324
3325         flags |= EXT4_GET_BLOCKS_PRE_IO;
3326         return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3327 }
3328
3329 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3330                                               struct inode *inode,
3331                                               struct ext4_ext_path *path)
3332 {
3333         struct ext4_extent *ex;
3334         int depth;
3335         int err = 0;
3336
3337         depth = ext_depth(inode);
3338         ex = path[depth].p_ext;
3339
3340         ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3341                 "block %llu, max_blocks %u\n", inode->i_ino,
3342                 (unsigned long long)le32_to_cpu(ex->ee_block),
3343                 ext4_ext_get_actual_len(ex));
3344
3345         err = ext4_ext_get_access(handle, inode, path + depth);
3346         if (err)
3347                 goto out;
3348         /* first mark the extent as initialized */
3349         ext4_ext_mark_initialized(ex);
3350
3351         /* note: ext4_ext_correct_indexes() isn't needed here because
3352          * borders are not changed
3353          */
3354         ext4_ext_try_to_merge(handle, inode, path, ex);
3355
3356         /* Mark modified extent as dirty */
3357         err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3358 out:
3359         ext4_ext_show_leaf(inode, path);
3360         return err;
3361 }
3362
3363 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3364                         sector_t block, int count)
3365 {
3366         int i;
3367         for (i = 0; i < count; i++)
3368                 unmap_underlying_metadata(bdev, block + i);
3369 }
3370
3371 /*
3372  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3373  */
3374 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3375                               ext4_lblk_t lblk,
3376                               struct ext4_ext_path *path,
3377                               unsigned int len)
3378 {
3379         int i, depth;
3380         struct ext4_extent_header *eh;
3381         struct ext4_extent *last_ex;
3382
3383         if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3384                 return 0;
3385
3386         depth = ext_depth(inode);
3387         eh = path[depth].p_hdr;
3388
3389         /*
3390          * We're going to remove EOFBLOCKS_FL entirely in future so we
3391          * do not care for this case anymore. Simply remove the flag
3392          * if there are no extents.
3393          */
3394         if (unlikely(!eh->eh_entries))
3395                 goto out;
3396         last_ex = EXT_LAST_EXTENT(eh);
3397         /*
3398          * We should clear the EOFBLOCKS_FL flag if we are writing the
3399          * last block in the last extent in the file.  We test this by
3400          * first checking to see if the caller to
3401          * ext4_ext_get_blocks() was interested in the last block (or
3402          * a block beyond the last block) in the current extent.  If
3403          * this turns out to be false, we can bail out from this
3404          * function immediately.
3405          */
3406         if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3407             ext4_ext_get_actual_len(last_ex))
3408                 return 0;
3409         /*
3410          * If the caller does appear to be planning to write at or
3411          * beyond the end of the current extent, we then test to see
3412          * if the current extent is the last extent in the file, by
3413          * checking to make sure it was reached via the rightmost node
3414          * at each level of the tree.
3415          */
3416         for (i = depth-1; i >= 0; i--)
3417                 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3418                         return 0;
3419 out:
3420         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3421         return ext4_mark_inode_dirty(handle, inode);
3422 }
3423
3424 /**
3425  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3426  *
3427  * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3428  * whether there are any buffers marked for delayed allocation. It returns '1'
3429  * on the first delalloc'ed buffer head found. If no buffer head in the given
3430  * range is marked for delalloc, it returns 0.
3431  * lblk_start should always be <= lblk_end.
3432  * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3433  * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3434  * block sooner). This is useful when blocks are truncated sequentially from
3435  * lblk_start towards lblk_end.
3436  */
3437 static int ext4_find_delalloc_range(struct inode *inode,
3438                                     ext4_lblk_t lblk_start,
3439                                     ext4_lblk_t lblk_end,
3440                                     int search_hint_reverse)
3441 {
3442         struct address_space *mapping = inode->i_mapping;
3443         struct buffer_head *head, *bh = NULL;
3444         struct page *page;
3445         ext4_lblk_t i, pg_lblk;
3446         pgoff_t index;
3447
3448         if (!test_opt(inode->i_sb, DELALLOC))
3449                 return 0;
3450
3451         /* reverse search wont work if fs block size is less than page size */
3452         if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3453                 search_hint_reverse = 0;
3454
3455         if (search_hint_reverse)
3456                 i = lblk_end;
3457         else
3458                 i = lblk_start;
3459
3460         index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3461
3462         while ((i >= lblk_start) && (i <= lblk_end)) {
3463                 page = find_get_page(mapping, index);
3464                 if (!page)
3465                         goto nextpage;
3466
3467                 if (!page_has_buffers(page))
3468                         goto nextpage;
3469
3470                 head = page_buffers(page);
3471                 if (!head)
3472                         goto nextpage;
3473
3474                 bh = head;
3475                 pg_lblk = index << (PAGE_CACHE_SHIFT -
3476                                                 inode->i_blkbits);
3477                 do {
3478                         if (unlikely(pg_lblk < lblk_start)) {
3479                                 /*
3480                                  * This is possible when fs block size is less
3481                                  * than page size and our cluster starts/ends in
3482                                  * middle of the page. So we need to skip the
3483                                  * initial few blocks till we reach the 'lblk'
3484                                  */
3485                                 pg_lblk++;
3486                                 continue;
3487                         }
3488
3489                         /* Check if the buffer is delayed allocated and that it
3490                          * is not yet mapped. (when da-buffers are mapped during
3491                          * their writeout, their da_mapped bit is set.)
3492                          */
3493                         if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3494                                 page_cache_release(page);
3495                                 trace_ext4_find_delalloc_range(inode,
3496                                                 lblk_start, lblk_end,
3497                                                 search_hint_reverse,
3498                                                 1, i);
3499                                 return 1;
3500                         }
3501                         if (search_hint_reverse)
3502                                 i--;
3503                         else
3504                                 i++;
3505                 } while ((i >= lblk_start) && (i <= lblk_end) &&
3506                                 ((bh = bh->b_this_page) != head));
3507 nextpage:
3508                 if (page)
3509                         page_cache_release(page);
3510                 /*
3511                  * Move to next page. 'i' will be the first lblk in the next
3512                  * page.
3513                  */
3514                 if (search_hint_reverse)
3515                         index--;
3516                 else
3517                         index++;
3518                 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3519         }
3520
3521         trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3522                                         search_hint_reverse, 0, 0);
3523         return 0;
3524 }
3525
3526 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3527                                int search_hint_reverse)
3528 {
3529         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3530         ext4_lblk_t lblk_start, lblk_end;
3531         lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3532         lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3533
3534         return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3535                                         search_hint_reverse);
3536 }
3537
3538 /**
3539  * Determines how many complete clusters (out of those specified by the 'map')
3540  * are under delalloc and were reserved quota for.
3541  * This function is called when we are writing out the blocks that were
3542  * originally written with their allocation delayed, but then the space was
3543  * allocated using fallocate() before the delayed allocation could be resolved.
3544  * The cases to look for are:
3545  * ('=' indicated delayed allocated blocks
3546  *  '-' indicates non-delayed allocated blocks)
3547  * (a) partial clusters towards beginning and/or end outside of allocated range
3548  *     are not delalloc'ed.
3549  *      Ex:
3550  *      |----c---=|====c====|====c====|===-c----|
3551  *               |++++++ allocated ++++++|
3552  *      ==> 4 complete clusters in above example
3553  *
3554  * (b) partial cluster (outside of allocated range) towards either end is
3555  *     marked for delayed allocation. In this case, we will exclude that
3556  *     cluster.
3557  *      Ex:
3558  *      |----====c========|========c========|
3559  *           |++++++ allocated ++++++|
3560  *      ==> 1 complete clusters in above example
3561  *
3562  *      Ex:
3563  *      |================c================|
3564  *            |++++++ allocated ++++++|
3565  *      ==> 0 complete clusters in above example
3566  *
3567  * The ext4_da_update_reserve_space will be called only if we
3568  * determine here that there were some "entire" clusters that span
3569  * this 'allocated' range.
3570  * In the non-bigalloc case, this function will just end up returning num_blks
3571  * without ever calling ext4_find_delalloc_range.
3572  */
3573 static unsigned int
3574 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3575                            unsigned int num_blks)
3576 {
3577         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3578         ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3579         ext4_lblk_t lblk_from, lblk_to, c_offset;
3580         unsigned int allocated_clusters = 0;
3581
3582         alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3583         alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3584
3585         /* max possible clusters for this allocation */
3586         allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3587
3588         trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3589
3590         /* Check towards left side */
3591         c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3592         if (c_offset) {
3593                 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3594                 lblk_to = lblk_from + c_offset - 1;
3595
3596                 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3597                         allocated_clusters--;
3598         }
3599
3600         /* Now check towards right. */
3601         c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3602         if (allocated_clusters && c_offset) {
3603                 lblk_from = lblk_start + num_blks;
3604                 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3605
3606                 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3607                         allocated_clusters--;
3608         }
3609
3610         return allocated_clusters;
3611 }
3612
3613 static int
3614 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3615                         struct ext4_map_blocks *map,
3616                         struct ext4_ext_path *path, int flags,
3617                         unsigned int allocated, ext4_fsblk_t newblock)
3618 {
3619         int ret = 0;
3620         int err = 0;
3621         ext4_io_end_t *io = ext4_inode_aio(inode);
3622
3623         ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3624                   "block %llu, max_blocks %u, flags %x, allocated %u\n",
3625                   inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3626                   flags, allocated);
3627         ext4_ext_show_leaf(inode, path);
3628
3629         trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3630                                                     newblock);
3631
3632         /* get_block() before submit the IO, split the extent */
3633         if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3634                 ret = ext4_split_unwritten_extents(handle, inode, map,
3635                                                    path, flags);
3636                 /*
3637                  * Flag the inode(non aio case) or end_io struct (aio case)
3638                  * that this IO needs to conversion to written when IO is
3639                  * completed
3640                  */
3641                 if (io)
3642                         ext4_set_io_unwritten_flag(inode, io);
3643                 else
3644                         ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3645                 if (ext4_should_dioread_nolock(inode))
3646                         map->m_flags |= EXT4_MAP_UNINIT;
3647                 goto out;
3648         }
3649         /* IO end_io complete, convert the filled extent to written */
3650         if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3651                 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3652                                                         path);
3653                 if (ret >= 0) {
3654                         ext4_update_inode_fsync_trans(handle, inode, 1);
3655                         err = check_eofblocks_fl(handle, inode, map->m_lblk,
3656                                                  path, map->m_len);
3657                 } else
3658                         err = ret;
3659                 goto out2;
3660         }
3661         /* buffered IO case */
3662         /*
3663          * repeat fallocate creation request
3664          * we already have an unwritten extent
3665          */
3666         if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3667                 goto map_out;
3668
3669         /* buffered READ or buffered write_begin() lookup */
3670         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3671                 /*
3672                  * We have blocks reserved already.  We
3673                  * return allocated blocks so that delalloc
3674                  * won't do block reservation for us.  But
3675                  * the buffer head will be unmapped so that
3676                  * a read from the block returns 0s.
3677                  */
3678                 map->m_flags |= EXT4_MAP_UNWRITTEN;
3679                 goto out1;
3680         }
3681
3682         /* buffered write, writepage time, convert*/
3683         ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3684         if (ret >= 0)
3685                 ext4_update_inode_fsync_trans(handle, inode, 1);
3686 out:
3687         if (ret <= 0) {
3688                 err = ret;
3689                 goto out2;
3690         } else
3691                 allocated = ret;
3692         map->m_flags |= EXT4_MAP_NEW;
3693         /*
3694          * if we allocated more blocks than requested
3695          * we need to make sure we unmap the extra block
3696          * allocated. The actual needed block will get
3697          * unmapped later when we find the buffer_head marked
3698          * new.
3699          */
3700         if (allocated > map->m_len) {
3701                 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3702                                         newblock + map->m_len,
3703                                         allocated - map->m_len);
3704                 allocated = map->m_len;
3705         }
3706
3707         /*
3708          * If we have done fallocate with the offset that is already
3709          * delayed allocated, we would have block reservation
3710          * and quota reservation done in the delayed write path.
3711          * But fallocate would have already updated quota and block
3712          * count for this offset. So cancel these reservation
3713          */
3714         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3715                 unsigned int reserved_clusters;
3716                 reserved_clusters = get_reserved_cluster_alloc(inode,
3717                                 map->m_lblk, map->m_len);
3718                 if (reserved_clusters)
3719                         ext4_da_update_reserve_space(inode,
3720                                                      reserved_clusters,
3721                                                      0);
3722         }
3723
3724 map_out:
3725         map->m_flags |= EXT4_MAP_MAPPED;
3726         if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3727                 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3728                                          map->m_len);
3729                 if (err < 0)
3730                         goto out2;
3731         }
3732 out1:
3733         if (allocated > map->m_len)
3734                 allocated = map->m_len;
3735         ext4_ext_show_leaf(inode, path);
3736         map->m_pblk = newblock;
3737         map->m_len = allocated;
3738 out2:
3739         if (path) {
3740                 ext4_ext_drop_refs(path);
3741                 kfree(path);
3742         }
3743         return err ? err : allocated;
3744 }
3745
3746 /*
3747  * get_implied_cluster_alloc - check to see if the requested
3748  * allocation (in the map structure) overlaps with a cluster already
3749  * allocated in an extent.
3750  *      @sb     The filesystem superblock structure
3751  *      @map    The requested lblk->pblk mapping
3752  *      @ex     The extent structure which might contain an implied
3753  *                      cluster allocation
3754  *
3755  * This function is called by ext4_ext_map_blocks() after we failed to
3756  * find blocks that were already in the inode's extent tree.  Hence,
3757  * we know that the beginning of the requested region cannot overlap
3758  * the extent from the inode's extent tree.  There are three cases we
3759  * want to catch.  The first is this case:
3760  *
3761  *               |--- cluster # N--|
3762  *    |--- extent ---|  |---- requested region ---|
3763  *                      |==========|
3764  *
3765  * The second case that we need to test for is this one:
3766  *
3767  *   |--------- cluster # N ----------------|
3768  *         |--- requested region --|   |------- extent ----|
3769  *         |=======================|
3770  *
3771  * The third case is when the requested region lies between two extents
3772  * within the same cluster:
3773  *          |------------- cluster # N-------------|
3774  * |----- ex -----|                  |---- ex_right ----|
3775  *                  |------ requested region ------|
3776  *                  |================|
3777  *
3778  * In each of the above cases, we need to set the map->m_pblk and
3779  * map->m_len so it corresponds to the return the extent labelled as
3780  * "|====|" from cluster #N, since it is already in use for data in
3781  * cluster EXT4_B2C(sbi, map->m_lblk).  We will then return 1 to
3782  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3783  * as a new "allocated" block region.  Otherwise, we will return 0 and
3784  * ext4_ext_map_blocks() will then allocate one or more new clusters
3785  * by calling ext4_mb_new_blocks().
3786  */
3787 static int get_implied_cluster_alloc(struct super_block *sb,
3788                                      struct ext4_map_blocks *map,
3789                                      struct ext4_extent *ex,
3790                                      struct ext4_ext_path *path)
3791 {
3792         struct ext4_sb_info *sbi = EXT4_SB(sb);
3793         ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3794         ext4_lblk_t ex_cluster_start, ex_cluster_end;
3795         ext4_lblk_t rr_cluster_start;
3796         ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3797         ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3798         unsigned short ee_len = ext4_ext_get_actual_len(ex);
3799
3800         /* The extent passed in that we are trying to match */
3801         ex_cluster_start = EXT4_B2C(sbi, ee_block);
3802         ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3803
3804         /* The requested region passed into ext4_map_blocks() */
3805         rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3806
3807         if ((rr_cluster_start == ex_cluster_end) ||
3808             (rr_cluster_start == ex_cluster_start)) {
3809                 if (rr_cluster_start == ex_cluster_end)
3810                         ee_start += ee_len - 1;
3811                 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3812                         c_offset;
3813                 map->m_len = min(map->m_len,
3814                                  (unsigned) sbi->s_cluster_ratio - c_offset);
3815                 /*
3816                  * Check for and handle this case:
3817                  *
3818                  *   |--------- cluster # N-------------|
3819                  *                     |------- extent ----|
3820                  *         |--- requested region ---|
3821                  *         |===========|
3822                  */
3823
3824                 if (map->m_lblk < ee_block)
3825                         map->m_len = min(map->m_len, ee_block - map->m_lblk);
3826
3827                 /*
3828                  * Check for the case where there is already another allocated
3829                  * block to the right of 'ex' but before the end of the cluster.
3830                  *
3831                  *          |------------- cluster # N-------------|
3832                  * |----- ex -----|                  |---- ex_right ----|
3833                  *                  |------ requested region ------|
3834                  *                  |================|
3835                  */
3836                 if (map->m_lblk > ee_block) {
3837                         ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3838                         map->m_len = min(map->m_len, next - map->m_lblk);
3839                 }
3840
3841                 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3842                 return 1;
3843         }
3844
3845         trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3846         return 0;
3847 }
3848
3849
3850 /*
3851  * Block allocation/map/preallocation routine for extents based files
3852  *
3853  *
3854  * Need to be called with
3855  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3856  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3857  *
3858  * return > 0, number of of blocks already mapped/allocated
3859  *          if create == 0 and these are pre-allocated blocks
3860  *              buffer head is unmapped
3861  *          otherwise blocks are mapped
3862  *
3863  * return = 0, if plain look up failed (blocks have not been allocated)
3864  *          buffer head is unmapped
3865  *
3866  * return < 0, error case.
3867  */
3868 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3869                         struct ext4_map_blocks *map, int flags)
3870 {
3871         struct ext4_ext_path *path = NULL;
3872         struct ext4_extent newex, *ex, *ex2;
3873         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3874         ext4_fsblk_t newblock = 0;
3875         int free_on_err = 0, err = 0, depth, ret;
3876         unsigned int allocated = 0, offset = 0;
3877         unsigned int allocated_clusters = 0;
3878         struct ext4_allocation_request ar;
3879         ext4_io_end_t *io = ext4_inode_aio(inode);
3880         ext4_lblk_t cluster_offset;
3881
3882         ext_debug("blocks %u/%u requested for inode %lu\n",
3883                   map->m_lblk, map->m_len, inode->i_ino);
3884         trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3885
3886         /* check in cache */
3887         if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3888                 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3889                         if ((sbi->s_cluster_ratio > 1) &&
3890                             ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3891                                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3892
3893                         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3894                                 /*
3895                                  * block isn't allocated yet and
3896                                  * user doesn't want to allocate it
3897                                  */
3898                                 goto out2;
3899                         }
3900                         /* we should allocate requested block */
3901                 } else {
3902                         /* block is already allocated */
3903                         if (sbi->s_cluster_ratio > 1)
3904                                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3905                         newblock = map->m_lblk
3906                                    - le32_to_cpu(newex.ee_block)
3907                                    + ext4_ext_pblock(&newex);
3908                         /* number of remaining blocks in the extent */
3909                         allocated = ext4_ext_get_actual_len(&newex) -
3910                                 (map->m_lblk - le32_to_cpu(newex.ee_block));
3911                         goto out;
3912                 }
3913         }
3914
3915         /* find extent for this block */
3916         path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3917         if (IS_ERR(path)) {
3918                 err = PTR_ERR(path);
3919                 path = NULL;
3920                 goto out2;
3921         }
3922
3923         depth = ext_depth(inode);
3924
3925         /*
3926          * consistent leaf must not be empty;
3927          * this situation is possible, though, _during_ tree modification;
3928          * this is why assert can't be put in ext4_ext_find_extent()
3929          */
3930         if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3931                 EXT4_ERROR_INODE(inode, "bad extent address "
3932                                  "lblock: %lu, depth: %d pblock %lld",
3933                                  (unsigned long) map->m_lblk, depth,
3934                                  path[depth].p_block);
3935                 err = -EIO;
3936                 goto out2;
3937         }
3938
3939         ex = path[depth].p_ext;
3940         if (ex) {
3941                 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3942                 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3943                 unsigned short ee_len;
3944
3945                 /*
3946                  * Uninitialized extents are treated as holes, except that
3947                  * we split out initialized portions during a write.
3948                  */
3949                 ee_len = ext4_ext_get_actual_len(ex);
3950
3951                 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3952
3953                 /* if found extent covers block, simply return it */
3954                 if (in_range(map->m_lblk, ee_block, ee_len)) {
3955                         newblock = map->m_lblk - ee_block + ee_start;
3956                         /* number of remaining blocks in the extent */
3957                         allocated = ee_len - (map->m_lblk - ee_block);
3958                         ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3959                                   ee_block, ee_len, newblock);
3960
3961                         /*
3962                          * Do not put uninitialized extent
3963                          * in the cache
3964                          */
3965                         if (!ext4_ext_is_uninitialized(ex)) {
3966                                 ext4_ext_put_in_cache(inode, ee_block,
3967                                         ee_len, ee_start);
3968                                 goto out;
3969                         }
3970                         ret = ext4_ext_handle_uninitialized_extents(
3971                                 handle, inode, map, path, flags,
3972                                 allocated, newblock);
3973                         return ret;
3974                 }
3975         }
3976
3977         if ((sbi->s_cluster_ratio > 1) &&
3978             ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3979                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3980
3981         /*
3982          * requested block isn't allocated yet;
3983          * we couldn't try to create block if create flag is zero
3984          */
3985         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3986                 /*
3987                  * put just found gap into cache to speed up
3988                  * subsequent requests
3989                  */
3990                 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3991                 goto out2;
3992         }
3993
3994         /*
3995          * Okay, we need to do block allocation.
3996          */
3997         map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3998         newex.ee_block = cpu_to_le32(map->m_lblk);
3999         cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4000
4001         /*
4002          * If we are doing bigalloc, check to see if the extent returned
4003          * by ext4_ext_find_extent() implies a cluster we can use.
4004          */
4005         if (cluster_offset && ex &&
4006             get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4007                 ar.len = allocated = map->m_len;
4008                 newblock = map->m_pblk;
4009                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4010                 goto got_allocated_blocks;
4011         }
4012
4013         /* find neighbour allocated blocks */
4014         ar.lleft = map->m_lblk;
4015         err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4016         if (err)
4017                 goto out2;
4018         ar.lright = map->m_lblk;
4019         ex2 = NULL;
4020         err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4021         if (err)
4022                 goto out2;
4023
4024         /* Check if the extent after searching to the right implies a
4025          * cluster we can use. */
4026         if ((sbi->s_cluster_ratio > 1) && ex2 &&
4027             get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4028                 ar.len = allocated = map->m_len;
4029                 newblock = map->m_pblk;
4030                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4031                 goto got_allocated_blocks;
4032         }
4033
4034         /*
4035          * See if request is beyond maximum number of blocks we can have in
4036          * a single extent. For an initialized extent this limit is
4037          * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4038          * EXT_UNINIT_MAX_LEN.
4039          */
4040         if (map->m_len > EXT_INIT_MAX_LEN &&
4041             !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4042                 map->m_len = EXT_INIT_MAX_LEN;
4043         else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4044                  (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4045                 map->m_len = EXT_UNINIT_MAX_LEN;
4046
4047         /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4048         newex.ee_len = cpu_to_le16(map->m_len);
4049         err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4050         if (err)
4051                 allocated = ext4_ext_get_actual_len(&newex);
4052         else
4053                 allocated = map->m_len;
4054
4055         /* allocate new block */
4056         ar.inode = inode;
4057         ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4058         ar.logical = map->m_lblk;
4059         /*
4060          * We calculate the offset from the beginning of the cluster
4061          * for the logical block number, since when we allocate a
4062          * physical cluster, the physical block should start at the
4063          * same offset from the beginning of the cluster.  This is
4064          * needed so that future calls to get_implied_cluster_alloc()
4065          * work correctly.
4066          */
4067         offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4068         ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4069         ar.goal -= offset;
4070         ar.logical -= offset;
4071         if (S_ISREG(inode->i_mode))
4072                 ar.flags = EXT4_MB_HINT_DATA;
4073         else
4074                 /* disable in-core preallocation for non-regular files */
4075                 ar.flags = 0;
4076         if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4077                 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4078         newblock = ext4_mb_new_blocks(handle, &ar, &err);
4079         if (!newblock)
4080                 goto out2;
4081         ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4082                   ar.goal, newblock, allocated);
4083         free_on_err = 1;
4084         allocated_clusters = ar.len;
4085         ar.len = EXT4_C2B(sbi, ar.len) - offset;
4086         if (ar.len > allocated)
4087                 ar.len = allocated;
4088
4089 got_allocated_blocks:
4090         /* try to insert new extent into found leaf and return */
4091         ext4_ext_store_pblock(&newex, newblock + offset);
4092         newex.ee_len = cpu_to_le16(ar.len);
4093         /* Mark uninitialized */
4094         if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4095                 ext4_ext_mark_uninitialized(&newex);
4096                 /*
4097                  * io_end structure was created for every IO write to an
4098                  * uninitialized extent. To avoid unnecessary conversion,
4099                  * here we flag the IO that really needs the conversion.
4100                  * For non asycn direct IO case, flag the inode state
4101                  * that we need to perform conversion when IO is done.
4102                  */
4103                 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4104                         if (io)
4105                                 ext4_set_io_unwritten_flag(inode, io);
4106                         else
4107                                 ext4_set_inode_state(inode,
4108                                                      EXT4_STATE_DIO_UNWRITTEN);
4109                 }
4110                 if (ext4_should_dioread_nolock(inode))
4111                         map->m_flags |= EXT4_MAP_UNINIT;
4112         }
4113
4114         err = 0;
4115         if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4116                 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4117                                          path, ar.len);
4118         if (!err)
4119                 err = ext4_ext_insert_extent(handle, inode, path,
4120                                              &newex, flags);
4121         if (err && free_on_err) {
4122                 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4123                         EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4124                 /* free data blocks we just allocated */
4125                 /* not a good idea to call discard here directly,
4126                  * but otherwise we'd need to call it every free() */
4127                 ext4_discard_preallocations(inode);
4128                 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4129                                  ext4_ext_get_actual_len(&newex), fb_flags);
4130                 goto out2;
4131         }
4132
4133         /* previous routine could use block we allocated */
4134         newblock = ext4_ext_pblock(&newex);
4135         allocated = ext4_ext_get_actual_len(&newex);
4136         if (allocated > map->m_len)
4137                 allocated = map->m_len;
4138         map->m_flags |= EXT4_MAP_NEW;
4139
4140         /*
4141          * Update reserved blocks/metadata blocks after successful
4142          * block allocation which had been deferred till now.
4143          */
4144         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4145                 unsigned int reserved_clusters;
4146                 /*
4147                  * Check how many clusters we had reserved this allocated range
4148                  */
4149                 reserved_clusters = get_reserved_cluster_alloc(inode,
4150                                                 map->m_lblk, allocated);
4151                 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4152                         if (reserved_clusters) {
4153                                 /*
4154                                  * We have clusters reserved for this range.
4155                                  * But since we are not doing actual allocation
4156                                  * and are simply using blocks from previously
4157                                  * allocated cluster, we should release the
4158                                  * reservation and not claim quota.
4159                                  */
4160                                 ext4_da_update_reserve_space(inode,
4161                                                 reserved_clusters, 0);
4162                         }
4163                 } else {
4164                         BUG_ON(allocated_clusters < reserved_clusters);
4165                         /* We will claim quota for all newly allocated blocks.*/
4166                         ext4_da_update_reserve_space(inode, allocated_clusters,
4167                                                         1);
4168                         if (reserved_clusters < allocated_clusters) {
4169                                 struct ext4_inode_info *ei = EXT4_I(inode);
4170                                 int reservation = allocated_clusters -
4171                                                   reserved_clusters;
4172                                 /*
4173                                  * It seems we claimed few clusters outside of
4174                                  * the range of this allocation. We should give
4175                                  * it back to the reservation pool. This can
4176                                  * happen in the following case:
4177                                  *
4178                                  * * Suppose s_cluster_ratio is 4 (i.e., each
4179                                  *   cluster has 4 blocks. Thus, the clusters
4180                                  *   are [0-3],[4-7],[8-11]...
4181                                  * * First comes delayed allocation write for
4182                                  *   logical blocks 10 & 11. Since there were no
4183                                  *   previous delayed allocated blocks in the
4184                                  *   range [8-11], we would reserve 1 cluster
4185                                  *   for this write.
4186                                  * * Next comes write for logical blocks 3 to 8.
4187                                  *   In this case, we will reserve 2 clusters
4188                                  *   (for [0-3] and [4-7]; and not for [8-11] as
4189                                  *   that range has a delayed allocated blocks.
4190                                  *   Thus total reserved clusters now becomes 3.
4191                                  * * Now, during the delayed allocation writeout
4192                                  *   time, we will first write blocks [3-8] and
4193                                  *   allocate 3 clusters for writing these
4194                                  *   blocks. Also, we would claim all these
4195                                  *   three clusters above.
4196                                  * * Now when we come here to writeout the
4197                                  *   blocks [10-11], we would expect to claim
4198                                  *   the reservation of 1 cluster we had made
4199                                  *   (and we would claim it since there are no
4200                                  *   more delayed allocated blocks in the range
4201                                  *   [8-11]. But our reserved cluster count had
4202                                  *   already gone to 0.
4203                                  *
4204                                  *   Thus, at the step 4 above when we determine
4205                                  *   that there are still some unwritten delayed
4206                                  *   allocated blocks outside of our current
4207                                  *   block range, we should increment the
4208                                  *   reserved clusters count so that when the
4209                                  *   remaining blocks finally gets written, we
4210                                  *   could claim them.
4211                                  */
4212                                 dquot_reserve_block(inode,
4213                                                 EXT4_C2B(sbi, reservation));
4214                                 spin_lock(&ei->i_block_reservation_lock);
4215                                 ei->i_reserved_data_blocks += reservation;
4216                                 spin_unlock(&ei->i_block_reservation_lock);
4217                         }
4218                 }
4219         }
4220
4221         /*
4222          * Cache the extent and update transaction to commit on fdatasync only
4223          * when it is _not_ an uninitialized extent.
4224          */
4225         if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4226                 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4227                 ext4_update_inode_fsync_trans(handle, inode, 1);
4228         } else
4229                 ext4_update_inode_fsync_trans(handle, inode, 0);
4230 out:
4231         if (allocated > map->m_len)
4232                 allocated = map->m_len;
4233         ext4_ext_show_leaf(inode, path);
4234         map->m_flags |= EXT4_MAP_MAPPED;
4235         map->m_pblk = newblock;
4236         map->m_len = allocated;
4237 out2:
4238         if (path) {
4239                 ext4_ext_drop_refs(path);
4240                 kfree(path);
4241         }
4242
4243         trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4244                 newblock, map->m_len, err ? err : allocated);
4245
4246         return err ? err : allocated;
4247 }
4248
4249 void ext4_ext_truncate(struct inode *inode)
4250 {
4251         struct address_space *mapping = inode->i_mapping;
4252         struct super_block *sb = inode->i_sb;
4253         ext4_lblk_t last_block;
4254         handle_t *handle;
4255         loff_t page_len;
4256         int err = 0;
4257
4258         /*
4259          * finish any pending end_io work so we won't run the risk of
4260          * converting any truncated blocks to initialized later
4261          */
4262         ext4_flush_completed_IO(inode);
4263
4264         /*
4265          * probably first extent we're gonna free will be last in block
4266          */
4267         err = ext4_writepage_trans_blocks(inode);
4268         handle = ext4_journal_start(inode, err);
4269         if (IS_ERR(handle))
4270                 return;
4271
4272         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4273                 page_len = PAGE_CACHE_SIZE -
4274                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
4275
4276                 err = ext4_discard_partial_page_buffers(handle,
4277                         mapping, inode->i_size, page_len, 0);
4278
4279                 if (err)
4280                         goto out_stop;
4281         }
4282
4283         if (ext4_orphan_add(handle, inode))
4284                 goto out_stop;
4285
4286         down_write(&EXT4_I(inode)->i_data_sem);
4287         ext4_ext_invalidate_cache(inode);
4288
4289         ext4_discard_preallocations(inode);
4290
4291         /*
4292          * TODO: optimization is possible here.
4293          * Probably we need not scan at all,
4294          * because page truncation is enough.
4295          */
4296
4297         /* we have to know where to truncate from in crash case */
4298         EXT4_I(inode)->i_disksize = inode->i_size;
4299         ext4_mark_inode_dirty(handle, inode);
4300
4301         last_block = (inode->i_size + sb->s_blocksize - 1)
4302                         >> EXT4_BLOCK_SIZE_BITS(sb);
4303         err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4304
4305         /* In a multi-transaction truncate, we only make the final
4306          * transaction synchronous.
4307          */
4308         if (IS_SYNC(inode))
4309                 ext4_handle_sync(handle);
4310
4311         up_write(&EXT4_I(inode)->i_data_sem);
4312
4313 out_stop:
4314         /*
4315          * If this was a simple ftruncate() and the file will remain alive,
4316          * then we need to clear up the orphan record which we created above.
4317          * However, if this was a real unlink then we were called by
4318          * ext4_delete_inode(), and we allow that function to clean up the
4319          * orphan info for us.
4320          */
4321         if (inode->i_nlink)
4322                 ext4_orphan_del(handle, inode);
4323
4324         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4325         ext4_mark_inode_dirty(handle, inode);
4326         ext4_journal_stop(handle);
4327 }
4328
4329 static void ext4_falloc_update_inode(struct inode *inode,
4330                                 int mode, loff_t new_size, int update_ctime)
4331 {
4332         struct timespec now;
4333
4334         if (update_ctime) {
4335                 now = current_fs_time(inode->i_sb);
4336                 if (!timespec_equal(&inode->i_ctime, &now))
4337                         inode->i_ctime = now;
4338         }
4339         /*
4340          * Update only when preallocation was requested beyond
4341          * the file size.
4342          */
4343         if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4344                 if (new_size > i_size_read(inode))
4345                         i_size_write(inode, new_size);
4346                 if (new_size > EXT4_I(inode)->i_disksize)
4347                         ext4_update_i_disksize(inode, new_size);
4348         } else {
4349                 /*
4350                  * Mark that we allocate beyond EOF so the subsequent truncate
4351                  * can proceed even if the new size is the same as i_size.
4352                  */
4353                 if (new_size > i_size_read(inode))
4354                         ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4355         }
4356
4357 }
4358
4359 /*
4360  * preallocate space for a file. This implements ext4's fallocate file
4361  * operation, which gets called from sys_fallocate system call.
4362  * For block-mapped files, posix_fallocate should fall back to the method
4363  * of writing zeroes to the required new blocks (the same behavior which is
4364  * expected for file systems which do not support fallocate() system call).
4365  */
4366 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4367 {
4368         struct inode *inode = file->f_path.dentry->d_inode;
4369         handle_t *handle;
4370         loff_t new_size;
4371         unsigned int max_blocks;
4372         int ret = 0;
4373         int ret2 = 0;
4374         int retries = 0;
4375         int flags;
4376         struct ext4_map_blocks map;
4377         unsigned int credits, blkbits = inode->i_blkbits;
4378
4379         /*
4380          * currently supporting (pre)allocate mode for extent-based
4381          * files _only_
4382          */
4383         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4384                 return -EOPNOTSUPP;
4385
4386         /* Return error if mode is not supported */
4387         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4388                 return -EOPNOTSUPP;
4389
4390         if (mode & FALLOC_FL_PUNCH_HOLE)
4391                 return ext4_punch_hole(file, offset, len);
4392
4393         trace_ext4_fallocate_enter(inode, offset, len, mode);
4394         map.m_lblk = offset >> blkbits;
4395         /*
4396          * We can't just convert len to max_blocks because
4397          * If blocksize = 4096 offset = 3072 and len = 2048
4398          */
4399         max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4400                 - map.m_lblk;
4401         /*
4402          * credits to insert 1 extent into extent tree
4403          */
4404         credits = ext4_chunk_trans_blocks(inode, max_blocks);
4405         mutex_lock(&inode->i_mutex);
4406         ret = inode_newsize_ok(inode, (len + offset));
4407         if (ret) {
4408                 mutex_unlock(&inode->i_mutex);
4409                 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4410                 return ret;
4411         }
4412         flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4413         if (mode & FALLOC_FL_KEEP_SIZE)
4414                 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4415         /*
4416          * Don't normalize the request if it can fit in one extent so
4417          * that it doesn't get unnecessarily split into multiple
4418          * extents.
4419          */
4420         if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4421                 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4422 retry:
4423         while (ret >= 0 && ret < max_blocks) {
4424                 map.m_lblk = map.m_lblk + ret;
4425                 map.m_len = max_blocks = max_blocks - ret;
4426                 handle = ext4_journal_start(inode, credits);
4427                 if (IS_ERR(handle)) {
4428                         ret = PTR_ERR(handle);
4429                         break;
4430                 }
4431                 ret = ext4_map_blocks(handle, inode, &map, flags);
4432                 if (ret <= 0) {
4433 #ifdef EXT4FS_DEBUG
4434                         WARN_ON(ret <= 0);
4435                         printk(KERN_ERR "%s: ext4_ext_map_blocks "
4436                                     "returned error inode#%lu, block=%u, "
4437                                     "max_blocks=%u", __func__,
4438                                     inode->i_ino, map.m_lblk, max_blocks);
4439 #endif
4440                         ext4_mark_inode_dirty(handle, inode);
4441                         ret2 = ext4_journal_stop(handle);
4442                         break;
4443                 }
4444                 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4445                                                 blkbits) >> blkbits))
4446                         new_size = offset + len;
4447                 else
4448                         new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4449
4450                 ext4_falloc_update_inode(inode, mode, new_size,
4451                                          (map.m_flags & EXT4_MAP_NEW));
4452                 ext4_mark_inode_dirty(handle, inode);
4453                 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4454                         ext4_handle_sync(handle);
4455                 ret2 = ext4_journal_stop(handle);
4456                 if (ret2)
4457                         break;
4458         }
4459         if (ret == -ENOSPC &&
4460                         ext4_should_retry_alloc(inode->i_sb, &retries)) {
4461                 ret = 0;
4462                 goto retry;
4463         }
4464         mutex_unlock(&inode->i_mutex);
4465         trace_ext4_fallocate_exit(inode, offset, max_blocks,
4466                                 ret > 0 ? ret2 : ret);
4467         return ret > 0 ? ret2 : ret;
4468 }
4469
4470 /*
4471  * This function convert a range of blocks to written extents
4472  * The caller of this function will pass the start offset and the size.
4473  * all unwritten extents within this range will be converted to
4474  * written extents.
4475  *
4476  * This function is called from the direct IO end io call back
4477  * function, to convert the fallocated extents after IO is completed.
4478  * Returns 0 on success.
4479  */
4480 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4481                                     ssize_t len)
4482 {
4483         handle_t *handle;
4484         unsigned int max_blocks;
4485         int ret = 0;
4486         int ret2 = 0;
4487         struct ext4_map_blocks map;
4488         unsigned int credits, blkbits = inode->i_blkbits;
4489
4490         map.m_lblk = offset >> blkbits;
4491         /*
4492          * We can't just convert len to max_blocks because
4493          * If blocksize = 4096 offset = 3072 and len = 2048
4494          */
4495         max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4496                       map.m_lblk);
4497         /*
4498          * credits to insert 1 extent into extent tree
4499          */
4500         credits = ext4_chunk_trans_blocks(inode, max_blocks);
4501         while (ret >= 0 && ret < max_blocks) {
4502                 map.m_lblk += ret;
4503                 map.m_len = (max_blocks -= ret);
4504                 handle = ext4_journal_start(inode, credits);
4505                 if (IS_ERR(handle)) {
4506                         ret = PTR_ERR(handle);
4507                         break;
4508                 }
4509                 ret = ext4_map_blocks(handle, inode, &map,
4510                                       EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4511                 if (ret <= 0) {
4512                         WARN_ON(ret <= 0);
4513                         ext4_msg(inode->i_sb, KERN_ERR,
4514                                  "%s:%d: inode #%lu: block %u: len %u: "
4515                                  "ext4_ext_map_blocks returned %d",
4516                                  __func__, __LINE__, inode->i_ino, map.m_lblk,
4517                                  map.m_len, ret);
4518                 }
4519                 ext4_mark_inode_dirty(handle, inode);
4520                 ret2 = ext4_journal_stop(handle);
4521                 if (ret <= 0 || ret2 )
4522                         break;
4523         }
4524         return ret > 0 ? ret2 : ret;
4525 }
4526
4527 /*
4528  * Callback function called for each extent to gather FIEMAP information.
4529  */
4530 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4531                        struct ext4_ext_cache *newex, struct ext4_extent *ex,
4532                        void *data)
4533 {
4534         __u64   logical;
4535         __u64   physical;
4536         __u64   length;
4537         __u32   flags = 0;
4538         int             ret = 0;
4539         struct fiemap_extent_info *fieinfo = data;
4540         unsigned char blksize_bits;
4541
4542         blksize_bits = inode->i_sb->s_blocksize_bits;
4543         logical = (__u64)newex->ec_block << blksize_bits;
4544
4545         if (newex->ec_start == 0) {
4546                 /*
4547                  * No extent in extent-tree contains block @newex->ec_start,
4548                  * then the block may stay in 1)a hole or 2)delayed-extent.
4549                  *
4550                  * Holes or delayed-extents are processed as follows.
4551                  * 1. lookup dirty pages with specified range in pagecache.
4552                  *    If no page is got, then there is no delayed-extent and
4553                  *    return with EXT_CONTINUE.
4554                  * 2. find the 1st mapped buffer,
4555                  * 3. check if the mapped buffer is both in the request range
4556                  *    and a delayed buffer. If not, there is no delayed-extent,
4557                  *    then return.
4558                  * 4. a delayed-extent is found, the extent will be collected.
4559                  */
4560                 ext4_lblk_t     end = 0;
4561                 pgoff_t         last_offset;
4562                 pgoff_t         offset;
4563                 pgoff_t         index;
4564                 pgoff_t         start_index = 0;
4565                 struct page     **pages = NULL;
4566                 struct buffer_head *bh = NULL;
4567                 struct buffer_head *head = NULL;
4568                 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4569
4570                 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4571                 if (pages == NULL)
4572                         return -ENOMEM;
4573
4574                 offset = logical >> PAGE_SHIFT;
4575 repeat:
4576                 last_offset = offset;
4577                 head = NULL;
4578                 ret = find_get_pages_tag(inode->i_mapping, &offset,
4579                                         PAGECACHE_TAG_DIRTY, nr_pages, pages);
4580
4581                 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4582                         /* First time, try to find a mapped buffer. */
4583                         if (ret == 0) {
4584 out:
4585                                 for (index = 0; index < ret; index++)
4586                                         page_cache_release(pages[index]);
4587                                 /* just a hole. */
4588                                 kfree(pages);
4589                                 return EXT_CONTINUE;
4590                         }
4591                         index = 0;
4592
4593 next_page:
4594                         /* Try to find the 1st mapped buffer. */
4595                         end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4596                                   blksize_bits;
4597                         if (!page_has_buffers(pages[index]))
4598                                 goto out;
4599                         head = page_buffers(pages[index]);
4600                         if (!head)
4601                                 goto out;
4602
4603                         index++;
4604                         bh = head;
4605                         do {
4606                                 if (end >= newex->ec_block +
4607                                         newex->ec_len)
4608                                         /* The buffer is out of
4609                                          * the request range.
4610                                          */
4611                                         goto out;
4612
4613                                 if (buffer_mapped(bh) &&
4614                                     end >= newex->ec_block) {
4615                                         start_index = index - 1;
4616                                         /* get the 1st mapped buffer. */
4617                                         goto found_mapped_buffer;
4618                                 }
4619
4620                                 bh = bh->b_this_page;
4621                                 end++;
4622                         } while (bh != head);
4623
4624                         /* No mapped buffer in the range found in this page,
4625                          * We need to look up next page.
4626                          */
4627                         if (index >= ret) {
4628                                 /* There is no page left, but we need to limit
4629                                  * newex->ec_len.
4630                                  */
4631                                 newex->ec_len = end - newex->ec_block;
4632                                 goto out;
4633                         }
4634                         goto next_page;
4635                 } else {
4636                         /*Find contiguous delayed buffers. */
4637                         if (ret > 0 && pages[0]->index == last_offset)
4638                                 head = page_buffers(pages[0]);
4639                         bh = head;
4640                         index = 1;
4641                         start_index = 0;
4642                 }
4643
4644 found_mapped_buffer:
4645                 if (bh != NULL && buffer_delay(bh)) {
4646                         /* 1st or contiguous delayed buffer found. */
4647                         if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4648                                 /*
4649                                  * 1st delayed buffer found, record
4650                                  * the start of extent.
4651                                  */
4652                                 flags |= FIEMAP_EXTENT_DELALLOC;
4653                                 newex->ec_block = end;
4654                                 logical = (__u64)end << blksize_bits;
4655                         }
4656                         /* Find contiguous delayed buffers. */
4657                         do {
4658                                 if (!buffer_delay(bh))
4659                                         goto found_delayed_extent;
4660                                 bh = bh->b_this_page;
4661                                 end++;
4662                         } while (bh != head);
4663
4664                         for (; index < ret; index++) {
4665                                 if (!page_has_buffers(pages[index])) {
4666                                         bh = NULL;
4667                                         break;
4668                                 }
4669                                 head = page_buffers(pages[index]);
4670                                 if (!head) {
4671                                         bh = NULL;
4672                                         break;
4673                                 }
4674
4675                                 if (pages[index]->index !=
4676                                     pages[start_index]->index + index
4677                                     - start_index) {
4678                                         /* Blocks are not contiguous. */
4679                                         bh = NULL;
4680                                         break;
4681                                 }
4682                                 bh = head;
4683                                 do {
4684                                         if (!buffer_delay(bh))
4685                                                 /* Delayed-extent ends. */
4686                                                 goto found_delayed_extent;
4687                                         bh = bh->b_this_page;
4688                                         end++;
4689                                 } while (bh != head);
4690                         }
4691                 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4692                         /* a hole found. */
4693                         goto out;
4694
4695 found_delayed_extent:
4696                 newex->ec_len = min(end - newex->ec_block,
4697                                                 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4698                 if (ret == nr_pages && bh != NULL &&
4699                         newex->ec_len < EXT_INIT_MAX_LEN &&
4700                         buffer_delay(bh)) {
4701                         /* Have not collected an extent and continue. */
4702                         for (index = 0; index < ret; index++)
4703                                 page_cache_release(pages[index]);
4704                         goto repeat;
4705                 }
4706
4707                 for (index = 0; index < ret; index++)
4708                         page_cache_release(pages[index]);
4709                 kfree(pages);
4710         }
4711
4712         physical = (__u64)newex->ec_start << blksize_bits;
4713         length =   (__u64)newex->ec_len << blksize_bits;
4714
4715         if (ex && ext4_ext_is_uninitialized(ex))
4716                 flags |= FIEMAP_EXTENT_UNWRITTEN;
4717
4718         if (next == EXT_MAX_BLOCKS)
4719                 flags |= FIEMAP_EXTENT_LAST;
4720
4721         ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4722                                         length, flags);
4723         if (ret < 0)
4724                 return ret;
4725         if (ret == 1)
4726                 return EXT_BREAK;
4727         return EXT_CONTINUE;
4728 }
4729 /* fiemap flags we can handle specified here */
4730 #define EXT4_FIEMAP_FLAGS       (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4731
4732 static int ext4_xattr_fiemap(struct inode *inode,
4733                                 struct fiemap_extent_info *fieinfo)
4734 {
4735         __u64 physical = 0;
4736         __u64 length;
4737         __u32 flags = FIEMAP_EXTENT_LAST;
4738         int blockbits = inode->i_sb->s_blocksize_bits;
4739         int error = 0;
4740
4741         /* in-inode? */
4742         if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4743                 struct ext4_iloc iloc;
4744                 int offset;     /* offset of xattr in inode */
4745
4746                 error = ext4_get_inode_loc(inode, &iloc);
4747                 if (error)
4748                         return error;
4749                 physical = iloc.bh->b_blocknr << blockbits;
4750                 offset = EXT4_GOOD_OLD_INODE_SIZE +
4751                                 EXT4_I(inode)->i_extra_isize;
4752                 physical += offset;
4753                 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4754                 flags |= FIEMAP_EXTENT_DATA_INLINE;
4755                 brelse(iloc.bh);
4756         } else { /* external block */
4757                 physical = EXT4_I(inode)->i_file_acl << blockbits;
4758                 length = inode->i_sb->s_blocksize;
4759         }
4760
4761         if (physical)
4762                 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4763                                                 length, flags);
4764         return (error < 0 ? error : 0);
4765 }
4766
4767 /*
4768  * ext4_ext_punch_hole
4769  *
4770  * Punches a hole of "length" bytes in a file starting
4771  * at byte "offset"
4772  *
4773  * @inode:  The inode of the file to punch a hole in
4774  * @offset: The starting byte offset of the hole
4775  * @length: The length of the hole
4776  *
4777  * Returns the number of blocks removed or negative on err
4778  */
4779 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4780 {
4781         struct inode *inode = file->f_path.dentry->d_inode;
4782         struct super_block *sb = inode->i_sb;
4783         ext4_lblk_t first_block, stop_block;
4784         struct address_space *mapping = inode->i_mapping;
4785         handle_t *handle;
4786         loff_t first_page, last_page, page_len;
4787         loff_t first_page_offset, last_page_offset;
4788         int credits, err = 0;
4789
4790         /* No need to punch hole beyond i_size */
4791         if (offset >= inode->i_size)
4792                 return 0;
4793
4794         /*
4795          * If the hole extends beyond i_size, set the hole
4796          * to end after the page that contains i_size
4797          */
4798         if (offset + length > inode->i_size) {
4799                 length = inode->i_size +
4800                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4801                    offset;
4802         }
4803
4804         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4805         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4806
4807         first_page_offset = first_page << PAGE_CACHE_SHIFT;
4808         last_page_offset = last_page << PAGE_CACHE_SHIFT;
4809
4810         /*
4811          * Write out all dirty pages to avoid race conditions
4812          * Then release them.
4813          */
4814         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4815                 err = filemap_write_and_wait_range(mapping,
4816                         offset, offset + length - 1);
4817
4818                 if (err)
4819                         return err;
4820         }
4821
4822         /* Now release the pages */
4823         if (last_page_offset > first_page_offset) {
4824                 truncate_pagecache_range(inode, first_page_offset,
4825                                          last_page_offset - 1);
4826         }
4827
4828         /* finish any pending end_io work */
4829         ext4_flush_completed_IO(inode);
4830
4831         credits = ext4_writepage_trans_blocks(inode);
4832         handle = ext4_journal_start(inode, credits);
4833         if (IS_ERR(handle))
4834                 return PTR_ERR(handle);
4835
4836
4837         /*
4838          * Now we need to zero out the non-page-aligned data in the
4839          * pages at the start and tail of the hole, and unmap the buffer
4840          * heads for the block aligned regions of the page that were
4841          * completely zeroed.
4842          */
4843         if (first_page > last_page) {
4844                 /*
4845                  * If the file space being truncated is contained within a page
4846                  * just zero out and unmap the middle of that page
4847                  */
4848                 err = ext4_discard_partial_page_buffers(handle,
4849                         mapping, offset, length, 0);
4850
4851                 if (err)
4852                         goto out;
4853         } else {
4854                 /*
4855                  * zero out and unmap the partial page that contains
4856                  * the start of the hole
4857                  */
4858                 page_len  = first_page_offset - offset;
4859                 if (page_len > 0) {
4860                         err = ext4_discard_partial_page_buffers(handle, mapping,
4861                                                    offset, page_len, 0);
4862                         if (err)
4863                                 goto out;
4864                 }
4865
4866                 /*
4867                  * zero out and unmap the partial page that contains
4868                  * the end of the hole
4869                  */
4870                 page_len = offset + length - last_page_offset;
4871                 if (page_len > 0) {
4872                         err = ext4_discard_partial_page_buffers(handle, mapping,
4873                                         last_page_offset, page_len, 0);
4874                         if (err)
4875                                 goto out;
4876                 }
4877         }
4878
4879         /*
4880          * If i_size is contained in the last page, we need to
4881          * unmap and zero the partial page after i_size
4882          */
4883         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4884            inode->i_size % PAGE_CACHE_SIZE != 0) {
4885
4886                 page_len = PAGE_CACHE_SIZE -
4887                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
4888
4889                 if (page_len > 0) {
4890                         err = ext4_discard_partial_page_buffers(handle,
4891                           mapping, inode->i_size, page_len, 0);
4892
4893                         if (err)
4894                                 goto out;
4895                 }
4896         }
4897
4898         first_block = (offset + sb->s_blocksize - 1) >>
4899                 EXT4_BLOCK_SIZE_BITS(sb);
4900         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4901
4902         /* If there are no blocks to remove, return now */
4903         if (first_block >= stop_block)
4904                 goto out;
4905
4906         down_write(&EXT4_I(inode)->i_data_sem);
4907         ext4_ext_invalidate_cache(inode);
4908         ext4_discard_preallocations(inode);
4909
4910         err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4911
4912         ext4_ext_invalidate_cache(inode);
4913         ext4_discard_preallocations(inode);
4914
4915         if (IS_SYNC(inode))
4916                 ext4_handle_sync(handle);
4917
4918         up_write(&EXT4_I(inode)->i_data_sem);
4919
4920 out:
4921         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4922         ext4_mark_inode_dirty(handle, inode);
4923         ext4_journal_stop(handle);
4924         return err;
4925 }
4926 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4927                 __u64 start, __u64 len)
4928 {
4929         ext4_lblk_t start_blk;
4930         int error = 0;
4931
4932         /* fallback to generic here if not in extents fmt */
4933         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4934                 return generic_block_fiemap(inode, fieinfo, start, len,
4935                         ext4_get_block);
4936
4937         if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4938                 return -EBADR;
4939
4940         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4941                 error = ext4_xattr_fiemap(inode, fieinfo);
4942         } else {
4943                 ext4_lblk_t len_blks;
4944                 __u64 last_blk;
4945
4946                 start_blk = start >> inode->i_sb->s_blocksize_bits;
4947                 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4948                 if (last_blk >= EXT_MAX_BLOCKS)
4949                         last_blk = EXT_MAX_BLOCKS-1;
4950                 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4951
4952                 /*
4953                  * Walk the extent tree gathering extent information.
4954                  * ext4_ext_fiemap_cb will push extents back to user.
4955                  */
4956                 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4957                                           ext4_ext_fiemap_cb, fieinfo);
4958         }
4959
4960         return error;
4961 }