ext4: add self-testing infrastructure to do a sanity check
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138                 struct inode *inode, struct page *page, loff_t from,
139                 loff_t length, int flags);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 (inode->i_sb->s_blocksize >> 9) : 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         ext4_ioend_wait(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_log_start_commit(journal, commit_tid);
215                         jbd2_log_wait_commit(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages(&inode->i_data, 0);
219                 goto no_delete;
220         }
221
222         if (!is_bad_inode(inode))
223                 dquot_initialize(inode);
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238                                     ext4_blocks_for_truncate(inode)+3);
239         if (IS_ERR(handle)) {
240                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241                 /*
242                  * If we're going to skip the normal cleanup, we still need to
243                  * make sure that the in-core orphan linked list is properly
244                  * cleaned up.
245                  */
246                 ext4_orphan_del(NULL, inode);
247                 sb_end_intwrite(inode->i_sb);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 ext4_handle_sync(handle);
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks)
261                 ext4_truncate(inode);
262
263         /*
264          * ext4_ext_truncate() doesn't reserve any slop when it
265          * restarts journal transactions; therefore there may not be
266          * enough credits left in the handle to remove the inode from
267          * the orphan list and set the dtime field.
268          */
269         if (!ext4_handle_has_enough_credits(handle, 3)) {
270                 err = ext4_journal_extend(handle, 3);
271                 if (err > 0)
272                         err = ext4_journal_restart(handle, 3);
273                 if (err != 0) {
274                         ext4_warning(inode->i_sb,
275                                      "couldn't extend journal (err %d)", err);
276                 stop_handle:
277                         ext4_journal_stop(handle);
278                         ext4_orphan_del(NULL, inode);
279                         sb_end_intwrite(inode->i_sb);
280                         goto no_delete;
281                 }
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = get_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         sb_end_intwrite(inode->i_sb);
309         return;
310 no_delete:
311         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317         return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322  * Calculate the number of metadata blocks need to reserve
323  * to allocate a block located at @lblock
324  */
325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326 {
327         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328                 return ext4_ext_calc_metadata_amount(inode, lblock);
329
330         return ext4_ind_calc_metadata_amount(inode, lblock);
331 }
332
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338                                         int used, int quota_claim)
339 {
340         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341         struct ext4_inode_info *ei = EXT4_I(inode);
342
343         spin_lock(&ei->i_block_reservation_lock);
344         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345         if (unlikely(used > ei->i_reserved_data_blocks)) {
346                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347                          "with only %d reserved data blocks",
348                          __func__, inode->i_ino, used,
349                          ei->i_reserved_data_blocks);
350                 WARN_ON(1);
351                 used = ei->i_reserved_data_blocks;
352         }
353
354         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356                         "with only %d reserved metadata blocks "
357                         "(releasing %d blocks with reserved %d data blocks)",
358                         inode->i_ino, ei->i_allocated_meta_blocks,
359                              ei->i_reserved_meta_blocks, used,
360                              ei->i_reserved_data_blocks);
361                 WARN_ON(1);
362                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363         }
364
365         /* Update per-inode reservations */
366         ei->i_reserved_data_blocks -= used;
367         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369                            used + ei->i_allocated_meta_blocks);
370         ei->i_allocated_meta_blocks = 0;
371
372         if (ei->i_reserved_data_blocks == 0) {
373                 /*
374                  * We can release all of the reserved metadata blocks
375                  * only when we have written all of the delayed
376                  * allocation blocks.
377                  */
378                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379                                    ei->i_reserved_meta_blocks);
380                 ei->i_reserved_meta_blocks = 0;
381                 ei->i_da_metadata_calc_len = 0;
382         }
383         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384
385         /* Update quota subsystem for data blocks */
386         if (quota_claim)
387                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
388         else {
389                 /*
390                  * We did fallocate with an offset that is already delayed
391                  * allocated. So on delayed allocated writeback we should
392                  * not re-claim the quota for fallocated blocks.
393                  */
394                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395         }
396
397         /*
398          * If we have done all the pending block allocations and if
399          * there aren't any writers on the inode, we can discard the
400          * inode's preallocations.
401          */
402         if ((ei->i_reserved_data_blocks == 0) &&
403             (atomic_read(&inode->i_writecount) == 0))
404                 ext4_discard_preallocations(inode);
405 }
406
407 static int __check_block_validity(struct inode *inode, const char *func,
408                                 unsigned int line,
409                                 struct ext4_map_blocks *map)
410 {
411         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412                                    map->m_len)) {
413                 ext4_error_inode(inode, func, line, map->m_pblk,
414                                  "lblock %lu mapped to illegal pblock "
415                                  "(length %d)", (unsigned long) map->m_lblk,
416                                  map->m_len);
417                 return -EIO;
418         }
419         return 0;
420 }
421
422 #define check_block_validity(inode, map)        \
423         __check_block_validity((inode), __func__, __LINE__, (map))
424
425 /*
426  * Return the number of contiguous dirty pages in a given inode
427  * starting at page frame idx.
428  */
429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430                                     unsigned int max_pages)
431 {
432         struct address_space *mapping = inode->i_mapping;
433         pgoff_t index;
434         struct pagevec pvec;
435         pgoff_t num = 0;
436         int i, nr_pages, done = 0;
437
438         if (max_pages == 0)
439                 return 0;
440         pagevec_init(&pvec, 0);
441         while (!done) {
442                 index = idx;
443                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444                                               PAGECACHE_TAG_DIRTY,
445                                               (pgoff_t)PAGEVEC_SIZE);
446                 if (nr_pages == 0)
447                         break;
448                 for (i = 0; i < nr_pages; i++) {
449                         struct page *page = pvec.pages[i];
450                         struct buffer_head *bh, *head;
451
452                         lock_page(page);
453                         if (unlikely(page->mapping != mapping) ||
454                             !PageDirty(page) ||
455                             PageWriteback(page) ||
456                             page->index != idx) {
457                                 done = 1;
458                                 unlock_page(page);
459                                 break;
460                         }
461                         if (page_has_buffers(page)) {
462                                 bh = head = page_buffers(page);
463                                 do {
464                                         if (!buffer_delay(bh) &&
465                                             !buffer_unwritten(bh))
466                                                 done = 1;
467                                         bh = bh->b_this_page;
468                                 } while (!done && (bh != head));
469                         }
470                         unlock_page(page);
471                         if (done)
472                                 break;
473                         idx++;
474                         num++;
475                         if (num >= max_pages) {
476                                 done = 1;
477                                 break;
478                         }
479                 }
480                 pagevec_release(&pvec);
481         }
482         return num;
483 }
484
485 #ifdef ES_AGGRESSIVE_TEST
486 static void ext4_map_blocks_es_recheck(handle_t *handle,
487                                        struct inode *inode,
488                                        struct ext4_map_blocks *es_map,
489                                        struct ext4_map_blocks *map,
490                                        int flags)
491 {
492         int retval;
493
494         map->m_flags = 0;
495         /*
496          * There is a race window that the result is not the same.
497          * e.g. xfstests #223 when dioread_nolock enables.  The reason
498          * is that we lookup a block mapping in extent status tree with
499          * out taking i_data_sem.  So at the time the unwritten extent
500          * could be converted.
501          */
502         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
503                 down_read((&EXT4_I(inode)->i_data_sem));
504         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
505                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
506                                              EXT4_GET_BLOCKS_KEEP_SIZE);
507         } else {
508                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
509                                              EXT4_GET_BLOCKS_KEEP_SIZE);
510         }
511         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512                 up_read((&EXT4_I(inode)->i_data_sem));
513         /*
514          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
515          * because it shouldn't be marked in es_map->m_flags.
516          */
517         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
518
519         /*
520          * We don't check m_len because extent will be collpased in status
521          * tree.  So the m_len might not equal.
522          */
523         if (es_map->m_lblk != map->m_lblk ||
524             es_map->m_flags != map->m_flags ||
525             es_map->m_pblk != map->m_pblk) {
526                 printk("ES cache assertation failed for inode: %lu "
527                        "es_cached ex [%d/%d/%llu/%x] != "
528                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
529                        inode->i_ino, es_map->m_lblk, es_map->m_len,
530                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
531                        map->m_len, map->m_pblk, map->m_flags,
532                        retval, flags);
533         }
534 }
535 #endif /* ES_AGGRESSIVE_TEST */
536
537 /*
538  * The ext4_map_blocks() function tries to look up the requested blocks,
539  * and returns if the blocks are already mapped.
540  *
541  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
542  * and store the allocated blocks in the result buffer head and mark it
543  * mapped.
544  *
545  * If file type is extents based, it will call ext4_ext_map_blocks(),
546  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
547  * based files
548  *
549  * On success, it returns the number of blocks being mapped or allocate.
550  * if create==0 and the blocks are pre-allocated and uninitialized block,
551  * the result buffer head is unmapped. If the create ==1, it will make sure
552  * the buffer head is mapped.
553  *
554  * It returns 0 if plain look up failed (blocks have not been allocated), in
555  * that case, buffer head is unmapped
556  *
557  * It returns the error in case of allocation failure.
558  */
559 int ext4_map_blocks(handle_t *handle, struct inode *inode,
560                     struct ext4_map_blocks *map, int flags)
561 {
562         struct extent_status es;
563         int retval;
564 #ifdef ES_AGGRESSIVE_TEST
565         struct ext4_map_blocks orig_map;
566
567         memcpy(&orig_map, map, sizeof(*map));
568 #endif
569
570         map->m_flags = 0;
571         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
572                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
573                   (unsigned long) map->m_lblk);
574
575         /* Lookup extent status tree firstly */
576         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
577                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
578                         map->m_pblk = ext4_es_pblock(&es) +
579                                         map->m_lblk - es.es_lblk;
580                         map->m_flags |= ext4_es_is_written(&es) ?
581                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
582                         retval = es.es_len - (map->m_lblk - es.es_lblk);
583                         if (retval > map->m_len)
584                                 retval = map->m_len;
585                         map->m_len = retval;
586                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
587                         retval = 0;
588                 } else {
589                         BUG_ON(1);
590                 }
591 #ifdef ES_AGGRESSIVE_TEST
592                 ext4_map_blocks_es_recheck(handle, inode, map,
593                                            &orig_map, flags);
594 #endif
595                 goto found;
596         }
597
598         /*
599          * Try to see if we can get the block without requesting a new
600          * file system block.
601          */
602         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
603                 down_read((&EXT4_I(inode)->i_data_sem));
604         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
605                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
606                                              EXT4_GET_BLOCKS_KEEP_SIZE);
607         } else {
608                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
609                                              EXT4_GET_BLOCKS_KEEP_SIZE);
610         }
611         if (retval > 0) {
612                 int ret;
613                 unsigned long long status;
614
615 #ifdef ES_AGGRESSIVE_TEST
616                 if (retval != map->m_len) {
617                         printk("ES len assertation failed for inode: %lu "
618                                "retval %d != map->m_len %d "
619                                "in %s (lookup)\n", inode->i_ino, retval,
620                                map->m_len, __func__);
621                 }
622 #endif
623
624                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
625                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
626                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
627                     ext4_find_delalloc_range(inode, map->m_lblk,
628                                              map->m_lblk + map->m_len - 1))
629                         status |= EXTENT_STATUS_DELAYED;
630                 ret = ext4_es_insert_extent(inode, map->m_lblk,
631                                             map->m_len, map->m_pblk, status);
632                 if (ret < 0)
633                         retval = ret;
634         }
635         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
636                 up_read((&EXT4_I(inode)->i_data_sem));
637
638 found:
639         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
640                 int ret = check_block_validity(inode, map);
641                 if (ret != 0)
642                         return ret;
643         }
644
645         /* If it is only a block(s) look up */
646         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
647                 return retval;
648
649         /*
650          * Returns if the blocks have already allocated
651          *
652          * Note that if blocks have been preallocated
653          * ext4_ext_get_block() returns the create = 0
654          * with buffer head unmapped.
655          */
656         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
657                 return retval;
658
659         /*
660          * Here we clear m_flags because after allocating an new extent,
661          * it will be set again.
662          */
663         map->m_flags &= ~EXT4_MAP_FLAGS;
664
665         /*
666          * New blocks allocate and/or writing to uninitialized extent
667          * will possibly result in updating i_data, so we take
668          * the write lock of i_data_sem, and call get_blocks()
669          * with create == 1 flag.
670          */
671         down_write((&EXT4_I(inode)->i_data_sem));
672
673         /*
674          * if the caller is from delayed allocation writeout path
675          * we have already reserved fs blocks for allocation
676          * let the underlying get_block() function know to
677          * avoid double accounting
678          */
679         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
680                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
681         /*
682          * We need to check for EXT4 here because migrate
683          * could have changed the inode type in between
684          */
685         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
686                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
687         } else {
688                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
689
690                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
691                         /*
692                          * We allocated new blocks which will result in
693                          * i_data's format changing.  Force the migrate
694                          * to fail by clearing migrate flags
695                          */
696                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
697                 }
698
699                 /*
700                  * Update reserved blocks/metadata blocks after successful
701                  * block allocation which had been deferred till now. We don't
702                  * support fallocate for non extent files. So we can update
703                  * reserve space here.
704                  */
705                 if ((retval > 0) &&
706                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
707                         ext4_da_update_reserve_space(inode, retval, 1);
708         }
709         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
710                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
711
712         if (retval > 0) {
713                 int ret;
714                 unsigned long long status;
715
716 #ifdef ES_AGGRESSIVE_TEST
717                 if (retval != map->m_len) {
718                         printk("ES len assertation failed for inode: %lu "
719                                "retval %d != map->m_len %d "
720                                "in %s (allocation)\n", inode->i_ino, retval,
721                                map->m_len, __func__);
722                 }
723 #endif
724
725                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
726                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
727                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
728                     ext4_find_delalloc_range(inode, map->m_lblk,
729                                              map->m_lblk + map->m_len - 1))
730                         status |= EXTENT_STATUS_DELAYED;
731                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
732                                             map->m_pblk, status);
733                 if (ret < 0)
734                         retval = ret;
735         }
736
737         up_write((&EXT4_I(inode)->i_data_sem));
738         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
739                 int ret = check_block_validity(inode, map);
740                 if (ret != 0)
741                         return ret;
742         }
743         return retval;
744 }
745
746 /* Maximum number of blocks we map for direct IO at once. */
747 #define DIO_MAX_BLOCKS 4096
748
749 static int _ext4_get_block(struct inode *inode, sector_t iblock,
750                            struct buffer_head *bh, int flags)
751 {
752         handle_t *handle = ext4_journal_current_handle();
753         struct ext4_map_blocks map;
754         int ret = 0, started = 0;
755         int dio_credits;
756
757         if (ext4_has_inline_data(inode))
758                 return -ERANGE;
759
760         map.m_lblk = iblock;
761         map.m_len = bh->b_size >> inode->i_blkbits;
762
763         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
764                 /* Direct IO write... */
765                 if (map.m_len > DIO_MAX_BLOCKS)
766                         map.m_len = DIO_MAX_BLOCKS;
767                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
768                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
769                                             dio_credits);
770                 if (IS_ERR(handle)) {
771                         ret = PTR_ERR(handle);
772                         return ret;
773                 }
774                 started = 1;
775         }
776
777         ret = ext4_map_blocks(handle, inode, &map, flags);
778         if (ret > 0) {
779                 map_bh(bh, inode->i_sb, map.m_pblk);
780                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
781                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
782                 ret = 0;
783         }
784         if (started)
785                 ext4_journal_stop(handle);
786         return ret;
787 }
788
789 int ext4_get_block(struct inode *inode, sector_t iblock,
790                    struct buffer_head *bh, int create)
791 {
792         return _ext4_get_block(inode, iblock, bh,
793                                create ? EXT4_GET_BLOCKS_CREATE : 0);
794 }
795
796 /*
797  * `handle' can be NULL if create is zero
798  */
799 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
800                                 ext4_lblk_t block, int create, int *errp)
801 {
802         struct ext4_map_blocks map;
803         struct buffer_head *bh;
804         int fatal = 0, err;
805
806         J_ASSERT(handle != NULL || create == 0);
807
808         map.m_lblk = block;
809         map.m_len = 1;
810         err = ext4_map_blocks(handle, inode, &map,
811                               create ? EXT4_GET_BLOCKS_CREATE : 0);
812
813         /* ensure we send some value back into *errp */
814         *errp = 0;
815
816         if (create && err == 0)
817                 err = -ENOSPC;  /* should never happen */
818         if (err < 0)
819                 *errp = err;
820         if (err <= 0)
821                 return NULL;
822
823         bh = sb_getblk(inode->i_sb, map.m_pblk);
824         if (unlikely(!bh)) {
825                 *errp = -ENOMEM;
826                 return NULL;
827         }
828         if (map.m_flags & EXT4_MAP_NEW) {
829                 J_ASSERT(create != 0);
830                 J_ASSERT(handle != NULL);
831
832                 /*
833                  * Now that we do not always journal data, we should
834                  * keep in mind whether this should always journal the
835                  * new buffer as metadata.  For now, regular file
836                  * writes use ext4_get_block instead, so it's not a
837                  * problem.
838                  */
839                 lock_buffer(bh);
840                 BUFFER_TRACE(bh, "call get_create_access");
841                 fatal = ext4_journal_get_create_access(handle, bh);
842                 if (!fatal && !buffer_uptodate(bh)) {
843                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
844                         set_buffer_uptodate(bh);
845                 }
846                 unlock_buffer(bh);
847                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
848                 err = ext4_handle_dirty_metadata(handle, inode, bh);
849                 if (!fatal)
850                         fatal = err;
851         } else {
852                 BUFFER_TRACE(bh, "not a new buffer");
853         }
854         if (fatal) {
855                 *errp = fatal;
856                 brelse(bh);
857                 bh = NULL;
858         }
859         return bh;
860 }
861
862 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
863                                ext4_lblk_t block, int create, int *err)
864 {
865         struct buffer_head *bh;
866
867         bh = ext4_getblk(handle, inode, block, create, err);
868         if (!bh)
869                 return bh;
870         if (buffer_uptodate(bh))
871                 return bh;
872         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
873         wait_on_buffer(bh);
874         if (buffer_uptodate(bh))
875                 return bh;
876         put_bh(bh);
877         *err = -EIO;
878         return NULL;
879 }
880
881 int ext4_walk_page_buffers(handle_t *handle,
882                            struct buffer_head *head,
883                            unsigned from,
884                            unsigned to,
885                            int *partial,
886                            int (*fn)(handle_t *handle,
887                                      struct buffer_head *bh))
888 {
889         struct buffer_head *bh;
890         unsigned block_start, block_end;
891         unsigned blocksize = head->b_size;
892         int err, ret = 0;
893         struct buffer_head *next;
894
895         for (bh = head, block_start = 0;
896              ret == 0 && (bh != head || !block_start);
897              block_start = block_end, bh = next) {
898                 next = bh->b_this_page;
899                 block_end = block_start + blocksize;
900                 if (block_end <= from || block_start >= to) {
901                         if (partial && !buffer_uptodate(bh))
902                                 *partial = 1;
903                         continue;
904                 }
905                 err = (*fn)(handle, bh);
906                 if (!ret)
907                         ret = err;
908         }
909         return ret;
910 }
911
912 /*
913  * To preserve ordering, it is essential that the hole instantiation and
914  * the data write be encapsulated in a single transaction.  We cannot
915  * close off a transaction and start a new one between the ext4_get_block()
916  * and the commit_write().  So doing the jbd2_journal_start at the start of
917  * prepare_write() is the right place.
918  *
919  * Also, this function can nest inside ext4_writepage().  In that case, we
920  * *know* that ext4_writepage() has generated enough buffer credits to do the
921  * whole page.  So we won't block on the journal in that case, which is good,
922  * because the caller may be PF_MEMALLOC.
923  *
924  * By accident, ext4 can be reentered when a transaction is open via
925  * quota file writes.  If we were to commit the transaction while thus
926  * reentered, there can be a deadlock - we would be holding a quota
927  * lock, and the commit would never complete if another thread had a
928  * transaction open and was blocking on the quota lock - a ranking
929  * violation.
930  *
931  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
932  * will _not_ run commit under these circumstances because handle->h_ref
933  * is elevated.  We'll still have enough credits for the tiny quotafile
934  * write.
935  */
936 int do_journal_get_write_access(handle_t *handle,
937                                 struct buffer_head *bh)
938 {
939         int dirty = buffer_dirty(bh);
940         int ret;
941
942         if (!buffer_mapped(bh) || buffer_freed(bh))
943                 return 0;
944         /*
945          * __block_write_begin() could have dirtied some buffers. Clean
946          * the dirty bit as jbd2_journal_get_write_access() could complain
947          * otherwise about fs integrity issues. Setting of the dirty bit
948          * by __block_write_begin() isn't a real problem here as we clear
949          * the bit before releasing a page lock and thus writeback cannot
950          * ever write the buffer.
951          */
952         if (dirty)
953                 clear_buffer_dirty(bh);
954         ret = ext4_journal_get_write_access(handle, bh);
955         if (!ret && dirty)
956                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
957         return ret;
958 }
959
960 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
961                    struct buffer_head *bh_result, int create);
962 static int ext4_write_begin(struct file *file, struct address_space *mapping,
963                             loff_t pos, unsigned len, unsigned flags,
964                             struct page **pagep, void **fsdata)
965 {
966         struct inode *inode = mapping->host;
967         int ret, needed_blocks;
968         handle_t *handle;
969         int retries = 0;
970         struct page *page;
971         pgoff_t index;
972         unsigned from, to;
973
974         trace_ext4_write_begin(inode, pos, len, flags);
975         /*
976          * Reserve one block more for addition to orphan list in case
977          * we allocate blocks but write fails for some reason
978          */
979         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
980         index = pos >> PAGE_CACHE_SHIFT;
981         from = pos & (PAGE_CACHE_SIZE - 1);
982         to = from + len;
983
984         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
985                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
986                                                     flags, pagep);
987                 if (ret < 0)
988                         return ret;
989                 if (ret == 1)
990                         return 0;
991         }
992
993         /*
994          * grab_cache_page_write_begin() can take a long time if the
995          * system is thrashing due to memory pressure, or if the page
996          * is being written back.  So grab it first before we start
997          * the transaction handle.  This also allows us to allocate
998          * the page (if needed) without using GFP_NOFS.
999          */
1000 retry_grab:
1001         page = grab_cache_page_write_begin(mapping, index, flags);
1002         if (!page)
1003                 return -ENOMEM;
1004         unlock_page(page);
1005
1006 retry_journal:
1007         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1008         if (IS_ERR(handle)) {
1009                 page_cache_release(page);
1010                 return PTR_ERR(handle);
1011         }
1012
1013         lock_page(page);
1014         if (page->mapping != mapping) {
1015                 /* The page got truncated from under us */
1016                 unlock_page(page);
1017                 page_cache_release(page);
1018                 ext4_journal_stop(handle);
1019                 goto retry_grab;
1020         }
1021         wait_on_page_writeback(page);
1022
1023         if (ext4_should_dioread_nolock(inode))
1024                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1025         else
1026                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1027
1028         if (!ret && ext4_should_journal_data(inode)) {
1029                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1030                                              from, to, NULL,
1031                                              do_journal_get_write_access);
1032         }
1033
1034         if (ret) {
1035                 unlock_page(page);
1036                 /*
1037                  * __block_write_begin may have instantiated a few blocks
1038                  * outside i_size.  Trim these off again. Don't need
1039                  * i_size_read because we hold i_mutex.
1040                  *
1041                  * Add inode to orphan list in case we crash before
1042                  * truncate finishes
1043                  */
1044                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1045                         ext4_orphan_add(handle, inode);
1046
1047                 ext4_journal_stop(handle);
1048                 if (pos + len > inode->i_size) {
1049                         ext4_truncate_failed_write(inode);
1050                         /*
1051                          * If truncate failed early the inode might
1052                          * still be on the orphan list; we need to
1053                          * make sure the inode is removed from the
1054                          * orphan list in that case.
1055                          */
1056                         if (inode->i_nlink)
1057                                 ext4_orphan_del(NULL, inode);
1058                 }
1059
1060                 if (ret == -ENOSPC &&
1061                     ext4_should_retry_alloc(inode->i_sb, &retries))
1062                         goto retry_journal;
1063                 page_cache_release(page);
1064                 return ret;
1065         }
1066         *pagep = page;
1067         return ret;
1068 }
1069
1070 /* For write_end() in data=journal mode */
1071 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1072 {
1073         if (!buffer_mapped(bh) || buffer_freed(bh))
1074                 return 0;
1075         set_buffer_uptodate(bh);
1076         return ext4_handle_dirty_metadata(handle, NULL, bh);
1077 }
1078
1079 static int ext4_generic_write_end(struct file *file,
1080                                   struct address_space *mapping,
1081                                   loff_t pos, unsigned len, unsigned copied,
1082                                   struct page *page, void *fsdata)
1083 {
1084         int i_size_changed = 0;
1085         struct inode *inode = mapping->host;
1086         handle_t *handle = ext4_journal_current_handle();
1087
1088         if (ext4_has_inline_data(inode))
1089                 copied = ext4_write_inline_data_end(inode, pos, len,
1090                                                     copied, page);
1091         else
1092                 copied = block_write_end(file, mapping, pos,
1093                                          len, copied, page, fsdata);
1094
1095         /*
1096          * No need to use i_size_read() here, the i_size
1097          * cannot change under us because we hold i_mutex.
1098          *
1099          * But it's important to update i_size while still holding page lock:
1100          * page writeout could otherwise come in and zero beyond i_size.
1101          */
1102         if (pos + copied > inode->i_size) {
1103                 i_size_write(inode, pos + copied);
1104                 i_size_changed = 1;
1105         }
1106
1107         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1108                 /* We need to mark inode dirty even if
1109                  * new_i_size is less that inode->i_size
1110                  * bu greater than i_disksize.(hint delalloc)
1111                  */
1112                 ext4_update_i_disksize(inode, (pos + copied));
1113                 i_size_changed = 1;
1114         }
1115         unlock_page(page);
1116         page_cache_release(page);
1117
1118         /*
1119          * Don't mark the inode dirty under page lock. First, it unnecessarily
1120          * makes the holding time of page lock longer. Second, it forces lock
1121          * ordering of page lock and transaction start for journaling
1122          * filesystems.
1123          */
1124         if (i_size_changed)
1125                 ext4_mark_inode_dirty(handle, inode);
1126
1127         return copied;
1128 }
1129
1130 /*
1131  * We need to pick up the new inode size which generic_commit_write gave us
1132  * `file' can be NULL - eg, when called from page_symlink().
1133  *
1134  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1135  * buffers are managed internally.
1136  */
1137 static int ext4_ordered_write_end(struct file *file,
1138                                   struct address_space *mapping,
1139                                   loff_t pos, unsigned len, unsigned copied,
1140                                   struct page *page, void *fsdata)
1141 {
1142         handle_t *handle = ext4_journal_current_handle();
1143         struct inode *inode = mapping->host;
1144         int ret = 0, ret2;
1145
1146         trace_ext4_ordered_write_end(inode, pos, len, copied);
1147         ret = ext4_jbd2_file_inode(handle, inode);
1148
1149         if (ret == 0) {
1150                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1151                                                         page, fsdata);
1152                 copied = ret2;
1153                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1154                         /* if we have allocated more blocks and copied
1155                          * less. We will have blocks allocated outside
1156                          * inode->i_size. So truncate them
1157                          */
1158                         ext4_orphan_add(handle, inode);
1159                 if (ret2 < 0)
1160                         ret = ret2;
1161         } else {
1162                 unlock_page(page);
1163                 page_cache_release(page);
1164         }
1165
1166         ret2 = ext4_journal_stop(handle);
1167         if (!ret)
1168                 ret = ret2;
1169
1170         if (pos + len > inode->i_size) {
1171                 ext4_truncate_failed_write(inode);
1172                 /*
1173                  * If truncate failed early the inode might still be
1174                  * on the orphan list; we need to make sure the inode
1175                  * is removed from the orphan list in that case.
1176                  */
1177                 if (inode->i_nlink)
1178                         ext4_orphan_del(NULL, inode);
1179         }
1180
1181
1182         return ret ? ret : copied;
1183 }
1184
1185 static int ext4_writeback_write_end(struct file *file,
1186                                     struct address_space *mapping,
1187                                     loff_t pos, unsigned len, unsigned copied,
1188                                     struct page *page, void *fsdata)
1189 {
1190         handle_t *handle = ext4_journal_current_handle();
1191         struct inode *inode = mapping->host;
1192         int ret = 0, ret2;
1193
1194         trace_ext4_writeback_write_end(inode, pos, len, copied);
1195         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1196                                                         page, fsdata);
1197         copied = ret2;
1198         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1199                 /* if we have allocated more blocks and copied
1200                  * less. We will have blocks allocated outside
1201                  * inode->i_size. So truncate them
1202                  */
1203                 ext4_orphan_add(handle, inode);
1204
1205         if (ret2 < 0)
1206                 ret = ret2;
1207
1208         ret2 = ext4_journal_stop(handle);
1209         if (!ret)
1210                 ret = ret2;
1211
1212         if (pos + len > inode->i_size) {
1213                 ext4_truncate_failed_write(inode);
1214                 /*
1215                  * If truncate failed early the inode might still be
1216                  * on the orphan list; we need to make sure the inode
1217                  * is removed from the orphan list in that case.
1218                  */
1219                 if (inode->i_nlink)
1220                         ext4_orphan_del(NULL, inode);
1221         }
1222
1223         return ret ? ret : copied;
1224 }
1225
1226 static int ext4_journalled_write_end(struct file *file,
1227                                      struct address_space *mapping,
1228                                      loff_t pos, unsigned len, unsigned copied,
1229                                      struct page *page, void *fsdata)
1230 {
1231         handle_t *handle = ext4_journal_current_handle();
1232         struct inode *inode = mapping->host;
1233         int ret = 0, ret2;
1234         int partial = 0;
1235         unsigned from, to;
1236         loff_t new_i_size;
1237
1238         trace_ext4_journalled_write_end(inode, pos, len, copied);
1239         from = pos & (PAGE_CACHE_SIZE - 1);
1240         to = from + len;
1241
1242         BUG_ON(!ext4_handle_valid(handle));
1243
1244         if (ext4_has_inline_data(inode))
1245                 copied = ext4_write_inline_data_end(inode, pos, len,
1246                                                     copied, page);
1247         else {
1248                 if (copied < len) {
1249                         if (!PageUptodate(page))
1250                                 copied = 0;
1251                         page_zero_new_buffers(page, from+copied, to);
1252                 }
1253
1254                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1255                                              to, &partial, write_end_fn);
1256                 if (!partial)
1257                         SetPageUptodate(page);
1258         }
1259         new_i_size = pos + copied;
1260         if (new_i_size > inode->i_size)
1261                 i_size_write(inode, pos+copied);
1262         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1263         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1264         if (new_i_size > EXT4_I(inode)->i_disksize) {
1265                 ext4_update_i_disksize(inode, new_i_size);
1266                 ret2 = ext4_mark_inode_dirty(handle, inode);
1267                 if (!ret)
1268                         ret = ret2;
1269         }
1270
1271         unlock_page(page);
1272         page_cache_release(page);
1273         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1274                 /* if we have allocated more blocks and copied
1275                  * less. We will have blocks allocated outside
1276                  * inode->i_size. So truncate them
1277                  */
1278                 ext4_orphan_add(handle, inode);
1279
1280         ret2 = ext4_journal_stop(handle);
1281         if (!ret)
1282                 ret = ret2;
1283         if (pos + len > inode->i_size) {
1284                 ext4_truncate_failed_write(inode);
1285                 /*
1286                  * If truncate failed early the inode might still be
1287                  * on the orphan list; we need to make sure the inode
1288                  * is removed from the orphan list in that case.
1289                  */
1290                 if (inode->i_nlink)
1291                         ext4_orphan_del(NULL, inode);
1292         }
1293
1294         return ret ? ret : copied;
1295 }
1296
1297 /*
1298  * Reserve a single cluster located at lblock
1299  */
1300 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1301 {
1302         int retries = 0;
1303         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1304         struct ext4_inode_info *ei = EXT4_I(inode);
1305         unsigned int md_needed;
1306         int ret;
1307         ext4_lblk_t save_last_lblock;
1308         int save_len;
1309
1310         /*
1311          * We will charge metadata quota at writeout time; this saves
1312          * us from metadata over-estimation, though we may go over by
1313          * a small amount in the end.  Here we just reserve for data.
1314          */
1315         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1316         if (ret)
1317                 return ret;
1318
1319         /*
1320          * recalculate the amount of metadata blocks to reserve
1321          * in order to allocate nrblocks
1322          * worse case is one extent per block
1323          */
1324 repeat:
1325         spin_lock(&ei->i_block_reservation_lock);
1326         /*
1327          * ext4_calc_metadata_amount() has side effects, which we have
1328          * to be prepared undo if we fail to claim space.
1329          */
1330         save_len = ei->i_da_metadata_calc_len;
1331         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1332         md_needed = EXT4_NUM_B2C(sbi,
1333                                  ext4_calc_metadata_amount(inode, lblock));
1334         trace_ext4_da_reserve_space(inode, md_needed);
1335
1336         /*
1337          * We do still charge estimated metadata to the sb though;
1338          * we cannot afford to run out of free blocks.
1339          */
1340         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1341                 ei->i_da_metadata_calc_len = save_len;
1342                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1343                 spin_unlock(&ei->i_block_reservation_lock);
1344                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1345                         yield();
1346                         goto repeat;
1347                 }
1348                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1349                 return -ENOSPC;
1350         }
1351         ei->i_reserved_data_blocks++;
1352         ei->i_reserved_meta_blocks += md_needed;
1353         spin_unlock(&ei->i_block_reservation_lock);
1354
1355         return 0;       /* success */
1356 }
1357
1358 static void ext4_da_release_space(struct inode *inode, int to_free)
1359 {
1360         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1361         struct ext4_inode_info *ei = EXT4_I(inode);
1362
1363         if (!to_free)
1364                 return;         /* Nothing to release, exit */
1365
1366         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1367
1368         trace_ext4_da_release_space(inode, to_free);
1369         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1370                 /*
1371                  * if there aren't enough reserved blocks, then the
1372                  * counter is messed up somewhere.  Since this
1373                  * function is called from invalidate page, it's
1374                  * harmless to return without any action.
1375                  */
1376                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1377                          "ino %lu, to_free %d with only %d reserved "
1378                          "data blocks", inode->i_ino, to_free,
1379                          ei->i_reserved_data_blocks);
1380                 WARN_ON(1);
1381                 to_free = ei->i_reserved_data_blocks;
1382         }
1383         ei->i_reserved_data_blocks -= to_free;
1384
1385         if (ei->i_reserved_data_blocks == 0) {
1386                 /*
1387                  * We can release all of the reserved metadata blocks
1388                  * only when we have written all of the delayed
1389                  * allocation blocks.
1390                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1391                  * i_reserved_data_blocks, etc. refer to number of clusters.
1392                  */
1393                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1394                                    ei->i_reserved_meta_blocks);
1395                 ei->i_reserved_meta_blocks = 0;
1396                 ei->i_da_metadata_calc_len = 0;
1397         }
1398
1399         /* update fs dirty data blocks counter */
1400         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1401
1402         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1403
1404         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1405 }
1406
1407 static void ext4_da_page_release_reservation(struct page *page,
1408                                              unsigned long offset)
1409 {
1410         int to_release = 0;
1411         struct buffer_head *head, *bh;
1412         unsigned int curr_off = 0;
1413         struct inode *inode = page->mapping->host;
1414         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1415         int num_clusters;
1416         ext4_fsblk_t lblk;
1417
1418         head = page_buffers(page);
1419         bh = head;
1420         do {
1421                 unsigned int next_off = curr_off + bh->b_size;
1422
1423                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1424                         to_release++;
1425                         clear_buffer_delay(bh);
1426                 }
1427                 curr_off = next_off;
1428         } while ((bh = bh->b_this_page) != head);
1429
1430         if (to_release) {
1431                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1432                 ext4_es_remove_extent(inode, lblk, to_release);
1433         }
1434
1435         /* If we have released all the blocks belonging to a cluster, then we
1436          * need to release the reserved space for that cluster. */
1437         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1438         while (num_clusters > 0) {
1439                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1440                         ((num_clusters - 1) << sbi->s_cluster_bits);
1441                 if (sbi->s_cluster_ratio == 1 ||
1442                     !ext4_find_delalloc_cluster(inode, lblk))
1443                         ext4_da_release_space(inode, 1);
1444
1445                 num_clusters--;
1446         }
1447 }
1448
1449 /*
1450  * Delayed allocation stuff
1451  */
1452
1453 /*
1454  * mpage_da_submit_io - walks through extent of pages and try to write
1455  * them with writepage() call back
1456  *
1457  * @mpd->inode: inode
1458  * @mpd->first_page: first page of the extent
1459  * @mpd->next_page: page after the last page of the extent
1460  *
1461  * By the time mpage_da_submit_io() is called we expect all blocks
1462  * to be allocated. this may be wrong if allocation failed.
1463  *
1464  * As pages are already locked by write_cache_pages(), we can't use it
1465  */
1466 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1467                               struct ext4_map_blocks *map)
1468 {
1469         struct pagevec pvec;
1470         unsigned long index, end;
1471         int ret = 0, err, nr_pages, i;
1472         struct inode *inode = mpd->inode;
1473         struct address_space *mapping = inode->i_mapping;
1474         loff_t size = i_size_read(inode);
1475         unsigned int len, block_start;
1476         struct buffer_head *bh, *page_bufs = NULL;
1477         sector_t pblock = 0, cur_logical = 0;
1478         struct ext4_io_submit io_submit;
1479
1480         BUG_ON(mpd->next_page <= mpd->first_page);
1481         memset(&io_submit, 0, sizeof(io_submit));
1482         /*
1483          * We need to start from the first_page to the next_page - 1
1484          * to make sure we also write the mapped dirty buffer_heads.
1485          * If we look at mpd->b_blocknr we would only be looking
1486          * at the currently mapped buffer_heads.
1487          */
1488         index = mpd->first_page;
1489         end = mpd->next_page - 1;
1490
1491         pagevec_init(&pvec, 0);
1492         while (index <= end) {
1493                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1494                 if (nr_pages == 0)
1495                         break;
1496                 for (i = 0; i < nr_pages; i++) {
1497                         int skip_page = 0;
1498                         struct page *page = pvec.pages[i];
1499
1500                         index = page->index;
1501                         if (index > end)
1502                                 break;
1503
1504                         if (index == size >> PAGE_CACHE_SHIFT)
1505                                 len = size & ~PAGE_CACHE_MASK;
1506                         else
1507                                 len = PAGE_CACHE_SIZE;
1508                         if (map) {
1509                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1510                                                         inode->i_blkbits);
1511                                 pblock = map->m_pblk + (cur_logical -
1512                                                         map->m_lblk);
1513                         }
1514                         index++;
1515
1516                         BUG_ON(!PageLocked(page));
1517                         BUG_ON(PageWriteback(page));
1518
1519                         bh = page_bufs = page_buffers(page);
1520                         block_start = 0;
1521                         do {
1522                                 if (map && (cur_logical >= map->m_lblk) &&
1523                                     (cur_logical <= (map->m_lblk +
1524                                                      (map->m_len - 1)))) {
1525                                         if (buffer_delay(bh)) {
1526                                                 clear_buffer_delay(bh);
1527                                                 bh->b_blocknr = pblock;
1528                                         }
1529                                         if (buffer_unwritten(bh) ||
1530                                             buffer_mapped(bh))
1531                                                 BUG_ON(bh->b_blocknr != pblock);
1532                                         if (map->m_flags & EXT4_MAP_UNINIT)
1533                                                 set_buffer_uninit(bh);
1534                                         clear_buffer_unwritten(bh);
1535                                 }
1536
1537                                 /*
1538                                  * skip page if block allocation undone and
1539                                  * block is dirty
1540                                  */
1541                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1542                                         skip_page = 1;
1543                                 bh = bh->b_this_page;
1544                                 block_start += bh->b_size;
1545                                 cur_logical++;
1546                                 pblock++;
1547                         } while (bh != page_bufs);
1548
1549                         if (skip_page) {
1550                                 unlock_page(page);
1551                                 continue;
1552                         }
1553
1554                         clear_page_dirty_for_io(page);
1555                         err = ext4_bio_write_page(&io_submit, page, len,
1556                                                   mpd->wbc);
1557                         if (!err)
1558                                 mpd->pages_written++;
1559                         /*
1560                          * In error case, we have to continue because
1561                          * remaining pages are still locked
1562                          */
1563                         if (ret == 0)
1564                                 ret = err;
1565                 }
1566                 pagevec_release(&pvec);
1567         }
1568         ext4_io_submit(&io_submit);
1569         return ret;
1570 }
1571
1572 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1573 {
1574         int nr_pages, i;
1575         pgoff_t index, end;
1576         struct pagevec pvec;
1577         struct inode *inode = mpd->inode;
1578         struct address_space *mapping = inode->i_mapping;
1579         ext4_lblk_t start, last;
1580
1581         index = mpd->first_page;
1582         end   = mpd->next_page - 1;
1583
1584         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1585         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1586         ext4_es_remove_extent(inode, start, last - start + 1);
1587
1588         pagevec_init(&pvec, 0);
1589         while (index <= end) {
1590                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1591                 if (nr_pages == 0)
1592                         break;
1593                 for (i = 0; i < nr_pages; i++) {
1594                         struct page *page = pvec.pages[i];
1595                         if (page->index > end)
1596                                 break;
1597                         BUG_ON(!PageLocked(page));
1598                         BUG_ON(PageWriteback(page));
1599                         block_invalidatepage(page, 0);
1600                         ClearPageUptodate(page);
1601                         unlock_page(page);
1602                 }
1603                 index = pvec.pages[nr_pages - 1]->index + 1;
1604                 pagevec_release(&pvec);
1605         }
1606         return;
1607 }
1608
1609 static void ext4_print_free_blocks(struct inode *inode)
1610 {
1611         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1612         struct super_block *sb = inode->i_sb;
1613
1614         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1615                EXT4_C2B(EXT4_SB(inode->i_sb),
1616                         ext4_count_free_clusters(inode->i_sb)));
1617         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1618         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1619                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1620                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1621         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1622                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1623                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1624         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1625         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1626                  EXT4_I(inode)->i_reserved_data_blocks);
1627         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1628                EXT4_I(inode)->i_reserved_meta_blocks);
1629         return;
1630 }
1631
1632 /*
1633  * mpage_da_map_and_submit - go through given space, map them
1634  *       if necessary, and then submit them for I/O
1635  *
1636  * @mpd - bh describing space
1637  *
1638  * The function skips space we know is already mapped to disk blocks.
1639  *
1640  */
1641 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1642 {
1643         int err, blks, get_blocks_flags;
1644         struct ext4_map_blocks map, *mapp = NULL;
1645         sector_t next = mpd->b_blocknr;
1646         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1647         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1648         handle_t *handle = NULL;
1649
1650         /*
1651          * If the blocks are mapped already, or we couldn't accumulate
1652          * any blocks, then proceed immediately to the submission stage.
1653          */
1654         if ((mpd->b_size == 0) ||
1655             ((mpd->b_state  & (1 << BH_Mapped)) &&
1656              !(mpd->b_state & (1 << BH_Delay)) &&
1657              !(mpd->b_state & (1 << BH_Unwritten))))
1658                 goto submit_io;
1659
1660         handle = ext4_journal_current_handle();
1661         BUG_ON(!handle);
1662
1663         /*
1664          * Call ext4_map_blocks() to allocate any delayed allocation
1665          * blocks, or to convert an uninitialized extent to be
1666          * initialized (in the case where we have written into
1667          * one or more preallocated blocks).
1668          *
1669          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1670          * indicate that we are on the delayed allocation path.  This
1671          * affects functions in many different parts of the allocation
1672          * call path.  This flag exists primarily because we don't
1673          * want to change *many* call functions, so ext4_map_blocks()
1674          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1675          * inode's allocation semaphore is taken.
1676          *
1677          * If the blocks in questions were delalloc blocks, set
1678          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1679          * variables are updated after the blocks have been allocated.
1680          */
1681         map.m_lblk = next;
1682         map.m_len = max_blocks;
1683         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1684         if (ext4_should_dioread_nolock(mpd->inode))
1685                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1686         if (mpd->b_state & (1 << BH_Delay))
1687                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1688
1689         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1690         if (blks < 0) {
1691                 struct super_block *sb = mpd->inode->i_sb;
1692
1693                 err = blks;
1694                 /*
1695                  * If get block returns EAGAIN or ENOSPC and there
1696                  * appears to be free blocks we will just let
1697                  * mpage_da_submit_io() unlock all of the pages.
1698                  */
1699                 if (err == -EAGAIN)
1700                         goto submit_io;
1701
1702                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1703                         mpd->retval = err;
1704                         goto submit_io;
1705                 }
1706
1707                 /*
1708                  * get block failure will cause us to loop in
1709                  * writepages, because a_ops->writepage won't be able
1710                  * to make progress. The page will be redirtied by
1711                  * writepage and writepages will again try to write
1712                  * the same.
1713                  */
1714                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1715                         ext4_msg(sb, KERN_CRIT,
1716                                  "delayed block allocation failed for inode %lu "
1717                                  "at logical offset %llu with max blocks %zd "
1718                                  "with error %d", mpd->inode->i_ino,
1719                                  (unsigned long long) next,
1720                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1721                         ext4_msg(sb, KERN_CRIT,
1722                                 "This should not happen!! Data will be lost");
1723                         if (err == -ENOSPC)
1724                                 ext4_print_free_blocks(mpd->inode);
1725                 }
1726                 /* invalidate all the pages */
1727                 ext4_da_block_invalidatepages(mpd);
1728
1729                 /* Mark this page range as having been completed */
1730                 mpd->io_done = 1;
1731                 return;
1732         }
1733         BUG_ON(blks == 0);
1734
1735         mapp = &map;
1736         if (map.m_flags & EXT4_MAP_NEW) {
1737                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1738                 int i;
1739
1740                 for (i = 0; i < map.m_len; i++)
1741                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1742         }
1743
1744         /*
1745          * Update on-disk size along with block allocation.
1746          */
1747         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1748         if (disksize > i_size_read(mpd->inode))
1749                 disksize = i_size_read(mpd->inode);
1750         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1751                 ext4_update_i_disksize(mpd->inode, disksize);
1752                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1753                 if (err)
1754                         ext4_error(mpd->inode->i_sb,
1755                                    "Failed to mark inode %lu dirty",
1756                                    mpd->inode->i_ino);
1757         }
1758
1759 submit_io:
1760         mpage_da_submit_io(mpd, mapp);
1761         mpd->io_done = 1;
1762 }
1763
1764 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1765                 (1 << BH_Delay) | (1 << BH_Unwritten))
1766
1767 /*
1768  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1769  *
1770  * @mpd->lbh - extent of blocks
1771  * @logical - logical number of the block in the file
1772  * @b_state - b_state of the buffer head added
1773  *
1774  * the function is used to collect contig. blocks in same state
1775  */
1776 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1777                                    unsigned long b_state)
1778 {
1779         sector_t next;
1780         int blkbits = mpd->inode->i_blkbits;
1781         int nrblocks = mpd->b_size >> blkbits;
1782
1783         /*
1784          * XXX Don't go larger than mballoc is willing to allocate
1785          * This is a stopgap solution.  We eventually need to fold
1786          * mpage_da_submit_io() into this function and then call
1787          * ext4_map_blocks() multiple times in a loop
1788          */
1789         if (nrblocks >= (8*1024*1024 >> blkbits))
1790                 goto flush_it;
1791
1792         /* check if the reserved journal credits might overflow */
1793         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1794                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1795                         /*
1796                          * With non-extent format we are limited by the journal
1797                          * credit available.  Total credit needed to insert
1798                          * nrblocks contiguous blocks is dependent on the
1799                          * nrblocks.  So limit nrblocks.
1800                          */
1801                         goto flush_it;
1802                 }
1803         }
1804         /*
1805          * First block in the extent
1806          */
1807         if (mpd->b_size == 0) {
1808                 mpd->b_blocknr = logical;
1809                 mpd->b_size = 1 << blkbits;
1810                 mpd->b_state = b_state & BH_FLAGS;
1811                 return;
1812         }
1813
1814         next = mpd->b_blocknr + nrblocks;
1815         /*
1816          * Can we merge the block to our big extent?
1817          */
1818         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1819                 mpd->b_size += 1 << blkbits;
1820                 return;
1821         }
1822
1823 flush_it:
1824         /*
1825          * We couldn't merge the block to our extent, so we
1826          * need to flush current  extent and start new one
1827          */
1828         mpage_da_map_and_submit(mpd);
1829         return;
1830 }
1831
1832 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1833 {
1834         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1835 }
1836
1837 /*
1838  * This function is grabs code from the very beginning of
1839  * ext4_map_blocks, but assumes that the caller is from delayed write
1840  * time. This function looks up the requested blocks and sets the
1841  * buffer delay bit under the protection of i_data_sem.
1842  */
1843 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1844                               struct ext4_map_blocks *map,
1845                               struct buffer_head *bh)
1846 {
1847         struct extent_status es;
1848         int retval;
1849         sector_t invalid_block = ~((sector_t) 0xffff);
1850 #ifdef ES_AGGRESSIVE_TEST
1851         struct ext4_map_blocks orig_map;
1852
1853         memcpy(&orig_map, map, sizeof(*map));
1854 #endif
1855
1856         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1857                 invalid_block = ~0;
1858
1859         map->m_flags = 0;
1860         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1861                   "logical block %lu\n", inode->i_ino, map->m_len,
1862                   (unsigned long) map->m_lblk);
1863
1864         /* Lookup extent status tree firstly */
1865         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1866
1867                 if (ext4_es_is_hole(&es)) {
1868                         retval = 0;
1869                         down_read((&EXT4_I(inode)->i_data_sem));
1870                         goto add_delayed;
1871                 }
1872
1873                 /*
1874                  * Delayed extent could be allocated by fallocate.
1875                  * So we need to check it.
1876                  */
1877                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1878                         map_bh(bh, inode->i_sb, invalid_block);
1879                         set_buffer_new(bh);
1880                         set_buffer_delay(bh);
1881                         return 0;
1882                 }
1883
1884                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1885                 retval = es.es_len - (iblock - es.es_lblk);
1886                 if (retval > map->m_len)
1887                         retval = map->m_len;
1888                 map->m_len = retval;
1889                 if (ext4_es_is_written(&es))
1890                         map->m_flags |= EXT4_MAP_MAPPED;
1891                 else if (ext4_es_is_unwritten(&es))
1892                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1893                 else
1894                         BUG_ON(1);
1895
1896 #ifdef ES_AGGRESSIVE_TEST
1897                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1898 #endif
1899                 return retval;
1900         }
1901
1902         /*
1903          * Try to see if we can get the block without requesting a new
1904          * file system block.
1905          */
1906         down_read((&EXT4_I(inode)->i_data_sem));
1907         if (ext4_has_inline_data(inode)) {
1908                 /*
1909                  * We will soon create blocks for this page, and let
1910                  * us pretend as if the blocks aren't allocated yet.
1911                  * In case of clusters, we have to handle the work
1912                  * of mapping from cluster so that the reserved space
1913                  * is calculated properly.
1914                  */
1915                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1916                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1917                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1918                 retval = 0;
1919         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1920                 retval = ext4_ext_map_blocks(NULL, inode, map,
1921                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1922         else
1923                 retval = ext4_ind_map_blocks(NULL, inode, map,
1924                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1925
1926 add_delayed:
1927         if (retval == 0) {
1928                 int ret;
1929                 /*
1930                  * XXX: __block_prepare_write() unmaps passed block,
1931                  * is it OK?
1932                  */
1933                 /* If the block was allocated from previously allocated cluster,
1934                  * then we dont need to reserve it again. */
1935                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1936                         ret = ext4_da_reserve_space(inode, iblock);
1937                         if (ret) {
1938                                 /* not enough space to reserve */
1939                                 retval = ret;
1940                                 goto out_unlock;
1941                         }
1942                 }
1943
1944                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1945                                             ~0, EXTENT_STATUS_DELAYED);
1946                 if (ret) {
1947                         retval = ret;
1948                         goto out_unlock;
1949                 }
1950
1951                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1952                  * and it should not appear on the bh->b_state.
1953                  */
1954                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1955
1956                 map_bh(bh, inode->i_sb, invalid_block);
1957                 set_buffer_new(bh);
1958                 set_buffer_delay(bh);
1959         } else if (retval > 0) {
1960                 int ret;
1961                 unsigned long long status;
1962
1963 #ifdef ES_AGGRESSIVE_TEST
1964                 if (retval != map->m_len) {
1965                         printk("ES len assertation failed for inode: %lu "
1966                                "retval %d != map->m_len %d "
1967                                "in %s (lookup)\n", inode->i_ino, retval,
1968                                map->m_len, __func__);
1969                 }
1970 #endif
1971
1972                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1973                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1974                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1975                                             map->m_pblk, status);
1976                 if (ret != 0)
1977                         retval = ret;
1978         }
1979
1980 out_unlock:
1981         up_read((&EXT4_I(inode)->i_data_sem));
1982
1983         return retval;
1984 }
1985
1986 /*
1987  * This is a special get_blocks_t callback which is used by
1988  * ext4_da_write_begin().  It will either return mapped block or
1989  * reserve space for a single block.
1990  *
1991  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1992  * We also have b_blocknr = -1 and b_bdev initialized properly
1993  *
1994  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1995  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1996  * initialized properly.
1997  */
1998 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1999                            struct buffer_head *bh, int create)
2000 {
2001         struct ext4_map_blocks map;
2002         int ret = 0;
2003
2004         BUG_ON(create == 0);
2005         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2006
2007         map.m_lblk = iblock;
2008         map.m_len = 1;
2009
2010         /*
2011          * first, we need to know whether the block is allocated already
2012          * preallocated blocks are unmapped but should treated
2013          * the same as allocated blocks.
2014          */
2015         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2016         if (ret <= 0)
2017                 return ret;
2018
2019         map_bh(bh, inode->i_sb, map.m_pblk);
2020         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2021
2022         if (buffer_unwritten(bh)) {
2023                 /* A delayed write to unwritten bh should be marked
2024                  * new and mapped.  Mapped ensures that we don't do
2025                  * get_block multiple times when we write to the same
2026                  * offset and new ensures that we do proper zero out
2027                  * for partial write.
2028                  */
2029                 set_buffer_new(bh);
2030                 set_buffer_mapped(bh);
2031         }
2032         return 0;
2033 }
2034
2035 static int bget_one(handle_t *handle, struct buffer_head *bh)
2036 {
2037         get_bh(bh);
2038         return 0;
2039 }
2040
2041 static int bput_one(handle_t *handle, struct buffer_head *bh)
2042 {
2043         put_bh(bh);
2044         return 0;
2045 }
2046
2047 static int __ext4_journalled_writepage(struct page *page,
2048                                        unsigned int len)
2049 {
2050         struct address_space *mapping = page->mapping;
2051         struct inode *inode = mapping->host;
2052         struct buffer_head *page_bufs = NULL;
2053         handle_t *handle = NULL;
2054         int ret = 0, err = 0;
2055         int inline_data = ext4_has_inline_data(inode);
2056         struct buffer_head *inode_bh = NULL;
2057
2058         ClearPageChecked(page);
2059
2060         if (inline_data) {
2061                 BUG_ON(page->index != 0);
2062                 BUG_ON(len > ext4_get_max_inline_size(inode));
2063                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2064                 if (inode_bh == NULL)
2065                         goto out;
2066         } else {
2067                 page_bufs = page_buffers(page);
2068                 if (!page_bufs) {
2069                         BUG();
2070                         goto out;
2071                 }
2072                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2073                                        NULL, bget_one);
2074         }
2075         /* As soon as we unlock the page, it can go away, but we have
2076          * references to buffers so we are safe */
2077         unlock_page(page);
2078
2079         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2080                                     ext4_writepage_trans_blocks(inode));
2081         if (IS_ERR(handle)) {
2082                 ret = PTR_ERR(handle);
2083                 goto out;
2084         }
2085
2086         BUG_ON(!ext4_handle_valid(handle));
2087
2088         if (inline_data) {
2089                 ret = ext4_journal_get_write_access(handle, inode_bh);
2090
2091                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2092
2093         } else {
2094                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2095                                              do_journal_get_write_access);
2096
2097                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2098                                              write_end_fn);
2099         }
2100         if (ret == 0)
2101                 ret = err;
2102         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2103         err = ext4_journal_stop(handle);
2104         if (!ret)
2105                 ret = err;
2106
2107         if (!ext4_has_inline_data(inode))
2108                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2109                                        NULL, bput_one);
2110         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2111 out:
2112         brelse(inode_bh);
2113         return ret;
2114 }
2115
2116 /*
2117  * Note that we don't need to start a transaction unless we're journaling data
2118  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2119  * need to file the inode to the transaction's list in ordered mode because if
2120  * we are writing back data added by write(), the inode is already there and if
2121  * we are writing back data modified via mmap(), no one guarantees in which
2122  * transaction the data will hit the disk. In case we are journaling data, we
2123  * cannot start transaction directly because transaction start ranks above page
2124  * lock so we have to do some magic.
2125  *
2126  * This function can get called via...
2127  *   - ext4_da_writepages after taking page lock (have journal handle)
2128  *   - journal_submit_inode_data_buffers (no journal handle)
2129  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2130  *   - grab_page_cache when doing write_begin (have journal handle)
2131  *
2132  * We don't do any block allocation in this function. If we have page with
2133  * multiple blocks we need to write those buffer_heads that are mapped. This
2134  * is important for mmaped based write. So if we do with blocksize 1K
2135  * truncate(f, 1024);
2136  * a = mmap(f, 0, 4096);
2137  * a[0] = 'a';
2138  * truncate(f, 4096);
2139  * we have in the page first buffer_head mapped via page_mkwrite call back
2140  * but other buffer_heads would be unmapped but dirty (dirty done via the
2141  * do_wp_page). So writepage should write the first block. If we modify
2142  * the mmap area beyond 1024 we will again get a page_fault and the
2143  * page_mkwrite callback will do the block allocation and mark the
2144  * buffer_heads mapped.
2145  *
2146  * We redirty the page if we have any buffer_heads that is either delay or
2147  * unwritten in the page.
2148  *
2149  * We can get recursively called as show below.
2150  *
2151  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2152  *              ext4_writepage()
2153  *
2154  * But since we don't do any block allocation we should not deadlock.
2155  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2156  */
2157 static int ext4_writepage(struct page *page,
2158                           struct writeback_control *wbc)
2159 {
2160         int ret = 0;
2161         loff_t size;
2162         unsigned int len;
2163         struct buffer_head *page_bufs = NULL;
2164         struct inode *inode = page->mapping->host;
2165         struct ext4_io_submit io_submit;
2166
2167         trace_ext4_writepage(page);
2168         size = i_size_read(inode);
2169         if (page->index == size >> PAGE_CACHE_SHIFT)
2170                 len = size & ~PAGE_CACHE_MASK;
2171         else
2172                 len = PAGE_CACHE_SIZE;
2173
2174         page_bufs = page_buffers(page);
2175         /*
2176          * We cannot do block allocation or other extent handling in this
2177          * function. If there are buffers needing that, we have to redirty
2178          * the page. But we may reach here when we do a journal commit via
2179          * journal_submit_inode_data_buffers() and in that case we must write
2180          * allocated buffers to achieve data=ordered mode guarantees.
2181          */
2182         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2183                                    ext4_bh_delay_or_unwritten)) {
2184                 redirty_page_for_writepage(wbc, page);
2185                 if (current->flags & PF_MEMALLOC) {
2186                         /*
2187                          * For memory cleaning there's no point in writing only
2188                          * some buffers. So just bail out. Warn if we came here
2189                          * from direct reclaim.
2190                          */
2191                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2192                                                         == PF_MEMALLOC);
2193                         unlock_page(page);
2194                         return 0;
2195                 }
2196         }
2197
2198         if (PageChecked(page) && ext4_should_journal_data(inode))
2199                 /*
2200                  * It's mmapped pagecache.  Add buffers and journal it.  There
2201                  * doesn't seem much point in redirtying the page here.
2202                  */
2203                 return __ext4_journalled_writepage(page, len);
2204
2205         memset(&io_submit, 0, sizeof(io_submit));
2206         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2207         ext4_io_submit(&io_submit);
2208         return ret;
2209 }
2210
2211 /*
2212  * This is called via ext4_da_writepages() to
2213  * calculate the total number of credits to reserve to fit
2214  * a single extent allocation into a single transaction,
2215  * ext4_da_writpeages() will loop calling this before
2216  * the block allocation.
2217  */
2218
2219 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2220 {
2221         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2222
2223         /*
2224          * With non-extent format the journal credit needed to
2225          * insert nrblocks contiguous block is dependent on
2226          * number of contiguous block. So we will limit
2227          * number of contiguous block to a sane value
2228          */
2229         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2230             (max_blocks > EXT4_MAX_TRANS_DATA))
2231                 max_blocks = EXT4_MAX_TRANS_DATA;
2232
2233         return ext4_chunk_trans_blocks(inode, max_blocks);
2234 }
2235
2236 /*
2237  * write_cache_pages_da - walk the list of dirty pages of the given
2238  * address space and accumulate pages that need writing, and call
2239  * mpage_da_map_and_submit to map a single contiguous memory region
2240  * and then write them.
2241  */
2242 static int write_cache_pages_da(handle_t *handle,
2243                                 struct address_space *mapping,
2244                                 struct writeback_control *wbc,
2245                                 struct mpage_da_data *mpd,
2246                                 pgoff_t *done_index)
2247 {
2248         struct buffer_head      *bh, *head;
2249         struct inode            *inode = mapping->host;
2250         struct pagevec          pvec;
2251         unsigned int            nr_pages;
2252         sector_t                logical;
2253         pgoff_t                 index, end;
2254         long                    nr_to_write = wbc->nr_to_write;
2255         int                     i, tag, ret = 0;
2256
2257         memset(mpd, 0, sizeof(struct mpage_da_data));
2258         mpd->wbc = wbc;
2259         mpd->inode = inode;
2260         pagevec_init(&pvec, 0);
2261         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2262         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2263
2264         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2265                 tag = PAGECACHE_TAG_TOWRITE;
2266         else
2267                 tag = PAGECACHE_TAG_DIRTY;
2268
2269         *done_index = index;
2270         while (index <= end) {
2271                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2272                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2273                 if (nr_pages == 0)
2274                         return 0;
2275
2276                 for (i = 0; i < nr_pages; i++) {
2277                         struct page *page = pvec.pages[i];
2278
2279                         /*
2280                          * At this point, the page may be truncated or
2281                          * invalidated (changing page->mapping to NULL), or
2282                          * even swizzled back from swapper_space to tmpfs file
2283                          * mapping. However, page->index will not change
2284                          * because we have a reference on the page.
2285                          */
2286                         if (page->index > end)
2287                                 goto out;
2288
2289                         *done_index = page->index + 1;
2290
2291                         /*
2292                          * If we can't merge this page, and we have
2293                          * accumulated an contiguous region, write it
2294                          */
2295                         if ((mpd->next_page != page->index) &&
2296                             (mpd->next_page != mpd->first_page)) {
2297                                 mpage_da_map_and_submit(mpd);
2298                                 goto ret_extent_tail;
2299                         }
2300
2301                         lock_page(page);
2302
2303                         /*
2304                          * If the page is no longer dirty, or its
2305                          * mapping no longer corresponds to inode we
2306                          * are writing (which means it has been
2307                          * truncated or invalidated), or the page is
2308                          * already under writeback and we are not
2309                          * doing a data integrity writeback, skip the page
2310                          */
2311                         if (!PageDirty(page) ||
2312                             (PageWriteback(page) &&
2313                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2314                             unlikely(page->mapping != mapping)) {
2315                                 unlock_page(page);
2316                                 continue;
2317                         }
2318
2319                         wait_on_page_writeback(page);
2320                         BUG_ON(PageWriteback(page));
2321
2322                         /*
2323                          * If we have inline data and arrive here, it means that
2324                          * we will soon create the block for the 1st page, so
2325                          * we'd better clear the inline data here.
2326                          */
2327                         if (ext4_has_inline_data(inode)) {
2328                                 BUG_ON(ext4_test_inode_state(inode,
2329                                                 EXT4_STATE_MAY_INLINE_DATA));
2330                                 ext4_destroy_inline_data(handle, inode);
2331                         }
2332
2333                         if (mpd->next_page != page->index)
2334                                 mpd->first_page = page->index;
2335                         mpd->next_page = page->index + 1;
2336                         logical = (sector_t) page->index <<
2337                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2338
2339                         /* Add all dirty buffers to mpd */
2340                         head = page_buffers(page);
2341                         bh = head;
2342                         do {
2343                                 BUG_ON(buffer_locked(bh));
2344                                 /*
2345                                  * We need to try to allocate unmapped blocks
2346                                  * in the same page.  Otherwise we won't make
2347                                  * progress with the page in ext4_writepage
2348                                  */
2349                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2350                                         mpage_add_bh_to_extent(mpd, logical,
2351                                                                bh->b_state);
2352                                         if (mpd->io_done)
2353                                                 goto ret_extent_tail;
2354                                 } else if (buffer_dirty(bh) &&
2355                                            buffer_mapped(bh)) {
2356                                         /*
2357                                          * mapped dirty buffer. We need to
2358                                          * update the b_state because we look
2359                                          * at b_state in mpage_da_map_blocks.
2360                                          * We don't update b_size because if we
2361                                          * find an unmapped buffer_head later
2362                                          * we need to use the b_state flag of
2363                                          * that buffer_head.
2364                                          */
2365                                         if (mpd->b_size == 0)
2366                                                 mpd->b_state =
2367                                                         bh->b_state & BH_FLAGS;
2368                                 }
2369                                 logical++;
2370                         } while ((bh = bh->b_this_page) != head);
2371
2372                         if (nr_to_write > 0) {
2373                                 nr_to_write--;
2374                                 if (nr_to_write == 0 &&
2375                                     wbc->sync_mode == WB_SYNC_NONE)
2376                                         /*
2377                                          * We stop writing back only if we are
2378                                          * not doing integrity sync. In case of
2379                                          * integrity sync we have to keep going
2380                                          * because someone may be concurrently
2381                                          * dirtying pages, and we might have
2382                                          * synced a lot of newly appeared dirty
2383                                          * pages, but have not synced all of the
2384                                          * old dirty pages.
2385                                          */
2386                                         goto out;
2387                         }
2388                 }
2389                 pagevec_release(&pvec);
2390                 cond_resched();
2391         }
2392         return 0;
2393 ret_extent_tail:
2394         ret = MPAGE_DA_EXTENT_TAIL;
2395 out:
2396         pagevec_release(&pvec);
2397         cond_resched();
2398         return ret;
2399 }
2400
2401
2402 static int ext4_da_writepages(struct address_space *mapping,
2403                               struct writeback_control *wbc)
2404 {
2405         pgoff_t index;
2406         int range_whole = 0;
2407         handle_t *handle = NULL;
2408         struct mpage_da_data mpd;
2409         struct inode *inode = mapping->host;
2410         int pages_written = 0;
2411         unsigned int max_pages;
2412         int range_cyclic, cycled = 1, io_done = 0;
2413         int needed_blocks, ret = 0;
2414         long desired_nr_to_write, nr_to_writebump = 0;
2415         loff_t range_start = wbc->range_start;
2416         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2417         pgoff_t done_index = 0;
2418         pgoff_t end;
2419         struct blk_plug plug;
2420
2421         trace_ext4_da_writepages(inode, wbc);
2422
2423         /*
2424          * No pages to write? This is mainly a kludge to avoid starting
2425          * a transaction for special inodes like journal inode on last iput()
2426          * because that could violate lock ordering on umount
2427          */
2428         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2429                 return 0;
2430
2431         /*
2432          * If the filesystem has aborted, it is read-only, so return
2433          * right away instead of dumping stack traces later on that
2434          * will obscure the real source of the problem.  We test
2435          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2436          * the latter could be true if the filesystem is mounted
2437          * read-only, and in that case, ext4_da_writepages should
2438          * *never* be called, so if that ever happens, we would want
2439          * the stack trace.
2440          */
2441         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2442                 return -EROFS;
2443
2444         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2445                 range_whole = 1;
2446
2447         range_cyclic = wbc->range_cyclic;
2448         if (wbc->range_cyclic) {
2449                 index = mapping->writeback_index;
2450                 if (index)
2451                         cycled = 0;
2452                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2453                 wbc->range_end  = LLONG_MAX;
2454                 wbc->range_cyclic = 0;
2455                 end = -1;
2456         } else {
2457                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2458                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2459         }
2460
2461         /*
2462          * This works around two forms of stupidity.  The first is in
2463          * the writeback code, which caps the maximum number of pages
2464          * written to be 1024 pages.  This is wrong on multiple
2465          * levels; different architectues have a different page size,
2466          * which changes the maximum amount of data which gets
2467          * written.  Secondly, 4 megabytes is way too small.  XFS
2468          * forces this value to be 16 megabytes by multiplying
2469          * nr_to_write parameter by four, and then relies on its
2470          * allocator to allocate larger extents to make them
2471          * contiguous.  Unfortunately this brings us to the second
2472          * stupidity, which is that ext4's mballoc code only allocates
2473          * at most 2048 blocks.  So we force contiguous writes up to
2474          * the number of dirty blocks in the inode, or
2475          * sbi->max_writeback_mb_bump whichever is smaller.
2476          */
2477         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2478         if (!range_cyclic && range_whole) {
2479                 if (wbc->nr_to_write == LONG_MAX)
2480                         desired_nr_to_write = wbc->nr_to_write;
2481                 else
2482                         desired_nr_to_write = wbc->nr_to_write * 8;
2483         } else
2484                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2485                                                            max_pages);
2486         if (desired_nr_to_write > max_pages)
2487                 desired_nr_to_write = max_pages;
2488
2489         if (wbc->nr_to_write < desired_nr_to_write) {
2490                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2491                 wbc->nr_to_write = desired_nr_to_write;
2492         }
2493
2494 retry:
2495         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2496                 tag_pages_for_writeback(mapping, index, end);
2497
2498         blk_start_plug(&plug);
2499         while (!ret && wbc->nr_to_write > 0) {
2500
2501                 /*
2502                  * we  insert one extent at a time. So we need
2503                  * credit needed for single extent allocation.
2504                  * journalled mode is currently not supported
2505                  * by delalloc
2506                  */
2507                 BUG_ON(ext4_should_journal_data(inode));
2508                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2509
2510                 /* start a new transaction*/
2511                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2512                                             needed_blocks);
2513                 if (IS_ERR(handle)) {
2514                         ret = PTR_ERR(handle);
2515                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2516                                "%ld pages, ino %lu; err %d", __func__,
2517                                 wbc->nr_to_write, inode->i_ino, ret);
2518                         blk_finish_plug(&plug);
2519                         goto out_writepages;
2520                 }
2521
2522                 /*
2523                  * Now call write_cache_pages_da() to find the next
2524                  * contiguous region of logical blocks that need
2525                  * blocks to be allocated by ext4 and submit them.
2526                  */
2527                 ret = write_cache_pages_da(handle, mapping,
2528                                            wbc, &mpd, &done_index);
2529                 /*
2530                  * If we have a contiguous extent of pages and we
2531                  * haven't done the I/O yet, map the blocks and submit
2532                  * them for I/O.
2533                  */
2534                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2535                         mpage_da_map_and_submit(&mpd);
2536                         ret = MPAGE_DA_EXTENT_TAIL;
2537                 }
2538                 trace_ext4_da_write_pages(inode, &mpd);
2539                 wbc->nr_to_write -= mpd.pages_written;
2540
2541                 ext4_journal_stop(handle);
2542
2543                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2544                         /* commit the transaction which would
2545                          * free blocks released in the transaction
2546                          * and try again
2547                          */
2548                         jbd2_journal_force_commit_nested(sbi->s_journal);
2549                         ret = 0;
2550                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2551                         /*
2552                          * Got one extent now try with rest of the pages.
2553                          * If mpd.retval is set -EIO, journal is aborted.
2554                          * So we don't need to write any more.
2555                          */
2556                         pages_written += mpd.pages_written;
2557                         ret = mpd.retval;
2558                         io_done = 1;
2559                 } else if (wbc->nr_to_write)
2560                         /*
2561                          * There is no more writeout needed
2562                          * or we requested for a noblocking writeout
2563                          * and we found the device congested
2564                          */
2565                         break;
2566         }
2567         blk_finish_plug(&plug);
2568         if (!io_done && !cycled) {
2569                 cycled = 1;
2570                 index = 0;
2571                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2572                 wbc->range_end  = mapping->writeback_index - 1;
2573                 goto retry;
2574         }
2575
2576         /* Update index */
2577         wbc->range_cyclic = range_cyclic;
2578         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2579                 /*
2580                  * set the writeback_index so that range_cyclic
2581                  * mode will write it back later
2582                  */
2583                 mapping->writeback_index = done_index;
2584
2585 out_writepages:
2586         wbc->nr_to_write -= nr_to_writebump;
2587         wbc->range_start = range_start;
2588         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2589         return ret;
2590 }
2591
2592 static int ext4_nonda_switch(struct super_block *sb)
2593 {
2594         s64 free_blocks, dirty_blocks;
2595         struct ext4_sb_info *sbi = EXT4_SB(sb);
2596
2597         /*
2598          * switch to non delalloc mode if we are running low
2599          * on free block. The free block accounting via percpu
2600          * counters can get slightly wrong with percpu_counter_batch getting
2601          * accumulated on each CPU without updating global counters
2602          * Delalloc need an accurate free block accounting. So switch
2603          * to non delalloc when we are near to error range.
2604          */
2605         free_blocks  = EXT4_C2B(sbi,
2606                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2607         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2608         /*
2609          * Start pushing delalloc when 1/2 of free blocks are dirty.
2610          */
2611         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2612             !writeback_in_progress(sb->s_bdi) &&
2613             down_read_trylock(&sb->s_umount)) {
2614                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2615                 up_read(&sb->s_umount);
2616         }
2617
2618         if (2 * free_blocks < 3 * dirty_blocks ||
2619                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2620                 /*
2621                  * free block count is less than 150% of dirty blocks
2622                  * or free blocks is less than watermark
2623                  */
2624                 return 1;
2625         }
2626         return 0;
2627 }
2628
2629 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2630                                loff_t pos, unsigned len, unsigned flags,
2631                                struct page **pagep, void **fsdata)
2632 {
2633         int ret, retries = 0;
2634         struct page *page;
2635         pgoff_t index;
2636         struct inode *inode = mapping->host;
2637         handle_t *handle;
2638
2639         index = pos >> PAGE_CACHE_SHIFT;
2640
2641         if (ext4_nonda_switch(inode->i_sb)) {
2642                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2643                 return ext4_write_begin(file, mapping, pos,
2644                                         len, flags, pagep, fsdata);
2645         }
2646         *fsdata = (void *)0;
2647         trace_ext4_da_write_begin(inode, pos, len, flags);
2648
2649         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2650                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2651                                                       pos, len, flags,
2652                                                       pagep, fsdata);
2653                 if (ret < 0)
2654                         return ret;
2655                 if (ret == 1)
2656                         return 0;
2657         }
2658
2659         /*
2660          * grab_cache_page_write_begin() can take a long time if the
2661          * system is thrashing due to memory pressure, or if the page
2662          * is being written back.  So grab it first before we start
2663          * the transaction handle.  This also allows us to allocate
2664          * the page (if needed) without using GFP_NOFS.
2665          */
2666 retry_grab:
2667         page = grab_cache_page_write_begin(mapping, index, flags);
2668         if (!page)
2669                 return -ENOMEM;
2670         unlock_page(page);
2671
2672         /*
2673          * With delayed allocation, we don't log the i_disksize update
2674          * if there is delayed block allocation. But we still need
2675          * to journalling the i_disksize update if writes to the end
2676          * of file which has an already mapped buffer.
2677          */
2678 retry_journal:
2679         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2680         if (IS_ERR(handle)) {
2681                 page_cache_release(page);
2682                 return PTR_ERR(handle);
2683         }
2684
2685         lock_page(page);
2686         if (page->mapping != mapping) {
2687                 /* The page got truncated from under us */
2688                 unlock_page(page);
2689                 page_cache_release(page);
2690                 ext4_journal_stop(handle);
2691                 goto retry_grab;
2692         }
2693         /* In case writeback began while the page was unlocked */
2694         wait_on_page_writeback(page);
2695
2696         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2697         if (ret < 0) {
2698                 unlock_page(page);
2699                 ext4_journal_stop(handle);
2700                 /*
2701                  * block_write_begin may have instantiated a few blocks
2702                  * outside i_size.  Trim these off again. Don't need
2703                  * i_size_read because we hold i_mutex.
2704                  */
2705                 if (pos + len > inode->i_size)
2706                         ext4_truncate_failed_write(inode);
2707
2708                 if (ret == -ENOSPC &&
2709                     ext4_should_retry_alloc(inode->i_sb, &retries))
2710                         goto retry_journal;
2711
2712                 page_cache_release(page);
2713                 return ret;
2714         }
2715
2716         *pagep = page;
2717         return ret;
2718 }
2719
2720 /*
2721  * Check if we should update i_disksize
2722  * when write to the end of file but not require block allocation
2723  */
2724 static int ext4_da_should_update_i_disksize(struct page *page,
2725                                             unsigned long offset)
2726 {
2727         struct buffer_head *bh;
2728         struct inode *inode = page->mapping->host;
2729         unsigned int idx;
2730         int i;
2731
2732         bh = page_buffers(page);
2733         idx = offset >> inode->i_blkbits;
2734
2735         for (i = 0; i < idx; i++)
2736                 bh = bh->b_this_page;
2737
2738         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2739                 return 0;
2740         return 1;
2741 }
2742
2743 static int ext4_da_write_end(struct file *file,
2744                              struct address_space *mapping,
2745                              loff_t pos, unsigned len, unsigned copied,
2746                              struct page *page, void *fsdata)
2747 {
2748         struct inode *inode = mapping->host;
2749         int ret = 0, ret2;
2750         handle_t *handle = ext4_journal_current_handle();
2751         loff_t new_i_size;
2752         unsigned long start, end;
2753         int write_mode = (int)(unsigned long)fsdata;
2754
2755         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2756                 switch (ext4_inode_journal_mode(inode)) {
2757                 case EXT4_INODE_ORDERED_DATA_MODE:
2758                         return ext4_ordered_write_end(file, mapping, pos,
2759                                         len, copied, page, fsdata);
2760                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2761                         return ext4_writeback_write_end(file, mapping, pos,
2762                                         len, copied, page, fsdata);
2763                 default:
2764                         BUG();
2765                 }
2766         }
2767
2768         trace_ext4_da_write_end(inode, pos, len, copied);
2769         start = pos & (PAGE_CACHE_SIZE - 1);
2770         end = start + copied - 1;
2771
2772         /*
2773          * generic_write_end() will run mark_inode_dirty() if i_size
2774          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2775          * into that.
2776          */
2777         new_i_size = pos + copied;
2778         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2779                 if (ext4_has_inline_data(inode) ||
2780                     ext4_da_should_update_i_disksize(page, end)) {
2781                         down_write(&EXT4_I(inode)->i_data_sem);
2782                         if (new_i_size > EXT4_I(inode)->i_disksize)
2783                                 EXT4_I(inode)->i_disksize = new_i_size;
2784                         up_write(&EXT4_I(inode)->i_data_sem);
2785                         /* We need to mark inode dirty even if
2786                          * new_i_size is less that inode->i_size
2787                          * bu greater than i_disksize.(hint delalloc)
2788                          */
2789                         ext4_mark_inode_dirty(handle, inode);
2790                 }
2791         }
2792
2793         if (write_mode != CONVERT_INLINE_DATA &&
2794             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2795             ext4_has_inline_data(inode))
2796                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2797                                                      page);
2798         else
2799                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2800                                                         page, fsdata);
2801
2802         copied = ret2;
2803         if (ret2 < 0)
2804                 ret = ret2;
2805         ret2 = ext4_journal_stop(handle);
2806         if (!ret)
2807                 ret = ret2;
2808
2809         return ret ? ret : copied;
2810 }
2811
2812 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2813 {
2814         /*
2815          * Drop reserved blocks
2816          */
2817         BUG_ON(!PageLocked(page));
2818         if (!page_has_buffers(page))
2819                 goto out;
2820
2821         ext4_da_page_release_reservation(page, offset);
2822
2823 out:
2824         ext4_invalidatepage(page, offset);
2825
2826         return;
2827 }
2828
2829 /*
2830  * Force all delayed allocation blocks to be allocated for a given inode.
2831  */
2832 int ext4_alloc_da_blocks(struct inode *inode)
2833 {
2834         trace_ext4_alloc_da_blocks(inode);
2835
2836         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2837             !EXT4_I(inode)->i_reserved_meta_blocks)
2838                 return 0;
2839
2840         /*
2841          * We do something simple for now.  The filemap_flush() will
2842          * also start triggering a write of the data blocks, which is
2843          * not strictly speaking necessary (and for users of
2844          * laptop_mode, not even desirable).  However, to do otherwise
2845          * would require replicating code paths in:
2846          *
2847          * ext4_da_writepages() ->
2848          *    write_cache_pages() ---> (via passed in callback function)
2849          *        __mpage_da_writepage() -->
2850          *           mpage_add_bh_to_extent()
2851          *           mpage_da_map_blocks()
2852          *
2853          * The problem is that write_cache_pages(), located in
2854          * mm/page-writeback.c, marks pages clean in preparation for
2855          * doing I/O, which is not desirable if we're not planning on
2856          * doing I/O at all.
2857          *
2858          * We could call write_cache_pages(), and then redirty all of
2859          * the pages by calling redirty_page_for_writepage() but that
2860          * would be ugly in the extreme.  So instead we would need to
2861          * replicate parts of the code in the above functions,
2862          * simplifying them because we wouldn't actually intend to
2863          * write out the pages, but rather only collect contiguous
2864          * logical block extents, call the multi-block allocator, and
2865          * then update the buffer heads with the block allocations.
2866          *
2867          * For now, though, we'll cheat by calling filemap_flush(),
2868          * which will map the blocks, and start the I/O, but not
2869          * actually wait for the I/O to complete.
2870          */
2871         return filemap_flush(inode->i_mapping);
2872 }
2873
2874 /*
2875  * bmap() is special.  It gets used by applications such as lilo and by
2876  * the swapper to find the on-disk block of a specific piece of data.
2877  *
2878  * Naturally, this is dangerous if the block concerned is still in the
2879  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2880  * filesystem and enables swap, then they may get a nasty shock when the
2881  * data getting swapped to that swapfile suddenly gets overwritten by
2882  * the original zero's written out previously to the journal and
2883  * awaiting writeback in the kernel's buffer cache.
2884  *
2885  * So, if we see any bmap calls here on a modified, data-journaled file,
2886  * take extra steps to flush any blocks which might be in the cache.
2887  */
2888 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2889 {
2890         struct inode *inode = mapping->host;
2891         journal_t *journal;
2892         int err;
2893
2894         /*
2895          * We can get here for an inline file via the FIBMAP ioctl
2896          */
2897         if (ext4_has_inline_data(inode))
2898                 return 0;
2899
2900         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2901                         test_opt(inode->i_sb, DELALLOC)) {
2902                 /*
2903                  * With delalloc we want to sync the file
2904                  * so that we can make sure we allocate
2905                  * blocks for file
2906                  */
2907                 filemap_write_and_wait(mapping);
2908         }
2909
2910         if (EXT4_JOURNAL(inode) &&
2911             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2912                 /*
2913                  * This is a REALLY heavyweight approach, but the use of
2914                  * bmap on dirty files is expected to be extremely rare:
2915                  * only if we run lilo or swapon on a freshly made file
2916                  * do we expect this to happen.
2917                  *
2918                  * (bmap requires CAP_SYS_RAWIO so this does not
2919                  * represent an unprivileged user DOS attack --- we'd be
2920                  * in trouble if mortal users could trigger this path at
2921                  * will.)
2922                  *
2923                  * NB. EXT4_STATE_JDATA is not set on files other than
2924                  * regular files.  If somebody wants to bmap a directory
2925                  * or symlink and gets confused because the buffer
2926                  * hasn't yet been flushed to disk, they deserve
2927                  * everything they get.
2928                  */
2929
2930                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2931                 journal = EXT4_JOURNAL(inode);
2932                 jbd2_journal_lock_updates(journal);
2933                 err = jbd2_journal_flush(journal);
2934                 jbd2_journal_unlock_updates(journal);
2935
2936                 if (err)
2937                         return 0;
2938         }
2939
2940         return generic_block_bmap(mapping, block, ext4_get_block);
2941 }
2942
2943 static int ext4_readpage(struct file *file, struct page *page)
2944 {
2945         int ret = -EAGAIN;
2946         struct inode *inode = page->mapping->host;
2947
2948         trace_ext4_readpage(page);
2949
2950         if (ext4_has_inline_data(inode))
2951                 ret = ext4_readpage_inline(inode, page);
2952
2953         if (ret == -EAGAIN)
2954                 return mpage_readpage(page, ext4_get_block);
2955
2956         return ret;
2957 }
2958
2959 static int
2960 ext4_readpages(struct file *file, struct address_space *mapping,
2961                 struct list_head *pages, unsigned nr_pages)
2962 {
2963         struct inode *inode = mapping->host;
2964
2965         /* If the file has inline data, no need to do readpages. */
2966         if (ext4_has_inline_data(inode))
2967                 return 0;
2968
2969         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2970 }
2971
2972 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2973 {
2974         trace_ext4_invalidatepage(page, offset);
2975
2976         /* No journalling happens on data buffers when this function is used */
2977         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2978
2979         block_invalidatepage(page, offset);
2980 }
2981
2982 static int __ext4_journalled_invalidatepage(struct page *page,
2983                                             unsigned long offset)
2984 {
2985         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2986
2987         trace_ext4_journalled_invalidatepage(page, offset);
2988
2989         /*
2990          * If it's a full truncate we just forget about the pending dirtying
2991          */
2992         if (offset == 0)
2993                 ClearPageChecked(page);
2994
2995         return jbd2_journal_invalidatepage(journal, page, offset);
2996 }
2997
2998 /* Wrapper for aops... */
2999 static void ext4_journalled_invalidatepage(struct page *page,
3000                                            unsigned long offset)
3001 {
3002         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3003 }
3004
3005 static int ext4_releasepage(struct page *page, gfp_t wait)
3006 {
3007         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3008
3009         trace_ext4_releasepage(page);
3010
3011         WARN_ON(PageChecked(page));
3012         if (!page_has_buffers(page))
3013                 return 0;
3014         if (journal)
3015                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3016         else
3017                 return try_to_free_buffers(page);
3018 }
3019
3020 /*
3021  * ext4_get_block used when preparing for a DIO write or buffer write.
3022  * We allocate an uinitialized extent if blocks haven't been allocated.
3023  * The extent will be converted to initialized after the IO is complete.
3024  */
3025 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3026                    struct buffer_head *bh_result, int create)
3027 {
3028         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3029                    inode->i_ino, create);
3030         return _ext4_get_block(inode, iblock, bh_result,
3031                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3032 }
3033
3034 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3035                    struct buffer_head *bh_result, int create)
3036 {
3037         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3038                    inode->i_ino, create);
3039         return _ext4_get_block(inode, iblock, bh_result,
3040                                EXT4_GET_BLOCKS_NO_LOCK);
3041 }
3042
3043 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3044                             ssize_t size, void *private, int ret,
3045                             bool is_async)
3046 {
3047         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
3048         ext4_io_end_t *io_end = iocb->private;
3049
3050         /* if not async direct IO or dio with 0 bytes write, just return */
3051         if (!io_end || !size)
3052                 goto out;
3053
3054         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3055                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3056                   iocb->private, io_end->inode->i_ino, iocb, offset,
3057                   size);
3058
3059         iocb->private = NULL;
3060
3061         /* if not aio dio with unwritten extents, just free io and return */
3062         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3063                 ext4_free_io_end(io_end);
3064 out:
3065                 inode_dio_done(inode);
3066                 if (is_async)
3067                         aio_complete(iocb, ret, 0);
3068                 return;
3069         }
3070
3071         io_end->offset = offset;
3072         io_end->size = size;
3073         if (is_async) {
3074                 io_end->iocb = iocb;
3075                 io_end->result = ret;
3076         }
3077
3078         ext4_add_complete_io(io_end);
3079 }
3080
3081 /*
3082  * For ext4 extent files, ext4 will do direct-io write to holes,
3083  * preallocated extents, and those write extend the file, no need to
3084  * fall back to buffered IO.
3085  *
3086  * For holes, we fallocate those blocks, mark them as uninitialized
3087  * If those blocks were preallocated, we mark sure they are split, but
3088  * still keep the range to write as uninitialized.
3089  *
3090  * The unwritten extents will be converted to written when DIO is completed.
3091  * For async direct IO, since the IO may still pending when return, we
3092  * set up an end_io call back function, which will do the conversion
3093  * when async direct IO completed.
3094  *
3095  * If the O_DIRECT write will extend the file then add this inode to the
3096  * orphan list.  So recovery will truncate it back to the original size
3097  * if the machine crashes during the write.
3098  *
3099  */
3100 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3101                               const struct iovec *iov, loff_t offset,
3102                               unsigned long nr_segs)
3103 {
3104         struct file *file = iocb->ki_filp;
3105         struct inode *inode = file->f_mapping->host;
3106         ssize_t ret;
3107         size_t count = iov_length(iov, nr_segs);
3108         int overwrite = 0;
3109         get_block_t *get_block_func = NULL;
3110         int dio_flags = 0;
3111         loff_t final_size = offset + count;
3112
3113         /* Use the old path for reads and writes beyond i_size. */
3114         if (rw != WRITE || final_size > inode->i_size)
3115                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3116
3117         BUG_ON(iocb->private == NULL);
3118
3119         /* If we do a overwrite dio, i_mutex locking can be released */
3120         overwrite = *((int *)iocb->private);
3121
3122         if (overwrite) {
3123                 atomic_inc(&inode->i_dio_count);
3124                 down_read(&EXT4_I(inode)->i_data_sem);
3125                 mutex_unlock(&inode->i_mutex);
3126         }
3127
3128         /*
3129          * We could direct write to holes and fallocate.
3130          *
3131          * Allocated blocks to fill the hole are marked as
3132          * uninitialized to prevent parallel buffered read to expose
3133          * the stale data before DIO complete the data IO.
3134          *
3135          * As to previously fallocated extents, ext4 get_block will
3136          * just simply mark the buffer mapped but still keep the
3137          * extents uninitialized.
3138          *
3139          * For non AIO case, we will convert those unwritten extents
3140          * to written after return back from blockdev_direct_IO.
3141          *
3142          * For async DIO, the conversion needs to be deferred when the
3143          * IO is completed. The ext4 end_io callback function will be
3144          * called to take care of the conversion work.  Here for async
3145          * case, we allocate an io_end structure to hook to the iocb.
3146          */
3147         iocb->private = NULL;
3148         ext4_inode_aio_set(inode, NULL);
3149         if (!is_sync_kiocb(iocb)) {
3150                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3151                 if (!io_end) {
3152                         ret = -ENOMEM;
3153                         goto retake_lock;
3154                 }
3155                 io_end->flag |= EXT4_IO_END_DIRECT;
3156                 iocb->private = io_end;
3157                 /*
3158                  * we save the io structure for current async direct
3159                  * IO, so that later ext4_map_blocks() could flag the
3160                  * io structure whether there is a unwritten extents
3161                  * needs to be converted when IO is completed.
3162                  */
3163                 ext4_inode_aio_set(inode, io_end);
3164         }
3165
3166         if (overwrite) {
3167                 get_block_func = ext4_get_block_write_nolock;
3168         } else {
3169                 get_block_func = ext4_get_block_write;
3170                 dio_flags = DIO_LOCKING;
3171         }
3172         ret = __blockdev_direct_IO(rw, iocb, inode,
3173                                    inode->i_sb->s_bdev, iov,
3174                                    offset, nr_segs,
3175                                    get_block_func,
3176                                    ext4_end_io_dio,
3177                                    NULL,
3178                                    dio_flags);
3179
3180         if (iocb->private)
3181                 ext4_inode_aio_set(inode, NULL);
3182         /*
3183          * The io_end structure takes a reference to the inode, that
3184          * structure needs to be destroyed and the reference to the
3185          * inode need to be dropped, when IO is complete, even with 0
3186          * byte write, or failed.
3187          *
3188          * In the successful AIO DIO case, the io_end structure will
3189          * be destroyed and the reference to the inode will be dropped
3190          * after the end_io call back function is called.
3191          *
3192          * In the case there is 0 byte write, or error case, since VFS
3193          * direct IO won't invoke the end_io call back function, we
3194          * need to free the end_io structure here.
3195          */
3196         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3197                 ext4_free_io_end(iocb->private);
3198                 iocb->private = NULL;
3199         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3200                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3201                 int err;
3202                 /*
3203                  * for non AIO case, since the IO is already
3204                  * completed, we could do the conversion right here
3205                  */
3206                 err = ext4_convert_unwritten_extents(inode,
3207                                                      offset, ret);
3208                 if (err < 0)
3209                         ret = err;
3210                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3211         }
3212
3213 retake_lock:
3214         /* take i_mutex locking again if we do a ovewrite dio */
3215         if (overwrite) {
3216                 inode_dio_done(inode);
3217                 up_read(&EXT4_I(inode)->i_data_sem);
3218                 mutex_lock(&inode->i_mutex);
3219         }
3220
3221         return ret;
3222 }
3223
3224 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3225                               const struct iovec *iov, loff_t offset,
3226                               unsigned long nr_segs)
3227 {
3228         struct file *file = iocb->ki_filp;
3229         struct inode *inode = file->f_mapping->host;
3230         ssize_t ret;
3231
3232         /*
3233          * If we are doing data journalling we don't support O_DIRECT
3234          */
3235         if (ext4_should_journal_data(inode))
3236                 return 0;
3237
3238         /* Let buffer I/O handle the inline data case. */
3239         if (ext4_has_inline_data(inode))
3240                 return 0;
3241
3242         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3243         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3244                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3245         else
3246                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3247         trace_ext4_direct_IO_exit(inode, offset,
3248                                 iov_length(iov, nr_segs), rw, ret);
3249         return ret;
3250 }
3251
3252 /*
3253  * Pages can be marked dirty completely asynchronously from ext4's journalling
3254  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3255  * much here because ->set_page_dirty is called under VFS locks.  The page is
3256  * not necessarily locked.
3257  *
3258  * We cannot just dirty the page and leave attached buffers clean, because the
3259  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3260  * or jbddirty because all the journalling code will explode.
3261  *
3262  * So what we do is to mark the page "pending dirty" and next time writepage
3263  * is called, propagate that into the buffers appropriately.
3264  */
3265 static int ext4_journalled_set_page_dirty(struct page *page)
3266 {
3267         SetPageChecked(page);
3268         return __set_page_dirty_nobuffers(page);
3269 }
3270
3271 static const struct address_space_operations ext4_ordered_aops = {
3272         .readpage               = ext4_readpage,
3273         .readpages              = ext4_readpages,
3274         .writepage              = ext4_writepage,
3275         .write_begin            = ext4_write_begin,
3276         .write_end              = ext4_ordered_write_end,
3277         .bmap                   = ext4_bmap,
3278         .invalidatepage         = ext4_invalidatepage,
3279         .releasepage            = ext4_releasepage,
3280         .direct_IO              = ext4_direct_IO,
3281         .migratepage            = buffer_migrate_page,
3282         .is_partially_uptodate  = block_is_partially_uptodate,
3283         .error_remove_page      = generic_error_remove_page,
3284 };
3285
3286 static const struct address_space_operations ext4_writeback_aops = {
3287         .readpage               = ext4_readpage,
3288         .readpages              = ext4_readpages,
3289         .writepage              = ext4_writepage,
3290         .write_begin            = ext4_write_begin,
3291         .write_end              = ext4_writeback_write_end,
3292         .bmap                   = ext4_bmap,
3293         .invalidatepage         = ext4_invalidatepage,
3294         .releasepage            = ext4_releasepage,
3295         .direct_IO              = ext4_direct_IO,
3296         .migratepage            = buffer_migrate_page,
3297         .is_partially_uptodate  = block_is_partially_uptodate,
3298         .error_remove_page      = generic_error_remove_page,
3299 };
3300
3301 static const struct address_space_operations ext4_journalled_aops = {
3302         .readpage               = ext4_readpage,
3303         .readpages              = ext4_readpages,
3304         .writepage              = ext4_writepage,
3305         .write_begin            = ext4_write_begin,
3306         .write_end              = ext4_journalled_write_end,
3307         .set_page_dirty         = ext4_journalled_set_page_dirty,
3308         .bmap                   = ext4_bmap,
3309         .invalidatepage         = ext4_journalled_invalidatepage,
3310         .releasepage            = ext4_releasepage,
3311         .direct_IO              = ext4_direct_IO,
3312         .is_partially_uptodate  = block_is_partially_uptodate,
3313         .error_remove_page      = generic_error_remove_page,
3314 };
3315
3316 static const struct address_space_operations ext4_da_aops = {
3317         .readpage               = ext4_readpage,
3318         .readpages              = ext4_readpages,
3319         .writepage              = ext4_writepage,
3320         .writepages             = ext4_da_writepages,
3321         .write_begin            = ext4_da_write_begin,
3322         .write_end              = ext4_da_write_end,
3323         .bmap                   = ext4_bmap,
3324         .invalidatepage         = ext4_da_invalidatepage,
3325         .releasepage            = ext4_releasepage,
3326         .direct_IO              = ext4_direct_IO,
3327         .migratepage            = buffer_migrate_page,
3328         .is_partially_uptodate  = block_is_partially_uptodate,
3329         .error_remove_page      = generic_error_remove_page,
3330 };
3331
3332 void ext4_set_aops(struct inode *inode)
3333 {
3334         switch (ext4_inode_journal_mode(inode)) {
3335         case EXT4_INODE_ORDERED_DATA_MODE:
3336                 if (test_opt(inode->i_sb, DELALLOC))
3337                         inode->i_mapping->a_ops = &ext4_da_aops;
3338                 else
3339                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3340                 break;
3341         case EXT4_INODE_WRITEBACK_DATA_MODE:
3342                 if (test_opt(inode->i_sb, DELALLOC))
3343                         inode->i_mapping->a_ops = &ext4_da_aops;
3344                 else
3345                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3346                 break;
3347         case EXT4_INODE_JOURNAL_DATA_MODE:
3348                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3349                 break;
3350         default:
3351                 BUG();
3352         }
3353 }
3354
3355
3356 /*
3357  * ext4_discard_partial_page_buffers()
3358  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3359  * This function finds and locks the page containing the offset
3360  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3361  * Calling functions that already have the page locked should call
3362  * ext4_discard_partial_page_buffers_no_lock directly.
3363  */
3364 int ext4_discard_partial_page_buffers(handle_t *handle,
3365                 struct address_space *mapping, loff_t from,
3366                 loff_t length, int flags)
3367 {
3368         struct inode *inode = mapping->host;
3369         struct page *page;
3370         int err = 0;
3371
3372         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3373                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3374         if (!page)
3375                 return -ENOMEM;
3376
3377         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3378                 from, length, flags);
3379
3380         unlock_page(page);
3381         page_cache_release(page);
3382         return err;
3383 }
3384
3385 /*
3386  * ext4_discard_partial_page_buffers_no_lock()
3387  * Zeros a page range of length 'length' starting from offset 'from'.
3388  * Buffer heads that correspond to the block aligned regions of the
3389  * zeroed range will be unmapped.  Unblock aligned regions
3390  * will have the corresponding buffer head mapped if needed so that
3391  * that region of the page can be updated with the partial zero out.
3392  *
3393  * This function assumes that the page has already been  locked.  The
3394  * The range to be discarded must be contained with in the given page.
3395  * If the specified range exceeds the end of the page it will be shortened
3396  * to the end of the page that corresponds to 'from'.  This function is
3397  * appropriate for updating a page and it buffer heads to be unmapped and
3398  * zeroed for blocks that have been either released, or are going to be
3399  * released.
3400  *
3401  * handle: The journal handle
3402  * inode:  The files inode
3403  * page:   A locked page that contains the offset "from"
3404  * from:   The starting byte offset (from the beginning of the file)
3405  *         to begin discarding
3406  * len:    The length of bytes to discard
3407  * flags:  Optional flags that may be used:
3408  *
3409  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3410  *         Only zero the regions of the page whose buffer heads
3411  *         have already been unmapped.  This flag is appropriate
3412  *         for updating the contents of a page whose blocks may
3413  *         have already been released, and we only want to zero
3414  *         out the regions that correspond to those released blocks.
3415  *
3416  * Returns zero on success or negative on failure.
3417  */
3418 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3419                 struct inode *inode, struct page *page, loff_t from,
3420                 loff_t length, int flags)
3421 {
3422         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3423         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3424         unsigned int blocksize, max, pos;
3425         ext4_lblk_t iblock;
3426         struct buffer_head *bh;
3427         int err = 0;
3428
3429         blocksize = inode->i_sb->s_blocksize;
3430         max = PAGE_CACHE_SIZE - offset;
3431
3432         if (index != page->index)
3433                 return -EINVAL;
3434
3435         /*
3436          * correct length if it does not fall between
3437          * 'from' and the end of the page
3438          */
3439         if (length > max || length < 0)
3440                 length = max;
3441
3442         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3443
3444         if (!page_has_buffers(page))
3445                 create_empty_buffers(page, blocksize, 0);
3446
3447         /* Find the buffer that contains "offset" */
3448         bh = page_buffers(page);
3449         pos = blocksize;
3450         while (offset >= pos) {
3451                 bh = bh->b_this_page;
3452                 iblock++;
3453                 pos += blocksize;
3454         }
3455
3456         pos = offset;
3457         while (pos < offset + length) {
3458                 unsigned int end_of_block, range_to_discard;
3459
3460                 err = 0;
3461
3462                 /* The length of space left to zero and unmap */
3463                 range_to_discard = offset + length - pos;
3464
3465                 /* The length of space until the end of the block */
3466                 end_of_block = blocksize - (pos & (blocksize-1));
3467
3468                 /*
3469                  * Do not unmap or zero past end of block
3470                  * for this buffer head
3471                  */
3472                 if (range_to_discard > end_of_block)
3473                         range_to_discard = end_of_block;
3474
3475
3476                 /*
3477                  * Skip this buffer head if we are only zeroing unampped
3478                  * regions of the page
3479                  */
3480                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3481                         buffer_mapped(bh))
3482                                 goto next;
3483
3484                 /* If the range is block aligned, unmap */
3485                 if (range_to_discard == blocksize) {
3486                         clear_buffer_dirty(bh);
3487                         bh->b_bdev = NULL;
3488                         clear_buffer_mapped(bh);
3489                         clear_buffer_req(bh);
3490                         clear_buffer_new(bh);
3491                         clear_buffer_delay(bh);
3492                         clear_buffer_unwritten(bh);
3493                         clear_buffer_uptodate(bh);
3494                         zero_user(page, pos, range_to_discard);
3495                         BUFFER_TRACE(bh, "Buffer discarded");
3496                         goto next;
3497                 }
3498
3499                 /*
3500                  * If this block is not completely contained in the range
3501                  * to be discarded, then it is not going to be released. Because
3502                  * we need to keep this block, we need to make sure this part
3503                  * of the page is uptodate before we modify it by writeing
3504                  * partial zeros on it.
3505                  */
3506                 if (!buffer_mapped(bh)) {
3507                         /*
3508                          * Buffer head must be mapped before we can read
3509                          * from the block
3510                          */
3511                         BUFFER_TRACE(bh, "unmapped");
3512                         ext4_get_block(inode, iblock, bh, 0);
3513                         /* unmapped? It's a hole - nothing to do */
3514                         if (!buffer_mapped(bh)) {
3515                                 BUFFER_TRACE(bh, "still unmapped");
3516                                 goto next;
3517                         }
3518                 }
3519
3520                 /* Ok, it's mapped. Make sure it's up-to-date */
3521                 if (PageUptodate(page))
3522                         set_buffer_uptodate(bh);
3523
3524                 if (!buffer_uptodate(bh)) {
3525                         err = -EIO;
3526                         ll_rw_block(READ, 1, &bh);
3527                         wait_on_buffer(bh);
3528                         /* Uhhuh. Read error. Complain and punt.*/
3529                         if (!buffer_uptodate(bh))
3530                                 goto next;
3531                 }
3532
3533                 if (ext4_should_journal_data(inode)) {
3534                         BUFFER_TRACE(bh, "get write access");
3535                         err = ext4_journal_get_write_access(handle, bh);
3536                         if (err)
3537                                 goto next;
3538                 }
3539
3540                 zero_user(page, pos, range_to_discard);
3541
3542                 err = 0;
3543                 if (ext4_should_journal_data(inode)) {
3544                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3545                 } else
3546                         mark_buffer_dirty(bh);
3547
3548                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3549 next:
3550                 bh = bh->b_this_page;
3551                 iblock++;
3552                 pos += range_to_discard;
3553         }
3554
3555         return err;
3556 }
3557
3558 int ext4_can_truncate(struct inode *inode)
3559 {
3560         if (S_ISREG(inode->i_mode))
3561                 return 1;
3562         if (S_ISDIR(inode->i_mode))
3563                 return 1;
3564         if (S_ISLNK(inode->i_mode))
3565                 return !ext4_inode_is_fast_symlink(inode);
3566         return 0;
3567 }
3568
3569 /*
3570  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3571  * associated with the given offset and length
3572  *
3573  * @inode:  File inode
3574  * @offset: The offset where the hole will begin
3575  * @len:    The length of the hole
3576  *
3577  * Returns: 0 on success or negative on failure
3578  */
3579
3580 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3581 {
3582         struct inode *inode = file->f_path.dentry->d_inode;
3583         if (!S_ISREG(inode->i_mode))
3584                 return -EOPNOTSUPP;
3585
3586         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3587                 return ext4_ind_punch_hole(file, offset, length);
3588
3589         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3590                 /* TODO: Add support for bigalloc file systems */
3591                 return -EOPNOTSUPP;
3592         }
3593
3594         trace_ext4_punch_hole(inode, offset, length);
3595
3596         return ext4_ext_punch_hole(file, offset, length);
3597 }
3598
3599 /*
3600  * ext4_truncate()
3601  *
3602  * We block out ext4_get_block() block instantiations across the entire
3603  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3604  * simultaneously on behalf of the same inode.
3605  *
3606  * As we work through the truncate and commit bits of it to the journal there
3607  * is one core, guiding principle: the file's tree must always be consistent on
3608  * disk.  We must be able to restart the truncate after a crash.
3609  *
3610  * The file's tree may be transiently inconsistent in memory (although it
3611  * probably isn't), but whenever we close off and commit a journal transaction,
3612  * the contents of (the filesystem + the journal) must be consistent and
3613  * restartable.  It's pretty simple, really: bottom up, right to left (although
3614  * left-to-right works OK too).
3615  *
3616  * Note that at recovery time, journal replay occurs *before* the restart of
3617  * truncate against the orphan inode list.
3618  *
3619  * The committed inode has the new, desired i_size (which is the same as
3620  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3621  * that this inode's truncate did not complete and it will again call
3622  * ext4_truncate() to have another go.  So there will be instantiated blocks
3623  * to the right of the truncation point in a crashed ext4 filesystem.  But
3624  * that's fine - as long as they are linked from the inode, the post-crash
3625  * ext4_truncate() run will find them and release them.
3626  */
3627 void ext4_truncate(struct inode *inode)
3628 {
3629         trace_ext4_truncate_enter(inode);
3630
3631         if (!ext4_can_truncate(inode))
3632                 return;
3633
3634         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3635
3636         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3637                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3638
3639         if (ext4_has_inline_data(inode)) {
3640                 int has_inline = 1;
3641
3642                 ext4_inline_data_truncate(inode, &has_inline);
3643                 if (has_inline)
3644                         return;
3645         }
3646
3647         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3648                 ext4_ext_truncate(inode);
3649         else
3650                 ext4_ind_truncate(inode);
3651
3652         trace_ext4_truncate_exit(inode);
3653 }
3654
3655 /*
3656  * ext4_get_inode_loc returns with an extra refcount against the inode's
3657  * underlying buffer_head on success. If 'in_mem' is true, we have all
3658  * data in memory that is needed to recreate the on-disk version of this
3659  * inode.
3660  */
3661 static int __ext4_get_inode_loc(struct inode *inode,
3662                                 struct ext4_iloc *iloc, int in_mem)
3663 {
3664         struct ext4_group_desc  *gdp;
3665         struct buffer_head      *bh;
3666         struct super_block      *sb = inode->i_sb;
3667         ext4_fsblk_t            block;
3668         int                     inodes_per_block, inode_offset;
3669
3670         iloc->bh = NULL;
3671         if (!ext4_valid_inum(sb, inode->i_ino))
3672                 return -EIO;
3673
3674         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3675         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3676         if (!gdp)
3677                 return -EIO;
3678
3679         /*
3680          * Figure out the offset within the block group inode table
3681          */
3682         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3683         inode_offset = ((inode->i_ino - 1) %
3684                         EXT4_INODES_PER_GROUP(sb));
3685         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3686         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3687
3688         bh = sb_getblk(sb, block);
3689         if (unlikely(!bh))
3690                 return -ENOMEM;
3691         if (!buffer_uptodate(bh)) {
3692                 lock_buffer(bh);
3693
3694                 /*
3695                  * If the buffer has the write error flag, we have failed
3696                  * to write out another inode in the same block.  In this
3697                  * case, we don't have to read the block because we may
3698                  * read the old inode data successfully.
3699                  */
3700                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3701                         set_buffer_uptodate(bh);
3702
3703                 if (buffer_uptodate(bh)) {
3704                         /* someone brought it uptodate while we waited */
3705                         unlock_buffer(bh);
3706                         goto has_buffer;
3707                 }
3708
3709                 /*
3710                  * If we have all information of the inode in memory and this
3711                  * is the only valid inode in the block, we need not read the
3712                  * block.
3713                  */
3714                 if (in_mem) {
3715                         struct buffer_head *bitmap_bh;
3716                         int i, start;
3717
3718                         start = inode_offset & ~(inodes_per_block - 1);
3719
3720                         /* Is the inode bitmap in cache? */
3721                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3722                         if (unlikely(!bitmap_bh))
3723                                 goto make_io;
3724
3725                         /*
3726                          * If the inode bitmap isn't in cache then the
3727                          * optimisation may end up performing two reads instead
3728                          * of one, so skip it.
3729                          */
3730                         if (!buffer_uptodate(bitmap_bh)) {
3731                                 brelse(bitmap_bh);
3732                                 goto make_io;
3733                         }
3734                         for (i = start; i < start + inodes_per_block; i++) {
3735                                 if (i == inode_offset)
3736                                         continue;
3737                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3738                                         break;
3739                         }
3740                         brelse(bitmap_bh);
3741                         if (i == start + inodes_per_block) {
3742                                 /* all other inodes are free, so skip I/O */
3743                                 memset(bh->b_data, 0, bh->b_size);
3744                                 set_buffer_uptodate(bh);
3745                                 unlock_buffer(bh);
3746                                 goto has_buffer;
3747                         }
3748                 }
3749
3750 make_io:
3751                 /*
3752                  * If we need to do any I/O, try to pre-readahead extra
3753                  * blocks from the inode table.
3754                  */
3755                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3756                         ext4_fsblk_t b, end, table;
3757                         unsigned num;
3758
3759                         table = ext4_inode_table(sb, gdp);
3760                         /* s_inode_readahead_blks is always a power of 2 */
3761                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3762                         if (table > b)
3763                                 b = table;
3764                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3765                         num = EXT4_INODES_PER_GROUP(sb);
3766                         if (ext4_has_group_desc_csum(sb))
3767                                 num -= ext4_itable_unused_count(sb, gdp);
3768                         table += num / inodes_per_block;
3769                         if (end > table)
3770                                 end = table;
3771                         while (b <= end)
3772                                 sb_breadahead(sb, b++);
3773                 }
3774
3775                 /*
3776                  * There are other valid inodes in the buffer, this inode
3777                  * has in-inode xattrs, or we don't have this inode in memory.
3778                  * Read the block from disk.
3779                  */
3780                 trace_ext4_load_inode(inode);
3781                 get_bh(bh);
3782                 bh->b_end_io = end_buffer_read_sync;
3783                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3784                 wait_on_buffer(bh);
3785                 if (!buffer_uptodate(bh)) {
3786                         EXT4_ERROR_INODE_BLOCK(inode, block,
3787                                                "unable to read itable block");
3788                         brelse(bh);
3789                         return -EIO;
3790                 }
3791         }
3792 has_buffer:
3793         iloc->bh = bh;
3794         return 0;
3795 }
3796
3797 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3798 {
3799         /* We have all inode data except xattrs in memory here. */
3800         return __ext4_get_inode_loc(inode, iloc,
3801                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3802 }
3803
3804 void ext4_set_inode_flags(struct inode *inode)
3805 {
3806         unsigned int flags = EXT4_I(inode)->i_flags;
3807
3808         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3809         if (flags & EXT4_SYNC_FL)
3810                 inode->i_flags |= S_SYNC;
3811         if (flags & EXT4_APPEND_FL)
3812                 inode->i_flags |= S_APPEND;
3813         if (flags & EXT4_IMMUTABLE_FL)
3814                 inode->i_flags |= S_IMMUTABLE;
3815         if (flags & EXT4_NOATIME_FL)
3816                 inode->i_flags |= S_NOATIME;
3817         if (flags & EXT4_DIRSYNC_FL)
3818                 inode->i_flags |= S_DIRSYNC;
3819 }
3820
3821 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3822 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3823 {
3824         unsigned int vfs_fl;
3825         unsigned long old_fl, new_fl;
3826
3827         do {
3828                 vfs_fl = ei->vfs_inode.i_flags;
3829                 old_fl = ei->i_flags;
3830                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3831                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3832                                 EXT4_DIRSYNC_FL);
3833                 if (vfs_fl & S_SYNC)
3834                         new_fl |= EXT4_SYNC_FL;
3835                 if (vfs_fl & S_APPEND)
3836                         new_fl |= EXT4_APPEND_FL;
3837                 if (vfs_fl & S_IMMUTABLE)
3838                         new_fl |= EXT4_IMMUTABLE_FL;
3839                 if (vfs_fl & S_NOATIME)
3840                         new_fl |= EXT4_NOATIME_FL;
3841                 if (vfs_fl & S_DIRSYNC)
3842                         new_fl |= EXT4_DIRSYNC_FL;
3843         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3844 }
3845
3846 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3847                                   struct ext4_inode_info *ei)
3848 {
3849         blkcnt_t i_blocks ;
3850         struct inode *inode = &(ei->vfs_inode);
3851         struct super_block *sb = inode->i_sb;
3852
3853         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3854                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3855                 /* we are using combined 48 bit field */
3856                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3857                                         le32_to_cpu(raw_inode->i_blocks_lo);
3858                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3859                         /* i_blocks represent file system block size */
3860                         return i_blocks  << (inode->i_blkbits - 9);
3861                 } else {
3862                         return i_blocks;
3863                 }
3864         } else {
3865                 return le32_to_cpu(raw_inode->i_blocks_lo);
3866         }
3867 }
3868
3869 static inline void ext4_iget_extra_inode(struct inode *inode,
3870                                          struct ext4_inode *raw_inode,
3871                                          struct ext4_inode_info *ei)
3872 {
3873         __le32 *magic = (void *)raw_inode +
3874                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3875         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3876                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3877                 ext4_find_inline_data_nolock(inode);
3878         } else
3879                 EXT4_I(inode)->i_inline_off = 0;
3880 }
3881
3882 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3883 {
3884         struct ext4_iloc iloc;
3885         struct ext4_inode *raw_inode;
3886         struct ext4_inode_info *ei;
3887         struct inode *inode;
3888         journal_t *journal = EXT4_SB(sb)->s_journal;
3889         long ret;
3890         int block;
3891         uid_t i_uid;
3892         gid_t i_gid;
3893
3894         inode = iget_locked(sb, ino);
3895         if (!inode)
3896                 return ERR_PTR(-ENOMEM);
3897         if (!(inode->i_state & I_NEW))
3898                 return inode;
3899
3900         ei = EXT4_I(inode);
3901         iloc.bh = NULL;
3902
3903         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3904         if (ret < 0)
3905                 goto bad_inode;
3906         raw_inode = ext4_raw_inode(&iloc);
3907
3908         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3909                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3910                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3911                     EXT4_INODE_SIZE(inode->i_sb)) {
3912                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3913                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3914                                 EXT4_INODE_SIZE(inode->i_sb));
3915                         ret = -EIO;
3916                         goto bad_inode;
3917                 }
3918         } else
3919                 ei->i_extra_isize = 0;
3920
3921         /* Precompute checksum seed for inode metadata */
3922         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3923                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3924                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3925                 __u32 csum;
3926                 __le32 inum = cpu_to_le32(inode->i_ino);
3927                 __le32 gen = raw_inode->i_generation;
3928                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3929                                    sizeof(inum));
3930                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3931                                               sizeof(gen));
3932         }
3933
3934         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3935                 EXT4_ERROR_INODE(inode, "checksum invalid");
3936                 ret = -EIO;
3937                 goto bad_inode;
3938         }
3939
3940         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3941         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3942         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3943         if (!(test_opt(inode->i_sb, NO_UID32))) {
3944                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3945                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3946         }
3947         i_uid_write(inode, i_uid);
3948         i_gid_write(inode, i_gid);
3949         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3950
3951         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3952         ei->i_inline_off = 0;
3953         ei->i_dir_start_lookup = 0;
3954         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3955         /* We now have enough fields to check if the inode was active or not.
3956          * This is needed because nfsd might try to access dead inodes
3957          * the test is that same one that e2fsck uses
3958          * NeilBrown 1999oct15
3959          */
3960         if (inode->i_nlink == 0) {
3961                 if (inode->i_mode == 0 ||
3962                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3963                         /* this inode is deleted */
3964                         ret = -ESTALE;
3965                         goto bad_inode;
3966                 }
3967                 /* The only unlinked inodes we let through here have
3968                  * valid i_mode and are being read by the orphan
3969                  * recovery code: that's fine, we're about to complete
3970                  * the process of deleting those. */
3971         }
3972         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3973         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3974         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3975         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3976                 ei->i_file_acl |=
3977                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3978         inode->i_size = ext4_isize(raw_inode);
3979         ei->i_disksize = inode->i_size;
3980 #ifdef CONFIG_QUOTA
3981         ei->i_reserved_quota = 0;
3982 #endif
3983         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3984         ei->i_block_group = iloc.block_group;
3985         ei->i_last_alloc_group = ~0;
3986         /*
3987          * NOTE! The in-memory inode i_data array is in little-endian order
3988          * even on big-endian machines: we do NOT byteswap the block numbers!
3989          */
3990         for (block = 0; block < EXT4_N_BLOCKS; block++)
3991                 ei->i_data[block] = raw_inode->i_block[block];
3992         INIT_LIST_HEAD(&ei->i_orphan);
3993
3994         /*
3995          * Set transaction id's of transactions that have to be committed
3996          * to finish f[data]sync. We set them to currently running transaction
3997          * as we cannot be sure that the inode or some of its metadata isn't
3998          * part of the transaction - the inode could have been reclaimed and
3999          * now it is reread from disk.
4000          */
4001         if (journal) {
4002                 transaction_t *transaction;
4003                 tid_t tid;
4004
4005                 read_lock(&journal->j_state_lock);
4006                 if (journal->j_running_transaction)
4007                         transaction = journal->j_running_transaction;
4008                 else
4009                         transaction = journal->j_committing_transaction;
4010                 if (transaction)
4011                         tid = transaction->t_tid;
4012                 else
4013                         tid = journal->j_commit_sequence;
4014                 read_unlock(&journal->j_state_lock);
4015                 ei->i_sync_tid = tid;
4016                 ei->i_datasync_tid = tid;
4017         }
4018
4019         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4020                 if (ei->i_extra_isize == 0) {
4021                         /* The extra space is currently unused. Use it. */
4022                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4023                                             EXT4_GOOD_OLD_INODE_SIZE;
4024                 } else {
4025                         ext4_iget_extra_inode(inode, raw_inode, ei);
4026                 }
4027         }
4028
4029         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4030         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4031         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4032         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4033
4034         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4035         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4036                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4037                         inode->i_version |=
4038                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4039         }
4040
4041         ret = 0;
4042         if (ei->i_file_acl &&
4043             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4044                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4045                                  ei->i_file_acl);
4046                 ret = -EIO;
4047                 goto bad_inode;
4048         } else if (!ext4_has_inline_data(inode)) {
4049                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4050                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4051                             (S_ISLNK(inode->i_mode) &&
4052                              !ext4_inode_is_fast_symlink(inode))))
4053                                 /* Validate extent which is part of inode */
4054                                 ret = ext4_ext_check_inode(inode);
4055                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4056                            (S_ISLNK(inode->i_mode) &&
4057                             !ext4_inode_is_fast_symlink(inode))) {
4058                         /* Validate block references which are part of inode */
4059                         ret = ext4_ind_check_inode(inode);
4060                 }
4061         }
4062         if (ret)
4063                 goto bad_inode;
4064
4065         if (S_ISREG(inode->i_mode)) {
4066                 inode->i_op = &ext4_file_inode_operations;
4067                 inode->i_fop = &ext4_file_operations;
4068                 ext4_set_aops(inode);
4069         } else if (S_ISDIR(inode->i_mode)) {
4070                 inode->i_op = &ext4_dir_inode_operations;
4071                 inode->i_fop = &ext4_dir_operations;
4072         } else if (S_ISLNK(inode->i_mode)) {
4073                 if (ext4_inode_is_fast_symlink(inode)) {
4074                         inode->i_op = &ext4_fast_symlink_inode_operations;
4075                         nd_terminate_link(ei->i_data, inode->i_size,
4076                                 sizeof(ei->i_data) - 1);
4077                 } else {
4078                         inode->i_op = &ext4_symlink_inode_operations;
4079                         ext4_set_aops(inode);
4080                 }
4081         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4082               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4083                 inode->i_op = &ext4_special_inode_operations;
4084                 if (raw_inode->i_block[0])
4085                         init_special_inode(inode, inode->i_mode,
4086                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4087                 else
4088                         init_special_inode(inode, inode->i_mode,
4089                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4090         } else {
4091                 ret = -EIO;
4092                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4093                 goto bad_inode;
4094         }
4095         brelse(iloc.bh);
4096         ext4_set_inode_flags(inode);
4097         unlock_new_inode(inode);
4098         return inode;
4099
4100 bad_inode:
4101         brelse(iloc.bh);
4102         iget_failed(inode);
4103         return ERR_PTR(ret);
4104 }
4105
4106 static int ext4_inode_blocks_set(handle_t *handle,
4107                                 struct ext4_inode *raw_inode,
4108                                 struct ext4_inode_info *ei)
4109 {
4110         struct inode *inode = &(ei->vfs_inode);
4111         u64 i_blocks = inode->i_blocks;
4112         struct super_block *sb = inode->i_sb;
4113
4114         if (i_blocks <= ~0U) {
4115                 /*
4116                  * i_blocks can be represented in a 32 bit variable
4117                  * as multiple of 512 bytes
4118                  */
4119                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4120                 raw_inode->i_blocks_high = 0;
4121                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4122                 return 0;
4123         }
4124         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4125                 return -EFBIG;
4126
4127         if (i_blocks <= 0xffffffffffffULL) {
4128                 /*
4129                  * i_blocks can be represented in a 48 bit variable
4130                  * as multiple of 512 bytes
4131                  */
4132                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4133                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4134                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4135         } else {
4136                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4137                 /* i_block is stored in file system block size */
4138                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4139                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4140                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4141         }
4142         return 0;
4143 }
4144
4145 /*
4146  * Post the struct inode info into an on-disk inode location in the
4147  * buffer-cache.  This gobbles the caller's reference to the
4148  * buffer_head in the inode location struct.
4149  *
4150  * The caller must have write access to iloc->bh.
4151  */
4152 static int ext4_do_update_inode(handle_t *handle,
4153                                 struct inode *inode,
4154                                 struct ext4_iloc *iloc)
4155 {
4156         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4157         struct ext4_inode_info *ei = EXT4_I(inode);
4158         struct buffer_head *bh = iloc->bh;
4159         int err = 0, rc, block;
4160         int need_datasync = 0;
4161         uid_t i_uid;
4162         gid_t i_gid;
4163
4164         /* For fields not not tracking in the in-memory inode,
4165          * initialise them to zero for new inodes. */
4166         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4167                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4168
4169         ext4_get_inode_flags(ei);
4170         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4171         i_uid = i_uid_read(inode);
4172         i_gid = i_gid_read(inode);
4173         if (!(test_opt(inode->i_sb, NO_UID32))) {
4174                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4175                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4176 /*
4177  * Fix up interoperability with old kernels. Otherwise, old inodes get
4178  * re-used with the upper 16 bits of the uid/gid intact
4179  */
4180                 if (!ei->i_dtime) {
4181                         raw_inode->i_uid_high =
4182                                 cpu_to_le16(high_16_bits(i_uid));
4183                         raw_inode->i_gid_high =
4184                                 cpu_to_le16(high_16_bits(i_gid));
4185                 } else {
4186                         raw_inode->i_uid_high = 0;
4187                         raw_inode->i_gid_high = 0;
4188                 }
4189         } else {
4190                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4191                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4192                 raw_inode->i_uid_high = 0;
4193                 raw_inode->i_gid_high = 0;
4194         }
4195         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4196
4197         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4198         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4199         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4200         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4201
4202         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4203                 goto out_brelse;
4204         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4205         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4206         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4207             cpu_to_le32(EXT4_OS_HURD))
4208                 raw_inode->i_file_acl_high =
4209                         cpu_to_le16(ei->i_file_acl >> 32);
4210         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4211         if (ei->i_disksize != ext4_isize(raw_inode)) {
4212                 ext4_isize_set(raw_inode, ei->i_disksize);
4213                 need_datasync = 1;
4214         }
4215         if (ei->i_disksize > 0x7fffffffULL) {
4216                 struct super_block *sb = inode->i_sb;
4217                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4218                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4219                                 EXT4_SB(sb)->s_es->s_rev_level ==
4220                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4221                         /* If this is the first large file
4222                          * created, add a flag to the superblock.
4223                          */
4224                         err = ext4_journal_get_write_access(handle,
4225                                         EXT4_SB(sb)->s_sbh);
4226                         if (err)
4227                                 goto out_brelse;
4228                         ext4_update_dynamic_rev(sb);
4229                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4230                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4231                         ext4_handle_sync(handle);
4232                         err = ext4_handle_dirty_super(handle, sb);
4233                 }
4234         }
4235         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4236         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4237                 if (old_valid_dev(inode->i_rdev)) {
4238                         raw_inode->i_block[0] =
4239                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4240                         raw_inode->i_block[1] = 0;
4241                 } else {
4242                         raw_inode->i_block[0] = 0;
4243                         raw_inode->i_block[1] =
4244                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4245                         raw_inode->i_block[2] = 0;
4246                 }
4247         } else if (!ext4_has_inline_data(inode)) {
4248                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4249                         raw_inode->i_block[block] = ei->i_data[block];
4250         }
4251
4252         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4253         if (ei->i_extra_isize) {
4254                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4255                         raw_inode->i_version_hi =
4256                         cpu_to_le32(inode->i_version >> 32);
4257                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4258         }
4259
4260         ext4_inode_csum_set(inode, raw_inode, ei);
4261
4262         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4263         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4264         if (!err)
4265                 err = rc;
4266         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4267
4268         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4269 out_brelse:
4270         brelse(bh);
4271         ext4_std_error(inode->i_sb, err);
4272         return err;
4273 }
4274
4275 /*
4276  * ext4_write_inode()
4277  *
4278  * We are called from a few places:
4279  *
4280  * - Within generic_file_write() for O_SYNC files.
4281  *   Here, there will be no transaction running. We wait for any running
4282  *   transaction to commit.
4283  *
4284  * - Within sys_sync(), kupdate and such.
4285  *   We wait on commit, if tol to.
4286  *
4287  * - Within prune_icache() (PF_MEMALLOC == true)
4288  *   Here we simply return.  We can't afford to block kswapd on the
4289  *   journal commit.
4290  *
4291  * In all cases it is actually safe for us to return without doing anything,
4292  * because the inode has been copied into a raw inode buffer in
4293  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4294  * knfsd.
4295  *
4296  * Note that we are absolutely dependent upon all inode dirtiers doing the
4297  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4298  * which we are interested.
4299  *
4300  * It would be a bug for them to not do this.  The code:
4301  *
4302  *      mark_inode_dirty(inode)
4303  *      stuff();
4304  *      inode->i_size = expr;
4305  *
4306  * is in error because a kswapd-driven write_inode() could occur while
4307  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4308  * will no longer be on the superblock's dirty inode list.
4309  */
4310 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4311 {
4312         int err;
4313
4314         if (current->flags & PF_MEMALLOC)
4315                 return 0;
4316
4317         if (EXT4_SB(inode->i_sb)->s_journal) {
4318                 if (ext4_journal_current_handle()) {
4319                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4320                         dump_stack();
4321                         return -EIO;
4322                 }
4323
4324                 if (wbc->sync_mode != WB_SYNC_ALL)
4325                         return 0;
4326
4327                 err = ext4_force_commit(inode->i_sb);
4328         } else {
4329                 struct ext4_iloc iloc;
4330
4331                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4332                 if (err)
4333                         return err;
4334                 if (wbc->sync_mode == WB_SYNC_ALL)
4335                         sync_dirty_buffer(iloc.bh);
4336                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4337                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4338                                          "IO error syncing inode");
4339                         err = -EIO;
4340                 }
4341                 brelse(iloc.bh);
4342         }
4343         return err;
4344 }
4345
4346 /*
4347  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4348  * buffers that are attached to a page stradding i_size and are undergoing
4349  * commit. In that case we have to wait for commit to finish and try again.
4350  */
4351 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4352 {
4353         struct page *page;
4354         unsigned offset;
4355         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4356         tid_t commit_tid = 0;
4357         int ret;
4358
4359         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4360         /*
4361          * All buffers in the last page remain valid? Then there's nothing to
4362          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4363          * blocksize case
4364          */
4365         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4366                 return;
4367         while (1) {
4368                 page = find_lock_page(inode->i_mapping,
4369                                       inode->i_size >> PAGE_CACHE_SHIFT);
4370                 if (!page)
4371                         return;
4372                 ret = __ext4_journalled_invalidatepage(page, offset);
4373                 unlock_page(page);
4374                 page_cache_release(page);
4375                 if (ret != -EBUSY)
4376                         return;
4377                 commit_tid = 0;
4378                 read_lock(&journal->j_state_lock);
4379                 if (journal->j_committing_transaction)
4380                         commit_tid = journal->j_committing_transaction->t_tid;
4381                 read_unlock(&journal->j_state_lock);
4382                 if (commit_tid)
4383                         jbd2_log_wait_commit(journal, commit_tid);
4384         }
4385 }
4386
4387 /*
4388  * ext4_setattr()
4389  *
4390  * Called from notify_change.
4391  *
4392  * We want to trap VFS attempts to truncate the file as soon as
4393  * possible.  In particular, we want to make sure that when the VFS
4394  * shrinks i_size, we put the inode on the orphan list and modify
4395  * i_disksize immediately, so that during the subsequent flushing of
4396  * dirty pages and freeing of disk blocks, we can guarantee that any
4397  * commit will leave the blocks being flushed in an unused state on
4398  * disk.  (On recovery, the inode will get truncated and the blocks will
4399  * be freed, so we have a strong guarantee that no future commit will
4400  * leave these blocks visible to the user.)
4401  *
4402  * Another thing we have to assure is that if we are in ordered mode
4403  * and inode is still attached to the committing transaction, we must
4404  * we start writeout of all the dirty pages which are being truncated.
4405  * This way we are sure that all the data written in the previous
4406  * transaction are already on disk (truncate waits for pages under
4407  * writeback).
4408  *
4409  * Called with inode->i_mutex down.
4410  */
4411 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4412 {
4413         struct inode *inode = dentry->d_inode;
4414         int error, rc = 0;
4415         int orphan = 0;
4416         const unsigned int ia_valid = attr->ia_valid;
4417
4418         error = inode_change_ok(inode, attr);
4419         if (error)
4420                 return error;
4421
4422         if (is_quota_modification(inode, attr))
4423                 dquot_initialize(inode);
4424         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4425             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4426                 handle_t *handle;
4427
4428                 /* (user+group)*(old+new) structure, inode write (sb,
4429                  * inode block, ? - but truncate inode update has it) */
4430                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4431                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4432                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4433                 if (IS_ERR(handle)) {
4434                         error = PTR_ERR(handle);
4435                         goto err_out;
4436                 }
4437                 error = dquot_transfer(inode, attr);
4438                 if (error) {
4439                         ext4_journal_stop(handle);
4440                         return error;
4441                 }
4442                 /* Update corresponding info in inode so that everything is in
4443                  * one transaction */
4444                 if (attr->ia_valid & ATTR_UID)
4445                         inode->i_uid = attr->ia_uid;
4446                 if (attr->ia_valid & ATTR_GID)
4447                         inode->i_gid = attr->ia_gid;
4448                 error = ext4_mark_inode_dirty(handle, inode);
4449                 ext4_journal_stop(handle);
4450         }
4451
4452         if (attr->ia_valid & ATTR_SIZE) {
4453
4454                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4455                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4456
4457                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4458                                 return -EFBIG;
4459                 }
4460         }
4461
4462         if (S_ISREG(inode->i_mode) &&
4463             attr->ia_valid & ATTR_SIZE &&
4464             (attr->ia_size < inode->i_size)) {
4465                 handle_t *handle;
4466
4467                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4468                 if (IS_ERR(handle)) {
4469                         error = PTR_ERR(handle);
4470                         goto err_out;
4471                 }
4472                 if (ext4_handle_valid(handle)) {
4473                         error = ext4_orphan_add(handle, inode);
4474                         orphan = 1;
4475                 }
4476                 EXT4_I(inode)->i_disksize = attr->ia_size;
4477                 rc = ext4_mark_inode_dirty(handle, inode);
4478                 if (!error)
4479                         error = rc;
4480                 ext4_journal_stop(handle);
4481
4482                 if (ext4_should_order_data(inode)) {
4483                         error = ext4_begin_ordered_truncate(inode,
4484                                                             attr->ia_size);
4485                         if (error) {
4486                                 /* Do as much error cleanup as possible */
4487                                 handle = ext4_journal_start(inode,
4488                                                             EXT4_HT_INODE, 3);
4489                                 if (IS_ERR(handle)) {
4490                                         ext4_orphan_del(NULL, inode);
4491                                         goto err_out;
4492                                 }
4493                                 ext4_orphan_del(handle, inode);
4494                                 orphan = 0;
4495                                 ext4_journal_stop(handle);
4496                                 goto err_out;
4497                         }
4498                 }
4499         }
4500
4501         if (attr->ia_valid & ATTR_SIZE) {
4502                 if (attr->ia_size != inode->i_size) {
4503                         loff_t oldsize = inode->i_size;
4504
4505                         i_size_write(inode, attr->ia_size);
4506                         /*
4507                          * Blocks are going to be removed from the inode. Wait
4508                          * for dio in flight.  Temporarily disable
4509                          * dioread_nolock to prevent livelock.
4510                          */
4511                         if (orphan) {
4512                                 if (!ext4_should_journal_data(inode)) {
4513                                         ext4_inode_block_unlocked_dio(inode);
4514                                         inode_dio_wait(inode);
4515                                         ext4_inode_resume_unlocked_dio(inode);
4516                                 } else
4517                                         ext4_wait_for_tail_page_commit(inode);
4518                         }
4519                         /*
4520                          * Truncate pagecache after we've waited for commit
4521                          * in data=journal mode to make pages freeable.
4522                          */
4523                         truncate_pagecache(inode, oldsize, inode->i_size);
4524                 }
4525                 ext4_truncate(inode);
4526         }
4527
4528         if (!rc) {
4529                 setattr_copy(inode, attr);
4530                 mark_inode_dirty(inode);
4531         }
4532
4533         /*
4534          * If the call to ext4_truncate failed to get a transaction handle at
4535          * all, we need to clean up the in-core orphan list manually.
4536          */
4537         if (orphan && inode->i_nlink)
4538                 ext4_orphan_del(NULL, inode);
4539
4540         if (!rc && (ia_valid & ATTR_MODE))
4541                 rc = ext4_acl_chmod(inode);
4542
4543 err_out:
4544         ext4_std_error(inode->i_sb, error);
4545         if (!error)
4546                 error = rc;
4547         return error;
4548 }
4549
4550 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4551                  struct kstat *stat)
4552 {
4553         struct inode *inode;
4554         unsigned long delalloc_blocks;
4555
4556         inode = dentry->d_inode;
4557         generic_fillattr(inode, stat);
4558
4559         /*
4560          * We can't update i_blocks if the block allocation is delayed
4561          * otherwise in the case of system crash before the real block
4562          * allocation is done, we will have i_blocks inconsistent with
4563          * on-disk file blocks.
4564          * We always keep i_blocks updated together with real
4565          * allocation. But to not confuse with user, stat
4566          * will return the blocks that include the delayed allocation
4567          * blocks for this file.
4568          */
4569         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4570                                 EXT4_I(inode)->i_reserved_data_blocks);
4571
4572         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4573         return 0;
4574 }
4575
4576 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4577 {
4578         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4579                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4580         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4581 }
4582
4583 /*
4584  * Account for index blocks, block groups bitmaps and block group
4585  * descriptor blocks if modify datablocks and index blocks
4586  * worse case, the indexs blocks spread over different block groups
4587  *
4588  * If datablocks are discontiguous, they are possible to spread over
4589  * different block groups too. If they are contiguous, with flexbg,
4590  * they could still across block group boundary.
4591  *
4592  * Also account for superblock, inode, quota and xattr blocks
4593  */
4594 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4595 {
4596         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4597         int gdpblocks;
4598         int idxblocks;
4599         int ret = 0;
4600
4601         /*
4602          * How many index blocks need to touch to modify nrblocks?
4603          * The "Chunk" flag indicating whether the nrblocks is
4604          * physically contiguous on disk
4605          *
4606          * For Direct IO and fallocate, they calls get_block to allocate
4607          * one single extent at a time, so they could set the "Chunk" flag
4608          */
4609         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4610
4611         ret = idxblocks;
4612
4613         /*
4614          * Now let's see how many group bitmaps and group descriptors need
4615          * to account
4616          */
4617         groups = idxblocks;
4618         if (chunk)
4619                 groups += 1;
4620         else
4621                 groups += nrblocks;
4622
4623         gdpblocks = groups;
4624         if (groups > ngroups)
4625                 groups = ngroups;
4626         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4627                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4628
4629         /* bitmaps and block group descriptor blocks */
4630         ret += groups + gdpblocks;
4631
4632         /* Blocks for super block, inode, quota and xattr blocks */
4633         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4634
4635         return ret;
4636 }
4637
4638 /*
4639  * Calculate the total number of credits to reserve to fit
4640  * the modification of a single pages into a single transaction,
4641  * which may include multiple chunks of block allocations.
4642  *
4643  * This could be called via ext4_write_begin()
4644  *
4645  * We need to consider the worse case, when
4646  * one new block per extent.
4647  */
4648 int ext4_writepage_trans_blocks(struct inode *inode)
4649 {
4650         int bpp = ext4_journal_blocks_per_page(inode);
4651         int ret;
4652
4653         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4654
4655         /* Account for data blocks for journalled mode */
4656         if (ext4_should_journal_data(inode))
4657                 ret += bpp;
4658         return ret;
4659 }
4660
4661 /*
4662  * Calculate the journal credits for a chunk of data modification.
4663  *
4664  * This is called from DIO, fallocate or whoever calling
4665  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4666  *
4667  * journal buffers for data blocks are not included here, as DIO
4668  * and fallocate do no need to journal data buffers.
4669  */
4670 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4671 {
4672         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4673 }
4674
4675 /*
4676  * The caller must have previously called ext4_reserve_inode_write().
4677  * Give this, we know that the caller already has write access to iloc->bh.
4678  */
4679 int ext4_mark_iloc_dirty(handle_t *handle,
4680                          struct inode *inode, struct ext4_iloc *iloc)
4681 {
4682         int err = 0;
4683
4684         if (IS_I_VERSION(inode))
4685                 inode_inc_iversion(inode);
4686
4687         /* the do_update_inode consumes one bh->b_count */
4688         get_bh(iloc->bh);
4689
4690         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4691         err = ext4_do_update_inode(handle, inode, iloc);
4692         put_bh(iloc->bh);
4693         return err;
4694 }
4695
4696 /*
4697  * On success, We end up with an outstanding reference count against
4698  * iloc->bh.  This _must_ be cleaned up later.
4699  */
4700
4701 int
4702 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4703                          struct ext4_iloc *iloc)
4704 {
4705         int err;
4706
4707         err = ext4_get_inode_loc(inode, iloc);
4708         if (!err) {
4709                 BUFFER_TRACE(iloc->bh, "get_write_access");
4710                 err = ext4_journal_get_write_access(handle, iloc->bh);
4711                 if (err) {
4712                         brelse(iloc->bh);
4713                         iloc->bh = NULL;
4714                 }
4715         }
4716         ext4_std_error(inode->i_sb, err);
4717         return err;
4718 }
4719
4720 /*
4721  * Expand an inode by new_extra_isize bytes.
4722  * Returns 0 on success or negative error number on failure.
4723  */
4724 static int ext4_expand_extra_isize(struct inode *inode,
4725                                    unsigned int new_extra_isize,
4726                                    struct ext4_iloc iloc,
4727                                    handle_t *handle)
4728 {
4729         struct ext4_inode *raw_inode;
4730         struct ext4_xattr_ibody_header *header;
4731
4732         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4733                 return 0;
4734
4735         raw_inode = ext4_raw_inode(&iloc);
4736
4737         header = IHDR(inode, raw_inode);
4738
4739         /* No extended attributes present */
4740         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4741             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4742                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4743                         new_extra_isize);
4744                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4745                 return 0;
4746         }
4747
4748         /* try to expand with EAs present */
4749         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4750                                           raw_inode, handle);
4751 }
4752
4753 /*
4754  * What we do here is to mark the in-core inode as clean with respect to inode
4755  * dirtiness (it may still be data-dirty).
4756  * This means that the in-core inode may be reaped by prune_icache
4757  * without having to perform any I/O.  This is a very good thing,
4758  * because *any* task may call prune_icache - even ones which
4759  * have a transaction open against a different journal.
4760  *
4761  * Is this cheating?  Not really.  Sure, we haven't written the
4762  * inode out, but prune_icache isn't a user-visible syncing function.
4763  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4764  * we start and wait on commits.
4765  */
4766 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4767 {
4768         struct ext4_iloc iloc;
4769         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4770         static unsigned int mnt_count;
4771         int err, ret;
4772
4773         might_sleep();
4774         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4775         err = ext4_reserve_inode_write(handle, inode, &iloc);
4776         if (ext4_handle_valid(handle) &&
4777             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4778             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4779                 /*
4780                  * We need extra buffer credits since we may write into EA block
4781                  * with this same handle. If journal_extend fails, then it will
4782                  * only result in a minor loss of functionality for that inode.
4783                  * If this is felt to be critical, then e2fsck should be run to
4784                  * force a large enough s_min_extra_isize.
4785                  */
4786                 if ((jbd2_journal_extend(handle,
4787                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4788                         ret = ext4_expand_extra_isize(inode,
4789                                                       sbi->s_want_extra_isize,
4790                                                       iloc, handle);
4791                         if (ret) {
4792                                 ext4_set_inode_state(inode,
4793                                                      EXT4_STATE_NO_EXPAND);
4794                                 if (mnt_count !=
4795                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4796                                         ext4_warning(inode->i_sb,
4797                                         "Unable to expand inode %lu. Delete"
4798                                         " some EAs or run e2fsck.",
4799                                         inode->i_ino);
4800                                         mnt_count =
4801                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4802                                 }
4803                         }
4804                 }
4805         }
4806         if (!err)
4807                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4808         return err;
4809 }
4810
4811 /*
4812  * ext4_dirty_inode() is called from __mark_inode_dirty()
4813  *
4814  * We're really interested in the case where a file is being extended.
4815  * i_size has been changed by generic_commit_write() and we thus need
4816  * to include the updated inode in the current transaction.
4817  *
4818  * Also, dquot_alloc_block() will always dirty the inode when blocks
4819  * are allocated to the file.
4820  *
4821  * If the inode is marked synchronous, we don't honour that here - doing
4822  * so would cause a commit on atime updates, which we don't bother doing.
4823  * We handle synchronous inodes at the highest possible level.
4824  */
4825 void ext4_dirty_inode(struct inode *inode, int flags)
4826 {
4827         handle_t *handle;
4828
4829         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4830         if (IS_ERR(handle))
4831                 goto out;
4832
4833         ext4_mark_inode_dirty(handle, inode);
4834
4835         ext4_journal_stop(handle);
4836 out:
4837         return;
4838 }
4839
4840 #if 0
4841 /*
4842  * Bind an inode's backing buffer_head into this transaction, to prevent
4843  * it from being flushed to disk early.  Unlike
4844  * ext4_reserve_inode_write, this leaves behind no bh reference and
4845  * returns no iloc structure, so the caller needs to repeat the iloc
4846  * lookup to mark the inode dirty later.
4847  */
4848 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4849 {
4850         struct ext4_iloc iloc;
4851
4852         int err = 0;
4853         if (handle) {
4854                 err = ext4_get_inode_loc(inode, &iloc);
4855                 if (!err) {
4856                         BUFFER_TRACE(iloc.bh, "get_write_access");
4857                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4858                         if (!err)
4859                                 err = ext4_handle_dirty_metadata(handle,
4860                                                                  NULL,
4861                                                                  iloc.bh);
4862                         brelse(iloc.bh);
4863                 }
4864         }
4865         ext4_std_error(inode->i_sb, err);
4866         return err;
4867 }
4868 #endif
4869
4870 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4871 {
4872         journal_t *journal;
4873         handle_t *handle;
4874         int err;
4875
4876         /*
4877          * We have to be very careful here: changing a data block's
4878          * journaling status dynamically is dangerous.  If we write a
4879          * data block to the journal, change the status and then delete
4880          * that block, we risk forgetting to revoke the old log record
4881          * from the journal and so a subsequent replay can corrupt data.
4882          * So, first we make sure that the journal is empty and that
4883          * nobody is changing anything.
4884          */
4885
4886         journal = EXT4_JOURNAL(inode);
4887         if (!journal)
4888                 return 0;
4889         if (is_journal_aborted(journal))
4890                 return -EROFS;
4891         /* We have to allocate physical blocks for delalloc blocks
4892          * before flushing journal. otherwise delalloc blocks can not
4893          * be allocated any more. even more truncate on delalloc blocks
4894          * could trigger BUG by flushing delalloc blocks in journal.
4895          * There is no delalloc block in non-journal data mode.
4896          */
4897         if (val && test_opt(inode->i_sb, DELALLOC)) {
4898                 err = ext4_alloc_da_blocks(inode);
4899                 if (err < 0)
4900                         return err;
4901         }
4902
4903         /* Wait for all existing dio workers */
4904         ext4_inode_block_unlocked_dio(inode);
4905         inode_dio_wait(inode);
4906
4907         jbd2_journal_lock_updates(journal);
4908
4909         /*
4910          * OK, there are no updates running now, and all cached data is
4911          * synced to disk.  We are now in a completely consistent state
4912          * which doesn't have anything in the journal, and we know that
4913          * no filesystem updates are running, so it is safe to modify
4914          * the inode's in-core data-journaling state flag now.
4915          */
4916
4917         if (val)
4918                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4919         else {
4920                 jbd2_journal_flush(journal);
4921                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4922         }
4923         ext4_set_aops(inode);
4924
4925         jbd2_journal_unlock_updates(journal);
4926         ext4_inode_resume_unlocked_dio(inode);
4927
4928         /* Finally we can mark the inode as dirty. */
4929
4930         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4931         if (IS_ERR(handle))
4932                 return PTR_ERR(handle);
4933
4934         err = ext4_mark_inode_dirty(handle, inode);
4935         ext4_handle_sync(handle);
4936         ext4_journal_stop(handle);
4937         ext4_std_error(inode->i_sb, err);
4938
4939         return err;
4940 }
4941
4942 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4943 {
4944         return !buffer_mapped(bh);
4945 }
4946
4947 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4948 {
4949         struct page *page = vmf->page;
4950         loff_t size;
4951         unsigned long len;
4952         int ret;
4953         struct file *file = vma->vm_file;
4954         struct inode *inode = file->f_path.dentry->d_inode;
4955         struct address_space *mapping = inode->i_mapping;
4956         handle_t *handle;
4957         get_block_t *get_block;
4958         int retries = 0;
4959
4960         sb_start_pagefault(inode->i_sb);
4961         file_update_time(vma->vm_file);
4962         /* Delalloc case is easy... */
4963         if (test_opt(inode->i_sb, DELALLOC) &&
4964             !ext4_should_journal_data(inode) &&
4965             !ext4_nonda_switch(inode->i_sb)) {
4966                 do {
4967                         ret = __block_page_mkwrite(vma, vmf,
4968                                                    ext4_da_get_block_prep);
4969                 } while (ret == -ENOSPC &&
4970                        ext4_should_retry_alloc(inode->i_sb, &retries));
4971                 goto out_ret;
4972         }
4973
4974         lock_page(page);
4975         size = i_size_read(inode);
4976         /* Page got truncated from under us? */
4977         if (page->mapping != mapping || page_offset(page) > size) {
4978                 unlock_page(page);
4979                 ret = VM_FAULT_NOPAGE;
4980                 goto out;
4981         }
4982
4983         if (page->index == size >> PAGE_CACHE_SHIFT)
4984                 len = size & ~PAGE_CACHE_MASK;
4985         else
4986                 len = PAGE_CACHE_SIZE;
4987         /*
4988          * Return if we have all the buffers mapped. This avoids the need to do
4989          * journal_start/journal_stop which can block and take a long time
4990          */
4991         if (page_has_buffers(page)) {
4992                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4993                                             0, len, NULL,
4994                                             ext4_bh_unmapped)) {
4995                         /* Wait so that we don't change page under IO */
4996                         wait_on_page_writeback(page);
4997                         ret = VM_FAULT_LOCKED;
4998                         goto out;
4999                 }
5000         }
5001         unlock_page(page);
5002         /* OK, we need to fill the hole... */
5003         if (ext4_should_dioread_nolock(inode))
5004                 get_block = ext4_get_block_write;
5005         else
5006                 get_block = ext4_get_block;
5007 retry_alloc:
5008         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5009                                     ext4_writepage_trans_blocks(inode));
5010         if (IS_ERR(handle)) {
5011                 ret = VM_FAULT_SIGBUS;
5012                 goto out;
5013         }
5014         ret = __block_page_mkwrite(vma, vmf, get_block);
5015         if (!ret && ext4_should_journal_data(inode)) {
5016                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5017                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5018                         unlock_page(page);
5019                         ret = VM_FAULT_SIGBUS;
5020                         ext4_journal_stop(handle);
5021                         goto out;
5022                 }
5023                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5024         }
5025         ext4_journal_stop(handle);
5026         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5027                 goto retry_alloc;
5028 out_ret:
5029         ret = block_page_mkwrite_return(ret);
5030 out:
5031         sb_end_pagefault(inode->i_sb);
5032         return ret;
5033 }