ext4: Speedup WB_SYNC_ALL pass called from sync(2)
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136                                 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229
230         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429                                        struct inode *inode,
430                                        struct ext4_map_blocks *es_map,
431                                        struct ext4_map_blocks *map,
432                                        int flags)
433 {
434         int retval;
435
436         map->m_flags = 0;
437         /*
438          * There is a race window that the result is not the same.
439          * e.g. xfstests #223 when dioread_nolock enables.  The reason
440          * is that we lookup a block mapping in extent status tree with
441          * out taking i_data_sem.  So at the time the unwritten extent
442          * could be converted.
443          */
444         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445                 down_read((&EXT4_I(inode)->i_data_sem));
446         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448                                              EXT4_GET_BLOCKS_KEEP_SIZE);
449         } else {
450                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         }
453         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454                 up_read((&EXT4_I(inode)->i_data_sem));
455         /*
456          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457          * because it shouldn't be marked in es_map->m_flags.
458          */
459         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461         /*
462          * We don't check m_len because extent will be collpased in status
463          * tree.  So the m_len might not equal.
464          */
465         if (es_map->m_lblk != map->m_lblk ||
466             es_map->m_flags != map->m_flags ||
467             es_map->m_pblk != map->m_pblk) {
468                 printk("ES cache assertion failed for inode: %lu "
469                        "es_cached ex [%d/%d/%llu/%x] != "
470                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471                        inode->i_ino, es_map->m_lblk, es_map->m_len,
472                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
473                        map->m_len, map->m_pblk, map->m_flags,
474                        retval, flags);
475         }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502                     struct ext4_map_blocks *map, int flags)
503 {
504         struct extent_status es;
505         int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507         struct ext4_map_blocks orig_map;
508
509         memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512         map->m_flags = 0;
513         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
515                   (unsigned long) map->m_lblk);
516
517         /*
518          * ext4_map_blocks returns an int, and m_len is an unsigned int
519          */
520         if (unlikely(map->m_len > INT_MAX))
521                 map->m_len = INT_MAX;
522
523         /* Lookup extent status tree firstly */
524         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
525                 ext4_es_lru_add(inode);
526                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
527                         map->m_pblk = ext4_es_pblock(&es) +
528                                         map->m_lblk - es.es_lblk;
529                         map->m_flags |= ext4_es_is_written(&es) ?
530                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
531                         retval = es.es_len - (map->m_lblk - es.es_lblk);
532                         if (retval > map->m_len)
533                                 retval = map->m_len;
534                         map->m_len = retval;
535                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
536                         retval = 0;
537                 } else {
538                         BUG_ON(1);
539                 }
540 #ifdef ES_AGGRESSIVE_TEST
541                 ext4_map_blocks_es_recheck(handle, inode, map,
542                                            &orig_map, flags);
543 #endif
544                 goto found;
545         }
546
547         /*
548          * Try to see if we can get the block without requesting a new
549          * file system block.
550          */
551         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
552                 down_read((&EXT4_I(inode)->i_data_sem));
553         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
554                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
555                                              EXT4_GET_BLOCKS_KEEP_SIZE);
556         } else {
557                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
558                                              EXT4_GET_BLOCKS_KEEP_SIZE);
559         }
560         if (retval > 0) {
561                 int ret;
562                 unsigned int status;
563
564                 if (unlikely(retval != map->m_len)) {
565                         ext4_warning(inode->i_sb,
566                                      "ES len assertion failed for inode "
567                                      "%lu: retval %d != map->m_len %d",
568                                      inode->i_ino, retval, map->m_len);
569                         WARN_ON(1);
570                 }
571
572                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
573                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
574                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
575                     ext4_find_delalloc_range(inode, map->m_lblk,
576                                              map->m_lblk + map->m_len - 1))
577                         status |= EXTENT_STATUS_DELAYED;
578                 ret = ext4_es_insert_extent(inode, map->m_lblk,
579                                             map->m_len, map->m_pblk, status);
580                 if (ret < 0)
581                         retval = ret;
582         }
583         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
584                 up_read((&EXT4_I(inode)->i_data_sem));
585
586 found:
587         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
588                 int ret = check_block_validity(inode, map);
589                 if (ret != 0)
590                         return ret;
591         }
592
593         /* If it is only a block(s) look up */
594         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
595                 return retval;
596
597         /*
598          * Returns if the blocks have already allocated
599          *
600          * Note that if blocks have been preallocated
601          * ext4_ext_get_block() returns the create = 0
602          * with buffer head unmapped.
603          */
604         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
605                 return retval;
606
607         /*
608          * Here we clear m_flags because after allocating an new extent,
609          * it will be set again.
610          */
611         map->m_flags &= ~EXT4_MAP_FLAGS;
612
613         /*
614          * New blocks allocate and/or writing to uninitialized extent
615          * will possibly result in updating i_data, so we take
616          * the write lock of i_data_sem, and call get_blocks()
617          * with create == 1 flag.
618          */
619         down_write((&EXT4_I(inode)->i_data_sem));
620
621         /*
622          * if the caller is from delayed allocation writeout path
623          * we have already reserved fs blocks for allocation
624          * let the underlying get_block() function know to
625          * avoid double accounting
626          */
627         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
628                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
629         /*
630          * We need to check for EXT4 here because migrate
631          * could have changed the inode type in between
632          */
633         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
634                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
635         } else {
636                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
637
638                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
639                         /*
640                          * We allocated new blocks which will result in
641                          * i_data's format changing.  Force the migrate
642                          * to fail by clearing migrate flags
643                          */
644                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
645                 }
646
647                 /*
648                  * Update reserved blocks/metadata blocks after successful
649                  * block allocation which had been deferred till now. We don't
650                  * support fallocate for non extent files. So we can update
651                  * reserve space here.
652                  */
653                 if ((retval > 0) &&
654                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
655                         ext4_da_update_reserve_space(inode, retval, 1);
656         }
657         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
658                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
659
660         if (retval > 0) {
661                 int ret;
662                 unsigned int status;
663
664                 if (unlikely(retval != map->m_len)) {
665                         ext4_warning(inode->i_sb,
666                                      "ES len assertion failed for inode "
667                                      "%lu: retval %d != map->m_len %d",
668                                      inode->i_ino, retval, map->m_len);
669                         WARN_ON(1);
670                 }
671
672                 /*
673                  * If the extent has been zeroed out, we don't need to update
674                  * extent status tree.
675                  */
676                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
677                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
678                         if (ext4_es_is_written(&es))
679                                 goto has_zeroout;
680                 }
681                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
682                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
683                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
684                     ext4_find_delalloc_range(inode, map->m_lblk,
685                                              map->m_lblk + map->m_len - 1))
686                         status |= EXTENT_STATUS_DELAYED;
687                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
688                                             map->m_pblk, status);
689                 if (ret < 0)
690                         retval = ret;
691         }
692
693 has_zeroout:
694         up_write((&EXT4_I(inode)->i_data_sem));
695         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
696                 int ret = check_block_validity(inode, map);
697                 if (ret != 0)
698                         return ret;
699         }
700         return retval;
701 }
702
703 /* Maximum number of blocks we map for direct IO at once. */
704 #define DIO_MAX_BLOCKS 4096
705
706 static int _ext4_get_block(struct inode *inode, sector_t iblock,
707                            struct buffer_head *bh, int flags)
708 {
709         handle_t *handle = ext4_journal_current_handle();
710         struct ext4_map_blocks map;
711         int ret = 0, started = 0;
712         int dio_credits;
713
714         if (ext4_has_inline_data(inode))
715                 return -ERANGE;
716
717         map.m_lblk = iblock;
718         map.m_len = bh->b_size >> inode->i_blkbits;
719
720         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
721                 /* Direct IO write... */
722                 if (map.m_len > DIO_MAX_BLOCKS)
723                         map.m_len = DIO_MAX_BLOCKS;
724                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
725                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
726                                             dio_credits);
727                 if (IS_ERR(handle)) {
728                         ret = PTR_ERR(handle);
729                         return ret;
730                 }
731                 started = 1;
732         }
733
734         ret = ext4_map_blocks(handle, inode, &map, flags);
735         if (ret > 0) {
736                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
737
738                 map_bh(bh, inode->i_sb, map.m_pblk);
739                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
740                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
741                         set_buffer_defer_completion(bh);
742                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
743                 ret = 0;
744         }
745         if (started)
746                 ext4_journal_stop(handle);
747         return ret;
748 }
749
750 int ext4_get_block(struct inode *inode, sector_t iblock,
751                    struct buffer_head *bh, int create)
752 {
753         return _ext4_get_block(inode, iblock, bh,
754                                create ? EXT4_GET_BLOCKS_CREATE : 0);
755 }
756
757 /*
758  * `handle' can be NULL if create is zero
759  */
760 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
761                                 ext4_lblk_t block, int create, int *errp)
762 {
763         struct ext4_map_blocks map;
764         struct buffer_head *bh;
765         int fatal = 0, err;
766
767         J_ASSERT(handle != NULL || create == 0);
768
769         map.m_lblk = block;
770         map.m_len = 1;
771         err = ext4_map_blocks(handle, inode, &map,
772                               create ? EXT4_GET_BLOCKS_CREATE : 0);
773
774         /* ensure we send some value back into *errp */
775         *errp = 0;
776
777         if (create && err == 0)
778                 err = -ENOSPC;  /* should never happen */
779         if (err < 0)
780                 *errp = err;
781         if (err <= 0)
782                 return NULL;
783
784         bh = sb_getblk(inode->i_sb, map.m_pblk);
785         if (unlikely(!bh)) {
786                 *errp = -ENOMEM;
787                 return NULL;
788         }
789         if (map.m_flags & EXT4_MAP_NEW) {
790                 J_ASSERT(create != 0);
791                 J_ASSERT(handle != NULL);
792
793                 /*
794                  * Now that we do not always journal data, we should
795                  * keep in mind whether this should always journal the
796                  * new buffer as metadata.  For now, regular file
797                  * writes use ext4_get_block instead, so it's not a
798                  * problem.
799                  */
800                 lock_buffer(bh);
801                 BUFFER_TRACE(bh, "call get_create_access");
802                 fatal = ext4_journal_get_create_access(handle, bh);
803                 if (!fatal && !buffer_uptodate(bh)) {
804                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
805                         set_buffer_uptodate(bh);
806                 }
807                 unlock_buffer(bh);
808                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
809                 err = ext4_handle_dirty_metadata(handle, inode, bh);
810                 if (!fatal)
811                         fatal = err;
812         } else {
813                 BUFFER_TRACE(bh, "not a new buffer");
814         }
815         if (fatal) {
816                 *errp = fatal;
817                 brelse(bh);
818                 bh = NULL;
819         }
820         return bh;
821 }
822
823 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
824                                ext4_lblk_t block, int create, int *err)
825 {
826         struct buffer_head *bh;
827
828         bh = ext4_getblk(handle, inode, block, create, err);
829         if (!bh)
830                 return bh;
831         if (buffer_uptodate(bh))
832                 return bh;
833         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
834         wait_on_buffer(bh);
835         if (buffer_uptodate(bh))
836                 return bh;
837         put_bh(bh);
838         *err = -EIO;
839         return NULL;
840 }
841
842 int ext4_walk_page_buffers(handle_t *handle,
843                            struct buffer_head *head,
844                            unsigned from,
845                            unsigned to,
846                            int *partial,
847                            int (*fn)(handle_t *handle,
848                                      struct buffer_head *bh))
849 {
850         struct buffer_head *bh;
851         unsigned block_start, block_end;
852         unsigned blocksize = head->b_size;
853         int err, ret = 0;
854         struct buffer_head *next;
855
856         for (bh = head, block_start = 0;
857              ret == 0 && (bh != head || !block_start);
858              block_start = block_end, bh = next) {
859                 next = bh->b_this_page;
860                 block_end = block_start + blocksize;
861                 if (block_end <= from || block_start >= to) {
862                         if (partial && !buffer_uptodate(bh))
863                                 *partial = 1;
864                         continue;
865                 }
866                 err = (*fn)(handle, bh);
867                 if (!ret)
868                         ret = err;
869         }
870         return ret;
871 }
872
873 /*
874  * To preserve ordering, it is essential that the hole instantiation and
875  * the data write be encapsulated in a single transaction.  We cannot
876  * close off a transaction and start a new one between the ext4_get_block()
877  * and the commit_write().  So doing the jbd2_journal_start at the start of
878  * prepare_write() is the right place.
879  *
880  * Also, this function can nest inside ext4_writepage().  In that case, we
881  * *know* that ext4_writepage() has generated enough buffer credits to do the
882  * whole page.  So we won't block on the journal in that case, which is good,
883  * because the caller may be PF_MEMALLOC.
884  *
885  * By accident, ext4 can be reentered when a transaction is open via
886  * quota file writes.  If we were to commit the transaction while thus
887  * reentered, there can be a deadlock - we would be holding a quota
888  * lock, and the commit would never complete if another thread had a
889  * transaction open and was blocking on the quota lock - a ranking
890  * violation.
891  *
892  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
893  * will _not_ run commit under these circumstances because handle->h_ref
894  * is elevated.  We'll still have enough credits for the tiny quotafile
895  * write.
896  */
897 int do_journal_get_write_access(handle_t *handle,
898                                 struct buffer_head *bh)
899 {
900         int dirty = buffer_dirty(bh);
901         int ret;
902
903         if (!buffer_mapped(bh) || buffer_freed(bh))
904                 return 0;
905         /*
906          * __block_write_begin() could have dirtied some buffers. Clean
907          * the dirty bit as jbd2_journal_get_write_access() could complain
908          * otherwise about fs integrity issues. Setting of the dirty bit
909          * by __block_write_begin() isn't a real problem here as we clear
910          * the bit before releasing a page lock and thus writeback cannot
911          * ever write the buffer.
912          */
913         if (dirty)
914                 clear_buffer_dirty(bh);
915         ret = ext4_journal_get_write_access(handle, bh);
916         if (!ret && dirty)
917                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
918         return ret;
919 }
920
921 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
922                    struct buffer_head *bh_result, int create);
923 static int ext4_write_begin(struct file *file, struct address_space *mapping,
924                             loff_t pos, unsigned len, unsigned flags,
925                             struct page **pagep, void **fsdata)
926 {
927         struct inode *inode = mapping->host;
928         int ret, needed_blocks;
929         handle_t *handle;
930         int retries = 0;
931         struct page *page;
932         pgoff_t index;
933         unsigned from, to;
934
935         trace_ext4_write_begin(inode, pos, len, flags);
936         /*
937          * Reserve one block more for addition to orphan list in case
938          * we allocate blocks but write fails for some reason
939          */
940         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
941         index = pos >> PAGE_CACHE_SHIFT;
942         from = pos & (PAGE_CACHE_SIZE - 1);
943         to = from + len;
944
945         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
946                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
947                                                     flags, pagep);
948                 if (ret < 0)
949                         return ret;
950                 if (ret == 1)
951                         return 0;
952         }
953
954         /*
955          * grab_cache_page_write_begin() can take a long time if the
956          * system is thrashing due to memory pressure, or if the page
957          * is being written back.  So grab it first before we start
958          * the transaction handle.  This also allows us to allocate
959          * the page (if needed) without using GFP_NOFS.
960          */
961 retry_grab:
962         page = grab_cache_page_write_begin(mapping, index, flags);
963         if (!page)
964                 return -ENOMEM;
965         unlock_page(page);
966
967 retry_journal:
968         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
969         if (IS_ERR(handle)) {
970                 page_cache_release(page);
971                 return PTR_ERR(handle);
972         }
973
974         lock_page(page);
975         if (page->mapping != mapping) {
976                 /* The page got truncated from under us */
977                 unlock_page(page);
978                 page_cache_release(page);
979                 ext4_journal_stop(handle);
980                 goto retry_grab;
981         }
982         /* In case writeback began while the page was unlocked */
983         wait_for_stable_page(page);
984
985         if (ext4_should_dioread_nolock(inode))
986                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
987         else
988                 ret = __block_write_begin(page, pos, len, ext4_get_block);
989
990         if (!ret && ext4_should_journal_data(inode)) {
991                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
992                                              from, to, NULL,
993                                              do_journal_get_write_access);
994         }
995
996         if (ret) {
997                 unlock_page(page);
998                 /*
999                  * __block_write_begin may have instantiated a few blocks
1000                  * outside i_size.  Trim these off again. Don't need
1001                  * i_size_read because we hold i_mutex.
1002                  *
1003                  * Add inode to orphan list in case we crash before
1004                  * truncate finishes
1005                  */
1006                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1007                         ext4_orphan_add(handle, inode);
1008
1009                 ext4_journal_stop(handle);
1010                 if (pos + len > inode->i_size) {
1011                         ext4_truncate_failed_write(inode);
1012                         /*
1013                          * If truncate failed early the inode might
1014                          * still be on the orphan list; we need to
1015                          * make sure the inode is removed from the
1016                          * orphan list in that case.
1017                          */
1018                         if (inode->i_nlink)
1019                                 ext4_orphan_del(NULL, inode);
1020                 }
1021
1022                 if (ret == -ENOSPC &&
1023                     ext4_should_retry_alloc(inode->i_sb, &retries))
1024                         goto retry_journal;
1025                 page_cache_release(page);
1026                 return ret;
1027         }
1028         *pagep = page;
1029         return ret;
1030 }
1031
1032 /* For write_end() in data=journal mode */
1033 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1034 {
1035         int ret;
1036         if (!buffer_mapped(bh) || buffer_freed(bh))
1037                 return 0;
1038         set_buffer_uptodate(bh);
1039         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1040         clear_buffer_meta(bh);
1041         clear_buffer_prio(bh);
1042         return ret;
1043 }
1044
1045 /*
1046  * We need to pick up the new inode size which generic_commit_write gave us
1047  * `file' can be NULL - eg, when called from page_symlink().
1048  *
1049  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1050  * buffers are managed internally.
1051  */
1052 static int ext4_write_end(struct file *file,
1053                           struct address_space *mapping,
1054                           loff_t pos, unsigned len, unsigned copied,
1055                           struct page *page, void *fsdata)
1056 {
1057         handle_t *handle = ext4_journal_current_handle();
1058         struct inode *inode = mapping->host;
1059         int ret = 0, ret2;
1060         int i_size_changed = 0;
1061
1062         trace_ext4_write_end(inode, pos, len, copied);
1063         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1064                 ret = ext4_jbd2_file_inode(handle, inode);
1065                 if (ret) {
1066                         unlock_page(page);
1067                         page_cache_release(page);
1068                         goto errout;
1069                 }
1070         }
1071
1072         if (ext4_has_inline_data(inode)) {
1073                 ret = ext4_write_inline_data_end(inode, pos, len,
1074                                                  copied, page);
1075                 if (ret < 0)
1076                         goto errout;
1077                 copied = ret;
1078         } else
1079                 copied = block_write_end(file, mapping, pos,
1080                                          len, copied, page, fsdata);
1081
1082         /*
1083          * No need to use i_size_read() here, the i_size
1084          * cannot change under us because we hole i_mutex.
1085          *
1086          * But it's important to update i_size while still holding page lock:
1087          * page writeout could otherwise come in and zero beyond i_size.
1088          */
1089         if (pos + copied > inode->i_size) {
1090                 i_size_write(inode, pos + copied);
1091                 i_size_changed = 1;
1092         }
1093
1094         if (pos + copied > EXT4_I(inode)->i_disksize) {
1095                 /* We need to mark inode dirty even if
1096                  * new_i_size is less that inode->i_size
1097                  * but greater than i_disksize. (hint delalloc)
1098                  */
1099                 ext4_update_i_disksize(inode, (pos + copied));
1100                 i_size_changed = 1;
1101         }
1102         unlock_page(page);
1103         page_cache_release(page);
1104
1105         /*
1106          * Don't mark the inode dirty under page lock. First, it unnecessarily
1107          * makes the holding time of page lock longer. Second, it forces lock
1108          * ordering of page lock and transaction start for journaling
1109          * filesystems.
1110          */
1111         if (i_size_changed)
1112                 ext4_mark_inode_dirty(handle, inode);
1113
1114         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1115                 /* if we have allocated more blocks and copied
1116                  * less. We will have blocks allocated outside
1117                  * inode->i_size. So truncate them
1118                  */
1119                 ext4_orphan_add(handle, inode);
1120 errout:
1121         ret2 = ext4_journal_stop(handle);
1122         if (!ret)
1123                 ret = ret2;
1124
1125         if (pos + len > inode->i_size) {
1126                 ext4_truncate_failed_write(inode);
1127                 /*
1128                  * If truncate failed early the inode might still be
1129                  * on the orphan list; we need to make sure the inode
1130                  * is removed from the orphan list in that case.
1131                  */
1132                 if (inode->i_nlink)
1133                         ext4_orphan_del(NULL, inode);
1134         }
1135
1136         return ret ? ret : copied;
1137 }
1138
1139 static int ext4_journalled_write_end(struct file *file,
1140                                      struct address_space *mapping,
1141                                      loff_t pos, unsigned len, unsigned copied,
1142                                      struct page *page, void *fsdata)
1143 {
1144         handle_t *handle = ext4_journal_current_handle();
1145         struct inode *inode = mapping->host;
1146         int ret = 0, ret2;
1147         int partial = 0;
1148         unsigned from, to;
1149         loff_t new_i_size;
1150
1151         trace_ext4_journalled_write_end(inode, pos, len, copied);
1152         from = pos & (PAGE_CACHE_SIZE - 1);
1153         to = from + len;
1154
1155         BUG_ON(!ext4_handle_valid(handle));
1156
1157         if (ext4_has_inline_data(inode))
1158                 copied = ext4_write_inline_data_end(inode, pos, len,
1159                                                     copied, page);
1160         else {
1161                 if (copied < len) {
1162                         if (!PageUptodate(page))
1163                                 copied = 0;
1164                         page_zero_new_buffers(page, from+copied, to);
1165                 }
1166
1167                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1168                                              to, &partial, write_end_fn);
1169                 if (!partial)
1170                         SetPageUptodate(page);
1171         }
1172         new_i_size = pos + copied;
1173         if (new_i_size > inode->i_size)
1174                 i_size_write(inode, pos+copied);
1175         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1176         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1177         if (new_i_size > EXT4_I(inode)->i_disksize) {
1178                 ext4_update_i_disksize(inode, new_i_size);
1179                 ret2 = ext4_mark_inode_dirty(handle, inode);
1180                 if (!ret)
1181                         ret = ret2;
1182         }
1183
1184         unlock_page(page);
1185         page_cache_release(page);
1186         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1187                 /* if we have allocated more blocks and copied
1188                  * less. We will have blocks allocated outside
1189                  * inode->i_size. So truncate them
1190                  */
1191                 ext4_orphan_add(handle, inode);
1192
1193         ret2 = ext4_journal_stop(handle);
1194         if (!ret)
1195                 ret = ret2;
1196         if (pos + len > inode->i_size) {
1197                 ext4_truncate_failed_write(inode);
1198                 /*
1199                  * If truncate failed early the inode might still be
1200                  * on the orphan list; we need to make sure the inode
1201                  * is removed from the orphan list in that case.
1202                  */
1203                 if (inode->i_nlink)
1204                         ext4_orphan_del(NULL, inode);
1205         }
1206
1207         return ret ? ret : copied;
1208 }
1209
1210 /*
1211  * Reserve a metadata for a single block located at lblock
1212  */
1213 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1214 {
1215         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1216         struct ext4_inode_info *ei = EXT4_I(inode);
1217         unsigned int md_needed;
1218         ext4_lblk_t save_last_lblock;
1219         int save_len;
1220
1221         /*
1222          * recalculate the amount of metadata blocks to reserve
1223          * in order to allocate nrblocks
1224          * worse case is one extent per block
1225          */
1226         spin_lock(&ei->i_block_reservation_lock);
1227         /*
1228          * ext4_calc_metadata_amount() has side effects, which we have
1229          * to be prepared undo if we fail to claim space.
1230          */
1231         save_len = ei->i_da_metadata_calc_len;
1232         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1233         md_needed = EXT4_NUM_B2C(sbi,
1234                                  ext4_calc_metadata_amount(inode, lblock));
1235         trace_ext4_da_reserve_space(inode, md_needed);
1236
1237         /*
1238          * We do still charge estimated metadata to the sb though;
1239          * we cannot afford to run out of free blocks.
1240          */
1241         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1242                 ei->i_da_metadata_calc_len = save_len;
1243                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1244                 spin_unlock(&ei->i_block_reservation_lock);
1245                 return -ENOSPC;
1246         }
1247         ei->i_reserved_meta_blocks += md_needed;
1248         spin_unlock(&ei->i_block_reservation_lock);
1249
1250         return 0;       /* success */
1251 }
1252
1253 /*
1254  * Reserve a single cluster located at lblock
1255  */
1256 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1257 {
1258         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1259         struct ext4_inode_info *ei = EXT4_I(inode);
1260         unsigned int md_needed;
1261         int ret;
1262         ext4_lblk_t save_last_lblock;
1263         int save_len;
1264
1265         /*
1266          * We will charge metadata quota at writeout time; this saves
1267          * us from metadata over-estimation, though we may go over by
1268          * a small amount in the end.  Here we just reserve for data.
1269          */
1270         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1271         if (ret)
1272                 return ret;
1273
1274         /*
1275          * recalculate the amount of metadata blocks to reserve
1276          * in order to allocate nrblocks
1277          * worse case is one extent per block
1278          */
1279         spin_lock(&ei->i_block_reservation_lock);
1280         /*
1281          * ext4_calc_metadata_amount() has side effects, which we have
1282          * to be prepared undo if we fail to claim space.
1283          */
1284         save_len = ei->i_da_metadata_calc_len;
1285         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1286         md_needed = EXT4_NUM_B2C(sbi,
1287                                  ext4_calc_metadata_amount(inode, lblock));
1288         trace_ext4_da_reserve_space(inode, md_needed);
1289
1290         /*
1291          * We do still charge estimated metadata to the sb though;
1292          * we cannot afford to run out of free blocks.
1293          */
1294         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1295                 ei->i_da_metadata_calc_len = save_len;
1296                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1297                 spin_unlock(&ei->i_block_reservation_lock);
1298                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1299                 return -ENOSPC;
1300         }
1301         ei->i_reserved_data_blocks++;
1302         ei->i_reserved_meta_blocks += md_needed;
1303         spin_unlock(&ei->i_block_reservation_lock);
1304
1305         return 0;       /* success */
1306 }
1307
1308 static void ext4_da_release_space(struct inode *inode, int to_free)
1309 {
1310         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1311         struct ext4_inode_info *ei = EXT4_I(inode);
1312
1313         if (!to_free)
1314                 return;         /* Nothing to release, exit */
1315
1316         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1317
1318         trace_ext4_da_release_space(inode, to_free);
1319         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1320                 /*
1321                  * if there aren't enough reserved blocks, then the
1322                  * counter is messed up somewhere.  Since this
1323                  * function is called from invalidate page, it's
1324                  * harmless to return without any action.
1325                  */
1326                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1327                          "ino %lu, to_free %d with only %d reserved "
1328                          "data blocks", inode->i_ino, to_free,
1329                          ei->i_reserved_data_blocks);
1330                 WARN_ON(1);
1331                 to_free = ei->i_reserved_data_blocks;
1332         }
1333         ei->i_reserved_data_blocks -= to_free;
1334
1335         if (ei->i_reserved_data_blocks == 0) {
1336                 /*
1337                  * We can release all of the reserved metadata blocks
1338                  * only when we have written all of the delayed
1339                  * allocation blocks.
1340                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1341                  * i_reserved_data_blocks, etc. refer to number of clusters.
1342                  */
1343                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1344                                    ei->i_reserved_meta_blocks);
1345                 ei->i_reserved_meta_blocks = 0;
1346                 ei->i_da_metadata_calc_len = 0;
1347         }
1348
1349         /* update fs dirty data blocks counter */
1350         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1351
1352         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1353
1354         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1355 }
1356
1357 static void ext4_da_page_release_reservation(struct page *page,
1358                                              unsigned int offset,
1359                                              unsigned int length)
1360 {
1361         int to_release = 0;
1362         struct buffer_head *head, *bh;
1363         unsigned int curr_off = 0;
1364         struct inode *inode = page->mapping->host;
1365         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1366         unsigned int stop = offset + length;
1367         int num_clusters;
1368         ext4_fsblk_t lblk;
1369
1370         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1371
1372         head = page_buffers(page);
1373         bh = head;
1374         do {
1375                 unsigned int next_off = curr_off + bh->b_size;
1376
1377                 if (next_off > stop)
1378                         break;
1379
1380                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1381                         to_release++;
1382                         clear_buffer_delay(bh);
1383                 }
1384                 curr_off = next_off;
1385         } while ((bh = bh->b_this_page) != head);
1386
1387         if (to_release) {
1388                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1389                 ext4_es_remove_extent(inode, lblk, to_release);
1390         }
1391
1392         /* If we have released all the blocks belonging to a cluster, then we
1393          * need to release the reserved space for that cluster. */
1394         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1395         while (num_clusters > 0) {
1396                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1397                         ((num_clusters - 1) << sbi->s_cluster_bits);
1398                 if (sbi->s_cluster_ratio == 1 ||
1399                     !ext4_find_delalloc_cluster(inode, lblk))
1400                         ext4_da_release_space(inode, 1);
1401
1402                 num_clusters--;
1403         }
1404 }
1405
1406 /*
1407  * Delayed allocation stuff
1408  */
1409
1410 struct mpage_da_data {
1411         struct inode *inode;
1412         struct writeback_control *wbc;
1413
1414         pgoff_t first_page;     /* The first page to write */
1415         pgoff_t next_page;      /* Current page to examine */
1416         pgoff_t last_page;      /* Last page to examine */
1417         /*
1418          * Extent to map - this can be after first_page because that can be
1419          * fully mapped. We somewhat abuse m_flags to store whether the extent
1420          * is delalloc or unwritten.
1421          */
1422         struct ext4_map_blocks map;
1423         struct ext4_io_submit io_submit;        /* IO submission data */
1424 };
1425
1426 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1427                                        bool invalidate)
1428 {
1429         int nr_pages, i;
1430         pgoff_t index, end;
1431         struct pagevec pvec;
1432         struct inode *inode = mpd->inode;
1433         struct address_space *mapping = inode->i_mapping;
1434
1435         /* This is necessary when next_page == 0. */
1436         if (mpd->first_page >= mpd->next_page)
1437                 return;
1438
1439         index = mpd->first_page;
1440         end   = mpd->next_page - 1;
1441         if (invalidate) {
1442                 ext4_lblk_t start, last;
1443                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1444                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1445                 ext4_es_remove_extent(inode, start, last - start + 1);
1446         }
1447
1448         pagevec_init(&pvec, 0);
1449         while (index <= end) {
1450                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1451                 if (nr_pages == 0)
1452                         break;
1453                 for (i = 0; i < nr_pages; i++) {
1454                         struct page *page = pvec.pages[i];
1455                         if (page->index > end)
1456                                 break;
1457                         BUG_ON(!PageLocked(page));
1458                         BUG_ON(PageWriteback(page));
1459                         if (invalidate) {
1460                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1461                                 ClearPageUptodate(page);
1462                         }
1463                         unlock_page(page);
1464                 }
1465                 index = pvec.pages[nr_pages - 1]->index + 1;
1466                 pagevec_release(&pvec);
1467         }
1468 }
1469
1470 static void ext4_print_free_blocks(struct inode *inode)
1471 {
1472         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1473         struct super_block *sb = inode->i_sb;
1474         struct ext4_inode_info *ei = EXT4_I(inode);
1475
1476         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1477                EXT4_C2B(EXT4_SB(inode->i_sb),
1478                         ext4_count_free_clusters(sb)));
1479         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1480         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1481                (long long) EXT4_C2B(EXT4_SB(sb),
1482                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1483         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1484                (long long) EXT4_C2B(EXT4_SB(sb),
1485                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1486         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1487         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1488                  ei->i_reserved_data_blocks);
1489         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1490                ei->i_reserved_meta_blocks);
1491         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1492                ei->i_allocated_meta_blocks);
1493         return;
1494 }
1495
1496 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1497 {
1498         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1499 }
1500
1501 /*
1502  * This function is grabs code from the very beginning of
1503  * ext4_map_blocks, but assumes that the caller is from delayed write
1504  * time. This function looks up the requested blocks and sets the
1505  * buffer delay bit under the protection of i_data_sem.
1506  */
1507 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1508                               struct ext4_map_blocks *map,
1509                               struct buffer_head *bh)
1510 {
1511         struct extent_status es;
1512         int retval;
1513         sector_t invalid_block = ~((sector_t) 0xffff);
1514 #ifdef ES_AGGRESSIVE_TEST
1515         struct ext4_map_blocks orig_map;
1516
1517         memcpy(&orig_map, map, sizeof(*map));
1518 #endif
1519
1520         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1521                 invalid_block = ~0;
1522
1523         map->m_flags = 0;
1524         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1525                   "logical block %lu\n", inode->i_ino, map->m_len,
1526                   (unsigned long) map->m_lblk);
1527
1528         /* Lookup extent status tree firstly */
1529         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1530                 ext4_es_lru_add(inode);
1531                 if (ext4_es_is_hole(&es)) {
1532                         retval = 0;
1533                         down_read((&EXT4_I(inode)->i_data_sem));
1534                         goto add_delayed;
1535                 }
1536
1537                 /*
1538                  * Delayed extent could be allocated by fallocate.
1539                  * So we need to check it.
1540                  */
1541                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1542                         map_bh(bh, inode->i_sb, invalid_block);
1543                         set_buffer_new(bh);
1544                         set_buffer_delay(bh);
1545                         return 0;
1546                 }
1547
1548                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1549                 retval = es.es_len - (iblock - es.es_lblk);
1550                 if (retval > map->m_len)
1551                         retval = map->m_len;
1552                 map->m_len = retval;
1553                 if (ext4_es_is_written(&es))
1554                         map->m_flags |= EXT4_MAP_MAPPED;
1555                 else if (ext4_es_is_unwritten(&es))
1556                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1557                 else
1558                         BUG_ON(1);
1559
1560 #ifdef ES_AGGRESSIVE_TEST
1561                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1562 #endif
1563                 return retval;
1564         }
1565
1566         /*
1567          * Try to see if we can get the block without requesting a new
1568          * file system block.
1569          */
1570         down_read((&EXT4_I(inode)->i_data_sem));
1571         if (ext4_has_inline_data(inode)) {
1572                 /*
1573                  * We will soon create blocks for this page, and let
1574                  * us pretend as if the blocks aren't allocated yet.
1575                  * In case of clusters, we have to handle the work
1576                  * of mapping from cluster so that the reserved space
1577                  * is calculated properly.
1578                  */
1579                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1580                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1581                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1582                 retval = 0;
1583         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1584                 retval = ext4_ext_map_blocks(NULL, inode, map,
1585                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1586         else
1587                 retval = ext4_ind_map_blocks(NULL, inode, map,
1588                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1589
1590 add_delayed:
1591         if (retval == 0) {
1592                 int ret;
1593                 /*
1594                  * XXX: __block_prepare_write() unmaps passed block,
1595                  * is it OK?
1596                  */
1597                 /*
1598                  * If the block was allocated from previously allocated cluster,
1599                  * then we don't need to reserve it again. However we still need
1600                  * to reserve metadata for every block we're going to write.
1601                  */
1602                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1603                         ret = ext4_da_reserve_space(inode, iblock);
1604                         if (ret) {
1605                                 /* not enough space to reserve */
1606                                 retval = ret;
1607                                 goto out_unlock;
1608                         }
1609                 } else {
1610                         ret = ext4_da_reserve_metadata(inode, iblock);
1611                         if (ret) {
1612                                 /* not enough space to reserve */
1613                                 retval = ret;
1614                                 goto out_unlock;
1615                         }
1616                 }
1617
1618                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1619                                             ~0, EXTENT_STATUS_DELAYED);
1620                 if (ret) {
1621                         retval = ret;
1622                         goto out_unlock;
1623                 }
1624
1625                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1626                  * and it should not appear on the bh->b_state.
1627                  */
1628                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1629
1630                 map_bh(bh, inode->i_sb, invalid_block);
1631                 set_buffer_new(bh);
1632                 set_buffer_delay(bh);
1633         } else if (retval > 0) {
1634                 int ret;
1635                 unsigned int status;
1636
1637                 if (unlikely(retval != map->m_len)) {
1638                         ext4_warning(inode->i_sb,
1639                                      "ES len assertion failed for inode "
1640                                      "%lu: retval %d != map->m_len %d",
1641                                      inode->i_ino, retval, map->m_len);
1642                         WARN_ON(1);
1643                 }
1644
1645                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1646                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1647                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1648                                             map->m_pblk, status);
1649                 if (ret != 0)
1650                         retval = ret;
1651         }
1652
1653 out_unlock:
1654         up_read((&EXT4_I(inode)->i_data_sem));
1655
1656         return retval;
1657 }
1658
1659 /*
1660  * This is a special get_blocks_t callback which is used by
1661  * ext4_da_write_begin().  It will either return mapped block or
1662  * reserve space for a single block.
1663  *
1664  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1665  * We also have b_blocknr = -1 and b_bdev initialized properly
1666  *
1667  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1668  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1669  * initialized properly.
1670  */
1671 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1672                            struct buffer_head *bh, int create)
1673 {
1674         struct ext4_map_blocks map;
1675         int ret = 0;
1676
1677         BUG_ON(create == 0);
1678         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1679
1680         map.m_lblk = iblock;
1681         map.m_len = 1;
1682
1683         /*
1684          * first, we need to know whether the block is allocated already
1685          * preallocated blocks are unmapped but should treated
1686          * the same as allocated blocks.
1687          */
1688         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1689         if (ret <= 0)
1690                 return ret;
1691
1692         map_bh(bh, inode->i_sb, map.m_pblk);
1693         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1694
1695         if (buffer_unwritten(bh)) {
1696                 /* A delayed write to unwritten bh should be marked
1697                  * new and mapped.  Mapped ensures that we don't do
1698                  * get_block multiple times when we write to the same
1699                  * offset and new ensures that we do proper zero out
1700                  * for partial write.
1701                  */
1702                 set_buffer_new(bh);
1703                 set_buffer_mapped(bh);
1704         }
1705         return 0;
1706 }
1707
1708 static int bget_one(handle_t *handle, struct buffer_head *bh)
1709 {
1710         get_bh(bh);
1711         return 0;
1712 }
1713
1714 static int bput_one(handle_t *handle, struct buffer_head *bh)
1715 {
1716         put_bh(bh);
1717         return 0;
1718 }
1719
1720 static int __ext4_journalled_writepage(struct page *page,
1721                                        unsigned int len)
1722 {
1723         struct address_space *mapping = page->mapping;
1724         struct inode *inode = mapping->host;
1725         struct buffer_head *page_bufs = NULL;
1726         handle_t *handle = NULL;
1727         int ret = 0, err = 0;
1728         int inline_data = ext4_has_inline_data(inode);
1729         struct buffer_head *inode_bh = NULL;
1730
1731         ClearPageChecked(page);
1732
1733         if (inline_data) {
1734                 BUG_ON(page->index != 0);
1735                 BUG_ON(len > ext4_get_max_inline_size(inode));
1736                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1737                 if (inode_bh == NULL)
1738                         goto out;
1739         } else {
1740                 page_bufs = page_buffers(page);
1741                 if (!page_bufs) {
1742                         BUG();
1743                         goto out;
1744                 }
1745                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1746                                        NULL, bget_one);
1747         }
1748         /* As soon as we unlock the page, it can go away, but we have
1749          * references to buffers so we are safe */
1750         unlock_page(page);
1751
1752         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1753                                     ext4_writepage_trans_blocks(inode));
1754         if (IS_ERR(handle)) {
1755                 ret = PTR_ERR(handle);
1756                 goto out;
1757         }
1758
1759         BUG_ON(!ext4_handle_valid(handle));
1760
1761         if (inline_data) {
1762                 ret = ext4_journal_get_write_access(handle, inode_bh);
1763
1764                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1765
1766         } else {
1767                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1768                                              do_journal_get_write_access);
1769
1770                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1771                                              write_end_fn);
1772         }
1773         if (ret == 0)
1774                 ret = err;
1775         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1776         err = ext4_journal_stop(handle);
1777         if (!ret)
1778                 ret = err;
1779
1780         if (!ext4_has_inline_data(inode))
1781                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1782                                        NULL, bput_one);
1783         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1784 out:
1785         brelse(inode_bh);
1786         return ret;
1787 }
1788
1789 /*
1790  * Note that we don't need to start a transaction unless we're journaling data
1791  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1792  * need to file the inode to the transaction's list in ordered mode because if
1793  * we are writing back data added by write(), the inode is already there and if
1794  * we are writing back data modified via mmap(), no one guarantees in which
1795  * transaction the data will hit the disk. In case we are journaling data, we
1796  * cannot start transaction directly because transaction start ranks above page
1797  * lock so we have to do some magic.
1798  *
1799  * This function can get called via...
1800  *   - ext4_writepages after taking page lock (have journal handle)
1801  *   - journal_submit_inode_data_buffers (no journal handle)
1802  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1803  *   - grab_page_cache when doing write_begin (have journal handle)
1804  *
1805  * We don't do any block allocation in this function. If we have page with
1806  * multiple blocks we need to write those buffer_heads that are mapped. This
1807  * is important for mmaped based write. So if we do with blocksize 1K
1808  * truncate(f, 1024);
1809  * a = mmap(f, 0, 4096);
1810  * a[0] = 'a';
1811  * truncate(f, 4096);
1812  * we have in the page first buffer_head mapped via page_mkwrite call back
1813  * but other buffer_heads would be unmapped but dirty (dirty done via the
1814  * do_wp_page). So writepage should write the first block. If we modify
1815  * the mmap area beyond 1024 we will again get a page_fault and the
1816  * page_mkwrite callback will do the block allocation and mark the
1817  * buffer_heads mapped.
1818  *
1819  * We redirty the page if we have any buffer_heads that is either delay or
1820  * unwritten in the page.
1821  *
1822  * We can get recursively called as show below.
1823  *
1824  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1825  *              ext4_writepage()
1826  *
1827  * But since we don't do any block allocation we should not deadlock.
1828  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1829  */
1830 static int ext4_writepage(struct page *page,
1831                           struct writeback_control *wbc)
1832 {
1833         int ret = 0;
1834         loff_t size;
1835         unsigned int len;
1836         struct buffer_head *page_bufs = NULL;
1837         struct inode *inode = page->mapping->host;
1838         struct ext4_io_submit io_submit;
1839
1840         trace_ext4_writepage(page);
1841         size = i_size_read(inode);
1842         if (page->index == size >> PAGE_CACHE_SHIFT)
1843                 len = size & ~PAGE_CACHE_MASK;
1844         else
1845                 len = PAGE_CACHE_SIZE;
1846
1847         page_bufs = page_buffers(page);
1848         /*
1849          * We cannot do block allocation or other extent handling in this
1850          * function. If there are buffers needing that, we have to redirty
1851          * the page. But we may reach here when we do a journal commit via
1852          * journal_submit_inode_data_buffers() and in that case we must write
1853          * allocated buffers to achieve data=ordered mode guarantees.
1854          */
1855         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1856                                    ext4_bh_delay_or_unwritten)) {
1857                 redirty_page_for_writepage(wbc, page);
1858                 if (current->flags & PF_MEMALLOC) {
1859                         /*
1860                          * For memory cleaning there's no point in writing only
1861                          * some buffers. So just bail out. Warn if we came here
1862                          * from direct reclaim.
1863                          */
1864                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1865                                                         == PF_MEMALLOC);
1866                         unlock_page(page);
1867                         return 0;
1868                 }
1869         }
1870
1871         if (PageChecked(page) && ext4_should_journal_data(inode))
1872                 /*
1873                  * It's mmapped pagecache.  Add buffers and journal it.  There
1874                  * doesn't seem much point in redirtying the page here.
1875                  */
1876                 return __ext4_journalled_writepage(page, len);
1877
1878         ext4_io_submit_init(&io_submit, wbc);
1879         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1880         if (!io_submit.io_end) {
1881                 redirty_page_for_writepage(wbc, page);
1882                 unlock_page(page);
1883                 return -ENOMEM;
1884         }
1885         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1886         ext4_io_submit(&io_submit);
1887         /* Drop io_end reference we got from init */
1888         ext4_put_io_end_defer(io_submit.io_end);
1889         return ret;
1890 }
1891
1892 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1893 {
1894         int len;
1895         loff_t size = i_size_read(mpd->inode);
1896         int err;
1897
1898         BUG_ON(page->index != mpd->first_page);
1899         if (page->index == size >> PAGE_CACHE_SHIFT)
1900                 len = size & ~PAGE_CACHE_MASK;
1901         else
1902                 len = PAGE_CACHE_SIZE;
1903         clear_page_dirty_for_io(page);
1904         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1905         if (!err)
1906                 mpd->wbc->nr_to_write--;
1907         mpd->first_page++;
1908
1909         return err;
1910 }
1911
1912 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1913
1914 /*
1915  * mballoc gives us at most this number of blocks...
1916  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1917  * The rest of mballoc seems to handle chunks up to full group size.
1918  */
1919 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1920
1921 /*
1922  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1923  *
1924  * @mpd - extent of blocks
1925  * @lblk - logical number of the block in the file
1926  * @bh - buffer head we want to add to the extent
1927  *
1928  * The function is used to collect contig. blocks in the same state. If the
1929  * buffer doesn't require mapping for writeback and we haven't started the
1930  * extent of buffers to map yet, the function returns 'true' immediately - the
1931  * caller can write the buffer right away. Otherwise the function returns true
1932  * if the block has been added to the extent, false if the block couldn't be
1933  * added.
1934  */
1935 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1936                                    struct buffer_head *bh)
1937 {
1938         struct ext4_map_blocks *map = &mpd->map;
1939
1940         /* Buffer that doesn't need mapping for writeback? */
1941         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1942             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1943                 /* So far no extent to map => we write the buffer right away */
1944                 if (map->m_len == 0)
1945                         return true;
1946                 return false;
1947         }
1948
1949         /* First block in the extent? */
1950         if (map->m_len == 0) {
1951                 map->m_lblk = lblk;
1952                 map->m_len = 1;
1953                 map->m_flags = bh->b_state & BH_FLAGS;
1954                 return true;
1955         }
1956
1957         /* Don't go larger than mballoc is willing to allocate */
1958         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1959                 return false;
1960
1961         /* Can we merge the block to our big extent? */
1962         if (lblk == map->m_lblk + map->m_len &&
1963             (bh->b_state & BH_FLAGS) == map->m_flags) {
1964                 map->m_len++;
1965                 return true;
1966         }
1967         return false;
1968 }
1969
1970 /*
1971  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1972  *
1973  * @mpd - extent of blocks for mapping
1974  * @head - the first buffer in the page
1975  * @bh - buffer we should start processing from
1976  * @lblk - logical number of the block in the file corresponding to @bh
1977  *
1978  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1979  * the page for IO if all buffers in this page were mapped and there's no
1980  * accumulated extent of buffers to map or add buffers in the page to the
1981  * extent of buffers to map. The function returns 1 if the caller can continue
1982  * by processing the next page, 0 if it should stop adding buffers to the
1983  * extent to map because we cannot extend it anymore. It can also return value
1984  * < 0 in case of error during IO submission.
1985  */
1986 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1987                                    struct buffer_head *head,
1988                                    struct buffer_head *bh,
1989                                    ext4_lblk_t lblk)
1990 {
1991         struct inode *inode = mpd->inode;
1992         int err;
1993         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1994                                                         >> inode->i_blkbits;
1995
1996         do {
1997                 BUG_ON(buffer_locked(bh));
1998
1999                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2000                         /* Found extent to map? */
2001                         if (mpd->map.m_len)
2002                                 return 0;
2003                         /* Everything mapped so far and we hit EOF */
2004                         break;
2005                 }
2006         } while (lblk++, (bh = bh->b_this_page) != head);
2007         /* So far everything mapped? Submit the page for IO. */
2008         if (mpd->map.m_len == 0) {
2009                 err = mpage_submit_page(mpd, head->b_page);
2010                 if (err < 0)
2011                         return err;
2012         }
2013         return lblk < blocks;
2014 }
2015
2016 /*
2017  * mpage_map_buffers - update buffers corresponding to changed extent and
2018  *                     submit fully mapped pages for IO
2019  *
2020  * @mpd - description of extent to map, on return next extent to map
2021  *
2022  * Scan buffers corresponding to changed extent (we expect corresponding pages
2023  * to be already locked) and update buffer state according to new extent state.
2024  * We map delalloc buffers to their physical location, clear unwritten bits,
2025  * and mark buffers as uninit when we perform writes to uninitialized extents
2026  * and do extent conversion after IO is finished. If the last page is not fully
2027  * mapped, we update @map to the next extent in the last page that needs
2028  * mapping. Otherwise we submit the page for IO.
2029  */
2030 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2031 {
2032         struct pagevec pvec;
2033         int nr_pages, i;
2034         struct inode *inode = mpd->inode;
2035         struct buffer_head *head, *bh;
2036         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2037         pgoff_t start, end;
2038         ext4_lblk_t lblk;
2039         sector_t pblock;
2040         int err;
2041
2042         start = mpd->map.m_lblk >> bpp_bits;
2043         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2044         lblk = start << bpp_bits;
2045         pblock = mpd->map.m_pblk;
2046
2047         pagevec_init(&pvec, 0);
2048         while (start <= end) {
2049                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2050                                           PAGEVEC_SIZE);
2051                 if (nr_pages == 0)
2052                         break;
2053                 for (i = 0; i < nr_pages; i++) {
2054                         struct page *page = pvec.pages[i];
2055
2056                         if (page->index > end)
2057                                 break;
2058                         /* Up to 'end' pages must be contiguous */
2059                         BUG_ON(page->index != start);
2060                         bh = head = page_buffers(page);
2061                         do {
2062                                 if (lblk < mpd->map.m_lblk)
2063                                         continue;
2064                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2065                                         /*
2066                                          * Buffer after end of mapped extent.
2067                                          * Find next buffer in the page to map.
2068                                          */
2069                                         mpd->map.m_len = 0;
2070                                         mpd->map.m_flags = 0;
2071                                         /*
2072                                          * FIXME: If dioread_nolock supports
2073                                          * blocksize < pagesize, we need to make
2074                                          * sure we add size mapped so far to
2075                                          * io_end->size as the following call
2076                                          * can submit the page for IO.
2077                                          */
2078                                         err = mpage_process_page_bufs(mpd, head,
2079                                                                       bh, lblk);
2080                                         pagevec_release(&pvec);
2081                                         if (err > 0)
2082                                                 err = 0;
2083                                         return err;
2084                                 }
2085                                 if (buffer_delay(bh)) {
2086                                         clear_buffer_delay(bh);
2087                                         bh->b_blocknr = pblock++;
2088                                 }
2089                                 clear_buffer_unwritten(bh);
2090                         } while (lblk++, (bh = bh->b_this_page) != head);
2091
2092                         /*
2093                          * FIXME: This is going to break if dioread_nolock
2094                          * supports blocksize < pagesize as we will try to
2095                          * convert potentially unmapped parts of inode.
2096                          */
2097                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2098                         /* Page fully mapped - let IO run! */
2099                         err = mpage_submit_page(mpd, page);
2100                         if (err < 0) {
2101                                 pagevec_release(&pvec);
2102                                 return err;
2103                         }
2104                         start++;
2105                 }
2106                 pagevec_release(&pvec);
2107         }
2108         /* Extent fully mapped and matches with page boundary. We are done. */
2109         mpd->map.m_len = 0;
2110         mpd->map.m_flags = 0;
2111         return 0;
2112 }
2113
2114 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2115 {
2116         struct inode *inode = mpd->inode;
2117         struct ext4_map_blocks *map = &mpd->map;
2118         int get_blocks_flags;
2119         int err;
2120
2121         trace_ext4_da_write_pages_extent(inode, map);
2122         /*
2123          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2124          * to convert an uninitialized extent to be initialized (in the case
2125          * where we have written into one or more preallocated blocks).  It is
2126          * possible that we're going to need more metadata blocks than
2127          * previously reserved. However we must not fail because we're in
2128          * writeback and there is nothing we can do about it so it might result
2129          * in data loss.  So use reserved blocks to allocate metadata if
2130          * possible.
2131          *
2132          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2133          * in question are delalloc blocks.  This affects functions in many
2134          * different parts of the allocation call path.  This flag exists
2135          * primarily because we don't want to change *many* call functions, so
2136          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2137          * once the inode's allocation semaphore is taken.
2138          */
2139         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2140                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2141         if (ext4_should_dioread_nolock(inode))
2142                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2143         if (map->m_flags & (1 << BH_Delay))
2144                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2145
2146         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2147         if (err < 0)
2148                 return err;
2149         if (map->m_flags & EXT4_MAP_UNINIT) {
2150                 if (!mpd->io_submit.io_end->handle &&
2151                     ext4_handle_valid(handle)) {
2152                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2153                         handle->h_rsv_handle = NULL;
2154                 }
2155                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2156         }
2157
2158         BUG_ON(map->m_len == 0);
2159         if (map->m_flags & EXT4_MAP_NEW) {
2160                 struct block_device *bdev = inode->i_sb->s_bdev;
2161                 int i;
2162
2163                 for (i = 0; i < map->m_len; i++)
2164                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2165         }
2166         return 0;
2167 }
2168
2169 /*
2170  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2171  *                               mpd->len and submit pages underlying it for IO
2172  *
2173  * @handle - handle for journal operations
2174  * @mpd - extent to map
2175  * @give_up_on_write - we set this to true iff there is a fatal error and there
2176  *                     is no hope of writing the data. The caller should discard
2177  *                     dirty pages to avoid infinite loops.
2178  *
2179  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2180  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2181  * them to initialized or split the described range from larger unwritten
2182  * extent. Note that we need not map all the described range since allocation
2183  * can return less blocks or the range is covered by more unwritten extents. We
2184  * cannot map more because we are limited by reserved transaction credits. On
2185  * the other hand we always make sure that the last touched page is fully
2186  * mapped so that it can be written out (and thus forward progress is
2187  * guaranteed). After mapping we submit all mapped pages for IO.
2188  */
2189 static int mpage_map_and_submit_extent(handle_t *handle,
2190                                        struct mpage_da_data *mpd,
2191                                        bool *give_up_on_write)
2192 {
2193         struct inode *inode = mpd->inode;
2194         struct ext4_map_blocks *map = &mpd->map;
2195         int err;
2196         loff_t disksize;
2197
2198         mpd->io_submit.io_end->offset =
2199                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2200         do {
2201                 err = mpage_map_one_extent(handle, mpd);
2202                 if (err < 0) {
2203                         struct super_block *sb = inode->i_sb;
2204
2205                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2206                                 goto invalidate_dirty_pages;
2207                         /*
2208                          * Let the uper layers retry transient errors.
2209                          * In the case of ENOSPC, if ext4_count_free_blocks()
2210                          * is non-zero, a commit should free up blocks.
2211                          */
2212                         if ((err == -ENOMEM) ||
2213                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2214                                 return err;
2215                         ext4_msg(sb, KERN_CRIT,
2216                                  "Delayed block allocation failed for "
2217                                  "inode %lu at logical offset %llu with"
2218                                  " max blocks %u with error %d",
2219                                  inode->i_ino,
2220                                  (unsigned long long)map->m_lblk,
2221                                  (unsigned)map->m_len, -err);
2222                         ext4_msg(sb, KERN_CRIT,
2223                                  "This should not happen!! Data will "
2224                                  "be lost\n");
2225                         if (err == -ENOSPC)
2226                                 ext4_print_free_blocks(inode);
2227                 invalidate_dirty_pages:
2228                         *give_up_on_write = true;
2229                         return err;
2230                 }
2231                 /*
2232                  * Update buffer state, submit mapped pages, and get us new
2233                  * extent to map
2234                  */
2235                 err = mpage_map_and_submit_buffers(mpd);
2236                 if (err < 0)
2237                         return err;
2238         } while (map->m_len);
2239
2240         /* Update on-disk size after IO is submitted */
2241         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2242         if (disksize > EXT4_I(inode)->i_disksize) {
2243                 int err2;
2244
2245                 ext4_wb_update_i_disksize(inode, disksize);
2246                 err2 = ext4_mark_inode_dirty(handle, inode);
2247                 if (err2)
2248                         ext4_error(inode->i_sb,
2249                                    "Failed to mark inode %lu dirty",
2250                                    inode->i_ino);
2251                 if (!err)
2252                         err = err2;
2253         }
2254         return err;
2255 }
2256
2257 /*
2258  * Calculate the total number of credits to reserve for one writepages
2259  * iteration. This is called from ext4_writepages(). We map an extent of
2260  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2261  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2262  * bpp - 1 blocks in bpp different extents.
2263  */
2264 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2265 {
2266         int bpp = ext4_journal_blocks_per_page(inode);
2267
2268         return ext4_meta_trans_blocks(inode,
2269                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2270 }
2271
2272 /*
2273  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2274  *                               and underlying extent to map
2275  *
2276  * @mpd - where to look for pages
2277  *
2278  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2279  * IO immediately. When we find a page which isn't mapped we start accumulating
2280  * extent of buffers underlying these pages that needs mapping (formed by
2281  * either delayed or unwritten buffers). We also lock the pages containing
2282  * these buffers. The extent found is returned in @mpd structure (starting at
2283  * mpd->lblk with length mpd->len blocks).
2284  *
2285  * Note that this function can attach bios to one io_end structure which are
2286  * neither logically nor physically contiguous. Although it may seem as an
2287  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2288  * case as we need to track IO to all buffers underlying a page in one io_end.
2289  */
2290 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2291 {
2292         struct address_space *mapping = mpd->inode->i_mapping;
2293         struct pagevec pvec;
2294         unsigned int nr_pages;
2295         long left = mpd->wbc->nr_to_write;
2296         pgoff_t index = mpd->first_page;
2297         pgoff_t end = mpd->last_page;
2298         int tag;
2299         int i, err = 0;
2300         int blkbits = mpd->inode->i_blkbits;
2301         ext4_lblk_t lblk;
2302         struct buffer_head *head;
2303
2304         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2305                 tag = PAGECACHE_TAG_TOWRITE;
2306         else
2307                 tag = PAGECACHE_TAG_DIRTY;
2308
2309         pagevec_init(&pvec, 0);
2310         mpd->map.m_len = 0;
2311         mpd->next_page = index;
2312         while (index <= end) {
2313                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2314                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2315                 if (nr_pages == 0)
2316                         goto out;
2317
2318                 for (i = 0; i < nr_pages; i++) {
2319                         struct page *page = pvec.pages[i];
2320
2321                         /*
2322                          * At this point, the page may be truncated or
2323                          * invalidated (changing page->mapping to NULL), or
2324                          * even swizzled back from swapper_space to tmpfs file
2325                          * mapping. However, page->index will not change
2326                          * because we have a reference on the page.
2327                          */
2328                         if (page->index > end)
2329                                 goto out;
2330
2331                         /*
2332                          * Accumulated enough dirty pages? This doesn't apply
2333                          * to WB_SYNC_ALL mode. For integrity sync we have to
2334                          * keep going because someone may be concurrently
2335                          * dirtying pages, and we might have synced a lot of
2336                          * newly appeared dirty pages, but have not synced all
2337                          * of the old dirty pages.
2338                          */
2339                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2340                                 goto out;
2341
2342                         /* If we can't merge this page, we are done. */
2343                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2344                                 goto out;
2345
2346                         lock_page(page);
2347                         /*
2348                          * If the page is no longer dirty, or its mapping no
2349                          * longer corresponds to inode we are writing (which
2350                          * means it has been truncated or invalidated), or the
2351                          * page is already under writeback and we are not doing
2352                          * a data integrity writeback, skip the page
2353                          */
2354                         if (!PageDirty(page) ||
2355                             (PageWriteback(page) &&
2356                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2357                             unlikely(page->mapping != mapping)) {
2358                                 unlock_page(page);
2359                                 continue;
2360                         }
2361
2362                         wait_on_page_writeback(page);
2363                         BUG_ON(PageWriteback(page));
2364
2365                         if (mpd->map.m_len == 0)
2366                                 mpd->first_page = page->index;
2367                         mpd->next_page = page->index + 1;
2368                         /* Add all dirty buffers to mpd */
2369                         lblk = ((ext4_lblk_t)page->index) <<
2370                                 (PAGE_CACHE_SHIFT - blkbits);
2371                         head = page_buffers(page);
2372                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2373                         if (err <= 0)
2374                                 goto out;
2375                         err = 0;
2376                         left--;
2377                 }
2378                 pagevec_release(&pvec);
2379                 cond_resched();
2380         }
2381         return 0;
2382 out:
2383         pagevec_release(&pvec);
2384         return err;
2385 }
2386
2387 static int __writepage(struct page *page, struct writeback_control *wbc,
2388                        void *data)
2389 {
2390         struct address_space *mapping = data;
2391         int ret = ext4_writepage(page, wbc);
2392         mapping_set_error(mapping, ret);
2393         return ret;
2394 }
2395
2396 static int ext4_writepages(struct address_space *mapping,
2397                            struct writeback_control *wbc)
2398 {
2399         pgoff_t writeback_index = 0;
2400         long nr_to_write = wbc->nr_to_write;
2401         int range_whole = 0;
2402         int cycled = 1;
2403         handle_t *handle = NULL;
2404         struct mpage_da_data mpd;
2405         struct inode *inode = mapping->host;
2406         int needed_blocks, rsv_blocks = 0, ret = 0;
2407         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2408         bool done;
2409         struct blk_plug plug;
2410         bool give_up_on_write = false;
2411
2412         trace_ext4_writepages(inode, wbc);
2413
2414         /*
2415          * No pages to write? This is mainly a kludge to avoid starting
2416          * a transaction for special inodes like journal inode on last iput()
2417          * because that could violate lock ordering on umount
2418          */
2419         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2420                 goto out_writepages;
2421
2422         if (ext4_should_journal_data(inode)) {
2423                 struct blk_plug plug;
2424
2425                 blk_start_plug(&plug);
2426                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2427                 blk_finish_plug(&plug);
2428                 goto out_writepages;
2429         }
2430
2431         /*
2432          * If the filesystem has aborted, it is read-only, so return
2433          * right away instead of dumping stack traces later on that
2434          * will obscure the real source of the problem.  We test
2435          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2436          * the latter could be true if the filesystem is mounted
2437          * read-only, and in that case, ext4_writepages should
2438          * *never* be called, so if that ever happens, we would want
2439          * the stack trace.
2440          */
2441         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2442                 ret = -EROFS;
2443                 goto out_writepages;
2444         }
2445
2446         if (ext4_should_dioread_nolock(inode)) {
2447                 /*
2448                  * We may need to convert up to one extent per block in
2449                  * the page and we may dirty the inode.
2450                  */
2451                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2452         }
2453
2454         /*
2455          * If we have inline data and arrive here, it means that
2456          * we will soon create the block for the 1st page, so
2457          * we'd better clear the inline data here.
2458          */
2459         if (ext4_has_inline_data(inode)) {
2460                 /* Just inode will be modified... */
2461                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2462                 if (IS_ERR(handle)) {
2463                         ret = PTR_ERR(handle);
2464                         goto out_writepages;
2465                 }
2466                 BUG_ON(ext4_test_inode_state(inode,
2467                                 EXT4_STATE_MAY_INLINE_DATA));
2468                 ext4_destroy_inline_data(handle, inode);
2469                 ext4_journal_stop(handle);
2470         }
2471
2472         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2473                 range_whole = 1;
2474
2475         if (wbc->range_cyclic) {
2476                 writeback_index = mapping->writeback_index;
2477                 if (writeback_index)
2478                         cycled = 0;
2479                 mpd.first_page = writeback_index;
2480                 mpd.last_page = -1;
2481         } else {
2482                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2483                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2484         }
2485
2486         mpd.inode = inode;
2487         mpd.wbc = wbc;
2488         ext4_io_submit_init(&mpd.io_submit, wbc);
2489 retry:
2490         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2491                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2492         done = false;
2493         blk_start_plug(&plug);
2494         while (!done && mpd.first_page <= mpd.last_page) {
2495                 /* For each extent of pages we use new io_end */
2496                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2497                 if (!mpd.io_submit.io_end) {
2498                         ret = -ENOMEM;
2499                         break;
2500                 }
2501
2502                 /*
2503                  * We have two constraints: We find one extent to map and we
2504                  * must always write out whole page (makes a difference when
2505                  * blocksize < pagesize) so that we don't block on IO when we
2506                  * try to write out the rest of the page. Journalled mode is
2507                  * not supported by delalloc.
2508                  */
2509                 BUG_ON(ext4_should_journal_data(inode));
2510                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2511
2512                 /* start a new transaction */
2513                 handle = ext4_journal_start_with_reserve(inode,
2514                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2515                 if (IS_ERR(handle)) {
2516                         ret = PTR_ERR(handle);
2517                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2518                                "%ld pages, ino %lu; err %d", __func__,
2519                                 wbc->nr_to_write, inode->i_ino, ret);
2520                         /* Release allocated io_end */
2521                         ext4_put_io_end(mpd.io_submit.io_end);
2522                         break;
2523                 }
2524
2525                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2526                 ret = mpage_prepare_extent_to_map(&mpd);
2527                 if (!ret) {
2528                         if (mpd.map.m_len)
2529                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2530                                         &give_up_on_write);
2531                         else {
2532                                 /*
2533                                  * We scanned the whole range (or exhausted
2534                                  * nr_to_write), submitted what was mapped and
2535                                  * didn't find anything needing mapping. We are
2536                                  * done.
2537                                  */
2538                                 done = true;
2539                         }
2540                 }
2541                 ext4_journal_stop(handle);
2542                 /* Submit prepared bio */
2543                 ext4_io_submit(&mpd.io_submit);
2544                 /* Unlock pages we didn't use */
2545                 mpage_release_unused_pages(&mpd, give_up_on_write);
2546                 /* Drop our io_end reference we got from init */
2547                 ext4_put_io_end(mpd.io_submit.io_end);
2548
2549                 if (ret == -ENOSPC && sbi->s_journal) {
2550                         /*
2551                          * Commit the transaction which would
2552                          * free blocks released in the transaction
2553                          * and try again
2554                          */
2555                         jbd2_journal_force_commit_nested(sbi->s_journal);
2556                         ret = 0;
2557                         continue;
2558                 }
2559                 /* Fatal error - ENOMEM, EIO... */
2560                 if (ret)
2561                         break;
2562         }
2563         blk_finish_plug(&plug);
2564         if (!ret && !cycled && wbc->nr_to_write > 0) {
2565                 cycled = 1;
2566                 mpd.last_page = writeback_index - 1;
2567                 mpd.first_page = 0;
2568                 goto retry;
2569         }
2570
2571         /* Update index */
2572         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2573                 /*
2574                  * Set the writeback_index so that range_cyclic
2575                  * mode will write it back later
2576                  */
2577                 mapping->writeback_index = mpd.first_page;
2578
2579 out_writepages:
2580         trace_ext4_writepages_result(inode, wbc, ret,
2581                                      nr_to_write - wbc->nr_to_write);
2582         return ret;
2583 }
2584
2585 static int ext4_nonda_switch(struct super_block *sb)
2586 {
2587         s64 free_clusters, dirty_clusters;
2588         struct ext4_sb_info *sbi = EXT4_SB(sb);
2589
2590         /*
2591          * switch to non delalloc mode if we are running low
2592          * on free block. The free block accounting via percpu
2593          * counters can get slightly wrong with percpu_counter_batch getting
2594          * accumulated on each CPU without updating global counters
2595          * Delalloc need an accurate free block accounting. So switch
2596          * to non delalloc when we are near to error range.
2597          */
2598         free_clusters =
2599                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2600         dirty_clusters =
2601                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2602         /*
2603          * Start pushing delalloc when 1/2 of free blocks are dirty.
2604          */
2605         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2606                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2607
2608         if (2 * free_clusters < 3 * dirty_clusters ||
2609             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2610                 /*
2611                  * free block count is less than 150% of dirty blocks
2612                  * or free blocks is less than watermark
2613                  */
2614                 return 1;
2615         }
2616         return 0;
2617 }
2618
2619 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2620                                loff_t pos, unsigned len, unsigned flags,
2621                                struct page **pagep, void **fsdata)
2622 {
2623         int ret, retries = 0;
2624         struct page *page;
2625         pgoff_t index;
2626         struct inode *inode = mapping->host;
2627         handle_t *handle;
2628
2629         index = pos >> PAGE_CACHE_SHIFT;
2630
2631         if (ext4_nonda_switch(inode->i_sb)) {
2632                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2633                 return ext4_write_begin(file, mapping, pos,
2634                                         len, flags, pagep, fsdata);
2635         }
2636         *fsdata = (void *)0;
2637         trace_ext4_da_write_begin(inode, pos, len, flags);
2638
2639         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2640                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2641                                                       pos, len, flags,
2642                                                       pagep, fsdata);
2643                 if (ret < 0)
2644                         return ret;
2645                 if (ret == 1)
2646                         return 0;
2647         }
2648
2649         /*
2650          * grab_cache_page_write_begin() can take a long time if the
2651          * system is thrashing due to memory pressure, or if the page
2652          * is being written back.  So grab it first before we start
2653          * the transaction handle.  This also allows us to allocate
2654          * the page (if needed) without using GFP_NOFS.
2655          */
2656 retry_grab:
2657         page = grab_cache_page_write_begin(mapping, index, flags);
2658         if (!page)
2659                 return -ENOMEM;
2660         unlock_page(page);
2661
2662         /*
2663          * With delayed allocation, we don't log the i_disksize update
2664          * if there is delayed block allocation. But we still need
2665          * to journalling the i_disksize update if writes to the end
2666          * of file which has an already mapped buffer.
2667          */
2668 retry_journal:
2669         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2670         if (IS_ERR(handle)) {
2671                 page_cache_release(page);
2672                 return PTR_ERR(handle);
2673         }
2674
2675         lock_page(page);
2676         if (page->mapping != mapping) {
2677                 /* The page got truncated from under us */
2678                 unlock_page(page);
2679                 page_cache_release(page);
2680                 ext4_journal_stop(handle);
2681                 goto retry_grab;
2682         }
2683         /* In case writeback began while the page was unlocked */
2684         wait_for_stable_page(page);
2685
2686         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2687         if (ret < 0) {
2688                 unlock_page(page);
2689                 ext4_journal_stop(handle);
2690                 /*
2691                  * block_write_begin may have instantiated a few blocks
2692                  * outside i_size.  Trim these off again. Don't need
2693                  * i_size_read because we hold i_mutex.
2694                  */
2695                 if (pos + len > inode->i_size)
2696                         ext4_truncate_failed_write(inode);
2697
2698                 if (ret == -ENOSPC &&
2699                     ext4_should_retry_alloc(inode->i_sb, &retries))
2700                         goto retry_journal;
2701
2702                 page_cache_release(page);
2703                 return ret;
2704         }
2705
2706         *pagep = page;
2707         return ret;
2708 }
2709
2710 /*
2711  * Check if we should update i_disksize
2712  * when write to the end of file but not require block allocation
2713  */
2714 static int ext4_da_should_update_i_disksize(struct page *page,
2715                                             unsigned long offset)
2716 {
2717         struct buffer_head *bh;
2718         struct inode *inode = page->mapping->host;
2719         unsigned int idx;
2720         int i;
2721
2722         bh = page_buffers(page);
2723         idx = offset >> inode->i_blkbits;
2724
2725         for (i = 0; i < idx; i++)
2726                 bh = bh->b_this_page;
2727
2728         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2729                 return 0;
2730         return 1;
2731 }
2732
2733 static int ext4_da_write_end(struct file *file,
2734                              struct address_space *mapping,
2735                              loff_t pos, unsigned len, unsigned copied,
2736                              struct page *page, void *fsdata)
2737 {
2738         struct inode *inode = mapping->host;
2739         int ret = 0, ret2;
2740         handle_t *handle = ext4_journal_current_handle();
2741         loff_t new_i_size;
2742         unsigned long start, end;
2743         int write_mode = (int)(unsigned long)fsdata;
2744
2745         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2746                 return ext4_write_end(file, mapping, pos,
2747                                       len, copied, page, fsdata);
2748
2749         trace_ext4_da_write_end(inode, pos, len, copied);
2750         start = pos & (PAGE_CACHE_SIZE - 1);
2751         end = start + copied - 1;
2752
2753         /*
2754          * generic_write_end() will run mark_inode_dirty() if i_size
2755          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2756          * into that.
2757          */
2758         new_i_size = pos + copied;
2759         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2760                 if (ext4_has_inline_data(inode) ||
2761                     ext4_da_should_update_i_disksize(page, end)) {
2762                         down_write(&EXT4_I(inode)->i_data_sem);
2763                         if (new_i_size > EXT4_I(inode)->i_disksize)
2764                                 EXT4_I(inode)->i_disksize = new_i_size;
2765                         up_write(&EXT4_I(inode)->i_data_sem);
2766                         /* We need to mark inode dirty even if
2767                          * new_i_size is less that inode->i_size
2768                          * bu greater than i_disksize.(hint delalloc)
2769                          */
2770                         ext4_mark_inode_dirty(handle, inode);
2771                 }
2772         }
2773
2774         if (write_mode != CONVERT_INLINE_DATA &&
2775             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2776             ext4_has_inline_data(inode))
2777                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2778                                                      page);
2779         else
2780                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2781                                                         page, fsdata);
2782
2783         copied = ret2;
2784         if (ret2 < 0)
2785                 ret = ret2;
2786         ret2 = ext4_journal_stop(handle);
2787         if (!ret)
2788                 ret = ret2;
2789
2790         return ret ? ret : copied;
2791 }
2792
2793 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2794                                    unsigned int length)
2795 {
2796         /*
2797          * Drop reserved blocks
2798          */
2799         BUG_ON(!PageLocked(page));
2800         if (!page_has_buffers(page))
2801                 goto out;
2802
2803         ext4_da_page_release_reservation(page, offset, length);
2804
2805 out:
2806         ext4_invalidatepage(page, offset, length);
2807
2808         return;
2809 }
2810
2811 /*
2812  * Force all delayed allocation blocks to be allocated for a given inode.
2813  */
2814 int ext4_alloc_da_blocks(struct inode *inode)
2815 {
2816         trace_ext4_alloc_da_blocks(inode);
2817
2818         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2819             !EXT4_I(inode)->i_reserved_meta_blocks)
2820                 return 0;
2821
2822         /*
2823          * We do something simple for now.  The filemap_flush() will
2824          * also start triggering a write of the data blocks, which is
2825          * not strictly speaking necessary (and for users of
2826          * laptop_mode, not even desirable).  However, to do otherwise
2827          * would require replicating code paths in:
2828          *
2829          * ext4_writepages() ->
2830          *    write_cache_pages() ---> (via passed in callback function)
2831          *        __mpage_da_writepage() -->
2832          *           mpage_add_bh_to_extent()
2833          *           mpage_da_map_blocks()
2834          *
2835          * The problem is that write_cache_pages(), located in
2836          * mm/page-writeback.c, marks pages clean in preparation for
2837          * doing I/O, which is not desirable if we're not planning on
2838          * doing I/O at all.
2839          *
2840          * We could call write_cache_pages(), and then redirty all of
2841          * the pages by calling redirty_page_for_writepage() but that
2842          * would be ugly in the extreme.  So instead we would need to
2843          * replicate parts of the code in the above functions,
2844          * simplifying them because we wouldn't actually intend to
2845          * write out the pages, but rather only collect contiguous
2846          * logical block extents, call the multi-block allocator, and
2847          * then update the buffer heads with the block allocations.
2848          *
2849          * For now, though, we'll cheat by calling filemap_flush(),
2850          * which will map the blocks, and start the I/O, but not
2851          * actually wait for the I/O to complete.
2852          */
2853         return filemap_flush(inode->i_mapping);
2854 }
2855
2856 /*
2857  * bmap() is special.  It gets used by applications such as lilo and by
2858  * the swapper to find the on-disk block of a specific piece of data.
2859  *
2860  * Naturally, this is dangerous if the block concerned is still in the
2861  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2862  * filesystem and enables swap, then they may get a nasty shock when the
2863  * data getting swapped to that swapfile suddenly gets overwritten by
2864  * the original zero's written out previously to the journal and
2865  * awaiting writeback in the kernel's buffer cache.
2866  *
2867  * So, if we see any bmap calls here on a modified, data-journaled file,
2868  * take extra steps to flush any blocks which might be in the cache.
2869  */
2870 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2871 {
2872         struct inode *inode = mapping->host;
2873         journal_t *journal;
2874         int err;
2875
2876         /*
2877          * We can get here for an inline file via the FIBMAP ioctl
2878          */
2879         if (ext4_has_inline_data(inode))
2880                 return 0;
2881
2882         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2883                         test_opt(inode->i_sb, DELALLOC)) {
2884                 /*
2885                  * With delalloc we want to sync the file
2886                  * so that we can make sure we allocate
2887                  * blocks for file
2888                  */
2889                 filemap_write_and_wait(mapping);
2890         }
2891
2892         if (EXT4_JOURNAL(inode) &&
2893             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2894                 /*
2895                  * This is a REALLY heavyweight approach, but the use of
2896                  * bmap on dirty files is expected to be extremely rare:
2897                  * only if we run lilo or swapon on a freshly made file
2898                  * do we expect this to happen.
2899                  *
2900                  * (bmap requires CAP_SYS_RAWIO so this does not
2901                  * represent an unprivileged user DOS attack --- we'd be
2902                  * in trouble if mortal users could trigger this path at
2903                  * will.)
2904                  *
2905                  * NB. EXT4_STATE_JDATA is not set on files other than
2906                  * regular files.  If somebody wants to bmap a directory
2907                  * or symlink and gets confused because the buffer
2908                  * hasn't yet been flushed to disk, they deserve
2909                  * everything they get.
2910                  */
2911
2912                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2913                 journal = EXT4_JOURNAL(inode);
2914                 jbd2_journal_lock_updates(journal);
2915                 err = jbd2_journal_flush(journal);
2916                 jbd2_journal_unlock_updates(journal);
2917
2918                 if (err)
2919                         return 0;
2920         }
2921
2922         return generic_block_bmap(mapping, block, ext4_get_block);
2923 }
2924
2925 static int ext4_readpage(struct file *file, struct page *page)
2926 {
2927         int ret = -EAGAIN;
2928         struct inode *inode = page->mapping->host;
2929
2930         trace_ext4_readpage(page);
2931
2932         if (ext4_has_inline_data(inode))
2933                 ret = ext4_readpage_inline(inode, page);
2934
2935         if (ret == -EAGAIN)
2936                 return mpage_readpage(page, ext4_get_block);
2937
2938         return ret;
2939 }
2940
2941 static int
2942 ext4_readpages(struct file *file, struct address_space *mapping,
2943                 struct list_head *pages, unsigned nr_pages)
2944 {
2945         struct inode *inode = mapping->host;
2946
2947         /* If the file has inline data, no need to do readpages. */
2948         if (ext4_has_inline_data(inode))
2949                 return 0;
2950
2951         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2952 }
2953
2954 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2955                                 unsigned int length)
2956 {
2957         trace_ext4_invalidatepage(page, offset, length);
2958
2959         /* No journalling happens on data buffers when this function is used */
2960         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2961
2962         block_invalidatepage(page, offset, length);
2963 }
2964
2965 static int __ext4_journalled_invalidatepage(struct page *page,
2966                                             unsigned int offset,
2967                                             unsigned int length)
2968 {
2969         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2970
2971         trace_ext4_journalled_invalidatepage(page, offset, length);
2972
2973         /*
2974          * If it's a full truncate we just forget about the pending dirtying
2975          */
2976         if (offset == 0 && length == PAGE_CACHE_SIZE)
2977                 ClearPageChecked(page);
2978
2979         return jbd2_journal_invalidatepage(journal, page, offset, length);
2980 }
2981
2982 /* Wrapper for aops... */
2983 static void ext4_journalled_invalidatepage(struct page *page,
2984                                            unsigned int offset,
2985                                            unsigned int length)
2986 {
2987         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2988 }
2989
2990 static int ext4_releasepage(struct page *page, gfp_t wait)
2991 {
2992         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2993
2994         trace_ext4_releasepage(page);
2995
2996         /* Page has dirty journalled data -> cannot release */
2997         if (PageChecked(page))
2998                 return 0;
2999         if (journal)
3000                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3001         else
3002                 return try_to_free_buffers(page);
3003 }
3004
3005 /*
3006  * ext4_get_block used when preparing for a DIO write or buffer write.
3007  * We allocate an uinitialized extent if blocks haven't been allocated.
3008  * The extent will be converted to initialized after the IO is complete.
3009  */
3010 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3011                    struct buffer_head *bh_result, int create)
3012 {
3013         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3014                    inode->i_ino, create);
3015         return _ext4_get_block(inode, iblock, bh_result,
3016                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3017 }
3018
3019 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3020                    struct buffer_head *bh_result, int create)
3021 {
3022         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3023                    inode->i_ino, create);
3024         return _ext4_get_block(inode, iblock, bh_result,
3025                                EXT4_GET_BLOCKS_NO_LOCK);
3026 }
3027
3028 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3029                             ssize_t size, void *private)
3030 {
3031         ext4_io_end_t *io_end = iocb->private;
3032
3033         /* if not async direct IO just return */
3034         if (!io_end)
3035                 return;
3036
3037         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3038                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3039                   iocb->private, io_end->inode->i_ino, iocb, offset,
3040                   size);
3041
3042         iocb->private = NULL;
3043         io_end->offset = offset;
3044         io_end->size = size;
3045         ext4_put_io_end(io_end);
3046 }
3047
3048 /*
3049  * For ext4 extent files, ext4 will do direct-io write to holes,
3050  * preallocated extents, and those write extend the file, no need to
3051  * fall back to buffered IO.
3052  *
3053  * For holes, we fallocate those blocks, mark them as uninitialized
3054  * If those blocks were preallocated, we mark sure they are split, but
3055  * still keep the range to write as uninitialized.
3056  *
3057  * The unwritten extents will be converted to written when DIO is completed.
3058  * For async direct IO, since the IO may still pending when return, we
3059  * set up an end_io call back function, which will do the conversion
3060  * when async direct IO completed.
3061  *
3062  * If the O_DIRECT write will extend the file then add this inode to the
3063  * orphan list.  So recovery will truncate it back to the original size
3064  * if the machine crashes during the write.
3065  *
3066  */
3067 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3068                               const struct iovec *iov, loff_t offset,
3069                               unsigned long nr_segs)
3070 {
3071         struct file *file = iocb->ki_filp;
3072         struct inode *inode = file->f_mapping->host;
3073         ssize_t ret;
3074         size_t count = iov_length(iov, nr_segs);
3075         int overwrite = 0;
3076         get_block_t *get_block_func = NULL;
3077         int dio_flags = 0;
3078         loff_t final_size = offset + count;
3079         ext4_io_end_t *io_end = NULL;
3080
3081         /* Use the old path for reads and writes beyond i_size. */
3082         if (rw != WRITE || final_size > inode->i_size)
3083                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3084
3085         BUG_ON(iocb->private == NULL);
3086
3087         /*
3088          * Make all waiters for direct IO properly wait also for extent
3089          * conversion. This also disallows race between truncate() and
3090          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3091          */
3092         if (rw == WRITE)
3093                 atomic_inc(&inode->i_dio_count);
3094
3095         /* If we do a overwrite dio, i_mutex locking can be released */
3096         overwrite = *((int *)iocb->private);
3097
3098         if (overwrite) {
3099                 down_read(&EXT4_I(inode)->i_data_sem);
3100                 mutex_unlock(&inode->i_mutex);
3101         }
3102
3103         /*
3104          * We could direct write to holes and fallocate.
3105          *
3106          * Allocated blocks to fill the hole are marked as
3107          * uninitialized to prevent parallel buffered read to expose
3108          * the stale data before DIO complete the data IO.
3109          *
3110          * As to previously fallocated extents, ext4 get_block will
3111          * just simply mark the buffer mapped but still keep the
3112          * extents uninitialized.
3113          *
3114          * For non AIO case, we will convert those unwritten extents
3115          * to written after return back from blockdev_direct_IO.
3116          *
3117          * For async DIO, the conversion needs to be deferred when the
3118          * IO is completed. The ext4 end_io callback function will be
3119          * called to take care of the conversion work.  Here for async
3120          * case, we allocate an io_end structure to hook to the iocb.
3121          */
3122         iocb->private = NULL;
3123         ext4_inode_aio_set(inode, NULL);
3124         if (!is_sync_kiocb(iocb)) {
3125                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3126                 if (!io_end) {
3127                         ret = -ENOMEM;
3128                         goto retake_lock;
3129                 }
3130                 /*
3131                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3132                  */
3133                 iocb->private = ext4_get_io_end(io_end);
3134                 /*
3135                  * we save the io structure for current async direct
3136                  * IO, so that later ext4_map_blocks() could flag the
3137                  * io structure whether there is a unwritten extents
3138                  * needs to be converted when IO is completed.
3139                  */
3140                 ext4_inode_aio_set(inode, io_end);
3141         }
3142
3143         if (overwrite) {
3144                 get_block_func = ext4_get_block_write_nolock;
3145         } else {
3146                 get_block_func = ext4_get_block_write;
3147                 dio_flags = DIO_LOCKING;
3148         }
3149         ret = __blockdev_direct_IO(rw, iocb, inode,
3150                                    inode->i_sb->s_bdev, iov,
3151                                    offset, nr_segs,
3152                                    get_block_func,
3153                                    ext4_end_io_dio,
3154                                    NULL,
3155                                    dio_flags);
3156
3157         /*
3158          * Put our reference to io_end. This can free the io_end structure e.g.
3159          * in sync IO case or in case of error. It can even perform extent
3160          * conversion if all bios we submitted finished before we got here.
3161          * Note that in that case iocb->private can be already set to NULL
3162          * here.
3163          */
3164         if (io_end) {
3165                 ext4_inode_aio_set(inode, NULL);
3166                 ext4_put_io_end(io_end);
3167                 /*
3168                  * When no IO was submitted ext4_end_io_dio() was not
3169                  * called so we have to put iocb's reference.
3170                  */
3171                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3172                         WARN_ON(iocb->private != io_end);
3173                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3174                         ext4_put_io_end(io_end);
3175                         iocb->private = NULL;
3176                 }
3177         }
3178         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3179                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3180                 int err;
3181                 /*
3182                  * for non AIO case, since the IO is already
3183                  * completed, we could do the conversion right here
3184                  */
3185                 err = ext4_convert_unwritten_extents(NULL, inode,
3186                                                      offset, ret);
3187                 if (err < 0)
3188                         ret = err;
3189                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3190         }
3191
3192 retake_lock:
3193         if (rw == WRITE)
3194                 inode_dio_done(inode);
3195         /* take i_mutex locking again if we do a ovewrite dio */
3196         if (overwrite) {
3197                 up_read(&EXT4_I(inode)->i_data_sem);
3198                 mutex_lock(&inode->i_mutex);
3199         }
3200
3201         return ret;
3202 }
3203
3204 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3205                               const struct iovec *iov, loff_t offset,
3206                               unsigned long nr_segs)
3207 {
3208         struct file *file = iocb->ki_filp;
3209         struct inode *inode = file->f_mapping->host;
3210         ssize_t ret;
3211
3212         /*
3213          * If we are doing data journalling we don't support O_DIRECT
3214          */
3215         if (ext4_should_journal_data(inode))
3216                 return 0;
3217
3218         /* Let buffer I/O handle the inline data case. */
3219         if (ext4_has_inline_data(inode))
3220                 return 0;
3221
3222         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3223         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3224                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3225         else
3226                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3227         trace_ext4_direct_IO_exit(inode, offset,
3228                                 iov_length(iov, nr_segs), rw, ret);
3229         return ret;
3230 }
3231
3232 /*
3233  * Pages can be marked dirty completely asynchronously from ext4's journalling
3234  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3235  * much here because ->set_page_dirty is called under VFS locks.  The page is
3236  * not necessarily locked.
3237  *
3238  * We cannot just dirty the page and leave attached buffers clean, because the
3239  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3240  * or jbddirty because all the journalling code will explode.
3241  *
3242  * So what we do is to mark the page "pending dirty" and next time writepage
3243  * is called, propagate that into the buffers appropriately.
3244  */
3245 static int ext4_journalled_set_page_dirty(struct page *page)
3246 {
3247         SetPageChecked(page);
3248         return __set_page_dirty_nobuffers(page);
3249 }
3250
3251 static const struct address_space_operations ext4_aops = {
3252         .readpage               = ext4_readpage,
3253         .readpages              = ext4_readpages,
3254         .writepage              = ext4_writepage,
3255         .writepages             = ext4_writepages,
3256         .write_begin            = ext4_write_begin,
3257         .write_end              = ext4_write_end,
3258         .bmap                   = ext4_bmap,
3259         .invalidatepage         = ext4_invalidatepage,
3260         .releasepage            = ext4_releasepage,
3261         .direct_IO              = ext4_direct_IO,
3262         .migratepage            = buffer_migrate_page,
3263         .is_partially_uptodate  = block_is_partially_uptodate,
3264         .error_remove_page      = generic_error_remove_page,
3265 };
3266
3267 static const struct address_space_operations ext4_journalled_aops = {
3268         .readpage               = ext4_readpage,
3269         .readpages              = ext4_readpages,
3270         .writepage              = ext4_writepage,
3271         .writepages             = ext4_writepages,
3272         .write_begin            = ext4_write_begin,
3273         .write_end              = ext4_journalled_write_end,
3274         .set_page_dirty         = ext4_journalled_set_page_dirty,
3275         .bmap                   = ext4_bmap,
3276         .invalidatepage         = ext4_journalled_invalidatepage,
3277         .releasepage            = ext4_releasepage,
3278         .direct_IO              = ext4_direct_IO,
3279         .is_partially_uptodate  = block_is_partially_uptodate,
3280         .error_remove_page      = generic_error_remove_page,
3281 };
3282
3283 static const struct address_space_operations ext4_da_aops = {
3284         .readpage               = ext4_readpage,
3285         .readpages              = ext4_readpages,
3286         .writepage              = ext4_writepage,
3287         .writepages             = ext4_writepages,
3288         .write_begin            = ext4_da_write_begin,
3289         .write_end              = ext4_da_write_end,
3290         .bmap                   = ext4_bmap,
3291         .invalidatepage         = ext4_da_invalidatepage,
3292         .releasepage            = ext4_releasepage,
3293         .direct_IO              = ext4_direct_IO,
3294         .migratepage            = buffer_migrate_page,
3295         .is_partially_uptodate  = block_is_partially_uptodate,
3296         .error_remove_page      = generic_error_remove_page,
3297 };
3298
3299 void ext4_set_aops(struct inode *inode)
3300 {
3301         switch (ext4_inode_journal_mode(inode)) {
3302         case EXT4_INODE_ORDERED_DATA_MODE:
3303                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3304                 break;
3305         case EXT4_INODE_WRITEBACK_DATA_MODE:
3306                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3307                 break;
3308         case EXT4_INODE_JOURNAL_DATA_MODE:
3309                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3310                 return;
3311         default:
3312                 BUG();
3313         }
3314         if (test_opt(inode->i_sb, DELALLOC))
3315                 inode->i_mapping->a_ops = &ext4_da_aops;
3316         else
3317                 inode->i_mapping->a_ops = &ext4_aops;
3318 }
3319
3320 /*
3321  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3322  * up to the end of the block which corresponds to `from'.
3323  * This required during truncate. We need to physically zero the tail end
3324  * of that block so it doesn't yield old data if the file is later grown.
3325  */
3326 int ext4_block_truncate_page(handle_t *handle,
3327                 struct address_space *mapping, loff_t from)
3328 {
3329         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3330         unsigned length;
3331         unsigned blocksize;
3332         struct inode *inode = mapping->host;
3333
3334         blocksize = inode->i_sb->s_blocksize;
3335         length = blocksize - (offset & (blocksize - 1));
3336
3337         return ext4_block_zero_page_range(handle, mapping, from, length);
3338 }
3339
3340 /*
3341  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3342  * starting from file offset 'from'.  The range to be zero'd must
3343  * be contained with in one block.  If the specified range exceeds
3344  * the end of the block it will be shortened to end of the block
3345  * that cooresponds to 'from'
3346  */
3347 int ext4_block_zero_page_range(handle_t *handle,
3348                 struct address_space *mapping, loff_t from, loff_t length)
3349 {
3350         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3351         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3352         unsigned blocksize, max, pos;
3353         ext4_lblk_t iblock;
3354         struct inode *inode = mapping->host;
3355         struct buffer_head *bh;
3356         struct page *page;
3357         int err = 0;
3358
3359         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3360                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3361         if (!page)
3362                 return -ENOMEM;
3363
3364         blocksize = inode->i_sb->s_blocksize;
3365         max = blocksize - (offset & (blocksize - 1));
3366
3367         /*
3368          * correct length if it does not fall between
3369          * 'from' and the end of the block
3370          */
3371         if (length > max || length < 0)
3372                 length = max;
3373
3374         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3375
3376         if (!page_has_buffers(page))
3377                 create_empty_buffers(page, blocksize, 0);
3378
3379         /* Find the buffer that contains "offset" */
3380         bh = page_buffers(page);
3381         pos = blocksize;
3382         while (offset >= pos) {
3383                 bh = bh->b_this_page;
3384                 iblock++;
3385                 pos += blocksize;
3386         }
3387         if (buffer_freed(bh)) {
3388                 BUFFER_TRACE(bh, "freed: skip");
3389                 goto unlock;
3390         }
3391         if (!buffer_mapped(bh)) {
3392                 BUFFER_TRACE(bh, "unmapped");
3393                 ext4_get_block(inode, iblock, bh, 0);
3394                 /* unmapped? It's a hole - nothing to do */
3395                 if (!buffer_mapped(bh)) {
3396                         BUFFER_TRACE(bh, "still unmapped");
3397                         goto unlock;
3398                 }
3399         }
3400
3401         /* Ok, it's mapped. Make sure it's up-to-date */
3402         if (PageUptodate(page))
3403                 set_buffer_uptodate(bh);
3404
3405         if (!buffer_uptodate(bh)) {
3406                 err = -EIO;
3407                 ll_rw_block(READ, 1, &bh);
3408                 wait_on_buffer(bh);
3409                 /* Uhhuh. Read error. Complain and punt. */
3410                 if (!buffer_uptodate(bh))
3411                         goto unlock;
3412         }
3413         if (ext4_should_journal_data(inode)) {
3414                 BUFFER_TRACE(bh, "get write access");
3415                 err = ext4_journal_get_write_access(handle, bh);
3416                 if (err)
3417                         goto unlock;
3418         }
3419         zero_user(page, offset, length);
3420         BUFFER_TRACE(bh, "zeroed end of block");
3421
3422         if (ext4_should_journal_data(inode)) {
3423                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3424         } else {
3425                 err = 0;
3426                 mark_buffer_dirty(bh);
3427                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3428                         err = ext4_jbd2_file_inode(handle, inode);
3429         }
3430
3431 unlock:
3432         unlock_page(page);
3433         page_cache_release(page);
3434         return err;
3435 }
3436
3437 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3438                              loff_t lstart, loff_t length)
3439 {
3440         struct super_block *sb = inode->i_sb;
3441         struct address_space *mapping = inode->i_mapping;
3442         unsigned partial_start, partial_end;
3443         ext4_fsblk_t start, end;
3444         loff_t byte_end = (lstart + length - 1);
3445         int err = 0;
3446
3447         partial_start = lstart & (sb->s_blocksize - 1);
3448         partial_end = byte_end & (sb->s_blocksize - 1);
3449
3450         start = lstart >> sb->s_blocksize_bits;
3451         end = byte_end >> sb->s_blocksize_bits;
3452
3453         /* Handle partial zero within the single block */
3454         if (start == end &&
3455             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3456                 err = ext4_block_zero_page_range(handle, mapping,
3457                                                  lstart, length);
3458                 return err;
3459         }
3460         /* Handle partial zero out on the start of the range */
3461         if (partial_start) {
3462                 err = ext4_block_zero_page_range(handle, mapping,
3463                                                  lstart, sb->s_blocksize);
3464                 if (err)
3465                         return err;
3466         }
3467         /* Handle partial zero out on the end of the range */
3468         if (partial_end != sb->s_blocksize - 1)
3469                 err = ext4_block_zero_page_range(handle, mapping,
3470                                                  byte_end - partial_end,
3471                                                  partial_end + 1);
3472         return err;
3473 }
3474
3475 int ext4_can_truncate(struct inode *inode)
3476 {
3477         if (S_ISREG(inode->i_mode))
3478                 return 1;
3479         if (S_ISDIR(inode->i_mode))
3480                 return 1;
3481         if (S_ISLNK(inode->i_mode))
3482                 return !ext4_inode_is_fast_symlink(inode);
3483         return 0;
3484 }
3485
3486 /*
3487  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3488  * associated with the given offset and length
3489  *
3490  * @inode:  File inode
3491  * @offset: The offset where the hole will begin
3492  * @len:    The length of the hole
3493  *
3494  * Returns: 0 on success or negative on failure
3495  */
3496
3497 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3498 {
3499         struct super_block *sb = inode->i_sb;
3500         ext4_lblk_t first_block, stop_block;
3501         struct address_space *mapping = inode->i_mapping;
3502         loff_t first_block_offset, last_block_offset;
3503         handle_t *handle;
3504         unsigned int credits;
3505         int ret = 0;
3506
3507         if (!S_ISREG(inode->i_mode))
3508                 return -EOPNOTSUPP;
3509
3510         trace_ext4_punch_hole(inode, offset, length);
3511
3512         /*
3513          * Write out all dirty pages to avoid race conditions
3514          * Then release them.
3515          */
3516         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3517                 ret = filemap_write_and_wait_range(mapping, offset,
3518                                                    offset + length - 1);
3519                 if (ret)
3520                         return ret;
3521         }
3522
3523         mutex_lock(&inode->i_mutex);
3524         /* It's not possible punch hole on append only file */
3525         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3526                 ret = -EPERM;
3527                 goto out_mutex;
3528         }
3529         if (IS_SWAPFILE(inode)) {
3530                 ret = -ETXTBSY;
3531                 goto out_mutex;
3532         }
3533
3534         /* No need to punch hole beyond i_size */
3535         if (offset >= inode->i_size)
3536                 goto out_mutex;
3537
3538         /*
3539          * If the hole extends beyond i_size, set the hole
3540          * to end after the page that contains i_size
3541          */
3542         if (offset + length > inode->i_size) {
3543                 length = inode->i_size +
3544                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3545                    offset;
3546         }
3547
3548         if (offset & (sb->s_blocksize - 1) ||
3549             (offset + length) & (sb->s_blocksize - 1)) {
3550                 /*
3551                  * Attach jinode to inode for jbd2 if we do any zeroing of
3552                  * partial block
3553                  */
3554                 ret = ext4_inode_attach_jinode(inode);
3555                 if (ret < 0)
3556                         goto out_mutex;
3557
3558         }
3559
3560         first_block_offset = round_up(offset, sb->s_blocksize);
3561         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3562
3563         /* Now release the pages and zero block aligned part of pages*/
3564         if (last_block_offset > first_block_offset)
3565                 truncate_pagecache_range(inode, first_block_offset,
3566                                          last_block_offset);
3567
3568         /* Wait all existing dio workers, newcomers will block on i_mutex */
3569         ext4_inode_block_unlocked_dio(inode);
3570         inode_dio_wait(inode);
3571
3572         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3573                 credits = ext4_writepage_trans_blocks(inode);
3574         else
3575                 credits = ext4_blocks_for_truncate(inode);
3576         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3577         if (IS_ERR(handle)) {
3578                 ret = PTR_ERR(handle);
3579                 ext4_std_error(sb, ret);
3580                 goto out_dio;
3581         }
3582
3583         ret = ext4_zero_partial_blocks(handle, inode, offset,
3584                                        length);
3585         if (ret)
3586                 goto out_stop;
3587
3588         first_block = (offset + sb->s_blocksize - 1) >>
3589                 EXT4_BLOCK_SIZE_BITS(sb);
3590         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3591
3592         /* If there are no blocks to remove, return now */
3593         if (first_block >= stop_block)
3594                 goto out_stop;
3595
3596         down_write(&EXT4_I(inode)->i_data_sem);
3597         ext4_discard_preallocations(inode);
3598
3599         ret = ext4_es_remove_extent(inode, first_block,
3600                                     stop_block - first_block);
3601         if (ret) {
3602                 up_write(&EXT4_I(inode)->i_data_sem);
3603                 goto out_stop;
3604         }
3605
3606         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3607                 ret = ext4_ext_remove_space(inode, first_block,
3608                                             stop_block - 1);
3609         else
3610                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3611                                             stop_block);
3612
3613         ext4_discard_preallocations(inode);
3614         up_write(&EXT4_I(inode)->i_data_sem);
3615         if (IS_SYNC(inode))
3616                 ext4_handle_sync(handle);
3617
3618         /* Now release the pages again to reduce race window */
3619         if (last_block_offset > first_block_offset)
3620                 truncate_pagecache_range(inode, first_block_offset,
3621                                          last_block_offset);
3622
3623         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3624         ext4_mark_inode_dirty(handle, inode);
3625 out_stop:
3626         ext4_journal_stop(handle);
3627 out_dio:
3628         ext4_inode_resume_unlocked_dio(inode);
3629 out_mutex:
3630         mutex_unlock(&inode->i_mutex);
3631         return ret;
3632 }
3633
3634 int ext4_inode_attach_jinode(struct inode *inode)
3635 {
3636         struct ext4_inode_info *ei = EXT4_I(inode);
3637         struct jbd2_inode *jinode;
3638
3639         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3640                 return 0;
3641
3642         jinode = jbd2_alloc_inode(GFP_KERNEL);
3643         spin_lock(&inode->i_lock);
3644         if (!ei->jinode) {
3645                 if (!jinode) {
3646                         spin_unlock(&inode->i_lock);
3647                         return -ENOMEM;
3648                 }
3649                 ei->jinode = jinode;
3650                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3651                 jinode = NULL;
3652         }
3653         spin_unlock(&inode->i_lock);
3654         if (unlikely(jinode != NULL))
3655                 jbd2_free_inode(jinode);
3656         return 0;
3657 }
3658
3659 /*
3660  * ext4_truncate()
3661  *
3662  * We block out ext4_get_block() block instantiations across the entire
3663  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3664  * simultaneously on behalf of the same inode.
3665  *
3666  * As we work through the truncate and commit bits of it to the journal there
3667  * is one core, guiding principle: the file's tree must always be consistent on
3668  * disk.  We must be able to restart the truncate after a crash.
3669  *
3670  * The file's tree may be transiently inconsistent in memory (although it
3671  * probably isn't), but whenever we close off and commit a journal transaction,
3672  * the contents of (the filesystem + the journal) must be consistent and
3673  * restartable.  It's pretty simple, really: bottom up, right to left (although
3674  * left-to-right works OK too).
3675  *
3676  * Note that at recovery time, journal replay occurs *before* the restart of
3677  * truncate against the orphan inode list.
3678  *
3679  * The committed inode has the new, desired i_size (which is the same as
3680  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3681  * that this inode's truncate did not complete and it will again call
3682  * ext4_truncate() to have another go.  So there will be instantiated blocks
3683  * to the right of the truncation point in a crashed ext4 filesystem.  But
3684  * that's fine - as long as they are linked from the inode, the post-crash
3685  * ext4_truncate() run will find them and release them.
3686  */
3687 void ext4_truncate(struct inode *inode)
3688 {
3689         struct ext4_inode_info *ei = EXT4_I(inode);
3690         unsigned int credits;
3691         handle_t *handle;
3692         struct address_space *mapping = inode->i_mapping;
3693
3694         /*
3695          * There is a possibility that we're either freeing the inode
3696          * or it completely new indode. In those cases we might not
3697          * have i_mutex locked because it's not necessary.
3698          */
3699         if (!(inode->i_state & (I_NEW|I_FREEING)))
3700                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3701         trace_ext4_truncate_enter(inode);
3702
3703         if (!ext4_can_truncate(inode))
3704                 return;
3705
3706         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3707
3708         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3709                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3710
3711         if (ext4_has_inline_data(inode)) {
3712                 int has_inline = 1;
3713
3714                 ext4_inline_data_truncate(inode, &has_inline);
3715                 if (has_inline)
3716                         return;
3717         }
3718
3719         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3720         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3721                 if (ext4_inode_attach_jinode(inode) < 0)
3722                         return;
3723         }
3724
3725         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3726                 credits = ext4_writepage_trans_blocks(inode);
3727         else
3728                 credits = ext4_blocks_for_truncate(inode);
3729
3730         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3731         if (IS_ERR(handle)) {
3732                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3733                 return;
3734         }
3735
3736         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3737                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3738
3739         /*
3740          * We add the inode to the orphan list, so that if this
3741          * truncate spans multiple transactions, and we crash, we will
3742          * resume the truncate when the filesystem recovers.  It also
3743          * marks the inode dirty, to catch the new size.
3744          *
3745          * Implication: the file must always be in a sane, consistent
3746          * truncatable state while each transaction commits.
3747          */
3748         if (ext4_orphan_add(handle, inode))
3749                 goto out_stop;
3750
3751         down_write(&EXT4_I(inode)->i_data_sem);
3752
3753         ext4_discard_preallocations(inode);
3754
3755         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3756                 ext4_ext_truncate(handle, inode);
3757         else
3758                 ext4_ind_truncate(handle, inode);
3759
3760         up_write(&ei->i_data_sem);
3761
3762         if (IS_SYNC(inode))
3763                 ext4_handle_sync(handle);
3764
3765 out_stop:
3766         /*
3767          * If this was a simple ftruncate() and the file will remain alive,
3768          * then we need to clear up the orphan record which we created above.
3769          * However, if this was a real unlink then we were called by
3770          * ext4_delete_inode(), and we allow that function to clean up the
3771          * orphan info for us.
3772          */
3773         if (inode->i_nlink)
3774                 ext4_orphan_del(handle, inode);
3775
3776         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3777         ext4_mark_inode_dirty(handle, inode);
3778         ext4_journal_stop(handle);
3779
3780         trace_ext4_truncate_exit(inode);
3781 }
3782
3783 /*
3784  * ext4_get_inode_loc returns with an extra refcount against the inode's
3785  * underlying buffer_head on success. If 'in_mem' is true, we have all
3786  * data in memory that is needed to recreate the on-disk version of this
3787  * inode.
3788  */
3789 static int __ext4_get_inode_loc(struct inode *inode,
3790                                 struct ext4_iloc *iloc, int in_mem)
3791 {
3792         struct ext4_group_desc  *gdp;
3793         struct buffer_head      *bh;
3794         struct super_block      *sb = inode->i_sb;
3795         ext4_fsblk_t            block;
3796         int                     inodes_per_block, inode_offset;
3797
3798         iloc->bh = NULL;
3799         if (!ext4_valid_inum(sb, inode->i_ino))
3800                 return -EIO;
3801
3802         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3803         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3804         if (!gdp)
3805                 return -EIO;
3806
3807         /*
3808          * Figure out the offset within the block group inode table
3809          */
3810         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3811         inode_offset = ((inode->i_ino - 1) %
3812                         EXT4_INODES_PER_GROUP(sb));
3813         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3814         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3815
3816         bh = sb_getblk(sb, block);
3817         if (unlikely(!bh))
3818                 return -ENOMEM;
3819         if (!buffer_uptodate(bh)) {
3820                 lock_buffer(bh);
3821
3822                 /*
3823                  * If the buffer has the write error flag, we have failed
3824                  * to write out another inode in the same block.  In this
3825                  * case, we don't have to read the block because we may
3826                  * read the old inode data successfully.
3827                  */
3828                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3829                         set_buffer_uptodate(bh);
3830
3831                 if (buffer_uptodate(bh)) {
3832                         /* someone brought it uptodate while we waited */
3833                         unlock_buffer(bh);
3834                         goto has_buffer;
3835                 }
3836
3837                 /*
3838                  * If we have all information of the inode in memory and this
3839                  * is the only valid inode in the block, we need not read the
3840                  * block.
3841                  */
3842                 if (in_mem) {
3843                         struct buffer_head *bitmap_bh;
3844                         int i, start;
3845
3846                         start = inode_offset & ~(inodes_per_block - 1);
3847
3848                         /* Is the inode bitmap in cache? */
3849                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3850                         if (unlikely(!bitmap_bh))
3851                                 goto make_io;
3852
3853                         /*
3854                          * If the inode bitmap isn't in cache then the
3855                          * optimisation may end up performing two reads instead
3856                          * of one, so skip it.
3857                          */
3858                         if (!buffer_uptodate(bitmap_bh)) {
3859                                 brelse(bitmap_bh);
3860                                 goto make_io;
3861                         }
3862                         for (i = start; i < start + inodes_per_block; i++) {
3863                                 if (i == inode_offset)
3864                                         continue;
3865                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3866                                         break;
3867                         }
3868                         brelse(bitmap_bh);
3869                         if (i == start + inodes_per_block) {
3870                                 /* all other inodes are free, so skip I/O */
3871                                 memset(bh->b_data, 0, bh->b_size);
3872                                 set_buffer_uptodate(bh);
3873                                 unlock_buffer(bh);
3874                                 goto has_buffer;
3875                         }
3876                 }
3877
3878 make_io:
3879                 /*
3880                  * If we need to do any I/O, try to pre-readahead extra
3881                  * blocks from the inode table.
3882                  */
3883                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3884                         ext4_fsblk_t b, end, table;
3885                         unsigned num;
3886                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3887
3888                         table = ext4_inode_table(sb, gdp);
3889                         /* s_inode_readahead_blks is always a power of 2 */
3890                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3891                         if (table > b)
3892                                 b = table;
3893                         end = b + ra_blks;
3894                         num = EXT4_INODES_PER_GROUP(sb);
3895                         if (ext4_has_group_desc_csum(sb))
3896                                 num -= ext4_itable_unused_count(sb, gdp);
3897                         table += num / inodes_per_block;
3898                         if (end > table)
3899                                 end = table;
3900                         while (b <= end)
3901                                 sb_breadahead(sb, b++);
3902                 }
3903
3904                 /*
3905                  * There are other valid inodes in the buffer, this inode
3906                  * has in-inode xattrs, or we don't have this inode in memory.
3907                  * Read the block from disk.
3908                  */
3909                 trace_ext4_load_inode(inode);
3910                 get_bh(bh);
3911                 bh->b_end_io = end_buffer_read_sync;
3912                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3913                 wait_on_buffer(bh);
3914                 if (!buffer_uptodate(bh)) {
3915                         EXT4_ERROR_INODE_BLOCK(inode, block,
3916                                                "unable to read itable block");
3917                         brelse(bh);
3918                         return -EIO;
3919                 }
3920         }
3921 has_buffer:
3922         iloc->bh = bh;
3923         return 0;
3924 }
3925
3926 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3927 {
3928         /* We have all inode data except xattrs in memory here. */
3929         return __ext4_get_inode_loc(inode, iloc,
3930                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3931 }
3932
3933 void ext4_set_inode_flags(struct inode *inode)
3934 {
3935         unsigned int flags = EXT4_I(inode)->i_flags;
3936
3937         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3938         if (flags & EXT4_SYNC_FL)
3939                 inode->i_flags |= S_SYNC;
3940         if (flags & EXT4_APPEND_FL)
3941                 inode->i_flags |= S_APPEND;
3942         if (flags & EXT4_IMMUTABLE_FL)
3943                 inode->i_flags |= S_IMMUTABLE;
3944         if (flags & EXT4_NOATIME_FL)
3945                 inode->i_flags |= S_NOATIME;
3946         if (flags & EXT4_DIRSYNC_FL)
3947                 inode->i_flags |= S_DIRSYNC;
3948 }
3949
3950 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3951 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3952 {
3953         unsigned int vfs_fl;
3954         unsigned long old_fl, new_fl;
3955
3956         do {
3957                 vfs_fl = ei->vfs_inode.i_flags;
3958                 old_fl = ei->i_flags;
3959                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3960                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3961                                 EXT4_DIRSYNC_FL);
3962                 if (vfs_fl & S_SYNC)
3963                         new_fl |= EXT4_SYNC_FL;
3964                 if (vfs_fl & S_APPEND)
3965                         new_fl |= EXT4_APPEND_FL;
3966                 if (vfs_fl & S_IMMUTABLE)
3967                         new_fl |= EXT4_IMMUTABLE_FL;
3968                 if (vfs_fl & S_NOATIME)
3969                         new_fl |= EXT4_NOATIME_FL;
3970                 if (vfs_fl & S_DIRSYNC)
3971                         new_fl |= EXT4_DIRSYNC_FL;
3972         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3973 }
3974
3975 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3976                                   struct ext4_inode_info *ei)
3977 {
3978         blkcnt_t i_blocks ;
3979         struct inode *inode = &(ei->vfs_inode);
3980         struct super_block *sb = inode->i_sb;
3981
3982         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3983                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3984                 /* we are using combined 48 bit field */
3985                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3986                                         le32_to_cpu(raw_inode->i_blocks_lo);
3987                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3988                         /* i_blocks represent file system block size */
3989                         return i_blocks  << (inode->i_blkbits - 9);
3990                 } else {
3991                         return i_blocks;
3992                 }
3993         } else {
3994                 return le32_to_cpu(raw_inode->i_blocks_lo);
3995         }
3996 }
3997
3998 static inline void ext4_iget_extra_inode(struct inode *inode,
3999                                          struct ext4_inode *raw_inode,
4000                                          struct ext4_inode_info *ei)
4001 {
4002         __le32 *magic = (void *)raw_inode +
4003                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4004         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4005                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4006                 ext4_find_inline_data_nolock(inode);
4007         } else
4008                 EXT4_I(inode)->i_inline_off = 0;
4009 }
4010
4011 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4012 {
4013         struct ext4_iloc iloc;
4014         struct ext4_inode *raw_inode;
4015         struct ext4_inode_info *ei;
4016         struct inode *inode;
4017         journal_t *journal = EXT4_SB(sb)->s_journal;
4018         long ret;
4019         int block;
4020         uid_t i_uid;
4021         gid_t i_gid;
4022
4023         inode = iget_locked(sb, ino);
4024         if (!inode)
4025                 return ERR_PTR(-ENOMEM);
4026         if (!(inode->i_state & I_NEW))
4027                 return inode;
4028
4029         ei = EXT4_I(inode);
4030         iloc.bh = NULL;
4031
4032         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4033         if (ret < 0)
4034                 goto bad_inode;
4035         raw_inode = ext4_raw_inode(&iloc);
4036
4037         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4038                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4039                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4040                     EXT4_INODE_SIZE(inode->i_sb)) {
4041                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4042                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4043                                 EXT4_INODE_SIZE(inode->i_sb));
4044                         ret = -EIO;
4045                         goto bad_inode;
4046                 }
4047         } else
4048                 ei->i_extra_isize = 0;
4049
4050         /* Precompute checksum seed for inode metadata */
4051         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4052                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4053                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4054                 __u32 csum;
4055                 __le32 inum = cpu_to_le32(inode->i_ino);
4056                 __le32 gen = raw_inode->i_generation;
4057                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4058                                    sizeof(inum));
4059                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4060                                               sizeof(gen));
4061         }
4062
4063         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4064                 EXT4_ERROR_INODE(inode, "checksum invalid");
4065                 ret = -EIO;
4066                 goto bad_inode;
4067         }
4068
4069         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4070         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4071         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4072         if (!(test_opt(inode->i_sb, NO_UID32))) {
4073                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4074                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4075         }
4076         i_uid_write(inode, i_uid);
4077         i_gid_write(inode, i_gid);
4078         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4079
4080         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4081         ei->i_inline_off = 0;
4082         ei->i_dir_start_lookup = 0;
4083         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4084         /* We now have enough fields to check if the inode was active or not.
4085          * This is needed because nfsd might try to access dead inodes
4086          * the test is that same one that e2fsck uses
4087          * NeilBrown 1999oct15
4088          */
4089         if (inode->i_nlink == 0) {
4090                 if ((inode->i_mode == 0 ||
4091                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4092                     ino != EXT4_BOOT_LOADER_INO) {
4093                         /* this inode is deleted */
4094                         ret = -ESTALE;
4095                         goto bad_inode;
4096                 }
4097                 /* The only unlinked inodes we let through here have
4098                  * valid i_mode and are being read by the orphan
4099                  * recovery code: that's fine, we're about to complete
4100                  * the process of deleting those.
4101                  * OR it is the EXT4_BOOT_LOADER_INO which is
4102                  * not initialized on a new filesystem. */
4103         }
4104         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4105         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4106         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4107         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4108                 ei->i_file_acl |=
4109                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4110         inode->i_size = ext4_isize(raw_inode);
4111         ei->i_disksize = inode->i_size;
4112 #ifdef CONFIG_QUOTA
4113         ei->i_reserved_quota = 0;
4114 #endif
4115         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4116         ei->i_block_group = iloc.block_group;
4117         ei->i_last_alloc_group = ~0;
4118         /*
4119          * NOTE! The in-memory inode i_data array is in little-endian order
4120          * even on big-endian machines: we do NOT byteswap the block numbers!
4121          */
4122         for (block = 0; block < EXT4_N_BLOCKS; block++)
4123                 ei->i_data[block] = raw_inode->i_block[block];
4124         INIT_LIST_HEAD(&ei->i_orphan);
4125
4126         /*
4127          * Set transaction id's of transactions that have to be committed
4128          * to finish f[data]sync. We set them to currently running transaction
4129          * as we cannot be sure that the inode or some of its metadata isn't
4130          * part of the transaction - the inode could have been reclaimed and
4131          * now it is reread from disk.
4132          */
4133         if (journal) {
4134                 transaction_t *transaction;
4135                 tid_t tid;
4136
4137                 read_lock(&journal->j_state_lock);
4138                 if (journal->j_running_transaction)
4139                         transaction = journal->j_running_transaction;
4140                 else
4141                         transaction = journal->j_committing_transaction;
4142                 if (transaction)
4143                         tid = transaction->t_tid;
4144                 else
4145                         tid = journal->j_commit_sequence;
4146                 read_unlock(&journal->j_state_lock);
4147                 ei->i_sync_tid = tid;
4148                 ei->i_datasync_tid = tid;
4149         }
4150
4151         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4152                 if (ei->i_extra_isize == 0) {
4153                         /* The extra space is currently unused. Use it. */
4154                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4155                                             EXT4_GOOD_OLD_INODE_SIZE;
4156                 } else {
4157                         ext4_iget_extra_inode(inode, raw_inode, ei);
4158                 }
4159         }
4160
4161         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4162         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4163         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4164         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4165
4166         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4167         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4168                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4169                         inode->i_version |=
4170                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4171         }
4172
4173         ret = 0;
4174         if (ei->i_file_acl &&
4175             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4176                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4177                                  ei->i_file_acl);
4178                 ret = -EIO;
4179                 goto bad_inode;
4180         } else if (!ext4_has_inline_data(inode)) {
4181                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4182                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4183                             (S_ISLNK(inode->i_mode) &&
4184                              !ext4_inode_is_fast_symlink(inode))))
4185                                 /* Validate extent which is part of inode */
4186                                 ret = ext4_ext_check_inode(inode);
4187                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4188                            (S_ISLNK(inode->i_mode) &&
4189                             !ext4_inode_is_fast_symlink(inode))) {
4190                         /* Validate block references which are part of inode */
4191                         ret = ext4_ind_check_inode(inode);
4192                 }
4193         }
4194         if (ret)
4195                 goto bad_inode;
4196
4197         if (S_ISREG(inode->i_mode)) {
4198                 inode->i_op = &ext4_file_inode_operations;
4199                 inode->i_fop = &ext4_file_operations;
4200                 ext4_set_aops(inode);
4201         } else if (S_ISDIR(inode->i_mode)) {
4202                 inode->i_op = &ext4_dir_inode_operations;
4203                 inode->i_fop = &ext4_dir_operations;
4204         } else if (S_ISLNK(inode->i_mode)) {
4205                 if (ext4_inode_is_fast_symlink(inode)) {
4206                         inode->i_op = &ext4_fast_symlink_inode_operations;
4207                         nd_terminate_link(ei->i_data, inode->i_size,
4208                                 sizeof(ei->i_data) - 1);
4209                 } else {
4210                         inode->i_op = &ext4_symlink_inode_operations;
4211                         ext4_set_aops(inode);
4212                 }
4213         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4214               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4215                 inode->i_op = &ext4_special_inode_operations;
4216                 if (raw_inode->i_block[0])
4217                         init_special_inode(inode, inode->i_mode,
4218                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4219                 else
4220                         init_special_inode(inode, inode->i_mode,
4221                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4222         } else if (ino == EXT4_BOOT_LOADER_INO) {
4223                 make_bad_inode(inode);
4224         } else {
4225                 ret = -EIO;
4226                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4227                 goto bad_inode;
4228         }
4229         brelse(iloc.bh);
4230         ext4_set_inode_flags(inode);
4231         unlock_new_inode(inode);
4232         return inode;
4233
4234 bad_inode:
4235         brelse(iloc.bh);
4236         iget_failed(inode);
4237         return ERR_PTR(ret);
4238 }
4239
4240 static int ext4_inode_blocks_set(handle_t *handle,
4241                                 struct ext4_inode *raw_inode,
4242                                 struct ext4_inode_info *ei)
4243 {
4244         struct inode *inode = &(ei->vfs_inode);
4245         u64 i_blocks = inode->i_blocks;
4246         struct super_block *sb = inode->i_sb;
4247
4248         if (i_blocks <= ~0U) {
4249                 /*
4250                  * i_blocks can be represented in a 32 bit variable
4251                  * as multiple of 512 bytes
4252                  */
4253                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4254                 raw_inode->i_blocks_high = 0;
4255                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4256                 return 0;
4257         }
4258         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4259                 return -EFBIG;
4260
4261         if (i_blocks <= 0xffffffffffffULL) {
4262                 /*
4263                  * i_blocks can be represented in a 48 bit variable
4264                  * as multiple of 512 bytes
4265                  */
4266                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4267                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4268                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4269         } else {
4270                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4271                 /* i_block is stored in file system block size */
4272                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4273                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4274                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4275         }
4276         return 0;
4277 }
4278
4279 /*
4280  * Post the struct inode info into an on-disk inode location in the
4281  * buffer-cache.  This gobbles the caller's reference to the
4282  * buffer_head in the inode location struct.
4283  *
4284  * The caller must have write access to iloc->bh.
4285  */
4286 static int ext4_do_update_inode(handle_t *handle,
4287                                 struct inode *inode,
4288                                 struct ext4_iloc *iloc)
4289 {
4290         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4291         struct ext4_inode_info *ei = EXT4_I(inode);
4292         struct buffer_head *bh = iloc->bh;
4293         int err = 0, rc, block;
4294         int need_datasync = 0;
4295         uid_t i_uid;
4296         gid_t i_gid;
4297
4298         /* For fields not not tracking in the in-memory inode,
4299          * initialise them to zero for new inodes. */
4300         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4301                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4302
4303         ext4_get_inode_flags(ei);
4304         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4305         i_uid = i_uid_read(inode);
4306         i_gid = i_gid_read(inode);
4307         if (!(test_opt(inode->i_sb, NO_UID32))) {
4308                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4309                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4310 /*
4311  * Fix up interoperability with old kernels. Otherwise, old inodes get
4312  * re-used with the upper 16 bits of the uid/gid intact
4313  */
4314                 if (!ei->i_dtime) {
4315                         raw_inode->i_uid_high =
4316                                 cpu_to_le16(high_16_bits(i_uid));
4317                         raw_inode->i_gid_high =
4318                                 cpu_to_le16(high_16_bits(i_gid));
4319                 } else {
4320                         raw_inode->i_uid_high = 0;
4321                         raw_inode->i_gid_high = 0;
4322                 }
4323         } else {
4324                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4325                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4326                 raw_inode->i_uid_high = 0;
4327                 raw_inode->i_gid_high = 0;
4328         }
4329         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4330
4331         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4332         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4333         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4334         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4335
4336         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4337                 goto out_brelse;
4338         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4339         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4340         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4341             cpu_to_le32(EXT4_OS_HURD))
4342                 raw_inode->i_file_acl_high =
4343                         cpu_to_le16(ei->i_file_acl >> 32);
4344         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4345         if (ei->i_disksize != ext4_isize(raw_inode)) {
4346                 ext4_isize_set(raw_inode, ei->i_disksize);
4347                 need_datasync = 1;
4348         }
4349         if (ei->i_disksize > 0x7fffffffULL) {
4350                 struct super_block *sb = inode->i_sb;
4351                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4352                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4353                                 EXT4_SB(sb)->s_es->s_rev_level ==
4354                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4355                         /* If this is the first large file
4356                          * created, add a flag to the superblock.
4357                          */
4358                         err = ext4_journal_get_write_access(handle,
4359                                         EXT4_SB(sb)->s_sbh);
4360                         if (err)
4361                                 goto out_brelse;
4362                         ext4_update_dynamic_rev(sb);
4363                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4364                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4365                         ext4_handle_sync(handle);
4366                         err = ext4_handle_dirty_super(handle, sb);
4367                 }
4368         }
4369         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4370         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4371                 if (old_valid_dev(inode->i_rdev)) {
4372                         raw_inode->i_block[0] =
4373                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4374                         raw_inode->i_block[1] = 0;
4375                 } else {
4376                         raw_inode->i_block[0] = 0;
4377                         raw_inode->i_block[1] =
4378                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4379                         raw_inode->i_block[2] = 0;
4380                 }
4381         } else if (!ext4_has_inline_data(inode)) {
4382                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4383                         raw_inode->i_block[block] = ei->i_data[block];
4384         }
4385
4386         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4387         if (ei->i_extra_isize) {
4388                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4389                         raw_inode->i_version_hi =
4390                         cpu_to_le32(inode->i_version >> 32);
4391                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4392         }
4393
4394         ext4_inode_csum_set(inode, raw_inode, ei);
4395
4396         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4397         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4398         if (!err)
4399                 err = rc;
4400         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4401
4402         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4403 out_brelse:
4404         brelse(bh);
4405         ext4_std_error(inode->i_sb, err);
4406         return err;
4407 }
4408
4409 /*
4410  * ext4_write_inode()
4411  *
4412  * We are called from a few places:
4413  *
4414  * - Within generic_file_write() for O_SYNC files.
4415  *   Here, there will be no transaction running. We wait for any running
4416  *   transaction to commit.
4417  *
4418  * - Within sys_sync(), kupdate and such.
4419  *   We wait on commit, if tol to.
4420  *
4421  * - Within prune_icache() (PF_MEMALLOC == true)
4422  *   Here we simply return.  We can't afford to block kswapd on the
4423  *   journal commit.
4424  *
4425  * In all cases it is actually safe for us to return without doing anything,
4426  * because the inode has been copied into a raw inode buffer in
4427  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4428  * knfsd.
4429  *
4430  * Note that we are absolutely dependent upon all inode dirtiers doing the
4431  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4432  * which we are interested.
4433  *
4434  * It would be a bug for them to not do this.  The code:
4435  *
4436  *      mark_inode_dirty(inode)
4437  *      stuff();
4438  *      inode->i_size = expr;
4439  *
4440  * is in error because a kswapd-driven write_inode() could occur while
4441  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4442  * will no longer be on the superblock's dirty inode list.
4443  */
4444 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4445 {
4446         int err;
4447
4448         if (current->flags & PF_MEMALLOC)
4449                 return 0;
4450
4451         if (EXT4_SB(inode->i_sb)->s_journal) {
4452                 if (ext4_journal_current_handle()) {
4453                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4454                         dump_stack();
4455                         return -EIO;
4456                 }
4457
4458                 /*
4459                  * No need to force transaction in WB_SYNC_NONE mode. Also
4460                  * ext4_sync_fs() will force the commit after everything is
4461                  * written.
4462                  */
4463                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4464                         return 0;
4465
4466                 err = ext4_force_commit(inode->i_sb);
4467         } else {
4468                 struct ext4_iloc iloc;
4469
4470                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4471                 if (err)
4472                         return err;
4473                 /*
4474                  * sync(2) will flush the whole buffer cache. No need to do
4475                  * it here separately for each inode.
4476                  */
4477                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4478                         sync_dirty_buffer(iloc.bh);
4479                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4480                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4481                                          "IO error syncing inode");
4482                         err = -EIO;
4483                 }
4484                 brelse(iloc.bh);
4485         }
4486         return err;
4487 }
4488
4489 /*
4490  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4491  * buffers that are attached to a page stradding i_size and are undergoing
4492  * commit. In that case we have to wait for commit to finish and try again.
4493  */
4494 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4495 {
4496         struct page *page;
4497         unsigned offset;
4498         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4499         tid_t commit_tid = 0;
4500         int ret;
4501
4502         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4503         /*
4504          * All buffers in the last page remain valid? Then there's nothing to
4505          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4506          * blocksize case
4507          */
4508         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4509                 return;
4510         while (1) {
4511                 page = find_lock_page(inode->i_mapping,
4512                                       inode->i_size >> PAGE_CACHE_SHIFT);
4513                 if (!page)
4514                         return;
4515                 ret = __ext4_journalled_invalidatepage(page, offset,
4516                                                 PAGE_CACHE_SIZE - offset);
4517                 unlock_page(page);
4518                 page_cache_release(page);
4519                 if (ret != -EBUSY)
4520                         return;
4521                 commit_tid = 0;
4522                 read_lock(&journal->j_state_lock);
4523                 if (journal->j_committing_transaction)
4524                         commit_tid = journal->j_committing_transaction->t_tid;
4525                 read_unlock(&journal->j_state_lock);
4526                 if (commit_tid)
4527                         jbd2_log_wait_commit(journal, commit_tid);
4528         }
4529 }
4530
4531 /*
4532  * ext4_setattr()
4533  *
4534  * Called from notify_change.
4535  *
4536  * We want to trap VFS attempts to truncate the file as soon as
4537  * possible.  In particular, we want to make sure that when the VFS
4538  * shrinks i_size, we put the inode on the orphan list and modify
4539  * i_disksize immediately, so that during the subsequent flushing of
4540  * dirty pages and freeing of disk blocks, we can guarantee that any
4541  * commit will leave the blocks being flushed in an unused state on
4542  * disk.  (On recovery, the inode will get truncated and the blocks will
4543  * be freed, so we have a strong guarantee that no future commit will
4544  * leave these blocks visible to the user.)
4545  *
4546  * Another thing we have to assure is that if we are in ordered mode
4547  * and inode is still attached to the committing transaction, we must
4548  * we start writeout of all the dirty pages which are being truncated.
4549  * This way we are sure that all the data written in the previous
4550  * transaction are already on disk (truncate waits for pages under
4551  * writeback).
4552  *
4553  * Called with inode->i_mutex down.
4554  */
4555 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4556 {
4557         struct inode *inode = dentry->d_inode;
4558         int error, rc = 0;
4559         int orphan = 0;
4560         const unsigned int ia_valid = attr->ia_valid;
4561
4562         error = inode_change_ok(inode, attr);
4563         if (error)
4564                 return error;
4565
4566         if (is_quota_modification(inode, attr))
4567                 dquot_initialize(inode);
4568         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4569             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4570                 handle_t *handle;
4571
4572                 /* (user+group)*(old+new) structure, inode write (sb,
4573                  * inode block, ? - but truncate inode update has it) */
4574                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4575                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4576                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4577                 if (IS_ERR(handle)) {
4578                         error = PTR_ERR(handle);
4579                         goto err_out;
4580                 }
4581                 error = dquot_transfer(inode, attr);
4582                 if (error) {
4583                         ext4_journal_stop(handle);
4584                         return error;
4585                 }
4586                 /* Update corresponding info in inode so that everything is in
4587                  * one transaction */
4588                 if (attr->ia_valid & ATTR_UID)
4589                         inode->i_uid = attr->ia_uid;
4590                 if (attr->ia_valid & ATTR_GID)
4591                         inode->i_gid = attr->ia_gid;
4592                 error = ext4_mark_inode_dirty(handle, inode);
4593                 ext4_journal_stop(handle);
4594         }
4595
4596         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4597                 handle_t *handle;
4598
4599                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4600                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4601
4602                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4603                                 return -EFBIG;
4604                 }
4605
4606                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4607                         inode_inc_iversion(inode);
4608
4609                 if (S_ISREG(inode->i_mode) &&
4610                     (attr->ia_size < inode->i_size)) {
4611                         if (ext4_should_order_data(inode)) {
4612                                 error = ext4_begin_ordered_truncate(inode,
4613                                                             attr->ia_size);
4614                                 if (error)
4615                                         goto err_out;
4616                         }
4617                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4618                         if (IS_ERR(handle)) {
4619                                 error = PTR_ERR(handle);
4620                                 goto err_out;
4621                         }
4622                         if (ext4_handle_valid(handle)) {
4623                                 error = ext4_orphan_add(handle, inode);
4624                                 orphan = 1;
4625                         }
4626                         down_write(&EXT4_I(inode)->i_data_sem);
4627                         EXT4_I(inode)->i_disksize = attr->ia_size;
4628                         rc = ext4_mark_inode_dirty(handle, inode);
4629                         if (!error)
4630                                 error = rc;
4631                         /*
4632                          * We have to update i_size under i_data_sem together
4633                          * with i_disksize to avoid races with writeback code
4634                          * running ext4_wb_update_i_disksize().
4635                          */
4636                         if (!error)
4637                                 i_size_write(inode, attr->ia_size);
4638                         up_write(&EXT4_I(inode)->i_data_sem);
4639                         ext4_journal_stop(handle);
4640                         if (error) {
4641                                 ext4_orphan_del(NULL, inode);
4642                                 goto err_out;
4643                         }
4644                 } else
4645                         i_size_write(inode, attr->ia_size);
4646
4647                 /*
4648                  * Blocks are going to be removed from the inode. Wait
4649                  * for dio in flight.  Temporarily disable
4650                  * dioread_nolock to prevent livelock.
4651                  */
4652                 if (orphan) {
4653                         if (!ext4_should_journal_data(inode)) {
4654                                 ext4_inode_block_unlocked_dio(inode);
4655                                 inode_dio_wait(inode);
4656                                 ext4_inode_resume_unlocked_dio(inode);
4657                         } else
4658                                 ext4_wait_for_tail_page_commit(inode);
4659                 }
4660                 /*
4661                  * Truncate pagecache after we've waited for commit
4662                  * in data=journal mode to make pages freeable.
4663                  */
4664                         truncate_pagecache(inode, inode->i_size);
4665         }
4666         /*
4667          * We want to call ext4_truncate() even if attr->ia_size ==
4668          * inode->i_size for cases like truncation of fallocated space
4669          */
4670         if (attr->ia_valid & ATTR_SIZE)
4671                 ext4_truncate(inode);
4672
4673         if (!rc) {
4674                 setattr_copy(inode, attr);
4675                 mark_inode_dirty(inode);
4676         }
4677
4678         /*
4679          * If the call to ext4_truncate failed to get a transaction handle at
4680          * all, we need to clean up the in-core orphan list manually.
4681          */
4682         if (orphan && inode->i_nlink)
4683                 ext4_orphan_del(NULL, inode);
4684
4685         if (!rc && (ia_valid & ATTR_MODE))
4686                 rc = posix_acl_chmod(inode, inode->i_mode);
4687
4688 err_out:
4689         ext4_std_error(inode->i_sb, error);
4690         if (!error)
4691                 error = rc;
4692         return error;
4693 }
4694
4695 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4696                  struct kstat *stat)
4697 {
4698         struct inode *inode;
4699         unsigned long long delalloc_blocks;
4700
4701         inode = dentry->d_inode;
4702         generic_fillattr(inode, stat);
4703
4704         /*
4705          * If there is inline data in the inode, the inode will normally not
4706          * have data blocks allocated (it may have an external xattr block).
4707          * Report at least one sector for such files, so tools like tar, rsync,
4708          * others doen't incorrectly think the file is completely sparse.
4709          */
4710         if (unlikely(ext4_has_inline_data(inode)))
4711                 stat->blocks += (stat->size + 511) >> 9;
4712
4713         /*
4714          * We can't update i_blocks if the block allocation is delayed
4715          * otherwise in the case of system crash before the real block
4716          * allocation is done, we will have i_blocks inconsistent with
4717          * on-disk file blocks.
4718          * We always keep i_blocks updated together with real
4719          * allocation. But to not confuse with user, stat
4720          * will return the blocks that include the delayed allocation
4721          * blocks for this file.
4722          */
4723         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4724                                    EXT4_I(inode)->i_reserved_data_blocks);
4725         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4726         return 0;
4727 }
4728
4729 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4730                                    int pextents)
4731 {
4732         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4733                 return ext4_ind_trans_blocks(inode, lblocks);
4734         return ext4_ext_index_trans_blocks(inode, pextents);
4735 }
4736
4737 /*
4738  * Account for index blocks, block groups bitmaps and block group
4739  * descriptor blocks if modify datablocks and index blocks
4740  * worse case, the indexs blocks spread over different block groups
4741  *
4742  * If datablocks are discontiguous, they are possible to spread over
4743  * different block groups too. If they are contiguous, with flexbg,
4744  * they could still across block group boundary.
4745  *
4746  * Also account for superblock, inode, quota and xattr blocks
4747  */
4748 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4749                                   int pextents)
4750 {
4751         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4752         int gdpblocks;
4753         int idxblocks;
4754         int ret = 0;
4755
4756         /*
4757          * How many index blocks need to touch to map @lblocks logical blocks
4758          * to @pextents physical extents?
4759          */
4760         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4761
4762         ret = idxblocks;
4763
4764         /*
4765          * Now let's see how many group bitmaps and group descriptors need
4766          * to account
4767          */
4768         groups = idxblocks + pextents;
4769         gdpblocks = groups;
4770         if (groups > ngroups)
4771                 groups = ngroups;
4772         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4773                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4774
4775         /* bitmaps and block group descriptor blocks */
4776         ret += groups + gdpblocks;
4777
4778         /* Blocks for super block, inode, quota and xattr blocks */
4779         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4780
4781         return ret;
4782 }
4783
4784 /*
4785  * Calculate the total number of credits to reserve to fit
4786  * the modification of a single pages into a single transaction,
4787  * which may include multiple chunks of block allocations.
4788  *
4789  * This could be called via ext4_write_begin()
4790  *
4791  * We need to consider the worse case, when
4792  * one new block per extent.
4793  */
4794 int ext4_writepage_trans_blocks(struct inode *inode)
4795 {
4796         int bpp = ext4_journal_blocks_per_page(inode);
4797         int ret;
4798
4799         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4800
4801         /* Account for data blocks for journalled mode */
4802         if (ext4_should_journal_data(inode))
4803                 ret += bpp;
4804         return ret;
4805 }
4806
4807 /*
4808  * Calculate the journal credits for a chunk of data modification.
4809  *
4810  * This is called from DIO, fallocate or whoever calling
4811  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4812  *
4813  * journal buffers for data blocks are not included here, as DIO
4814  * and fallocate do no need to journal data buffers.
4815  */
4816 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4817 {
4818         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4819 }
4820
4821 /*
4822  * The caller must have previously called ext4_reserve_inode_write().
4823  * Give this, we know that the caller already has write access to iloc->bh.
4824  */
4825 int ext4_mark_iloc_dirty(handle_t *handle,
4826                          struct inode *inode, struct ext4_iloc *iloc)
4827 {
4828         int err = 0;
4829
4830         if (IS_I_VERSION(inode))
4831                 inode_inc_iversion(inode);
4832
4833         /* the do_update_inode consumes one bh->b_count */
4834         get_bh(iloc->bh);
4835
4836         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4837         err = ext4_do_update_inode(handle, inode, iloc);
4838         put_bh(iloc->bh);
4839         return err;
4840 }
4841
4842 /*
4843  * On success, We end up with an outstanding reference count against
4844  * iloc->bh.  This _must_ be cleaned up later.
4845  */
4846
4847 int
4848 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4849                          struct ext4_iloc *iloc)
4850 {
4851         int err;
4852
4853         err = ext4_get_inode_loc(inode, iloc);
4854         if (!err) {
4855                 BUFFER_TRACE(iloc->bh, "get_write_access");
4856                 err = ext4_journal_get_write_access(handle, iloc->bh);
4857                 if (err) {
4858                         brelse(iloc->bh);
4859                         iloc->bh = NULL;
4860                 }
4861         }
4862         ext4_std_error(inode->i_sb, err);
4863         return err;
4864 }
4865
4866 /*
4867  * Expand an inode by new_extra_isize bytes.
4868  * Returns 0 on success or negative error number on failure.
4869  */
4870 static int ext4_expand_extra_isize(struct inode *inode,
4871                                    unsigned int new_extra_isize,
4872                                    struct ext4_iloc iloc,
4873                                    handle_t *handle)
4874 {
4875         struct ext4_inode *raw_inode;
4876         struct ext4_xattr_ibody_header *header;
4877
4878         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4879                 return 0;
4880
4881         raw_inode = ext4_raw_inode(&iloc);
4882
4883         header = IHDR(inode, raw_inode);
4884
4885         /* No extended attributes present */
4886         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4887             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4888                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4889                         new_extra_isize);
4890                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4891                 return 0;
4892         }
4893
4894         /* try to expand with EAs present */
4895         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4896                                           raw_inode, handle);
4897 }
4898
4899 /*
4900  * What we do here is to mark the in-core inode as clean with respect to inode
4901  * dirtiness (it may still be data-dirty).
4902  * This means that the in-core inode may be reaped by prune_icache
4903  * without having to perform any I/O.  This is a very good thing,
4904  * because *any* task may call prune_icache - even ones which
4905  * have a transaction open against a different journal.
4906  *
4907  * Is this cheating?  Not really.  Sure, we haven't written the
4908  * inode out, but prune_icache isn't a user-visible syncing function.
4909  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4910  * we start and wait on commits.
4911  */
4912 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4913 {
4914         struct ext4_iloc iloc;
4915         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4916         static unsigned int mnt_count;
4917         int err, ret;
4918
4919         might_sleep();
4920         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4921         err = ext4_reserve_inode_write(handle, inode, &iloc);
4922         if (ext4_handle_valid(handle) &&
4923             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4924             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4925                 /*
4926                  * We need extra buffer credits since we may write into EA block
4927                  * with this same handle. If journal_extend fails, then it will
4928                  * only result in a minor loss of functionality for that inode.
4929                  * If this is felt to be critical, then e2fsck should be run to
4930                  * force a large enough s_min_extra_isize.
4931                  */
4932                 if ((jbd2_journal_extend(handle,
4933                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4934                         ret = ext4_expand_extra_isize(inode,
4935                                                       sbi->s_want_extra_isize,
4936                                                       iloc, handle);
4937                         if (ret) {
4938                                 ext4_set_inode_state(inode,
4939                                                      EXT4_STATE_NO_EXPAND);
4940                                 if (mnt_count !=
4941                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4942                                         ext4_warning(inode->i_sb,
4943                                         "Unable to expand inode %lu. Delete"
4944                                         " some EAs or run e2fsck.",
4945                                         inode->i_ino);
4946                                         mnt_count =
4947                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4948                                 }
4949                         }
4950                 }
4951         }
4952         if (!err)
4953                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4954         return err;
4955 }
4956
4957 /*
4958  * ext4_dirty_inode() is called from __mark_inode_dirty()
4959  *
4960  * We're really interested in the case where a file is being extended.
4961  * i_size has been changed by generic_commit_write() and we thus need
4962  * to include the updated inode in the current transaction.
4963  *
4964  * Also, dquot_alloc_block() will always dirty the inode when blocks
4965  * are allocated to the file.
4966  *
4967  * If the inode is marked synchronous, we don't honour that here - doing
4968  * so would cause a commit on atime updates, which we don't bother doing.
4969  * We handle synchronous inodes at the highest possible level.
4970  */
4971 void ext4_dirty_inode(struct inode *inode, int flags)
4972 {
4973         handle_t *handle;
4974
4975         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4976         if (IS_ERR(handle))
4977                 goto out;
4978
4979         ext4_mark_inode_dirty(handle, inode);
4980
4981         ext4_journal_stop(handle);
4982 out:
4983         return;
4984 }
4985
4986 #if 0
4987 /*
4988  * Bind an inode's backing buffer_head into this transaction, to prevent
4989  * it from being flushed to disk early.  Unlike
4990  * ext4_reserve_inode_write, this leaves behind no bh reference and
4991  * returns no iloc structure, so the caller needs to repeat the iloc
4992  * lookup to mark the inode dirty later.
4993  */
4994 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4995 {
4996         struct ext4_iloc iloc;
4997
4998         int err = 0;
4999         if (handle) {
5000                 err = ext4_get_inode_loc(inode, &iloc);
5001                 if (!err) {
5002                         BUFFER_TRACE(iloc.bh, "get_write_access");
5003                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5004                         if (!err)
5005                                 err = ext4_handle_dirty_metadata(handle,
5006                                                                  NULL,
5007                                                                  iloc.bh);
5008                         brelse(iloc.bh);
5009                 }
5010         }
5011         ext4_std_error(inode->i_sb, err);
5012         return err;
5013 }
5014 #endif
5015
5016 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5017 {
5018         journal_t *journal;
5019         handle_t *handle;
5020         int err;
5021
5022         /*
5023          * We have to be very careful here: changing a data block's
5024          * journaling status dynamically is dangerous.  If we write a
5025          * data block to the journal, change the status and then delete
5026          * that block, we risk forgetting to revoke the old log record
5027          * from the journal and so a subsequent replay can corrupt data.
5028          * So, first we make sure that the journal is empty and that
5029          * nobody is changing anything.
5030          */
5031
5032         journal = EXT4_JOURNAL(inode);
5033         if (!journal)
5034                 return 0;
5035         if (is_journal_aborted(journal))
5036                 return -EROFS;
5037         /* We have to allocate physical blocks for delalloc blocks
5038          * before flushing journal. otherwise delalloc blocks can not
5039          * be allocated any more. even more truncate on delalloc blocks
5040          * could trigger BUG by flushing delalloc blocks in journal.
5041          * There is no delalloc block in non-journal data mode.
5042          */
5043         if (val && test_opt(inode->i_sb, DELALLOC)) {
5044                 err = ext4_alloc_da_blocks(inode);
5045                 if (err < 0)
5046                         return err;
5047         }
5048
5049         /* Wait for all existing dio workers */
5050         ext4_inode_block_unlocked_dio(inode);
5051         inode_dio_wait(inode);
5052
5053         jbd2_journal_lock_updates(journal);
5054
5055         /*
5056          * OK, there are no updates running now, and all cached data is
5057          * synced to disk.  We are now in a completely consistent state
5058          * which doesn't have anything in the journal, and we know that
5059          * no filesystem updates are running, so it is safe to modify
5060          * the inode's in-core data-journaling state flag now.
5061          */
5062
5063         if (val)
5064                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5065         else {
5066                 jbd2_journal_flush(journal);
5067                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5068         }
5069         ext4_set_aops(inode);
5070
5071         jbd2_journal_unlock_updates(journal);
5072         ext4_inode_resume_unlocked_dio(inode);
5073
5074         /* Finally we can mark the inode as dirty. */
5075
5076         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5077         if (IS_ERR(handle))
5078                 return PTR_ERR(handle);
5079
5080         err = ext4_mark_inode_dirty(handle, inode);
5081         ext4_handle_sync(handle);
5082         ext4_journal_stop(handle);
5083         ext4_std_error(inode->i_sb, err);
5084
5085         return err;
5086 }
5087
5088 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5089 {
5090         return !buffer_mapped(bh);
5091 }
5092
5093 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5094 {
5095         struct page *page = vmf->page;
5096         loff_t size;
5097         unsigned long len;
5098         int ret;
5099         struct file *file = vma->vm_file;
5100         struct inode *inode = file_inode(file);
5101         struct address_space *mapping = inode->i_mapping;
5102         handle_t *handle;
5103         get_block_t *get_block;
5104         int retries = 0;
5105
5106         sb_start_pagefault(inode->i_sb);
5107         file_update_time(vma->vm_file);
5108         /* Delalloc case is easy... */
5109         if (test_opt(inode->i_sb, DELALLOC) &&
5110             !ext4_should_journal_data(inode) &&
5111             !ext4_nonda_switch(inode->i_sb)) {
5112                 do {
5113                         ret = __block_page_mkwrite(vma, vmf,
5114                                                    ext4_da_get_block_prep);
5115                 } while (ret == -ENOSPC &&
5116                        ext4_should_retry_alloc(inode->i_sb, &retries));
5117                 goto out_ret;
5118         }
5119
5120         lock_page(page);
5121         size = i_size_read(inode);
5122         /* Page got truncated from under us? */
5123         if (page->mapping != mapping || page_offset(page) > size) {
5124                 unlock_page(page);
5125                 ret = VM_FAULT_NOPAGE;
5126                 goto out;
5127         }
5128
5129         if (page->index == size >> PAGE_CACHE_SHIFT)
5130                 len = size & ~PAGE_CACHE_MASK;
5131         else
5132                 len = PAGE_CACHE_SIZE;
5133         /*
5134          * Return if we have all the buffers mapped. This avoids the need to do
5135          * journal_start/journal_stop which can block and take a long time
5136          */
5137         if (page_has_buffers(page)) {
5138                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5139                                             0, len, NULL,
5140                                             ext4_bh_unmapped)) {
5141                         /* Wait so that we don't change page under IO */
5142                         wait_for_stable_page(page);
5143                         ret = VM_FAULT_LOCKED;
5144                         goto out;
5145                 }
5146         }
5147         unlock_page(page);
5148         /* OK, we need to fill the hole... */
5149         if (ext4_should_dioread_nolock(inode))
5150                 get_block = ext4_get_block_write;
5151         else
5152                 get_block = ext4_get_block;
5153 retry_alloc:
5154         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5155                                     ext4_writepage_trans_blocks(inode));
5156         if (IS_ERR(handle)) {
5157                 ret = VM_FAULT_SIGBUS;
5158                 goto out;
5159         }
5160         ret = __block_page_mkwrite(vma, vmf, get_block);
5161         if (!ret && ext4_should_journal_data(inode)) {
5162                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5163                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5164                         unlock_page(page);
5165                         ret = VM_FAULT_SIGBUS;
5166                         ext4_journal_stop(handle);
5167                         goto out;
5168                 }
5169                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5170         }
5171         ext4_journal_stop(handle);
5172         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5173                 goto retry_alloc;
5174 out_ret:
5175         ret = block_page_mkwrite_return(ret);
5176 out:
5177         sb_end_pagefault(inode->i_sb);
5178         return ret;
5179 }