ext4: collapse ext4_convert_initialized_extents()
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137                                 unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150
151         if (ext4_has_inline_data(inode))
152                 return 0;
153
154         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155 }
156
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163                                  int nblocks)
164 {
165         int ret;
166
167         /*
168          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169          * moment, get_block can be called only for blocks inside i_size since
170          * page cache has been already dropped and writes are blocked by
171          * i_mutex. So we can safely drop the i_data_sem here.
172          */
173         BUG_ON(EXT4_JOURNAL(inode) == NULL);
174         jbd_debug(2, "restarting handle %p\n", handle);
175         up_write(&EXT4_I(inode)->i_data_sem);
176         ret = ext4_journal_restart(handle, nblocks);
177         down_write(&EXT4_I(inode)->i_data_sem);
178         ext4_discard_preallocations(inode);
179
180         return ret;
181 }
182
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188         handle_t *handle;
189         int err;
190
191         trace_ext4_evict_inode(inode);
192
193         if (inode->i_nlink) {
194                 /*
195                  * When journalling data dirty buffers are tracked only in the
196                  * journal. So although mm thinks everything is clean and
197                  * ready for reaping the inode might still have some pages to
198                  * write in the running transaction or waiting to be
199                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
200                  * (via truncate_inode_pages()) to discard these buffers can
201                  * cause data loss. Also even if we did not discard these
202                  * buffers, we would have no way to find them after the inode
203                  * is reaped and thus user could see stale data if he tries to
204                  * read them before the transaction is checkpointed. So be
205                  * careful and force everything to disk here... We use
206                  * ei->i_datasync_tid to store the newest transaction
207                  * containing inode's data.
208                  *
209                  * Note that directories do not have this problem because they
210                  * don't use page cache.
211                  */
212                 if (ext4_should_journal_data(inode) &&
213                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
214                     inode->i_ino != EXT4_JOURNAL_INO) {
215                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218                         jbd2_complete_transaction(journal, commit_tid);
219                         filemap_write_and_wait(&inode->i_data);
220                 }
221                 truncate_inode_pages_final(&inode->i_data);
222
223                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
224                 goto no_delete;
225         }
226
227         if (!is_bad_inode(inode))
228                 dquot_initialize(inode);
229
230         if (ext4_should_order_data(inode))
231                 ext4_begin_ordered_truncate(inode, 0);
232         truncate_inode_pages_final(&inode->i_data);
233
234         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
235         if (is_bad_inode(inode))
236                 goto no_delete;
237
238         /*
239          * Protect us against freezing - iput() caller didn't have to have any
240          * protection against it
241          */
242         sb_start_intwrite(inode->i_sb);
243         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
244                                     ext4_blocks_for_truncate(inode)+3);
245         if (IS_ERR(handle)) {
246                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
247                 /*
248                  * If we're going to skip the normal cleanup, we still need to
249                  * make sure that the in-core orphan linked list is properly
250                  * cleaned up.
251                  */
252                 ext4_orphan_del(NULL, inode);
253                 sb_end_intwrite(inode->i_sb);
254                 goto no_delete;
255         }
256
257         if (IS_SYNC(inode))
258                 ext4_handle_sync(handle);
259         inode->i_size = 0;
260         err = ext4_mark_inode_dirty(handle, inode);
261         if (err) {
262                 ext4_warning(inode->i_sb,
263                              "couldn't mark inode dirty (err %d)", err);
264                 goto stop_handle;
265         }
266         if (inode->i_blocks)
267                 ext4_truncate(inode);
268
269         /*
270          * ext4_ext_truncate() doesn't reserve any slop when it
271          * restarts journal transactions; therefore there may not be
272          * enough credits left in the handle to remove the inode from
273          * the orphan list and set the dtime field.
274          */
275         if (!ext4_handle_has_enough_credits(handle, 3)) {
276                 err = ext4_journal_extend(handle, 3);
277                 if (err > 0)
278                         err = ext4_journal_restart(handle, 3);
279                 if (err != 0) {
280                         ext4_warning(inode->i_sb,
281                                      "couldn't extend journal (err %d)", err);
282                 stop_handle:
283                         ext4_journal_stop(handle);
284                         ext4_orphan_del(NULL, inode);
285                         sb_end_intwrite(inode->i_sb);
286                         goto no_delete;
287                 }
288         }
289
290         /*
291          * Kill off the orphan record which ext4_truncate created.
292          * AKPM: I think this can be inside the above `if'.
293          * Note that ext4_orphan_del() has to be able to cope with the
294          * deletion of a non-existent orphan - this is because we don't
295          * know if ext4_truncate() actually created an orphan record.
296          * (Well, we could do this if we need to, but heck - it works)
297          */
298         ext4_orphan_del(handle, inode);
299         EXT4_I(inode)->i_dtime  = get_seconds();
300
301         /*
302          * One subtle ordering requirement: if anything has gone wrong
303          * (transaction abort, IO errors, whatever), then we can still
304          * do these next steps (the fs will already have been marked as
305          * having errors), but we can't free the inode if the mark_dirty
306          * fails.
307          */
308         if (ext4_mark_inode_dirty(handle, inode))
309                 /* If that failed, just do the required in-core inode clear. */
310                 ext4_clear_inode(inode);
311         else
312                 ext4_free_inode(handle, inode);
313         ext4_journal_stop(handle);
314         sb_end_intwrite(inode->i_sb);
315         return;
316 no_delete:
317         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
318 }
319
320 #ifdef CONFIG_QUOTA
321 qsize_t *ext4_get_reserved_space(struct inode *inode)
322 {
323         return &EXT4_I(inode)->i_reserved_quota;
324 }
325 #endif
326
327 /*
328  * Called with i_data_sem down, which is important since we can call
329  * ext4_discard_preallocations() from here.
330  */
331 void ext4_da_update_reserve_space(struct inode *inode,
332                                         int used, int quota_claim)
333 {
334         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
335         struct ext4_inode_info *ei = EXT4_I(inode);
336
337         spin_lock(&ei->i_block_reservation_lock);
338         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
339         if (unlikely(used > ei->i_reserved_data_blocks)) {
340                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
341                          "with only %d reserved data blocks",
342                          __func__, inode->i_ino, used,
343                          ei->i_reserved_data_blocks);
344                 WARN_ON(1);
345                 used = ei->i_reserved_data_blocks;
346         }
347
348         /* Update per-inode reservations */
349         ei->i_reserved_data_blocks -= used;
350         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
351
352         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
353
354         /* Update quota subsystem for data blocks */
355         if (quota_claim)
356                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
357         else {
358                 /*
359                  * We did fallocate with an offset that is already delayed
360                  * allocated. So on delayed allocated writeback we should
361                  * not re-claim the quota for fallocated blocks.
362                  */
363                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
364         }
365
366         /*
367          * If we have done all the pending block allocations and if
368          * there aren't any writers on the inode, we can discard the
369          * inode's preallocations.
370          */
371         if ((ei->i_reserved_data_blocks == 0) &&
372             (atomic_read(&inode->i_writecount) == 0))
373                 ext4_discard_preallocations(inode);
374 }
375
376 static int __check_block_validity(struct inode *inode, const char *func,
377                                 unsigned int line,
378                                 struct ext4_map_blocks *map)
379 {
380         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
381                                    map->m_len)) {
382                 ext4_error_inode(inode, func, line, map->m_pblk,
383                                  "lblock %lu mapped to illegal pblock "
384                                  "(length %d)", (unsigned long) map->m_lblk,
385                                  map->m_len);
386                 return -EIO;
387         }
388         return 0;
389 }
390
391 #define check_block_validity(inode, map)        \
392         __check_block_validity((inode), __func__, __LINE__, (map))
393
394 #ifdef ES_AGGRESSIVE_TEST
395 static void ext4_map_blocks_es_recheck(handle_t *handle,
396                                        struct inode *inode,
397                                        struct ext4_map_blocks *es_map,
398                                        struct ext4_map_blocks *map,
399                                        int flags)
400 {
401         int retval;
402
403         map->m_flags = 0;
404         /*
405          * There is a race window that the result is not the same.
406          * e.g. xfstests #223 when dioread_nolock enables.  The reason
407          * is that we lookup a block mapping in extent status tree with
408          * out taking i_data_sem.  So at the time the unwritten extent
409          * could be converted.
410          */
411         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
412                 down_read(&EXT4_I(inode)->i_data_sem);
413         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
414                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
415                                              EXT4_GET_BLOCKS_KEEP_SIZE);
416         } else {
417                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
418                                              EXT4_GET_BLOCKS_KEEP_SIZE);
419         }
420         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
421                 up_read((&EXT4_I(inode)->i_data_sem));
422         /*
423          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
424          * because it shouldn't be marked in es_map->m_flags.
425          */
426         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
427
428         /*
429          * We don't check m_len because extent will be collpased in status
430          * tree.  So the m_len might not equal.
431          */
432         if (es_map->m_lblk != map->m_lblk ||
433             es_map->m_flags != map->m_flags ||
434             es_map->m_pblk != map->m_pblk) {
435                 printk("ES cache assertion failed for inode: %lu "
436                        "es_cached ex [%d/%d/%llu/%x] != "
437                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438                        inode->i_ino, es_map->m_lblk, es_map->m_len,
439                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
440                        map->m_len, map->m_pblk, map->m_flags,
441                        retval, flags);
442         }
443 }
444 #endif /* ES_AGGRESSIVE_TEST */
445
446 /*
447  * The ext4_map_blocks() function tries to look up the requested blocks,
448  * and returns if the blocks are already mapped.
449  *
450  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451  * and store the allocated blocks in the result buffer head and mark it
452  * mapped.
453  *
454  * If file type is extents based, it will call ext4_ext_map_blocks(),
455  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456  * based files
457  *
458  * On success, it returns the number of blocks being mapped or allocated.
459  * if create==0 and the blocks are pre-allocated and unwritten block,
460  * the result buffer head is unmapped. If the create ==1, it will make sure
461  * the buffer head is mapped.
462  *
463  * It returns 0 if plain look up failed (blocks have not been allocated), in
464  * that case, buffer head is unmapped
465  *
466  * It returns the error in case of allocation failure.
467  */
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469                     struct ext4_map_blocks *map, int flags)
470 {
471         struct extent_status es;
472         int retval;
473         int ret = 0;
474 #ifdef ES_AGGRESSIVE_TEST
475         struct ext4_map_blocks orig_map;
476
477         memcpy(&orig_map, map, sizeof(*map));
478 #endif
479
480         map->m_flags = 0;
481         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
483                   (unsigned long) map->m_lblk);
484
485         /*
486          * ext4_map_blocks returns an int, and m_len is an unsigned int
487          */
488         if (unlikely(map->m_len > INT_MAX))
489                 map->m_len = INT_MAX;
490
491         /* We can handle the block number less than EXT_MAX_BLOCKS */
492         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493                 return -EIO;
494
495         /* Lookup extent status tree firstly */
496         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497                 ext4_es_lru_add(inode);
498                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
499                         map->m_pblk = ext4_es_pblock(&es) +
500                                         map->m_lblk - es.es_lblk;
501                         map->m_flags |= ext4_es_is_written(&es) ?
502                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
503                         retval = es.es_len - (map->m_lblk - es.es_lblk);
504                         if (retval > map->m_len)
505                                 retval = map->m_len;
506                         map->m_len = retval;
507                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
508                         retval = 0;
509                 } else {
510                         BUG_ON(1);
511                 }
512 #ifdef ES_AGGRESSIVE_TEST
513                 ext4_map_blocks_es_recheck(handle, inode, map,
514                                            &orig_map, flags);
515 #endif
516                 goto found;
517         }
518
519         /*
520          * Try to see if we can get the block without requesting a new
521          * file system block.
522          */
523         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
524                 down_read(&EXT4_I(inode)->i_data_sem);
525         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
526                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
527                                              EXT4_GET_BLOCKS_KEEP_SIZE);
528         } else {
529                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
530                                              EXT4_GET_BLOCKS_KEEP_SIZE);
531         }
532         if (retval > 0) {
533                 unsigned int status;
534
535                 if (unlikely(retval != map->m_len)) {
536                         ext4_warning(inode->i_sb,
537                                      "ES len assertion failed for inode "
538                                      "%lu: retval %d != map->m_len %d",
539                                      inode->i_ino, retval, map->m_len);
540                         WARN_ON(1);
541                 }
542
543                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
544                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
545                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
546                     ext4_find_delalloc_range(inode, map->m_lblk,
547                                              map->m_lblk + map->m_len - 1))
548                         status |= EXTENT_STATUS_DELAYED;
549                 ret = ext4_es_insert_extent(inode, map->m_lblk,
550                                             map->m_len, map->m_pblk, status);
551                 if (ret < 0)
552                         retval = ret;
553         }
554         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
555                 up_read((&EXT4_I(inode)->i_data_sem));
556
557 found:
558         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
559                 ret = check_block_validity(inode, map);
560                 if (ret != 0)
561                         return ret;
562         }
563
564         /* If it is only a block(s) look up */
565         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
566                 return retval;
567
568         /*
569          * Returns if the blocks have already allocated
570          *
571          * Note that if blocks have been preallocated
572          * ext4_ext_get_block() returns the create = 0
573          * with buffer head unmapped.
574          */
575         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
576                 /*
577                  * If we need to convert extent to unwritten
578                  * we continue and do the actual work in
579                  * ext4_ext_map_blocks()
580                  */
581                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
582                         return retval;
583
584         /*
585          * Here we clear m_flags because after allocating an new extent,
586          * it will be set again.
587          */
588         map->m_flags &= ~EXT4_MAP_FLAGS;
589
590         /*
591          * New blocks allocate and/or writing to unwritten extent
592          * will possibly result in updating i_data, so we take
593          * the write lock of i_data_sem, and call get_blocks()
594          * with create == 1 flag.
595          */
596         down_write(&EXT4_I(inode)->i_data_sem);
597
598         /*
599          * if the caller is from delayed allocation writeout path
600          * we have already reserved fs blocks for allocation
601          * let the underlying get_block() function know to
602          * avoid double accounting
603          */
604         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
605                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
606         /*
607          * We need to check for EXT4 here because migrate
608          * could have changed the inode type in between
609          */
610         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
611                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
612         } else {
613                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
614
615                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
616                         /*
617                          * We allocated new blocks which will result in
618                          * i_data's format changing.  Force the migrate
619                          * to fail by clearing migrate flags
620                          */
621                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
622                 }
623
624                 /*
625                  * Update reserved blocks/metadata blocks after successful
626                  * block allocation which had been deferred till now. We don't
627                  * support fallocate for non extent files. So we can update
628                  * reserve space here.
629                  */
630                 if ((retval > 0) &&
631                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
632                         ext4_da_update_reserve_space(inode, retval, 1);
633         }
634         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
635                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
636
637         if (retval > 0) {
638                 unsigned int status;
639
640                 if (unlikely(retval != map->m_len)) {
641                         ext4_warning(inode->i_sb,
642                                      "ES len assertion failed for inode "
643                                      "%lu: retval %d != map->m_len %d",
644                                      inode->i_ino, retval, map->m_len);
645                         WARN_ON(1);
646                 }
647
648                 /*
649                  * If the extent has been zeroed out, we don't need to update
650                  * extent status tree.
651                  */
652                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
653                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
654                         if (ext4_es_is_written(&es))
655                                 goto has_zeroout;
656                 }
657                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
658                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
659                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
660                     ext4_find_delalloc_range(inode, map->m_lblk,
661                                              map->m_lblk + map->m_len - 1))
662                         status |= EXTENT_STATUS_DELAYED;
663                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
664                                             map->m_pblk, status);
665                 if (ret < 0)
666                         retval = ret;
667         }
668
669 has_zeroout:
670         up_write((&EXT4_I(inode)->i_data_sem));
671         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
672                 ret = check_block_validity(inode, map);
673                 if (ret != 0)
674                         return ret;
675         }
676         return retval;
677 }
678
679 /* Maximum number of blocks we map for direct IO at once. */
680 #define DIO_MAX_BLOCKS 4096
681
682 static int _ext4_get_block(struct inode *inode, sector_t iblock,
683                            struct buffer_head *bh, int flags)
684 {
685         handle_t *handle = ext4_journal_current_handle();
686         struct ext4_map_blocks map;
687         int ret = 0, started = 0;
688         int dio_credits;
689
690         if (ext4_has_inline_data(inode))
691                 return -ERANGE;
692
693         map.m_lblk = iblock;
694         map.m_len = bh->b_size >> inode->i_blkbits;
695
696         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
697                 /* Direct IO write... */
698                 if (map.m_len > DIO_MAX_BLOCKS)
699                         map.m_len = DIO_MAX_BLOCKS;
700                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
701                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
702                                             dio_credits);
703                 if (IS_ERR(handle)) {
704                         ret = PTR_ERR(handle);
705                         return ret;
706                 }
707                 started = 1;
708         }
709
710         ret = ext4_map_blocks(handle, inode, &map, flags);
711         if (ret > 0) {
712                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
713
714                 map_bh(bh, inode->i_sb, map.m_pblk);
715                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
716                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
717                         set_buffer_defer_completion(bh);
718                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
719                 ret = 0;
720         }
721         if (started)
722                 ext4_journal_stop(handle);
723         return ret;
724 }
725
726 int ext4_get_block(struct inode *inode, sector_t iblock,
727                    struct buffer_head *bh, int create)
728 {
729         return _ext4_get_block(inode, iblock, bh,
730                                create ? EXT4_GET_BLOCKS_CREATE : 0);
731 }
732
733 /*
734  * `handle' can be NULL if create is zero
735  */
736 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
737                                 ext4_lblk_t block, int create)
738 {
739         struct ext4_map_blocks map;
740         struct buffer_head *bh;
741         int err;
742
743         J_ASSERT(handle != NULL || create == 0);
744
745         map.m_lblk = block;
746         map.m_len = 1;
747         err = ext4_map_blocks(handle, inode, &map,
748                               create ? EXT4_GET_BLOCKS_CREATE : 0);
749
750         if (err == 0)
751                 return create ? ERR_PTR(-ENOSPC) : NULL;
752         if (err < 0)
753                 return ERR_PTR(err);
754
755         bh = sb_getblk(inode->i_sb, map.m_pblk);
756         if (unlikely(!bh))
757                 return ERR_PTR(-ENOMEM);
758         if (map.m_flags & EXT4_MAP_NEW) {
759                 J_ASSERT(create != 0);
760                 J_ASSERT(handle != NULL);
761
762                 /*
763                  * Now that we do not always journal data, we should
764                  * keep in mind whether this should always journal the
765                  * new buffer as metadata.  For now, regular file
766                  * writes use ext4_get_block instead, so it's not a
767                  * problem.
768                  */
769                 lock_buffer(bh);
770                 BUFFER_TRACE(bh, "call get_create_access");
771                 err = ext4_journal_get_create_access(handle, bh);
772                 if (unlikely(err)) {
773                         unlock_buffer(bh);
774                         goto errout;
775                 }
776                 if (!buffer_uptodate(bh)) {
777                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
778                         set_buffer_uptodate(bh);
779                 }
780                 unlock_buffer(bh);
781                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
782                 err = ext4_handle_dirty_metadata(handle, inode, bh);
783                 if (unlikely(err))
784                         goto errout;
785         } else
786                 BUFFER_TRACE(bh, "not a new buffer");
787         return bh;
788 errout:
789         brelse(bh);
790         return ERR_PTR(err);
791 }
792
793 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
794                                ext4_lblk_t block, int create)
795 {
796         struct buffer_head *bh;
797
798         bh = ext4_getblk(handle, inode, block, create);
799         if (IS_ERR(bh))
800                 return bh;
801         if (!bh || buffer_uptodate(bh))
802                 return bh;
803         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
804         wait_on_buffer(bh);
805         if (buffer_uptodate(bh))
806                 return bh;
807         put_bh(bh);
808         return ERR_PTR(-EIO);
809 }
810
811 int ext4_walk_page_buffers(handle_t *handle,
812                            struct buffer_head *head,
813                            unsigned from,
814                            unsigned to,
815                            int *partial,
816                            int (*fn)(handle_t *handle,
817                                      struct buffer_head *bh))
818 {
819         struct buffer_head *bh;
820         unsigned block_start, block_end;
821         unsigned blocksize = head->b_size;
822         int err, ret = 0;
823         struct buffer_head *next;
824
825         for (bh = head, block_start = 0;
826              ret == 0 && (bh != head || !block_start);
827              block_start = block_end, bh = next) {
828                 next = bh->b_this_page;
829                 block_end = block_start + blocksize;
830                 if (block_end <= from || block_start >= to) {
831                         if (partial && !buffer_uptodate(bh))
832                                 *partial = 1;
833                         continue;
834                 }
835                 err = (*fn)(handle, bh);
836                 if (!ret)
837                         ret = err;
838         }
839         return ret;
840 }
841
842 /*
843  * To preserve ordering, it is essential that the hole instantiation and
844  * the data write be encapsulated in a single transaction.  We cannot
845  * close off a transaction and start a new one between the ext4_get_block()
846  * and the commit_write().  So doing the jbd2_journal_start at the start of
847  * prepare_write() is the right place.
848  *
849  * Also, this function can nest inside ext4_writepage().  In that case, we
850  * *know* that ext4_writepage() has generated enough buffer credits to do the
851  * whole page.  So we won't block on the journal in that case, which is good,
852  * because the caller may be PF_MEMALLOC.
853  *
854  * By accident, ext4 can be reentered when a transaction is open via
855  * quota file writes.  If we were to commit the transaction while thus
856  * reentered, there can be a deadlock - we would be holding a quota
857  * lock, and the commit would never complete if another thread had a
858  * transaction open and was blocking on the quota lock - a ranking
859  * violation.
860  *
861  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
862  * will _not_ run commit under these circumstances because handle->h_ref
863  * is elevated.  We'll still have enough credits for the tiny quotafile
864  * write.
865  */
866 int do_journal_get_write_access(handle_t *handle,
867                                 struct buffer_head *bh)
868 {
869         int dirty = buffer_dirty(bh);
870         int ret;
871
872         if (!buffer_mapped(bh) || buffer_freed(bh))
873                 return 0;
874         /*
875          * __block_write_begin() could have dirtied some buffers. Clean
876          * the dirty bit as jbd2_journal_get_write_access() could complain
877          * otherwise about fs integrity issues. Setting of the dirty bit
878          * by __block_write_begin() isn't a real problem here as we clear
879          * the bit before releasing a page lock and thus writeback cannot
880          * ever write the buffer.
881          */
882         if (dirty)
883                 clear_buffer_dirty(bh);
884         BUFFER_TRACE(bh, "get write access");
885         ret = ext4_journal_get_write_access(handle, bh);
886         if (!ret && dirty)
887                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
888         return ret;
889 }
890
891 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
892                    struct buffer_head *bh_result, int create);
893 static int ext4_write_begin(struct file *file, struct address_space *mapping,
894                             loff_t pos, unsigned len, unsigned flags,
895                             struct page **pagep, void **fsdata)
896 {
897         struct inode *inode = mapping->host;
898         int ret, needed_blocks;
899         handle_t *handle;
900         int retries = 0;
901         struct page *page;
902         pgoff_t index;
903         unsigned from, to;
904
905         trace_ext4_write_begin(inode, pos, len, flags);
906         /*
907          * Reserve one block more for addition to orphan list in case
908          * we allocate blocks but write fails for some reason
909          */
910         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
911         index = pos >> PAGE_CACHE_SHIFT;
912         from = pos & (PAGE_CACHE_SIZE - 1);
913         to = from + len;
914
915         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
916                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
917                                                     flags, pagep);
918                 if (ret < 0)
919                         return ret;
920                 if (ret == 1)
921                         return 0;
922         }
923
924         /*
925          * grab_cache_page_write_begin() can take a long time if the
926          * system is thrashing due to memory pressure, or if the page
927          * is being written back.  So grab it first before we start
928          * the transaction handle.  This also allows us to allocate
929          * the page (if needed) without using GFP_NOFS.
930          */
931 retry_grab:
932         page = grab_cache_page_write_begin(mapping, index, flags);
933         if (!page)
934                 return -ENOMEM;
935         unlock_page(page);
936
937 retry_journal:
938         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
939         if (IS_ERR(handle)) {
940                 page_cache_release(page);
941                 return PTR_ERR(handle);
942         }
943
944         lock_page(page);
945         if (page->mapping != mapping) {
946                 /* The page got truncated from under us */
947                 unlock_page(page);
948                 page_cache_release(page);
949                 ext4_journal_stop(handle);
950                 goto retry_grab;
951         }
952         /* In case writeback began while the page was unlocked */
953         wait_for_stable_page(page);
954
955         if (ext4_should_dioread_nolock(inode))
956                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
957         else
958                 ret = __block_write_begin(page, pos, len, ext4_get_block);
959
960         if (!ret && ext4_should_journal_data(inode)) {
961                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
962                                              from, to, NULL,
963                                              do_journal_get_write_access);
964         }
965
966         if (ret) {
967                 unlock_page(page);
968                 /*
969                  * __block_write_begin may have instantiated a few blocks
970                  * outside i_size.  Trim these off again. Don't need
971                  * i_size_read because we hold i_mutex.
972                  *
973                  * Add inode to orphan list in case we crash before
974                  * truncate finishes
975                  */
976                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
977                         ext4_orphan_add(handle, inode);
978
979                 ext4_journal_stop(handle);
980                 if (pos + len > inode->i_size) {
981                         ext4_truncate_failed_write(inode);
982                         /*
983                          * If truncate failed early the inode might
984                          * still be on the orphan list; we need to
985                          * make sure the inode is removed from the
986                          * orphan list in that case.
987                          */
988                         if (inode->i_nlink)
989                                 ext4_orphan_del(NULL, inode);
990                 }
991
992                 if (ret == -ENOSPC &&
993                     ext4_should_retry_alloc(inode->i_sb, &retries))
994                         goto retry_journal;
995                 page_cache_release(page);
996                 return ret;
997         }
998         *pagep = page;
999         return ret;
1000 }
1001
1002 /* For write_end() in data=journal mode */
1003 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1004 {
1005         int ret;
1006         if (!buffer_mapped(bh) || buffer_freed(bh))
1007                 return 0;
1008         set_buffer_uptodate(bh);
1009         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1010         clear_buffer_meta(bh);
1011         clear_buffer_prio(bh);
1012         return ret;
1013 }
1014
1015 /*
1016  * We need to pick up the new inode size which generic_commit_write gave us
1017  * `file' can be NULL - eg, when called from page_symlink().
1018  *
1019  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1020  * buffers are managed internally.
1021  */
1022 static int ext4_write_end(struct file *file,
1023                           struct address_space *mapping,
1024                           loff_t pos, unsigned len, unsigned copied,
1025                           struct page *page, void *fsdata)
1026 {
1027         handle_t *handle = ext4_journal_current_handle();
1028         struct inode *inode = mapping->host;
1029         int ret = 0, ret2;
1030         int i_size_changed = 0;
1031
1032         trace_ext4_write_end(inode, pos, len, copied);
1033         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1034                 ret = ext4_jbd2_file_inode(handle, inode);
1035                 if (ret) {
1036                         unlock_page(page);
1037                         page_cache_release(page);
1038                         goto errout;
1039                 }
1040         }
1041
1042         if (ext4_has_inline_data(inode)) {
1043                 ret = ext4_write_inline_data_end(inode, pos, len,
1044                                                  copied, page);
1045                 if (ret < 0)
1046                         goto errout;
1047                 copied = ret;
1048         } else
1049                 copied = block_write_end(file, mapping, pos,
1050                                          len, copied, page, fsdata);
1051         /*
1052          * it's important to update i_size while still holding page lock:
1053          * page writeout could otherwise come in and zero beyond i_size.
1054          */
1055         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1056         unlock_page(page);
1057         page_cache_release(page);
1058
1059         /*
1060          * Don't mark the inode dirty under page lock. First, it unnecessarily
1061          * makes the holding time of page lock longer. Second, it forces lock
1062          * ordering of page lock and transaction start for journaling
1063          * filesystems.
1064          */
1065         if (i_size_changed)
1066                 ext4_mark_inode_dirty(handle, inode);
1067
1068         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1069                 /* if we have allocated more blocks and copied
1070                  * less. We will have blocks allocated outside
1071                  * inode->i_size. So truncate them
1072                  */
1073                 ext4_orphan_add(handle, inode);
1074 errout:
1075         ret2 = ext4_journal_stop(handle);
1076         if (!ret)
1077                 ret = ret2;
1078
1079         if (pos + len > inode->i_size) {
1080                 ext4_truncate_failed_write(inode);
1081                 /*
1082                  * If truncate failed early the inode might still be
1083                  * on the orphan list; we need to make sure the inode
1084                  * is removed from the orphan list in that case.
1085                  */
1086                 if (inode->i_nlink)
1087                         ext4_orphan_del(NULL, inode);
1088         }
1089
1090         return ret ? ret : copied;
1091 }
1092
1093 static int ext4_journalled_write_end(struct file *file,
1094                                      struct address_space *mapping,
1095                                      loff_t pos, unsigned len, unsigned copied,
1096                                      struct page *page, void *fsdata)
1097 {
1098         handle_t *handle = ext4_journal_current_handle();
1099         struct inode *inode = mapping->host;
1100         int ret = 0, ret2;
1101         int partial = 0;
1102         unsigned from, to;
1103         int size_changed = 0;
1104
1105         trace_ext4_journalled_write_end(inode, pos, len, copied);
1106         from = pos & (PAGE_CACHE_SIZE - 1);
1107         to = from + len;
1108
1109         BUG_ON(!ext4_handle_valid(handle));
1110
1111         if (ext4_has_inline_data(inode))
1112                 copied = ext4_write_inline_data_end(inode, pos, len,
1113                                                     copied, page);
1114         else {
1115                 if (copied < len) {
1116                         if (!PageUptodate(page))
1117                                 copied = 0;
1118                         page_zero_new_buffers(page, from+copied, to);
1119                 }
1120
1121                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1122                                              to, &partial, write_end_fn);
1123                 if (!partial)
1124                         SetPageUptodate(page);
1125         }
1126         size_changed = ext4_update_inode_size(inode, pos + copied);
1127         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1128         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1129         unlock_page(page);
1130         page_cache_release(page);
1131
1132         if (size_changed) {
1133                 ret2 = ext4_mark_inode_dirty(handle, inode);
1134                 if (!ret)
1135                         ret = ret2;
1136         }
1137
1138         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1139                 /* if we have allocated more blocks and copied
1140                  * less. We will have blocks allocated outside
1141                  * inode->i_size. So truncate them
1142                  */
1143                 ext4_orphan_add(handle, inode);
1144
1145         ret2 = ext4_journal_stop(handle);
1146         if (!ret)
1147                 ret = ret2;
1148         if (pos + len > inode->i_size) {
1149                 ext4_truncate_failed_write(inode);
1150                 /*
1151                  * If truncate failed early the inode might still be
1152                  * on the orphan list; we need to make sure the inode
1153                  * is removed from the orphan list in that case.
1154                  */
1155                 if (inode->i_nlink)
1156                         ext4_orphan_del(NULL, inode);
1157         }
1158
1159         return ret ? ret : copied;
1160 }
1161
1162 /*
1163  * Reserve a single cluster located at lblock
1164  */
1165 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1166 {
1167         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1168         struct ext4_inode_info *ei = EXT4_I(inode);
1169         unsigned int md_needed;
1170         int ret;
1171
1172         /*
1173          * We will charge metadata quota at writeout time; this saves
1174          * us from metadata over-estimation, though we may go over by
1175          * a small amount in the end.  Here we just reserve for data.
1176          */
1177         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1178         if (ret)
1179                 return ret;
1180
1181         /*
1182          * recalculate the amount of metadata blocks to reserve
1183          * in order to allocate nrblocks
1184          * worse case is one extent per block
1185          */
1186         spin_lock(&ei->i_block_reservation_lock);
1187         /*
1188          * ext4_calc_metadata_amount() has side effects, which we have
1189          * to be prepared undo if we fail to claim space.
1190          */
1191         md_needed = 0;
1192         trace_ext4_da_reserve_space(inode, 0);
1193
1194         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1195                 spin_unlock(&ei->i_block_reservation_lock);
1196                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1197                 return -ENOSPC;
1198         }
1199         ei->i_reserved_data_blocks++;
1200         spin_unlock(&ei->i_block_reservation_lock);
1201
1202         return 0;       /* success */
1203 }
1204
1205 static void ext4_da_release_space(struct inode *inode, int to_free)
1206 {
1207         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1208         struct ext4_inode_info *ei = EXT4_I(inode);
1209
1210         if (!to_free)
1211                 return;         /* Nothing to release, exit */
1212
1213         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1214
1215         trace_ext4_da_release_space(inode, to_free);
1216         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1217                 /*
1218                  * if there aren't enough reserved blocks, then the
1219                  * counter is messed up somewhere.  Since this
1220                  * function is called from invalidate page, it's
1221                  * harmless to return without any action.
1222                  */
1223                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1224                          "ino %lu, to_free %d with only %d reserved "
1225                          "data blocks", inode->i_ino, to_free,
1226                          ei->i_reserved_data_blocks);
1227                 WARN_ON(1);
1228                 to_free = ei->i_reserved_data_blocks;
1229         }
1230         ei->i_reserved_data_blocks -= to_free;
1231
1232         /* update fs dirty data blocks counter */
1233         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1234
1235         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1236
1237         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1238 }
1239
1240 static void ext4_da_page_release_reservation(struct page *page,
1241                                              unsigned int offset,
1242                                              unsigned int length)
1243 {
1244         int to_release = 0;
1245         struct buffer_head *head, *bh;
1246         unsigned int curr_off = 0;
1247         struct inode *inode = page->mapping->host;
1248         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1249         unsigned int stop = offset + length;
1250         int num_clusters;
1251         ext4_fsblk_t lblk;
1252
1253         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1254
1255         head = page_buffers(page);
1256         bh = head;
1257         do {
1258                 unsigned int next_off = curr_off + bh->b_size;
1259
1260                 if (next_off > stop)
1261                         break;
1262
1263                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1264                         to_release++;
1265                         clear_buffer_delay(bh);
1266                 }
1267                 curr_off = next_off;
1268         } while ((bh = bh->b_this_page) != head);
1269
1270         if (to_release) {
1271                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1272                 ext4_es_remove_extent(inode, lblk, to_release);
1273         }
1274
1275         /* If we have released all the blocks belonging to a cluster, then we
1276          * need to release the reserved space for that cluster. */
1277         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1278         while (num_clusters > 0) {
1279                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1280                         ((num_clusters - 1) << sbi->s_cluster_bits);
1281                 if (sbi->s_cluster_ratio == 1 ||
1282                     !ext4_find_delalloc_cluster(inode, lblk))
1283                         ext4_da_release_space(inode, 1);
1284
1285                 num_clusters--;
1286         }
1287 }
1288
1289 /*
1290  * Delayed allocation stuff
1291  */
1292
1293 struct mpage_da_data {
1294         struct inode *inode;
1295         struct writeback_control *wbc;
1296
1297         pgoff_t first_page;     /* The first page to write */
1298         pgoff_t next_page;      /* Current page to examine */
1299         pgoff_t last_page;      /* Last page to examine */
1300         /*
1301          * Extent to map - this can be after first_page because that can be
1302          * fully mapped. We somewhat abuse m_flags to store whether the extent
1303          * is delalloc or unwritten.
1304          */
1305         struct ext4_map_blocks map;
1306         struct ext4_io_submit io_submit;        /* IO submission data */
1307 };
1308
1309 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1310                                        bool invalidate)
1311 {
1312         int nr_pages, i;
1313         pgoff_t index, end;
1314         struct pagevec pvec;
1315         struct inode *inode = mpd->inode;
1316         struct address_space *mapping = inode->i_mapping;
1317
1318         /* This is necessary when next_page == 0. */
1319         if (mpd->first_page >= mpd->next_page)
1320                 return;
1321
1322         index = mpd->first_page;
1323         end   = mpd->next_page - 1;
1324         if (invalidate) {
1325                 ext4_lblk_t start, last;
1326                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1327                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1328                 ext4_es_remove_extent(inode, start, last - start + 1);
1329         }
1330
1331         pagevec_init(&pvec, 0);
1332         while (index <= end) {
1333                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1334                 if (nr_pages == 0)
1335                         break;
1336                 for (i = 0; i < nr_pages; i++) {
1337                         struct page *page = pvec.pages[i];
1338                         if (page->index > end)
1339                                 break;
1340                         BUG_ON(!PageLocked(page));
1341                         BUG_ON(PageWriteback(page));
1342                         if (invalidate) {
1343                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1344                                 ClearPageUptodate(page);
1345                         }
1346                         unlock_page(page);
1347                 }
1348                 index = pvec.pages[nr_pages - 1]->index + 1;
1349                 pagevec_release(&pvec);
1350         }
1351 }
1352
1353 static void ext4_print_free_blocks(struct inode *inode)
1354 {
1355         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1356         struct super_block *sb = inode->i_sb;
1357         struct ext4_inode_info *ei = EXT4_I(inode);
1358
1359         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1360                EXT4_C2B(EXT4_SB(inode->i_sb),
1361                         ext4_count_free_clusters(sb)));
1362         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1363         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1364                (long long) EXT4_C2B(EXT4_SB(sb),
1365                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1366         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1367                (long long) EXT4_C2B(EXT4_SB(sb),
1368                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1369         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1370         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1371                  ei->i_reserved_data_blocks);
1372         return;
1373 }
1374
1375 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1376 {
1377         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1378 }
1379
1380 /*
1381  * This function is grabs code from the very beginning of
1382  * ext4_map_blocks, but assumes that the caller is from delayed write
1383  * time. This function looks up the requested blocks and sets the
1384  * buffer delay bit under the protection of i_data_sem.
1385  */
1386 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1387                               struct ext4_map_blocks *map,
1388                               struct buffer_head *bh)
1389 {
1390         struct extent_status es;
1391         int retval;
1392         sector_t invalid_block = ~((sector_t) 0xffff);
1393 #ifdef ES_AGGRESSIVE_TEST
1394         struct ext4_map_blocks orig_map;
1395
1396         memcpy(&orig_map, map, sizeof(*map));
1397 #endif
1398
1399         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1400                 invalid_block = ~0;
1401
1402         map->m_flags = 0;
1403         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1404                   "logical block %lu\n", inode->i_ino, map->m_len,
1405                   (unsigned long) map->m_lblk);
1406
1407         /* Lookup extent status tree firstly */
1408         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1409                 ext4_es_lru_add(inode);
1410                 if (ext4_es_is_hole(&es)) {
1411                         retval = 0;
1412                         down_read(&EXT4_I(inode)->i_data_sem);
1413                         goto add_delayed;
1414                 }
1415
1416                 /*
1417                  * Delayed extent could be allocated by fallocate.
1418                  * So we need to check it.
1419                  */
1420                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1421                         map_bh(bh, inode->i_sb, invalid_block);
1422                         set_buffer_new(bh);
1423                         set_buffer_delay(bh);
1424                         return 0;
1425                 }
1426
1427                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1428                 retval = es.es_len - (iblock - es.es_lblk);
1429                 if (retval > map->m_len)
1430                         retval = map->m_len;
1431                 map->m_len = retval;
1432                 if (ext4_es_is_written(&es))
1433                         map->m_flags |= EXT4_MAP_MAPPED;
1434                 else if (ext4_es_is_unwritten(&es))
1435                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1436                 else
1437                         BUG_ON(1);
1438
1439 #ifdef ES_AGGRESSIVE_TEST
1440                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1441 #endif
1442                 return retval;
1443         }
1444
1445         /*
1446          * Try to see if we can get the block without requesting a new
1447          * file system block.
1448          */
1449         down_read(&EXT4_I(inode)->i_data_sem);
1450         if (ext4_has_inline_data(inode)) {
1451                 /*
1452                  * We will soon create blocks for this page, and let
1453                  * us pretend as if the blocks aren't allocated yet.
1454                  * In case of clusters, we have to handle the work
1455                  * of mapping from cluster so that the reserved space
1456                  * is calculated properly.
1457                  */
1458                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1459                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1460                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1461                 retval = 0;
1462         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1463                 retval = ext4_ext_map_blocks(NULL, inode, map,
1464                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1465         else
1466                 retval = ext4_ind_map_blocks(NULL, inode, map,
1467                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1468
1469 add_delayed:
1470         if (retval == 0) {
1471                 int ret;
1472                 /*
1473                  * XXX: __block_prepare_write() unmaps passed block,
1474                  * is it OK?
1475                  */
1476                 /*
1477                  * If the block was allocated from previously allocated cluster,
1478                  * then we don't need to reserve it again. However we still need
1479                  * to reserve metadata for every block we're going to write.
1480                  */
1481                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1482                         ret = ext4_da_reserve_space(inode, iblock);
1483                         if (ret) {
1484                                 /* not enough space to reserve */
1485                                 retval = ret;
1486                                 goto out_unlock;
1487                         }
1488                 }
1489
1490                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1491                                             ~0, EXTENT_STATUS_DELAYED);
1492                 if (ret) {
1493                         retval = ret;
1494                         goto out_unlock;
1495                 }
1496
1497                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1498                  * and it should not appear on the bh->b_state.
1499                  */
1500                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1501
1502                 map_bh(bh, inode->i_sb, invalid_block);
1503                 set_buffer_new(bh);
1504                 set_buffer_delay(bh);
1505         } else if (retval > 0) {
1506                 int ret;
1507                 unsigned int status;
1508
1509                 if (unlikely(retval != map->m_len)) {
1510                         ext4_warning(inode->i_sb,
1511                                      "ES len assertion failed for inode "
1512                                      "%lu: retval %d != map->m_len %d",
1513                                      inode->i_ino, retval, map->m_len);
1514                         WARN_ON(1);
1515                 }
1516
1517                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1518                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1519                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1520                                             map->m_pblk, status);
1521                 if (ret != 0)
1522                         retval = ret;
1523         }
1524
1525 out_unlock:
1526         up_read((&EXT4_I(inode)->i_data_sem));
1527
1528         return retval;
1529 }
1530
1531 /*
1532  * This is a special get_blocks_t callback which is used by
1533  * ext4_da_write_begin().  It will either return mapped block or
1534  * reserve space for a single block.
1535  *
1536  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1537  * We also have b_blocknr = -1 and b_bdev initialized properly
1538  *
1539  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1540  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1541  * initialized properly.
1542  */
1543 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1544                            struct buffer_head *bh, int create)
1545 {
1546         struct ext4_map_blocks map;
1547         int ret = 0;
1548
1549         BUG_ON(create == 0);
1550         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1551
1552         map.m_lblk = iblock;
1553         map.m_len = 1;
1554
1555         /*
1556          * first, we need to know whether the block is allocated already
1557          * preallocated blocks are unmapped but should treated
1558          * the same as allocated blocks.
1559          */
1560         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1561         if (ret <= 0)
1562                 return ret;
1563
1564         map_bh(bh, inode->i_sb, map.m_pblk);
1565         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1566
1567         if (buffer_unwritten(bh)) {
1568                 /* A delayed write to unwritten bh should be marked
1569                  * new and mapped.  Mapped ensures that we don't do
1570                  * get_block multiple times when we write to the same
1571                  * offset and new ensures that we do proper zero out
1572                  * for partial write.
1573                  */
1574                 set_buffer_new(bh);
1575                 set_buffer_mapped(bh);
1576         }
1577         return 0;
1578 }
1579
1580 static int bget_one(handle_t *handle, struct buffer_head *bh)
1581 {
1582         get_bh(bh);
1583         return 0;
1584 }
1585
1586 static int bput_one(handle_t *handle, struct buffer_head *bh)
1587 {
1588         put_bh(bh);
1589         return 0;
1590 }
1591
1592 static int __ext4_journalled_writepage(struct page *page,
1593                                        unsigned int len)
1594 {
1595         struct address_space *mapping = page->mapping;
1596         struct inode *inode = mapping->host;
1597         struct buffer_head *page_bufs = NULL;
1598         handle_t *handle = NULL;
1599         int ret = 0, err = 0;
1600         int inline_data = ext4_has_inline_data(inode);
1601         struct buffer_head *inode_bh = NULL;
1602
1603         ClearPageChecked(page);
1604
1605         if (inline_data) {
1606                 BUG_ON(page->index != 0);
1607                 BUG_ON(len > ext4_get_max_inline_size(inode));
1608                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1609                 if (inode_bh == NULL)
1610                         goto out;
1611         } else {
1612                 page_bufs = page_buffers(page);
1613                 if (!page_bufs) {
1614                         BUG();
1615                         goto out;
1616                 }
1617                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1618                                        NULL, bget_one);
1619         }
1620         /* As soon as we unlock the page, it can go away, but we have
1621          * references to buffers so we are safe */
1622         unlock_page(page);
1623
1624         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1625                                     ext4_writepage_trans_blocks(inode));
1626         if (IS_ERR(handle)) {
1627                 ret = PTR_ERR(handle);
1628                 goto out;
1629         }
1630
1631         BUG_ON(!ext4_handle_valid(handle));
1632
1633         if (inline_data) {
1634                 BUFFER_TRACE(inode_bh, "get write access");
1635                 ret = ext4_journal_get_write_access(handle, inode_bh);
1636
1637                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1638
1639         } else {
1640                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1641                                              do_journal_get_write_access);
1642
1643                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1644                                              write_end_fn);
1645         }
1646         if (ret == 0)
1647                 ret = err;
1648         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1649         err = ext4_journal_stop(handle);
1650         if (!ret)
1651                 ret = err;
1652
1653         if (!ext4_has_inline_data(inode))
1654                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1655                                        NULL, bput_one);
1656         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1657 out:
1658         brelse(inode_bh);
1659         return ret;
1660 }
1661
1662 /*
1663  * Note that we don't need to start a transaction unless we're journaling data
1664  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1665  * need to file the inode to the transaction's list in ordered mode because if
1666  * we are writing back data added by write(), the inode is already there and if
1667  * we are writing back data modified via mmap(), no one guarantees in which
1668  * transaction the data will hit the disk. In case we are journaling data, we
1669  * cannot start transaction directly because transaction start ranks above page
1670  * lock so we have to do some magic.
1671  *
1672  * This function can get called via...
1673  *   - ext4_writepages after taking page lock (have journal handle)
1674  *   - journal_submit_inode_data_buffers (no journal handle)
1675  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1676  *   - grab_page_cache when doing write_begin (have journal handle)
1677  *
1678  * We don't do any block allocation in this function. If we have page with
1679  * multiple blocks we need to write those buffer_heads that are mapped. This
1680  * is important for mmaped based write. So if we do with blocksize 1K
1681  * truncate(f, 1024);
1682  * a = mmap(f, 0, 4096);
1683  * a[0] = 'a';
1684  * truncate(f, 4096);
1685  * we have in the page first buffer_head mapped via page_mkwrite call back
1686  * but other buffer_heads would be unmapped but dirty (dirty done via the
1687  * do_wp_page). So writepage should write the first block. If we modify
1688  * the mmap area beyond 1024 we will again get a page_fault and the
1689  * page_mkwrite callback will do the block allocation and mark the
1690  * buffer_heads mapped.
1691  *
1692  * We redirty the page if we have any buffer_heads that is either delay or
1693  * unwritten in the page.
1694  *
1695  * We can get recursively called as show below.
1696  *
1697  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1698  *              ext4_writepage()
1699  *
1700  * But since we don't do any block allocation we should not deadlock.
1701  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1702  */
1703 static int ext4_writepage(struct page *page,
1704                           struct writeback_control *wbc)
1705 {
1706         int ret = 0;
1707         loff_t size;
1708         unsigned int len;
1709         struct buffer_head *page_bufs = NULL;
1710         struct inode *inode = page->mapping->host;
1711         struct ext4_io_submit io_submit;
1712         bool keep_towrite = false;
1713
1714         trace_ext4_writepage(page);
1715         size = i_size_read(inode);
1716         if (page->index == size >> PAGE_CACHE_SHIFT)
1717                 len = size & ~PAGE_CACHE_MASK;
1718         else
1719                 len = PAGE_CACHE_SIZE;
1720
1721         page_bufs = page_buffers(page);
1722         /*
1723          * We cannot do block allocation or other extent handling in this
1724          * function. If there are buffers needing that, we have to redirty
1725          * the page. But we may reach here when we do a journal commit via
1726          * journal_submit_inode_data_buffers() and in that case we must write
1727          * allocated buffers to achieve data=ordered mode guarantees.
1728          */
1729         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1730                                    ext4_bh_delay_or_unwritten)) {
1731                 redirty_page_for_writepage(wbc, page);
1732                 if (current->flags & PF_MEMALLOC) {
1733                         /*
1734                          * For memory cleaning there's no point in writing only
1735                          * some buffers. So just bail out. Warn if we came here
1736                          * from direct reclaim.
1737                          */
1738                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1739                                                         == PF_MEMALLOC);
1740                         unlock_page(page);
1741                         return 0;
1742                 }
1743                 keep_towrite = true;
1744         }
1745
1746         if (PageChecked(page) && ext4_should_journal_data(inode))
1747                 /*
1748                  * It's mmapped pagecache.  Add buffers and journal it.  There
1749                  * doesn't seem much point in redirtying the page here.
1750                  */
1751                 return __ext4_journalled_writepage(page, len);
1752
1753         ext4_io_submit_init(&io_submit, wbc);
1754         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1755         if (!io_submit.io_end) {
1756                 redirty_page_for_writepage(wbc, page);
1757                 unlock_page(page);
1758                 return -ENOMEM;
1759         }
1760         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1761         ext4_io_submit(&io_submit);
1762         /* Drop io_end reference we got from init */
1763         ext4_put_io_end_defer(io_submit.io_end);
1764         return ret;
1765 }
1766
1767 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1768 {
1769         int len;
1770         loff_t size = i_size_read(mpd->inode);
1771         int err;
1772
1773         BUG_ON(page->index != mpd->first_page);
1774         if (page->index == size >> PAGE_CACHE_SHIFT)
1775                 len = size & ~PAGE_CACHE_MASK;
1776         else
1777                 len = PAGE_CACHE_SIZE;
1778         clear_page_dirty_for_io(page);
1779         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1780         if (!err)
1781                 mpd->wbc->nr_to_write--;
1782         mpd->first_page++;
1783
1784         return err;
1785 }
1786
1787 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1788
1789 /*
1790  * mballoc gives us at most this number of blocks...
1791  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1792  * The rest of mballoc seems to handle chunks up to full group size.
1793  */
1794 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1795
1796 /*
1797  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1798  *
1799  * @mpd - extent of blocks
1800  * @lblk - logical number of the block in the file
1801  * @bh - buffer head we want to add to the extent
1802  *
1803  * The function is used to collect contig. blocks in the same state. If the
1804  * buffer doesn't require mapping for writeback and we haven't started the
1805  * extent of buffers to map yet, the function returns 'true' immediately - the
1806  * caller can write the buffer right away. Otherwise the function returns true
1807  * if the block has been added to the extent, false if the block couldn't be
1808  * added.
1809  */
1810 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1811                                    struct buffer_head *bh)
1812 {
1813         struct ext4_map_blocks *map = &mpd->map;
1814
1815         /* Buffer that doesn't need mapping for writeback? */
1816         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1817             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1818                 /* So far no extent to map => we write the buffer right away */
1819                 if (map->m_len == 0)
1820                         return true;
1821                 return false;
1822         }
1823
1824         /* First block in the extent? */
1825         if (map->m_len == 0) {
1826                 map->m_lblk = lblk;
1827                 map->m_len = 1;
1828                 map->m_flags = bh->b_state & BH_FLAGS;
1829                 return true;
1830         }
1831
1832         /* Don't go larger than mballoc is willing to allocate */
1833         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1834                 return false;
1835
1836         /* Can we merge the block to our big extent? */
1837         if (lblk == map->m_lblk + map->m_len &&
1838             (bh->b_state & BH_FLAGS) == map->m_flags) {
1839                 map->m_len++;
1840                 return true;
1841         }
1842         return false;
1843 }
1844
1845 /*
1846  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1847  *
1848  * @mpd - extent of blocks for mapping
1849  * @head - the first buffer in the page
1850  * @bh - buffer we should start processing from
1851  * @lblk - logical number of the block in the file corresponding to @bh
1852  *
1853  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1854  * the page for IO if all buffers in this page were mapped and there's no
1855  * accumulated extent of buffers to map or add buffers in the page to the
1856  * extent of buffers to map. The function returns 1 if the caller can continue
1857  * by processing the next page, 0 if it should stop adding buffers to the
1858  * extent to map because we cannot extend it anymore. It can also return value
1859  * < 0 in case of error during IO submission.
1860  */
1861 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1862                                    struct buffer_head *head,
1863                                    struct buffer_head *bh,
1864                                    ext4_lblk_t lblk)
1865 {
1866         struct inode *inode = mpd->inode;
1867         int err;
1868         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1869                                                         >> inode->i_blkbits;
1870
1871         do {
1872                 BUG_ON(buffer_locked(bh));
1873
1874                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1875                         /* Found extent to map? */
1876                         if (mpd->map.m_len)
1877                                 return 0;
1878                         /* Everything mapped so far and we hit EOF */
1879                         break;
1880                 }
1881         } while (lblk++, (bh = bh->b_this_page) != head);
1882         /* So far everything mapped? Submit the page for IO. */
1883         if (mpd->map.m_len == 0) {
1884                 err = mpage_submit_page(mpd, head->b_page);
1885                 if (err < 0)
1886                         return err;
1887         }
1888         return lblk < blocks;
1889 }
1890
1891 /*
1892  * mpage_map_buffers - update buffers corresponding to changed extent and
1893  *                     submit fully mapped pages for IO
1894  *
1895  * @mpd - description of extent to map, on return next extent to map
1896  *
1897  * Scan buffers corresponding to changed extent (we expect corresponding pages
1898  * to be already locked) and update buffer state according to new extent state.
1899  * We map delalloc buffers to their physical location, clear unwritten bits,
1900  * and mark buffers as uninit when we perform writes to unwritten extents
1901  * and do extent conversion after IO is finished. If the last page is not fully
1902  * mapped, we update @map to the next extent in the last page that needs
1903  * mapping. Otherwise we submit the page for IO.
1904  */
1905 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1906 {
1907         struct pagevec pvec;
1908         int nr_pages, i;
1909         struct inode *inode = mpd->inode;
1910         struct buffer_head *head, *bh;
1911         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1912         pgoff_t start, end;
1913         ext4_lblk_t lblk;
1914         sector_t pblock;
1915         int err;
1916
1917         start = mpd->map.m_lblk >> bpp_bits;
1918         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1919         lblk = start << bpp_bits;
1920         pblock = mpd->map.m_pblk;
1921
1922         pagevec_init(&pvec, 0);
1923         while (start <= end) {
1924                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1925                                           PAGEVEC_SIZE);
1926                 if (nr_pages == 0)
1927                         break;
1928                 for (i = 0; i < nr_pages; i++) {
1929                         struct page *page = pvec.pages[i];
1930
1931                         if (page->index > end)
1932                                 break;
1933                         /* Up to 'end' pages must be contiguous */
1934                         BUG_ON(page->index != start);
1935                         bh = head = page_buffers(page);
1936                         do {
1937                                 if (lblk < mpd->map.m_lblk)
1938                                         continue;
1939                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1940                                         /*
1941                                          * Buffer after end of mapped extent.
1942                                          * Find next buffer in the page to map.
1943                                          */
1944                                         mpd->map.m_len = 0;
1945                                         mpd->map.m_flags = 0;
1946                                         /*
1947                                          * FIXME: If dioread_nolock supports
1948                                          * blocksize < pagesize, we need to make
1949                                          * sure we add size mapped so far to
1950                                          * io_end->size as the following call
1951                                          * can submit the page for IO.
1952                                          */
1953                                         err = mpage_process_page_bufs(mpd, head,
1954                                                                       bh, lblk);
1955                                         pagevec_release(&pvec);
1956                                         if (err > 0)
1957                                                 err = 0;
1958                                         return err;
1959                                 }
1960                                 if (buffer_delay(bh)) {
1961                                         clear_buffer_delay(bh);
1962                                         bh->b_blocknr = pblock++;
1963                                 }
1964                                 clear_buffer_unwritten(bh);
1965                         } while (lblk++, (bh = bh->b_this_page) != head);
1966
1967                         /*
1968                          * FIXME: This is going to break if dioread_nolock
1969                          * supports blocksize < pagesize as we will try to
1970                          * convert potentially unmapped parts of inode.
1971                          */
1972                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1973                         /* Page fully mapped - let IO run! */
1974                         err = mpage_submit_page(mpd, page);
1975                         if (err < 0) {
1976                                 pagevec_release(&pvec);
1977                                 return err;
1978                         }
1979                         start++;
1980                 }
1981                 pagevec_release(&pvec);
1982         }
1983         /* Extent fully mapped and matches with page boundary. We are done. */
1984         mpd->map.m_len = 0;
1985         mpd->map.m_flags = 0;
1986         return 0;
1987 }
1988
1989 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1990 {
1991         struct inode *inode = mpd->inode;
1992         struct ext4_map_blocks *map = &mpd->map;
1993         int get_blocks_flags;
1994         int err, dioread_nolock;
1995
1996         trace_ext4_da_write_pages_extent(inode, map);
1997         /*
1998          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1999          * to convert an unwritten extent to be initialized (in the case
2000          * where we have written into one or more preallocated blocks).  It is
2001          * possible that we're going to need more metadata blocks than
2002          * previously reserved. However we must not fail because we're in
2003          * writeback and there is nothing we can do about it so it might result
2004          * in data loss.  So use reserved blocks to allocate metadata if
2005          * possible.
2006          *
2007          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2008          * in question are delalloc blocks.  This affects functions in many
2009          * different parts of the allocation call path.  This flag exists
2010          * primarily because we don't want to change *many* call functions, so
2011          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2012          * once the inode's allocation semaphore is taken.
2013          */
2014         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2015                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2016         dioread_nolock = ext4_should_dioread_nolock(inode);
2017         if (dioread_nolock)
2018                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2019         if (map->m_flags & (1 << BH_Delay))
2020                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2021
2022         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2023         if (err < 0)
2024                 return err;
2025         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2026                 if (!mpd->io_submit.io_end->handle &&
2027                     ext4_handle_valid(handle)) {
2028                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2029                         handle->h_rsv_handle = NULL;
2030                 }
2031                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2032         }
2033
2034         BUG_ON(map->m_len == 0);
2035         if (map->m_flags & EXT4_MAP_NEW) {
2036                 struct block_device *bdev = inode->i_sb->s_bdev;
2037                 int i;
2038
2039                 for (i = 0; i < map->m_len; i++)
2040                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2041         }
2042         return 0;
2043 }
2044
2045 /*
2046  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2047  *                               mpd->len and submit pages underlying it for IO
2048  *
2049  * @handle - handle for journal operations
2050  * @mpd - extent to map
2051  * @give_up_on_write - we set this to true iff there is a fatal error and there
2052  *                     is no hope of writing the data. The caller should discard
2053  *                     dirty pages to avoid infinite loops.
2054  *
2055  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2056  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2057  * them to initialized or split the described range from larger unwritten
2058  * extent. Note that we need not map all the described range since allocation
2059  * can return less blocks or the range is covered by more unwritten extents. We
2060  * cannot map more because we are limited by reserved transaction credits. On
2061  * the other hand we always make sure that the last touched page is fully
2062  * mapped so that it can be written out (and thus forward progress is
2063  * guaranteed). After mapping we submit all mapped pages for IO.
2064  */
2065 static int mpage_map_and_submit_extent(handle_t *handle,
2066                                        struct mpage_da_data *mpd,
2067                                        bool *give_up_on_write)
2068 {
2069         struct inode *inode = mpd->inode;
2070         struct ext4_map_blocks *map = &mpd->map;
2071         int err;
2072         loff_t disksize;
2073         int progress = 0;
2074
2075         mpd->io_submit.io_end->offset =
2076                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2077         do {
2078                 err = mpage_map_one_extent(handle, mpd);
2079                 if (err < 0) {
2080                         struct super_block *sb = inode->i_sb;
2081
2082                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2083                                 goto invalidate_dirty_pages;
2084                         /*
2085                          * Let the uper layers retry transient errors.
2086                          * In the case of ENOSPC, if ext4_count_free_blocks()
2087                          * is non-zero, a commit should free up blocks.
2088                          */
2089                         if ((err == -ENOMEM) ||
2090                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2091                                 if (progress)
2092                                         goto update_disksize;
2093                                 return err;
2094                         }
2095                         ext4_msg(sb, KERN_CRIT,
2096                                  "Delayed block allocation failed for "
2097                                  "inode %lu at logical offset %llu with"
2098                                  " max blocks %u with error %d",
2099                                  inode->i_ino,
2100                                  (unsigned long long)map->m_lblk,
2101                                  (unsigned)map->m_len, -err);
2102                         ext4_msg(sb, KERN_CRIT,
2103                                  "This should not happen!! Data will "
2104                                  "be lost\n");
2105                         if (err == -ENOSPC)
2106                                 ext4_print_free_blocks(inode);
2107                 invalidate_dirty_pages:
2108                         *give_up_on_write = true;
2109                         return err;
2110                 }
2111                 progress = 1;
2112                 /*
2113                  * Update buffer state, submit mapped pages, and get us new
2114                  * extent to map
2115                  */
2116                 err = mpage_map_and_submit_buffers(mpd);
2117                 if (err < 0)
2118                         goto update_disksize;
2119         } while (map->m_len);
2120
2121 update_disksize:
2122         /*
2123          * Update on-disk size after IO is submitted.  Races with
2124          * truncate are avoided by checking i_size under i_data_sem.
2125          */
2126         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2127         if (disksize > EXT4_I(inode)->i_disksize) {
2128                 int err2;
2129                 loff_t i_size;
2130
2131                 down_write(&EXT4_I(inode)->i_data_sem);
2132                 i_size = i_size_read(inode);
2133                 if (disksize > i_size)
2134                         disksize = i_size;
2135                 if (disksize > EXT4_I(inode)->i_disksize)
2136                         EXT4_I(inode)->i_disksize = disksize;
2137                 err2 = ext4_mark_inode_dirty(handle, inode);
2138                 up_write(&EXT4_I(inode)->i_data_sem);
2139                 if (err2)
2140                         ext4_error(inode->i_sb,
2141                                    "Failed to mark inode %lu dirty",
2142                                    inode->i_ino);
2143                 if (!err)
2144                         err = err2;
2145         }
2146         return err;
2147 }
2148
2149 /*
2150  * Calculate the total number of credits to reserve for one writepages
2151  * iteration. This is called from ext4_writepages(). We map an extent of
2152  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2153  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2154  * bpp - 1 blocks in bpp different extents.
2155  */
2156 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2157 {
2158         int bpp = ext4_journal_blocks_per_page(inode);
2159
2160         return ext4_meta_trans_blocks(inode,
2161                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2162 }
2163
2164 /*
2165  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2166  *                               and underlying extent to map
2167  *
2168  * @mpd - where to look for pages
2169  *
2170  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2171  * IO immediately. When we find a page which isn't mapped we start accumulating
2172  * extent of buffers underlying these pages that needs mapping (formed by
2173  * either delayed or unwritten buffers). We also lock the pages containing
2174  * these buffers. The extent found is returned in @mpd structure (starting at
2175  * mpd->lblk with length mpd->len blocks).
2176  *
2177  * Note that this function can attach bios to one io_end structure which are
2178  * neither logically nor physically contiguous. Although it may seem as an
2179  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2180  * case as we need to track IO to all buffers underlying a page in one io_end.
2181  */
2182 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2183 {
2184         struct address_space *mapping = mpd->inode->i_mapping;
2185         struct pagevec pvec;
2186         unsigned int nr_pages;
2187         long left = mpd->wbc->nr_to_write;
2188         pgoff_t index = mpd->first_page;
2189         pgoff_t end = mpd->last_page;
2190         int tag;
2191         int i, err = 0;
2192         int blkbits = mpd->inode->i_blkbits;
2193         ext4_lblk_t lblk;
2194         struct buffer_head *head;
2195
2196         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2197                 tag = PAGECACHE_TAG_TOWRITE;
2198         else
2199                 tag = PAGECACHE_TAG_DIRTY;
2200
2201         pagevec_init(&pvec, 0);
2202         mpd->map.m_len = 0;
2203         mpd->next_page = index;
2204         while (index <= end) {
2205                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2206                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2207                 if (nr_pages == 0)
2208                         goto out;
2209
2210                 for (i = 0; i < nr_pages; i++) {
2211                         struct page *page = pvec.pages[i];
2212
2213                         /*
2214                          * At this point, the page may be truncated or
2215                          * invalidated (changing page->mapping to NULL), or
2216                          * even swizzled back from swapper_space to tmpfs file
2217                          * mapping. However, page->index will not change
2218                          * because we have a reference on the page.
2219                          */
2220                         if (page->index > end)
2221                                 goto out;
2222
2223                         /*
2224                          * Accumulated enough dirty pages? This doesn't apply
2225                          * to WB_SYNC_ALL mode. For integrity sync we have to
2226                          * keep going because someone may be concurrently
2227                          * dirtying pages, and we might have synced a lot of
2228                          * newly appeared dirty pages, but have not synced all
2229                          * of the old dirty pages.
2230                          */
2231                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2232                                 goto out;
2233
2234                         /* If we can't merge this page, we are done. */
2235                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2236                                 goto out;
2237
2238                         lock_page(page);
2239                         /*
2240                          * If the page is no longer dirty, or its mapping no
2241                          * longer corresponds to inode we are writing (which
2242                          * means it has been truncated or invalidated), or the
2243                          * page is already under writeback and we are not doing
2244                          * a data integrity writeback, skip the page
2245                          */
2246                         if (!PageDirty(page) ||
2247                             (PageWriteback(page) &&
2248                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2249                             unlikely(page->mapping != mapping)) {
2250                                 unlock_page(page);
2251                                 continue;
2252                         }
2253
2254                         wait_on_page_writeback(page);
2255                         BUG_ON(PageWriteback(page));
2256
2257                         if (mpd->map.m_len == 0)
2258                                 mpd->first_page = page->index;
2259                         mpd->next_page = page->index + 1;
2260                         /* Add all dirty buffers to mpd */
2261                         lblk = ((ext4_lblk_t)page->index) <<
2262                                 (PAGE_CACHE_SHIFT - blkbits);
2263                         head = page_buffers(page);
2264                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2265                         if (err <= 0)
2266                                 goto out;
2267                         err = 0;
2268                         left--;
2269                 }
2270                 pagevec_release(&pvec);
2271                 cond_resched();
2272         }
2273         return 0;
2274 out:
2275         pagevec_release(&pvec);
2276         return err;
2277 }
2278
2279 static int __writepage(struct page *page, struct writeback_control *wbc,
2280                        void *data)
2281 {
2282         struct address_space *mapping = data;
2283         int ret = ext4_writepage(page, wbc);
2284         mapping_set_error(mapping, ret);
2285         return ret;
2286 }
2287
2288 static int ext4_writepages(struct address_space *mapping,
2289                            struct writeback_control *wbc)
2290 {
2291         pgoff_t writeback_index = 0;
2292         long nr_to_write = wbc->nr_to_write;
2293         int range_whole = 0;
2294         int cycled = 1;
2295         handle_t *handle = NULL;
2296         struct mpage_da_data mpd;
2297         struct inode *inode = mapping->host;
2298         int needed_blocks, rsv_blocks = 0, ret = 0;
2299         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2300         bool done;
2301         struct blk_plug plug;
2302         bool give_up_on_write = false;
2303
2304         trace_ext4_writepages(inode, wbc);
2305
2306         /*
2307          * No pages to write? This is mainly a kludge to avoid starting
2308          * a transaction for special inodes like journal inode on last iput()
2309          * because that could violate lock ordering on umount
2310          */
2311         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2312                 goto out_writepages;
2313
2314         if (ext4_should_journal_data(inode)) {
2315                 struct blk_plug plug;
2316
2317                 blk_start_plug(&plug);
2318                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2319                 blk_finish_plug(&plug);
2320                 goto out_writepages;
2321         }
2322
2323         /*
2324          * If the filesystem has aborted, it is read-only, so return
2325          * right away instead of dumping stack traces later on that
2326          * will obscure the real source of the problem.  We test
2327          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2328          * the latter could be true if the filesystem is mounted
2329          * read-only, and in that case, ext4_writepages should
2330          * *never* be called, so if that ever happens, we would want
2331          * the stack trace.
2332          */
2333         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2334                 ret = -EROFS;
2335                 goto out_writepages;
2336         }
2337
2338         if (ext4_should_dioread_nolock(inode)) {
2339                 /*
2340                  * We may need to convert up to one extent per block in
2341                  * the page and we may dirty the inode.
2342                  */
2343                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2344         }
2345
2346         /*
2347          * If we have inline data and arrive here, it means that
2348          * we will soon create the block for the 1st page, so
2349          * we'd better clear the inline data here.
2350          */
2351         if (ext4_has_inline_data(inode)) {
2352                 /* Just inode will be modified... */
2353                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2354                 if (IS_ERR(handle)) {
2355                         ret = PTR_ERR(handle);
2356                         goto out_writepages;
2357                 }
2358                 BUG_ON(ext4_test_inode_state(inode,
2359                                 EXT4_STATE_MAY_INLINE_DATA));
2360                 ext4_destroy_inline_data(handle, inode);
2361                 ext4_journal_stop(handle);
2362         }
2363
2364         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2365                 range_whole = 1;
2366
2367         if (wbc->range_cyclic) {
2368                 writeback_index = mapping->writeback_index;
2369                 if (writeback_index)
2370                         cycled = 0;
2371                 mpd.first_page = writeback_index;
2372                 mpd.last_page = -1;
2373         } else {
2374                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2375                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2376         }
2377
2378         mpd.inode = inode;
2379         mpd.wbc = wbc;
2380         ext4_io_submit_init(&mpd.io_submit, wbc);
2381 retry:
2382         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2383                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2384         done = false;
2385         blk_start_plug(&plug);
2386         while (!done && mpd.first_page <= mpd.last_page) {
2387                 /* For each extent of pages we use new io_end */
2388                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2389                 if (!mpd.io_submit.io_end) {
2390                         ret = -ENOMEM;
2391                         break;
2392                 }
2393
2394                 /*
2395                  * We have two constraints: We find one extent to map and we
2396                  * must always write out whole page (makes a difference when
2397                  * blocksize < pagesize) so that we don't block on IO when we
2398                  * try to write out the rest of the page. Journalled mode is
2399                  * not supported by delalloc.
2400                  */
2401                 BUG_ON(ext4_should_journal_data(inode));
2402                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2403
2404                 /* start a new transaction */
2405                 handle = ext4_journal_start_with_reserve(inode,
2406                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2407                 if (IS_ERR(handle)) {
2408                         ret = PTR_ERR(handle);
2409                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2410                                "%ld pages, ino %lu; err %d", __func__,
2411                                 wbc->nr_to_write, inode->i_ino, ret);
2412                         /* Release allocated io_end */
2413                         ext4_put_io_end(mpd.io_submit.io_end);
2414                         break;
2415                 }
2416
2417                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2418                 ret = mpage_prepare_extent_to_map(&mpd);
2419                 if (!ret) {
2420                         if (mpd.map.m_len)
2421                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2422                                         &give_up_on_write);
2423                         else {
2424                                 /*
2425                                  * We scanned the whole range (or exhausted
2426                                  * nr_to_write), submitted what was mapped and
2427                                  * didn't find anything needing mapping. We are
2428                                  * done.
2429                                  */
2430                                 done = true;
2431                         }
2432                 }
2433                 ext4_journal_stop(handle);
2434                 /* Submit prepared bio */
2435                 ext4_io_submit(&mpd.io_submit);
2436                 /* Unlock pages we didn't use */
2437                 mpage_release_unused_pages(&mpd, give_up_on_write);
2438                 /* Drop our io_end reference we got from init */
2439                 ext4_put_io_end(mpd.io_submit.io_end);
2440
2441                 if (ret == -ENOSPC && sbi->s_journal) {
2442                         /*
2443                          * Commit the transaction which would
2444                          * free blocks released in the transaction
2445                          * and try again
2446                          */
2447                         jbd2_journal_force_commit_nested(sbi->s_journal);
2448                         ret = 0;
2449                         continue;
2450                 }
2451                 /* Fatal error - ENOMEM, EIO... */
2452                 if (ret)
2453                         break;
2454         }
2455         blk_finish_plug(&plug);
2456         if (!ret && !cycled && wbc->nr_to_write > 0) {
2457                 cycled = 1;
2458                 mpd.last_page = writeback_index - 1;
2459                 mpd.first_page = 0;
2460                 goto retry;
2461         }
2462
2463         /* Update index */
2464         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2465                 /*
2466                  * Set the writeback_index so that range_cyclic
2467                  * mode will write it back later
2468                  */
2469                 mapping->writeback_index = mpd.first_page;
2470
2471 out_writepages:
2472         trace_ext4_writepages_result(inode, wbc, ret,
2473                                      nr_to_write - wbc->nr_to_write);
2474         return ret;
2475 }
2476
2477 static int ext4_nonda_switch(struct super_block *sb)
2478 {
2479         s64 free_clusters, dirty_clusters;
2480         struct ext4_sb_info *sbi = EXT4_SB(sb);
2481
2482         /*
2483          * switch to non delalloc mode if we are running low
2484          * on free block. The free block accounting via percpu
2485          * counters can get slightly wrong with percpu_counter_batch getting
2486          * accumulated on each CPU without updating global counters
2487          * Delalloc need an accurate free block accounting. So switch
2488          * to non delalloc when we are near to error range.
2489          */
2490         free_clusters =
2491                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2492         dirty_clusters =
2493                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2494         /*
2495          * Start pushing delalloc when 1/2 of free blocks are dirty.
2496          */
2497         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2498                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2499
2500         if (2 * free_clusters < 3 * dirty_clusters ||
2501             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2502                 /*
2503                  * free block count is less than 150% of dirty blocks
2504                  * or free blocks is less than watermark
2505                  */
2506                 return 1;
2507         }
2508         return 0;
2509 }
2510
2511 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2512                                loff_t pos, unsigned len, unsigned flags,
2513                                struct page **pagep, void **fsdata)
2514 {
2515         int ret, retries = 0;
2516         struct page *page;
2517         pgoff_t index;
2518         struct inode *inode = mapping->host;
2519         handle_t *handle;
2520
2521         index = pos >> PAGE_CACHE_SHIFT;
2522
2523         if (ext4_nonda_switch(inode->i_sb)) {
2524                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2525                 return ext4_write_begin(file, mapping, pos,
2526                                         len, flags, pagep, fsdata);
2527         }
2528         *fsdata = (void *)0;
2529         trace_ext4_da_write_begin(inode, pos, len, flags);
2530
2531         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2532                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2533                                                       pos, len, flags,
2534                                                       pagep, fsdata);
2535                 if (ret < 0)
2536                         return ret;
2537                 if (ret == 1)
2538                         return 0;
2539         }
2540
2541         /*
2542          * grab_cache_page_write_begin() can take a long time if the
2543          * system is thrashing due to memory pressure, or if the page
2544          * is being written back.  So grab it first before we start
2545          * the transaction handle.  This also allows us to allocate
2546          * the page (if needed) without using GFP_NOFS.
2547          */
2548 retry_grab:
2549         page = grab_cache_page_write_begin(mapping, index, flags);
2550         if (!page)
2551                 return -ENOMEM;
2552         unlock_page(page);
2553
2554         /*
2555          * With delayed allocation, we don't log the i_disksize update
2556          * if there is delayed block allocation. But we still need
2557          * to journalling the i_disksize update if writes to the end
2558          * of file which has an already mapped buffer.
2559          */
2560 retry_journal:
2561         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2562         if (IS_ERR(handle)) {
2563                 page_cache_release(page);
2564                 return PTR_ERR(handle);
2565         }
2566
2567         lock_page(page);
2568         if (page->mapping != mapping) {
2569                 /* The page got truncated from under us */
2570                 unlock_page(page);
2571                 page_cache_release(page);
2572                 ext4_journal_stop(handle);
2573                 goto retry_grab;
2574         }
2575         /* In case writeback began while the page was unlocked */
2576         wait_for_stable_page(page);
2577
2578         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2579         if (ret < 0) {
2580                 unlock_page(page);
2581                 ext4_journal_stop(handle);
2582                 /*
2583                  * block_write_begin may have instantiated a few blocks
2584                  * outside i_size.  Trim these off again. Don't need
2585                  * i_size_read because we hold i_mutex.
2586                  */
2587                 if (pos + len > inode->i_size)
2588                         ext4_truncate_failed_write(inode);
2589
2590                 if (ret == -ENOSPC &&
2591                     ext4_should_retry_alloc(inode->i_sb, &retries))
2592                         goto retry_journal;
2593
2594                 page_cache_release(page);
2595                 return ret;
2596         }
2597
2598         *pagep = page;
2599         return ret;
2600 }
2601
2602 /*
2603  * Check if we should update i_disksize
2604  * when write to the end of file but not require block allocation
2605  */
2606 static int ext4_da_should_update_i_disksize(struct page *page,
2607                                             unsigned long offset)
2608 {
2609         struct buffer_head *bh;
2610         struct inode *inode = page->mapping->host;
2611         unsigned int idx;
2612         int i;
2613
2614         bh = page_buffers(page);
2615         idx = offset >> inode->i_blkbits;
2616
2617         for (i = 0; i < idx; i++)
2618                 bh = bh->b_this_page;
2619
2620         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2621                 return 0;
2622         return 1;
2623 }
2624
2625 static int ext4_da_write_end(struct file *file,
2626                              struct address_space *mapping,
2627                              loff_t pos, unsigned len, unsigned copied,
2628                              struct page *page, void *fsdata)
2629 {
2630         struct inode *inode = mapping->host;
2631         int ret = 0, ret2;
2632         handle_t *handle = ext4_journal_current_handle();
2633         loff_t new_i_size;
2634         unsigned long start, end;
2635         int write_mode = (int)(unsigned long)fsdata;
2636
2637         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2638                 return ext4_write_end(file, mapping, pos,
2639                                       len, copied, page, fsdata);
2640
2641         trace_ext4_da_write_end(inode, pos, len, copied);
2642         start = pos & (PAGE_CACHE_SIZE - 1);
2643         end = start + copied - 1;
2644
2645         /*
2646          * generic_write_end() will run mark_inode_dirty() if i_size
2647          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2648          * into that.
2649          */
2650         new_i_size = pos + copied;
2651         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2652                 if (ext4_has_inline_data(inode) ||
2653                     ext4_da_should_update_i_disksize(page, end)) {
2654                         ext4_update_i_disksize(inode, new_i_size);
2655                         /* We need to mark inode dirty even if
2656                          * new_i_size is less that inode->i_size
2657                          * bu greater than i_disksize.(hint delalloc)
2658                          */
2659                         ext4_mark_inode_dirty(handle, inode);
2660                 }
2661         }
2662
2663         if (write_mode != CONVERT_INLINE_DATA &&
2664             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2665             ext4_has_inline_data(inode))
2666                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2667                                                      page);
2668         else
2669                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2670                                                         page, fsdata);
2671
2672         copied = ret2;
2673         if (ret2 < 0)
2674                 ret = ret2;
2675         ret2 = ext4_journal_stop(handle);
2676         if (!ret)
2677                 ret = ret2;
2678
2679         return ret ? ret : copied;
2680 }
2681
2682 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2683                                    unsigned int length)
2684 {
2685         /*
2686          * Drop reserved blocks
2687          */
2688         BUG_ON(!PageLocked(page));
2689         if (!page_has_buffers(page))
2690                 goto out;
2691
2692         ext4_da_page_release_reservation(page, offset, length);
2693
2694 out:
2695         ext4_invalidatepage(page, offset, length);
2696
2697         return;
2698 }
2699
2700 /*
2701  * Force all delayed allocation blocks to be allocated for a given inode.
2702  */
2703 int ext4_alloc_da_blocks(struct inode *inode)
2704 {
2705         trace_ext4_alloc_da_blocks(inode);
2706
2707         if (!EXT4_I(inode)->i_reserved_data_blocks)
2708                 return 0;
2709
2710         /*
2711          * We do something simple for now.  The filemap_flush() will
2712          * also start triggering a write of the data blocks, which is
2713          * not strictly speaking necessary (and for users of
2714          * laptop_mode, not even desirable).  However, to do otherwise
2715          * would require replicating code paths in:
2716          *
2717          * ext4_writepages() ->
2718          *    write_cache_pages() ---> (via passed in callback function)
2719          *        __mpage_da_writepage() -->
2720          *           mpage_add_bh_to_extent()
2721          *           mpage_da_map_blocks()
2722          *
2723          * The problem is that write_cache_pages(), located in
2724          * mm/page-writeback.c, marks pages clean in preparation for
2725          * doing I/O, which is not desirable if we're not planning on
2726          * doing I/O at all.
2727          *
2728          * We could call write_cache_pages(), and then redirty all of
2729          * the pages by calling redirty_page_for_writepage() but that
2730          * would be ugly in the extreme.  So instead we would need to
2731          * replicate parts of the code in the above functions,
2732          * simplifying them because we wouldn't actually intend to
2733          * write out the pages, but rather only collect contiguous
2734          * logical block extents, call the multi-block allocator, and
2735          * then update the buffer heads with the block allocations.
2736          *
2737          * For now, though, we'll cheat by calling filemap_flush(),
2738          * which will map the blocks, and start the I/O, but not
2739          * actually wait for the I/O to complete.
2740          */
2741         return filemap_flush(inode->i_mapping);
2742 }
2743
2744 /*
2745  * bmap() is special.  It gets used by applications such as lilo and by
2746  * the swapper to find the on-disk block of a specific piece of data.
2747  *
2748  * Naturally, this is dangerous if the block concerned is still in the
2749  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2750  * filesystem and enables swap, then they may get a nasty shock when the
2751  * data getting swapped to that swapfile suddenly gets overwritten by
2752  * the original zero's written out previously to the journal and
2753  * awaiting writeback in the kernel's buffer cache.
2754  *
2755  * So, if we see any bmap calls here on a modified, data-journaled file,
2756  * take extra steps to flush any blocks which might be in the cache.
2757  */
2758 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2759 {
2760         struct inode *inode = mapping->host;
2761         journal_t *journal;
2762         int err;
2763
2764         /*
2765          * We can get here for an inline file via the FIBMAP ioctl
2766          */
2767         if (ext4_has_inline_data(inode))
2768                 return 0;
2769
2770         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2771                         test_opt(inode->i_sb, DELALLOC)) {
2772                 /*
2773                  * With delalloc we want to sync the file
2774                  * so that we can make sure we allocate
2775                  * blocks for file
2776                  */
2777                 filemap_write_and_wait(mapping);
2778         }
2779
2780         if (EXT4_JOURNAL(inode) &&
2781             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2782                 /*
2783                  * This is a REALLY heavyweight approach, but the use of
2784                  * bmap on dirty files is expected to be extremely rare:
2785                  * only if we run lilo or swapon on a freshly made file
2786                  * do we expect this to happen.
2787                  *
2788                  * (bmap requires CAP_SYS_RAWIO so this does not
2789                  * represent an unprivileged user DOS attack --- we'd be
2790                  * in trouble if mortal users could trigger this path at
2791                  * will.)
2792                  *
2793                  * NB. EXT4_STATE_JDATA is not set on files other than
2794                  * regular files.  If somebody wants to bmap a directory
2795                  * or symlink and gets confused because the buffer
2796                  * hasn't yet been flushed to disk, they deserve
2797                  * everything they get.
2798                  */
2799
2800                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2801                 journal = EXT4_JOURNAL(inode);
2802                 jbd2_journal_lock_updates(journal);
2803                 err = jbd2_journal_flush(journal);
2804                 jbd2_journal_unlock_updates(journal);
2805
2806                 if (err)
2807                         return 0;
2808         }
2809
2810         return generic_block_bmap(mapping, block, ext4_get_block);
2811 }
2812
2813 static int ext4_readpage(struct file *file, struct page *page)
2814 {
2815         int ret = -EAGAIN;
2816         struct inode *inode = page->mapping->host;
2817
2818         trace_ext4_readpage(page);
2819
2820         if (ext4_has_inline_data(inode))
2821                 ret = ext4_readpage_inline(inode, page);
2822
2823         if (ret == -EAGAIN)
2824                 return mpage_readpage(page, ext4_get_block);
2825
2826         return ret;
2827 }
2828
2829 static int
2830 ext4_readpages(struct file *file, struct address_space *mapping,
2831                 struct list_head *pages, unsigned nr_pages)
2832 {
2833         struct inode *inode = mapping->host;
2834
2835         /* If the file has inline data, no need to do readpages. */
2836         if (ext4_has_inline_data(inode))
2837                 return 0;
2838
2839         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2840 }
2841
2842 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2843                                 unsigned int length)
2844 {
2845         trace_ext4_invalidatepage(page, offset, length);
2846
2847         /* No journalling happens on data buffers when this function is used */
2848         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2849
2850         block_invalidatepage(page, offset, length);
2851 }
2852
2853 static int __ext4_journalled_invalidatepage(struct page *page,
2854                                             unsigned int offset,
2855                                             unsigned int length)
2856 {
2857         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2858
2859         trace_ext4_journalled_invalidatepage(page, offset, length);
2860
2861         /*
2862          * If it's a full truncate we just forget about the pending dirtying
2863          */
2864         if (offset == 0 && length == PAGE_CACHE_SIZE)
2865                 ClearPageChecked(page);
2866
2867         return jbd2_journal_invalidatepage(journal, page, offset, length);
2868 }
2869
2870 /* Wrapper for aops... */
2871 static void ext4_journalled_invalidatepage(struct page *page,
2872                                            unsigned int offset,
2873                                            unsigned int length)
2874 {
2875         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2876 }
2877
2878 static int ext4_releasepage(struct page *page, gfp_t wait)
2879 {
2880         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2881
2882         trace_ext4_releasepage(page);
2883
2884         /* Page has dirty journalled data -> cannot release */
2885         if (PageChecked(page))
2886                 return 0;
2887         if (journal)
2888                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2889         else
2890                 return try_to_free_buffers(page);
2891 }
2892
2893 /*
2894  * ext4_get_block used when preparing for a DIO write or buffer write.
2895  * We allocate an uinitialized extent if blocks haven't been allocated.
2896  * The extent will be converted to initialized after the IO is complete.
2897  */
2898 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2899                    struct buffer_head *bh_result, int create)
2900 {
2901         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2902                    inode->i_ino, create);
2903         return _ext4_get_block(inode, iblock, bh_result,
2904                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2905 }
2906
2907 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2908                    struct buffer_head *bh_result, int create)
2909 {
2910         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2911                    inode->i_ino, create);
2912         return _ext4_get_block(inode, iblock, bh_result,
2913                                EXT4_GET_BLOCKS_NO_LOCK);
2914 }
2915
2916 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2917                             ssize_t size, void *private)
2918 {
2919         ext4_io_end_t *io_end = iocb->private;
2920
2921         /* if not async direct IO just return */
2922         if (!io_end)
2923                 return;
2924
2925         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2926                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2927                   iocb->private, io_end->inode->i_ino, iocb, offset,
2928                   size);
2929
2930         iocb->private = NULL;
2931         io_end->offset = offset;
2932         io_end->size = size;
2933         ext4_put_io_end(io_end);
2934 }
2935
2936 /*
2937  * For ext4 extent files, ext4 will do direct-io write to holes,
2938  * preallocated extents, and those write extend the file, no need to
2939  * fall back to buffered IO.
2940  *
2941  * For holes, we fallocate those blocks, mark them as unwritten
2942  * If those blocks were preallocated, we mark sure they are split, but
2943  * still keep the range to write as unwritten.
2944  *
2945  * The unwritten extents will be converted to written when DIO is completed.
2946  * For async direct IO, since the IO may still pending when return, we
2947  * set up an end_io call back function, which will do the conversion
2948  * when async direct IO completed.
2949  *
2950  * If the O_DIRECT write will extend the file then add this inode to the
2951  * orphan list.  So recovery will truncate it back to the original size
2952  * if the machine crashes during the write.
2953  *
2954  */
2955 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2956                               struct iov_iter *iter, loff_t offset)
2957 {
2958         struct file *file = iocb->ki_filp;
2959         struct inode *inode = file->f_mapping->host;
2960         ssize_t ret;
2961         size_t count = iov_iter_count(iter);
2962         int overwrite = 0;
2963         get_block_t *get_block_func = NULL;
2964         int dio_flags = 0;
2965         loff_t final_size = offset + count;
2966         ext4_io_end_t *io_end = NULL;
2967
2968         /* Use the old path for reads and writes beyond i_size. */
2969         if (rw != WRITE || final_size > inode->i_size)
2970                 return ext4_ind_direct_IO(rw, iocb, iter, offset);
2971
2972         BUG_ON(iocb->private == NULL);
2973
2974         /*
2975          * Make all waiters for direct IO properly wait also for extent
2976          * conversion. This also disallows race between truncate() and
2977          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2978          */
2979         if (rw == WRITE)
2980                 atomic_inc(&inode->i_dio_count);
2981
2982         /* If we do a overwrite dio, i_mutex locking can be released */
2983         overwrite = *((int *)iocb->private);
2984
2985         if (overwrite) {
2986                 down_read(&EXT4_I(inode)->i_data_sem);
2987                 mutex_unlock(&inode->i_mutex);
2988         }
2989
2990         /*
2991          * We could direct write to holes and fallocate.
2992          *
2993          * Allocated blocks to fill the hole are marked as
2994          * unwritten to prevent parallel buffered read to expose
2995          * the stale data before DIO complete the data IO.
2996          *
2997          * As to previously fallocated extents, ext4 get_block will
2998          * just simply mark the buffer mapped but still keep the
2999          * extents unwritten.
3000          *
3001          * For non AIO case, we will convert those unwritten extents
3002          * to written after return back from blockdev_direct_IO.
3003          *
3004          * For async DIO, the conversion needs to be deferred when the
3005          * IO is completed. The ext4 end_io callback function will be
3006          * called to take care of the conversion work.  Here for async
3007          * case, we allocate an io_end structure to hook to the iocb.
3008          */
3009         iocb->private = NULL;
3010         ext4_inode_aio_set(inode, NULL);
3011         if (!is_sync_kiocb(iocb)) {
3012                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3013                 if (!io_end) {
3014                         ret = -ENOMEM;
3015                         goto retake_lock;
3016                 }
3017                 /*
3018                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3019                  */
3020                 iocb->private = ext4_get_io_end(io_end);
3021                 /*
3022                  * we save the io structure for current async direct
3023                  * IO, so that later ext4_map_blocks() could flag the
3024                  * io structure whether there is a unwritten extents
3025                  * needs to be converted when IO is completed.
3026                  */
3027                 ext4_inode_aio_set(inode, io_end);
3028         }
3029
3030         if (overwrite) {
3031                 get_block_func = ext4_get_block_write_nolock;
3032         } else {
3033                 get_block_func = ext4_get_block_write;
3034                 dio_flags = DIO_LOCKING;
3035         }
3036         ret = __blockdev_direct_IO(rw, iocb, inode,
3037                                    inode->i_sb->s_bdev, iter,
3038                                    offset,
3039                                    get_block_func,
3040                                    ext4_end_io_dio,
3041                                    NULL,
3042                                    dio_flags);
3043
3044         /*
3045          * Put our reference to io_end. This can free the io_end structure e.g.
3046          * in sync IO case or in case of error. It can even perform extent
3047          * conversion if all bios we submitted finished before we got here.
3048          * Note that in that case iocb->private can be already set to NULL
3049          * here.
3050          */
3051         if (io_end) {
3052                 ext4_inode_aio_set(inode, NULL);
3053                 ext4_put_io_end(io_end);
3054                 /*
3055                  * When no IO was submitted ext4_end_io_dio() was not
3056                  * called so we have to put iocb's reference.
3057                  */
3058                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3059                         WARN_ON(iocb->private != io_end);
3060                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3061                         ext4_put_io_end(io_end);
3062                         iocb->private = NULL;
3063                 }
3064         }
3065         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3066                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3067                 int err;
3068                 /*
3069                  * for non AIO case, since the IO is already
3070                  * completed, we could do the conversion right here
3071                  */
3072                 err = ext4_convert_unwritten_extents(NULL, inode,
3073                                                      offset, ret);
3074                 if (err < 0)
3075                         ret = err;
3076                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3077         }
3078
3079 retake_lock:
3080         if (rw == WRITE)
3081                 inode_dio_done(inode);
3082         /* take i_mutex locking again if we do a ovewrite dio */
3083         if (overwrite) {
3084                 up_read(&EXT4_I(inode)->i_data_sem);
3085                 mutex_lock(&inode->i_mutex);
3086         }
3087
3088         return ret;
3089 }
3090
3091 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3092                               struct iov_iter *iter, loff_t offset)
3093 {
3094         struct file *file = iocb->ki_filp;
3095         struct inode *inode = file->f_mapping->host;
3096         size_t count = iov_iter_count(iter);
3097         ssize_t ret;
3098
3099         /*
3100          * If we are doing data journalling we don't support O_DIRECT
3101          */
3102         if (ext4_should_journal_data(inode))
3103                 return 0;
3104
3105         /* Let buffer I/O handle the inline data case. */
3106         if (ext4_has_inline_data(inode))
3107                 return 0;
3108
3109         trace_ext4_direct_IO_enter(inode, offset, count, rw);
3110         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3111                 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3112         else
3113                 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3114         trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3115         return ret;
3116 }
3117
3118 /*
3119  * Pages can be marked dirty completely asynchronously from ext4's journalling
3120  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3121  * much here because ->set_page_dirty is called under VFS locks.  The page is
3122  * not necessarily locked.
3123  *
3124  * We cannot just dirty the page and leave attached buffers clean, because the
3125  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3126  * or jbddirty because all the journalling code will explode.
3127  *
3128  * So what we do is to mark the page "pending dirty" and next time writepage
3129  * is called, propagate that into the buffers appropriately.
3130  */
3131 static int ext4_journalled_set_page_dirty(struct page *page)
3132 {
3133         SetPageChecked(page);
3134         return __set_page_dirty_nobuffers(page);
3135 }
3136
3137 static const struct address_space_operations ext4_aops = {
3138         .readpage               = ext4_readpage,
3139         .readpages              = ext4_readpages,
3140         .writepage              = ext4_writepage,
3141         .writepages             = ext4_writepages,
3142         .write_begin            = ext4_write_begin,
3143         .write_end              = ext4_write_end,
3144         .bmap                   = ext4_bmap,
3145         .invalidatepage         = ext4_invalidatepage,
3146         .releasepage            = ext4_releasepage,
3147         .direct_IO              = ext4_direct_IO,
3148         .migratepage            = buffer_migrate_page,
3149         .is_partially_uptodate  = block_is_partially_uptodate,
3150         .error_remove_page      = generic_error_remove_page,
3151 };
3152
3153 static const struct address_space_operations ext4_journalled_aops = {
3154         .readpage               = ext4_readpage,
3155         .readpages              = ext4_readpages,
3156         .writepage              = ext4_writepage,
3157         .writepages             = ext4_writepages,
3158         .write_begin            = ext4_write_begin,
3159         .write_end              = ext4_journalled_write_end,
3160         .set_page_dirty         = ext4_journalled_set_page_dirty,
3161         .bmap                   = ext4_bmap,
3162         .invalidatepage         = ext4_journalled_invalidatepage,
3163         .releasepage            = ext4_releasepage,
3164         .direct_IO              = ext4_direct_IO,
3165         .is_partially_uptodate  = block_is_partially_uptodate,
3166         .error_remove_page      = generic_error_remove_page,
3167 };
3168
3169 static const struct address_space_operations ext4_da_aops = {
3170         .readpage               = ext4_readpage,
3171         .readpages              = ext4_readpages,
3172         .writepage              = ext4_writepage,
3173         .writepages             = ext4_writepages,
3174         .write_begin            = ext4_da_write_begin,
3175         .write_end              = ext4_da_write_end,
3176         .bmap                   = ext4_bmap,
3177         .invalidatepage         = ext4_da_invalidatepage,
3178         .releasepage            = ext4_releasepage,
3179         .direct_IO              = ext4_direct_IO,
3180         .migratepage            = buffer_migrate_page,
3181         .is_partially_uptodate  = block_is_partially_uptodate,
3182         .error_remove_page      = generic_error_remove_page,
3183 };
3184
3185 void ext4_set_aops(struct inode *inode)
3186 {
3187         switch (ext4_inode_journal_mode(inode)) {
3188         case EXT4_INODE_ORDERED_DATA_MODE:
3189                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3190                 break;
3191         case EXT4_INODE_WRITEBACK_DATA_MODE:
3192                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3193                 break;
3194         case EXT4_INODE_JOURNAL_DATA_MODE:
3195                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3196                 return;
3197         default:
3198                 BUG();
3199         }
3200         if (test_opt(inode->i_sb, DELALLOC))
3201                 inode->i_mapping->a_ops = &ext4_da_aops;
3202         else
3203                 inode->i_mapping->a_ops = &ext4_aops;
3204 }
3205
3206 /*
3207  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3208  * starting from file offset 'from'.  The range to be zero'd must
3209  * be contained with in one block.  If the specified range exceeds
3210  * the end of the block it will be shortened to end of the block
3211  * that cooresponds to 'from'
3212  */
3213 static int ext4_block_zero_page_range(handle_t *handle,
3214                 struct address_space *mapping, loff_t from, loff_t length)
3215 {
3216         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3217         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3218         unsigned blocksize, max, pos;
3219         ext4_lblk_t iblock;
3220         struct inode *inode = mapping->host;
3221         struct buffer_head *bh;
3222         struct page *page;
3223         int err = 0;
3224
3225         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3226                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3227         if (!page)
3228                 return -ENOMEM;
3229
3230         blocksize = inode->i_sb->s_blocksize;
3231         max = blocksize - (offset & (blocksize - 1));
3232
3233         /*
3234          * correct length if it does not fall between
3235          * 'from' and the end of the block
3236          */
3237         if (length > max || length < 0)
3238                 length = max;
3239
3240         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3241
3242         if (!page_has_buffers(page))
3243                 create_empty_buffers(page, blocksize, 0);
3244
3245         /* Find the buffer that contains "offset" */
3246         bh = page_buffers(page);
3247         pos = blocksize;
3248         while (offset >= pos) {
3249                 bh = bh->b_this_page;
3250                 iblock++;
3251                 pos += blocksize;
3252         }
3253         if (buffer_freed(bh)) {
3254                 BUFFER_TRACE(bh, "freed: skip");
3255                 goto unlock;
3256         }
3257         if (!buffer_mapped(bh)) {
3258                 BUFFER_TRACE(bh, "unmapped");
3259                 ext4_get_block(inode, iblock, bh, 0);
3260                 /* unmapped? It's a hole - nothing to do */
3261                 if (!buffer_mapped(bh)) {
3262                         BUFFER_TRACE(bh, "still unmapped");
3263                         goto unlock;
3264                 }
3265         }
3266
3267         /* Ok, it's mapped. Make sure it's up-to-date */
3268         if (PageUptodate(page))
3269                 set_buffer_uptodate(bh);
3270
3271         if (!buffer_uptodate(bh)) {
3272                 err = -EIO;
3273                 ll_rw_block(READ, 1, &bh);
3274                 wait_on_buffer(bh);
3275                 /* Uhhuh. Read error. Complain and punt. */
3276                 if (!buffer_uptodate(bh))
3277                         goto unlock;
3278         }
3279         if (ext4_should_journal_data(inode)) {
3280                 BUFFER_TRACE(bh, "get write access");
3281                 err = ext4_journal_get_write_access(handle, bh);
3282                 if (err)
3283                         goto unlock;
3284         }
3285         zero_user(page, offset, length);
3286         BUFFER_TRACE(bh, "zeroed end of block");
3287
3288         if (ext4_should_journal_data(inode)) {
3289                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3290         } else {
3291                 err = 0;
3292                 mark_buffer_dirty(bh);
3293                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3294                         err = ext4_jbd2_file_inode(handle, inode);
3295         }
3296
3297 unlock:
3298         unlock_page(page);
3299         page_cache_release(page);
3300         return err;
3301 }
3302
3303 /*
3304  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3305  * up to the end of the block which corresponds to `from'.
3306  * This required during truncate. We need to physically zero the tail end
3307  * of that block so it doesn't yield old data if the file is later grown.
3308  */
3309 static int ext4_block_truncate_page(handle_t *handle,
3310                 struct address_space *mapping, loff_t from)
3311 {
3312         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3313         unsigned length;
3314         unsigned blocksize;
3315         struct inode *inode = mapping->host;
3316
3317         blocksize = inode->i_sb->s_blocksize;
3318         length = blocksize - (offset & (blocksize - 1));
3319
3320         return ext4_block_zero_page_range(handle, mapping, from, length);
3321 }
3322
3323 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3324                              loff_t lstart, loff_t length)
3325 {
3326         struct super_block *sb = inode->i_sb;
3327         struct address_space *mapping = inode->i_mapping;
3328         unsigned partial_start, partial_end;
3329         ext4_fsblk_t start, end;
3330         loff_t byte_end = (lstart + length - 1);
3331         int err = 0;
3332
3333         partial_start = lstart & (sb->s_blocksize - 1);
3334         partial_end = byte_end & (sb->s_blocksize - 1);
3335
3336         start = lstart >> sb->s_blocksize_bits;
3337         end = byte_end >> sb->s_blocksize_bits;
3338
3339         /* Handle partial zero within the single block */
3340         if (start == end &&
3341             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3342                 err = ext4_block_zero_page_range(handle, mapping,
3343                                                  lstart, length);
3344                 return err;
3345         }
3346         /* Handle partial zero out on the start of the range */
3347         if (partial_start) {
3348                 err = ext4_block_zero_page_range(handle, mapping,
3349                                                  lstart, sb->s_blocksize);
3350                 if (err)
3351                         return err;
3352         }
3353         /* Handle partial zero out on the end of the range */
3354         if (partial_end != sb->s_blocksize - 1)
3355                 err = ext4_block_zero_page_range(handle, mapping,
3356                                                  byte_end - partial_end,
3357                                                  partial_end + 1);
3358         return err;
3359 }
3360
3361 int ext4_can_truncate(struct inode *inode)
3362 {
3363         if (S_ISREG(inode->i_mode))
3364                 return 1;
3365         if (S_ISDIR(inode->i_mode))
3366                 return 1;
3367         if (S_ISLNK(inode->i_mode))
3368                 return !ext4_inode_is_fast_symlink(inode);
3369         return 0;
3370 }
3371
3372 /*
3373  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3374  * associated with the given offset and length
3375  *
3376  * @inode:  File inode
3377  * @offset: The offset where the hole will begin
3378  * @len:    The length of the hole
3379  *
3380  * Returns: 0 on success or negative on failure
3381  */
3382
3383 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3384 {
3385         struct super_block *sb = inode->i_sb;
3386         ext4_lblk_t first_block, stop_block;
3387         struct address_space *mapping = inode->i_mapping;
3388         loff_t first_block_offset, last_block_offset;
3389         handle_t *handle;
3390         unsigned int credits;
3391         int ret = 0;
3392
3393         if (!S_ISREG(inode->i_mode))
3394                 return -EOPNOTSUPP;
3395
3396         trace_ext4_punch_hole(inode, offset, length, 0);
3397
3398         /*
3399          * Write out all dirty pages to avoid race conditions
3400          * Then release them.
3401          */
3402         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3403                 ret = filemap_write_and_wait_range(mapping, offset,
3404                                                    offset + length - 1);
3405                 if (ret)
3406                         return ret;
3407         }
3408
3409         mutex_lock(&inode->i_mutex);
3410
3411         /* No need to punch hole beyond i_size */
3412         if (offset >= inode->i_size)
3413                 goto out_mutex;
3414
3415         /*
3416          * If the hole extends beyond i_size, set the hole
3417          * to end after the page that contains i_size
3418          */
3419         if (offset + length > inode->i_size) {
3420                 length = inode->i_size +
3421                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3422                    offset;
3423         }
3424
3425         if (offset & (sb->s_blocksize - 1) ||
3426             (offset + length) & (sb->s_blocksize - 1)) {
3427                 /*
3428                  * Attach jinode to inode for jbd2 if we do any zeroing of
3429                  * partial block
3430                  */
3431                 ret = ext4_inode_attach_jinode(inode);
3432                 if (ret < 0)
3433                         goto out_mutex;
3434
3435         }
3436
3437         first_block_offset = round_up(offset, sb->s_blocksize);
3438         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3439
3440         /* Now release the pages and zero block aligned part of pages*/
3441         if (last_block_offset > first_block_offset)
3442                 truncate_pagecache_range(inode, first_block_offset,
3443                                          last_block_offset);
3444
3445         /* Wait all existing dio workers, newcomers will block on i_mutex */
3446         ext4_inode_block_unlocked_dio(inode);
3447         inode_dio_wait(inode);
3448
3449         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3450                 credits = ext4_writepage_trans_blocks(inode);
3451         else
3452                 credits = ext4_blocks_for_truncate(inode);
3453         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3454         if (IS_ERR(handle)) {
3455                 ret = PTR_ERR(handle);
3456                 ext4_std_error(sb, ret);
3457                 goto out_dio;
3458         }
3459
3460         ret = ext4_zero_partial_blocks(handle, inode, offset,
3461                                        length);
3462         if (ret)
3463                 goto out_stop;
3464
3465         first_block = (offset + sb->s_blocksize - 1) >>
3466                 EXT4_BLOCK_SIZE_BITS(sb);
3467         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3468
3469         /* If there are no blocks to remove, return now */
3470         if (first_block >= stop_block)
3471                 goto out_stop;
3472
3473         down_write(&EXT4_I(inode)->i_data_sem);
3474         ext4_discard_preallocations(inode);
3475
3476         ret = ext4_es_remove_extent(inode, first_block,
3477                                     stop_block - first_block);
3478         if (ret) {
3479                 up_write(&EXT4_I(inode)->i_data_sem);
3480                 goto out_stop;
3481         }
3482
3483         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3484                 ret = ext4_ext_remove_space(inode, first_block,
3485                                             stop_block - 1);
3486         else
3487                 ret = ext4_ind_remove_space(handle, inode, first_block,
3488                                             stop_block);
3489
3490         up_write(&EXT4_I(inode)->i_data_sem);
3491         if (IS_SYNC(inode))
3492                 ext4_handle_sync(handle);
3493
3494         /* Now release the pages again to reduce race window */
3495         if (last_block_offset > first_block_offset)
3496                 truncate_pagecache_range(inode, first_block_offset,
3497                                          last_block_offset);
3498
3499         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3500         ext4_mark_inode_dirty(handle, inode);
3501 out_stop:
3502         ext4_journal_stop(handle);
3503 out_dio:
3504         ext4_inode_resume_unlocked_dio(inode);
3505 out_mutex:
3506         mutex_unlock(&inode->i_mutex);
3507         return ret;
3508 }
3509
3510 int ext4_inode_attach_jinode(struct inode *inode)
3511 {
3512         struct ext4_inode_info *ei = EXT4_I(inode);
3513         struct jbd2_inode *jinode;
3514
3515         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3516                 return 0;
3517
3518         jinode = jbd2_alloc_inode(GFP_KERNEL);
3519         spin_lock(&inode->i_lock);
3520         if (!ei->jinode) {
3521                 if (!jinode) {
3522                         spin_unlock(&inode->i_lock);
3523                         return -ENOMEM;
3524                 }
3525                 ei->jinode = jinode;
3526                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3527                 jinode = NULL;
3528         }
3529         spin_unlock(&inode->i_lock);
3530         if (unlikely(jinode != NULL))
3531                 jbd2_free_inode(jinode);
3532         return 0;
3533 }
3534
3535 /*
3536  * ext4_truncate()
3537  *
3538  * We block out ext4_get_block() block instantiations across the entire
3539  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3540  * simultaneously on behalf of the same inode.
3541  *
3542  * As we work through the truncate and commit bits of it to the journal there
3543  * is one core, guiding principle: the file's tree must always be consistent on
3544  * disk.  We must be able to restart the truncate after a crash.
3545  *
3546  * The file's tree may be transiently inconsistent in memory (although it
3547  * probably isn't), but whenever we close off and commit a journal transaction,
3548  * the contents of (the filesystem + the journal) must be consistent and
3549  * restartable.  It's pretty simple, really: bottom up, right to left (although
3550  * left-to-right works OK too).
3551  *
3552  * Note that at recovery time, journal replay occurs *before* the restart of
3553  * truncate against the orphan inode list.
3554  *
3555  * The committed inode has the new, desired i_size (which is the same as
3556  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3557  * that this inode's truncate did not complete and it will again call
3558  * ext4_truncate() to have another go.  So there will be instantiated blocks
3559  * to the right of the truncation point in a crashed ext4 filesystem.  But
3560  * that's fine - as long as they are linked from the inode, the post-crash
3561  * ext4_truncate() run will find them and release them.
3562  */
3563 void ext4_truncate(struct inode *inode)
3564 {
3565         struct ext4_inode_info *ei = EXT4_I(inode);
3566         unsigned int credits;
3567         handle_t *handle;
3568         struct address_space *mapping = inode->i_mapping;
3569
3570         /*
3571          * There is a possibility that we're either freeing the inode
3572          * or it's a completely new inode. In those cases we might not
3573          * have i_mutex locked because it's not necessary.
3574          */
3575         if (!(inode->i_state & (I_NEW|I_FREEING)))
3576                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3577         trace_ext4_truncate_enter(inode);
3578
3579         if (!ext4_can_truncate(inode))
3580                 return;
3581
3582         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3583
3584         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3585                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3586
3587         if (ext4_has_inline_data(inode)) {
3588                 int has_inline = 1;
3589
3590                 ext4_inline_data_truncate(inode, &has_inline);
3591                 if (has_inline)
3592                         return;
3593         }
3594
3595         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3596         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3597                 if (ext4_inode_attach_jinode(inode) < 0)
3598                         return;
3599         }
3600
3601         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3602                 credits = ext4_writepage_trans_blocks(inode);
3603         else
3604                 credits = ext4_blocks_for_truncate(inode);
3605
3606         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3607         if (IS_ERR(handle)) {
3608                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3609                 return;
3610         }
3611
3612         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3613                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3614
3615         /*
3616          * We add the inode to the orphan list, so that if this
3617          * truncate spans multiple transactions, and we crash, we will
3618          * resume the truncate when the filesystem recovers.  It also
3619          * marks the inode dirty, to catch the new size.
3620          *
3621          * Implication: the file must always be in a sane, consistent
3622          * truncatable state while each transaction commits.
3623          */
3624         if (ext4_orphan_add(handle, inode))
3625                 goto out_stop;
3626
3627         down_write(&EXT4_I(inode)->i_data_sem);
3628
3629         ext4_discard_preallocations(inode);
3630
3631         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3632                 ext4_ext_truncate(handle, inode);
3633         else
3634                 ext4_ind_truncate(handle, inode);
3635
3636         up_write(&ei->i_data_sem);
3637
3638         if (IS_SYNC(inode))
3639                 ext4_handle_sync(handle);
3640
3641 out_stop:
3642         /*
3643          * If this was a simple ftruncate() and the file will remain alive,
3644          * then we need to clear up the orphan record which we created above.
3645          * However, if this was a real unlink then we were called by
3646          * ext4_delete_inode(), and we allow that function to clean up the
3647          * orphan info for us.
3648          */
3649         if (inode->i_nlink)
3650                 ext4_orphan_del(handle, inode);
3651
3652         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3653         ext4_mark_inode_dirty(handle, inode);
3654         ext4_journal_stop(handle);
3655
3656         trace_ext4_truncate_exit(inode);
3657 }
3658
3659 /*
3660  * ext4_get_inode_loc returns with an extra refcount against the inode's
3661  * underlying buffer_head on success. If 'in_mem' is true, we have all
3662  * data in memory that is needed to recreate the on-disk version of this
3663  * inode.
3664  */
3665 static int __ext4_get_inode_loc(struct inode *inode,
3666                                 struct ext4_iloc *iloc, int in_mem)
3667 {
3668         struct ext4_group_desc  *gdp;
3669         struct buffer_head      *bh;
3670         struct super_block      *sb = inode->i_sb;
3671         ext4_fsblk_t            block;
3672         int                     inodes_per_block, inode_offset;
3673
3674         iloc->bh = NULL;
3675         if (!ext4_valid_inum(sb, inode->i_ino))
3676                 return -EIO;
3677
3678         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3679         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3680         if (!gdp)
3681                 return -EIO;
3682
3683         /*
3684          * Figure out the offset within the block group inode table
3685          */
3686         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3687         inode_offset = ((inode->i_ino - 1) %
3688                         EXT4_INODES_PER_GROUP(sb));
3689         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3690         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3691
3692         bh = sb_getblk(sb, block);
3693         if (unlikely(!bh))
3694                 return -ENOMEM;
3695         if (!buffer_uptodate(bh)) {
3696                 lock_buffer(bh);
3697
3698                 /*
3699                  * If the buffer has the write error flag, we have failed
3700                  * to write out another inode in the same block.  In this
3701                  * case, we don't have to read the block because we may
3702                  * read the old inode data successfully.
3703                  */
3704                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3705                         set_buffer_uptodate(bh);
3706
3707                 if (buffer_uptodate(bh)) {
3708                         /* someone brought it uptodate while we waited */
3709                         unlock_buffer(bh);
3710                         goto has_buffer;
3711                 }
3712
3713                 /*
3714                  * If we have all information of the inode in memory and this
3715                  * is the only valid inode in the block, we need not read the
3716                  * block.
3717                  */
3718                 if (in_mem) {
3719                         struct buffer_head *bitmap_bh;
3720                         int i, start;
3721
3722                         start = inode_offset & ~(inodes_per_block - 1);
3723
3724                         /* Is the inode bitmap in cache? */
3725                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3726                         if (unlikely(!bitmap_bh))
3727                                 goto make_io;
3728
3729                         /*
3730                          * If the inode bitmap isn't in cache then the
3731                          * optimisation may end up performing two reads instead
3732                          * of one, so skip it.
3733                          */
3734                         if (!buffer_uptodate(bitmap_bh)) {
3735                                 brelse(bitmap_bh);
3736                                 goto make_io;
3737                         }
3738                         for (i = start; i < start + inodes_per_block; i++) {
3739                                 if (i == inode_offset)
3740                                         continue;
3741                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3742                                         break;
3743                         }
3744                         brelse(bitmap_bh);
3745                         if (i == start + inodes_per_block) {
3746                                 /* all other inodes are free, so skip I/O */
3747                                 memset(bh->b_data, 0, bh->b_size);
3748                                 set_buffer_uptodate(bh);
3749                                 unlock_buffer(bh);
3750                                 goto has_buffer;
3751                         }
3752                 }
3753
3754 make_io:
3755                 /*
3756                  * If we need to do any I/O, try to pre-readahead extra
3757                  * blocks from the inode table.
3758                  */
3759                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3760                         ext4_fsblk_t b, end, table;
3761                         unsigned num;
3762                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3763
3764                         table = ext4_inode_table(sb, gdp);
3765                         /* s_inode_readahead_blks is always a power of 2 */
3766                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3767                         if (table > b)
3768                                 b = table;
3769                         end = b + ra_blks;
3770                         num = EXT4_INODES_PER_GROUP(sb);
3771                         if (ext4_has_group_desc_csum(sb))
3772                                 num -= ext4_itable_unused_count(sb, gdp);
3773                         table += num / inodes_per_block;
3774                         if (end > table)
3775                                 end = table;
3776                         while (b <= end)
3777                                 sb_breadahead(sb, b++);
3778                 }
3779
3780                 /*
3781                  * There are other valid inodes in the buffer, this inode
3782                  * has in-inode xattrs, or we don't have this inode in memory.
3783                  * Read the block from disk.
3784                  */
3785                 trace_ext4_load_inode(inode);
3786                 get_bh(bh);
3787                 bh->b_end_io = end_buffer_read_sync;
3788                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3789                 wait_on_buffer(bh);
3790                 if (!buffer_uptodate(bh)) {
3791                         EXT4_ERROR_INODE_BLOCK(inode, block,
3792                                                "unable to read itable block");
3793                         brelse(bh);
3794                         return -EIO;
3795                 }
3796         }
3797 has_buffer:
3798         iloc->bh = bh;
3799         return 0;
3800 }
3801
3802 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3803 {
3804         /* We have all inode data except xattrs in memory here. */
3805         return __ext4_get_inode_loc(inode, iloc,
3806                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3807 }
3808
3809 void ext4_set_inode_flags(struct inode *inode)
3810 {
3811         unsigned int flags = EXT4_I(inode)->i_flags;
3812         unsigned int new_fl = 0;
3813
3814         if (flags & EXT4_SYNC_FL)
3815                 new_fl |= S_SYNC;
3816         if (flags & EXT4_APPEND_FL)
3817                 new_fl |= S_APPEND;
3818         if (flags & EXT4_IMMUTABLE_FL)
3819                 new_fl |= S_IMMUTABLE;
3820         if (flags & EXT4_NOATIME_FL)
3821                 new_fl |= S_NOATIME;
3822         if (flags & EXT4_DIRSYNC_FL)
3823                 new_fl |= S_DIRSYNC;
3824         inode_set_flags(inode, new_fl,
3825                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3826 }
3827
3828 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3829 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3830 {
3831         unsigned int vfs_fl;
3832         unsigned long old_fl, new_fl;
3833
3834         do {
3835                 vfs_fl = ei->vfs_inode.i_flags;
3836                 old_fl = ei->i_flags;
3837                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3838                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3839                                 EXT4_DIRSYNC_FL);
3840                 if (vfs_fl & S_SYNC)
3841                         new_fl |= EXT4_SYNC_FL;
3842                 if (vfs_fl & S_APPEND)
3843                         new_fl |= EXT4_APPEND_FL;
3844                 if (vfs_fl & S_IMMUTABLE)
3845                         new_fl |= EXT4_IMMUTABLE_FL;
3846                 if (vfs_fl & S_NOATIME)
3847                         new_fl |= EXT4_NOATIME_FL;
3848                 if (vfs_fl & S_DIRSYNC)
3849                         new_fl |= EXT4_DIRSYNC_FL;
3850         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3851 }
3852
3853 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3854                                   struct ext4_inode_info *ei)
3855 {
3856         blkcnt_t i_blocks ;
3857         struct inode *inode = &(ei->vfs_inode);
3858         struct super_block *sb = inode->i_sb;
3859
3860         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3861                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3862                 /* we are using combined 48 bit field */
3863                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3864                                         le32_to_cpu(raw_inode->i_blocks_lo);
3865                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3866                         /* i_blocks represent file system block size */
3867                         return i_blocks  << (inode->i_blkbits - 9);
3868                 } else {
3869                         return i_blocks;
3870                 }
3871         } else {
3872                 return le32_to_cpu(raw_inode->i_blocks_lo);
3873         }
3874 }
3875
3876 static inline void ext4_iget_extra_inode(struct inode *inode,
3877                                          struct ext4_inode *raw_inode,
3878                                          struct ext4_inode_info *ei)
3879 {
3880         __le32 *magic = (void *)raw_inode +
3881                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3882         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3883                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3884                 ext4_find_inline_data_nolock(inode);
3885         } else
3886                 EXT4_I(inode)->i_inline_off = 0;
3887 }
3888
3889 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3890 {
3891         struct ext4_iloc iloc;
3892         struct ext4_inode *raw_inode;
3893         struct ext4_inode_info *ei;
3894         struct inode *inode;
3895         journal_t *journal = EXT4_SB(sb)->s_journal;
3896         long ret;
3897         int block;
3898         uid_t i_uid;
3899         gid_t i_gid;
3900
3901         inode = iget_locked(sb, ino);
3902         if (!inode)
3903                 return ERR_PTR(-ENOMEM);
3904         if (!(inode->i_state & I_NEW))
3905                 return inode;
3906
3907         ei = EXT4_I(inode);
3908         iloc.bh = NULL;
3909
3910         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3911         if (ret < 0)
3912                 goto bad_inode;
3913         raw_inode = ext4_raw_inode(&iloc);
3914
3915         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3916                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3917                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3918                     EXT4_INODE_SIZE(inode->i_sb)) {
3919                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3920                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3921                                 EXT4_INODE_SIZE(inode->i_sb));
3922                         ret = -EIO;
3923                         goto bad_inode;
3924                 }
3925         } else
3926                 ei->i_extra_isize = 0;
3927
3928         /* Precompute checksum seed for inode metadata */
3929         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3930                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3931                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3932                 __u32 csum;
3933                 __le32 inum = cpu_to_le32(inode->i_ino);
3934                 __le32 gen = raw_inode->i_generation;
3935                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3936                                    sizeof(inum));
3937                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3938                                               sizeof(gen));
3939         }
3940
3941         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3942                 EXT4_ERROR_INODE(inode, "checksum invalid");
3943                 ret = -EIO;
3944                 goto bad_inode;
3945         }
3946
3947         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3948         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3949         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3950         if (!(test_opt(inode->i_sb, NO_UID32))) {
3951                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3952                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3953         }
3954         i_uid_write(inode, i_uid);
3955         i_gid_write(inode, i_gid);
3956         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3957
3958         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3959         ei->i_inline_off = 0;
3960         ei->i_dir_start_lookup = 0;
3961         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3962         /* We now have enough fields to check if the inode was active or not.
3963          * This is needed because nfsd might try to access dead inodes
3964          * the test is that same one that e2fsck uses
3965          * NeilBrown 1999oct15
3966          */
3967         if (inode->i_nlink == 0) {
3968                 if ((inode->i_mode == 0 ||
3969                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3970                     ino != EXT4_BOOT_LOADER_INO) {
3971                         /* this inode is deleted */
3972                         ret = -ESTALE;
3973                         goto bad_inode;
3974                 }
3975                 /* The only unlinked inodes we let through here have
3976                  * valid i_mode and are being read by the orphan
3977                  * recovery code: that's fine, we're about to complete
3978                  * the process of deleting those.
3979                  * OR it is the EXT4_BOOT_LOADER_INO which is
3980                  * not initialized on a new filesystem. */
3981         }
3982         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3983         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3984         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3985         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3986                 ei->i_file_acl |=
3987                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3988         inode->i_size = ext4_isize(raw_inode);
3989         ei->i_disksize = inode->i_size;
3990 #ifdef CONFIG_QUOTA
3991         ei->i_reserved_quota = 0;
3992 #endif
3993         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3994         ei->i_block_group = iloc.block_group;
3995         ei->i_last_alloc_group = ~0;
3996         /*
3997          * NOTE! The in-memory inode i_data array is in little-endian order
3998          * even on big-endian machines: we do NOT byteswap the block numbers!
3999          */
4000         for (block = 0; block < EXT4_N_BLOCKS; block++)
4001                 ei->i_data[block] = raw_inode->i_block[block];
4002         INIT_LIST_HEAD(&ei->i_orphan);
4003
4004         /*
4005          * Set transaction id's of transactions that have to be committed
4006          * to finish f[data]sync. We set them to currently running transaction
4007          * as we cannot be sure that the inode or some of its metadata isn't
4008          * part of the transaction - the inode could have been reclaimed and
4009          * now it is reread from disk.
4010          */
4011         if (journal) {
4012                 transaction_t *transaction;
4013                 tid_t tid;
4014
4015                 read_lock(&journal->j_state_lock);
4016                 if (journal->j_running_transaction)
4017                         transaction = journal->j_running_transaction;
4018                 else
4019                         transaction = journal->j_committing_transaction;
4020                 if (transaction)
4021                         tid = transaction->t_tid;
4022                 else
4023                         tid = journal->j_commit_sequence;
4024                 read_unlock(&journal->j_state_lock);
4025                 ei->i_sync_tid = tid;
4026                 ei->i_datasync_tid = tid;
4027         }
4028
4029         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4030                 if (ei->i_extra_isize == 0) {
4031                         /* The extra space is currently unused. Use it. */
4032                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4033                                             EXT4_GOOD_OLD_INODE_SIZE;
4034                 } else {
4035                         ext4_iget_extra_inode(inode, raw_inode, ei);
4036                 }
4037         }
4038
4039         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4040         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4041         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4042         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4043
4044         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4045                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4046                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4047                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4048                                 inode->i_version |=
4049                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4050                 }
4051         }
4052
4053         ret = 0;
4054         if (ei->i_file_acl &&
4055             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4056                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4057                                  ei->i_file_acl);
4058                 ret = -EIO;
4059                 goto bad_inode;
4060         } else if (!ext4_has_inline_data(inode)) {
4061                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4062                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4063                             (S_ISLNK(inode->i_mode) &&
4064                              !ext4_inode_is_fast_symlink(inode))))
4065                                 /* Validate extent which is part of inode */
4066                                 ret = ext4_ext_check_inode(inode);
4067                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4068                            (S_ISLNK(inode->i_mode) &&
4069                             !ext4_inode_is_fast_symlink(inode))) {
4070                         /* Validate block references which are part of inode */
4071                         ret = ext4_ind_check_inode(inode);
4072                 }
4073         }
4074         if (ret)
4075                 goto bad_inode;
4076
4077         if (S_ISREG(inode->i_mode)) {
4078                 inode->i_op = &ext4_file_inode_operations;
4079                 inode->i_fop = &ext4_file_operations;
4080                 ext4_set_aops(inode);
4081         } else if (S_ISDIR(inode->i_mode)) {
4082                 inode->i_op = &ext4_dir_inode_operations;
4083                 inode->i_fop = &ext4_dir_operations;
4084         } else if (S_ISLNK(inode->i_mode)) {
4085                 if (ext4_inode_is_fast_symlink(inode)) {
4086                         inode->i_op = &ext4_fast_symlink_inode_operations;
4087                         nd_terminate_link(ei->i_data, inode->i_size,
4088                                 sizeof(ei->i_data) - 1);
4089                 } else {
4090                         inode->i_op = &ext4_symlink_inode_operations;
4091                         ext4_set_aops(inode);
4092                 }
4093         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4094               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4095                 inode->i_op = &ext4_special_inode_operations;
4096                 if (raw_inode->i_block[0])
4097                         init_special_inode(inode, inode->i_mode,
4098                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4099                 else
4100                         init_special_inode(inode, inode->i_mode,
4101                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4102         } else if (ino == EXT4_BOOT_LOADER_INO) {
4103                 make_bad_inode(inode);
4104         } else {
4105                 ret = -EIO;
4106                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4107                 goto bad_inode;
4108         }
4109         brelse(iloc.bh);
4110         ext4_set_inode_flags(inode);
4111         unlock_new_inode(inode);
4112         return inode;
4113
4114 bad_inode:
4115         brelse(iloc.bh);
4116         iget_failed(inode);
4117         return ERR_PTR(ret);
4118 }
4119
4120 static int ext4_inode_blocks_set(handle_t *handle,
4121                                 struct ext4_inode *raw_inode,
4122                                 struct ext4_inode_info *ei)
4123 {
4124         struct inode *inode = &(ei->vfs_inode);
4125         u64 i_blocks = inode->i_blocks;
4126         struct super_block *sb = inode->i_sb;
4127
4128         if (i_blocks <= ~0U) {
4129                 /*
4130                  * i_blocks can be represented in a 32 bit variable
4131                  * as multiple of 512 bytes
4132                  */
4133                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4134                 raw_inode->i_blocks_high = 0;
4135                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4136                 return 0;
4137         }
4138         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4139                 return -EFBIG;
4140
4141         if (i_blocks <= 0xffffffffffffULL) {
4142                 /*
4143                  * i_blocks can be represented in a 48 bit variable
4144                  * as multiple of 512 bytes
4145                  */
4146                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4147                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4148                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4149         } else {
4150                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4151                 /* i_block is stored in file system block size */
4152                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4153                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4154                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4155         }
4156         return 0;
4157 }
4158
4159 /*
4160  * Post the struct inode info into an on-disk inode location in the
4161  * buffer-cache.  This gobbles the caller's reference to the
4162  * buffer_head in the inode location struct.
4163  *
4164  * The caller must have write access to iloc->bh.
4165  */
4166 static int ext4_do_update_inode(handle_t *handle,
4167                                 struct inode *inode,
4168                                 struct ext4_iloc *iloc)
4169 {
4170         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4171         struct ext4_inode_info *ei = EXT4_I(inode);
4172         struct buffer_head *bh = iloc->bh;
4173         struct super_block *sb = inode->i_sb;
4174         int err = 0, rc, block;
4175         int need_datasync = 0, set_large_file = 0;
4176         uid_t i_uid;
4177         gid_t i_gid;
4178
4179         spin_lock(&ei->i_raw_lock);
4180
4181         /* For fields not tracked in the in-memory inode,
4182          * initialise them to zero for new inodes. */
4183         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4184                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4185
4186         ext4_get_inode_flags(ei);
4187         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4188         i_uid = i_uid_read(inode);
4189         i_gid = i_gid_read(inode);
4190         if (!(test_opt(inode->i_sb, NO_UID32))) {
4191                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4192                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4193 /*
4194  * Fix up interoperability with old kernels. Otherwise, old inodes get
4195  * re-used with the upper 16 bits of the uid/gid intact
4196  */
4197                 if (!ei->i_dtime) {
4198                         raw_inode->i_uid_high =
4199                                 cpu_to_le16(high_16_bits(i_uid));
4200                         raw_inode->i_gid_high =
4201                                 cpu_to_le16(high_16_bits(i_gid));
4202                 } else {
4203                         raw_inode->i_uid_high = 0;
4204                         raw_inode->i_gid_high = 0;
4205                 }
4206         } else {
4207                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4208                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4209                 raw_inode->i_uid_high = 0;
4210                 raw_inode->i_gid_high = 0;
4211         }
4212         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4213
4214         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4215         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4216         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4217         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4218
4219         if (ext4_inode_blocks_set(handle, raw_inode, ei)) {
4220                 spin_unlock(&ei->i_raw_lock);
4221                 goto out_brelse;
4222         }
4223         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4224         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4225         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4226                 raw_inode->i_file_acl_high =
4227                         cpu_to_le16(ei->i_file_acl >> 32);
4228         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4229         if (ei->i_disksize != ext4_isize(raw_inode)) {
4230                 ext4_isize_set(raw_inode, ei->i_disksize);
4231                 need_datasync = 1;
4232         }
4233         if (ei->i_disksize > 0x7fffffffULL) {
4234                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4235                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4236                                 EXT4_SB(sb)->s_es->s_rev_level ==
4237                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4238                         set_large_file = 1;
4239         }
4240         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4241         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4242                 if (old_valid_dev(inode->i_rdev)) {
4243                         raw_inode->i_block[0] =
4244                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4245                         raw_inode->i_block[1] = 0;
4246                 } else {
4247                         raw_inode->i_block[0] = 0;
4248                         raw_inode->i_block[1] =
4249                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4250                         raw_inode->i_block[2] = 0;
4251                 }
4252         } else if (!ext4_has_inline_data(inode)) {
4253                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4254                         raw_inode->i_block[block] = ei->i_data[block];
4255         }
4256
4257         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4258                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4259                 if (ei->i_extra_isize) {
4260                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4261                                 raw_inode->i_version_hi =
4262                                         cpu_to_le32(inode->i_version >> 32);
4263                         raw_inode->i_extra_isize =
4264                                 cpu_to_le16(ei->i_extra_isize);
4265                 }
4266         }
4267
4268         ext4_inode_csum_set(inode, raw_inode, ei);
4269
4270         spin_unlock(&ei->i_raw_lock);
4271
4272         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4273         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4274         if (!err)
4275                 err = rc;
4276         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4277         if (set_large_file) {
4278                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4279                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4280                 if (err)
4281                         goto out_brelse;
4282                 ext4_update_dynamic_rev(sb);
4283                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4284                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4285                 ext4_handle_sync(handle);
4286                 err = ext4_handle_dirty_super(handle, sb);
4287         }
4288         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4289 out_brelse:
4290         brelse(bh);
4291         ext4_std_error(inode->i_sb, err);
4292         return err;
4293 }
4294
4295 /*
4296  * ext4_write_inode()
4297  *
4298  * We are called from a few places:
4299  *
4300  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4301  *   Here, there will be no transaction running. We wait for any running
4302  *   transaction to commit.
4303  *
4304  * - Within flush work (sys_sync(), kupdate and such).
4305  *   We wait on commit, if told to.
4306  *
4307  * - Within iput_final() -> write_inode_now()
4308  *   We wait on commit, if told to.
4309  *
4310  * In all cases it is actually safe for us to return without doing anything,
4311  * because the inode has been copied into a raw inode buffer in
4312  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4313  * writeback.
4314  *
4315  * Note that we are absolutely dependent upon all inode dirtiers doing the
4316  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4317  * which we are interested.
4318  *
4319  * It would be a bug for them to not do this.  The code:
4320  *
4321  *      mark_inode_dirty(inode)
4322  *      stuff();
4323  *      inode->i_size = expr;
4324  *
4325  * is in error because write_inode() could occur while `stuff()' is running,
4326  * and the new i_size will be lost.  Plus the inode will no longer be on the
4327  * superblock's dirty inode list.
4328  */
4329 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4330 {
4331         int err;
4332
4333         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4334                 return 0;
4335
4336         if (EXT4_SB(inode->i_sb)->s_journal) {
4337                 if (ext4_journal_current_handle()) {
4338                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4339                         dump_stack();
4340                         return -EIO;
4341                 }
4342
4343                 /*
4344                  * No need to force transaction in WB_SYNC_NONE mode. Also
4345                  * ext4_sync_fs() will force the commit after everything is
4346                  * written.
4347                  */
4348                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4349                         return 0;
4350
4351                 err = ext4_force_commit(inode->i_sb);
4352         } else {
4353                 struct ext4_iloc iloc;
4354
4355                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4356                 if (err)
4357                         return err;
4358                 /*
4359                  * sync(2) will flush the whole buffer cache. No need to do
4360                  * it here separately for each inode.
4361                  */
4362                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4363                         sync_dirty_buffer(iloc.bh);
4364                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4365                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4366                                          "IO error syncing inode");
4367                         err = -EIO;
4368                 }
4369                 brelse(iloc.bh);
4370         }
4371         return err;
4372 }
4373
4374 /*
4375  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4376  * buffers that are attached to a page stradding i_size and are undergoing
4377  * commit. In that case we have to wait for commit to finish and try again.
4378  */
4379 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4380 {
4381         struct page *page;
4382         unsigned offset;
4383         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4384         tid_t commit_tid = 0;
4385         int ret;
4386
4387         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4388         /*
4389          * All buffers in the last page remain valid? Then there's nothing to
4390          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4391          * blocksize case
4392          */
4393         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4394                 return;
4395         while (1) {
4396                 page = find_lock_page(inode->i_mapping,
4397                                       inode->i_size >> PAGE_CACHE_SHIFT);
4398                 if (!page)
4399                         return;
4400                 ret = __ext4_journalled_invalidatepage(page, offset,
4401                                                 PAGE_CACHE_SIZE - offset);
4402                 unlock_page(page);
4403                 page_cache_release(page);
4404                 if (ret != -EBUSY)
4405                         return;
4406                 commit_tid = 0;
4407                 read_lock(&journal->j_state_lock);
4408                 if (journal->j_committing_transaction)
4409                         commit_tid = journal->j_committing_transaction->t_tid;
4410                 read_unlock(&journal->j_state_lock);
4411                 if (commit_tid)
4412                         jbd2_log_wait_commit(journal, commit_tid);
4413         }
4414 }
4415
4416 /*
4417  * ext4_setattr()
4418  *
4419  * Called from notify_change.
4420  *
4421  * We want to trap VFS attempts to truncate the file as soon as
4422  * possible.  In particular, we want to make sure that when the VFS
4423  * shrinks i_size, we put the inode on the orphan list and modify
4424  * i_disksize immediately, so that during the subsequent flushing of
4425  * dirty pages and freeing of disk blocks, we can guarantee that any
4426  * commit will leave the blocks being flushed in an unused state on
4427  * disk.  (On recovery, the inode will get truncated and the blocks will
4428  * be freed, so we have a strong guarantee that no future commit will
4429  * leave these blocks visible to the user.)
4430  *
4431  * Another thing we have to assure is that if we are in ordered mode
4432  * and inode is still attached to the committing transaction, we must
4433  * we start writeout of all the dirty pages which are being truncated.
4434  * This way we are sure that all the data written in the previous
4435  * transaction are already on disk (truncate waits for pages under
4436  * writeback).
4437  *
4438  * Called with inode->i_mutex down.
4439  */
4440 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4441 {
4442         struct inode *inode = dentry->d_inode;
4443         int error, rc = 0;
4444         int orphan = 0;
4445         const unsigned int ia_valid = attr->ia_valid;
4446
4447         error = inode_change_ok(inode, attr);
4448         if (error)
4449                 return error;
4450
4451         if (is_quota_modification(inode, attr))
4452                 dquot_initialize(inode);
4453         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4454             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4455                 handle_t *handle;
4456
4457                 /* (user+group)*(old+new) structure, inode write (sb,
4458                  * inode block, ? - but truncate inode update has it) */
4459                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4460                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4461                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4462                 if (IS_ERR(handle)) {
4463                         error = PTR_ERR(handle);
4464                         goto err_out;
4465                 }
4466                 error = dquot_transfer(inode, attr);
4467                 if (error) {
4468                         ext4_journal_stop(handle);
4469                         return error;
4470                 }
4471                 /* Update corresponding info in inode so that everything is in
4472                  * one transaction */
4473                 if (attr->ia_valid & ATTR_UID)
4474                         inode->i_uid = attr->ia_uid;
4475                 if (attr->ia_valid & ATTR_GID)
4476                         inode->i_gid = attr->ia_gid;
4477                 error = ext4_mark_inode_dirty(handle, inode);
4478                 ext4_journal_stop(handle);
4479         }
4480
4481         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4482                 handle_t *handle;
4483
4484                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4485                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4486
4487                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4488                                 return -EFBIG;
4489                 }
4490
4491                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4492                         inode_inc_iversion(inode);
4493
4494                 if (S_ISREG(inode->i_mode) &&
4495                     (attr->ia_size < inode->i_size)) {
4496                         if (ext4_should_order_data(inode)) {
4497                                 error = ext4_begin_ordered_truncate(inode,
4498                                                             attr->ia_size);
4499                                 if (error)
4500                                         goto err_out;
4501                         }
4502                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4503                         if (IS_ERR(handle)) {
4504                                 error = PTR_ERR(handle);
4505                                 goto err_out;
4506                         }
4507                         if (ext4_handle_valid(handle)) {
4508                                 error = ext4_orphan_add(handle, inode);
4509                                 orphan = 1;
4510                         }
4511                         down_write(&EXT4_I(inode)->i_data_sem);
4512                         EXT4_I(inode)->i_disksize = attr->ia_size;
4513                         rc = ext4_mark_inode_dirty(handle, inode);
4514                         if (!error)
4515                                 error = rc;
4516                         /*
4517                          * We have to update i_size under i_data_sem together
4518                          * with i_disksize to avoid races with writeback code
4519                          * running ext4_wb_update_i_disksize().
4520                          */
4521                         if (!error)
4522                                 i_size_write(inode, attr->ia_size);
4523                         up_write(&EXT4_I(inode)->i_data_sem);
4524                         ext4_journal_stop(handle);
4525                         if (error) {
4526                                 ext4_orphan_del(NULL, inode);
4527                                 goto err_out;
4528                         }
4529                 } else
4530                         i_size_write(inode, attr->ia_size);
4531
4532                 /*
4533                  * Blocks are going to be removed from the inode. Wait
4534                  * for dio in flight.  Temporarily disable
4535                  * dioread_nolock to prevent livelock.
4536                  */
4537                 if (orphan) {
4538                         if (!ext4_should_journal_data(inode)) {
4539                                 ext4_inode_block_unlocked_dio(inode);
4540                                 inode_dio_wait(inode);
4541                                 ext4_inode_resume_unlocked_dio(inode);
4542                         } else
4543                                 ext4_wait_for_tail_page_commit(inode);
4544                 }
4545                 /*
4546                  * Truncate pagecache after we've waited for commit
4547                  * in data=journal mode to make pages freeable.
4548                  */
4549                         truncate_pagecache(inode, inode->i_size);
4550         }
4551         /*
4552          * We want to call ext4_truncate() even if attr->ia_size ==
4553          * inode->i_size for cases like truncation of fallocated space
4554          */
4555         if (attr->ia_valid & ATTR_SIZE)
4556                 ext4_truncate(inode);
4557
4558         if (!rc) {
4559                 setattr_copy(inode, attr);
4560                 mark_inode_dirty(inode);
4561         }
4562
4563         /*
4564          * If the call to ext4_truncate failed to get a transaction handle at
4565          * all, we need to clean up the in-core orphan list manually.
4566          */
4567         if (orphan && inode->i_nlink)
4568                 ext4_orphan_del(NULL, inode);
4569
4570         if (!rc && (ia_valid & ATTR_MODE))
4571                 rc = posix_acl_chmod(inode, inode->i_mode);
4572
4573 err_out:
4574         ext4_std_error(inode->i_sb, error);
4575         if (!error)
4576                 error = rc;
4577         return error;
4578 }
4579
4580 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4581                  struct kstat *stat)
4582 {
4583         struct inode *inode;
4584         unsigned long long delalloc_blocks;
4585
4586         inode = dentry->d_inode;
4587         generic_fillattr(inode, stat);
4588
4589         /*
4590          * If there is inline data in the inode, the inode will normally not
4591          * have data blocks allocated (it may have an external xattr block).
4592          * Report at least one sector for such files, so tools like tar, rsync,
4593          * others doen't incorrectly think the file is completely sparse.
4594          */
4595         if (unlikely(ext4_has_inline_data(inode)))
4596                 stat->blocks += (stat->size + 511) >> 9;
4597
4598         /*
4599          * We can't update i_blocks if the block allocation is delayed
4600          * otherwise in the case of system crash before the real block
4601          * allocation is done, we will have i_blocks inconsistent with
4602          * on-disk file blocks.
4603          * We always keep i_blocks updated together with real
4604          * allocation. But to not confuse with user, stat
4605          * will return the blocks that include the delayed allocation
4606          * blocks for this file.
4607          */
4608         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4609                                    EXT4_I(inode)->i_reserved_data_blocks);
4610         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4611         return 0;
4612 }
4613
4614 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4615                                    int pextents)
4616 {
4617         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4618                 return ext4_ind_trans_blocks(inode, lblocks);
4619         return ext4_ext_index_trans_blocks(inode, pextents);
4620 }
4621
4622 /*
4623  * Account for index blocks, block groups bitmaps and block group
4624  * descriptor blocks if modify datablocks and index blocks
4625  * worse case, the indexs blocks spread over different block groups
4626  *
4627  * If datablocks are discontiguous, they are possible to spread over
4628  * different block groups too. If they are contiguous, with flexbg,
4629  * they could still across block group boundary.
4630  *
4631  * Also account for superblock, inode, quota and xattr blocks
4632  */
4633 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4634                                   int pextents)
4635 {
4636         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4637         int gdpblocks;
4638         int idxblocks;
4639         int ret = 0;
4640
4641         /*
4642          * How many index blocks need to touch to map @lblocks logical blocks
4643          * to @pextents physical extents?
4644          */
4645         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4646
4647         ret = idxblocks;
4648
4649         /*
4650          * Now let's see how many group bitmaps and group descriptors need
4651          * to account
4652          */
4653         groups = idxblocks + pextents;
4654         gdpblocks = groups;
4655         if (groups > ngroups)
4656                 groups = ngroups;
4657         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4658                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4659
4660         /* bitmaps and block group descriptor blocks */
4661         ret += groups + gdpblocks;
4662
4663         /* Blocks for super block, inode, quota and xattr blocks */
4664         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4665
4666         return ret;
4667 }
4668
4669 /*
4670  * Calculate the total number of credits to reserve to fit
4671  * the modification of a single pages into a single transaction,
4672  * which may include multiple chunks of block allocations.
4673  *
4674  * This could be called via ext4_write_begin()
4675  *
4676  * We need to consider the worse case, when
4677  * one new block per extent.
4678  */
4679 int ext4_writepage_trans_blocks(struct inode *inode)
4680 {
4681         int bpp = ext4_journal_blocks_per_page(inode);
4682         int ret;
4683
4684         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4685
4686         /* Account for data blocks for journalled mode */
4687         if (ext4_should_journal_data(inode))
4688                 ret += bpp;
4689         return ret;
4690 }
4691
4692 /*
4693  * Calculate the journal credits for a chunk of data modification.
4694  *
4695  * This is called from DIO, fallocate or whoever calling
4696  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4697  *
4698  * journal buffers for data blocks are not included here, as DIO
4699  * and fallocate do no need to journal data buffers.
4700  */
4701 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4702 {
4703         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4704 }
4705
4706 /*
4707  * The caller must have previously called ext4_reserve_inode_write().
4708  * Give this, we know that the caller already has write access to iloc->bh.
4709  */
4710 int ext4_mark_iloc_dirty(handle_t *handle,
4711                          struct inode *inode, struct ext4_iloc *iloc)
4712 {
4713         int err = 0;
4714
4715         if (IS_I_VERSION(inode))
4716                 inode_inc_iversion(inode);
4717
4718         /* the do_update_inode consumes one bh->b_count */
4719         get_bh(iloc->bh);
4720
4721         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4722         err = ext4_do_update_inode(handle, inode, iloc);
4723         put_bh(iloc->bh);
4724         return err;
4725 }
4726
4727 /*
4728  * On success, We end up with an outstanding reference count against
4729  * iloc->bh.  This _must_ be cleaned up later.
4730  */
4731
4732 int
4733 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4734                          struct ext4_iloc *iloc)
4735 {
4736         int err;
4737
4738         err = ext4_get_inode_loc(inode, iloc);
4739         if (!err) {
4740                 BUFFER_TRACE(iloc->bh, "get_write_access");
4741                 err = ext4_journal_get_write_access(handle, iloc->bh);
4742                 if (err) {
4743                         brelse(iloc->bh);
4744                         iloc->bh = NULL;
4745                 }
4746         }
4747         ext4_std_error(inode->i_sb, err);
4748         return err;
4749 }
4750
4751 /*
4752  * Expand an inode by new_extra_isize bytes.
4753  * Returns 0 on success or negative error number on failure.
4754  */
4755 static int ext4_expand_extra_isize(struct inode *inode,
4756                                    unsigned int new_extra_isize,
4757                                    struct ext4_iloc iloc,
4758                                    handle_t *handle)
4759 {
4760         struct ext4_inode *raw_inode;
4761         struct ext4_xattr_ibody_header *header;
4762
4763         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4764                 return 0;
4765
4766         raw_inode = ext4_raw_inode(&iloc);
4767
4768         header = IHDR(inode, raw_inode);
4769
4770         /* No extended attributes present */
4771         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4772             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4773                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4774                         new_extra_isize);
4775                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4776                 return 0;
4777         }
4778
4779         /* try to expand with EAs present */
4780         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4781                                           raw_inode, handle);
4782 }
4783
4784 /*
4785  * What we do here is to mark the in-core inode as clean with respect to inode
4786  * dirtiness (it may still be data-dirty).
4787  * This means that the in-core inode may be reaped by prune_icache
4788  * without having to perform any I/O.  This is a very good thing,
4789  * because *any* task may call prune_icache - even ones which
4790  * have a transaction open against a different journal.
4791  *
4792  * Is this cheating?  Not really.  Sure, we haven't written the
4793  * inode out, but prune_icache isn't a user-visible syncing function.
4794  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4795  * we start and wait on commits.
4796  */
4797 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4798 {
4799         struct ext4_iloc iloc;
4800         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4801         static unsigned int mnt_count;
4802         int err, ret;
4803
4804         might_sleep();
4805         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4806         err = ext4_reserve_inode_write(handle, inode, &iloc);
4807         if (ext4_handle_valid(handle) &&
4808             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4809             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4810                 /*
4811                  * We need extra buffer credits since we may write into EA block
4812                  * with this same handle. If journal_extend fails, then it will
4813                  * only result in a minor loss of functionality for that inode.
4814                  * If this is felt to be critical, then e2fsck should be run to
4815                  * force a large enough s_min_extra_isize.
4816                  */
4817                 if ((jbd2_journal_extend(handle,
4818                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4819                         ret = ext4_expand_extra_isize(inode,
4820                                                       sbi->s_want_extra_isize,
4821                                                       iloc, handle);
4822                         if (ret) {
4823                                 ext4_set_inode_state(inode,
4824                                                      EXT4_STATE_NO_EXPAND);
4825                                 if (mnt_count !=
4826                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4827                                         ext4_warning(inode->i_sb,
4828                                         "Unable to expand inode %lu. Delete"
4829                                         " some EAs or run e2fsck.",
4830                                         inode->i_ino);
4831                                         mnt_count =
4832                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4833                                 }
4834                         }
4835                 }
4836         }
4837         if (!err)
4838                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4839         return err;
4840 }
4841
4842 /*
4843  * ext4_dirty_inode() is called from __mark_inode_dirty()
4844  *
4845  * We're really interested in the case where a file is being extended.
4846  * i_size has been changed by generic_commit_write() and we thus need
4847  * to include the updated inode in the current transaction.
4848  *
4849  * Also, dquot_alloc_block() will always dirty the inode when blocks
4850  * are allocated to the file.
4851  *
4852  * If the inode is marked synchronous, we don't honour that here - doing
4853  * so would cause a commit on atime updates, which we don't bother doing.
4854  * We handle synchronous inodes at the highest possible level.
4855  */
4856 void ext4_dirty_inode(struct inode *inode, int flags)
4857 {
4858         handle_t *handle;
4859
4860         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4861         if (IS_ERR(handle))
4862                 goto out;
4863
4864         ext4_mark_inode_dirty(handle, inode);
4865
4866         ext4_journal_stop(handle);
4867 out:
4868         return;
4869 }
4870
4871 #if 0
4872 /*
4873  * Bind an inode's backing buffer_head into this transaction, to prevent
4874  * it from being flushed to disk early.  Unlike
4875  * ext4_reserve_inode_write, this leaves behind no bh reference and
4876  * returns no iloc structure, so the caller needs to repeat the iloc
4877  * lookup to mark the inode dirty later.
4878  */
4879 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4880 {
4881         struct ext4_iloc iloc;
4882
4883         int err = 0;
4884         if (handle) {
4885                 err = ext4_get_inode_loc(inode, &iloc);
4886                 if (!err) {
4887                         BUFFER_TRACE(iloc.bh, "get_write_access");
4888                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4889                         if (!err)
4890                                 err = ext4_handle_dirty_metadata(handle,
4891                                                                  NULL,
4892                                                                  iloc.bh);
4893                         brelse(iloc.bh);
4894                 }
4895         }
4896         ext4_std_error(inode->i_sb, err);
4897         return err;
4898 }
4899 #endif
4900
4901 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4902 {
4903         journal_t *journal;
4904         handle_t *handle;
4905         int err;
4906
4907         /*
4908          * We have to be very careful here: changing a data block's
4909          * journaling status dynamically is dangerous.  If we write a
4910          * data block to the journal, change the status and then delete
4911          * that block, we risk forgetting to revoke the old log record
4912          * from the journal and so a subsequent replay can corrupt data.
4913          * So, first we make sure that the journal is empty and that
4914          * nobody is changing anything.
4915          */
4916
4917         journal = EXT4_JOURNAL(inode);
4918         if (!journal)
4919                 return 0;
4920         if (is_journal_aborted(journal))
4921                 return -EROFS;
4922         /* We have to allocate physical blocks for delalloc blocks
4923          * before flushing journal. otherwise delalloc blocks can not
4924          * be allocated any more. even more truncate on delalloc blocks
4925          * could trigger BUG by flushing delalloc blocks in journal.
4926          * There is no delalloc block in non-journal data mode.
4927          */
4928         if (val && test_opt(inode->i_sb, DELALLOC)) {
4929                 err = ext4_alloc_da_blocks(inode);
4930                 if (err < 0)
4931                         return err;
4932         }
4933
4934         /* Wait for all existing dio workers */
4935         ext4_inode_block_unlocked_dio(inode);
4936         inode_dio_wait(inode);
4937
4938         jbd2_journal_lock_updates(journal);
4939
4940         /*
4941          * OK, there are no updates running now, and all cached data is
4942          * synced to disk.  We are now in a completely consistent state
4943          * which doesn't have anything in the journal, and we know that
4944          * no filesystem updates are running, so it is safe to modify
4945          * the inode's in-core data-journaling state flag now.
4946          */
4947
4948         if (val)
4949                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4950         else {
4951                 jbd2_journal_flush(journal);
4952                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4953         }
4954         ext4_set_aops(inode);
4955
4956         jbd2_journal_unlock_updates(journal);
4957         ext4_inode_resume_unlocked_dio(inode);
4958
4959         /* Finally we can mark the inode as dirty. */
4960
4961         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4962         if (IS_ERR(handle))
4963                 return PTR_ERR(handle);
4964
4965         err = ext4_mark_inode_dirty(handle, inode);
4966         ext4_handle_sync(handle);
4967         ext4_journal_stop(handle);
4968         ext4_std_error(inode->i_sb, err);
4969
4970         return err;
4971 }
4972
4973 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4974 {
4975         return !buffer_mapped(bh);
4976 }
4977
4978 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4979 {
4980         struct page *page = vmf->page;
4981         loff_t size;
4982         unsigned long len;
4983         int ret;
4984         struct file *file = vma->vm_file;
4985         struct inode *inode = file_inode(file);
4986         struct address_space *mapping = inode->i_mapping;
4987         handle_t *handle;
4988         get_block_t *get_block;
4989         int retries = 0;
4990
4991         sb_start_pagefault(inode->i_sb);
4992         file_update_time(vma->vm_file);
4993         /* Delalloc case is easy... */
4994         if (test_opt(inode->i_sb, DELALLOC) &&
4995             !ext4_should_journal_data(inode) &&
4996             !ext4_nonda_switch(inode->i_sb)) {
4997                 do {
4998                         ret = __block_page_mkwrite(vma, vmf,
4999                                                    ext4_da_get_block_prep);
5000                 } while (ret == -ENOSPC &&
5001                        ext4_should_retry_alloc(inode->i_sb, &retries));
5002                 goto out_ret;
5003         }
5004
5005         lock_page(page);
5006         size = i_size_read(inode);
5007         /* Page got truncated from under us? */
5008         if (page->mapping != mapping || page_offset(page) > size) {
5009                 unlock_page(page);
5010                 ret = VM_FAULT_NOPAGE;
5011                 goto out;
5012         }
5013
5014         if (page->index == size >> PAGE_CACHE_SHIFT)
5015                 len = size & ~PAGE_CACHE_MASK;
5016         else
5017                 len = PAGE_CACHE_SIZE;
5018         /*
5019          * Return if we have all the buffers mapped. This avoids the need to do
5020          * journal_start/journal_stop which can block and take a long time
5021          */
5022         if (page_has_buffers(page)) {
5023                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5024                                             0, len, NULL,
5025                                             ext4_bh_unmapped)) {
5026                         /* Wait so that we don't change page under IO */
5027                         wait_for_stable_page(page);
5028                         ret = VM_FAULT_LOCKED;
5029                         goto out;
5030                 }
5031         }
5032         unlock_page(page);
5033         /* OK, we need to fill the hole... */
5034         if (ext4_should_dioread_nolock(inode))
5035                 get_block = ext4_get_block_write;
5036         else
5037                 get_block = ext4_get_block;
5038 retry_alloc:
5039         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5040                                     ext4_writepage_trans_blocks(inode));
5041         if (IS_ERR(handle)) {
5042                 ret = VM_FAULT_SIGBUS;
5043                 goto out;
5044         }
5045         ret = __block_page_mkwrite(vma, vmf, get_block);
5046         if (!ret && ext4_should_journal_data(inode)) {
5047                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5048                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5049                         unlock_page(page);
5050                         ret = VM_FAULT_SIGBUS;
5051                         ext4_journal_stop(handle);
5052                         goto out;
5053                 }
5054                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5055         }
5056         ext4_journal_stop(handle);
5057         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5058                 goto retry_alloc;
5059 out_ret:
5060         ret = block_page_mkwrite_return(ret);
5061 out:
5062         sb_end_pagefault(inode->i_sb);
5063         return ret;
5064 }