ext4: revert "ext4: use io_end for multiple bios"
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = le16_to_cpu(raw->i_checksum_lo);
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = cpu_to_le16(csum_lo);
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138                 struct inode *inode, struct page *page, loff_t from,
139                 loff_t length, int flags);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 (inode->i_sb->s_blocksize >> 9) : 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         if (inode->i_nlink) {
189                 /*
190                  * When journalling data dirty buffers are tracked only in the
191                  * journal. So although mm thinks everything is clean and
192                  * ready for reaping the inode might still have some pages to
193                  * write in the running transaction or waiting to be
194                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
195                  * (via truncate_inode_pages()) to discard these buffers can
196                  * cause data loss. Also even if we did not discard these
197                  * buffers, we would have no way to find them after the inode
198                  * is reaped and thus user could see stale data if he tries to
199                  * read them before the transaction is checkpointed. So be
200                  * careful and force everything to disk here... We use
201                  * ei->i_datasync_tid to store the newest transaction
202                  * containing inode's data.
203                  *
204                  * Note that directories do not have this problem because they
205                  * don't use page cache.
206                  */
207                 if (ext4_should_journal_data(inode) &&
208                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209                     inode->i_ino != EXT4_JOURNAL_INO) {
210                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
213                         jbd2_complete_transaction(journal, commit_tid);
214                         filemap_write_and_wait(&inode->i_data);
215                 }
216                 truncate_inode_pages(&inode->i_data, 0);
217                 ext4_ioend_shutdown(inode);
218                 goto no_delete;
219         }
220
221         if (!is_bad_inode(inode))
222                 dquot_initialize(inode);
223
224         if (ext4_should_order_data(inode))
225                 ext4_begin_ordered_truncate(inode, 0);
226         truncate_inode_pages(&inode->i_data, 0);
227         ext4_ioend_shutdown(inode);
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238                                     ext4_blocks_for_truncate(inode)+3);
239         if (IS_ERR(handle)) {
240                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241                 /*
242                  * If we're going to skip the normal cleanup, we still need to
243                  * make sure that the in-core orphan linked list is properly
244                  * cleaned up.
245                  */
246                 ext4_orphan_del(NULL, inode);
247                 sb_end_intwrite(inode->i_sb);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 ext4_handle_sync(handle);
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks)
261                 ext4_truncate(inode);
262
263         /*
264          * ext4_ext_truncate() doesn't reserve any slop when it
265          * restarts journal transactions; therefore there may not be
266          * enough credits left in the handle to remove the inode from
267          * the orphan list and set the dtime field.
268          */
269         if (!ext4_handle_has_enough_credits(handle, 3)) {
270                 err = ext4_journal_extend(handle, 3);
271                 if (err > 0)
272                         err = ext4_journal_restart(handle, 3);
273                 if (err != 0) {
274                         ext4_warning(inode->i_sb,
275                                      "couldn't extend journal (err %d)", err);
276                 stop_handle:
277                         ext4_journal_stop(handle);
278                         ext4_orphan_del(NULL, inode);
279                         sb_end_intwrite(inode->i_sb);
280                         goto no_delete;
281                 }
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = get_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         sb_end_intwrite(inode->i_sb);
309         return;
310 no_delete:
311         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317         return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322  * Calculate the number of metadata blocks need to reserve
323  * to allocate a block located at @lblock
324  */
325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326 {
327         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328                 return ext4_ext_calc_metadata_amount(inode, lblock);
329
330         return ext4_ind_calc_metadata_amount(inode, lblock);
331 }
332
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338                                         int used, int quota_claim)
339 {
340         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341         struct ext4_inode_info *ei = EXT4_I(inode);
342
343         spin_lock(&ei->i_block_reservation_lock);
344         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345         if (unlikely(used > ei->i_reserved_data_blocks)) {
346                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347                          "with only %d reserved data blocks",
348                          __func__, inode->i_ino, used,
349                          ei->i_reserved_data_blocks);
350                 WARN_ON(1);
351                 used = ei->i_reserved_data_blocks;
352         }
353
354         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356                         "with only %d reserved metadata blocks "
357                         "(releasing %d blocks with reserved %d data blocks)",
358                         inode->i_ino, ei->i_allocated_meta_blocks,
359                              ei->i_reserved_meta_blocks, used,
360                              ei->i_reserved_data_blocks);
361                 WARN_ON(1);
362                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363         }
364
365         /* Update per-inode reservations */
366         ei->i_reserved_data_blocks -= used;
367         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369                            used + ei->i_allocated_meta_blocks);
370         ei->i_allocated_meta_blocks = 0;
371
372         if (ei->i_reserved_data_blocks == 0) {
373                 /*
374                  * We can release all of the reserved metadata blocks
375                  * only when we have written all of the delayed
376                  * allocation blocks.
377                  */
378                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379                                    ei->i_reserved_meta_blocks);
380                 ei->i_reserved_meta_blocks = 0;
381                 ei->i_da_metadata_calc_len = 0;
382         }
383         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384
385         /* Update quota subsystem for data blocks */
386         if (quota_claim)
387                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
388         else {
389                 /*
390                  * We did fallocate with an offset that is already delayed
391                  * allocated. So on delayed allocated writeback we should
392                  * not re-claim the quota for fallocated blocks.
393                  */
394                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395         }
396
397         /*
398          * If we have done all the pending block allocations and if
399          * there aren't any writers on the inode, we can discard the
400          * inode's preallocations.
401          */
402         if ((ei->i_reserved_data_blocks == 0) &&
403             (atomic_read(&inode->i_writecount) == 0))
404                 ext4_discard_preallocations(inode);
405 }
406
407 static int __check_block_validity(struct inode *inode, const char *func,
408                                 unsigned int line,
409                                 struct ext4_map_blocks *map)
410 {
411         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412                                    map->m_len)) {
413                 ext4_error_inode(inode, func, line, map->m_pblk,
414                                  "lblock %lu mapped to illegal pblock "
415                                  "(length %d)", (unsigned long) map->m_lblk,
416                                  map->m_len);
417                 return -EIO;
418         }
419         return 0;
420 }
421
422 #define check_block_validity(inode, map)        \
423         __check_block_validity((inode), __func__, __LINE__, (map))
424
425 /*
426  * Return the number of contiguous dirty pages in a given inode
427  * starting at page frame idx.
428  */
429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430                                     unsigned int max_pages)
431 {
432         struct address_space *mapping = inode->i_mapping;
433         pgoff_t index;
434         struct pagevec pvec;
435         pgoff_t num = 0;
436         int i, nr_pages, done = 0;
437
438         if (max_pages == 0)
439                 return 0;
440         pagevec_init(&pvec, 0);
441         while (!done) {
442                 index = idx;
443                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444                                               PAGECACHE_TAG_DIRTY,
445                                               (pgoff_t)PAGEVEC_SIZE);
446                 if (nr_pages == 0)
447                         break;
448                 for (i = 0; i < nr_pages; i++) {
449                         struct page *page = pvec.pages[i];
450                         struct buffer_head *bh, *head;
451
452                         lock_page(page);
453                         if (unlikely(page->mapping != mapping) ||
454                             !PageDirty(page) ||
455                             PageWriteback(page) ||
456                             page->index != idx) {
457                                 done = 1;
458                                 unlock_page(page);
459                                 break;
460                         }
461                         if (page_has_buffers(page)) {
462                                 bh = head = page_buffers(page);
463                                 do {
464                                         if (!buffer_delay(bh) &&
465                                             !buffer_unwritten(bh))
466                                                 done = 1;
467                                         bh = bh->b_this_page;
468                                 } while (!done && (bh != head));
469                         }
470                         unlock_page(page);
471                         if (done)
472                                 break;
473                         idx++;
474                         num++;
475                         if (num >= max_pages) {
476                                 done = 1;
477                                 break;
478                         }
479                 }
480                 pagevec_release(&pvec);
481         }
482         return num;
483 }
484
485 #ifdef ES_AGGRESSIVE_TEST
486 static void ext4_map_blocks_es_recheck(handle_t *handle,
487                                        struct inode *inode,
488                                        struct ext4_map_blocks *es_map,
489                                        struct ext4_map_blocks *map,
490                                        int flags)
491 {
492         int retval;
493
494         map->m_flags = 0;
495         /*
496          * There is a race window that the result is not the same.
497          * e.g. xfstests #223 when dioread_nolock enables.  The reason
498          * is that we lookup a block mapping in extent status tree with
499          * out taking i_data_sem.  So at the time the unwritten extent
500          * could be converted.
501          */
502         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
503                 down_read((&EXT4_I(inode)->i_data_sem));
504         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
505                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
506                                              EXT4_GET_BLOCKS_KEEP_SIZE);
507         } else {
508                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
509                                              EXT4_GET_BLOCKS_KEEP_SIZE);
510         }
511         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512                 up_read((&EXT4_I(inode)->i_data_sem));
513         /*
514          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
515          * because it shouldn't be marked in es_map->m_flags.
516          */
517         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
518
519         /*
520          * We don't check m_len because extent will be collpased in status
521          * tree.  So the m_len might not equal.
522          */
523         if (es_map->m_lblk != map->m_lblk ||
524             es_map->m_flags != map->m_flags ||
525             es_map->m_pblk != map->m_pblk) {
526                 printk("ES cache assertation failed for inode: %lu "
527                        "es_cached ex [%d/%d/%llu/%x] != "
528                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
529                        inode->i_ino, es_map->m_lblk, es_map->m_len,
530                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
531                        map->m_len, map->m_pblk, map->m_flags,
532                        retval, flags);
533         }
534 }
535 #endif /* ES_AGGRESSIVE_TEST */
536
537 /*
538  * The ext4_map_blocks() function tries to look up the requested blocks,
539  * and returns if the blocks are already mapped.
540  *
541  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
542  * and store the allocated blocks in the result buffer head and mark it
543  * mapped.
544  *
545  * If file type is extents based, it will call ext4_ext_map_blocks(),
546  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
547  * based files
548  *
549  * On success, it returns the number of blocks being mapped or allocate.
550  * if create==0 and the blocks are pre-allocated and uninitialized block,
551  * the result buffer head is unmapped. If the create ==1, it will make sure
552  * the buffer head is mapped.
553  *
554  * It returns 0 if plain look up failed (blocks have not been allocated), in
555  * that case, buffer head is unmapped
556  *
557  * It returns the error in case of allocation failure.
558  */
559 int ext4_map_blocks(handle_t *handle, struct inode *inode,
560                     struct ext4_map_blocks *map, int flags)
561 {
562         struct extent_status es;
563         int retval;
564 #ifdef ES_AGGRESSIVE_TEST
565         struct ext4_map_blocks orig_map;
566
567         memcpy(&orig_map, map, sizeof(*map));
568 #endif
569
570         map->m_flags = 0;
571         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
572                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
573                   (unsigned long) map->m_lblk);
574
575         /* Lookup extent status tree firstly */
576         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
577                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
578                         map->m_pblk = ext4_es_pblock(&es) +
579                                         map->m_lblk - es.es_lblk;
580                         map->m_flags |= ext4_es_is_written(&es) ?
581                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
582                         retval = es.es_len - (map->m_lblk - es.es_lblk);
583                         if (retval > map->m_len)
584                                 retval = map->m_len;
585                         map->m_len = retval;
586                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
587                         retval = 0;
588                 } else {
589                         BUG_ON(1);
590                 }
591 #ifdef ES_AGGRESSIVE_TEST
592                 ext4_map_blocks_es_recheck(handle, inode, map,
593                                            &orig_map, flags);
594 #endif
595                 goto found;
596         }
597
598         /*
599          * Try to see if we can get the block without requesting a new
600          * file system block.
601          */
602         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
603                 down_read((&EXT4_I(inode)->i_data_sem));
604         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
605                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
606                                              EXT4_GET_BLOCKS_KEEP_SIZE);
607         } else {
608                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
609                                              EXT4_GET_BLOCKS_KEEP_SIZE);
610         }
611         if (retval > 0) {
612                 int ret;
613                 unsigned long long status;
614
615 #ifdef ES_AGGRESSIVE_TEST
616                 if (retval != map->m_len) {
617                         printk("ES len assertation failed for inode: %lu "
618                                "retval %d != map->m_len %d "
619                                "in %s (lookup)\n", inode->i_ino, retval,
620                                map->m_len, __func__);
621                 }
622 #endif
623
624                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
625                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
626                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
627                     ext4_find_delalloc_range(inode, map->m_lblk,
628                                              map->m_lblk + map->m_len - 1))
629                         status |= EXTENT_STATUS_DELAYED;
630                 ret = ext4_es_insert_extent(inode, map->m_lblk,
631                                             map->m_len, map->m_pblk, status);
632                 if (ret < 0)
633                         retval = ret;
634         }
635         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
636                 up_read((&EXT4_I(inode)->i_data_sem));
637
638 found:
639         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
640                 int ret = check_block_validity(inode, map);
641                 if (ret != 0)
642                         return ret;
643         }
644
645         /* If it is only a block(s) look up */
646         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
647                 return retval;
648
649         /*
650          * Returns if the blocks have already allocated
651          *
652          * Note that if blocks have been preallocated
653          * ext4_ext_get_block() returns the create = 0
654          * with buffer head unmapped.
655          */
656         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
657                 return retval;
658
659         /*
660          * Here we clear m_flags because after allocating an new extent,
661          * it will be set again.
662          */
663         map->m_flags &= ~EXT4_MAP_FLAGS;
664
665         /*
666          * New blocks allocate and/or writing to uninitialized extent
667          * will possibly result in updating i_data, so we take
668          * the write lock of i_data_sem, and call get_blocks()
669          * with create == 1 flag.
670          */
671         down_write((&EXT4_I(inode)->i_data_sem));
672
673         /*
674          * if the caller is from delayed allocation writeout path
675          * we have already reserved fs blocks for allocation
676          * let the underlying get_block() function know to
677          * avoid double accounting
678          */
679         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
680                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
681         /*
682          * We need to check for EXT4 here because migrate
683          * could have changed the inode type in between
684          */
685         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
686                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
687         } else {
688                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
689
690                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
691                         /*
692                          * We allocated new blocks which will result in
693                          * i_data's format changing.  Force the migrate
694                          * to fail by clearing migrate flags
695                          */
696                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
697                 }
698
699                 /*
700                  * Update reserved blocks/metadata blocks after successful
701                  * block allocation which had been deferred till now. We don't
702                  * support fallocate for non extent files. So we can update
703                  * reserve space here.
704                  */
705                 if ((retval > 0) &&
706                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
707                         ext4_da_update_reserve_space(inode, retval, 1);
708         }
709         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
710                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
711
712         if (retval > 0) {
713                 int ret;
714                 unsigned long long status;
715
716 #ifdef ES_AGGRESSIVE_TEST
717                 if (retval != map->m_len) {
718                         printk("ES len assertation failed for inode: %lu "
719                                "retval %d != map->m_len %d "
720                                "in %s (allocation)\n", inode->i_ino, retval,
721                                map->m_len, __func__);
722                 }
723 #endif
724
725                 /*
726                  * If the extent has been zeroed out, we don't need to update
727                  * extent status tree.
728                  */
729                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
730                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
731                         if (ext4_es_is_written(&es))
732                                 goto has_zeroout;
733                 }
734                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
735                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
736                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
737                     ext4_find_delalloc_range(inode, map->m_lblk,
738                                              map->m_lblk + map->m_len - 1))
739                         status |= EXTENT_STATUS_DELAYED;
740                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
741                                             map->m_pblk, status);
742                 if (ret < 0)
743                         retval = ret;
744         }
745
746 has_zeroout:
747         up_write((&EXT4_I(inode)->i_data_sem));
748         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
749                 int ret = check_block_validity(inode, map);
750                 if (ret != 0)
751                         return ret;
752         }
753         return retval;
754 }
755
756 /* Maximum number of blocks we map for direct IO at once. */
757 #define DIO_MAX_BLOCKS 4096
758
759 static int _ext4_get_block(struct inode *inode, sector_t iblock,
760                            struct buffer_head *bh, int flags)
761 {
762         handle_t *handle = ext4_journal_current_handle();
763         struct ext4_map_blocks map;
764         int ret = 0, started = 0;
765         int dio_credits;
766
767         if (ext4_has_inline_data(inode))
768                 return -ERANGE;
769
770         map.m_lblk = iblock;
771         map.m_len = bh->b_size >> inode->i_blkbits;
772
773         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
774                 /* Direct IO write... */
775                 if (map.m_len > DIO_MAX_BLOCKS)
776                         map.m_len = DIO_MAX_BLOCKS;
777                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
778                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
779                                             dio_credits);
780                 if (IS_ERR(handle)) {
781                         ret = PTR_ERR(handle);
782                         return ret;
783                 }
784                 started = 1;
785         }
786
787         ret = ext4_map_blocks(handle, inode, &map, flags);
788         if (ret > 0) {
789                 map_bh(bh, inode->i_sb, map.m_pblk);
790                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
791                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
792                 ret = 0;
793         }
794         if (started)
795                 ext4_journal_stop(handle);
796         return ret;
797 }
798
799 int ext4_get_block(struct inode *inode, sector_t iblock,
800                    struct buffer_head *bh, int create)
801 {
802         return _ext4_get_block(inode, iblock, bh,
803                                create ? EXT4_GET_BLOCKS_CREATE : 0);
804 }
805
806 /*
807  * `handle' can be NULL if create is zero
808  */
809 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
810                                 ext4_lblk_t block, int create, int *errp)
811 {
812         struct ext4_map_blocks map;
813         struct buffer_head *bh;
814         int fatal = 0, err;
815
816         J_ASSERT(handle != NULL || create == 0);
817
818         map.m_lblk = block;
819         map.m_len = 1;
820         err = ext4_map_blocks(handle, inode, &map,
821                               create ? EXT4_GET_BLOCKS_CREATE : 0);
822
823         /* ensure we send some value back into *errp */
824         *errp = 0;
825
826         if (create && err == 0)
827                 err = -ENOSPC;  /* should never happen */
828         if (err < 0)
829                 *errp = err;
830         if (err <= 0)
831                 return NULL;
832
833         bh = sb_getblk(inode->i_sb, map.m_pblk);
834         if (unlikely(!bh)) {
835                 *errp = -ENOMEM;
836                 return NULL;
837         }
838         if (map.m_flags & EXT4_MAP_NEW) {
839                 J_ASSERT(create != 0);
840                 J_ASSERT(handle != NULL);
841
842                 /*
843                  * Now that we do not always journal data, we should
844                  * keep in mind whether this should always journal the
845                  * new buffer as metadata.  For now, regular file
846                  * writes use ext4_get_block instead, so it's not a
847                  * problem.
848                  */
849                 lock_buffer(bh);
850                 BUFFER_TRACE(bh, "call get_create_access");
851                 fatal = ext4_journal_get_create_access(handle, bh);
852                 if (!fatal && !buffer_uptodate(bh)) {
853                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
854                         set_buffer_uptodate(bh);
855                 }
856                 unlock_buffer(bh);
857                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
858                 err = ext4_handle_dirty_metadata(handle, inode, bh);
859                 if (!fatal)
860                         fatal = err;
861         } else {
862                 BUFFER_TRACE(bh, "not a new buffer");
863         }
864         if (fatal) {
865                 *errp = fatal;
866                 brelse(bh);
867                 bh = NULL;
868         }
869         return bh;
870 }
871
872 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
873                                ext4_lblk_t block, int create, int *err)
874 {
875         struct buffer_head *bh;
876
877         bh = ext4_getblk(handle, inode, block, create, err);
878         if (!bh)
879                 return bh;
880         if (buffer_uptodate(bh))
881                 return bh;
882         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
883         wait_on_buffer(bh);
884         if (buffer_uptodate(bh))
885                 return bh;
886         put_bh(bh);
887         *err = -EIO;
888         return NULL;
889 }
890
891 int ext4_walk_page_buffers(handle_t *handle,
892                            struct buffer_head *head,
893                            unsigned from,
894                            unsigned to,
895                            int *partial,
896                            int (*fn)(handle_t *handle,
897                                      struct buffer_head *bh))
898 {
899         struct buffer_head *bh;
900         unsigned block_start, block_end;
901         unsigned blocksize = head->b_size;
902         int err, ret = 0;
903         struct buffer_head *next;
904
905         for (bh = head, block_start = 0;
906              ret == 0 && (bh != head || !block_start);
907              block_start = block_end, bh = next) {
908                 next = bh->b_this_page;
909                 block_end = block_start + blocksize;
910                 if (block_end <= from || block_start >= to) {
911                         if (partial && !buffer_uptodate(bh))
912                                 *partial = 1;
913                         continue;
914                 }
915                 err = (*fn)(handle, bh);
916                 if (!ret)
917                         ret = err;
918         }
919         return ret;
920 }
921
922 /*
923  * To preserve ordering, it is essential that the hole instantiation and
924  * the data write be encapsulated in a single transaction.  We cannot
925  * close off a transaction and start a new one between the ext4_get_block()
926  * and the commit_write().  So doing the jbd2_journal_start at the start of
927  * prepare_write() is the right place.
928  *
929  * Also, this function can nest inside ext4_writepage().  In that case, we
930  * *know* that ext4_writepage() has generated enough buffer credits to do the
931  * whole page.  So we won't block on the journal in that case, which is good,
932  * because the caller may be PF_MEMALLOC.
933  *
934  * By accident, ext4 can be reentered when a transaction is open via
935  * quota file writes.  If we were to commit the transaction while thus
936  * reentered, there can be a deadlock - we would be holding a quota
937  * lock, and the commit would never complete if another thread had a
938  * transaction open and was blocking on the quota lock - a ranking
939  * violation.
940  *
941  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
942  * will _not_ run commit under these circumstances because handle->h_ref
943  * is elevated.  We'll still have enough credits for the tiny quotafile
944  * write.
945  */
946 int do_journal_get_write_access(handle_t *handle,
947                                 struct buffer_head *bh)
948 {
949         int dirty = buffer_dirty(bh);
950         int ret;
951
952         if (!buffer_mapped(bh) || buffer_freed(bh))
953                 return 0;
954         /*
955          * __block_write_begin() could have dirtied some buffers. Clean
956          * the dirty bit as jbd2_journal_get_write_access() could complain
957          * otherwise about fs integrity issues. Setting of the dirty bit
958          * by __block_write_begin() isn't a real problem here as we clear
959          * the bit before releasing a page lock and thus writeback cannot
960          * ever write the buffer.
961          */
962         if (dirty)
963                 clear_buffer_dirty(bh);
964         ret = ext4_journal_get_write_access(handle, bh);
965         if (!ret && dirty)
966                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
967         return ret;
968 }
969
970 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
971                    struct buffer_head *bh_result, int create);
972 static int ext4_write_begin(struct file *file, struct address_space *mapping,
973                             loff_t pos, unsigned len, unsigned flags,
974                             struct page **pagep, void **fsdata)
975 {
976         struct inode *inode = mapping->host;
977         int ret, needed_blocks;
978         handle_t *handle;
979         int retries = 0;
980         struct page *page;
981         pgoff_t index;
982         unsigned from, to;
983
984         trace_ext4_write_begin(inode, pos, len, flags);
985         /*
986          * Reserve one block more for addition to orphan list in case
987          * we allocate blocks but write fails for some reason
988          */
989         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990         index = pos >> PAGE_CACHE_SHIFT;
991         from = pos & (PAGE_CACHE_SIZE - 1);
992         to = from + len;
993
994         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996                                                     flags, pagep);
997                 if (ret < 0)
998                         return ret;
999                 if (ret == 1)
1000                         return 0;
1001         }
1002
1003         /*
1004          * grab_cache_page_write_begin() can take a long time if the
1005          * system is thrashing due to memory pressure, or if the page
1006          * is being written back.  So grab it first before we start
1007          * the transaction handle.  This also allows us to allocate
1008          * the page (if needed) without using GFP_NOFS.
1009          */
1010 retry_grab:
1011         page = grab_cache_page_write_begin(mapping, index, flags);
1012         if (!page)
1013                 return -ENOMEM;
1014         unlock_page(page);
1015
1016 retry_journal:
1017         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018         if (IS_ERR(handle)) {
1019                 page_cache_release(page);
1020                 return PTR_ERR(handle);
1021         }
1022
1023         lock_page(page);
1024         if (page->mapping != mapping) {
1025                 /* The page got truncated from under us */
1026                 unlock_page(page);
1027                 page_cache_release(page);
1028                 ext4_journal_stop(handle);
1029                 goto retry_grab;
1030         }
1031         wait_on_page_writeback(page);
1032
1033         if (ext4_should_dioread_nolock(inode))
1034                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1035         else
1036                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1037
1038         if (!ret && ext4_should_journal_data(inode)) {
1039                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1040                                              from, to, NULL,
1041                                              do_journal_get_write_access);
1042         }
1043
1044         if (ret) {
1045                 unlock_page(page);
1046                 /*
1047                  * __block_write_begin may have instantiated a few blocks
1048                  * outside i_size.  Trim these off again. Don't need
1049                  * i_size_read because we hold i_mutex.
1050                  *
1051                  * Add inode to orphan list in case we crash before
1052                  * truncate finishes
1053                  */
1054                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1055                         ext4_orphan_add(handle, inode);
1056
1057                 ext4_journal_stop(handle);
1058                 if (pos + len > inode->i_size) {
1059                         ext4_truncate_failed_write(inode);
1060                         /*
1061                          * If truncate failed early the inode might
1062                          * still be on the orphan list; we need to
1063                          * make sure the inode is removed from the
1064                          * orphan list in that case.
1065                          */
1066                         if (inode->i_nlink)
1067                                 ext4_orphan_del(NULL, inode);
1068                 }
1069
1070                 if (ret == -ENOSPC &&
1071                     ext4_should_retry_alloc(inode->i_sb, &retries))
1072                         goto retry_journal;
1073                 page_cache_release(page);
1074                 return ret;
1075         }
1076         *pagep = page;
1077         return ret;
1078 }
1079
1080 /* For write_end() in data=journal mode */
1081 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1082 {
1083         int ret;
1084         if (!buffer_mapped(bh) || buffer_freed(bh))
1085                 return 0;
1086         set_buffer_uptodate(bh);
1087         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1088         clear_buffer_meta(bh);
1089         clear_buffer_prio(bh);
1090         return ret;
1091 }
1092
1093 /*
1094  * We need to pick up the new inode size which generic_commit_write gave us
1095  * `file' can be NULL - eg, when called from page_symlink().
1096  *
1097  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1098  * buffers are managed internally.
1099  */
1100 static int ext4_write_end(struct file *file,
1101                           struct address_space *mapping,
1102                           loff_t pos, unsigned len, unsigned copied,
1103                           struct page *page, void *fsdata)
1104 {
1105         handle_t *handle = ext4_journal_current_handle();
1106         struct inode *inode = mapping->host;
1107         int ret = 0, ret2;
1108         int i_size_changed = 0;
1109
1110         trace_ext4_write_end(inode, pos, len, copied);
1111         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1112                 ret = ext4_jbd2_file_inode(handle, inode);
1113                 if (ret) {
1114                         unlock_page(page);
1115                         page_cache_release(page);
1116                         goto errout;
1117                 }
1118         }
1119
1120         if (ext4_has_inline_data(inode))
1121                 copied = ext4_write_inline_data_end(inode, pos, len,
1122                                                     copied, page);
1123         else
1124                 copied = block_write_end(file, mapping, pos,
1125                                          len, copied, page, fsdata);
1126
1127         /*
1128          * No need to use i_size_read() here, the i_size
1129          * cannot change under us because we hole i_mutex.
1130          *
1131          * But it's important to update i_size while still holding page lock:
1132          * page writeout could otherwise come in and zero beyond i_size.
1133          */
1134         if (pos + copied > inode->i_size) {
1135                 i_size_write(inode, pos + copied);
1136                 i_size_changed = 1;
1137         }
1138
1139         if (pos + copied > EXT4_I(inode)->i_disksize) {
1140                 /* We need to mark inode dirty even if
1141                  * new_i_size is less that inode->i_size
1142                  * but greater than i_disksize. (hint delalloc)
1143                  */
1144                 ext4_update_i_disksize(inode, (pos + copied));
1145                 i_size_changed = 1;
1146         }
1147         unlock_page(page);
1148         page_cache_release(page);
1149
1150         /*
1151          * Don't mark the inode dirty under page lock. First, it unnecessarily
1152          * makes the holding time of page lock longer. Second, it forces lock
1153          * ordering of page lock and transaction start for journaling
1154          * filesystems.
1155          */
1156         if (i_size_changed)
1157                 ext4_mark_inode_dirty(handle, inode);
1158
1159         if (copied < 0)
1160                 ret = copied;
1161         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1162                 /* if we have allocated more blocks and copied
1163                  * less. We will have blocks allocated outside
1164                  * inode->i_size. So truncate them
1165                  */
1166                 ext4_orphan_add(handle, inode);
1167 errout:
1168         ret2 = ext4_journal_stop(handle);
1169         if (!ret)
1170                 ret = ret2;
1171
1172         if (pos + len > inode->i_size) {
1173                 ext4_truncate_failed_write(inode);
1174                 /*
1175                  * If truncate failed early the inode might still be
1176                  * on the orphan list; we need to make sure the inode
1177                  * is removed from the orphan list in that case.
1178                  */
1179                 if (inode->i_nlink)
1180                         ext4_orphan_del(NULL, inode);
1181         }
1182
1183         return ret ? ret : copied;
1184 }
1185
1186 static int ext4_journalled_write_end(struct file *file,
1187                                      struct address_space *mapping,
1188                                      loff_t pos, unsigned len, unsigned copied,
1189                                      struct page *page, void *fsdata)
1190 {
1191         handle_t *handle = ext4_journal_current_handle();
1192         struct inode *inode = mapping->host;
1193         int ret = 0, ret2;
1194         int partial = 0;
1195         unsigned from, to;
1196         loff_t new_i_size;
1197
1198         trace_ext4_journalled_write_end(inode, pos, len, copied);
1199         from = pos & (PAGE_CACHE_SIZE - 1);
1200         to = from + len;
1201
1202         BUG_ON(!ext4_handle_valid(handle));
1203
1204         if (ext4_has_inline_data(inode))
1205                 copied = ext4_write_inline_data_end(inode, pos, len,
1206                                                     copied, page);
1207         else {
1208                 if (copied < len) {
1209                         if (!PageUptodate(page))
1210                                 copied = 0;
1211                         page_zero_new_buffers(page, from+copied, to);
1212                 }
1213
1214                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1215                                              to, &partial, write_end_fn);
1216                 if (!partial)
1217                         SetPageUptodate(page);
1218         }
1219         new_i_size = pos + copied;
1220         if (new_i_size > inode->i_size)
1221                 i_size_write(inode, pos+copied);
1222         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1223         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1224         if (new_i_size > EXT4_I(inode)->i_disksize) {
1225                 ext4_update_i_disksize(inode, new_i_size);
1226                 ret2 = ext4_mark_inode_dirty(handle, inode);
1227                 if (!ret)
1228                         ret = ret2;
1229         }
1230
1231         unlock_page(page);
1232         page_cache_release(page);
1233         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1234                 /* if we have allocated more blocks and copied
1235                  * less. We will have blocks allocated outside
1236                  * inode->i_size. So truncate them
1237                  */
1238                 ext4_orphan_add(handle, inode);
1239
1240         ret2 = ext4_journal_stop(handle);
1241         if (!ret)
1242                 ret = ret2;
1243         if (pos + len > inode->i_size) {
1244                 ext4_truncate_failed_write(inode);
1245                 /*
1246                  * If truncate failed early the inode might still be
1247                  * on the orphan list; we need to make sure the inode
1248                  * is removed from the orphan list in that case.
1249                  */
1250                 if (inode->i_nlink)
1251                         ext4_orphan_del(NULL, inode);
1252         }
1253
1254         return ret ? ret : copied;
1255 }
1256
1257 /*
1258  * Reserve a metadata for a single block located at lblock
1259  */
1260 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1261 {
1262         int retries = 0;
1263         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1264         struct ext4_inode_info *ei = EXT4_I(inode);
1265         unsigned int md_needed;
1266         ext4_lblk_t save_last_lblock;
1267         int save_len;
1268
1269         /*
1270          * recalculate the amount of metadata blocks to reserve
1271          * in order to allocate nrblocks
1272          * worse case is one extent per block
1273          */
1274 repeat:
1275         spin_lock(&ei->i_block_reservation_lock);
1276         /*
1277          * ext4_calc_metadata_amount() has side effects, which we have
1278          * to be prepared undo if we fail to claim space.
1279          */
1280         save_len = ei->i_da_metadata_calc_len;
1281         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1282         md_needed = EXT4_NUM_B2C(sbi,
1283                                  ext4_calc_metadata_amount(inode, lblock));
1284         trace_ext4_da_reserve_space(inode, md_needed);
1285
1286         /*
1287          * We do still charge estimated metadata to the sb though;
1288          * we cannot afford to run out of free blocks.
1289          */
1290         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1291                 ei->i_da_metadata_calc_len = save_len;
1292                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1293                 spin_unlock(&ei->i_block_reservation_lock);
1294                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1295                         cond_resched();
1296                         goto repeat;
1297                 }
1298                 return -ENOSPC;
1299         }
1300         ei->i_reserved_meta_blocks += md_needed;
1301         spin_unlock(&ei->i_block_reservation_lock);
1302
1303         return 0;       /* success */
1304 }
1305
1306 /*
1307  * Reserve a single cluster located at lblock
1308  */
1309 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1310 {
1311         int retries = 0;
1312         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1313         struct ext4_inode_info *ei = EXT4_I(inode);
1314         unsigned int md_needed;
1315         int ret;
1316         ext4_lblk_t save_last_lblock;
1317         int save_len;
1318
1319         /*
1320          * We will charge metadata quota at writeout time; this saves
1321          * us from metadata over-estimation, though we may go over by
1322          * a small amount in the end.  Here we just reserve for data.
1323          */
1324         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1325         if (ret)
1326                 return ret;
1327
1328         /*
1329          * recalculate the amount of metadata blocks to reserve
1330          * in order to allocate nrblocks
1331          * worse case is one extent per block
1332          */
1333 repeat:
1334         spin_lock(&ei->i_block_reservation_lock);
1335         /*
1336          * ext4_calc_metadata_amount() has side effects, which we have
1337          * to be prepared undo if we fail to claim space.
1338          */
1339         save_len = ei->i_da_metadata_calc_len;
1340         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1341         md_needed = EXT4_NUM_B2C(sbi,
1342                                  ext4_calc_metadata_amount(inode, lblock));
1343         trace_ext4_da_reserve_space(inode, md_needed);
1344
1345         /*
1346          * We do still charge estimated metadata to the sb though;
1347          * we cannot afford to run out of free blocks.
1348          */
1349         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1350                 ei->i_da_metadata_calc_len = save_len;
1351                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1352                 spin_unlock(&ei->i_block_reservation_lock);
1353                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1354                         cond_resched();
1355                         goto repeat;
1356                 }
1357                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1358                 return -ENOSPC;
1359         }
1360         ei->i_reserved_data_blocks++;
1361         ei->i_reserved_meta_blocks += md_needed;
1362         spin_unlock(&ei->i_block_reservation_lock);
1363
1364         return 0;       /* success */
1365 }
1366
1367 static void ext4_da_release_space(struct inode *inode, int to_free)
1368 {
1369         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1370         struct ext4_inode_info *ei = EXT4_I(inode);
1371
1372         if (!to_free)
1373                 return;         /* Nothing to release, exit */
1374
1375         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1376
1377         trace_ext4_da_release_space(inode, to_free);
1378         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1379                 /*
1380                  * if there aren't enough reserved blocks, then the
1381                  * counter is messed up somewhere.  Since this
1382                  * function is called from invalidate page, it's
1383                  * harmless to return without any action.
1384                  */
1385                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1386                          "ino %lu, to_free %d with only %d reserved "
1387                          "data blocks", inode->i_ino, to_free,
1388                          ei->i_reserved_data_blocks);
1389                 WARN_ON(1);
1390                 to_free = ei->i_reserved_data_blocks;
1391         }
1392         ei->i_reserved_data_blocks -= to_free;
1393
1394         if (ei->i_reserved_data_blocks == 0) {
1395                 /*
1396                  * We can release all of the reserved metadata blocks
1397                  * only when we have written all of the delayed
1398                  * allocation blocks.
1399                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1400                  * i_reserved_data_blocks, etc. refer to number of clusters.
1401                  */
1402                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1403                                    ei->i_reserved_meta_blocks);
1404                 ei->i_reserved_meta_blocks = 0;
1405                 ei->i_da_metadata_calc_len = 0;
1406         }
1407
1408         /* update fs dirty data blocks counter */
1409         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1410
1411         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1412
1413         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1414 }
1415
1416 static void ext4_da_page_release_reservation(struct page *page,
1417                                              unsigned long offset)
1418 {
1419         int to_release = 0;
1420         struct buffer_head *head, *bh;
1421         unsigned int curr_off = 0;
1422         struct inode *inode = page->mapping->host;
1423         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1424         int num_clusters;
1425         ext4_fsblk_t lblk;
1426
1427         head = page_buffers(page);
1428         bh = head;
1429         do {
1430                 unsigned int next_off = curr_off + bh->b_size;
1431
1432                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1433                         to_release++;
1434                         clear_buffer_delay(bh);
1435                 }
1436                 curr_off = next_off;
1437         } while ((bh = bh->b_this_page) != head);
1438
1439         if (to_release) {
1440                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1441                 ext4_es_remove_extent(inode, lblk, to_release);
1442         }
1443
1444         /* If we have released all the blocks belonging to a cluster, then we
1445          * need to release the reserved space for that cluster. */
1446         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1447         while (num_clusters > 0) {
1448                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1449                         ((num_clusters - 1) << sbi->s_cluster_bits);
1450                 if (sbi->s_cluster_ratio == 1 ||
1451                     !ext4_find_delalloc_cluster(inode, lblk))
1452                         ext4_da_release_space(inode, 1);
1453
1454                 num_clusters--;
1455         }
1456 }
1457
1458 /*
1459  * Delayed allocation stuff
1460  */
1461
1462 /*
1463  * mpage_da_submit_io - walks through extent of pages and try to write
1464  * them with writepage() call back
1465  *
1466  * @mpd->inode: inode
1467  * @mpd->first_page: first page of the extent
1468  * @mpd->next_page: page after the last page of the extent
1469  *
1470  * By the time mpage_da_submit_io() is called we expect all blocks
1471  * to be allocated. this may be wrong if allocation failed.
1472  *
1473  * As pages are already locked by write_cache_pages(), we can't use it
1474  */
1475 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1476                               struct ext4_map_blocks *map)
1477 {
1478         struct pagevec pvec;
1479         unsigned long index, end;
1480         int ret = 0, err, nr_pages, i;
1481         struct inode *inode = mpd->inode;
1482         struct address_space *mapping = inode->i_mapping;
1483         loff_t size = i_size_read(inode);
1484         unsigned int len, block_start;
1485         struct buffer_head *bh, *page_bufs = NULL;
1486         sector_t pblock = 0, cur_logical = 0;
1487         struct ext4_io_submit io_submit;
1488
1489         BUG_ON(mpd->next_page <= mpd->first_page);
1490         memset(&io_submit, 0, sizeof(io_submit));
1491         /*
1492          * We need to start from the first_page to the next_page - 1
1493          * to make sure we also write the mapped dirty buffer_heads.
1494          * If we look at mpd->b_blocknr we would only be looking
1495          * at the currently mapped buffer_heads.
1496          */
1497         index = mpd->first_page;
1498         end = mpd->next_page - 1;
1499
1500         pagevec_init(&pvec, 0);
1501         while (index <= end) {
1502                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1503                 if (nr_pages == 0)
1504                         break;
1505                 for (i = 0; i < nr_pages; i++) {
1506                         int skip_page = 0;
1507                         struct page *page = pvec.pages[i];
1508
1509                         index = page->index;
1510                         if (index > end)
1511                                 break;
1512
1513                         if (index == size >> PAGE_CACHE_SHIFT)
1514                                 len = size & ~PAGE_CACHE_MASK;
1515                         else
1516                                 len = PAGE_CACHE_SIZE;
1517                         if (map) {
1518                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1519                                                         inode->i_blkbits);
1520                                 pblock = map->m_pblk + (cur_logical -
1521                                                         map->m_lblk);
1522                         }
1523                         index++;
1524
1525                         BUG_ON(!PageLocked(page));
1526                         BUG_ON(PageWriteback(page));
1527
1528                         bh = page_bufs = page_buffers(page);
1529                         block_start = 0;
1530                         do {
1531                                 if (map && (cur_logical >= map->m_lblk) &&
1532                                     (cur_logical <= (map->m_lblk +
1533                                                      (map->m_len - 1)))) {
1534                                         if (buffer_delay(bh)) {
1535                                                 clear_buffer_delay(bh);
1536                                                 bh->b_blocknr = pblock;
1537                                         }
1538                                         if (buffer_unwritten(bh) ||
1539                                             buffer_mapped(bh))
1540                                                 BUG_ON(bh->b_blocknr != pblock);
1541                                         if (map->m_flags & EXT4_MAP_UNINIT)
1542                                                 set_buffer_uninit(bh);
1543                                         clear_buffer_unwritten(bh);
1544                                 }
1545
1546                                 /*
1547                                  * skip page if block allocation undone and
1548                                  * block is dirty
1549                                  */
1550                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1551                                         skip_page = 1;
1552                                 bh = bh->b_this_page;
1553                                 block_start += bh->b_size;
1554                                 cur_logical++;
1555                                 pblock++;
1556                         } while (bh != page_bufs);
1557
1558                         if (skip_page) {
1559                                 unlock_page(page);
1560                                 continue;
1561                         }
1562
1563                         clear_page_dirty_for_io(page);
1564                         err = ext4_bio_write_page(&io_submit, page, len,
1565                                                   mpd->wbc);
1566                         if (!err)
1567                                 mpd->pages_written++;
1568                         /*
1569                          * In error case, we have to continue because
1570                          * remaining pages are still locked
1571                          */
1572                         if (ret == 0)
1573                                 ret = err;
1574                 }
1575                 pagevec_release(&pvec);
1576         }
1577         ext4_io_submit(&io_submit);
1578         return ret;
1579 }
1580
1581 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1582 {
1583         int nr_pages, i;
1584         pgoff_t index, end;
1585         struct pagevec pvec;
1586         struct inode *inode = mpd->inode;
1587         struct address_space *mapping = inode->i_mapping;
1588         ext4_lblk_t start, last;
1589
1590         index = mpd->first_page;
1591         end   = mpd->next_page - 1;
1592
1593         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1594         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1595         ext4_es_remove_extent(inode, start, last - start + 1);
1596
1597         pagevec_init(&pvec, 0);
1598         while (index <= end) {
1599                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1600                 if (nr_pages == 0)
1601                         break;
1602                 for (i = 0; i < nr_pages; i++) {
1603                         struct page *page = pvec.pages[i];
1604                         if (page->index > end)
1605                                 break;
1606                         BUG_ON(!PageLocked(page));
1607                         BUG_ON(PageWriteback(page));
1608                         block_invalidatepage(page, 0);
1609                         ClearPageUptodate(page);
1610                         unlock_page(page);
1611                 }
1612                 index = pvec.pages[nr_pages - 1]->index + 1;
1613                 pagevec_release(&pvec);
1614         }
1615         return;
1616 }
1617
1618 static void ext4_print_free_blocks(struct inode *inode)
1619 {
1620         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1621         struct super_block *sb = inode->i_sb;
1622         struct ext4_inode_info *ei = EXT4_I(inode);
1623
1624         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1625                EXT4_C2B(EXT4_SB(inode->i_sb),
1626                         ext4_count_free_clusters(sb)));
1627         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1628         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1629                (long long) EXT4_C2B(EXT4_SB(sb),
1630                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1631         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1632                (long long) EXT4_C2B(EXT4_SB(sb),
1633                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1634         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1635         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1636                  ei->i_reserved_data_blocks);
1637         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1638                ei->i_reserved_meta_blocks);
1639         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1640                ei->i_allocated_meta_blocks);
1641         return;
1642 }
1643
1644 /*
1645  * mpage_da_map_and_submit - go through given space, map them
1646  *       if necessary, and then submit them for I/O
1647  *
1648  * @mpd - bh describing space
1649  *
1650  * The function skips space we know is already mapped to disk blocks.
1651  *
1652  */
1653 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1654 {
1655         int err, blks, get_blocks_flags;
1656         struct ext4_map_blocks map, *mapp = NULL;
1657         sector_t next = mpd->b_blocknr;
1658         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1659         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1660         handle_t *handle = NULL;
1661
1662         /*
1663          * If the blocks are mapped already, or we couldn't accumulate
1664          * any blocks, then proceed immediately to the submission stage.
1665          */
1666         if ((mpd->b_size == 0) ||
1667             ((mpd->b_state  & (1 << BH_Mapped)) &&
1668              !(mpd->b_state & (1 << BH_Delay)) &&
1669              !(mpd->b_state & (1 << BH_Unwritten))))
1670                 goto submit_io;
1671
1672         handle = ext4_journal_current_handle();
1673         BUG_ON(!handle);
1674
1675         /*
1676          * Call ext4_map_blocks() to allocate any delayed allocation
1677          * blocks, or to convert an uninitialized extent to be
1678          * initialized (in the case where we have written into
1679          * one or more preallocated blocks).
1680          *
1681          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1682          * indicate that we are on the delayed allocation path.  This
1683          * affects functions in many different parts of the allocation
1684          * call path.  This flag exists primarily because we don't
1685          * want to change *many* call functions, so ext4_map_blocks()
1686          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1687          * inode's allocation semaphore is taken.
1688          *
1689          * If the blocks in questions were delalloc blocks, set
1690          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1691          * variables are updated after the blocks have been allocated.
1692          */
1693         map.m_lblk = next;
1694         map.m_len = max_blocks;
1695         /*
1696          * We're in delalloc path and it is possible that we're going to
1697          * need more metadata blocks than previously reserved. However
1698          * we must not fail because we're in writeback and there is
1699          * nothing we can do about it so it might result in data loss.
1700          * So use reserved blocks to allocate metadata if possible.
1701          */
1702         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1703                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1704         if (ext4_should_dioread_nolock(mpd->inode))
1705                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1706         if (mpd->b_state & (1 << BH_Delay))
1707                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1708
1709
1710         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1711         if (blks < 0) {
1712                 struct super_block *sb = mpd->inode->i_sb;
1713
1714                 err = blks;
1715                 /*
1716                  * If get block returns EAGAIN or ENOSPC and there
1717                  * appears to be free blocks we will just let
1718                  * mpage_da_submit_io() unlock all of the pages.
1719                  */
1720                 if (err == -EAGAIN)
1721                         goto submit_io;
1722
1723                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1724                         mpd->retval = err;
1725                         goto submit_io;
1726                 }
1727
1728                 /*
1729                  * get block failure will cause us to loop in
1730                  * writepages, because a_ops->writepage won't be able
1731                  * to make progress. The page will be redirtied by
1732                  * writepage and writepages will again try to write
1733                  * the same.
1734                  */
1735                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1736                         ext4_msg(sb, KERN_CRIT,
1737                                  "delayed block allocation failed for inode %lu "
1738                                  "at logical offset %llu with max blocks %zd "
1739                                  "with error %d", mpd->inode->i_ino,
1740                                  (unsigned long long) next,
1741                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1742                         ext4_msg(sb, KERN_CRIT,
1743                                 "This should not happen!! Data will be lost");
1744                         if (err == -ENOSPC)
1745                                 ext4_print_free_blocks(mpd->inode);
1746                 }
1747                 /* invalidate all the pages */
1748                 ext4_da_block_invalidatepages(mpd);
1749
1750                 /* Mark this page range as having been completed */
1751                 mpd->io_done = 1;
1752                 return;
1753         }
1754         BUG_ON(blks == 0);
1755
1756         mapp = &map;
1757         if (map.m_flags & EXT4_MAP_NEW) {
1758                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1759                 int i;
1760
1761                 for (i = 0; i < map.m_len; i++)
1762                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1763         }
1764
1765         /*
1766          * Update on-disk size along with block allocation.
1767          */
1768         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1769         if (disksize > i_size_read(mpd->inode))
1770                 disksize = i_size_read(mpd->inode);
1771         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1772                 ext4_update_i_disksize(mpd->inode, disksize);
1773                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1774                 if (err)
1775                         ext4_error(mpd->inode->i_sb,
1776                                    "Failed to mark inode %lu dirty",
1777                                    mpd->inode->i_ino);
1778         }
1779
1780 submit_io:
1781         mpage_da_submit_io(mpd, mapp);
1782         mpd->io_done = 1;
1783 }
1784
1785 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1786                 (1 << BH_Delay) | (1 << BH_Unwritten))
1787
1788 /*
1789  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1790  *
1791  * @mpd->lbh - extent of blocks
1792  * @logical - logical number of the block in the file
1793  * @b_state - b_state of the buffer head added
1794  *
1795  * the function is used to collect contig. blocks in same state
1796  */
1797 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1798                                    unsigned long b_state)
1799 {
1800         sector_t next;
1801         int blkbits = mpd->inode->i_blkbits;
1802         int nrblocks = mpd->b_size >> blkbits;
1803
1804         /*
1805          * XXX Don't go larger than mballoc is willing to allocate
1806          * This is a stopgap solution.  We eventually need to fold
1807          * mpage_da_submit_io() into this function and then call
1808          * ext4_map_blocks() multiple times in a loop
1809          */
1810         if (nrblocks >= (8*1024*1024 >> blkbits))
1811                 goto flush_it;
1812
1813         /* check if the reserved journal credits might overflow */
1814         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1815                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1816                         /*
1817                          * With non-extent format we are limited by the journal
1818                          * credit available.  Total credit needed to insert
1819                          * nrblocks contiguous blocks is dependent on the
1820                          * nrblocks.  So limit nrblocks.
1821                          */
1822                         goto flush_it;
1823                 }
1824         }
1825         /*
1826          * First block in the extent
1827          */
1828         if (mpd->b_size == 0) {
1829                 mpd->b_blocknr = logical;
1830                 mpd->b_size = 1 << blkbits;
1831                 mpd->b_state = b_state & BH_FLAGS;
1832                 return;
1833         }
1834
1835         next = mpd->b_blocknr + nrblocks;
1836         /*
1837          * Can we merge the block to our big extent?
1838          */
1839         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1840                 mpd->b_size += 1 << blkbits;
1841                 return;
1842         }
1843
1844 flush_it:
1845         /*
1846          * We couldn't merge the block to our extent, so we
1847          * need to flush current  extent and start new one
1848          */
1849         mpage_da_map_and_submit(mpd);
1850         return;
1851 }
1852
1853 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1854 {
1855         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1856 }
1857
1858 /*
1859  * This function is grabs code from the very beginning of
1860  * ext4_map_blocks, but assumes that the caller is from delayed write
1861  * time. This function looks up the requested blocks and sets the
1862  * buffer delay bit under the protection of i_data_sem.
1863  */
1864 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1865                               struct ext4_map_blocks *map,
1866                               struct buffer_head *bh)
1867 {
1868         struct extent_status es;
1869         int retval;
1870         sector_t invalid_block = ~((sector_t) 0xffff);
1871 #ifdef ES_AGGRESSIVE_TEST
1872         struct ext4_map_blocks orig_map;
1873
1874         memcpy(&orig_map, map, sizeof(*map));
1875 #endif
1876
1877         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1878                 invalid_block = ~0;
1879
1880         map->m_flags = 0;
1881         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1882                   "logical block %lu\n", inode->i_ino, map->m_len,
1883                   (unsigned long) map->m_lblk);
1884
1885         /* Lookup extent status tree firstly */
1886         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1887
1888                 if (ext4_es_is_hole(&es)) {
1889                         retval = 0;
1890                         down_read((&EXT4_I(inode)->i_data_sem));
1891                         goto add_delayed;
1892                 }
1893
1894                 /*
1895                  * Delayed extent could be allocated by fallocate.
1896                  * So we need to check it.
1897                  */
1898                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1899                         map_bh(bh, inode->i_sb, invalid_block);
1900                         set_buffer_new(bh);
1901                         set_buffer_delay(bh);
1902                         return 0;
1903                 }
1904
1905                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1906                 retval = es.es_len - (iblock - es.es_lblk);
1907                 if (retval > map->m_len)
1908                         retval = map->m_len;
1909                 map->m_len = retval;
1910                 if (ext4_es_is_written(&es))
1911                         map->m_flags |= EXT4_MAP_MAPPED;
1912                 else if (ext4_es_is_unwritten(&es))
1913                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1914                 else
1915                         BUG_ON(1);
1916
1917 #ifdef ES_AGGRESSIVE_TEST
1918                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1919 #endif
1920                 return retval;
1921         }
1922
1923         /*
1924          * Try to see if we can get the block without requesting a new
1925          * file system block.
1926          */
1927         down_read((&EXT4_I(inode)->i_data_sem));
1928         if (ext4_has_inline_data(inode)) {
1929                 /*
1930                  * We will soon create blocks for this page, and let
1931                  * us pretend as if the blocks aren't allocated yet.
1932                  * In case of clusters, we have to handle the work
1933                  * of mapping from cluster so that the reserved space
1934                  * is calculated properly.
1935                  */
1936                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1937                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1938                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1939                 retval = 0;
1940         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1941                 retval = ext4_ext_map_blocks(NULL, inode, map,
1942                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1943         else
1944                 retval = ext4_ind_map_blocks(NULL, inode, map,
1945                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1946
1947 add_delayed:
1948         if (retval == 0) {
1949                 int ret;
1950                 /*
1951                  * XXX: __block_prepare_write() unmaps passed block,
1952                  * is it OK?
1953                  */
1954                 /*
1955                  * If the block was allocated from previously allocated cluster,
1956                  * then we don't need to reserve it again. However we still need
1957                  * to reserve metadata for every block we're going to write.
1958                  */
1959                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1960                         ret = ext4_da_reserve_space(inode, iblock);
1961                         if (ret) {
1962                                 /* not enough space to reserve */
1963                                 retval = ret;
1964                                 goto out_unlock;
1965                         }
1966                 } else {
1967                         ret = ext4_da_reserve_metadata(inode, iblock);
1968                         if (ret) {
1969                                 /* not enough space to reserve */
1970                                 retval = ret;
1971                                 goto out_unlock;
1972                         }
1973                 }
1974
1975                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1976                                             ~0, EXTENT_STATUS_DELAYED);
1977                 if (ret) {
1978                         retval = ret;
1979                         goto out_unlock;
1980                 }
1981
1982                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1983                  * and it should not appear on the bh->b_state.
1984                  */
1985                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1986
1987                 map_bh(bh, inode->i_sb, invalid_block);
1988                 set_buffer_new(bh);
1989                 set_buffer_delay(bh);
1990         } else if (retval > 0) {
1991                 int ret;
1992                 unsigned long long status;
1993
1994 #ifdef ES_AGGRESSIVE_TEST
1995                 if (retval != map->m_len) {
1996                         printk("ES len assertation failed for inode: %lu "
1997                                "retval %d != map->m_len %d "
1998                                "in %s (lookup)\n", inode->i_ino, retval,
1999                                map->m_len, __func__);
2000                 }
2001 #endif
2002
2003                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2004                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2005                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2006                                             map->m_pblk, status);
2007                 if (ret != 0)
2008                         retval = ret;
2009         }
2010
2011 out_unlock:
2012         up_read((&EXT4_I(inode)->i_data_sem));
2013
2014         return retval;
2015 }
2016
2017 /*
2018  * This is a special get_blocks_t callback which is used by
2019  * ext4_da_write_begin().  It will either return mapped block or
2020  * reserve space for a single block.
2021  *
2022  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2023  * We also have b_blocknr = -1 and b_bdev initialized properly
2024  *
2025  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2026  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2027  * initialized properly.
2028  */
2029 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2030                            struct buffer_head *bh, int create)
2031 {
2032         struct ext4_map_blocks map;
2033         int ret = 0;
2034
2035         BUG_ON(create == 0);
2036         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2037
2038         map.m_lblk = iblock;
2039         map.m_len = 1;
2040
2041         /*
2042          * first, we need to know whether the block is allocated already
2043          * preallocated blocks are unmapped but should treated
2044          * the same as allocated blocks.
2045          */
2046         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2047         if (ret <= 0)
2048                 return ret;
2049
2050         map_bh(bh, inode->i_sb, map.m_pblk);
2051         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2052
2053         if (buffer_unwritten(bh)) {
2054                 /* A delayed write to unwritten bh should be marked
2055                  * new and mapped.  Mapped ensures that we don't do
2056                  * get_block multiple times when we write to the same
2057                  * offset and new ensures that we do proper zero out
2058                  * for partial write.
2059                  */
2060                 set_buffer_new(bh);
2061                 set_buffer_mapped(bh);
2062         }
2063         return 0;
2064 }
2065
2066 static int bget_one(handle_t *handle, struct buffer_head *bh)
2067 {
2068         get_bh(bh);
2069         return 0;
2070 }
2071
2072 static int bput_one(handle_t *handle, struct buffer_head *bh)
2073 {
2074         put_bh(bh);
2075         return 0;
2076 }
2077
2078 static int __ext4_journalled_writepage(struct page *page,
2079                                        unsigned int len)
2080 {
2081         struct address_space *mapping = page->mapping;
2082         struct inode *inode = mapping->host;
2083         struct buffer_head *page_bufs = NULL;
2084         handle_t *handle = NULL;
2085         int ret = 0, err = 0;
2086         int inline_data = ext4_has_inline_data(inode);
2087         struct buffer_head *inode_bh = NULL;
2088
2089         ClearPageChecked(page);
2090
2091         if (inline_data) {
2092                 BUG_ON(page->index != 0);
2093                 BUG_ON(len > ext4_get_max_inline_size(inode));
2094                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2095                 if (inode_bh == NULL)
2096                         goto out;
2097         } else {
2098                 page_bufs = page_buffers(page);
2099                 if (!page_bufs) {
2100                         BUG();
2101                         goto out;
2102                 }
2103                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2104                                        NULL, bget_one);
2105         }
2106         /* As soon as we unlock the page, it can go away, but we have
2107          * references to buffers so we are safe */
2108         unlock_page(page);
2109
2110         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2111                                     ext4_writepage_trans_blocks(inode));
2112         if (IS_ERR(handle)) {
2113                 ret = PTR_ERR(handle);
2114                 goto out;
2115         }
2116
2117         BUG_ON(!ext4_handle_valid(handle));
2118
2119         if (inline_data) {
2120                 ret = ext4_journal_get_write_access(handle, inode_bh);
2121
2122                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2123
2124         } else {
2125                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2126                                              do_journal_get_write_access);
2127
2128                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2129                                              write_end_fn);
2130         }
2131         if (ret == 0)
2132                 ret = err;
2133         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2134         err = ext4_journal_stop(handle);
2135         if (!ret)
2136                 ret = err;
2137
2138         if (!ext4_has_inline_data(inode))
2139                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2140                                        NULL, bput_one);
2141         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2142 out:
2143         brelse(inode_bh);
2144         return ret;
2145 }
2146
2147 /*
2148  * Note that we don't need to start a transaction unless we're journaling data
2149  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2150  * need to file the inode to the transaction's list in ordered mode because if
2151  * we are writing back data added by write(), the inode is already there and if
2152  * we are writing back data modified via mmap(), no one guarantees in which
2153  * transaction the data will hit the disk. In case we are journaling data, we
2154  * cannot start transaction directly because transaction start ranks above page
2155  * lock so we have to do some magic.
2156  *
2157  * This function can get called via...
2158  *   - ext4_da_writepages after taking page lock (have journal handle)
2159  *   - journal_submit_inode_data_buffers (no journal handle)
2160  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2161  *   - grab_page_cache when doing write_begin (have journal handle)
2162  *
2163  * We don't do any block allocation in this function. If we have page with
2164  * multiple blocks we need to write those buffer_heads that are mapped. This
2165  * is important for mmaped based write. So if we do with blocksize 1K
2166  * truncate(f, 1024);
2167  * a = mmap(f, 0, 4096);
2168  * a[0] = 'a';
2169  * truncate(f, 4096);
2170  * we have in the page first buffer_head mapped via page_mkwrite call back
2171  * but other buffer_heads would be unmapped but dirty (dirty done via the
2172  * do_wp_page). So writepage should write the first block. If we modify
2173  * the mmap area beyond 1024 we will again get a page_fault and the
2174  * page_mkwrite callback will do the block allocation and mark the
2175  * buffer_heads mapped.
2176  *
2177  * We redirty the page if we have any buffer_heads that is either delay or
2178  * unwritten in the page.
2179  *
2180  * We can get recursively called as show below.
2181  *
2182  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2183  *              ext4_writepage()
2184  *
2185  * But since we don't do any block allocation we should not deadlock.
2186  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2187  */
2188 static int ext4_writepage(struct page *page,
2189                           struct writeback_control *wbc)
2190 {
2191         int ret = 0;
2192         loff_t size;
2193         unsigned int len;
2194         struct buffer_head *page_bufs = NULL;
2195         struct inode *inode = page->mapping->host;
2196         struct ext4_io_submit io_submit;
2197
2198         trace_ext4_writepage(page);
2199         size = i_size_read(inode);
2200         if (page->index == size >> PAGE_CACHE_SHIFT)
2201                 len = size & ~PAGE_CACHE_MASK;
2202         else
2203                 len = PAGE_CACHE_SIZE;
2204
2205         page_bufs = page_buffers(page);
2206         /*
2207          * We cannot do block allocation or other extent handling in this
2208          * function. If there are buffers needing that, we have to redirty
2209          * the page. But we may reach here when we do a journal commit via
2210          * journal_submit_inode_data_buffers() and in that case we must write
2211          * allocated buffers to achieve data=ordered mode guarantees.
2212          */
2213         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2214                                    ext4_bh_delay_or_unwritten)) {
2215                 redirty_page_for_writepage(wbc, page);
2216                 if (current->flags & PF_MEMALLOC) {
2217                         /*
2218                          * For memory cleaning there's no point in writing only
2219                          * some buffers. So just bail out. Warn if we came here
2220                          * from direct reclaim.
2221                          */
2222                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2223                                                         == PF_MEMALLOC);
2224                         unlock_page(page);
2225                         return 0;
2226                 }
2227         }
2228
2229         if (PageChecked(page) && ext4_should_journal_data(inode))
2230                 /*
2231                  * It's mmapped pagecache.  Add buffers and journal it.  There
2232                  * doesn't seem much point in redirtying the page here.
2233                  */
2234                 return __ext4_journalled_writepage(page, len);
2235
2236         memset(&io_submit, 0, sizeof(io_submit));
2237         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2238         ext4_io_submit(&io_submit);
2239         return ret;
2240 }
2241
2242 /*
2243  * This is called via ext4_da_writepages() to
2244  * calculate the total number of credits to reserve to fit
2245  * a single extent allocation into a single transaction,
2246  * ext4_da_writpeages() will loop calling this before
2247  * the block allocation.
2248  */
2249
2250 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2251 {
2252         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2253
2254         /*
2255          * With non-extent format the journal credit needed to
2256          * insert nrblocks contiguous block is dependent on
2257          * number of contiguous block. So we will limit
2258          * number of contiguous block to a sane value
2259          */
2260         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2261             (max_blocks > EXT4_MAX_TRANS_DATA))
2262                 max_blocks = EXT4_MAX_TRANS_DATA;
2263
2264         return ext4_chunk_trans_blocks(inode, max_blocks);
2265 }
2266
2267 /*
2268  * write_cache_pages_da - walk the list of dirty pages of the given
2269  * address space and accumulate pages that need writing, and call
2270  * mpage_da_map_and_submit to map a single contiguous memory region
2271  * and then write them.
2272  */
2273 static int write_cache_pages_da(handle_t *handle,
2274                                 struct address_space *mapping,
2275                                 struct writeback_control *wbc,
2276                                 struct mpage_da_data *mpd,
2277                                 pgoff_t *done_index)
2278 {
2279         struct buffer_head      *bh, *head;
2280         struct inode            *inode = mapping->host;
2281         struct pagevec          pvec;
2282         unsigned int            nr_pages;
2283         sector_t                logical;
2284         pgoff_t                 index, end;
2285         long                    nr_to_write = wbc->nr_to_write;
2286         int                     i, tag, ret = 0;
2287
2288         memset(mpd, 0, sizeof(struct mpage_da_data));
2289         mpd->wbc = wbc;
2290         mpd->inode = inode;
2291         pagevec_init(&pvec, 0);
2292         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2293         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2294
2295         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2296                 tag = PAGECACHE_TAG_TOWRITE;
2297         else
2298                 tag = PAGECACHE_TAG_DIRTY;
2299
2300         *done_index = index;
2301         while (index <= end) {
2302                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2303                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2304                 if (nr_pages == 0)
2305                         return 0;
2306
2307                 for (i = 0; i < nr_pages; i++) {
2308                         struct page *page = pvec.pages[i];
2309
2310                         /*
2311                          * At this point, the page may be truncated or
2312                          * invalidated (changing page->mapping to NULL), or
2313                          * even swizzled back from swapper_space to tmpfs file
2314                          * mapping. However, page->index will not change
2315                          * because we have a reference on the page.
2316                          */
2317                         if (page->index > end)
2318                                 goto out;
2319
2320                         *done_index = page->index + 1;
2321
2322                         /*
2323                          * If we can't merge this page, and we have
2324                          * accumulated an contiguous region, write it
2325                          */
2326                         if ((mpd->next_page != page->index) &&
2327                             (mpd->next_page != mpd->first_page)) {
2328                                 mpage_da_map_and_submit(mpd);
2329                                 goto ret_extent_tail;
2330                         }
2331
2332                         lock_page(page);
2333
2334                         /*
2335                          * If the page is no longer dirty, or its
2336                          * mapping no longer corresponds to inode we
2337                          * are writing (which means it has been
2338                          * truncated or invalidated), or the page is
2339                          * already under writeback and we are not
2340                          * doing a data integrity writeback, skip the page
2341                          */
2342                         if (!PageDirty(page) ||
2343                             (PageWriteback(page) &&
2344                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2345                             unlikely(page->mapping != mapping)) {
2346                                 unlock_page(page);
2347                                 continue;
2348                         }
2349
2350                         wait_on_page_writeback(page);
2351                         BUG_ON(PageWriteback(page));
2352
2353                         /*
2354                          * If we have inline data and arrive here, it means that
2355                          * we will soon create the block for the 1st page, so
2356                          * we'd better clear the inline data here.
2357                          */
2358                         if (ext4_has_inline_data(inode)) {
2359                                 BUG_ON(ext4_test_inode_state(inode,
2360                                                 EXT4_STATE_MAY_INLINE_DATA));
2361                                 ext4_destroy_inline_data(handle, inode);
2362                         }
2363
2364                         if (mpd->next_page != page->index)
2365                                 mpd->first_page = page->index;
2366                         mpd->next_page = page->index + 1;
2367                         logical = (sector_t) page->index <<
2368                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2369
2370                         /* Add all dirty buffers to mpd */
2371                         head = page_buffers(page);
2372                         bh = head;
2373                         do {
2374                                 BUG_ON(buffer_locked(bh));
2375                                 /*
2376                                  * We need to try to allocate unmapped blocks
2377                                  * in the same page.  Otherwise we won't make
2378                                  * progress with the page in ext4_writepage
2379                                  */
2380                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2381                                         mpage_add_bh_to_extent(mpd, logical,
2382                                                                bh->b_state);
2383                                         if (mpd->io_done)
2384                                                 goto ret_extent_tail;
2385                                 } else if (buffer_dirty(bh) &&
2386                                            buffer_mapped(bh)) {
2387                                         /*
2388                                          * mapped dirty buffer. We need to
2389                                          * update the b_state because we look
2390                                          * at b_state in mpage_da_map_blocks.
2391                                          * We don't update b_size because if we
2392                                          * find an unmapped buffer_head later
2393                                          * we need to use the b_state flag of
2394                                          * that buffer_head.
2395                                          */
2396                                         if (mpd->b_size == 0)
2397                                                 mpd->b_state =
2398                                                         bh->b_state & BH_FLAGS;
2399                                 }
2400                                 logical++;
2401                         } while ((bh = bh->b_this_page) != head);
2402
2403                         if (nr_to_write > 0) {
2404                                 nr_to_write--;
2405                                 if (nr_to_write == 0 &&
2406                                     wbc->sync_mode == WB_SYNC_NONE)
2407                                         /*
2408                                          * We stop writing back only if we are
2409                                          * not doing integrity sync. In case of
2410                                          * integrity sync we have to keep going
2411                                          * because someone may be concurrently
2412                                          * dirtying pages, and we might have
2413                                          * synced a lot of newly appeared dirty
2414                                          * pages, but have not synced all of the
2415                                          * old dirty pages.
2416                                          */
2417                                         goto out;
2418                         }
2419                 }
2420                 pagevec_release(&pvec);
2421                 cond_resched();
2422         }
2423         return 0;
2424 ret_extent_tail:
2425         ret = MPAGE_DA_EXTENT_TAIL;
2426 out:
2427         pagevec_release(&pvec);
2428         cond_resched();
2429         return ret;
2430 }
2431
2432
2433 static int ext4_da_writepages(struct address_space *mapping,
2434                               struct writeback_control *wbc)
2435 {
2436         pgoff_t index;
2437         int range_whole = 0;
2438         handle_t *handle = NULL;
2439         struct mpage_da_data mpd;
2440         struct inode *inode = mapping->host;
2441         int pages_written = 0;
2442         unsigned int max_pages;
2443         int range_cyclic, cycled = 1, io_done = 0;
2444         int needed_blocks, ret = 0;
2445         long desired_nr_to_write, nr_to_writebump = 0;
2446         loff_t range_start = wbc->range_start;
2447         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2448         pgoff_t done_index = 0;
2449         pgoff_t end;
2450         struct blk_plug plug;
2451
2452         trace_ext4_da_writepages(inode, wbc);
2453
2454         /*
2455          * No pages to write? This is mainly a kludge to avoid starting
2456          * a transaction for special inodes like journal inode on last iput()
2457          * because that could violate lock ordering on umount
2458          */
2459         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2460                 return 0;
2461
2462         /*
2463          * If the filesystem has aborted, it is read-only, so return
2464          * right away instead of dumping stack traces later on that
2465          * will obscure the real source of the problem.  We test
2466          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2467          * the latter could be true if the filesystem is mounted
2468          * read-only, and in that case, ext4_da_writepages should
2469          * *never* be called, so if that ever happens, we would want
2470          * the stack trace.
2471          */
2472         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2473                 return -EROFS;
2474
2475         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2476                 range_whole = 1;
2477
2478         range_cyclic = wbc->range_cyclic;
2479         if (wbc->range_cyclic) {
2480                 index = mapping->writeback_index;
2481                 if (index)
2482                         cycled = 0;
2483                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2484                 wbc->range_end  = LLONG_MAX;
2485                 wbc->range_cyclic = 0;
2486                 end = -1;
2487         } else {
2488                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2489                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2490         }
2491
2492         /*
2493          * This works around two forms of stupidity.  The first is in
2494          * the writeback code, which caps the maximum number of pages
2495          * written to be 1024 pages.  This is wrong on multiple
2496          * levels; different architectues have a different page size,
2497          * which changes the maximum amount of data which gets
2498          * written.  Secondly, 4 megabytes is way too small.  XFS
2499          * forces this value to be 16 megabytes by multiplying
2500          * nr_to_write parameter by four, and then relies on its
2501          * allocator to allocate larger extents to make them
2502          * contiguous.  Unfortunately this brings us to the second
2503          * stupidity, which is that ext4's mballoc code only allocates
2504          * at most 2048 blocks.  So we force contiguous writes up to
2505          * the number of dirty blocks in the inode, or
2506          * sbi->max_writeback_mb_bump whichever is smaller.
2507          */
2508         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2509         if (!range_cyclic && range_whole) {
2510                 if (wbc->nr_to_write == LONG_MAX)
2511                         desired_nr_to_write = wbc->nr_to_write;
2512                 else
2513                         desired_nr_to_write = wbc->nr_to_write * 8;
2514         } else
2515                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2516                                                            max_pages);
2517         if (desired_nr_to_write > max_pages)
2518                 desired_nr_to_write = max_pages;
2519
2520         if (wbc->nr_to_write < desired_nr_to_write) {
2521                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2522                 wbc->nr_to_write = desired_nr_to_write;
2523         }
2524
2525 retry:
2526         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2527                 tag_pages_for_writeback(mapping, index, end);
2528
2529         blk_start_plug(&plug);
2530         while (!ret && wbc->nr_to_write > 0) {
2531
2532                 /*
2533                  * we  insert one extent at a time. So we need
2534                  * credit needed for single extent allocation.
2535                  * journalled mode is currently not supported
2536                  * by delalloc
2537                  */
2538                 BUG_ON(ext4_should_journal_data(inode));
2539                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2540
2541                 /* start a new transaction*/
2542                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2543                                             needed_blocks);
2544                 if (IS_ERR(handle)) {
2545                         ret = PTR_ERR(handle);
2546                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2547                                "%ld pages, ino %lu; err %d", __func__,
2548                                 wbc->nr_to_write, inode->i_ino, ret);
2549                         blk_finish_plug(&plug);
2550                         goto out_writepages;
2551                 }
2552
2553                 /*
2554                  * Now call write_cache_pages_da() to find the next
2555                  * contiguous region of logical blocks that need
2556                  * blocks to be allocated by ext4 and submit them.
2557                  */
2558                 ret = write_cache_pages_da(handle, mapping,
2559                                            wbc, &mpd, &done_index);
2560                 /*
2561                  * If we have a contiguous extent of pages and we
2562                  * haven't done the I/O yet, map the blocks and submit
2563                  * them for I/O.
2564                  */
2565                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2566                         mpage_da_map_and_submit(&mpd);
2567                         ret = MPAGE_DA_EXTENT_TAIL;
2568                 }
2569                 trace_ext4_da_write_pages(inode, &mpd);
2570                 wbc->nr_to_write -= mpd.pages_written;
2571
2572                 ext4_journal_stop(handle);
2573
2574                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2575                         /* commit the transaction which would
2576                          * free blocks released in the transaction
2577                          * and try again
2578                          */
2579                         jbd2_journal_force_commit_nested(sbi->s_journal);
2580                         ret = 0;
2581                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2582                         /*
2583                          * Got one extent now try with rest of the pages.
2584                          * If mpd.retval is set -EIO, journal is aborted.
2585                          * So we don't need to write any more.
2586                          */
2587                         pages_written += mpd.pages_written;
2588                         ret = mpd.retval;
2589                         io_done = 1;
2590                 } else if (wbc->nr_to_write)
2591                         /*
2592                          * There is no more writeout needed
2593                          * or we requested for a noblocking writeout
2594                          * and we found the device congested
2595                          */
2596                         break;
2597         }
2598         blk_finish_plug(&plug);
2599         if (!io_done && !cycled) {
2600                 cycled = 1;
2601                 index = 0;
2602                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2603                 wbc->range_end  = mapping->writeback_index - 1;
2604                 goto retry;
2605         }
2606
2607         /* Update index */
2608         wbc->range_cyclic = range_cyclic;
2609         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2610                 /*
2611                  * set the writeback_index so that range_cyclic
2612                  * mode will write it back later
2613                  */
2614                 mapping->writeback_index = done_index;
2615
2616 out_writepages:
2617         wbc->nr_to_write -= nr_to_writebump;
2618         wbc->range_start = range_start;
2619         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2620         return ret;
2621 }
2622
2623 static int ext4_nonda_switch(struct super_block *sb)
2624 {
2625         s64 free_clusters, dirty_clusters;
2626         struct ext4_sb_info *sbi = EXT4_SB(sb);
2627
2628         /*
2629          * switch to non delalloc mode if we are running low
2630          * on free block. The free block accounting via percpu
2631          * counters can get slightly wrong with percpu_counter_batch getting
2632          * accumulated on each CPU without updating global counters
2633          * Delalloc need an accurate free block accounting. So switch
2634          * to non delalloc when we are near to error range.
2635          */
2636         free_clusters =
2637                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2638         dirty_clusters =
2639                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2640         /*
2641          * Start pushing delalloc when 1/2 of free blocks are dirty.
2642          */
2643         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2644                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2645
2646         if (2 * free_clusters < 3 * dirty_clusters ||
2647             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2648                 /*
2649                  * free block count is less than 150% of dirty blocks
2650                  * or free blocks is less than watermark
2651                  */
2652                 return 1;
2653         }
2654         return 0;
2655 }
2656
2657 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2658                                loff_t pos, unsigned len, unsigned flags,
2659                                struct page **pagep, void **fsdata)
2660 {
2661         int ret, retries = 0;
2662         struct page *page;
2663         pgoff_t index;
2664         struct inode *inode = mapping->host;
2665         handle_t *handle;
2666
2667         index = pos >> PAGE_CACHE_SHIFT;
2668
2669         if (ext4_nonda_switch(inode->i_sb)) {
2670                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2671                 return ext4_write_begin(file, mapping, pos,
2672                                         len, flags, pagep, fsdata);
2673         }
2674         *fsdata = (void *)0;
2675         trace_ext4_da_write_begin(inode, pos, len, flags);
2676
2677         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2678                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2679                                                       pos, len, flags,
2680                                                       pagep, fsdata);
2681                 if (ret < 0)
2682                         return ret;
2683                 if (ret == 1)
2684                         return 0;
2685         }
2686
2687         /*
2688          * grab_cache_page_write_begin() can take a long time if the
2689          * system is thrashing due to memory pressure, or if the page
2690          * is being written back.  So grab it first before we start
2691          * the transaction handle.  This also allows us to allocate
2692          * the page (if needed) without using GFP_NOFS.
2693          */
2694 retry_grab:
2695         page = grab_cache_page_write_begin(mapping, index, flags);
2696         if (!page)
2697                 return -ENOMEM;
2698         unlock_page(page);
2699
2700         /*
2701          * With delayed allocation, we don't log the i_disksize update
2702          * if there is delayed block allocation. But we still need
2703          * to journalling the i_disksize update if writes to the end
2704          * of file which has an already mapped buffer.
2705          */
2706 retry_journal:
2707         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2708         if (IS_ERR(handle)) {
2709                 page_cache_release(page);
2710                 return PTR_ERR(handle);
2711         }
2712
2713         lock_page(page);
2714         if (page->mapping != mapping) {
2715                 /* The page got truncated from under us */
2716                 unlock_page(page);
2717                 page_cache_release(page);
2718                 ext4_journal_stop(handle);
2719                 goto retry_grab;
2720         }
2721         /* In case writeback began while the page was unlocked */
2722         wait_on_page_writeback(page);
2723
2724         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2725         if (ret < 0) {
2726                 unlock_page(page);
2727                 ext4_journal_stop(handle);
2728                 /*
2729                  * block_write_begin may have instantiated a few blocks
2730                  * outside i_size.  Trim these off again. Don't need
2731                  * i_size_read because we hold i_mutex.
2732                  */
2733                 if (pos + len > inode->i_size)
2734                         ext4_truncate_failed_write(inode);
2735
2736                 if (ret == -ENOSPC &&
2737                     ext4_should_retry_alloc(inode->i_sb, &retries))
2738                         goto retry_journal;
2739
2740                 page_cache_release(page);
2741                 return ret;
2742         }
2743
2744         *pagep = page;
2745         return ret;
2746 }
2747
2748 /*
2749  * Check if we should update i_disksize
2750  * when write to the end of file but not require block allocation
2751  */
2752 static int ext4_da_should_update_i_disksize(struct page *page,
2753                                             unsigned long offset)
2754 {
2755         struct buffer_head *bh;
2756         struct inode *inode = page->mapping->host;
2757         unsigned int idx;
2758         int i;
2759
2760         bh = page_buffers(page);
2761         idx = offset >> inode->i_blkbits;
2762
2763         for (i = 0; i < idx; i++)
2764                 bh = bh->b_this_page;
2765
2766         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2767                 return 0;
2768         return 1;
2769 }
2770
2771 static int ext4_da_write_end(struct file *file,
2772                              struct address_space *mapping,
2773                              loff_t pos, unsigned len, unsigned copied,
2774                              struct page *page, void *fsdata)
2775 {
2776         struct inode *inode = mapping->host;
2777         int ret = 0, ret2;
2778         handle_t *handle = ext4_journal_current_handle();
2779         loff_t new_i_size;
2780         unsigned long start, end;
2781         int write_mode = (int)(unsigned long)fsdata;
2782
2783         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2784                 return ext4_write_end(file, mapping, pos,
2785                                       len, copied, page, fsdata);
2786
2787         trace_ext4_da_write_end(inode, pos, len, copied);
2788         start = pos & (PAGE_CACHE_SIZE - 1);
2789         end = start + copied - 1;
2790
2791         /*
2792          * generic_write_end() will run mark_inode_dirty() if i_size
2793          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2794          * into that.
2795          */
2796         new_i_size = pos + copied;
2797         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2798                 if (ext4_has_inline_data(inode) ||
2799                     ext4_da_should_update_i_disksize(page, end)) {
2800                         down_write(&EXT4_I(inode)->i_data_sem);
2801                         if (new_i_size > EXT4_I(inode)->i_disksize)
2802                                 EXT4_I(inode)->i_disksize = new_i_size;
2803                         up_write(&EXT4_I(inode)->i_data_sem);
2804                         /* We need to mark inode dirty even if
2805                          * new_i_size is less that inode->i_size
2806                          * bu greater than i_disksize.(hint delalloc)
2807                          */
2808                         ext4_mark_inode_dirty(handle, inode);
2809                 }
2810         }
2811
2812         if (write_mode != CONVERT_INLINE_DATA &&
2813             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2814             ext4_has_inline_data(inode))
2815                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2816                                                      page);
2817         else
2818                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2819                                                         page, fsdata);
2820
2821         copied = ret2;
2822         if (ret2 < 0)
2823                 ret = ret2;
2824         ret2 = ext4_journal_stop(handle);
2825         if (!ret)
2826                 ret = ret2;
2827
2828         return ret ? ret : copied;
2829 }
2830
2831 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2832 {
2833         /*
2834          * Drop reserved blocks
2835          */
2836         BUG_ON(!PageLocked(page));
2837         if (!page_has_buffers(page))
2838                 goto out;
2839
2840         ext4_da_page_release_reservation(page, offset);
2841
2842 out:
2843         ext4_invalidatepage(page, offset);
2844
2845         return;
2846 }
2847
2848 /*
2849  * Force all delayed allocation blocks to be allocated for a given inode.
2850  */
2851 int ext4_alloc_da_blocks(struct inode *inode)
2852 {
2853         trace_ext4_alloc_da_blocks(inode);
2854
2855         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2856             !EXT4_I(inode)->i_reserved_meta_blocks)
2857                 return 0;
2858
2859         /*
2860          * We do something simple for now.  The filemap_flush() will
2861          * also start triggering a write of the data blocks, which is
2862          * not strictly speaking necessary (and for users of
2863          * laptop_mode, not even desirable).  However, to do otherwise
2864          * would require replicating code paths in:
2865          *
2866          * ext4_da_writepages() ->
2867          *    write_cache_pages() ---> (via passed in callback function)
2868          *        __mpage_da_writepage() -->
2869          *           mpage_add_bh_to_extent()
2870          *           mpage_da_map_blocks()
2871          *
2872          * The problem is that write_cache_pages(), located in
2873          * mm/page-writeback.c, marks pages clean in preparation for
2874          * doing I/O, which is not desirable if we're not planning on
2875          * doing I/O at all.
2876          *
2877          * We could call write_cache_pages(), and then redirty all of
2878          * the pages by calling redirty_page_for_writepage() but that
2879          * would be ugly in the extreme.  So instead we would need to
2880          * replicate parts of the code in the above functions,
2881          * simplifying them because we wouldn't actually intend to
2882          * write out the pages, but rather only collect contiguous
2883          * logical block extents, call the multi-block allocator, and
2884          * then update the buffer heads with the block allocations.
2885          *
2886          * For now, though, we'll cheat by calling filemap_flush(),
2887          * which will map the blocks, and start the I/O, but not
2888          * actually wait for the I/O to complete.
2889          */
2890         return filemap_flush(inode->i_mapping);
2891 }
2892
2893 /*
2894  * bmap() is special.  It gets used by applications such as lilo and by
2895  * the swapper to find the on-disk block of a specific piece of data.
2896  *
2897  * Naturally, this is dangerous if the block concerned is still in the
2898  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2899  * filesystem and enables swap, then they may get a nasty shock when the
2900  * data getting swapped to that swapfile suddenly gets overwritten by
2901  * the original zero's written out previously to the journal and
2902  * awaiting writeback in the kernel's buffer cache.
2903  *
2904  * So, if we see any bmap calls here on a modified, data-journaled file,
2905  * take extra steps to flush any blocks which might be in the cache.
2906  */
2907 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2908 {
2909         struct inode *inode = mapping->host;
2910         journal_t *journal;
2911         int err;
2912
2913         /*
2914          * We can get here for an inline file via the FIBMAP ioctl
2915          */
2916         if (ext4_has_inline_data(inode))
2917                 return 0;
2918
2919         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2920                         test_opt(inode->i_sb, DELALLOC)) {
2921                 /*
2922                  * With delalloc we want to sync the file
2923                  * so that we can make sure we allocate
2924                  * blocks for file
2925                  */
2926                 filemap_write_and_wait(mapping);
2927         }
2928
2929         if (EXT4_JOURNAL(inode) &&
2930             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2931                 /*
2932                  * This is a REALLY heavyweight approach, but the use of
2933                  * bmap on dirty files is expected to be extremely rare:
2934                  * only if we run lilo or swapon on a freshly made file
2935                  * do we expect this to happen.
2936                  *
2937                  * (bmap requires CAP_SYS_RAWIO so this does not
2938                  * represent an unprivileged user DOS attack --- we'd be
2939                  * in trouble if mortal users could trigger this path at
2940                  * will.)
2941                  *
2942                  * NB. EXT4_STATE_JDATA is not set on files other than
2943                  * regular files.  If somebody wants to bmap a directory
2944                  * or symlink and gets confused because the buffer
2945                  * hasn't yet been flushed to disk, they deserve
2946                  * everything they get.
2947                  */
2948
2949                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2950                 journal = EXT4_JOURNAL(inode);
2951                 jbd2_journal_lock_updates(journal);
2952                 err = jbd2_journal_flush(journal);
2953                 jbd2_journal_unlock_updates(journal);
2954
2955                 if (err)
2956                         return 0;
2957         }
2958
2959         return generic_block_bmap(mapping, block, ext4_get_block);
2960 }
2961
2962 static int ext4_readpage(struct file *file, struct page *page)
2963 {
2964         int ret = -EAGAIN;
2965         struct inode *inode = page->mapping->host;
2966
2967         trace_ext4_readpage(page);
2968
2969         if (ext4_has_inline_data(inode))
2970                 ret = ext4_readpage_inline(inode, page);
2971
2972         if (ret == -EAGAIN)
2973                 return mpage_readpage(page, ext4_get_block);
2974
2975         return ret;
2976 }
2977
2978 static int
2979 ext4_readpages(struct file *file, struct address_space *mapping,
2980                 struct list_head *pages, unsigned nr_pages)
2981 {
2982         struct inode *inode = mapping->host;
2983
2984         /* If the file has inline data, no need to do readpages. */
2985         if (ext4_has_inline_data(inode))
2986                 return 0;
2987
2988         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2989 }
2990
2991 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2992 {
2993         trace_ext4_invalidatepage(page, offset);
2994
2995         /* No journalling happens on data buffers when this function is used */
2996         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2997
2998         block_invalidatepage(page, offset);
2999 }
3000
3001 static int __ext4_journalled_invalidatepage(struct page *page,
3002                                             unsigned long offset)
3003 {
3004         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3005
3006         trace_ext4_journalled_invalidatepage(page, offset);
3007
3008         /*
3009          * If it's a full truncate we just forget about the pending dirtying
3010          */
3011         if (offset == 0)
3012                 ClearPageChecked(page);
3013
3014         return jbd2_journal_invalidatepage(journal, page, offset);
3015 }
3016
3017 /* Wrapper for aops... */
3018 static void ext4_journalled_invalidatepage(struct page *page,
3019                                            unsigned long offset)
3020 {
3021         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3022 }
3023
3024 static int ext4_releasepage(struct page *page, gfp_t wait)
3025 {
3026         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3027
3028         trace_ext4_releasepage(page);
3029
3030         /* Page has dirty journalled data -> cannot release */
3031         if (PageChecked(page))
3032                 return 0;
3033         if (journal)
3034                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3035         else
3036                 return try_to_free_buffers(page);
3037 }
3038
3039 /*
3040  * ext4_get_block used when preparing for a DIO write or buffer write.
3041  * We allocate an uinitialized extent if blocks haven't been allocated.
3042  * The extent will be converted to initialized after the IO is complete.
3043  */
3044 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3045                    struct buffer_head *bh_result, int create)
3046 {
3047         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3048                    inode->i_ino, create);
3049         return _ext4_get_block(inode, iblock, bh_result,
3050                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3051 }
3052
3053 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3054                    struct buffer_head *bh_result, int create)
3055 {
3056         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3057                    inode->i_ino, create);
3058         return _ext4_get_block(inode, iblock, bh_result,
3059                                EXT4_GET_BLOCKS_NO_LOCK);
3060 }
3061
3062 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3063                             ssize_t size, void *private, int ret,
3064                             bool is_async)
3065 {
3066         struct inode *inode = file_inode(iocb->ki_filp);
3067         ext4_io_end_t *io_end = iocb->private;
3068
3069         /* if not async direct IO or dio with 0 bytes write, just return */
3070         if (!io_end || !size)
3071                 goto out;
3072
3073         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3074                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3075                   iocb->private, io_end->inode->i_ino, iocb, offset,
3076                   size);
3077
3078         iocb->private = NULL;
3079
3080         /* if not aio dio with unwritten extents, just free io and return */
3081         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3082                 ext4_free_io_end(io_end);
3083 out:
3084                 inode_dio_done(inode);
3085                 if (is_async)
3086                         aio_complete(iocb, ret, 0);
3087                 return;
3088         }
3089
3090         io_end->offset = offset;
3091         io_end->size = size;
3092         if (is_async) {
3093                 io_end->iocb = iocb;
3094                 io_end->result = ret;
3095         }
3096
3097         ext4_add_complete_io(io_end);
3098 }
3099
3100 /*
3101  * For ext4 extent files, ext4 will do direct-io write to holes,
3102  * preallocated extents, and those write extend the file, no need to
3103  * fall back to buffered IO.
3104  *
3105  * For holes, we fallocate those blocks, mark them as uninitialized
3106  * If those blocks were preallocated, we mark sure they are split, but
3107  * still keep the range to write as uninitialized.
3108  *
3109  * The unwritten extents will be converted to written when DIO is completed.
3110  * For async direct IO, since the IO may still pending when return, we
3111  * set up an end_io call back function, which will do the conversion
3112  * when async direct IO completed.
3113  *
3114  * If the O_DIRECT write will extend the file then add this inode to the
3115  * orphan list.  So recovery will truncate it back to the original size
3116  * if the machine crashes during the write.
3117  *
3118  */
3119 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3120                               const struct iovec *iov, loff_t offset,
3121                               unsigned long nr_segs)
3122 {
3123         struct file *file = iocb->ki_filp;
3124         struct inode *inode = file->f_mapping->host;
3125         ssize_t ret;
3126         size_t count = iov_length(iov, nr_segs);
3127         int overwrite = 0;
3128         get_block_t *get_block_func = NULL;
3129         int dio_flags = 0;
3130         loff_t final_size = offset + count;
3131
3132         /* Use the old path for reads and writes beyond i_size. */
3133         if (rw != WRITE || final_size > inode->i_size)
3134                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3135
3136         BUG_ON(iocb->private == NULL);
3137
3138         /* If we do a overwrite dio, i_mutex locking can be released */
3139         overwrite = *((int *)iocb->private);
3140
3141         if (overwrite) {
3142                 atomic_inc(&inode->i_dio_count);
3143                 down_read(&EXT4_I(inode)->i_data_sem);
3144                 mutex_unlock(&inode->i_mutex);
3145         }
3146
3147         /*
3148          * We could direct write to holes and fallocate.
3149          *
3150          * Allocated blocks to fill the hole are marked as
3151          * uninitialized to prevent parallel buffered read to expose
3152          * the stale data before DIO complete the data IO.
3153          *
3154          * As to previously fallocated extents, ext4 get_block will
3155          * just simply mark the buffer mapped but still keep the
3156          * extents uninitialized.
3157          *
3158          * For non AIO case, we will convert those unwritten extents
3159          * to written after return back from blockdev_direct_IO.
3160          *
3161          * For async DIO, the conversion needs to be deferred when the
3162          * IO is completed. The ext4 end_io callback function will be
3163          * called to take care of the conversion work.  Here for async
3164          * case, we allocate an io_end structure to hook to the iocb.
3165          */
3166         iocb->private = NULL;
3167         ext4_inode_aio_set(inode, NULL);
3168         if (!is_sync_kiocb(iocb)) {
3169                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3170                 if (!io_end) {
3171                         ret = -ENOMEM;
3172                         goto retake_lock;
3173                 }
3174                 io_end->flag |= EXT4_IO_END_DIRECT;
3175                 iocb->private = io_end;
3176                 /*
3177                  * we save the io structure for current async direct
3178                  * IO, so that later ext4_map_blocks() could flag the
3179                  * io structure whether there is a unwritten extents
3180                  * needs to be converted when IO is completed.
3181                  */
3182                 ext4_inode_aio_set(inode, io_end);
3183         }
3184
3185         if (overwrite) {
3186                 get_block_func = ext4_get_block_write_nolock;
3187         } else {
3188                 get_block_func = ext4_get_block_write;
3189                 dio_flags = DIO_LOCKING;
3190         }
3191         ret = __blockdev_direct_IO(rw, iocb, inode,
3192                                    inode->i_sb->s_bdev, iov,
3193                                    offset, nr_segs,
3194                                    get_block_func,
3195                                    ext4_end_io_dio,
3196                                    NULL,
3197                                    dio_flags);
3198
3199         if (iocb->private)
3200                 ext4_inode_aio_set(inode, NULL);
3201         /*
3202          * The io_end structure takes a reference to the inode, that
3203          * structure needs to be destroyed and the reference to the
3204          * inode need to be dropped, when IO is complete, even with 0
3205          * byte write, or failed.
3206          *
3207          * In the successful AIO DIO case, the io_end structure will
3208          * be destroyed and the reference to the inode will be dropped
3209          * after the end_io call back function is called.
3210          *
3211          * In the case there is 0 byte write, or error case, since VFS
3212          * direct IO won't invoke the end_io call back function, we
3213          * need to free the end_io structure here.
3214          */
3215         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3216                 ext4_free_io_end(iocb->private);
3217                 iocb->private = NULL;
3218         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3219                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3220                 int err;
3221                 /*
3222                  * for non AIO case, since the IO is already
3223                  * completed, we could do the conversion right here
3224                  */
3225                 err = ext4_convert_unwritten_extents(inode,
3226                                                      offset, ret);
3227                 if (err < 0)
3228                         ret = err;
3229                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3230         }
3231
3232 retake_lock:
3233         /* take i_mutex locking again if we do a ovewrite dio */
3234         if (overwrite) {
3235                 inode_dio_done(inode);
3236                 up_read(&EXT4_I(inode)->i_data_sem);
3237                 mutex_lock(&inode->i_mutex);
3238         }
3239
3240         return ret;
3241 }
3242
3243 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3244                               const struct iovec *iov, loff_t offset,
3245                               unsigned long nr_segs)
3246 {
3247         struct file *file = iocb->ki_filp;
3248         struct inode *inode = file->f_mapping->host;
3249         ssize_t ret;
3250
3251         /*
3252          * If we are doing data journalling we don't support O_DIRECT
3253          */
3254         if (ext4_should_journal_data(inode))
3255                 return 0;
3256
3257         /* Let buffer I/O handle the inline data case. */
3258         if (ext4_has_inline_data(inode))
3259                 return 0;
3260
3261         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3262         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3263                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3264         else
3265                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3266         trace_ext4_direct_IO_exit(inode, offset,
3267                                 iov_length(iov, nr_segs), rw, ret);
3268         return ret;
3269 }
3270
3271 /*
3272  * Pages can be marked dirty completely asynchronously from ext4's journalling
3273  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3274  * much here because ->set_page_dirty is called under VFS locks.  The page is
3275  * not necessarily locked.
3276  *
3277  * We cannot just dirty the page and leave attached buffers clean, because the
3278  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3279  * or jbddirty because all the journalling code will explode.
3280  *
3281  * So what we do is to mark the page "pending dirty" and next time writepage
3282  * is called, propagate that into the buffers appropriately.
3283  */
3284 static int ext4_journalled_set_page_dirty(struct page *page)
3285 {
3286         SetPageChecked(page);
3287         return __set_page_dirty_nobuffers(page);
3288 }
3289
3290 static const struct address_space_operations ext4_aops = {
3291         .readpage               = ext4_readpage,
3292         .readpages              = ext4_readpages,
3293         .writepage              = ext4_writepage,
3294         .write_begin            = ext4_write_begin,
3295         .write_end              = ext4_write_end,
3296         .bmap                   = ext4_bmap,
3297         .invalidatepage         = ext4_invalidatepage,
3298         .releasepage            = ext4_releasepage,
3299         .direct_IO              = ext4_direct_IO,
3300         .migratepage            = buffer_migrate_page,
3301         .is_partially_uptodate  = block_is_partially_uptodate,
3302         .error_remove_page      = generic_error_remove_page,
3303 };
3304
3305 static const struct address_space_operations ext4_journalled_aops = {
3306         .readpage               = ext4_readpage,
3307         .readpages              = ext4_readpages,
3308         .writepage              = ext4_writepage,
3309         .write_begin            = ext4_write_begin,
3310         .write_end              = ext4_journalled_write_end,
3311         .set_page_dirty         = ext4_journalled_set_page_dirty,
3312         .bmap                   = ext4_bmap,
3313         .invalidatepage         = ext4_journalled_invalidatepage,
3314         .releasepage            = ext4_releasepage,
3315         .direct_IO              = ext4_direct_IO,
3316         .is_partially_uptodate  = block_is_partially_uptodate,
3317         .error_remove_page      = generic_error_remove_page,
3318 };
3319
3320 static const struct address_space_operations ext4_da_aops = {
3321         .readpage               = ext4_readpage,
3322         .readpages              = ext4_readpages,
3323         .writepage              = ext4_writepage,
3324         .writepages             = ext4_da_writepages,
3325         .write_begin            = ext4_da_write_begin,
3326         .write_end              = ext4_da_write_end,
3327         .bmap                   = ext4_bmap,
3328         .invalidatepage         = ext4_da_invalidatepage,
3329         .releasepage            = ext4_releasepage,
3330         .direct_IO              = ext4_direct_IO,
3331         .migratepage            = buffer_migrate_page,
3332         .is_partially_uptodate  = block_is_partially_uptodate,
3333         .error_remove_page      = generic_error_remove_page,
3334 };
3335
3336 void ext4_set_aops(struct inode *inode)
3337 {
3338         switch (ext4_inode_journal_mode(inode)) {
3339         case EXT4_INODE_ORDERED_DATA_MODE:
3340                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3341                 break;
3342         case EXT4_INODE_WRITEBACK_DATA_MODE:
3343                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3344                 break;
3345         case EXT4_INODE_JOURNAL_DATA_MODE:
3346                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3347                 return;
3348         default:
3349                 BUG();
3350         }
3351         if (test_opt(inode->i_sb, DELALLOC))
3352                 inode->i_mapping->a_ops = &ext4_da_aops;
3353         else
3354                 inode->i_mapping->a_ops = &ext4_aops;
3355 }
3356
3357
3358 /*
3359  * ext4_discard_partial_page_buffers()
3360  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3361  * This function finds and locks the page containing the offset
3362  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3363  * Calling functions that already have the page locked should call
3364  * ext4_discard_partial_page_buffers_no_lock directly.
3365  */
3366 int ext4_discard_partial_page_buffers(handle_t *handle,
3367                 struct address_space *mapping, loff_t from,
3368                 loff_t length, int flags)
3369 {
3370         struct inode *inode = mapping->host;
3371         struct page *page;
3372         int err = 0;
3373
3374         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3375                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3376         if (!page)
3377                 return -ENOMEM;
3378
3379         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3380                 from, length, flags);
3381
3382         unlock_page(page);
3383         page_cache_release(page);
3384         return err;
3385 }
3386
3387 /*
3388  * ext4_discard_partial_page_buffers_no_lock()
3389  * Zeros a page range of length 'length' starting from offset 'from'.
3390  * Buffer heads that correspond to the block aligned regions of the
3391  * zeroed range will be unmapped.  Unblock aligned regions
3392  * will have the corresponding buffer head mapped if needed so that
3393  * that region of the page can be updated with the partial zero out.
3394  *
3395  * This function assumes that the page has already been  locked.  The
3396  * The range to be discarded must be contained with in the given page.
3397  * If the specified range exceeds the end of the page it will be shortened
3398  * to the end of the page that corresponds to 'from'.  This function is
3399  * appropriate for updating a page and it buffer heads to be unmapped and
3400  * zeroed for blocks that have been either released, or are going to be
3401  * released.
3402  *
3403  * handle: The journal handle
3404  * inode:  The files inode
3405  * page:   A locked page that contains the offset "from"
3406  * from:   The starting byte offset (from the beginning of the file)
3407  *         to begin discarding
3408  * len:    The length of bytes to discard
3409  * flags:  Optional flags that may be used:
3410  *
3411  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3412  *         Only zero the regions of the page whose buffer heads
3413  *         have already been unmapped.  This flag is appropriate
3414  *         for updating the contents of a page whose blocks may
3415  *         have already been released, and we only want to zero
3416  *         out the regions that correspond to those released blocks.
3417  *
3418  * Returns zero on success or negative on failure.
3419  */
3420 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3421                 struct inode *inode, struct page *page, loff_t from,
3422                 loff_t length, int flags)
3423 {
3424         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3425         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3426         unsigned int blocksize, max, pos;
3427         ext4_lblk_t iblock;
3428         struct buffer_head *bh;
3429         int err = 0;
3430
3431         blocksize = inode->i_sb->s_blocksize;
3432         max = PAGE_CACHE_SIZE - offset;
3433
3434         if (index != page->index)
3435                 return -EINVAL;
3436
3437         /*
3438          * correct length if it does not fall between
3439          * 'from' and the end of the page
3440          */
3441         if (length > max || length < 0)
3442                 length = max;
3443
3444         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3445
3446         if (!page_has_buffers(page))
3447                 create_empty_buffers(page, blocksize, 0);
3448
3449         /* Find the buffer that contains "offset" */
3450         bh = page_buffers(page);
3451         pos = blocksize;
3452         while (offset >= pos) {
3453                 bh = bh->b_this_page;
3454                 iblock++;
3455                 pos += blocksize;
3456         }
3457
3458         pos = offset;
3459         while (pos < offset + length) {
3460                 unsigned int end_of_block, range_to_discard;
3461
3462                 err = 0;
3463
3464                 /* The length of space left to zero and unmap */
3465                 range_to_discard = offset + length - pos;
3466
3467                 /* The length of space until the end of the block */
3468                 end_of_block = blocksize - (pos & (blocksize-1));
3469
3470                 /*
3471                  * Do not unmap or zero past end of block
3472                  * for this buffer head
3473                  */
3474                 if (range_to_discard > end_of_block)
3475                         range_to_discard = end_of_block;
3476
3477
3478                 /*
3479                  * Skip this buffer head if we are only zeroing unampped
3480                  * regions of the page
3481                  */
3482                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3483                         buffer_mapped(bh))
3484                                 goto next;
3485
3486                 /* If the range is block aligned, unmap */
3487                 if (range_to_discard == blocksize) {
3488                         clear_buffer_dirty(bh);
3489                         bh->b_bdev = NULL;
3490                         clear_buffer_mapped(bh);
3491                         clear_buffer_req(bh);
3492                         clear_buffer_new(bh);
3493                         clear_buffer_delay(bh);
3494                         clear_buffer_unwritten(bh);
3495                         clear_buffer_uptodate(bh);
3496                         zero_user(page, pos, range_to_discard);
3497                         BUFFER_TRACE(bh, "Buffer discarded");
3498                         goto next;
3499                 }
3500
3501                 /*
3502                  * If this block is not completely contained in the range
3503                  * to be discarded, then it is not going to be released. Because
3504                  * we need to keep this block, we need to make sure this part
3505                  * of the page is uptodate before we modify it by writeing
3506                  * partial zeros on it.
3507                  */
3508                 if (!buffer_mapped(bh)) {
3509                         /*
3510                          * Buffer head must be mapped before we can read
3511                          * from the block
3512                          */
3513                         BUFFER_TRACE(bh, "unmapped");
3514                         ext4_get_block(inode, iblock, bh, 0);
3515                         /* unmapped? It's a hole - nothing to do */
3516                         if (!buffer_mapped(bh)) {
3517                                 BUFFER_TRACE(bh, "still unmapped");
3518                                 goto next;
3519                         }
3520                 }
3521
3522                 /* Ok, it's mapped. Make sure it's up-to-date */
3523                 if (PageUptodate(page))
3524                         set_buffer_uptodate(bh);
3525
3526                 if (!buffer_uptodate(bh)) {
3527                         err = -EIO;
3528                         ll_rw_block(READ, 1, &bh);
3529                         wait_on_buffer(bh);
3530                         /* Uhhuh. Read error. Complain and punt.*/
3531                         if (!buffer_uptodate(bh))
3532                                 goto next;
3533                 }
3534
3535                 if (ext4_should_journal_data(inode)) {
3536                         BUFFER_TRACE(bh, "get write access");
3537                         err = ext4_journal_get_write_access(handle, bh);
3538                         if (err)
3539                                 goto next;
3540                 }
3541
3542                 zero_user(page, pos, range_to_discard);
3543
3544                 err = 0;
3545                 if (ext4_should_journal_data(inode)) {
3546                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3547                 } else
3548                         mark_buffer_dirty(bh);
3549
3550                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3551 next:
3552                 bh = bh->b_this_page;
3553                 iblock++;
3554                 pos += range_to_discard;
3555         }
3556
3557         return err;
3558 }
3559
3560 int ext4_can_truncate(struct inode *inode)
3561 {
3562         if (S_ISREG(inode->i_mode))
3563                 return 1;
3564         if (S_ISDIR(inode->i_mode))
3565                 return 1;
3566         if (S_ISLNK(inode->i_mode))
3567                 return !ext4_inode_is_fast_symlink(inode);
3568         return 0;
3569 }
3570
3571 /*
3572  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3573  * associated with the given offset and length
3574  *
3575  * @inode:  File inode
3576  * @offset: The offset where the hole will begin
3577  * @len:    The length of the hole
3578  *
3579  * Returns: 0 on success or negative on failure
3580  */
3581
3582 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3583 {
3584         struct inode *inode = file_inode(file);
3585         struct super_block *sb = inode->i_sb;
3586         ext4_lblk_t first_block, stop_block;
3587         struct address_space *mapping = inode->i_mapping;
3588         loff_t first_page, last_page, page_len;
3589         loff_t first_page_offset, last_page_offset;
3590         handle_t *handle;
3591         unsigned int credits;
3592         int ret = 0;
3593
3594         if (!S_ISREG(inode->i_mode))
3595                 return -EOPNOTSUPP;
3596
3597         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3598                 /* TODO: Add support for bigalloc file systems */
3599                 return -EOPNOTSUPP;
3600         }
3601
3602         trace_ext4_punch_hole(inode, offset, length);
3603
3604         /*
3605          * Write out all dirty pages to avoid race conditions
3606          * Then release them.
3607          */
3608         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3609                 ret = filemap_write_and_wait_range(mapping, offset,
3610                                                    offset + length - 1);
3611                 if (ret)
3612                         return ret;
3613         }
3614
3615         mutex_lock(&inode->i_mutex);
3616         /* It's not possible punch hole on append only file */
3617         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3618                 ret = -EPERM;
3619                 goto out_mutex;
3620         }
3621         if (IS_SWAPFILE(inode)) {
3622                 ret = -ETXTBSY;
3623                 goto out_mutex;
3624         }
3625
3626         /* No need to punch hole beyond i_size */
3627         if (offset >= inode->i_size)
3628                 goto out_mutex;
3629
3630         /*
3631          * If the hole extends beyond i_size, set the hole
3632          * to end after the page that contains i_size
3633          */
3634         if (offset + length > inode->i_size) {
3635                 length = inode->i_size +
3636                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3637                    offset;
3638         }
3639
3640         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3641         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3642
3643         first_page_offset = first_page << PAGE_CACHE_SHIFT;
3644         last_page_offset = last_page << PAGE_CACHE_SHIFT;
3645
3646         /* Now release the pages */
3647         if (last_page_offset > first_page_offset) {
3648                 truncate_pagecache_range(inode, first_page_offset,
3649                                          last_page_offset - 1);
3650         }
3651
3652         /* Wait all existing dio workers, newcomers will block on i_mutex */
3653         ext4_inode_block_unlocked_dio(inode);
3654         ret = ext4_flush_unwritten_io(inode);
3655         if (ret)
3656                 goto out_dio;
3657         inode_dio_wait(inode);
3658
3659         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3660                 credits = ext4_writepage_trans_blocks(inode);
3661         else
3662                 credits = ext4_blocks_for_truncate(inode);
3663         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3664         if (IS_ERR(handle)) {
3665                 ret = PTR_ERR(handle);
3666                 ext4_std_error(sb, ret);
3667                 goto out_dio;
3668         }
3669
3670         /*
3671          * Now we need to zero out the non-page-aligned data in the
3672          * pages at the start and tail of the hole, and unmap the
3673          * buffer heads for the block aligned regions of the page that
3674          * were completely zeroed.
3675          */
3676         if (first_page > last_page) {
3677                 /*
3678                  * If the file space being truncated is contained
3679                  * within a page just zero out and unmap the middle of
3680                  * that page
3681                  */
3682                 ret = ext4_discard_partial_page_buffers(handle,
3683                         mapping, offset, length, 0);
3684
3685                 if (ret)
3686                         goto out_stop;
3687         } else {
3688                 /*
3689                  * zero out and unmap the partial page that contains
3690                  * the start of the hole
3691                  */
3692                 page_len = first_page_offset - offset;
3693                 if (page_len > 0) {
3694                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3695                                                 offset, page_len, 0);
3696                         if (ret)
3697                                 goto out_stop;
3698                 }
3699
3700                 /*
3701                  * zero out and unmap the partial page that contains
3702                  * the end of the hole
3703                  */
3704                 page_len = offset + length - last_page_offset;
3705                 if (page_len > 0) {
3706                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3707                                         last_page_offset, page_len, 0);
3708                         if (ret)
3709                                 goto out_stop;
3710                 }
3711         }
3712
3713         /*
3714          * If i_size is contained in the last page, we need to
3715          * unmap and zero the partial page after i_size
3716          */
3717         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3718            inode->i_size % PAGE_CACHE_SIZE != 0) {
3719                 page_len = PAGE_CACHE_SIZE -
3720                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3721
3722                 if (page_len > 0) {
3723                         ret = ext4_discard_partial_page_buffers(handle,
3724                                         mapping, inode->i_size, page_len, 0);
3725
3726                         if (ret)
3727                                 goto out_stop;
3728                 }
3729         }
3730
3731         first_block = (offset + sb->s_blocksize - 1) >>
3732                 EXT4_BLOCK_SIZE_BITS(sb);
3733         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3734
3735         /* If there are no blocks to remove, return now */
3736         if (first_block >= stop_block)
3737                 goto out_stop;
3738
3739         down_write(&EXT4_I(inode)->i_data_sem);
3740         ext4_discard_preallocations(inode);
3741
3742         ret = ext4_es_remove_extent(inode, first_block,
3743                                     stop_block - first_block);
3744         if (ret) {
3745                 up_write(&EXT4_I(inode)->i_data_sem);
3746                 goto out_stop;
3747         }
3748
3749         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3750                 ret = ext4_ext_remove_space(inode, first_block,
3751                                             stop_block - 1);
3752         else
3753                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3754                                             stop_block);
3755
3756         ext4_discard_preallocations(inode);
3757         up_write(&EXT4_I(inode)->i_data_sem);
3758         if (IS_SYNC(inode))
3759                 ext4_handle_sync(handle);
3760         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3761         ext4_mark_inode_dirty(handle, inode);
3762 out_stop:
3763         ext4_journal_stop(handle);
3764 out_dio:
3765         ext4_inode_resume_unlocked_dio(inode);
3766 out_mutex:
3767         mutex_unlock(&inode->i_mutex);
3768         return ret;
3769 }
3770
3771 /*
3772  * ext4_truncate()
3773  *
3774  * We block out ext4_get_block() block instantiations across the entire
3775  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3776  * simultaneously on behalf of the same inode.
3777  *
3778  * As we work through the truncate and commit bits of it to the journal there
3779  * is one core, guiding principle: the file's tree must always be consistent on
3780  * disk.  We must be able to restart the truncate after a crash.
3781  *
3782  * The file's tree may be transiently inconsistent in memory (although it
3783  * probably isn't), but whenever we close off and commit a journal transaction,
3784  * the contents of (the filesystem + the journal) must be consistent and
3785  * restartable.  It's pretty simple, really: bottom up, right to left (although
3786  * left-to-right works OK too).
3787  *
3788  * Note that at recovery time, journal replay occurs *before* the restart of
3789  * truncate against the orphan inode list.
3790  *
3791  * The committed inode has the new, desired i_size (which is the same as
3792  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3793  * that this inode's truncate did not complete and it will again call
3794  * ext4_truncate() to have another go.  So there will be instantiated blocks
3795  * to the right of the truncation point in a crashed ext4 filesystem.  But
3796  * that's fine - as long as they are linked from the inode, the post-crash
3797  * ext4_truncate() run will find them and release them.
3798  */
3799 void ext4_truncate(struct inode *inode)
3800 {
3801         struct ext4_inode_info *ei = EXT4_I(inode);
3802         unsigned int credits;
3803         handle_t *handle;
3804         struct address_space *mapping = inode->i_mapping;
3805         loff_t page_len;
3806
3807         /*
3808          * There is a possibility that we're either freeing the inode
3809          * or it completely new indode. In those cases we might not
3810          * have i_mutex locked because it's not necessary.
3811          */
3812         if (!(inode->i_state & (I_NEW|I_FREEING)))
3813                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3814         trace_ext4_truncate_enter(inode);
3815
3816         if (!ext4_can_truncate(inode))
3817                 return;
3818
3819         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3820
3821         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3822                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3823
3824         if (ext4_has_inline_data(inode)) {
3825                 int has_inline = 1;
3826
3827                 ext4_inline_data_truncate(inode, &has_inline);
3828                 if (has_inline)
3829                         return;
3830         }
3831
3832         /*
3833          * finish any pending end_io work so we won't run the risk of
3834          * converting any truncated blocks to initialized later
3835          */
3836         ext4_flush_unwritten_io(inode);
3837
3838         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3839                 credits = ext4_writepage_trans_blocks(inode);
3840         else
3841                 credits = ext4_blocks_for_truncate(inode);
3842
3843         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3844         if (IS_ERR(handle)) {
3845                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3846                 return;
3847         }
3848
3849         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3850                 page_len = PAGE_CACHE_SIZE -
3851                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3852
3853                 if (ext4_discard_partial_page_buffers(handle,
3854                                 mapping, inode->i_size, page_len, 0))
3855                         goto out_stop;
3856         }
3857
3858         /*
3859          * We add the inode to the orphan list, so that if this
3860          * truncate spans multiple transactions, and we crash, we will
3861          * resume the truncate when the filesystem recovers.  It also
3862          * marks the inode dirty, to catch the new size.
3863          *
3864          * Implication: the file must always be in a sane, consistent
3865          * truncatable state while each transaction commits.
3866          */
3867         if (ext4_orphan_add(handle, inode))
3868                 goto out_stop;
3869
3870         down_write(&EXT4_I(inode)->i_data_sem);
3871
3872         ext4_discard_preallocations(inode);
3873
3874         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3875                 ext4_ext_truncate(handle, inode);
3876         else
3877                 ext4_ind_truncate(handle, inode);
3878
3879         up_write(&ei->i_data_sem);
3880
3881         if (IS_SYNC(inode))
3882                 ext4_handle_sync(handle);
3883
3884 out_stop:
3885         /*
3886          * If this was a simple ftruncate() and the file will remain alive,
3887          * then we need to clear up the orphan record which we created above.
3888          * However, if this was a real unlink then we were called by
3889          * ext4_delete_inode(), and we allow that function to clean up the
3890          * orphan info for us.
3891          */
3892         if (inode->i_nlink)
3893                 ext4_orphan_del(handle, inode);
3894
3895         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3896         ext4_mark_inode_dirty(handle, inode);
3897         ext4_journal_stop(handle);
3898
3899         trace_ext4_truncate_exit(inode);
3900 }
3901
3902 /*
3903  * ext4_get_inode_loc returns with an extra refcount against the inode's
3904  * underlying buffer_head on success. If 'in_mem' is true, we have all
3905  * data in memory that is needed to recreate the on-disk version of this
3906  * inode.
3907  */
3908 static int __ext4_get_inode_loc(struct inode *inode,
3909                                 struct ext4_iloc *iloc, int in_mem)
3910 {
3911         struct ext4_group_desc  *gdp;
3912         struct buffer_head      *bh;
3913         struct super_block      *sb = inode->i_sb;
3914         ext4_fsblk_t            block;
3915         int                     inodes_per_block, inode_offset;
3916
3917         iloc->bh = NULL;
3918         if (!ext4_valid_inum(sb, inode->i_ino))
3919                 return -EIO;
3920
3921         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3922         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3923         if (!gdp)
3924                 return -EIO;
3925
3926         /*
3927          * Figure out the offset within the block group inode table
3928          */
3929         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3930         inode_offset = ((inode->i_ino - 1) %
3931                         EXT4_INODES_PER_GROUP(sb));
3932         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3933         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3934
3935         bh = sb_getblk(sb, block);
3936         if (unlikely(!bh))
3937                 return -ENOMEM;
3938         if (!buffer_uptodate(bh)) {
3939                 lock_buffer(bh);
3940
3941                 /*
3942                  * If the buffer has the write error flag, we have failed
3943                  * to write out another inode in the same block.  In this
3944                  * case, we don't have to read the block because we may
3945                  * read the old inode data successfully.
3946                  */
3947                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3948                         set_buffer_uptodate(bh);
3949
3950                 if (buffer_uptodate(bh)) {
3951                         /* someone brought it uptodate while we waited */
3952                         unlock_buffer(bh);
3953                         goto has_buffer;
3954                 }
3955
3956                 /*
3957                  * If we have all information of the inode in memory and this
3958                  * is the only valid inode in the block, we need not read the
3959                  * block.
3960                  */
3961                 if (in_mem) {
3962                         struct buffer_head *bitmap_bh;
3963                         int i, start;
3964
3965                         start = inode_offset & ~(inodes_per_block - 1);
3966
3967                         /* Is the inode bitmap in cache? */
3968                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3969                         if (unlikely(!bitmap_bh))
3970                                 goto make_io;
3971
3972                         /*
3973                          * If the inode bitmap isn't in cache then the
3974                          * optimisation may end up performing two reads instead
3975                          * of one, so skip it.
3976                          */
3977                         if (!buffer_uptodate(bitmap_bh)) {
3978                                 brelse(bitmap_bh);
3979                                 goto make_io;
3980                         }
3981                         for (i = start; i < start + inodes_per_block; i++) {
3982                                 if (i == inode_offset)
3983                                         continue;
3984                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3985                                         break;
3986                         }
3987                         brelse(bitmap_bh);
3988                         if (i == start + inodes_per_block) {
3989                                 /* all other inodes are free, so skip I/O */
3990                                 memset(bh->b_data, 0, bh->b_size);
3991                                 set_buffer_uptodate(bh);
3992                                 unlock_buffer(bh);
3993                                 goto has_buffer;
3994                         }
3995                 }
3996
3997 make_io:
3998                 /*
3999                  * If we need to do any I/O, try to pre-readahead extra
4000                  * blocks from the inode table.
4001                  */
4002                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4003                         ext4_fsblk_t b, end, table;
4004                         unsigned num;
4005                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4006
4007                         table = ext4_inode_table(sb, gdp);
4008                         /* s_inode_readahead_blks is always a power of 2 */
4009                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4010                         if (table > b)
4011                                 b = table;
4012                         end = b + ra_blks;
4013                         num = EXT4_INODES_PER_GROUP(sb);
4014                         if (ext4_has_group_desc_csum(sb))
4015                                 num -= ext4_itable_unused_count(sb, gdp);
4016                         table += num / inodes_per_block;
4017                         if (end > table)
4018                                 end = table;
4019                         while (b <= end)
4020                                 sb_breadahead(sb, b++);
4021                 }
4022
4023                 /*
4024                  * There are other valid inodes in the buffer, this inode
4025                  * has in-inode xattrs, or we don't have this inode in memory.
4026                  * Read the block from disk.
4027                  */
4028                 trace_ext4_load_inode(inode);
4029                 get_bh(bh);
4030                 bh->b_end_io = end_buffer_read_sync;
4031                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4032                 wait_on_buffer(bh);
4033                 if (!buffer_uptodate(bh)) {
4034                         EXT4_ERROR_INODE_BLOCK(inode, block,
4035                                                "unable to read itable block");
4036                         brelse(bh);
4037                         return -EIO;
4038                 }
4039         }
4040 has_buffer:
4041         iloc->bh = bh;
4042         return 0;
4043 }
4044
4045 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4046 {
4047         /* We have all inode data except xattrs in memory here. */
4048         return __ext4_get_inode_loc(inode, iloc,
4049                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4050 }
4051
4052 void ext4_set_inode_flags(struct inode *inode)
4053 {
4054         unsigned int flags = EXT4_I(inode)->i_flags;
4055
4056         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4057         if (flags & EXT4_SYNC_FL)
4058                 inode->i_flags |= S_SYNC;
4059         if (flags & EXT4_APPEND_FL)
4060                 inode->i_flags |= S_APPEND;
4061         if (flags & EXT4_IMMUTABLE_FL)
4062                 inode->i_flags |= S_IMMUTABLE;
4063         if (flags & EXT4_NOATIME_FL)
4064                 inode->i_flags |= S_NOATIME;
4065         if (flags & EXT4_DIRSYNC_FL)
4066                 inode->i_flags |= S_DIRSYNC;
4067 }
4068
4069 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4070 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4071 {
4072         unsigned int vfs_fl;
4073         unsigned long old_fl, new_fl;
4074
4075         do {
4076                 vfs_fl = ei->vfs_inode.i_flags;
4077                 old_fl = ei->i_flags;
4078                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4079                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4080                                 EXT4_DIRSYNC_FL);
4081                 if (vfs_fl & S_SYNC)
4082                         new_fl |= EXT4_SYNC_FL;
4083                 if (vfs_fl & S_APPEND)
4084                         new_fl |= EXT4_APPEND_FL;
4085                 if (vfs_fl & S_IMMUTABLE)
4086                         new_fl |= EXT4_IMMUTABLE_FL;
4087                 if (vfs_fl & S_NOATIME)
4088                         new_fl |= EXT4_NOATIME_FL;
4089                 if (vfs_fl & S_DIRSYNC)
4090                         new_fl |= EXT4_DIRSYNC_FL;
4091         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4092 }
4093
4094 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4095                                   struct ext4_inode_info *ei)
4096 {
4097         blkcnt_t i_blocks ;
4098         struct inode *inode = &(ei->vfs_inode);
4099         struct super_block *sb = inode->i_sb;
4100
4101         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4102                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4103                 /* we are using combined 48 bit field */
4104                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4105                                         le32_to_cpu(raw_inode->i_blocks_lo);
4106                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4107                         /* i_blocks represent file system block size */
4108                         return i_blocks  << (inode->i_blkbits - 9);
4109                 } else {
4110                         return i_blocks;
4111                 }
4112         } else {
4113                 return le32_to_cpu(raw_inode->i_blocks_lo);
4114         }
4115 }
4116
4117 static inline void ext4_iget_extra_inode(struct inode *inode,
4118                                          struct ext4_inode *raw_inode,
4119                                          struct ext4_inode_info *ei)
4120 {
4121         __le32 *magic = (void *)raw_inode +
4122                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4123         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4124                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4125                 ext4_find_inline_data_nolock(inode);
4126         } else
4127                 EXT4_I(inode)->i_inline_off = 0;
4128 }
4129
4130 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4131 {
4132         struct ext4_iloc iloc;
4133         struct ext4_inode *raw_inode;
4134         struct ext4_inode_info *ei;
4135         struct inode *inode;
4136         journal_t *journal = EXT4_SB(sb)->s_journal;
4137         long ret;
4138         int block;
4139         uid_t i_uid;
4140         gid_t i_gid;
4141
4142         inode = iget_locked(sb, ino);
4143         if (!inode)
4144                 return ERR_PTR(-ENOMEM);
4145         if (!(inode->i_state & I_NEW))
4146                 return inode;
4147
4148         ei = EXT4_I(inode);
4149         iloc.bh = NULL;
4150
4151         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4152         if (ret < 0)
4153                 goto bad_inode;
4154         raw_inode = ext4_raw_inode(&iloc);
4155
4156         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4157                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4158                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4159                     EXT4_INODE_SIZE(inode->i_sb)) {
4160                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4161                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4162                                 EXT4_INODE_SIZE(inode->i_sb));
4163                         ret = -EIO;
4164                         goto bad_inode;
4165                 }
4166         } else
4167                 ei->i_extra_isize = 0;
4168
4169         /* Precompute checksum seed for inode metadata */
4170         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4171                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4172                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4173                 __u32 csum;
4174                 __le32 inum = cpu_to_le32(inode->i_ino);
4175                 __le32 gen = raw_inode->i_generation;
4176                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4177                                    sizeof(inum));
4178                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4179                                               sizeof(gen));
4180         }
4181
4182         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4183                 EXT4_ERROR_INODE(inode, "checksum invalid");
4184                 ret = -EIO;
4185                 goto bad_inode;
4186         }
4187
4188         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4189         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4190         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4191         if (!(test_opt(inode->i_sb, NO_UID32))) {
4192                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4193                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4194         }
4195         i_uid_write(inode, i_uid);
4196         i_gid_write(inode, i_gid);
4197         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4198
4199         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4200         ei->i_inline_off = 0;
4201         ei->i_dir_start_lookup = 0;
4202         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4203         /* We now have enough fields to check if the inode was active or not.
4204          * This is needed because nfsd might try to access dead inodes
4205          * the test is that same one that e2fsck uses
4206          * NeilBrown 1999oct15
4207          */
4208         if (inode->i_nlink == 0) {
4209                 if ((inode->i_mode == 0 ||
4210                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4211                     ino != EXT4_BOOT_LOADER_INO) {
4212                         /* this inode is deleted */
4213                         ret = -ESTALE;
4214                         goto bad_inode;
4215                 }
4216                 /* The only unlinked inodes we let through here have
4217                  * valid i_mode and are being read by the orphan
4218                  * recovery code: that's fine, we're about to complete
4219                  * the process of deleting those.
4220                  * OR it is the EXT4_BOOT_LOADER_INO which is
4221                  * not initialized on a new filesystem. */
4222         }
4223         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4224         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4225         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4226         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4227                 ei->i_file_acl |=
4228                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4229         inode->i_size = ext4_isize(raw_inode);
4230         ei->i_disksize = inode->i_size;
4231 #ifdef CONFIG_QUOTA
4232         ei->i_reserved_quota = 0;
4233 #endif
4234         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4235         ei->i_block_group = iloc.block_group;
4236         ei->i_last_alloc_group = ~0;
4237         /*
4238          * NOTE! The in-memory inode i_data array is in little-endian order
4239          * even on big-endian machines: we do NOT byteswap the block numbers!
4240          */
4241         for (block = 0; block < EXT4_N_BLOCKS; block++)
4242                 ei->i_data[block] = raw_inode->i_block[block];
4243         INIT_LIST_HEAD(&ei->i_orphan);
4244
4245         /*
4246          * Set transaction id's of transactions that have to be committed
4247          * to finish f[data]sync. We set them to currently running transaction
4248          * as we cannot be sure that the inode or some of its metadata isn't
4249          * part of the transaction - the inode could have been reclaimed and
4250          * now it is reread from disk.
4251          */
4252         if (journal) {
4253                 transaction_t *transaction;
4254                 tid_t tid;
4255
4256                 read_lock(&journal->j_state_lock);
4257                 if (journal->j_running_transaction)
4258                         transaction = journal->j_running_transaction;
4259                 else
4260                         transaction = journal->j_committing_transaction;
4261                 if (transaction)
4262                         tid = transaction->t_tid;
4263                 else
4264                         tid = journal->j_commit_sequence;
4265                 read_unlock(&journal->j_state_lock);
4266                 ei->i_sync_tid = tid;
4267                 ei->i_datasync_tid = tid;
4268         }
4269
4270         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4271                 if (ei->i_extra_isize == 0) {
4272                         /* The extra space is currently unused. Use it. */
4273                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4274                                             EXT4_GOOD_OLD_INODE_SIZE;
4275                 } else {
4276                         ext4_iget_extra_inode(inode, raw_inode, ei);
4277                 }
4278         }
4279
4280         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4281         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4282         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4283         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4284
4285         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4286         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4287                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4288                         inode->i_version |=
4289                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4290         }
4291
4292         ret = 0;
4293         if (ei->i_file_acl &&
4294             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4295                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4296                                  ei->i_file_acl);
4297                 ret = -EIO;
4298                 goto bad_inode;
4299         } else if (!ext4_has_inline_data(inode)) {
4300                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4301                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4302                             (S_ISLNK(inode->i_mode) &&
4303                              !ext4_inode_is_fast_symlink(inode))))
4304                                 /* Validate extent which is part of inode */
4305                                 ret = ext4_ext_check_inode(inode);
4306                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4307                            (S_ISLNK(inode->i_mode) &&
4308                             !ext4_inode_is_fast_symlink(inode))) {
4309                         /* Validate block references which are part of inode */
4310                         ret = ext4_ind_check_inode(inode);
4311                 }
4312         }
4313         if (ret)
4314                 goto bad_inode;
4315
4316         if (S_ISREG(inode->i_mode)) {
4317                 inode->i_op = &ext4_file_inode_operations;
4318                 inode->i_fop = &ext4_file_operations;
4319                 ext4_set_aops(inode);
4320         } else if (S_ISDIR(inode->i_mode)) {
4321                 inode->i_op = &ext4_dir_inode_operations;
4322                 inode->i_fop = &ext4_dir_operations;
4323         } else if (S_ISLNK(inode->i_mode)) {
4324                 if (ext4_inode_is_fast_symlink(inode)) {
4325                         inode->i_op = &ext4_fast_symlink_inode_operations;
4326                         nd_terminate_link(ei->i_data, inode->i_size,
4327                                 sizeof(ei->i_data) - 1);
4328                 } else {
4329                         inode->i_op = &ext4_symlink_inode_operations;
4330                         ext4_set_aops(inode);
4331                 }
4332         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4333               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4334                 inode->i_op = &ext4_special_inode_operations;
4335                 if (raw_inode->i_block[0])
4336                         init_special_inode(inode, inode->i_mode,
4337                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4338                 else
4339                         init_special_inode(inode, inode->i_mode,
4340                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4341         } else if (ino == EXT4_BOOT_LOADER_INO) {
4342                 make_bad_inode(inode);
4343         } else {
4344                 ret = -EIO;
4345                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4346                 goto bad_inode;
4347         }
4348         brelse(iloc.bh);
4349         ext4_set_inode_flags(inode);
4350         unlock_new_inode(inode);
4351         return inode;
4352
4353 bad_inode:
4354         brelse(iloc.bh);
4355         iget_failed(inode);
4356         return ERR_PTR(ret);
4357 }
4358
4359 static int ext4_inode_blocks_set(handle_t *handle,
4360                                 struct ext4_inode *raw_inode,
4361                                 struct ext4_inode_info *ei)
4362 {
4363         struct inode *inode = &(ei->vfs_inode);
4364         u64 i_blocks = inode->i_blocks;
4365         struct super_block *sb = inode->i_sb;
4366
4367         if (i_blocks <= ~0U) {
4368                 /*
4369                  * i_blocks can be represented in a 32 bit variable
4370                  * as multiple of 512 bytes
4371                  */
4372                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4373                 raw_inode->i_blocks_high = 0;
4374                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4375                 return 0;
4376         }
4377         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4378                 return -EFBIG;
4379
4380         if (i_blocks <= 0xffffffffffffULL) {
4381                 /*
4382                  * i_blocks can be represented in a 48 bit variable
4383                  * as multiple of 512 bytes
4384                  */
4385                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4386                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4387                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4388         } else {
4389                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4390                 /* i_block is stored in file system block size */
4391                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4392                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4393                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4394         }
4395         return 0;
4396 }
4397
4398 /*
4399  * Post the struct inode info into an on-disk inode location in the
4400  * buffer-cache.  This gobbles the caller's reference to the
4401  * buffer_head in the inode location struct.
4402  *
4403  * The caller must have write access to iloc->bh.
4404  */
4405 static int ext4_do_update_inode(handle_t *handle,
4406                                 struct inode *inode,
4407                                 struct ext4_iloc *iloc)
4408 {
4409         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4410         struct ext4_inode_info *ei = EXT4_I(inode);
4411         struct buffer_head *bh = iloc->bh;
4412         int err = 0, rc, block;
4413         int need_datasync = 0;
4414         uid_t i_uid;
4415         gid_t i_gid;
4416
4417         /* For fields not not tracking in the in-memory inode,
4418          * initialise them to zero for new inodes. */
4419         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4420                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4421
4422         ext4_get_inode_flags(ei);
4423         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4424         i_uid = i_uid_read(inode);
4425         i_gid = i_gid_read(inode);
4426         if (!(test_opt(inode->i_sb, NO_UID32))) {
4427                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4428                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4429 /*
4430  * Fix up interoperability with old kernels. Otherwise, old inodes get
4431  * re-used with the upper 16 bits of the uid/gid intact
4432  */
4433                 if (!ei->i_dtime) {
4434                         raw_inode->i_uid_high =
4435                                 cpu_to_le16(high_16_bits(i_uid));
4436                         raw_inode->i_gid_high =
4437                                 cpu_to_le16(high_16_bits(i_gid));
4438                 } else {
4439                         raw_inode->i_uid_high = 0;
4440                         raw_inode->i_gid_high = 0;
4441                 }
4442         } else {
4443                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4444                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4445                 raw_inode->i_uid_high = 0;
4446                 raw_inode->i_gid_high = 0;
4447         }
4448         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4449
4450         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4451         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4452         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4453         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4454
4455         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4456                 goto out_brelse;
4457         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4458         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4459         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4460             cpu_to_le32(EXT4_OS_HURD))
4461                 raw_inode->i_file_acl_high =
4462                         cpu_to_le16(ei->i_file_acl >> 32);
4463         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4464         if (ei->i_disksize != ext4_isize(raw_inode)) {
4465                 ext4_isize_set(raw_inode, ei->i_disksize);
4466                 need_datasync = 1;
4467         }
4468         if (ei->i_disksize > 0x7fffffffULL) {
4469                 struct super_block *sb = inode->i_sb;
4470                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4471                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4472                                 EXT4_SB(sb)->s_es->s_rev_level ==
4473                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4474                         /* If this is the first large file
4475                          * created, add a flag to the superblock.
4476                          */
4477                         err = ext4_journal_get_write_access(handle,
4478                                         EXT4_SB(sb)->s_sbh);
4479                         if (err)
4480                                 goto out_brelse;
4481                         ext4_update_dynamic_rev(sb);
4482                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4483                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4484                         ext4_handle_sync(handle);
4485                         err = ext4_handle_dirty_super(handle, sb);
4486                 }
4487         }
4488         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4489         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4490                 if (old_valid_dev(inode->i_rdev)) {
4491                         raw_inode->i_block[0] =
4492                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4493                         raw_inode->i_block[1] = 0;
4494                 } else {
4495                         raw_inode->i_block[0] = 0;
4496                         raw_inode->i_block[1] =
4497                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4498                         raw_inode->i_block[2] = 0;
4499                 }
4500         } else if (!ext4_has_inline_data(inode)) {
4501                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4502                         raw_inode->i_block[block] = ei->i_data[block];
4503         }
4504
4505         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4506         if (ei->i_extra_isize) {
4507                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4508                         raw_inode->i_version_hi =
4509                         cpu_to_le32(inode->i_version >> 32);
4510                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4511         }
4512
4513         ext4_inode_csum_set(inode, raw_inode, ei);
4514
4515         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4516         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4517         if (!err)
4518                 err = rc;
4519         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4520
4521         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4522 out_brelse:
4523         brelse(bh);
4524         ext4_std_error(inode->i_sb, err);
4525         return err;
4526 }
4527
4528 /*
4529  * ext4_write_inode()
4530  *
4531  * We are called from a few places:
4532  *
4533  * - Within generic_file_write() for O_SYNC files.
4534  *   Here, there will be no transaction running. We wait for any running
4535  *   transaction to commit.
4536  *
4537  * - Within sys_sync(), kupdate and such.
4538  *   We wait on commit, if tol to.
4539  *
4540  * - Within prune_icache() (PF_MEMALLOC == true)
4541  *   Here we simply return.  We can't afford to block kswapd on the
4542  *   journal commit.
4543  *
4544  * In all cases it is actually safe for us to return without doing anything,
4545  * because the inode has been copied into a raw inode buffer in
4546  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4547  * knfsd.
4548  *
4549  * Note that we are absolutely dependent upon all inode dirtiers doing the
4550  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4551  * which we are interested.
4552  *
4553  * It would be a bug for them to not do this.  The code:
4554  *
4555  *      mark_inode_dirty(inode)
4556  *      stuff();
4557  *      inode->i_size = expr;
4558  *
4559  * is in error because a kswapd-driven write_inode() could occur while
4560  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4561  * will no longer be on the superblock's dirty inode list.
4562  */
4563 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4564 {
4565         int err;
4566
4567         if (current->flags & PF_MEMALLOC)
4568                 return 0;
4569
4570         if (EXT4_SB(inode->i_sb)->s_journal) {
4571                 if (ext4_journal_current_handle()) {
4572                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4573                         dump_stack();
4574                         return -EIO;
4575                 }
4576
4577                 if (wbc->sync_mode != WB_SYNC_ALL)
4578                         return 0;
4579
4580                 err = ext4_force_commit(inode->i_sb);
4581         } else {
4582                 struct ext4_iloc iloc;
4583
4584                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4585                 if (err)
4586                         return err;
4587                 if (wbc->sync_mode == WB_SYNC_ALL)
4588                         sync_dirty_buffer(iloc.bh);
4589                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4590                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4591                                          "IO error syncing inode");
4592                         err = -EIO;
4593                 }
4594                 brelse(iloc.bh);
4595         }
4596         return err;
4597 }
4598
4599 /*
4600  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4601  * buffers that are attached to a page stradding i_size and are undergoing
4602  * commit. In that case we have to wait for commit to finish and try again.
4603  */
4604 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4605 {
4606         struct page *page;
4607         unsigned offset;
4608         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4609         tid_t commit_tid = 0;
4610         int ret;
4611
4612         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4613         /*
4614          * All buffers in the last page remain valid? Then there's nothing to
4615          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4616          * blocksize case
4617          */
4618         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4619                 return;
4620         while (1) {
4621                 page = find_lock_page(inode->i_mapping,
4622                                       inode->i_size >> PAGE_CACHE_SHIFT);
4623                 if (!page)
4624                         return;
4625                 ret = __ext4_journalled_invalidatepage(page, offset);
4626                 unlock_page(page);
4627                 page_cache_release(page);
4628                 if (ret != -EBUSY)
4629                         return;
4630                 commit_tid = 0;
4631                 read_lock(&journal->j_state_lock);
4632                 if (journal->j_committing_transaction)
4633                         commit_tid = journal->j_committing_transaction->t_tid;
4634                 read_unlock(&journal->j_state_lock);
4635                 if (commit_tid)
4636                         jbd2_log_wait_commit(journal, commit_tid);
4637         }
4638 }
4639
4640 /*
4641  * ext4_setattr()
4642  *
4643  * Called from notify_change.
4644  *
4645  * We want to trap VFS attempts to truncate the file as soon as
4646  * possible.  In particular, we want to make sure that when the VFS
4647  * shrinks i_size, we put the inode on the orphan list and modify
4648  * i_disksize immediately, so that during the subsequent flushing of
4649  * dirty pages and freeing of disk blocks, we can guarantee that any
4650  * commit will leave the blocks being flushed in an unused state on
4651  * disk.  (On recovery, the inode will get truncated and the blocks will
4652  * be freed, so we have a strong guarantee that no future commit will
4653  * leave these blocks visible to the user.)
4654  *
4655  * Another thing we have to assure is that if we are in ordered mode
4656  * and inode is still attached to the committing transaction, we must
4657  * we start writeout of all the dirty pages which are being truncated.
4658  * This way we are sure that all the data written in the previous
4659  * transaction are already on disk (truncate waits for pages under
4660  * writeback).
4661  *
4662  * Called with inode->i_mutex down.
4663  */
4664 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4665 {
4666         struct inode *inode = dentry->d_inode;
4667         int error, rc = 0;
4668         int orphan = 0;
4669         const unsigned int ia_valid = attr->ia_valid;
4670
4671         error = inode_change_ok(inode, attr);
4672         if (error)
4673                 return error;
4674
4675         if (is_quota_modification(inode, attr))
4676                 dquot_initialize(inode);
4677         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4678             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4679                 handle_t *handle;
4680
4681                 /* (user+group)*(old+new) structure, inode write (sb,
4682                  * inode block, ? - but truncate inode update has it) */
4683                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4684                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4685                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4686                 if (IS_ERR(handle)) {
4687                         error = PTR_ERR(handle);
4688                         goto err_out;
4689                 }
4690                 error = dquot_transfer(inode, attr);
4691                 if (error) {
4692                         ext4_journal_stop(handle);
4693                         return error;
4694                 }
4695                 /* Update corresponding info in inode so that everything is in
4696                  * one transaction */
4697                 if (attr->ia_valid & ATTR_UID)
4698                         inode->i_uid = attr->ia_uid;
4699                 if (attr->ia_valid & ATTR_GID)
4700                         inode->i_gid = attr->ia_gid;
4701                 error = ext4_mark_inode_dirty(handle, inode);
4702                 ext4_journal_stop(handle);
4703         }
4704
4705         if (attr->ia_valid & ATTR_SIZE) {
4706
4707                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4708                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4709
4710                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4711                                 return -EFBIG;
4712                 }
4713         }
4714
4715         if (S_ISREG(inode->i_mode) &&
4716             attr->ia_valid & ATTR_SIZE &&
4717             (attr->ia_size < inode->i_size)) {
4718                 handle_t *handle;
4719
4720                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4721                 if (IS_ERR(handle)) {
4722                         error = PTR_ERR(handle);
4723                         goto err_out;
4724                 }
4725                 if (ext4_handle_valid(handle)) {
4726                         error = ext4_orphan_add(handle, inode);
4727                         orphan = 1;
4728                 }
4729                 EXT4_I(inode)->i_disksize = attr->ia_size;
4730                 rc = ext4_mark_inode_dirty(handle, inode);
4731                 if (!error)
4732                         error = rc;
4733                 ext4_journal_stop(handle);
4734
4735                 if (ext4_should_order_data(inode)) {
4736                         error = ext4_begin_ordered_truncate(inode,
4737                                                             attr->ia_size);
4738                         if (error) {
4739                                 /* Do as much error cleanup as possible */
4740                                 handle = ext4_journal_start(inode,
4741                                                             EXT4_HT_INODE, 3);
4742                                 if (IS_ERR(handle)) {
4743                                         ext4_orphan_del(NULL, inode);
4744                                         goto err_out;
4745                                 }
4746                                 ext4_orphan_del(handle, inode);
4747                                 orphan = 0;
4748                                 ext4_journal_stop(handle);
4749                                 goto err_out;
4750                         }
4751                 }
4752         }
4753
4754         if (attr->ia_valid & ATTR_SIZE) {
4755                 if (attr->ia_size != inode->i_size) {
4756                         loff_t oldsize = inode->i_size;
4757
4758                         i_size_write(inode, attr->ia_size);
4759                         /*
4760                          * Blocks are going to be removed from the inode. Wait
4761                          * for dio in flight.  Temporarily disable
4762                          * dioread_nolock to prevent livelock.
4763                          */
4764                         if (orphan) {
4765                                 if (!ext4_should_journal_data(inode)) {
4766                                         ext4_inode_block_unlocked_dio(inode);
4767                                         inode_dio_wait(inode);
4768                                         ext4_inode_resume_unlocked_dio(inode);
4769                                 } else
4770                                         ext4_wait_for_tail_page_commit(inode);
4771                         }
4772                         /*
4773                          * Truncate pagecache after we've waited for commit
4774                          * in data=journal mode to make pages freeable.
4775                          */
4776                         truncate_pagecache(inode, oldsize, inode->i_size);
4777                 }
4778                 ext4_truncate(inode);
4779         }
4780
4781         if (!rc) {
4782                 setattr_copy(inode, attr);
4783                 mark_inode_dirty(inode);
4784         }
4785
4786         /*
4787          * If the call to ext4_truncate failed to get a transaction handle at
4788          * all, we need to clean up the in-core orphan list manually.
4789          */
4790         if (orphan && inode->i_nlink)
4791                 ext4_orphan_del(NULL, inode);
4792
4793         if (!rc && (ia_valid & ATTR_MODE))
4794                 rc = ext4_acl_chmod(inode);
4795
4796 err_out:
4797         ext4_std_error(inode->i_sb, error);
4798         if (!error)
4799                 error = rc;
4800         return error;
4801 }
4802
4803 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4804                  struct kstat *stat)
4805 {
4806         struct inode *inode;
4807         unsigned long delalloc_blocks;
4808
4809         inode = dentry->d_inode;
4810         generic_fillattr(inode, stat);
4811
4812         /*
4813          * We can't update i_blocks if the block allocation is delayed
4814          * otherwise in the case of system crash before the real block
4815          * allocation is done, we will have i_blocks inconsistent with
4816          * on-disk file blocks.
4817          * We always keep i_blocks updated together with real
4818          * allocation. But to not confuse with user, stat
4819          * will return the blocks that include the delayed allocation
4820          * blocks for this file.
4821          */
4822         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4823                                 EXT4_I(inode)->i_reserved_data_blocks);
4824
4825         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4826         return 0;
4827 }
4828
4829 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4830 {
4831         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4832                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4833         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4834 }
4835
4836 /*
4837  * Account for index blocks, block groups bitmaps and block group
4838  * descriptor blocks if modify datablocks and index blocks
4839  * worse case, the indexs blocks spread over different block groups
4840  *
4841  * If datablocks are discontiguous, they are possible to spread over
4842  * different block groups too. If they are contiguous, with flexbg,
4843  * they could still across block group boundary.
4844  *
4845  * Also account for superblock, inode, quota and xattr blocks
4846  */
4847 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4848 {
4849         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4850         int gdpblocks;
4851         int idxblocks;
4852         int ret = 0;
4853
4854         /*
4855          * How many index blocks need to touch to modify nrblocks?
4856          * The "Chunk" flag indicating whether the nrblocks is
4857          * physically contiguous on disk
4858          *
4859          * For Direct IO and fallocate, they calls get_block to allocate
4860          * one single extent at a time, so they could set the "Chunk" flag
4861          */
4862         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4863
4864         ret = idxblocks;
4865
4866         /*
4867          * Now let's see how many group bitmaps and group descriptors need
4868          * to account
4869          */
4870         groups = idxblocks;
4871         if (chunk)
4872                 groups += 1;
4873         else
4874                 groups += nrblocks;
4875
4876         gdpblocks = groups;
4877         if (groups > ngroups)
4878                 groups = ngroups;
4879         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4880                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4881
4882         /* bitmaps and block group descriptor blocks */
4883         ret += groups + gdpblocks;
4884
4885         /* Blocks for super block, inode, quota and xattr blocks */
4886         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4887
4888         return ret;
4889 }
4890
4891 /*
4892  * Calculate the total number of credits to reserve to fit
4893  * the modification of a single pages into a single transaction,
4894  * which may include multiple chunks of block allocations.
4895  *
4896  * This could be called via ext4_write_begin()
4897  *
4898  * We need to consider the worse case, when
4899  * one new block per extent.
4900  */
4901 int ext4_writepage_trans_blocks(struct inode *inode)
4902 {
4903         int bpp = ext4_journal_blocks_per_page(inode);
4904         int ret;
4905
4906         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4907
4908         /* Account for data blocks for journalled mode */
4909         if (ext4_should_journal_data(inode))
4910                 ret += bpp;
4911         return ret;
4912 }
4913
4914 /*
4915  * Calculate the journal credits for a chunk of data modification.
4916  *
4917  * This is called from DIO, fallocate or whoever calling
4918  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4919  *
4920  * journal buffers for data blocks are not included here, as DIO
4921  * and fallocate do no need to journal data buffers.
4922  */
4923 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4924 {
4925         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4926 }
4927
4928 /*
4929  * The caller must have previously called ext4_reserve_inode_write().
4930  * Give this, we know that the caller already has write access to iloc->bh.
4931  */
4932 int ext4_mark_iloc_dirty(handle_t *handle,
4933                          struct inode *inode, struct ext4_iloc *iloc)
4934 {
4935         int err = 0;
4936
4937         if (IS_I_VERSION(inode))
4938                 inode_inc_iversion(inode);
4939
4940         /* the do_update_inode consumes one bh->b_count */
4941         get_bh(iloc->bh);
4942
4943         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4944         err = ext4_do_update_inode(handle, inode, iloc);
4945         put_bh(iloc->bh);
4946         return err;
4947 }
4948
4949 /*
4950  * On success, We end up with an outstanding reference count against
4951  * iloc->bh.  This _must_ be cleaned up later.
4952  */
4953
4954 int
4955 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4956                          struct ext4_iloc *iloc)
4957 {
4958         int err;
4959
4960         err = ext4_get_inode_loc(inode, iloc);
4961         if (!err) {
4962                 BUFFER_TRACE(iloc->bh, "get_write_access");
4963                 err = ext4_journal_get_write_access(handle, iloc->bh);
4964                 if (err) {
4965                         brelse(iloc->bh);
4966                         iloc->bh = NULL;
4967                 }
4968         }
4969         ext4_std_error(inode->i_sb, err);
4970         return err;
4971 }
4972
4973 /*
4974  * Expand an inode by new_extra_isize bytes.
4975  * Returns 0 on success or negative error number on failure.
4976  */
4977 static int ext4_expand_extra_isize(struct inode *inode,
4978                                    unsigned int new_extra_isize,
4979                                    struct ext4_iloc iloc,
4980                                    handle_t *handle)
4981 {
4982         struct ext4_inode *raw_inode;
4983         struct ext4_xattr_ibody_header *header;
4984
4985         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4986                 return 0;
4987
4988         raw_inode = ext4_raw_inode(&iloc);
4989
4990         header = IHDR(inode, raw_inode);
4991
4992         /* No extended attributes present */
4993         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4994             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4995                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4996                         new_extra_isize);
4997                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4998                 return 0;
4999         }
5000
5001         /* try to expand with EAs present */
5002         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5003                                           raw_inode, handle);
5004 }
5005
5006 /*
5007  * What we do here is to mark the in-core inode as clean with respect to inode
5008  * dirtiness (it may still be data-dirty).
5009  * This means that the in-core inode may be reaped by prune_icache
5010  * without having to perform any I/O.  This is a very good thing,
5011  * because *any* task may call prune_icache - even ones which
5012  * have a transaction open against a different journal.
5013  *
5014  * Is this cheating?  Not really.  Sure, we haven't written the
5015  * inode out, but prune_icache isn't a user-visible syncing function.
5016  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5017  * we start and wait on commits.
5018  */
5019 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5020 {
5021         struct ext4_iloc iloc;
5022         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5023         static unsigned int mnt_count;
5024         int err, ret;
5025
5026         might_sleep();
5027         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5028         err = ext4_reserve_inode_write(handle, inode, &iloc);
5029         if (ext4_handle_valid(handle) &&
5030             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5031             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5032                 /*
5033                  * We need extra buffer credits since we may write into EA block
5034                  * with this same handle. If journal_extend fails, then it will
5035                  * only result in a minor loss of functionality for that inode.
5036                  * If this is felt to be critical, then e2fsck should be run to
5037                  * force a large enough s_min_extra_isize.
5038                  */
5039                 if ((jbd2_journal_extend(handle,
5040                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5041                         ret = ext4_expand_extra_isize(inode,
5042                                                       sbi->s_want_extra_isize,
5043                                                       iloc, handle);
5044                         if (ret) {
5045                                 ext4_set_inode_state(inode,
5046                                                      EXT4_STATE_NO_EXPAND);
5047                                 if (mnt_count !=
5048                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5049                                         ext4_warning(inode->i_sb,
5050                                         "Unable to expand inode %lu. Delete"
5051                                         " some EAs or run e2fsck.",
5052                                         inode->i_ino);
5053                                         mnt_count =
5054                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5055                                 }
5056                         }
5057                 }
5058         }
5059         if (!err)
5060                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5061         return err;
5062 }
5063
5064 /*
5065  * ext4_dirty_inode() is called from __mark_inode_dirty()
5066  *
5067  * We're really interested in the case where a file is being extended.
5068  * i_size has been changed by generic_commit_write() and we thus need
5069  * to include the updated inode in the current transaction.
5070  *
5071  * Also, dquot_alloc_block() will always dirty the inode when blocks
5072  * are allocated to the file.
5073  *
5074  * If the inode is marked synchronous, we don't honour that here - doing
5075  * so would cause a commit on atime updates, which we don't bother doing.
5076  * We handle synchronous inodes at the highest possible level.
5077  */
5078 void ext4_dirty_inode(struct inode *inode, int flags)
5079 {
5080         handle_t *handle;
5081
5082         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5083         if (IS_ERR(handle))
5084                 goto out;
5085
5086         ext4_mark_inode_dirty(handle, inode);
5087
5088         ext4_journal_stop(handle);
5089 out:
5090         return;
5091 }
5092
5093 #if 0
5094 /*
5095  * Bind an inode's backing buffer_head into this transaction, to prevent
5096  * it from being flushed to disk early.  Unlike
5097  * ext4_reserve_inode_write, this leaves behind no bh reference and
5098  * returns no iloc structure, so the caller needs to repeat the iloc
5099  * lookup to mark the inode dirty later.
5100  */
5101 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5102 {
5103         struct ext4_iloc iloc;
5104
5105         int err = 0;
5106         if (handle) {
5107                 err = ext4_get_inode_loc(inode, &iloc);
5108                 if (!err) {
5109                         BUFFER_TRACE(iloc.bh, "get_write_access");
5110                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5111                         if (!err)
5112                                 err = ext4_handle_dirty_metadata(handle,
5113                                                                  NULL,
5114                                                                  iloc.bh);
5115                         brelse(iloc.bh);
5116                 }
5117         }
5118         ext4_std_error(inode->i_sb, err);
5119         return err;
5120 }
5121 #endif
5122
5123 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5124 {
5125         journal_t *journal;
5126         handle_t *handle;
5127         int err;
5128
5129         /*
5130          * We have to be very careful here: changing a data block's
5131          * journaling status dynamically is dangerous.  If we write a
5132          * data block to the journal, change the status and then delete
5133          * that block, we risk forgetting to revoke the old log record
5134          * from the journal and so a subsequent replay can corrupt data.
5135          * So, first we make sure that the journal is empty and that
5136          * nobody is changing anything.
5137          */
5138
5139         journal = EXT4_JOURNAL(inode);
5140         if (!journal)
5141                 return 0;
5142         if (is_journal_aborted(journal))
5143                 return -EROFS;
5144         /* We have to allocate physical blocks for delalloc blocks
5145          * before flushing journal. otherwise delalloc blocks can not
5146          * be allocated any more. even more truncate on delalloc blocks
5147          * could trigger BUG by flushing delalloc blocks in journal.
5148          * There is no delalloc block in non-journal data mode.
5149          */
5150         if (val && test_opt(inode->i_sb, DELALLOC)) {
5151                 err = ext4_alloc_da_blocks(inode);
5152                 if (err < 0)
5153                         return err;
5154         }
5155
5156         /* Wait for all existing dio workers */
5157         ext4_inode_block_unlocked_dio(inode);
5158         inode_dio_wait(inode);
5159
5160         jbd2_journal_lock_updates(journal);
5161
5162         /*
5163          * OK, there are no updates running now, and all cached data is
5164          * synced to disk.  We are now in a completely consistent state
5165          * which doesn't have anything in the journal, and we know that
5166          * no filesystem updates are running, so it is safe to modify
5167          * the inode's in-core data-journaling state flag now.
5168          */
5169
5170         if (val)
5171                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5172         else {
5173                 jbd2_journal_flush(journal);
5174                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5175         }
5176         ext4_set_aops(inode);
5177
5178         jbd2_journal_unlock_updates(journal);
5179         ext4_inode_resume_unlocked_dio(inode);
5180
5181         /* Finally we can mark the inode as dirty. */
5182
5183         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5184         if (IS_ERR(handle))
5185                 return PTR_ERR(handle);
5186
5187         err = ext4_mark_inode_dirty(handle, inode);
5188         ext4_handle_sync(handle);
5189         ext4_journal_stop(handle);
5190         ext4_std_error(inode->i_sb, err);
5191
5192         return err;
5193 }
5194
5195 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5196 {
5197         return !buffer_mapped(bh);
5198 }
5199
5200 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5201 {
5202         struct page *page = vmf->page;
5203         loff_t size;
5204         unsigned long len;
5205         int ret;
5206         struct file *file = vma->vm_file;
5207         struct inode *inode = file_inode(file);
5208         struct address_space *mapping = inode->i_mapping;
5209         handle_t *handle;
5210         get_block_t *get_block;
5211         int retries = 0;
5212
5213         sb_start_pagefault(inode->i_sb);
5214         file_update_time(vma->vm_file);
5215         /* Delalloc case is easy... */
5216         if (test_opt(inode->i_sb, DELALLOC) &&
5217             !ext4_should_journal_data(inode) &&
5218             !ext4_nonda_switch(inode->i_sb)) {
5219                 do {
5220                         ret = __block_page_mkwrite(vma, vmf,
5221                                                    ext4_da_get_block_prep);
5222                 } while (ret == -ENOSPC &&
5223                        ext4_should_retry_alloc(inode->i_sb, &retries));
5224                 goto out_ret;
5225         }
5226
5227         lock_page(page);
5228         size = i_size_read(inode);
5229         /* Page got truncated from under us? */
5230         if (page->mapping != mapping || page_offset(page) > size) {
5231                 unlock_page(page);
5232                 ret = VM_FAULT_NOPAGE;
5233                 goto out;
5234         }
5235
5236         if (page->index == size >> PAGE_CACHE_SHIFT)
5237                 len = size & ~PAGE_CACHE_MASK;
5238         else
5239                 len = PAGE_CACHE_SIZE;
5240         /*
5241          * Return if we have all the buffers mapped. This avoids the need to do
5242          * journal_start/journal_stop which can block and take a long time
5243          */
5244         if (page_has_buffers(page)) {
5245                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5246                                             0, len, NULL,
5247                                             ext4_bh_unmapped)) {
5248                         /* Wait so that we don't change page under IO */
5249                         wait_for_stable_page(page);
5250                         ret = VM_FAULT_LOCKED;
5251                         goto out;
5252                 }
5253         }
5254         unlock_page(page);
5255         /* OK, we need to fill the hole... */
5256         if (ext4_should_dioread_nolock(inode))
5257                 get_block = ext4_get_block_write;
5258         else
5259                 get_block = ext4_get_block;
5260 retry_alloc:
5261         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5262                                     ext4_writepage_trans_blocks(inode));
5263         if (IS_ERR(handle)) {
5264                 ret = VM_FAULT_SIGBUS;
5265                 goto out;
5266         }
5267         ret = __block_page_mkwrite(vma, vmf, get_block);
5268         if (!ret && ext4_should_journal_data(inode)) {
5269                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5270                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5271                         unlock_page(page);
5272                         ret = VM_FAULT_SIGBUS;
5273                         ext4_journal_stop(handle);
5274                         goto out;
5275                 }
5276                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5277         }
5278         ext4_journal_stop(handle);
5279         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5280                 goto retry_alloc;
5281 out_ret:
5282         ret = block_page_mkwrite_return(ret);
5283 out:
5284         sb_end_pagefault(inode->i_sb);
5285         return ret;
5286 }