ext4: fix free space estimate in ext4_nonda_switch()
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138                 struct inode *inode, struct page *page, loff_t from,
139                 loff_t length, int flags);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 (inode->i_sb->s_blocksize >> 9) : 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         if (inode->i_nlink) {
189                 /*
190                  * When journalling data dirty buffers are tracked only in the
191                  * journal. So although mm thinks everything is clean and
192                  * ready for reaping the inode might still have some pages to
193                  * write in the running transaction or waiting to be
194                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
195                  * (via truncate_inode_pages()) to discard these buffers can
196                  * cause data loss. Also even if we did not discard these
197                  * buffers, we would have no way to find them after the inode
198                  * is reaped and thus user could see stale data if he tries to
199                  * read them before the transaction is checkpointed. So be
200                  * careful and force everything to disk here... We use
201                  * ei->i_datasync_tid to store the newest transaction
202                  * containing inode's data.
203                  *
204                  * Note that directories do not have this problem because they
205                  * don't use page cache.
206                  */
207                 if (ext4_should_journal_data(inode) &&
208                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209                     inode->i_ino != EXT4_JOURNAL_INO) {
210                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
213                         jbd2_complete_transaction(journal, commit_tid);
214                         filemap_write_and_wait(&inode->i_data);
215                 }
216                 truncate_inode_pages(&inode->i_data, 0);
217                 ext4_ioend_shutdown(inode);
218                 goto no_delete;
219         }
220
221         if (!is_bad_inode(inode))
222                 dquot_initialize(inode);
223
224         if (ext4_should_order_data(inode))
225                 ext4_begin_ordered_truncate(inode, 0);
226         truncate_inode_pages(&inode->i_data, 0);
227         ext4_ioend_shutdown(inode);
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238                                     ext4_blocks_for_truncate(inode)+3);
239         if (IS_ERR(handle)) {
240                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241                 /*
242                  * If we're going to skip the normal cleanup, we still need to
243                  * make sure that the in-core orphan linked list is properly
244                  * cleaned up.
245                  */
246                 ext4_orphan_del(NULL, inode);
247                 sb_end_intwrite(inode->i_sb);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 ext4_handle_sync(handle);
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks)
261                 ext4_truncate(inode);
262
263         /*
264          * ext4_ext_truncate() doesn't reserve any slop when it
265          * restarts journal transactions; therefore there may not be
266          * enough credits left in the handle to remove the inode from
267          * the orphan list and set the dtime field.
268          */
269         if (!ext4_handle_has_enough_credits(handle, 3)) {
270                 err = ext4_journal_extend(handle, 3);
271                 if (err > 0)
272                         err = ext4_journal_restart(handle, 3);
273                 if (err != 0) {
274                         ext4_warning(inode->i_sb,
275                                      "couldn't extend journal (err %d)", err);
276                 stop_handle:
277                         ext4_journal_stop(handle);
278                         ext4_orphan_del(NULL, inode);
279                         sb_end_intwrite(inode->i_sb);
280                         goto no_delete;
281                 }
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = get_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         sb_end_intwrite(inode->i_sb);
309         return;
310 no_delete:
311         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317         return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322  * Calculate the number of metadata blocks need to reserve
323  * to allocate a block located at @lblock
324  */
325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326 {
327         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328                 return ext4_ext_calc_metadata_amount(inode, lblock);
329
330         return ext4_ind_calc_metadata_amount(inode, lblock);
331 }
332
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338                                         int used, int quota_claim)
339 {
340         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341         struct ext4_inode_info *ei = EXT4_I(inode);
342
343         spin_lock(&ei->i_block_reservation_lock);
344         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345         if (unlikely(used > ei->i_reserved_data_blocks)) {
346                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347                          "with only %d reserved data blocks",
348                          __func__, inode->i_ino, used,
349                          ei->i_reserved_data_blocks);
350                 WARN_ON(1);
351                 used = ei->i_reserved_data_blocks;
352         }
353
354         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356                         "with only %d reserved metadata blocks "
357                         "(releasing %d blocks with reserved %d data blocks)",
358                         inode->i_ino, ei->i_allocated_meta_blocks,
359                              ei->i_reserved_meta_blocks, used,
360                              ei->i_reserved_data_blocks);
361                 WARN_ON(1);
362                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363         }
364
365         /* Update per-inode reservations */
366         ei->i_reserved_data_blocks -= used;
367         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369                            used + ei->i_allocated_meta_blocks);
370         ei->i_allocated_meta_blocks = 0;
371
372         if (ei->i_reserved_data_blocks == 0) {
373                 /*
374                  * We can release all of the reserved metadata blocks
375                  * only when we have written all of the delayed
376                  * allocation blocks.
377                  */
378                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379                                    ei->i_reserved_meta_blocks);
380                 ei->i_reserved_meta_blocks = 0;
381                 ei->i_da_metadata_calc_len = 0;
382         }
383         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384
385         /* Update quota subsystem for data blocks */
386         if (quota_claim)
387                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
388         else {
389                 /*
390                  * We did fallocate with an offset that is already delayed
391                  * allocated. So on delayed allocated writeback we should
392                  * not re-claim the quota for fallocated blocks.
393                  */
394                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395         }
396
397         /*
398          * If we have done all the pending block allocations and if
399          * there aren't any writers on the inode, we can discard the
400          * inode's preallocations.
401          */
402         if ((ei->i_reserved_data_blocks == 0) &&
403             (atomic_read(&inode->i_writecount) == 0))
404                 ext4_discard_preallocations(inode);
405 }
406
407 static int __check_block_validity(struct inode *inode, const char *func,
408                                 unsigned int line,
409                                 struct ext4_map_blocks *map)
410 {
411         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412                                    map->m_len)) {
413                 ext4_error_inode(inode, func, line, map->m_pblk,
414                                  "lblock %lu mapped to illegal pblock "
415                                  "(length %d)", (unsigned long) map->m_lblk,
416                                  map->m_len);
417                 return -EIO;
418         }
419         return 0;
420 }
421
422 #define check_block_validity(inode, map)        \
423         __check_block_validity((inode), __func__, __LINE__, (map))
424
425 /*
426  * Return the number of contiguous dirty pages in a given inode
427  * starting at page frame idx.
428  */
429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430                                     unsigned int max_pages)
431 {
432         struct address_space *mapping = inode->i_mapping;
433         pgoff_t index;
434         struct pagevec pvec;
435         pgoff_t num = 0;
436         int i, nr_pages, done = 0;
437
438         if (max_pages == 0)
439                 return 0;
440         pagevec_init(&pvec, 0);
441         while (!done) {
442                 index = idx;
443                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444                                               PAGECACHE_TAG_DIRTY,
445                                               (pgoff_t)PAGEVEC_SIZE);
446                 if (nr_pages == 0)
447                         break;
448                 for (i = 0; i < nr_pages; i++) {
449                         struct page *page = pvec.pages[i];
450                         struct buffer_head *bh, *head;
451
452                         lock_page(page);
453                         if (unlikely(page->mapping != mapping) ||
454                             !PageDirty(page) ||
455                             PageWriteback(page) ||
456                             page->index != idx) {
457                                 done = 1;
458                                 unlock_page(page);
459                                 break;
460                         }
461                         if (page_has_buffers(page)) {
462                                 bh = head = page_buffers(page);
463                                 do {
464                                         if (!buffer_delay(bh) &&
465                                             !buffer_unwritten(bh))
466                                                 done = 1;
467                                         bh = bh->b_this_page;
468                                 } while (!done && (bh != head));
469                         }
470                         unlock_page(page);
471                         if (done)
472                                 break;
473                         idx++;
474                         num++;
475                         if (num >= max_pages) {
476                                 done = 1;
477                                 break;
478                         }
479                 }
480                 pagevec_release(&pvec);
481         }
482         return num;
483 }
484
485 #ifdef ES_AGGRESSIVE_TEST
486 static void ext4_map_blocks_es_recheck(handle_t *handle,
487                                        struct inode *inode,
488                                        struct ext4_map_blocks *es_map,
489                                        struct ext4_map_blocks *map,
490                                        int flags)
491 {
492         int retval;
493
494         map->m_flags = 0;
495         /*
496          * There is a race window that the result is not the same.
497          * e.g. xfstests #223 when dioread_nolock enables.  The reason
498          * is that we lookup a block mapping in extent status tree with
499          * out taking i_data_sem.  So at the time the unwritten extent
500          * could be converted.
501          */
502         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
503                 down_read((&EXT4_I(inode)->i_data_sem));
504         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
505                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
506                                              EXT4_GET_BLOCKS_KEEP_SIZE);
507         } else {
508                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
509                                              EXT4_GET_BLOCKS_KEEP_SIZE);
510         }
511         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512                 up_read((&EXT4_I(inode)->i_data_sem));
513         /*
514          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
515          * because it shouldn't be marked in es_map->m_flags.
516          */
517         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
518
519         /*
520          * We don't check m_len because extent will be collpased in status
521          * tree.  So the m_len might not equal.
522          */
523         if (es_map->m_lblk != map->m_lblk ||
524             es_map->m_flags != map->m_flags ||
525             es_map->m_pblk != map->m_pblk) {
526                 printk("ES cache assertation failed for inode: %lu "
527                        "es_cached ex [%d/%d/%llu/%x] != "
528                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
529                        inode->i_ino, es_map->m_lblk, es_map->m_len,
530                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
531                        map->m_len, map->m_pblk, map->m_flags,
532                        retval, flags);
533         }
534 }
535 #endif /* ES_AGGRESSIVE_TEST */
536
537 /*
538  * The ext4_map_blocks() function tries to look up the requested blocks,
539  * and returns if the blocks are already mapped.
540  *
541  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
542  * and store the allocated blocks in the result buffer head and mark it
543  * mapped.
544  *
545  * If file type is extents based, it will call ext4_ext_map_blocks(),
546  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
547  * based files
548  *
549  * On success, it returns the number of blocks being mapped or allocate.
550  * if create==0 and the blocks are pre-allocated and uninitialized block,
551  * the result buffer head is unmapped. If the create ==1, it will make sure
552  * the buffer head is mapped.
553  *
554  * It returns 0 if plain look up failed (blocks have not been allocated), in
555  * that case, buffer head is unmapped
556  *
557  * It returns the error in case of allocation failure.
558  */
559 int ext4_map_blocks(handle_t *handle, struct inode *inode,
560                     struct ext4_map_blocks *map, int flags)
561 {
562         struct extent_status es;
563         int retval;
564 #ifdef ES_AGGRESSIVE_TEST
565         struct ext4_map_blocks orig_map;
566
567         memcpy(&orig_map, map, sizeof(*map));
568 #endif
569
570         map->m_flags = 0;
571         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
572                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
573                   (unsigned long) map->m_lblk);
574
575         /* Lookup extent status tree firstly */
576         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
577                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
578                         map->m_pblk = ext4_es_pblock(&es) +
579                                         map->m_lblk - es.es_lblk;
580                         map->m_flags |= ext4_es_is_written(&es) ?
581                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
582                         retval = es.es_len - (map->m_lblk - es.es_lblk);
583                         if (retval > map->m_len)
584                                 retval = map->m_len;
585                         map->m_len = retval;
586                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
587                         retval = 0;
588                 } else {
589                         BUG_ON(1);
590                 }
591 #ifdef ES_AGGRESSIVE_TEST
592                 ext4_map_blocks_es_recheck(handle, inode, map,
593                                            &orig_map, flags);
594 #endif
595                 goto found;
596         }
597
598         /*
599          * Try to see if we can get the block without requesting a new
600          * file system block.
601          */
602         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
603                 down_read((&EXT4_I(inode)->i_data_sem));
604         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
605                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
606                                              EXT4_GET_BLOCKS_KEEP_SIZE);
607         } else {
608                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
609                                              EXT4_GET_BLOCKS_KEEP_SIZE);
610         }
611         if (retval > 0) {
612                 int ret;
613                 unsigned long long status;
614
615 #ifdef ES_AGGRESSIVE_TEST
616                 if (retval != map->m_len) {
617                         printk("ES len assertation failed for inode: %lu "
618                                "retval %d != map->m_len %d "
619                                "in %s (lookup)\n", inode->i_ino, retval,
620                                map->m_len, __func__);
621                 }
622 #endif
623
624                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
625                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
626                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
627                     ext4_find_delalloc_range(inode, map->m_lblk,
628                                              map->m_lblk + map->m_len - 1))
629                         status |= EXTENT_STATUS_DELAYED;
630                 ret = ext4_es_insert_extent(inode, map->m_lblk,
631                                             map->m_len, map->m_pblk, status);
632                 if (ret < 0)
633                         retval = ret;
634         }
635         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
636                 up_read((&EXT4_I(inode)->i_data_sem));
637
638 found:
639         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
640                 int ret = check_block_validity(inode, map);
641                 if (ret != 0)
642                         return ret;
643         }
644
645         /* If it is only a block(s) look up */
646         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
647                 return retval;
648
649         /*
650          * Returns if the blocks have already allocated
651          *
652          * Note that if blocks have been preallocated
653          * ext4_ext_get_block() returns the create = 0
654          * with buffer head unmapped.
655          */
656         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
657                 return retval;
658
659         /*
660          * Here we clear m_flags because after allocating an new extent,
661          * it will be set again.
662          */
663         map->m_flags &= ~EXT4_MAP_FLAGS;
664
665         /*
666          * New blocks allocate and/or writing to uninitialized extent
667          * will possibly result in updating i_data, so we take
668          * the write lock of i_data_sem, and call get_blocks()
669          * with create == 1 flag.
670          */
671         down_write((&EXT4_I(inode)->i_data_sem));
672
673         /*
674          * if the caller is from delayed allocation writeout path
675          * we have already reserved fs blocks for allocation
676          * let the underlying get_block() function know to
677          * avoid double accounting
678          */
679         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
680                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
681         /*
682          * We need to check for EXT4 here because migrate
683          * could have changed the inode type in between
684          */
685         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
686                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
687         } else {
688                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
689
690                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
691                         /*
692                          * We allocated new blocks which will result in
693                          * i_data's format changing.  Force the migrate
694                          * to fail by clearing migrate flags
695                          */
696                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
697                 }
698
699                 /*
700                  * Update reserved blocks/metadata blocks after successful
701                  * block allocation which had been deferred till now. We don't
702                  * support fallocate for non extent files. So we can update
703                  * reserve space here.
704                  */
705                 if ((retval > 0) &&
706                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
707                         ext4_da_update_reserve_space(inode, retval, 1);
708         }
709         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
710                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
711
712         if (retval > 0) {
713                 int ret;
714                 unsigned long long status;
715
716 #ifdef ES_AGGRESSIVE_TEST
717                 if (retval != map->m_len) {
718                         printk("ES len assertation failed for inode: %lu "
719                                "retval %d != map->m_len %d "
720                                "in %s (allocation)\n", inode->i_ino, retval,
721                                map->m_len, __func__);
722                 }
723 #endif
724
725                 /*
726                  * If the extent has been zeroed out, we don't need to update
727                  * extent status tree.
728                  */
729                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
730                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
731                         if (ext4_es_is_written(&es))
732                                 goto has_zeroout;
733                 }
734                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
735                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
736                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
737                     ext4_find_delalloc_range(inode, map->m_lblk,
738                                              map->m_lblk + map->m_len - 1))
739                         status |= EXTENT_STATUS_DELAYED;
740                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
741                                             map->m_pblk, status);
742                 if (ret < 0)
743                         retval = ret;
744         }
745
746 has_zeroout:
747         up_write((&EXT4_I(inode)->i_data_sem));
748         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
749                 int ret = check_block_validity(inode, map);
750                 if (ret != 0)
751                         return ret;
752         }
753         return retval;
754 }
755
756 /* Maximum number of blocks we map for direct IO at once. */
757 #define DIO_MAX_BLOCKS 4096
758
759 static int _ext4_get_block(struct inode *inode, sector_t iblock,
760                            struct buffer_head *bh, int flags)
761 {
762         handle_t *handle = ext4_journal_current_handle();
763         struct ext4_map_blocks map;
764         int ret = 0, started = 0;
765         int dio_credits;
766
767         if (ext4_has_inline_data(inode))
768                 return -ERANGE;
769
770         map.m_lblk = iblock;
771         map.m_len = bh->b_size >> inode->i_blkbits;
772
773         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
774                 /* Direct IO write... */
775                 if (map.m_len > DIO_MAX_BLOCKS)
776                         map.m_len = DIO_MAX_BLOCKS;
777                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
778                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
779                                             dio_credits);
780                 if (IS_ERR(handle)) {
781                         ret = PTR_ERR(handle);
782                         return ret;
783                 }
784                 started = 1;
785         }
786
787         ret = ext4_map_blocks(handle, inode, &map, flags);
788         if (ret > 0) {
789                 map_bh(bh, inode->i_sb, map.m_pblk);
790                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
791                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
792                 ret = 0;
793         }
794         if (started)
795                 ext4_journal_stop(handle);
796         return ret;
797 }
798
799 int ext4_get_block(struct inode *inode, sector_t iblock,
800                    struct buffer_head *bh, int create)
801 {
802         return _ext4_get_block(inode, iblock, bh,
803                                create ? EXT4_GET_BLOCKS_CREATE : 0);
804 }
805
806 /*
807  * `handle' can be NULL if create is zero
808  */
809 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
810                                 ext4_lblk_t block, int create, int *errp)
811 {
812         struct ext4_map_blocks map;
813         struct buffer_head *bh;
814         int fatal = 0, err;
815
816         J_ASSERT(handle != NULL || create == 0);
817
818         map.m_lblk = block;
819         map.m_len = 1;
820         err = ext4_map_blocks(handle, inode, &map,
821                               create ? EXT4_GET_BLOCKS_CREATE : 0);
822
823         /* ensure we send some value back into *errp */
824         *errp = 0;
825
826         if (create && err == 0)
827                 err = -ENOSPC;  /* should never happen */
828         if (err < 0)
829                 *errp = err;
830         if (err <= 0)
831                 return NULL;
832
833         bh = sb_getblk(inode->i_sb, map.m_pblk);
834         if (unlikely(!bh)) {
835                 *errp = -ENOMEM;
836                 return NULL;
837         }
838         if (map.m_flags & EXT4_MAP_NEW) {
839                 J_ASSERT(create != 0);
840                 J_ASSERT(handle != NULL);
841
842                 /*
843                  * Now that we do not always journal data, we should
844                  * keep in mind whether this should always journal the
845                  * new buffer as metadata.  For now, regular file
846                  * writes use ext4_get_block instead, so it's not a
847                  * problem.
848                  */
849                 lock_buffer(bh);
850                 BUFFER_TRACE(bh, "call get_create_access");
851                 fatal = ext4_journal_get_create_access(handle, bh);
852                 if (!fatal && !buffer_uptodate(bh)) {
853                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
854                         set_buffer_uptodate(bh);
855                 }
856                 unlock_buffer(bh);
857                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
858                 err = ext4_handle_dirty_metadata(handle, inode, bh);
859                 if (!fatal)
860                         fatal = err;
861         } else {
862                 BUFFER_TRACE(bh, "not a new buffer");
863         }
864         if (fatal) {
865                 *errp = fatal;
866                 brelse(bh);
867                 bh = NULL;
868         }
869         return bh;
870 }
871
872 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
873                                ext4_lblk_t block, int create, int *err)
874 {
875         struct buffer_head *bh;
876
877         bh = ext4_getblk(handle, inode, block, create, err);
878         if (!bh)
879                 return bh;
880         if (buffer_uptodate(bh))
881                 return bh;
882         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
883         wait_on_buffer(bh);
884         if (buffer_uptodate(bh))
885                 return bh;
886         put_bh(bh);
887         *err = -EIO;
888         return NULL;
889 }
890
891 int ext4_walk_page_buffers(handle_t *handle,
892                            struct buffer_head *head,
893                            unsigned from,
894                            unsigned to,
895                            int *partial,
896                            int (*fn)(handle_t *handle,
897                                      struct buffer_head *bh))
898 {
899         struct buffer_head *bh;
900         unsigned block_start, block_end;
901         unsigned blocksize = head->b_size;
902         int err, ret = 0;
903         struct buffer_head *next;
904
905         for (bh = head, block_start = 0;
906              ret == 0 && (bh != head || !block_start);
907              block_start = block_end, bh = next) {
908                 next = bh->b_this_page;
909                 block_end = block_start + blocksize;
910                 if (block_end <= from || block_start >= to) {
911                         if (partial && !buffer_uptodate(bh))
912                                 *partial = 1;
913                         continue;
914                 }
915                 err = (*fn)(handle, bh);
916                 if (!ret)
917                         ret = err;
918         }
919         return ret;
920 }
921
922 /*
923  * To preserve ordering, it is essential that the hole instantiation and
924  * the data write be encapsulated in a single transaction.  We cannot
925  * close off a transaction and start a new one between the ext4_get_block()
926  * and the commit_write().  So doing the jbd2_journal_start at the start of
927  * prepare_write() is the right place.
928  *
929  * Also, this function can nest inside ext4_writepage().  In that case, we
930  * *know* that ext4_writepage() has generated enough buffer credits to do the
931  * whole page.  So we won't block on the journal in that case, which is good,
932  * because the caller may be PF_MEMALLOC.
933  *
934  * By accident, ext4 can be reentered when a transaction is open via
935  * quota file writes.  If we were to commit the transaction while thus
936  * reentered, there can be a deadlock - we would be holding a quota
937  * lock, and the commit would never complete if another thread had a
938  * transaction open and was blocking on the quota lock - a ranking
939  * violation.
940  *
941  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
942  * will _not_ run commit under these circumstances because handle->h_ref
943  * is elevated.  We'll still have enough credits for the tiny quotafile
944  * write.
945  */
946 int do_journal_get_write_access(handle_t *handle,
947                                 struct buffer_head *bh)
948 {
949         int dirty = buffer_dirty(bh);
950         int ret;
951
952         if (!buffer_mapped(bh) || buffer_freed(bh))
953                 return 0;
954         /*
955          * __block_write_begin() could have dirtied some buffers. Clean
956          * the dirty bit as jbd2_journal_get_write_access() could complain
957          * otherwise about fs integrity issues. Setting of the dirty bit
958          * by __block_write_begin() isn't a real problem here as we clear
959          * the bit before releasing a page lock and thus writeback cannot
960          * ever write the buffer.
961          */
962         if (dirty)
963                 clear_buffer_dirty(bh);
964         ret = ext4_journal_get_write_access(handle, bh);
965         if (!ret && dirty)
966                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
967         return ret;
968 }
969
970 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
971                    struct buffer_head *bh_result, int create);
972 static int ext4_write_begin(struct file *file, struct address_space *mapping,
973                             loff_t pos, unsigned len, unsigned flags,
974                             struct page **pagep, void **fsdata)
975 {
976         struct inode *inode = mapping->host;
977         int ret, needed_blocks;
978         handle_t *handle;
979         int retries = 0;
980         struct page *page;
981         pgoff_t index;
982         unsigned from, to;
983
984         trace_ext4_write_begin(inode, pos, len, flags);
985         /*
986          * Reserve one block more for addition to orphan list in case
987          * we allocate blocks but write fails for some reason
988          */
989         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990         index = pos >> PAGE_CACHE_SHIFT;
991         from = pos & (PAGE_CACHE_SIZE - 1);
992         to = from + len;
993
994         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996                                                     flags, pagep);
997                 if (ret < 0)
998                         return ret;
999                 if (ret == 1)
1000                         return 0;
1001         }
1002
1003         /*
1004          * grab_cache_page_write_begin() can take a long time if the
1005          * system is thrashing due to memory pressure, or if the page
1006          * is being written back.  So grab it first before we start
1007          * the transaction handle.  This also allows us to allocate
1008          * the page (if needed) without using GFP_NOFS.
1009          */
1010 retry_grab:
1011         page = grab_cache_page_write_begin(mapping, index, flags);
1012         if (!page)
1013                 return -ENOMEM;
1014         unlock_page(page);
1015
1016 retry_journal:
1017         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018         if (IS_ERR(handle)) {
1019                 page_cache_release(page);
1020                 return PTR_ERR(handle);
1021         }
1022
1023         lock_page(page);
1024         if (page->mapping != mapping) {
1025                 /* The page got truncated from under us */
1026                 unlock_page(page);
1027                 page_cache_release(page);
1028                 ext4_journal_stop(handle);
1029                 goto retry_grab;
1030         }
1031         wait_on_page_writeback(page);
1032
1033         if (ext4_should_dioread_nolock(inode))
1034                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1035         else
1036                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1037
1038         if (!ret && ext4_should_journal_data(inode)) {
1039                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1040                                              from, to, NULL,
1041                                              do_journal_get_write_access);
1042         }
1043
1044         if (ret) {
1045                 unlock_page(page);
1046                 /*
1047                  * __block_write_begin may have instantiated a few blocks
1048                  * outside i_size.  Trim these off again. Don't need
1049                  * i_size_read because we hold i_mutex.
1050                  *
1051                  * Add inode to orphan list in case we crash before
1052                  * truncate finishes
1053                  */
1054                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1055                         ext4_orphan_add(handle, inode);
1056
1057                 ext4_journal_stop(handle);
1058                 if (pos + len > inode->i_size) {
1059                         ext4_truncate_failed_write(inode);
1060                         /*
1061                          * If truncate failed early the inode might
1062                          * still be on the orphan list; we need to
1063                          * make sure the inode is removed from the
1064                          * orphan list in that case.
1065                          */
1066                         if (inode->i_nlink)
1067                                 ext4_orphan_del(NULL, inode);
1068                 }
1069
1070                 if (ret == -ENOSPC &&
1071                     ext4_should_retry_alloc(inode->i_sb, &retries))
1072                         goto retry_journal;
1073                 page_cache_release(page);
1074                 return ret;
1075         }
1076         *pagep = page;
1077         return ret;
1078 }
1079
1080 /* For write_end() in data=journal mode */
1081 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1082 {
1083         if (!buffer_mapped(bh) || buffer_freed(bh))
1084                 return 0;
1085         set_buffer_uptodate(bh);
1086         return ext4_handle_dirty_metadata(handle, NULL, bh);
1087 }
1088
1089 /*
1090  * We need to pick up the new inode size which generic_commit_write gave us
1091  * `file' can be NULL - eg, when called from page_symlink().
1092  *
1093  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1094  * buffers are managed internally.
1095  */
1096 static int ext4_write_end(struct file *file,
1097                           struct address_space *mapping,
1098                           loff_t pos, unsigned len, unsigned copied,
1099                           struct page *page, void *fsdata)
1100 {
1101         handle_t *handle = ext4_journal_current_handle();
1102         struct inode *inode = mapping->host;
1103         int ret = 0, ret2;
1104         int i_size_changed = 0;
1105
1106         trace_ext4_write_end(inode, pos, len, copied);
1107         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1108                 ret = ext4_jbd2_file_inode(handle, inode);
1109                 if (ret) {
1110                         unlock_page(page);
1111                         page_cache_release(page);
1112                         goto errout;
1113                 }
1114         }
1115
1116         if (ext4_has_inline_data(inode))
1117                 copied = ext4_write_inline_data_end(inode, pos, len,
1118                                                     copied, page);
1119         else
1120                 copied = block_write_end(file, mapping, pos,
1121                                          len, copied, page, fsdata);
1122
1123         /*
1124          * No need to use i_size_read() here, the i_size
1125          * cannot change under us because we hole i_mutex.
1126          *
1127          * But it's important to update i_size while still holding page lock:
1128          * page writeout could otherwise come in and zero beyond i_size.
1129          */
1130         if (pos + copied > inode->i_size) {
1131                 i_size_write(inode, pos + copied);
1132                 i_size_changed = 1;
1133         }
1134
1135         if (pos + copied > EXT4_I(inode)->i_disksize) {
1136                 /* We need to mark inode dirty even if
1137                  * new_i_size is less that inode->i_size
1138                  * but greater than i_disksize. (hint delalloc)
1139                  */
1140                 ext4_update_i_disksize(inode, (pos + copied));
1141                 i_size_changed = 1;
1142         }
1143         unlock_page(page);
1144         page_cache_release(page);
1145
1146         /*
1147          * Don't mark the inode dirty under page lock. First, it unnecessarily
1148          * makes the holding time of page lock longer. Second, it forces lock
1149          * ordering of page lock and transaction start for journaling
1150          * filesystems.
1151          */
1152         if (i_size_changed)
1153                 ext4_mark_inode_dirty(handle, inode);
1154
1155         if (copied < 0)
1156                 ret = copied;
1157         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1158                 /* if we have allocated more blocks and copied
1159                  * less. We will have blocks allocated outside
1160                  * inode->i_size. So truncate them
1161                  */
1162                 ext4_orphan_add(handle, inode);
1163 errout:
1164         ret2 = ext4_journal_stop(handle);
1165         if (!ret)
1166                 ret = ret2;
1167
1168         if (pos + len > inode->i_size) {
1169                 ext4_truncate_failed_write(inode);
1170                 /*
1171                  * If truncate failed early the inode might still be
1172                  * on the orphan list; we need to make sure the inode
1173                  * is removed from the orphan list in that case.
1174                  */
1175                 if (inode->i_nlink)
1176                         ext4_orphan_del(NULL, inode);
1177         }
1178
1179         return ret ? ret : copied;
1180 }
1181
1182 static int ext4_journalled_write_end(struct file *file,
1183                                      struct address_space *mapping,
1184                                      loff_t pos, unsigned len, unsigned copied,
1185                                      struct page *page, void *fsdata)
1186 {
1187         handle_t *handle = ext4_journal_current_handle();
1188         struct inode *inode = mapping->host;
1189         int ret = 0, ret2;
1190         int partial = 0;
1191         unsigned from, to;
1192         loff_t new_i_size;
1193
1194         trace_ext4_journalled_write_end(inode, pos, len, copied);
1195         from = pos & (PAGE_CACHE_SIZE - 1);
1196         to = from + len;
1197
1198         BUG_ON(!ext4_handle_valid(handle));
1199
1200         if (ext4_has_inline_data(inode))
1201                 copied = ext4_write_inline_data_end(inode, pos, len,
1202                                                     copied, page);
1203         else {
1204                 if (copied < len) {
1205                         if (!PageUptodate(page))
1206                                 copied = 0;
1207                         page_zero_new_buffers(page, from+copied, to);
1208                 }
1209
1210                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1211                                              to, &partial, write_end_fn);
1212                 if (!partial)
1213                         SetPageUptodate(page);
1214         }
1215         new_i_size = pos + copied;
1216         if (new_i_size > inode->i_size)
1217                 i_size_write(inode, pos+copied);
1218         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1219         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1220         if (new_i_size > EXT4_I(inode)->i_disksize) {
1221                 ext4_update_i_disksize(inode, new_i_size);
1222                 ret2 = ext4_mark_inode_dirty(handle, inode);
1223                 if (!ret)
1224                         ret = ret2;
1225         }
1226
1227         unlock_page(page);
1228         page_cache_release(page);
1229         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1230                 /* if we have allocated more blocks and copied
1231                  * less. We will have blocks allocated outside
1232                  * inode->i_size. So truncate them
1233                  */
1234                 ext4_orphan_add(handle, inode);
1235
1236         ret2 = ext4_journal_stop(handle);
1237         if (!ret)
1238                 ret = ret2;
1239         if (pos + len > inode->i_size) {
1240                 ext4_truncate_failed_write(inode);
1241                 /*
1242                  * If truncate failed early the inode might still be
1243                  * on the orphan list; we need to make sure the inode
1244                  * is removed from the orphan list in that case.
1245                  */
1246                 if (inode->i_nlink)
1247                         ext4_orphan_del(NULL, inode);
1248         }
1249
1250         return ret ? ret : copied;
1251 }
1252
1253 /*
1254  * Reserve a metadata for a single block located at lblock
1255  */
1256 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1257 {
1258         int retries = 0;
1259         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1260         struct ext4_inode_info *ei = EXT4_I(inode);
1261         unsigned int md_needed;
1262         ext4_lblk_t save_last_lblock;
1263         int save_len;
1264
1265         /*
1266          * recalculate the amount of metadata blocks to reserve
1267          * in order to allocate nrblocks
1268          * worse case is one extent per block
1269          */
1270 repeat:
1271         spin_lock(&ei->i_block_reservation_lock);
1272         /*
1273          * ext4_calc_metadata_amount() has side effects, which we have
1274          * to be prepared undo if we fail to claim space.
1275          */
1276         save_len = ei->i_da_metadata_calc_len;
1277         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1278         md_needed = EXT4_NUM_B2C(sbi,
1279                                  ext4_calc_metadata_amount(inode, lblock));
1280         trace_ext4_da_reserve_space(inode, md_needed);
1281
1282         /*
1283          * We do still charge estimated metadata to the sb though;
1284          * we cannot afford to run out of free blocks.
1285          */
1286         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1287                 ei->i_da_metadata_calc_len = save_len;
1288                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1289                 spin_unlock(&ei->i_block_reservation_lock);
1290                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1291                         cond_resched();
1292                         goto repeat;
1293                 }
1294                 return -ENOSPC;
1295         }
1296         ei->i_reserved_meta_blocks += md_needed;
1297         spin_unlock(&ei->i_block_reservation_lock);
1298
1299         return 0;       /* success */
1300 }
1301
1302 /*
1303  * Reserve a single cluster located at lblock
1304  */
1305 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1306 {
1307         int retries = 0;
1308         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1309         struct ext4_inode_info *ei = EXT4_I(inode);
1310         unsigned int md_needed;
1311         int ret;
1312         ext4_lblk_t save_last_lblock;
1313         int save_len;
1314
1315         /*
1316          * We will charge metadata quota at writeout time; this saves
1317          * us from metadata over-estimation, though we may go over by
1318          * a small amount in the end.  Here we just reserve for data.
1319          */
1320         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1321         if (ret)
1322                 return ret;
1323
1324         /*
1325          * recalculate the amount of metadata blocks to reserve
1326          * in order to allocate nrblocks
1327          * worse case is one extent per block
1328          */
1329 repeat:
1330         spin_lock(&ei->i_block_reservation_lock);
1331         /*
1332          * ext4_calc_metadata_amount() has side effects, which we have
1333          * to be prepared undo if we fail to claim space.
1334          */
1335         save_len = ei->i_da_metadata_calc_len;
1336         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1337         md_needed = EXT4_NUM_B2C(sbi,
1338                                  ext4_calc_metadata_amount(inode, lblock));
1339         trace_ext4_da_reserve_space(inode, md_needed);
1340
1341         /*
1342          * We do still charge estimated metadata to the sb though;
1343          * we cannot afford to run out of free blocks.
1344          */
1345         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1346                 ei->i_da_metadata_calc_len = save_len;
1347                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1348                 spin_unlock(&ei->i_block_reservation_lock);
1349                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1350                         cond_resched();
1351                         goto repeat;
1352                 }
1353                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1354                 return -ENOSPC;
1355         }
1356         ei->i_reserved_data_blocks++;
1357         ei->i_reserved_meta_blocks += md_needed;
1358         spin_unlock(&ei->i_block_reservation_lock);
1359
1360         return 0;       /* success */
1361 }
1362
1363 static void ext4_da_release_space(struct inode *inode, int to_free)
1364 {
1365         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1366         struct ext4_inode_info *ei = EXT4_I(inode);
1367
1368         if (!to_free)
1369                 return;         /* Nothing to release, exit */
1370
1371         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1372
1373         trace_ext4_da_release_space(inode, to_free);
1374         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1375                 /*
1376                  * if there aren't enough reserved blocks, then the
1377                  * counter is messed up somewhere.  Since this
1378                  * function is called from invalidate page, it's
1379                  * harmless to return without any action.
1380                  */
1381                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1382                          "ino %lu, to_free %d with only %d reserved "
1383                          "data blocks", inode->i_ino, to_free,
1384                          ei->i_reserved_data_blocks);
1385                 WARN_ON(1);
1386                 to_free = ei->i_reserved_data_blocks;
1387         }
1388         ei->i_reserved_data_blocks -= to_free;
1389
1390         if (ei->i_reserved_data_blocks == 0) {
1391                 /*
1392                  * We can release all of the reserved metadata blocks
1393                  * only when we have written all of the delayed
1394                  * allocation blocks.
1395                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1396                  * i_reserved_data_blocks, etc. refer to number of clusters.
1397                  */
1398                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1399                                    ei->i_reserved_meta_blocks);
1400                 ei->i_reserved_meta_blocks = 0;
1401                 ei->i_da_metadata_calc_len = 0;
1402         }
1403
1404         /* update fs dirty data blocks counter */
1405         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1406
1407         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1408
1409         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1410 }
1411
1412 static void ext4_da_page_release_reservation(struct page *page,
1413                                              unsigned long offset)
1414 {
1415         int to_release = 0;
1416         struct buffer_head *head, *bh;
1417         unsigned int curr_off = 0;
1418         struct inode *inode = page->mapping->host;
1419         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1420         int num_clusters;
1421         ext4_fsblk_t lblk;
1422
1423         head = page_buffers(page);
1424         bh = head;
1425         do {
1426                 unsigned int next_off = curr_off + bh->b_size;
1427
1428                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1429                         to_release++;
1430                         clear_buffer_delay(bh);
1431                 }
1432                 curr_off = next_off;
1433         } while ((bh = bh->b_this_page) != head);
1434
1435         if (to_release) {
1436                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1437                 ext4_es_remove_extent(inode, lblk, to_release);
1438         }
1439
1440         /* If we have released all the blocks belonging to a cluster, then we
1441          * need to release the reserved space for that cluster. */
1442         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1443         while (num_clusters > 0) {
1444                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1445                         ((num_clusters - 1) << sbi->s_cluster_bits);
1446                 if (sbi->s_cluster_ratio == 1 ||
1447                     !ext4_find_delalloc_cluster(inode, lblk))
1448                         ext4_da_release_space(inode, 1);
1449
1450                 num_clusters--;
1451         }
1452 }
1453
1454 /*
1455  * Delayed allocation stuff
1456  */
1457
1458 /*
1459  * mpage_da_submit_io - walks through extent of pages and try to write
1460  * them with writepage() call back
1461  *
1462  * @mpd->inode: inode
1463  * @mpd->first_page: first page of the extent
1464  * @mpd->next_page: page after the last page of the extent
1465  *
1466  * By the time mpage_da_submit_io() is called we expect all blocks
1467  * to be allocated. this may be wrong if allocation failed.
1468  *
1469  * As pages are already locked by write_cache_pages(), we can't use it
1470  */
1471 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1472                               struct ext4_map_blocks *map)
1473 {
1474         struct pagevec pvec;
1475         unsigned long index, end;
1476         int ret = 0, err, nr_pages, i;
1477         struct inode *inode = mpd->inode;
1478         struct address_space *mapping = inode->i_mapping;
1479         loff_t size = i_size_read(inode);
1480         unsigned int len, block_start;
1481         struct buffer_head *bh, *page_bufs = NULL;
1482         sector_t pblock = 0, cur_logical = 0;
1483         struct ext4_io_submit io_submit;
1484
1485         BUG_ON(mpd->next_page <= mpd->first_page);
1486         memset(&io_submit, 0, sizeof(io_submit));
1487         /*
1488          * We need to start from the first_page to the next_page - 1
1489          * to make sure we also write the mapped dirty buffer_heads.
1490          * If we look at mpd->b_blocknr we would only be looking
1491          * at the currently mapped buffer_heads.
1492          */
1493         index = mpd->first_page;
1494         end = mpd->next_page - 1;
1495
1496         pagevec_init(&pvec, 0);
1497         while (index <= end) {
1498                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1499                 if (nr_pages == 0)
1500                         break;
1501                 for (i = 0; i < nr_pages; i++) {
1502                         int skip_page = 0;
1503                         struct page *page = pvec.pages[i];
1504
1505                         index = page->index;
1506                         if (index > end)
1507                                 break;
1508
1509                         if (index == size >> PAGE_CACHE_SHIFT)
1510                                 len = size & ~PAGE_CACHE_MASK;
1511                         else
1512                                 len = PAGE_CACHE_SIZE;
1513                         if (map) {
1514                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1515                                                         inode->i_blkbits);
1516                                 pblock = map->m_pblk + (cur_logical -
1517                                                         map->m_lblk);
1518                         }
1519                         index++;
1520
1521                         BUG_ON(!PageLocked(page));
1522                         BUG_ON(PageWriteback(page));
1523
1524                         bh = page_bufs = page_buffers(page);
1525                         block_start = 0;
1526                         do {
1527                                 if (map && (cur_logical >= map->m_lblk) &&
1528                                     (cur_logical <= (map->m_lblk +
1529                                                      (map->m_len - 1)))) {
1530                                         if (buffer_delay(bh)) {
1531                                                 clear_buffer_delay(bh);
1532                                                 bh->b_blocknr = pblock;
1533                                         }
1534                                         if (buffer_unwritten(bh) ||
1535                                             buffer_mapped(bh))
1536                                                 BUG_ON(bh->b_blocknr != pblock);
1537                                         if (map->m_flags & EXT4_MAP_UNINIT)
1538                                                 set_buffer_uninit(bh);
1539                                         clear_buffer_unwritten(bh);
1540                                 }
1541
1542                                 /*
1543                                  * skip page if block allocation undone and
1544                                  * block is dirty
1545                                  */
1546                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1547                                         skip_page = 1;
1548                                 bh = bh->b_this_page;
1549                                 block_start += bh->b_size;
1550                                 cur_logical++;
1551                                 pblock++;
1552                         } while (bh != page_bufs);
1553
1554                         if (skip_page) {
1555                                 unlock_page(page);
1556                                 continue;
1557                         }
1558
1559                         clear_page_dirty_for_io(page);
1560                         err = ext4_bio_write_page(&io_submit, page, len,
1561                                                   mpd->wbc);
1562                         if (!err)
1563                                 mpd->pages_written++;
1564                         /*
1565                          * In error case, we have to continue because
1566                          * remaining pages are still locked
1567                          */
1568                         if (ret == 0)
1569                                 ret = err;
1570                 }
1571                 pagevec_release(&pvec);
1572         }
1573         ext4_io_submit(&io_submit);
1574         return ret;
1575 }
1576
1577 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1578 {
1579         int nr_pages, i;
1580         pgoff_t index, end;
1581         struct pagevec pvec;
1582         struct inode *inode = mpd->inode;
1583         struct address_space *mapping = inode->i_mapping;
1584         ext4_lblk_t start, last;
1585
1586         index = mpd->first_page;
1587         end   = mpd->next_page - 1;
1588
1589         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1590         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1591         ext4_es_remove_extent(inode, start, last - start + 1);
1592
1593         pagevec_init(&pvec, 0);
1594         while (index <= end) {
1595                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1596                 if (nr_pages == 0)
1597                         break;
1598                 for (i = 0; i < nr_pages; i++) {
1599                         struct page *page = pvec.pages[i];
1600                         if (page->index > end)
1601                                 break;
1602                         BUG_ON(!PageLocked(page));
1603                         BUG_ON(PageWriteback(page));
1604                         block_invalidatepage(page, 0);
1605                         ClearPageUptodate(page);
1606                         unlock_page(page);
1607                 }
1608                 index = pvec.pages[nr_pages - 1]->index + 1;
1609                 pagevec_release(&pvec);
1610         }
1611         return;
1612 }
1613
1614 static void ext4_print_free_blocks(struct inode *inode)
1615 {
1616         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1617         struct super_block *sb = inode->i_sb;
1618         struct ext4_inode_info *ei = EXT4_I(inode);
1619
1620         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1621                EXT4_C2B(EXT4_SB(inode->i_sb),
1622                         ext4_count_free_clusters(sb)));
1623         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1624         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1625                (long long) EXT4_C2B(EXT4_SB(sb),
1626                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1627         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1628                (long long) EXT4_C2B(EXT4_SB(sb),
1629                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1630         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1631         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1632                  ei->i_reserved_data_blocks);
1633         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1634                ei->i_reserved_meta_blocks);
1635         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1636                ei->i_allocated_meta_blocks);
1637         return;
1638 }
1639
1640 /*
1641  * mpage_da_map_and_submit - go through given space, map them
1642  *       if necessary, and then submit them for I/O
1643  *
1644  * @mpd - bh describing space
1645  *
1646  * The function skips space we know is already mapped to disk blocks.
1647  *
1648  */
1649 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1650 {
1651         int err, blks, get_blocks_flags;
1652         struct ext4_map_blocks map, *mapp = NULL;
1653         sector_t next = mpd->b_blocknr;
1654         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1655         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1656         handle_t *handle = NULL;
1657
1658         /*
1659          * If the blocks are mapped already, or we couldn't accumulate
1660          * any blocks, then proceed immediately to the submission stage.
1661          */
1662         if ((mpd->b_size == 0) ||
1663             ((mpd->b_state  & (1 << BH_Mapped)) &&
1664              !(mpd->b_state & (1 << BH_Delay)) &&
1665              !(mpd->b_state & (1 << BH_Unwritten))))
1666                 goto submit_io;
1667
1668         handle = ext4_journal_current_handle();
1669         BUG_ON(!handle);
1670
1671         /*
1672          * Call ext4_map_blocks() to allocate any delayed allocation
1673          * blocks, or to convert an uninitialized extent to be
1674          * initialized (in the case where we have written into
1675          * one or more preallocated blocks).
1676          *
1677          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1678          * indicate that we are on the delayed allocation path.  This
1679          * affects functions in many different parts of the allocation
1680          * call path.  This flag exists primarily because we don't
1681          * want to change *many* call functions, so ext4_map_blocks()
1682          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1683          * inode's allocation semaphore is taken.
1684          *
1685          * If the blocks in questions were delalloc blocks, set
1686          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1687          * variables are updated after the blocks have been allocated.
1688          */
1689         map.m_lblk = next;
1690         map.m_len = max_blocks;
1691         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1692         if (ext4_should_dioread_nolock(mpd->inode))
1693                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1694         if (mpd->b_state & (1 << BH_Delay))
1695                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1696
1697         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1698         if (blks < 0) {
1699                 struct super_block *sb = mpd->inode->i_sb;
1700
1701                 err = blks;
1702                 /*
1703                  * If get block returns EAGAIN or ENOSPC and there
1704                  * appears to be free blocks we will just let
1705                  * mpage_da_submit_io() unlock all of the pages.
1706                  */
1707                 if (err == -EAGAIN)
1708                         goto submit_io;
1709
1710                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1711                         mpd->retval = err;
1712                         goto submit_io;
1713                 }
1714
1715                 /*
1716                  * get block failure will cause us to loop in
1717                  * writepages, because a_ops->writepage won't be able
1718                  * to make progress. The page will be redirtied by
1719                  * writepage and writepages will again try to write
1720                  * the same.
1721                  */
1722                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1723                         ext4_msg(sb, KERN_CRIT,
1724                                  "delayed block allocation failed for inode %lu "
1725                                  "at logical offset %llu with max blocks %zd "
1726                                  "with error %d", mpd->inode->i_ino,
1727                                  (unsigned long long) next,
1728                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1729                         ext4_msg(sb, KERN_CRIT,
1730                                 "This should not happen!! Data will be lost");
1731                         if (err == -ENOSPC)
1732                                 ext4_print_free_blocks(mpd->inode);
1733                 }
1734                 /* invalidate all the pages */
1735                 ext4_da_block_invalidatepages(mpd);
1736
1737                 /* Mark this page range as having been completed */
1738                 mpd->io_done = 1;
1739                 return;
1740         }
1741         BUG_ON(blks == 0);
1742
1743         mapp = &map;
1744         if (map.m_flags & EXT4_MAP_NEW) {
1745                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1746                 int i;
1747
1748                 for (i = 0; i < map.m_len; i++)
1749                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1750         }
1751
1752         /*
1753          * Update on-disk size along with block allocation.
1754          */
1755         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1756         if (disksize > i_size_read(mpd->inode))
1757                 disksize = i_size_read(mpd->inode);
1758         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1759                 ext4_update_i_disksize(mpd->inode, disksize);
1760                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1761                 if (err)
1762                         ext4_error(mpd->inode->i_sb,
1763                                    "Failed to mark inode %lu dirty",
1764                                    mpd->inode->i_ino);
1765         }
1766
1767 submit_io:
1768         mpage_da_submit_io(mpd, mapp);
1769         mpd->io_done = 1;
1770 }
1771
1772 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1773                 (1 << BH_Delay) | (1 << BH_Unwritten))
1774
1775 /*
1776  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1777  *
1778  * @mpd->lbh - extent of blocks
1779  * @logical - logical number of the block in the file
1780  * @b_state - b_state of the buffer head added
1781  *
1782  * the function is used to collect contig. blocks in same state
1783  */
1784 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1785                                    unsigned long b_state)
1786 {
1787         sector_t next;
1788         int blkbits = mpd->inode->i_blkbits;
1789         int nrblocks = mpd->b_size >> blkbits;
1790
1791         /*
1792          * XXX Don't go larger than mballoc is willing to allocate
1793          * This is a stopgap solution.  We eventually need to fold
1794          * mpage_da_submit_io() into this function and then call
1795          * ext4_map_blocks() multiple times in a loop
1796          */
1797         if (nrblocks >= (8*1024*1024 >> blkbits))
1798                 goto flush_it;
1799
1800         /* check if the reserved journal credits might overflow */
1801         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1802                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1803                         /*
1804                          * With non-extent format we are limited by the journal
1805                          * credit available.  Total credit needed to insert
1806                          * nrblocks contiguous blocks is dependent on the
1807                          * nrblocks.  So limit nrblocks.
1808                          */
1809                         goto flush_it;
1810                 }
1811         }
1812         /*
1813          * First block in the extent
1814          */
1815         if (mpd->b_size == 0) {
1816                 mpd->b_blocknr = logical;
1817                 mpd->b_size = 1 << blkbits;
1818                 mpd->b_state = b_state & BH_FLAGS;
1819                 return;
1820         }
1821
1822         next = mpd->b_blocknr + nrblocks;
1823         /*
1824          * Can we merge the block to our big extent?
1825          */
1826         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1827                 mpd->b_size += 1 << blkbits;
1828                 return;
1829         }
1830
1831 flush_it:
1832         /*
1833          * We couldn't merge the block to our extent, so we
1834          * need to flush current  extent and start new one
1835          */
1836         mpage_da_map_and_submit(mpd);
1837         return;
1838 }
1839
1840 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1841 {
1842         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1843 }
1844
1845 /*
1846  * This function is grabs code from the very beginning of
1847  * ext4_map_blocks, but assumes that the caller is from delayed write
1848  * time. This function looks up the requested blocks and sets the
1849  * buffer delay bit under the protection of i_data_sem.
1850  */
1851 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1852                               struct ext4_map_blocks *map,
1853                               struct buffer_head *bh)
1854 {
1855         struct extent_status es;
1856         int retval;
1857         sector_t invalid_block = ~((sector_t) 0xffff);
1858 #ifdef ES_AGGRESSIVE_TEST
1859         struct ext4_map_blocks orig_map;
1860
1861         memcpy(&orig_map, map, sizeof(*map));
1862 #endif
1863
1864         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1865                 invalid_block = ~0;
1866
1867         map->m_flags = 0;
1868         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1869                   "logical block %lu\n", inode->i_ino, map->m_len,
1870                   (unsigned long) map->m_lblk);
1871
1872         /* Lookup extent status tree firstly */
1873         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1874
1875                 if (ext4_es_is_hole(&es)) {
1876                         retval = 0;
1877                         down_read((&EXT4_I(inode)->i_data_sem));
1878                         goto add_delayed;
1879                 }
1880
1881                 /*
1882                  * Delayed extent could be allocated by fallocate.
1883                  * So we need to check it.
1884                  */
1885                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1886                         map_bh(bh, inode->i_sb, invalid_block);
1887                         set_buffer_new(bh);
1888                         set_buffer_delay(bh);
1889                         return 0;
1890                 }
1891
1892                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1893                 retval = es.es_len - (iblock - es.es_lblk);
1894                 if (retval > map->m_len)
1895                         retval = map->m_len;
1896                 map->m_len = retval;
1897                 if (ext4_es_is_written(&es))
1898                         map->m_flags |= EXT4_MAP_MAPPED;
1899                 else if (ext4_es_is_unwritten(&es))
1900                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1901                 else
1902                         BUG_ON(1);
1903
1904 #ifdef ES_AGGRESSIVE_TEST
1905                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1906 #endif
1907                 return retval;
1908         }
1909
1910         /*
1911          * Try to see if we can get the block without requesting a new
1912          * file system block.
1913          */
1914         down_read((&EXT4_I(inode)->i_data_sem));
1915         if (ext4_has_inline_data(inode)) {
1916                 /*
1917                  * We will soon create blocks for this page, and let
1918                  * us pretend as if the blocks aren't allocated yet.
1919                  * In case of clusters, we have to handle the work
1920                  * of mapping from cluster so that the reserved space
1921                  * is calculated properly.
1922                  */
1923                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1924                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1925                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1926                 retval = 0;
1927         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1928                 retval = ext4_ext_map_blocks(NULL, inode, map,
1929                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1930         else
1931                 retval = ext4_ind_map_blocks(NULL, inode, map,
1932                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1933
1934 add_delayed:
1935         if (retval == 0) {
1936                 int ret;
1937                 /*
1938                  * XXX: __block_prepare_write() unmaps passed block,
1939                  * is it OK?
1940                  */
1941                 /*
1942                  * If the block was allocated from previously allocated cluster,
1943                  * then we don't need to reserve it again. However we still need
1944                  * to reserve metadata for every block we're going to write.
1945                  */
1946                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1947                         ret = ext4_da_reserve_space(inode, iblock);
1948                         if (ret) {
1949                                 /* not enough space to reserve */
1950                                 retval = ret;
1951                                 goto out_unlock;
1952                         }
1953                 } else {
1954                         ret = ext4_da_reserve_metadata(inode, iblock);
1955                         if (ret) {
1956                                 /* not enough space to reserve */
1957                                 retval = ret;
1958                                 goto out_unlock;
1959                         }
1960                 }
1961
1962                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1963                                             ~0, EXTENT_STATUS_DELAYED);
1964                 if (ret) {
1965                         retval = ret;
1966                         goto out_unlock;
1967                 }
1968
1969                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1970                  * and it should not appear on the bh->b_state.
1971                  */
1972                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1973
1974                 map_bh(bh, inode->i_sb, invalid_block);
1975                 set_buffer_new(bh);
1976                 set_buffer_delay(bh);
1977         } else if (retval > 0) {
1978                 int ret;
1979                 unsigned long long status;
1980
1981 #ifdef ES_AGGRESSIVE_TEST
1982                 if (retval != map->m_len) {
1983                         printk("ES len assertation failed for inode: %lu "
1984                                "retval %d != map->m_len %d "
1985                                "in %s (lookup)\n", inode->i_ino, retval,
1986                                map->m_len, __func__);
1987                 }
1988 #endif
1989
1990                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1991                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1992                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1993                                             map->m_pblk, status);
1994                 if (ret != 0)
1995                         retval = ret;
1996         }
1997
1998 out_unlock:
1999         up_read((&EXT4_I(inode)->i_data_sem));
2000
2001         return retval;
2002 }
2003
2004 /*
2005  * This is a special get_blocks_t callback which is used by
2006  * ext4_da_write_begin().  It will either return mapped block or
2007  * reserve space for a single block.
2008  *
2009  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2010  * We also have b_blocknr = -1 and b_bdev initialized properly
2011  *
2012  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2013  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2014  * initialized properly.
2015  */
2016 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2017                            struct buffer_head *bh, int create)
2018 {
2019         struct ext4_map_blocks map;
2020         int ret = 0;
2021
2022         BUG_ON(create == 0);
2023         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2024
2025         map.m_lblk = iblock;
2026         map.m_len = 1;
2027
2028         /*
2029          * first, we need to know whether the block is allocated already
2030          * preallocated blocks are unmapped but should treated
2031          * the same as allocated blocks.
2032          */
2033         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2034         if (ret <= 0)
2035                 return ret;
2036
2037         map_bh(bh, inode->i_sb, map.m_pblk);
2038         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2039
2040         if (buffer_unwritten(bh)) {
2041                 /* A delayed write to unwritten bh should be marked
2042                  * new and mapped.  Mapped ensures that we don't do
2043                  * get_block multiple times when we write to the same
2044                  * offset and new ensures that we do proper zero out
2045                  * for partial write.
2046                  */
2047                 set_buffer_new(bh);
2048                 set_buffer_mapped(bh);
2049         }
2050         return 0;
2051 }
2052
2053 static int bget_one(handle_t *handle, struct buffer_head *bh)
2054 {
2055         get_bh(bh);
2056         return 0;
2057 }
2058
2059 static int bput_one(handle_t *handle, struct buffer_head *bh)
2060 {
2061         put_bh(bh);
2062         return 0;
2063 }
2064
2065 static int __ext4_journalled_writepage(struct page *page,
2066                                        unsigned int len)
2067 {
2068         struct address_space *mapping = page->mapping;
2069         struct inode *inode = mapping->host;
2070         struct buffer_head *page_bufs = NULL;
2071         handle_t *handle = NULL;
2072         int ret = 0, err = 0;
2073         int inline_data = ext4_has_inline_data(inode);
2074         struct buffer_head *inode_bh = NULL;
2075
2076         ClearPageChecked(page);
2077
2078         if (inline_data) {
2079                 BUG_ON(page->index != 0);
2080                 BUG_ON(len > ext4_get_max_inline_size(inode));
2081                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2082                 if (inode_bh == NULL)
2083                         goto out;
2084         } else {
2085                 page_bufs = page_buffers(page);
2086                 if (!page_bufs) {
2087                         BUG();
2088                         goto out;
2089                 }
2090                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2091                                        NULL, bget_one);
2092         }
2093         /* As soon as we unlock the page, it can go away, but we have
2094          * references to buffers so we are safe */
2095         unlock_page(page);
2096
2097         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2098                                     ext4_writepage_trans_blocks(inode));
2099         if (IS_ERR(handle)) {
2100                 ret = PTR_ERR(handle);
2101                 goto out;
2102         }
2103
2104         BUG_ON(!ext4_handle_valid(handle));
2105
2106         if (inline_data) {
2107                 ret = ext4_journal_get_write_access(handle, inode_bh);
2108
2109                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2110
2111         } else {
2112                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2113                                              do_journal_get_write_access);
2114
2115                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2116                                              write_end_fn);
2117         }
2118         if (ret == 0)
2119                 ret = err;
2120         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2121         err = ext4_journal_stop(handle);
2122         if (!ret)
2123                 ret = err;
2124
2125         if (!ext4_has_inline_data(inode))
2126                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2127                                        NULL, bput_one);
2128         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2129 out:
2130         brelse(inode_bh);
2131         return ret;
2132 }
2133
2134 /*
2135  * Note that we don't need to start a transaction unless we're journaling data
2136  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2137  * need to file the inode to the transaction's list in ordered mode because if
2138  * we are writing back data added by write(), the inode is already there and if
2139  * we are writing back data modified via mmap(), no one guarantees in which
2140  * transaction the data will hit the disk. In case we are journaling data, we
2141  * cannot start transaction directly because transaction start ranks above page
2142  * lock so we have to do some magic.
2143  *
2144  * This function can get called via...
2145  *   - ext4_da_writepages after taking page lock (have journal handle)
2146  *   - journal_submit_inode_data_buffers (no journal handle)
2147  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2148  *   - grab_page_cache when doing write_begin (have journal handle)
2149  *
2150  * We don't do any block allocation in this function. If we have page with
2151  * multiple blocks we need to write those buffer_heads that are mapped. This
2152  * is important for mmaped based write. So if we do with blocksize 1K
2153  * truncate(f, 1024);
2154  * a = mmap(f, 0, 4096);
2155  * a[0] = 'a';
2156  * truncate(f, 4096);
2157  * we have in the page first buffer_head mapped via page_mkwrite call back
2158  * but other buffer_heads would be unmapped but dirty (dirty done via the
2159  * do_wp_page). So writepage should write the first block. If we modify
2160  * the mmap area beyond 1024 we will again get a page_fault and the
2161  * page_mkwrite callback will do the block allocation and mark the
2162  * buffer_heads mapped.
2163  *
2164  * We redirty the page if we have any buffer_heads that is either delay or
2165  * unwritten in the page.
2166  *
2167  * We can get recursively called as show below.
2168  *
2169  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2170  *              ext4_writepage()
2171  *
2172  * But since we don't do any block allocation we should not deadlock.
2173  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2174  */
2175 static int ext4_writepage(struct page *page,
2176                           struct writeback_control *wbc)
2177 {
2178         int ret = 0;
2179         loff_t size;
2180         unsigned int len;
2181         struct buffer_head *page_bufs = NULL;
2182         struct inode *inode = page->mapping->host;
2183         struct ext4_io_submit io_submit;
2184
2185         trace_ext4_writepage(page);
2186         size = i_size_read(inode);
2187         if (page->index == size >> PAGE_CACHE_SHIFT)
2188                 len = size & ~PAGE_CACHE_MASK;
2189         else
2190                 len = PAGE_CACHE_SIZE;
2191
2192         page_bufs = page_buffers(page);
2193         /*
2194          * We cannot do block allocation or other extent handling in this
2195          * function. If there are buffers needing that, we have to redirty
2196          * the page. But we may reach here when we do a journal commit via
2197          * journal_submit_inode_data_buffers() and in that case we must write
2198          * allocated buffers to achieve data=ordered mode guarantees.
2199          */
2200         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2201                                    ext4_bh_delay_or_unwritten)) {
2202                 redirty_page_for_writepage(wbc, page);
2203                 if (current->flags & PF_MEMALLOC) {
2204                         /*
2205                          * For memory cleaning there's no point in writing only
2206                          * some buffers. So just bail out. Warn if we came here
2207                          * from direct reclaim.
2208                          */
2209                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2210                                                         == PF_MEMALLOC);
2211                         unlock_page(page);
2212                         return 0;
2213                 }
2214         }
2215
2216         if (PageChecked(page) && ext4_should_journal_data(inode))
2217                 /*
2218                  * It's mmapped pagecache.  Add buffers and journal it.  There
2219                  * doesn't seem much point in redirtying the page here.
2220                  */
2221                 return __ext4_journalled_writepage(page, len);
2222
2223         memset(&io_submit, 0, sizeof(io_submit));
2224         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2225         ext4_io_submit(&io_submit);
2226         return ret;
2227 }
2228
2229 /*
2230  * This is called via ext4_da_writepages() to
2231  * calculate the total number of credits to reserve to fit
2232  * a single extent allocation into a single transaction,
2233  * ext4_da_writpeages() will loop calling this before
2234  * the block allocation.
2235  */
2236
2237 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2238 {
2239         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2240
2241         /*
2242          * With non-extent format the journal credit needed to
2243          * insert nrblocks contiguous block is dependent on
2244          * number of contiguous block. So we will limit
2245          * number of contiguous block to a sane value
2246          */
2247         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2248             (max_blocks > EXT4_MAX_TRANS_DATA))
2249                 max_blocks = EXT4_MAX_TRANS_DATA;
2250
2251         return ext4_chunk_trans_blocks(inode, max_blocks);
2252 }
2253
2254 /*
2255  * write_cache_pages_da - walk the list of dirty pages of the given
2256  * address space and accumulate pages that need writing, and call
2257  * mpage_da_map_and_submit to map a single contiguous memory region
2258  * and then write them.
2259  */
2260 static int write_cache_pages_da(handle_t *handle,
2261                                 struct address_space *mapping,
2262                                 struct writeback_control *wbc,
2263                                 struct mpage_da_data *mpd,
2264                                 pgoff_t *done_index)
2265 {
2266         struct buffer_head      *bh, *head;
2267         struct inode            *inode = mapping->host;
2268         struct pagevec          pvec;
2269         unsigned int            nr_pages;
2270         sector_t                logical;
2271         pgoff_t                 index, end;
2272         long                    nr_to_write = wbc->nr_to_write;
2273         int                     i, tag, ret = 0;
2274
2275         memset(mpd, 0, sizeof(struct mpage_da_data));
2276         mpd->wbc = wbc;
2277         mpd->inode = inode;
2278         pagevec_init(&pvec, 0);
2279         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2280         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2281
2282         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2283                 tag = PAGECACHE_TAG_TOWRITE;
2284         else
2285                 tag = PAGECACHE_TAG_DIRTY;
2286
2287         *done_index = index;
2288         while (index <= end) {
2289                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2290                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2291                 if (nr_pages == 0)
2292                         return 0;
2293
2294                 for (i = 0; i < nr_pages; i++) {
2295                         struct page *page = pvec.pages[i];
2296
2297                         /*
2298                          * At this point, the page may be truncated or
2299                          * invalidated (changing page->mapping to NULL), or
2300                          * even swizzled back from swapper_space to tmpfs file
2301                          * mapping. However, page->index will not change
2302                          * because we have a reference on the page.
2303                          */
2304                         if (page->index > end)
2305                                 goto out;
2306
2307                         *done_index = page->index + 1;
2308
2309                         /*
2310                          * If we can't merge this page, and we have
2311                          * accumulated an contiguous region, write it
2312                          */
2313                         if ((mpd->next_page != page->index) &&
2314                             (mpd->next_page != mpd->first_page)) {
2315                                 mpage_da_map_and_submit(mpd);
2316                                 goto ret_extent_tail;
2317                         }
2318
2319                         lock_page(page);
2320
2321                         /*
2322                          * If the page is no longer dirty, or its
2323                          * mapping no longer corresponds to inode we
2324                          * are writing (which means it has been
2325                          * truncated or invalidated), or the page is
2326                          * already under writeback and we are not
2327                          * doing a data integrity writeback, skip the page
2328                          */
2329                         if (!PageDirty(page) ||
2330                             (PageWriteback(page) &&
2331                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2332                             unlikely(page->mapping != mapping)) {
2333                                 unlock_page(page);
2334                                 continue;
2335                         }
2336
2337                         wait_on_page_writeback(page);
2338                         BUG_ON(PageWriteback(page));
2339
2340                         /*
2341                          * If we have inline data and arrive here, it means that
2342                          * we will soon create the block for the 1st page, so
2343                          * we'd better clear the inline data here.
2344                          */
2345                         if (ext4_has_inline_data(inode)) {
2346                                 BUG_ON(ext4_test_inode_state(inode,
2347                                                 EXT4_STATE_MAY_INLINE_DATA));
2348                                 ext4_destroy_inline_data(handle, inode);
2349                         }
2350
2351                         if (mpd->next_page != page->index)
2352                                 mpd->first_page = page->index;
2353                         mpd->next_page = page->index + 1;
2354                         logical = (sector_t) page->index <<
2355                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2356
2357                         /* Add all dirty buffers to mpd */
2358                         head = page_buffers(page);
2359                         bh = head;
2360                         do {
2361                                 BUG_ON(buffer_locked(bh));
2362                                 /*
2363                                  * We need to try to allocate unmapped blocks
2364                                  * in the same page.  Otherwise we won't make
2365                                  * progress with the page in ext4_writepage
2366                                  */
2367                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2368                                         mpage_add_bh_to_extent(mpd, logical,
2369                                                                bh->b_state);
2370                                         if (mpd->io_done)
2371                                                 goto ret_extent_tail;
2372                                 } else if (buffer_dirty(bh) &&
2373                                            buffer_mapped(bh)) {
2374                                         /*
2375                                          * mapped dirty buffer. We need to
2376                                          * update the b_state because we look
2377                                          * at b_state in mpage_da_map_blocks.
2378                                          * We don't update b_size because if we
2379                                          * find an unmapped buffer_head later
2380                                          * we need to use the b_state flag of
2381                                          * that buffer_head.
2382                                          */
2383                                         if (mpd->b_size == 0)
2384                                                 mpd->b_state =
2385                                                         bh->b_state & BH_FLAGS;
2386                                 }
2387                                 logical++;
2388                         } while ((bh = bh->b_this_page) != head);
2389
2390                         if (nr_to_write > 0) {
2391                                 nr_to_write--;
2392                                 if (nr_to_write == 0 &&
2393                                     wbc->sync_mode == WB_SYNC_NONE)
2394                                         /*
2395                                          * We stop writing back only if we are
2396                                          * not doing integrity sync. In case of
2397                                          * integrity sync we have to keep going
2398                                          * because someone may be concurrently
2399                                          * dirtying pages, and we might have
2400                                          * synced a lot of newly appeared dirty
2401                                          * pages, but have not synced all of the
2402                                          * old dirty pages.
2403                                          */
2404                                         goto out;
2405                         }
2406                 }
2407                 pagevec_release(&pvec);
2408                 cond_resched();
2409         }
2410         return 0;
2411 ret_extent_tail:
2412         ret = MPAGE_DA_EXTENT_TAIL;
2413 out:
2414         pagevec_release(&pvec);
2415         cond_resched();
2416         return ret;
2417 }
2418
2419
2420 static int ext4_da_writepages(struct address_space *mapping,
2421                               struct writeback_control *wbc)
2422 {
2423         pgoff_t index;
2424         int range_whole = 0;
2425         handle_t *handle = NULL;
2426         struct mpage_da_data mpd;
2427         struct inode *inode = mapping->host;
2428         int pages_written = 0;
2429         unsigned int max_pages;
2430         int range_cyclic, cycled = 1, io_done = 0;
2431         int needed_blocks, ret = 0;
2432         long desired_nr_to_write, nr_to_writebump = 0;
2433         loff_t range_start = wbc->range_start;
2434         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2435         pgoff_t done_index = 0;
2436         pgoff_t end;
2437         struct blk_plug plug;
2438
2439         trace_ext4_da_writepages(inode, wbc);
2440
2441         /*
2442          * No pages to write? This is mainly a kludge to avoid starting
2443          * a transaction for special inodes like journal inode on last iput()
2444          * because that could violate lock ordering on umount
2445          */
2446         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2447                 return 0;
2448
2449         /*
2450          * If the filesystem has aborted, it is read-only, so return
2451          * right away instead of dumping stack traces later on that
2452          * will obscure the real source of the problem.  We test
2453          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2454          * the latter could be true if the filesystem is mounted
2455          * read-only, and in that case, ext4_da_writepages should
2456          * *never* be called, so if that ever happens, we would want
2457          * the stack trace.
2458          */
2459         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2460                 return -EROFS;
2461
2462         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2463                 range_whole = 1;
2464
2465         range_cyclic = wbc->range_cyclic;
2466         if (wbc->range_cyclic) {
2467                 index = mapping->writeback_index;
2468                 if (index)
2469                         cycled = 0;
2470                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2471                 wbc->range_end  = LLONG_MAX;
2472                 wbc->range_cyclic = 0;
2473                 end = -1;
2474         } else {
2475                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2476                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2477         }
2478
2479         /*
2480          * This works around two forms of stupidity.  The first is in
2481          * the writeback code, which caps the maximum number of pages
2482          * written to be 1024 pages.  This is wrong on multiple
2483          * levels; different architectues have a different page size,
2484          * which changes the maximum amount of data which gets
2485          * written.  Secondly, 4 megabytes is way too small.  XFS
2486          * forces this value to be 16 megabytes by multiplying
2487          * nr_to_write parameter by four, and then relies on its
2488          * allocator to allocate larger extents to make them
2489          * contiguous.  Unfortunately this brings us to the second
2490          * stupidity, which is that ext4's mballoc code only allocates
2491          * at most 2048 blocks.  So we force contiguous writes up to
2492          * the number of dirty blocks in the inode, or
2493          * sbi->max_writeback_mb_bump whichever is smaller.
2494          */
2495         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2496         if (!range_cyclic && range_whole) {
2497                 if (wbc->nr_to_write == LONG_MAX)
2498                         desired_nr_to_write = wbc->nr_to_write;
2499                 else
2500                         desired_nr_to_write = wbc->nr_to_write * 8;
2501         } else
2502                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2503                                                            max_pages);
2504         if (desired_nr_to_write > max_pages)
2505                 desired_nr_to_write = max_pages;
2506
2507         if (wbc->nr_to_write < desired_nr_to_write) {
2508                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2509                 wbc->nr_to_write = desired_nr_to_write;
2510         }
2511
2512 retry:
2513         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2514                 tag_pages_for_writeback(mapping, index, end);
2515
2516         blk_start_plug(&plug);
2517         while (!ret && wbc->nr_to_write > 0) {
2518
2519                 /*
2520                  * we  insert one extent at a time. So we need
2521                  * credit needed for single extent allocation.
2522                  * journalled mode is currently not supported
2523                  * by delalloc
2524                  */
2525                 BUG_ON(ext4_should_journal_data(inode));
2526                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2527
2528                 /* start a new transaction*/
2529                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2530                                             needed_blocks);
2531                 if (IS_ERR(handle)) {
2532                         ret = PTR_ERR(handle);
2533                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2534                                "%ld pages, ino %lu; err %d", __func__,
2535                                 wbc->nr_to_write, inode->i_ino, ret);
2536                         blk_finish_plug(&plug);
2537                         goto out_writepages;
2538                 }
2539
2540                 /*
2541                  * Now call write_cache_pages_da() to find the next
2542                  * contiguous region of logical blocks that need
2543                  * blocks to be allocated by ext4 and submit them.
2544                  */
2545                 ret = write_cache_pages_da(handle, mapping,
2546                                            wbc, &mpd, &done_index);
2547                 /*
2548                  * If we have a contiguous extent of pages and we
2549                  * haven't done the I/O yet, map the blocks and submit
2550                  * them for I/O.
2551                  */
2552                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2553                         mpage_da_map_and_submit(&mpd);
2554                         ret = MPAGE_DA_EXTENT_TAIL;
2555                 }
2556                 trace_ext4_da_write_pages(inode, &mpd);
2557                 wbc->nr_to_write -= mpd.pages_written;
2558
2559                 ext4_journal_stop(handle);
2560
2561                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2562                         /* commit the transaction which would
2563                          * free blocks released in the transaction
2564                          * and try again
2565                          */
2566                         jbd2_journal_force_commit_nested(sbi->s_journal);
2567                         ret = 0;
2568                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2569                         /*
2570                          * Got one extent now try with rest of the pages.
2571                          * If mpd.retval is set -EIO, journal is aborted.
2572                          * So we don't need to write any more.
2573                          */
2574                         pages_written += mpd.pages_written;
2575                         ret = mpd.retval;
2576                         io_done = 1;
2577                 } else if (wbc->nr_to_write)
2578                         /*
2579                          * There is no more writeout needed
2580                          * or we requested for a noblocking writeout
2581                          * and we found the device congested
2582                          */
2583                         break;
2584         }
2585         blk_finish_plug(&plug);
2586         if (!io_done && !cycled) {
2587                 cycled = 1;
2588                 index = 0;
2589                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2590                 wbc->range_end  = mapping->writeback_index - 1;
2591                 goto retry;
2592         }
2593
2594         /* Update index */
2595         wbc->range_cyclic = range_cyclic;
2596         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2597                 /*
2598                  * set the writeback_index so that range_cyclic
2599                  * mode will write it back later
2600                  */
2601                 mapping->writeback_index = done_index;
2602
2603 out_writepages:
2604         wbc->nr_to_write -= nr_to_writebump;
2605         wbc->range_start = range_start;
2606         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2607         return ret;
2608 }
2609
2610 static int ext4_nonda_switch(struct super_block *sb)
2611 {
2612         s64 free_clusters, dirty_clusters;
2613         struct ext4_sb_info *sbi = EXT4_SB(sb);
2614
2615         /*
2616          * switch to non delalloc mode if we are running low
2617          * on free block. The free block accounting via percpu
2618          * counters can get slightly wrong with percpu_counter_batch getting
2619          * accumulated on each CPU without updating global counters
2620          * Delalloc need an accurate free block accounting. So switch
2621          * to non delalloc when we are near to error range.
2622          */
2623         free_clusters =
2624                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2625         dirty_clusters =
2626                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2627         /*
2628          * Start pushing delalloc when 1/2 of free blocks are dirty.
2629          */
2630         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2631                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2632
2633         if (2 * free_clusters < 3 * dirty_clusters ||
2634             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2635                 /*
2636                  * free block count is less than 150% of dirty blocks
2637                  * or free blocks is less than watermark
2638                  */
2639                 return 1;
2640         }
2641         return 0;
2642 }
2643
2644 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2645                                loff_t pos, unsigned len, unsigned flags,
2646                                struct page **pagep, void **fsdata)
2647 {
2648         int ret, retries = 0;
2649         struct page *page;
2650         pgoff_t index;
2651         struct inode *inode = mapping->host;
2652         handle_t *handle;
2653
2654         index = pos >> PAGE_CACHE_SHIFT;
2655
2656         if (ext4_nonda_switch(inode->i_sb)) {
2657                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2658                 return ext4_write_begin(file, mapping, pos,
2659                                         len, flags, pagep, fsdata);
2660         }
2661         *fsdata = (void *)0;
2662         trace_ext4_da_write_begin(inode, pos, len, flags);
2663
2664         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2665                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2666                                                       pos, len, flags,
2667                                                       pagep, fsdata);
2668                 if (ret < 0)
2669                         return ret;
2670                 if (ret == 1)
2671                         return 0;
2672         }
2673
2674         /*
2675          * grab_cache_page_write_begin() can take a long time if the
2676          * system is thrashing due to memory pressure, or if the page
2677          * is being written back.  So grab it first before we start
2678          * the transaction handle.  This also allows us to allocate
2679          * the page (if needed) without using GFP_NOFS.
2680          */
2681 retry_grab:
2682         page = grab_cache_page_write_begin(mapping, index, flags);
2683         if (!page)
2684                 return -ENOMEM;
2685         unlock_page(page);
2686
2687         /*
2688          * With delayed allocation, we don't log the i_disksize update
2689          * if there is delayed block allocation. But we still need
2690          * to journalling the i_disksize update if writes to the end
2691          * of file which has an already mapped buffer.
2692          */
2693 retry_journal:
2694         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2695         if (IS_ERR(handle)) {
2696                 page_cache_release(page);
2697                 return PTR_ERR(handle);
2698         }
2699
2700         lock_page(page);
2701         if (page->mapping != mapping) {
2702                 /* The page got truncated from under us */
2703                 unlock_page(page);
2704                 page_cache_release(page);
2705                 ext4_journal_stop(handle);
2706                 goto retry_grab;
2707         }
2708         /* In case writeback began while the page was unlocked */
2709         wait_on_page_writeback(page);
2710
2711         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2712         if (ret < 0) {
2713                 unlock_page(page);
2714                 ext4_journal_stop(handle);
2715                 /*
2716                  * block_write_begin may have instantiated a few blocks
2717                  * outside i_size.  Trim these off again. Don't need
2718                  * i_size_read because we hold i_mutex.
2719                  */
2720                 if (pos + len > inode->i_size)
2721                         ext4_truncate_failed_write(inode);
2722
2723                 if (ret == -ENOSPC &&
2724                     ext4_should_retry_alloc(inode->i_sb, &retries))
2725                         goto retry_journal;
2726
2727                 page_cache_release(page);
2728                 return ret;
2729         }
2730
2731         *pagep = page;
2732         return ret;
2733 }
2734
2735 /*
2736  * Check if we should update i_disksize
2737  * when write to the end of file but not require block allocation
2738  */
2739 static int ext4_da_should_update_i_disksize(struct page *page,
2740                                             unsigned long offset)
2741 {
2742         struct buffer_head *bh;
2743         struct inode *inode = page->mapping->host;
2744         unsigned int idx;
2745         int i;
2746
2747         bh = page_buffers(page);
2748         idx = offset >> inode->i_blkbits;
2749
2750         for (i = 0; i < idx; i++)
2751                 bh = bh->b_this_page;
2752
2753         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2754                 return 0;
2755         return 1;
2756 }
2757
2758 static int ext4_da_write_end(struct file *file,
2759                              struct address_space *mapping,
2760                              loff_t pos, unsigned len, unsigned copied,
2761                              struct page *page, void *fsdata)
2762 {
2763         struct inode *inode = mapping->host;
2764         int ret = 0, ret2;
2765         handle_t *handle = ext4_journal_current_handle();
2766         loff_t new_i_size;
2767         unsigned long start, end;
2768         int write_mode = (int)(unsigned long)fsdata;
2769
2770         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2771                 return ext4_write_end(file, mapping, pos,
2772                                       len, copied, page, fsdata);
2773
2774         trace_ext4_da_write_end(inode, pos, len, copied);
2775         start = pos & (PAGE_CACHE_SIZE - 1);
2776         end = start + copied - 1;
2777
2778         /*
2779          * generic_write_end() will run mark_inode_dirty() if i_size
2780          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2781          * into that.
2782          */
2783         new_i_size = pos + copied;
2784         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2785                 if (ext4_has_inline_data(inode) ||
2786                     ext4_da_should_update_i_disksize(page, end)) {
2787                         down_write(&EXT4_I(inode)->i_data_sem);
2788                         if (new_i_size > EXT4_I(inode)->i_disksize)
2789                                 EXT4_I(inode)->i_disksize = new_i_size;
2790                         up_write(&EXT4_I(inode)->i_data_sem);
2791                         /* We need to mark inode dirty even if
2792                          * new_i_size is less that inode->i_size
2793                          * bu greater than i_disksize.(hint delalloc)
2794                          */
2795                         ext4_mark_inode_dirty(handle, inode);
2796                 }
2797         }
2798
2799         if (write_mode != CONVERT_INLINE_DATA &&
2800             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2801             ext4_has_inline_data(inode))
2802                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2803                                                      page);
2804         else
2805                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2806                                                         page, fsdata);
2807
2808         copied = ret2;
2809         if (ret2 < 0)
2810                 ret = ret2;
2811         ret2 = ext4_journal_stop(handle);
2812         if (!ret)
2813                 ret = ret2;
2814
2815         return ret ? ret : copied;
2816 }
2817
2818 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2819 {
2820         /*
2821          * Drop reserved blocks
2822          */
2823         BUG_ON(!PageLocked(page));
2824         if (!page_has_buffers(page))
2825                 goto out;
2826
2827         ext4_da_page_release_reservation(page, offset);
2828
2829 out:
2830         ext4_invalidatepage(page, offset);
2831
2832         return;
2833 }
2834
2835 /*
2836  * Force all delayed allocation blocks to be allocated for a given inode.
2837  */
2838 int ext4_alloc_da_blocks(struct inode *inode)
2839 {
2840         trace_ext4_alloc_da_blocks(inode);
2841
2842         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2843             !EXT4_I(inode)->i_reserved_meta_blocks)
2844                 return 0;
2845
2846         /*
2847          * We do something simple for now.  The filemap_flush() will
2848          * also start triggering a write of the data blocks, which is
2849          * not strictly speaking necessary (and for users of
2850          * laptop_mode, not even desirable).  However, to do otherwise
2851          * would require replicating code paths in:
2852          *
2853          * ext4_da_writepages() ->
2854          *    write_cache_pages() ---> (via passed in callback function)
2855          *        __mpage_da_writepage() -->
2856          *           mpage_add_bh_to_extent()
2857          *           mpage_da_map_blocks()
2858          *
2859          * The problem is that write_cache_pages(), located in
2860          * mm/page-writeback.c, marks pages clean in preparation for
2861          * doing I/O, which is not desirable if we're not planning on
2862          * doing I/O at all.
2863          *
2864          * We could call write_cache_pages(), and then redirty all of
2865          * the pages by calling redirty_page_for_writepage() but that
2866          * would be ugly in the extreme.  So instead we would need to
2867          * replicate parts of the code in the above functions,
2868          * simplifying them because we wouldn't actually intend to
2869          * write out the pages, but rather only collect contiguous
2870          * logical block extents, call the multi-block allocator, and
2871          * then update the buffer heads with the block allocations.
2872          *
2873          * For now, though, we'll cheat by calling filemap_flush(),
2874          * which will map the blocks, and start the I/O, but not
2875          * actually wait for the I/O to complete.
2876          */
2877         return filemap_flush(inode->i_mapping);
2878 }
2879
2880 /*
2881  * bmap() is special.  It gets used by applications such as lilo and by
2882  * the swapper to find the on-disk block of a specific piece of data.
2883  *
2884  * Naturally, this is dangerous if the block concerned is still in the
2885  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2886  * filesystem and enables swap, then they may get a nasty shock when the
2887  * data getting swapped to that swapfile suddenly gets overwritten by
2888  * the original zero's written out previously to the journal and
2889  * awaiting writeback in the kernel's buffer cache.
2890  *
2891  * So, if we see any bmap calls here on a modified, data-journaled file,
2892  * take extra steps to flush any blocks which might be in the cache.
2893  */
2894 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2895 {
2896         struct inode *inode = mapping->host;
2897         journal_t *journal;
2898         int err;
2899
2900         /*
2901          * We can get here for an inline file via the FIBMAP ioctl
2902          */
2903         if (ext4_has_inline_data(inode))
2904                 return 0;
2905
2906         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2907                         test_opt(inode->i_sb, DELALLOC)) {
2908                 /*
2909                  * With delalloc we want to sync the file
2910                  * so that we can make sure we allocate
2911                  * blocks for file
2912                  */
2913                 filemap_write_and_wait(mapping);
2914         }
2915
2916         if (EXT4_JOURNAL(inode) &&
2917             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2918                 /*
2919                  * This is a REALLY heavyweight approach, but the use of
2920                  * bmap on dirty files is expected to be extremely rare:
2921                  * only if we run lilo or swapon on a freshly made file
2922                  * do we expect this to happen.
2923                  *
2924                  * (bmap requires CAP_SYS_RAWIO so this does not
2925                  * represent an unprivileged user DOS attack --- we'd be
2926                  * in trouble if mortal users could trigger this path at
2927                  * will.)
2928                  *
2929                  * NB. EXT4_STATE_JDATA is not set on files other than
2930                  * regular files.  If somebody wants to bmap a directory
2931                  * or symlink and gets confused because the buffer
2932                  * hasn't yet been flushed to disk, they deserve
2933                  * everything they get.
2934                  */
2935
2936                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2937                 journal = EXT4_JOURNAL(inode);
2938                 jbd2_journal_lock_updates(journal);
2939                 err = jbd2_journal_flush(journal);
2940                 jbd2_journal_unlock_updates(journal);
2941
2942                 if (err)
2943                         return 0;
2944         }
2945
2946         return generic_block_bmap(mapping, block, ext4_get_block);
2947 }
2948
2949 static int ext4_readpage(struct file *file, struct page *page)
2950 {
2951         int ret = -EAGAIN;
2952         struct inode *inode = page->mapping->host;
2953
2954         trace_ext4_readpage(page);
2955
2956         if (ext4_has_inline_data(inode))
2957                 ret = ext4_readpage_inline(inode, page);
2958
2959         if (ret == -EAGAIN)
2960                 return mpage_readpage(page, ext4_get_block);
2961
2962         return ret;
2963 }
2964
2965 static int
2966 ext4_readpages(struct file *file, struct address_space *mapping,
2967                 struct list_head *pages, unsigned nr_pages)
2968 {
2969         struct inode *inode = mapping->host;
2970
2971         /* If the file has inline data, no need to do readpages. */
2972         if (ext4_has_inline_data(inode))
2973                 return 0;
2974
2975         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2976 }
2977
2978 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2979 {
2980         trace_ext4_invalidatepage(page, offset);
2981
2982         /* No journalling happens on data buffers when this function is used */
2983         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2984
2985         block_invalidatepage(page, offset);
2986 }
2987
2988 static int __ext4_journalled_invalidatepage(struct page *page,
2989                                             unsigned long offset)
2990 {
2991         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2992
2993         trace_ext4_journalled_invalidatepage(page, offset);
2994
2995         /*
2996          * If it's a full truncate we just forget about the pending dirtying
2997          */
2998         if (offset == 0)
2999                 ClearPageChecked(page);
3000
3001         return jbd2_journal_invalidatepage(journal, page, offset);
3002 }
3003
3004 /* Wrapper for aops... */
3005 static void ext4_journalled_invalidatepage(struct page *page,
3006                                            unsigned long offset)
3007 {
3008         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3009 }
3010
3011 static int ext4_releasepage(struct page *page, gfp_t wait)
3012 {
3013         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3014
3015         trace_ext4_releasepage(page);
3016
3017         /* Page has dirty journalled data -> cannot release */
3018         if (PageChecked(page))
3019                 return 0;
3020         if (journal)
3021                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3022         else
3023                 return try_to_free_buffers(page);
3024 }
3025
3026 /*
3027  * ext4_get_block used when preparing for a DIO write or buffer write.
3028  * We allocate an uinitialized extent if blocks haven't been allocated.
3029  * The extent will be converted to initialized after the IO is complete.
3030  */
3031 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3032                    struct buffer_head *bh_result, int create)
3033 {
3034         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3035                    inode->i_ino, create);
3036         return _ext4_get_block(inode, iblock, bh_result,
3037                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3038 }
3039
3040 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3041                    struct buffer_head *bh_result, int create)
3042 {
3043         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3044                    inode->i_ino, create);
3045         return _ext4_get_block(inode, iblock, bh_result,
3046                                EXT4_GET_BLOCKS_NO_LOCK);
3047 }
3048
3049 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3050                             ssize_t size, void *private, int ret,
3051                             bool is_async)
3052 {
3053         struct inode *inode = file_inode(iocb->ki_filp);
3054         ext4_io_end_t *io_end = iocb->private;
3055
3056         /* if not async direct IO or dio with 0 bytes write, just return */
3057         if (!io_end || !size)
3058                 goto out;
3059
3060         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3061                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3062                   iocb->private, io_end->inode->i_ino, iocb, offset,
3063                   size);
3064
3065         iocb->private = NULL;
3066
3067         /* if not aio dio with unwritten extents, just free io and return */
3068         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3069                 ext4_free_io_end(io_end);
3070 out:
3071                 inode_dio_done(inode);
3072                 if (is_async)
3073                         aio_complete(iocb, ret, 0);
3074                 return;
3075         }
3076
3077         io_end->offset = offset;
3078         io_end->size = size;
3079         if (is_async) {
3080                 io_end->iocb = iocb;
3081                 io_end->result = ret;
3082         }
3083
3084         ext4_add_complete_io(io_end);
3085 }
3086
3087 /*
3088  * For ext4 extent files, ext4 will do direct-io write to holes,
3089  * preallocated extents, and those write extend the file, no need to
3090  * fall back to buffered IO.
3091  *
3092  * For holes, we fallocate those blocks, mark them as uninitialized
3093  * If those blocks were preallocated, we mark sure they are split, but
3094  * still keep the range to write as uninitialized.
3095  *
3096  * The unwritten extents will be converted to written when DIO is completed.
3097  * For async direct IO, since the IO may still pending when return, we
3098  * set up an end_io call back function, which will do the conversion
3099  * when async direct IO completed.
3100  *
3101  * If the O_DIRECT write will extend the file then add this inode to the
3102  * orphan list.  So recovery will truncate it back to the original size
3103  * if the machine crashes during the write.
3104  *
3105  */
3106 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3107                               const struct iovec *iov, loff_t offset,
3108                               unsigned long nr_segs)
3109 {
3110         struct file *file = iocb->ki_filp;
3111         struct inode *inode = file->f_mapping->host;
3112         ssize_t ret;
3113         size_t count = iov_length(iov, nr_segs);
3114         int overwrite = 0;
3115         get_block_t *get_block_func = NULL;
3116         int dio_flags = 0;
3117         loff_t final_size = offset + count;
3118
3119         /* Use the old path for reads and writes beyond i_size. */
3120         if (rw != WRITE || final_size > inode->i_size)
3121                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3122
3123         BUG_ON(iocb->private == NULL);
3124
3125         /* If we do a overwrite dio, i_mutex locking can be released */
3126         overwrite = *((int *)iocb->private);
3127
3128         if (overwrite) {
3129                 atomic_inc(&inode->i_dio_count);
3130                 down_read(&EXT4_I(inode)->i_data_sem);
3131                 mutex_unlock(&inode->i_mutex);
3132         }
3133
3134         /*
3135          * We could direct write to holes and fallocate.
3136          *
3137          * Allocated blocks to fill the hole are marked as
3138          * uninitialized to prevent parallel buffered read to expose
3139          * the stale data before DIO complete the data IO.
3140          *
3141          * As to previously fallocated extents, ext4 get_block will
3142          * just simply mark the buffer mapped but still keep the
3143          * extents uninitialized.
3144          *
3145          * For non AIO case, we will convert those unwritten extents
3146          * to written after return back from blockdev_direct_IO.
3147          *
3148          * For async DIO, the conversion needs to be deferred when the
3149          * IO is completed. The ext4 end_io callback function will be
3150          * called to take care of the conversion work.  Here for async
3151          * case, we allocate an io_end structure to hook to the iocb.
3152          */
3153         iocb->private = NULL;
3154         ext4_inode_aio_set(inode, NULL);
3155         if (!is_sync_kiocb(iocb)) {
3156                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3157                 if (!io_end) {
3158                         ret = -ENOMEM;
3159                         goto retake_lock;
3160                 }
3161                 io_end->flag |= EXT4_IO_END_DIRECT;
3162                 iocb->private = io_end;
3163                 /*
3164                  * we save the io structure for current async direct
3165                  * IO, so that later ext4_map_blocks() could flag the
3166                  * io structure whether there is a unwritten extents
3167                  * needs to be converted when IO is completed.
3168                  */
3169                 ext4_inode_aio_set(inode, io_end);
3170         }
3171
3172         if (overwrite) {
3173                 get_block_func = ext4_get_block_write_nolock;
3174         } else {
3175                 get_block_func = ext4_get_block_write;
3176                 dio_flags = DIO_LOCKING;
3177         }
3178         ret = __blockdev_direct_IO(rw, iocb, inode,
3179                                    inode->i_sb->s_bdev, iov,
3180                                    offset, nr_segs,
3181                                    get_block_func,
3182                                    ext4_end_io_dio,
3183                                    NULL,
3184                                    dio_flags);
3185
3186         if (iocb->private)
3187                 ext4_inode_aio_set(inode, NULL);
3188         /*
3189          * The io_end structure takes a reference to the inode, that
3190          * structure needs to be destroyed and the reference to the
3191          * inode need to be dropped, when IO is complete, even with 0
3192          * byte write, or failed.
3193          *
3194          * In the successful AIO DIO case, the io_end structure will
3195          * be destroyed and the reference to the inode will be dropped
3196          * after the end_io call back function is called.
3197          *
3198          * In the case there is 0 byte write, or error case, since VFS
3199          * direct IO won't invoke the end_io call back function, we
3200          * need to free the end_io structure here.
3201          */
3202         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3203                 ext4_free_io_end(iocb->private);
3204                 iocb->private = NULL;
3205         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3206                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3207                 int err;
3208                 /*
3209                  * for non AIO case, since the IO is already
3210                  * completed, we could do the conversion right here
3211                  */
3212                 err = ext4_convert_unwritten_extents(inode,
3213                                                      offset, ret);
3214                 if (err < 0)
3215                         ret = err;
3216                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3217         }
3218
3219 retake_lock:
3220         /* take i_mutex locking again if we do a ovewrite dio */
3221         if (overwrite) {
3222                 inode_dio_done(inode);
3223                 up_read(&EXT4_I(inode)->i_data_sem);
3224                 mutex_lock(&inode->i_mutex);
3225         }
3226
3227         return ret;
3228 }
3229
3230 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3231                               const struct iovec *iov, loff_t offset,
3232                               unsigned long nr_segs)
3233 {
3234         struct file *file = iocb->ki_filp;
3235         struct inode *inode = file->f_mapping->host;
3236         ssize_t ret;
3237
3238         /*
3239          * If we are doing data journalling we don't support O_DIRECT
3240          */
3241         if (ext4_should_journal_data(inode))
3242                 return 0;
3243
3244         /* Let buffer I/O handle the inline data case. */
3245         if (ext4_has_inline_data(inode))
3246                 return 0;
3247
3248         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3249         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3250                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3251         else
3252                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3253         trace_ext4_direct_IO_exit(inode, offset,
3254                                 iov_length(iov, nr_segs), rw, ret);
3255         return ret;
3256 }
3257
3258 /*
3259  * Pages can be marked dirty completely asynchronously from ext4's journalling
3260  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3261  * much here because ->set_page_dirty is called under VFS locks.  The page is
3262  * not necessarily locked.
3263  *
3264  * We cannot just dirty the page and leave attached buffers clean, because the
3265  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3266  * or jbddirty because all the journalling code will explode.
3267  *
3268  * So what we do is to mark the page "pending dirty" and next time writepage
3269  * is called, propagate that into the buffers appropriately.
3270  */
3271 static int ext4_journalled_set_page_dirty(struct page *page)
3272 {
3273         SetPageChecked(page);
3274         return __set_page_dirty_nobuffers(page);
3275 }
3276
3277 static const struct address_space_operations ext4_aops = {
3278         .readpage               = ext4_readpage,
3279         .readpages              = ext4_readpages,
3280         .writepage              = ext4_writepage,
3281         .write_begin            = ext4_write_begin,
3282         .write_end              = ext4_write_end,
3283         .bmap                   = ext4_bmap,
3284         .invalidatepage         = ext4_invalidatepage,
3285         .releasepage            = ext4_releasepage,
3286         .direct_IO              = ext4_direct_IO,
3287         .migratepage            = buffer_migrate_page,
3288         .is_partially_uptodate  = block_is_partially_uptodate,
3289         .error_remove_page      = generic_error_remove_page,
3290 };
3291
3292 static const struct address_space_operations ext4_journalled_aops = {
3293         .readpage               = ext4_readpage,
3294         .readpages              = ext4_readpages,
3295         .writepage              = ext4_writepage,
3296         .write_begin            = ext4_write_begin,
3297         .write_end              = ext4_journalled_write_end,
3298         .set_page_dirty         = ext4_journalled_set_page_dirty,
3299         .bmap                   = ext4_bmap,
3300         .invalidatepage         = ext4_journalled_invalidatepage,
3301         .releasepage            = ext4_releasepage,
3302         .direct_IO              = ext4_direct_IO,
3303         .is_partially_uptodate  = block_is_partially_uptodate,
3304         .error_remove_page      = generic_error_remove_page,
3305 };
3306
3307 static const struct address_space_operations ext4_da_aops = {
3308         .readpage               = ext4_readpage,
3309         .readpages              = ext4_readpages,
3310         .writepage              = ext4_writepage,
3311         .writepages             = ext4_da_writepages,
3312         .write_begin            = ext4_da_write_begin,
3313         .write_end              = ext4_da_write_end,
3314         .bmap                   = ext4_bmap,
3315         .invalidatepage         = ext4_da_invalidatepage,
3316         .releasepage            = ext4_releasepage,
3317         .direct_IO              = ext4_direct_IO,
3318         .migratepage            = buffer_migrate_page,
3319         .is_partially_uptodate  = block_is_partially_uptodate,
3320         .error_remove_page      = generic_error_remove_page,
3321 };
3322
3323 void ext4_set_aops(struct inode *inode)
3324 {
3325         switch (ext4_inode_journal_mode(inode)) {
3326         case EXT4_INODE_ORDERED_DATA_MODE:
3327                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3328                 break;
3329         case EXT4_INODE_WRITEBACK_DATA_MODE:
3330                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3331                 break;
3332         case EXT4_INODE_JOURNAL_DATA_MODE:
3333                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3334                 return;
3335         default:
3336                 BUG();
3337         }
3338         if (test_opt(inode->i_sb, DELALLOC))
3339                 inode->i_mapping->a_ops = &ext4_da_aops;
3340         else
3341                 inode->i_mapping->a_ops = &ext4_aops;
3342 }
3343
3344
3345 /*
3346  * ext4_discard_partial_page_buffers()
3347  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3348  * This function finds and locks the page containing the offset
3349  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3350  * Calling functions that already have the page locked should call
3351  * ext4_discard_partial_page_buffers_no_lock directly.
3352  */
3353 int ext4_discard_partial_page_buffers(handle_t *handle,
3354                 struct address_space *mapping, loff_t from,
3355                 loff_t length, int flags)
3356 {
3357         struct inode *inode = mapping->host;
3358         struct page *page;
3359         int err = 0;
3360
3361         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3362                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3363         if (!page)
3364                 return -ENOMEM;
3365
3366         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3367                 from, length, flags);
3368
3369         unlock_page(page);
3370         page_cache_release(page);
3371         return err;
3372 }
3373
3374 /*
3375  * ext4_discard_partial_page_buffers_no_lock()
3376  * Zeros a page range of length 'length' starting from offset 'from'.
3377  * Buffer heads that correspond to the block aligned regions of the
3378  * zeroed range will be unmapped.  Unblock aligned regions
3379  * will have the corresponding buffer head mapped if needed so that
3380  * that region of the page can be updated with the partial zero out.
3381  *
3382  * This function assumes that the page has already been  locked.  The
3383  * The range to be discarded must be contained with in the given page.
3384  * If the specified range exceeds the end of the page it will be shortened
3385  * to the end of the page that corresponds to 'from'.  This function is
3386  * appropriate for updating a page and it buffer heads to be unmapped and
3387  * zeroed for blocks that have been either released, or are going to be
3388  * released.
3389  *
3390  * handle: The journal handle
3391  * inode:  The files inode
3392  * page:   A locked page that contains the offset "from"
3393  * from:   The starting byte offset (from the beginning of the file)
3394  *         to begin discarding
3395  * len:    The length of bytes to discard
3396  * flags:  Optional flags that may be used:
3397  *
3398  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3399  *         Only zero the regions of the page whose buffer heads
3400  *         have already been unmapped.  This flag is appropriate
3401  *         for updating the contents of a page whose blocks may
3402  *         have already been released, and we only want to zero
3403  *         out the regions that correspond to those released blocks.
3404  *
3405  * Returns zero on success or negative on failure.
3406  */
3407 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3408                 struct inode *inode, struct page *page, loff_t from,
3409                 loff_t length, int flags)
3410 {
3411         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3412         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3413         unsigned int blocksize, max, pos;
3414         ext4_lblk_t iblock;
3415         struct buffer_head *bh;
3416         int err = 0;
3417
3418         blocksize = inode->i_sb->s_blocksize;
3419         max = PAGE_CACHE_SIZE - offset;
3420
3421         if (index != page->index)
3422                 return -EINVAL;
3423
3424         /*
3425          * correct length if it does not fall between
3426          * 'from' and the end of the page
3427          */
3428         if (length > max || length < 0)
3429                 length = max;
3430
3431         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3432
3433         if (!page_has_buffers(page))
3434                 create_empty_buffers(page, blocksize, 0);
3435
3436         /* Find the buffer that contains "offset" */
3437         bh = page_buffers(page);
3438         pos = blocksize;
3439         while (offset >= pos) {
3440                 bh = bh->b_this_page;
3441                 iblock++;
3442                 pos += blocksize;
3443         }
3444
3445         pos = offset;
3446         while (pos < offset + length) {
3447                 unsigned int end_of_block, range_to_discard;
3448
3449                 err = 0;
3450
3451                 /* The length of space left to zero and unmap */
3452                 range_to_discard = offset + length - pos;
3453
3454                 /* The length of space until the end of the block */
3455                 end_of_block = blocksize - (pos & (blocksize-1));
3456
3457                 /*
3458                  * Do not unmap or zero past end of block
3459                  * for this buffer head
3460                  */
3461                 if (range_to_discard > end_of_block)
3462                         range_to_discard = end_of_block;
3463
3464
3465                 /*
3466                  * Skip this buffer head if we are only zeroing unampped
3467                  * regions of the page
3468                  */
3469                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3470                         buffer_mapped(bh))
3471                                 goto next;
3472
3473                 /* If the range is block aligned, unmap */
3474                 if (range_to_discard == blocksize) {
3475                         clear_buffer_dirty(bh);
3476                         bh->b_bdev = NULL;
3477                         clear_buffer_mapped(bh);
3478                         clear_buffer_req(bh);
3479                         clear_buffer_new(bh);
3480                         clear_buffer_delay(bh);
3481                         clear_buffer_unwritten(bh);
3482                         clear_buffer_uptodate(bh);
3483                         zero_user(page, pos, range_to_discard);
3484                         BUFFER_TRACE(bh, "Buffer discarded");
3485                         goto next;
3486                 }
3487
3488                 /*
3489                  * If this block is not completely contained in the range
3490                  * to be discarded, then it is not going to be released. Because
3491                  * we need to keep this block, we need to make sure this part
3492                  * of the page is uptodate before we modify it by writeing
3493                  * partial zeros on it.
3494                  */
3495                 if (!buffer_mapped(bh)) {
3496                         /*
3497                          * Buffer head must be mapped before we can read
3498                          * from the block
3499                          */
3500                         BUFFER_TRACE(bh, "unmapped");
3501                         ext4_get_block(inode, iblock, bh, 0);
3502                         /* unmapped? It's a hole - nothing to do */
3503                         if (!buffer_mapped(bh)) {
3504                                 BUFFER_TRACE(bh, "still unmapped");
3505                                 goto next;
3506                         }
3507                 }
3508
3509                 /* Ok, it's mapped. Make sure it's up-to-date */
3510                 if (PageUptodate(page))
3511                         set_buffer_uptodate(bh);
3512
3513                 if (!buffer_uptodate(bh)) {
3514                         err = -EIO;
3515                         ll_rw_block(READ, 1, &bh);
3516                         wait_on_buffer(bh);
3517                         /* Uhhuh. Read error. Complain and punt.*/
3518                         if (!buffer_uptodate(bh))
3519                                 goto next;
3520                 }
3521
3522                 if (ext4_should_journal_data(inode)) {
3523                         BUFFER_TRACE(bh, "get write access");
3524                         err = ext4_journal_get_write_access(handle, bh);
3525                         if (err)
3526                                 goto next;
3527                 }
3528
3529                 zero_user(page, pos, range_to_discard);
3530
3531                 err = 0;
3532                 if (ext4_should_journal_data(inode)) {
3533                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3534                 } else
3535                         mark_buffer_dirty(bh);
3536
3537                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3538 next:
3539                 bh = bh->b_this_page;
3540                 iblock++;
3541                 pos += range_to_discard;
3542         }
3543
3544         return err;
3545 }
3546
3547 int ext4_can_truncate(struct inode *inode)
3548 {
3549         if (S_ISREG(inode->i_mode))
3550                 return 1;
3551         if (S_ISDIR(inode->i_mode))
3552                 return 1;
3553         if (S_ISLNK(inode->i_mode))
3554                 return !ext4_inode_is_fast_symlink(inode);
3555         return 0;
3556 }
3557
3558 /*
3559  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3560  * associated with the given offset and length
3561  *
3562  * @inode:  File inode
3563  * @offset: The offset where the hole will begin
3564  * @len:    The length of the hole
3565  *
3566  * Returns: 0 on success or negative on failure
3567  */
3568
3569 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3570 {
3571         struct inode *inode = file_inode(file);
3572         struct super_block *sb = inode->i_sb;
3573         ext4_lblk_t first_block, stop_block;
3574         struct address_space *mapping = inode->i_mapping;
3575         loff_t first_page, last_page, page_len;
3576         loff_t first_page_offset, last_page_offset;
3577         handle_t *handle;
3578         unsigned int credits;
3579         int ret = 0;
3580
3581         if (!S_ISREG(inode->i_mode))
3582                 return -EOPNOTSUPP;
3583
3584         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3585                 /* TODO: Add support for bigalloc file systems */
3586                 return -EOPNOTSUPP;
3587         }
3588
3589         trace_ext4_punch_hole(inode, offset, length);
3590
3591         /*
3592          * Write out all dirty pages to avoid race conditions
3593          * Then release them.
3594          */
3595         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3596                 ret = filemap_write_and_wait_range(mapping, offset,
3597                                                    offset + length - 1);
3598                 if (ret)
3599                         return ret;
3600         }
3601
3602         mutex_lock(&inode->i_mutex);
3603         /* It's not possible punch hole on append only file */
3604         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3605                 ret = -EPERM;
3606                 goto out_mutex;
3607         }
3608         if (IS_SWAPFILE(inode)) {
3609                 ret = -ETXTBSY;
3610                 goto out_mutex;
3611         }
3612
3613         /* No need to punch hole beyond i_size */
3614         if (offset >= inode->i_size)
3615                 goto out_mutex;
3616
3617         /*
3618          * If the hole extends beyond i_size, set the hole
3619          * to end after the page that contains i_size
3620          */
3621         if (offset + length > inode->i_size) {
3622                 length = inode->i_size +
3623                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3624                    offset;
3625         }
3626
3627         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3628         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3629
3630         first_page_offset = first_page << PAGE_CACHE_SHIFT;
3631         last_page_offset = last_page << PAGE_CACHE_SHIFT;
3632
3633         /* Now release the pages */
3634         if (last_page_offset > first_page_offset) {
3635                 truncate_pagecache_range(inode, first_page_offset,
3636                                          last_page_offset - 1);
3637         }
3638
3639         /* Wait all existing dio workers, newcomers will block on i_mutex */
3640         ext4_inode_block_unlocked_dio(inode);
3641         ret = ext4_flush_unwritten_io(inode);
3642         if (ret)
3643                 goto out_dio;
3644         inode_dio_wait(inode);
3645
3646         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3647                 credits = ext4_writepage_trans_blocks(inode);
3648         else
3649                 credits = ext4_blocks_for_truncate(inode);
3650         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3651         if (IS_ERR(handle)) {
3652                 ret = PTR_ERR(handle);
3653                 ext4_std_error(sb, ret);
3654                 goto out_dio;
3655         }
3656
3657         /*
3658          * Now we need to zero out the non-page-aligned data in the
3659          * pages at the start and tail of the hole, and unmap the
3660          * buffer heads for the block aligned regions of the page that
3661          * were completely zeroed.
3662          */
3663         if (first_page > last_page) {
3664                 /*
3665                  * If the file space being truncated is contained
3666                  * within a page just zero out and unmap the middle of
3667                  * that page
3668                  */
3669                 ret = ext4_discard_partial_page_buffers(handle,
3670                         mapping, offset, length, 0);
3671
3672                 if (ret)
3673                         goto out_stop;
3674         } else {
3675                 /*
3676                  * zero out and unmap the partial page that contains
3677                  * the start of the hole
3678                  */
3679                 page_len = first_page_offset - offset;
3680                 if (page_len > 0) {
3681                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3682                                                 offset, page_len, 0);
3683                         if (ret)
3684                                 goto out_stop;
3685                 }
3686
3687                 /*
3688                  * zero out and unmap the partial page that contains
3689                  * the end of the hole
3690                  */
3691                 page_len = offset + length - last_page_offset;
3692                 if (page_len > 0) {
3693                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3694                                         last_page_offset, page_len, 0);
3695                         if (ret)
3696                                 goto out_stop;
3697                 }
3698         }
3699
3700         /*
3701          * If i_size is contained in the last page, we need to
3702          * unmap and zero the partial page after i_size
3703          */
3704         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3705            inode->i_size % PAGE_CACHE_SIZE != 0) {
3706                 page_len = PAGE_CACHE_SIZE -
3707                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3708
3709                 if (page_len > 0) {
3710                         ret = ext4_discard_partial_page_buffers(handle,
3711                                         mapping, inode->i_size, page_len, 0);
3712
3713                         if (ret)
3714                                 goto out_stop;
3715                 }
3716         }
3717
3718         first_block = (offset + sb->s_blocksize - 1) >>
3719                 EXT4_BLOCK_SIZE_BITS(sb);
3720         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3721
3722         /* If there are no blocks to remove, return now */
3723         if (first_block >= stop_block)
3724                 goto out_stop;
3725
3726         down_write(&EXT4_I(inode)->i_data_sem);
3727         ext4_discard_preallocations(inode);
3728
3729         ret = ext4_es_remove_extent(inode, first_block,
3730                                     stop_block - first_block);
3731         if (ret) {
3732                 up_write(&EXT4_I(inode)->i_data_sem);
3733                 goto out_stop;
3734         }
3735
3736         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3737                 ret = ext4_ext_remove_space(inode, first_block,
3738                                             stop_block - 1);
3739         else
3740                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3741                                             stop_block);
3742
3743         ext4_discard_preallocations(inode);
3744         up_write(&EXT4_I(inode)->i_data_sem);
3745         if (IS_SYNC(inode))
3746                 ext4_handle_sync(handle);
3747         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3748         ext4_mark_inode_dirty(handle, inode);
3749 out_stop:
3750         ext4_journal_stop(handle);
3751 out_dio:
3752         ext4_inode_resume_unlocked_dio(inode);
3753 out_mutex:
3754         mutex_unlock(&inode->i_mutex);
3755         return ret;
3756 }
3757
3758 /*
3759  * ext4_truncate()
3760  *
3761  * We block out ext4_get_block() block instantiations across the entire
3762  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3763  * simultaneously on behalf of the same inode.
3764  *
3765  * As we work through the truncate and commit bits of it to the journal there
3766  * is one core, guiding principle: the file's tree must always be consistent on
3767  * disk.  We must be able to restart the truncate after a crash.
3768  *
3769  * The file's tree may be transiently inconsistent in memory (although it
3770  * probably isn't), but whenever we close off and commit a journal transaction,
3771  * the contents of (the filesystem + the journal) must be consistent and
3772  * restartable.  It's pretty simple, really: bottom up, right to left (although
3773  * left-to-right works OK too).
3774  *
3775  * Note that at recovery time, journal replay occurs *before* the restart of
3776  * truncate against the orphan inode list.
3777  *
3778  * The committed inode has the new, desired i_size (which is the same as
3779  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3780  * that this inode's truncate did not complete and it will again call
3781  * ext4_truncate() to have another go.  So there will be instantiated blocks
3782  * to the right of the truncation point in a crashed ext4 filesystem.  But
3783  * that's fine - as long as they are linked from the inode, the post-crash
3784  * ext4_truncate() run will find them and release them.
3785  */
3786 void ext4_truncate(struct inode *inode)
3787 {
3788         struct ext4_inode_info *ei = EXT4_I(inode);
3789         unsigned int credits;
3790         handle_t *handle;
3791         struct address_space *mapping = inode->i_mapping;
3792         loff_t page_len;
3793
3794         /*
3795          * There is a possibility that we're either freeing the inode
3796          * or it completely new indode. In those cases we might not
3797          * have i_mutex locked because it's not necessary.
3798          */
3799         if (!(inode->i_state & (I_NEW|I_FREEING)))
3800                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3801         trace_ext4_truncate_enter(inode);
3802
3803         if (!ext4_can_truncate(inode))
3804                 return;
3805
3806         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3807
3808         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3809                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3810
3811         if (ext4_has_inline_data(inode)) {
3812                 int has_inline = 1;
3813
3814                 ext4_inline_data_truncate(inode, &has_inline);
3815                 if (has_inline)
3816                         return;
3817         }
3818
3819         /*
3820          * finish any pending end_io work so we won't run the risk of
3821          * converting any truncated blocks to initialized later
3822          */
3823         ext4_flush_unwritten_io(inode);
3824
3825         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3826                 credits = ext4_writepage_trans_blocks(inode);
3827         else
3828                 credits = ext4_blocks_for_truncate(inode);
3829
3830         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3831         if (IS_ERR(handle)) {
3832                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3833                 return;
3834         }
3835
3836         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3837                 page_len = PAGE_CACHE_SIZE -
3838                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3839
3840                 if (ext4_discard_partial_page_buffers(handle,
3841                                 mapping, inode->i_size, page_len, 0))
3842                         goto out_stop;
3843         }
3844
3845         /*
3846          * We add the inode to the orphan list, so that if this
3847          * truncate spans multiple transactions, and we crash, we will
3848          * resume the truncate when the filesystem recovers.  It also
3849          * marks the inode dirty, to catch the new size.
3850          *
3851          * Implication: the file must always be in a sane, consistent
3852          * truncatable state while each transaction commits.
3853          */
3854         if (ext4_orphan_add(handle, inode))
3855                 goto out_stop;
3856
3857         down_write(&EXT4_I(inode)->i_data_sem);
3858
3859         ext4_discard_preallocations(inode);
3860
3861         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3862                 ext4_ext_truncate(handle, inode);
3863         else
3864                 ext4_ind_truncate(handle, inode);
3865
3866         up_write(&ei->i_data_sem);
3867
3868         if (IS_SYNC(inode))
3869                 ext4_handle_sync(handle);
3870
3871 out_stop:
3872         /*
3873          * If this was a simple ftruncate() and the file will remain alive,
3874          * then we need to clear up the orphan record which we created above.
3875          * However, if this was a real unlink then we were called by
3876          * ext4_delete_inode(), and we allow that function to clean up the
3877          * orphan info for us.
3878          */
3879         if (inode->i_nlink)
3880                 ext4_orphan_del(handle, inode);
3881
3882         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3883         ext4_mark_inode_dirty(handle, inode);
3884         ext4_journal_stop(handle);
3885
3886         trace_ext4_truncate_exit(inode);
3887 }
3888
3889 /*
3890  * ext4_get_inode_loc returns with an extra refcount against the inode's
3891  * underlying buffer_head on success. If 'in_mem' is true, we have all
3892  * data in memory that is needed to recreate the on-disk version of this
3893  * inode.
3894  */
3895 static int __ext4_get_inode_loc(struct inode *inode,
3896                                 struct ext4_iloc *iloc, int in_mem)
3897 {
3898         struct ext4_group_desc  *gdp;
3899         struct buffer_head      *bh;
3900         struct super_block      *sb = inode->i_sb;
3901         ext4_fsblk_t            block;
3902         int                     inodes_per_block, inode_offset;
3903
3904         iloc->bh = NULL;
3905         if (!ext4_valid_inum(sb, inode->i_ino))
3906                 return -EIO;
3907
3908         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3909         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3910         if (!gdp)
3911                 return -EIO;
3912
3913         /*
3914          * Figure out the offset within the block group inode table
3915          */
3916         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3917         inode_offset = ((inode->i_ino - 1) %
3918                         EXT4_INODES_PER_GROUP(sb));
3919         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3920         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3921
3922         bh = sb_getblk(sb, block);
3923         if (unlikely(!bh))
3924                 return -ENOMEM;
3925         if (!buffer_uptodate(bh)) {
3926                 lock_buffer(bh);
3927
3928                 /*
3929                  * If the buffer has the write error flag, we have failed
3930                  * to write out another inode in the same block.  In this
3931                  * case, we don't have to read the block because we may
3932                  * read the old inode data successfully.
3933                  */
3934                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3935                         set_buffer_uptodate(bh);
3936
3937                 if (buffer_uptodate(bh)) {
3938                         /* someone brought it uptodate while we waited */
3939                         unlock_buffer(bh);
3940                         goto has_buffer;
3941                 }
3942
3943                 /*
3944                  * If we have all information of the inode in memory and this
3945                  * is the only valid inode in the block, we need not read the
3946                  * block.
3947                  */
3948                 if (in_mem) {
3949                         struct buffer_head *bitmap_bh;
3950                         int i, start;
3951
3952                         start = inode_offset & ~(inodes_per_block - 1);
3953
3954                         /* Is the inode bitmap in cache? */
3955                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3956                         if (unlikely(!bitmap_bh))
3957                                 goto make_io;
3958
3959                         /*
3960                          * If the inode bitmap isn't in cache then the
3961                          * optimisation may end up performing two reads instead
3962                          * of one, so skip it.
3963                          */
3964                         if (!buffer_uptodate(bitmap_bh)) {
3965                                 brelse(bitmap_bh);
3966                                 goto make_io;
3967                         }
3968                         for (i = start; i < start + inodes_per_block; i++) {
3969                                 if (i == inode_offset)
3970                                         continue;
3971                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3972                                         break;
3973                         }
3974                         brelse(bitmap_bh);
3975                         if (i == start + inodes_per_block) {
3976                                 /* all other inodes are free, so skip I/O */
3977                                 memset(bh->b_data, 0, bh->b_size);
3978                                 set_buffer_uptodate(bh);
3979                                 unlock_buffer(bh);
3980                                 goto has_buffer;
3981                         }
3982                 }
3983
3984 make_io:
3985                 /*
3986                  * If we need to do any I/O, try to pre-readahead extra
3987                  * blocks from the inode table.
3988                  */
3989                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3990                         ext4_fsblk_t b, end, table;
3991                         unsigned num;
3992
3993                         table = ext4_inode_table(sb, gdp);
3994                         /* s_inode_readahead_blks is always a power of 2 */
3995                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3996                         if (table > b)
3997                                 b = table;
3998                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3999                         num = EXT4_INODES_PER_GROUP(sb);
4000                         if (ext4_has_group_desc_csum(sb))
4001                                 num -= ext4_itable_unused_count(sb, gdp);
4002                         table += num / inodes_per_block;
4003                         if (end > table)
4004                                 end = table;
4005                         while (b <= end)
4006                                 sb_breadahead(sb, b++);
4007                 }
4008
4009                 /*
4010                  * There are other valid inodes in the buffer, this inode
4011                  * has in-inode xattrs, or we don't have this inode in memory.
4012                  * Read the block from disk.
4013                  */
4014                 trace_ext4_load_inode(inode);
4015                 get_bh(bh);
4016                 bh->b_end_io = end_buffer_read_sync;
4017                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4018                 wait_on_buffer(bh);
4019                 if (!buffer_uptodate(bh)) {
4020                         EXT4_ERROR_INODE_BLOCK(inode, block,
4021                                                "unable to read itable block");
4022                         brelse(bh);
4023                         return -EIO;
4024                 }
4025         }
4026 has_buffer:
4027         iloc->bh = bh;
4028         return 0;
4029 }
4030
4031 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4032 {
4033         /* We have all inode data except xattrs in memory here. */
4034         return __ext4_get_inode_loc(inode, iloc,
4035                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4036 }
4037
4038 void ext4_set_inode_flags(struct inode *inode)
4039 {
4040         unsigned int flags = EXT4_I(inode)->i_flags;
4041
4042         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4043         if (flags & EXT4_SYNC_FL)
4044                 inode->i_flags |= S_SYNC;
4045         if (flags & EXT4_APPEND_FL)
4046                 inode->i_flags |= S_APPEND;
4047         if (flags & EXT4_IMMUTABLE_FL)
4048                 inode->i_flags |= S_IMMUTABLE;
4049         if (flags & EXT4_NOATIME_FL)
4050                 inode->i_flags |= S_NOATIME;
4051         if (flags & EXT4_DIRSYNC_FL)
4052                 inode->i_flags |= S_DIRSYNC;
4053 }
4054
4055 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4056 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4057 {
4058         unsigned int vfs_fl;
4059         unsigned long old_fl, new_fl;
4060
4061         do {
4062                 vfs_fl = ei->vfs_inode.i_flags;
4063                 old_fl = ei->i_flags;
4064                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4065                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4066                                 EXT4_DIRSYNC_FL);
4067                 if (vfs_fl & S_SYNC)
4068                         new_fl |= EXT4_SYNC_FL;
4069                 if (vfs_fl & S_APPEND)
4070                         new_fl |= EXT4_APPEND_FL;
4071                 if (vfs_fl & S_IMMUTABLE)
4072                         new_fl |= EXT4_IMMUTABLE_FL;
4073                 if (vfs_fl & S_NOATIME)
4074                         new_fl |= EXT4_NOATIME_FL;
4075                 if (vfs_fl & S_DIRSYNC)
4076                         new_fl |= EXT4_DIRSYNC_FL;
4077         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4078 }
4079
4080 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4081                                   struct ext4_inode_info *ei)
4082 {
4083         blkcnt_t i_blocks ;
4084         struct inode *inode = &(ei->vfs_inode);
4085         struct super_block *sb = inode->i_sb;
4086
4087         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4088                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4089                 /* we are using combined 48 bit field */
4090                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4091                                         le32_to_cpu(raw_inode->i_blocks_lo);
4092                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4093                         /* i_blocks represent file system block size */
4094                         return i_blocks  << (inode->i_blkbits - 9);
4095                 } else {
4096                         return i_blocks;
4097                 }
4098         } else {
4099                 return le32_to_cpu(raw_inode->i_blocks_lo);
4100         }
4101 }
4102
4103 static inline void ext4_iget_extra_inode(struct inode *inode,
4104                                          struct ext4_inode *raw_inode,
4105                                          struct ext4_inode_info *ei)
4106 {
4107         __le32 *magic = (void *)raw_inode +
4108                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4109         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4110                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4111                 ext4_find_inline_data_nolock(inode);
4112         } else
4113                 EXT4_I(inode)->i_inline_off = 0;
4114 }
4115
4116 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4117 {
4118         struct ext4_iloc iloc;
4119         struct ext4_inode *raw_inode;
4120         struct ext4_inode_info *ei;
4121         struct inode *inode;
4122         journal_t *journal = EXT4_SB(sb)->s_journal;
4123         long ret;
4124         int block;
4125         uid_t i_uid;
4126         gid_t i_gid;
4127
4128         inode = iget_locked(sb, ino);
4129         if (!inode)
4130                 return ERR_PTR(-ENOMEM);
4131         if (!(inode->i_state & I_NEW))
4132                 return inode;
4133
4134         ei = EXT4_I(inode);
4135         iloc.bh = NULL;
4136
4137         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4138         if (ret < 0)
4139                 goto bad_inode;
4140         raw_inode = ext4_raw_inode(&iloc);
4141
4142         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4143                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4144                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4145                     EXT4_INODE_SIZE(inode->i_sb)) {
4146                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4147                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4148                                 EXT4_INODE_SIZE(inode->i_sb));
4149                         ret = -EIO;
4150                         goto bad_inode;
4151                 }
4152         } else
4153                 ei->i_extra_isize = 0;
4154
4155         /* Precompute checksum seed for inode metadata */
4156         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4157                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4158                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4159                 __u32 csum;
4160                 __le32 inum = cpu_to_le32(inode->i_ino);
4161                 __le32 gen = raw_inode->i_generation;
4162                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4163                                    sizeof(inum));
4164                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4165                                               sizeof(gen));
4166         }
4167
4168         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4169                 EXT4_ERROR_INODE(inode, "checksum invalid");
4170                 ret = -EIO;
4171                 goto bad_inode;
4172         }
4173
4174         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4175         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4176         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4177         if (!(test_opt(inode->i_sb, NO_UID32))) {
4178                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4179                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4180         }
4181         i_uid_write(inode, i_uid);
4182         i_gid_write(inode, i_gid);
4183         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4184
4185         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4186         ei->i_inline_off = 0;
4187         ei->i_dir_start_lookup = 0;
4188         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4189         /* We now have enough fields to check if the inode was active or not.
4190          * This is needed because nfsd might try to access dead inodes
4191          * the test is that same one that e2fsck uses
4192          * NeilBrown 1999oct15
4193          */
4194         if (inode->i_nlink == 0) {
4195                 if ((inode->i_mode == 0 ||
4196                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4197                     ino != EXT4_BOOT_LOADER_INO) {
4198                         /* this inode is deleted */
4199                         ret = -ESTALE;
4200                         goto bad_inode;
4201                 }
4202                 /* The only unlinked inodes we let through here have
4203                  * valid i_mode and are being read by the orphan
4204                  * recovery code: that's fine, we're about to complete
4205                  * the process of deleting those.
4206                  * OR it is the EXT4_BOOT_LOADER_INO which is
4207                  * not initialized on a new filesystem. */
4208         }
4209         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4210         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4211         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4212         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4213                 ei->i_file_acl |=
4214                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4215         inode->i_size = ext4_isize(raw_inode);
4216         ei->i_disksize = inode->i_size;
4217 #ifdef CONFIG_QUOTA
4218         ei->i_reserved_quota = 0;
4219 #endif
4220         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4221         ei->i_block_group = iloc.block_group;
4222         ei->i_last_alloc_group = ~0;
4223         /*
4224          * NOTE! The in-memory inode i_data array is in little-endian order
4225          * even on big-endian machines: we do NOT byteswap the block numbers!
4226          */
4227         for (block = 0; block < EXT4_N_BLOCKS; block++)
4228                 ei->i_data[block] = raw_inode->i_block[block];
4229         INIT_LIST_HEAD(&ei->i_orphan);
4230
4231         /*
4232          * Set transaction id's of transactions that have to be committed
4233          * to finish f[data]sync. We set them to currently running transaction
4234          * as we cannot be sure that the inode or some of its metadata isn't
4235          * part of the transaction - the inode could have been reclaimed and
4236          * now it is reread from disk.
4237          */
4238         if (journal) {
4239                 transaction_t *transaction;
4240                 tid_t tid;
4241
4242                 read_lock(&journal->j_state_lock);
4243                 if (journal->j_running_transaction)
4244                         transaction = journal->j_running_transaction;
4245                 else
4246                         transaction = journal->j_committing_transaction;
4247                 if (transaction)
4248                         tid = transaction->t_tid;
4249                 else
4250                         tid = journal->j_commit_sequence;
4251                 read_unlock(&journal->j_state_lock);
4252                 ei->i_sync_tid = tid;
4253                 ei->i_datasync_tid = tid;
4254         }
4255
4256         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4257                 if (ei->i_extra_isize == 0) {
4258                         /* The extra space is currently unused. Use it. */
4259                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4260                                             EXT4_GOOD_OLD_INODE_SIZE;
4261                 } else {
4262                         ext4_iget_extra_inode(inode, raw_inode, ei);
4263                 }
4264         }
4265
4266         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4267         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4268         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4269         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4270
4271         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4272         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4273                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4274                         inode->i_version |=
4275                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4276         }
4277
4278         ret = 0;
4279         if (ei->i_file_acl &&
4280             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4281                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4282                                  ei->i_file_acl);
4283                 ret = -EIO;
4284                 goto bad_inode;
4285         } else if (!ext4_has_inline_data(inode)) {
4286                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4287                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4288                             (S_ISLNK(inode->i_mode) &&
4289                              !ext4_inode_is_fast_symlink(inode))))
4290                                 /* Validate extent which is part of inode */
4291                                 ret = ext4_ext_check_inode(inode);
4292                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4293                            (S_ISLNK(inode->i_mode) &&
4294                             !ext4_inode_is_fast_symlink(inode))) {
4295                         /* Validate block references which are part of inode */
4296                         ret = ext4_ind_check_inode(inode);
4297                 }
4298         }
4299         if (ret)
4300                 goto bad_inode;
4301
4302         if (S_ISREG(inode->i_mode)) {
4303                 inode->i_op = &ext4_file_inode_operations;
4304                 inode->i_fop = &ext4_file_operations;
4305                 ext4_set_aops(inode);
4306         } else if (S_ISDIR(inode->i_mode)) {
4307                 inode->i_op = &ext4_dir_inode_operations;
4308                 inode->i_fop = &ext4_dir_operations;
4309         } else if (S_ISLNK(inode->i_mode)) {
4310                 if (ext4_inode_is_fast_symlink(inode)) {
4311                         inode->i_op = &ext4_fast_symlink_inode_operations;
4312                         nd_terminate_link(ei->i_data, inode->i_size,
4313                                 sizeof(ei->i_data) - 1);
4314                 } else {
4315                         inode->i_op = &ext4_symlink_inode_operations;
4316                         ext4_set_aops(inode);
4317                 }
4318         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4319               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4320                 inode->i_op = &ext4_special_inode_operations;
4321                 if (raw_inode->i_block[0])
4322                         init_special_inode(inode, inode->i_mode,
4323                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4324                 else
4325                         init_special_inode(inode, inode->i_mode,
4326                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4327         } else if (ino == EXT4_BOOT_LOADER_INO) {
4328                 make_bad_inode(inode);
4329         } else {
4330                 ret = -EIO;
4331                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4332                 goto bad_inode;
4333         }
4334         brelse(iloc.bh);
4335         ext4_set_inode_flags(inode);
4336         unlock_new_inode(inode);
4337         return inode;
4338
4339 bad_inode:
4340         brelse(iloc.bh);
4341         iget_failed(inode);
4342         return ERR_PTR(ret);
4343 }
4344
4345 static int ext4_inode_blocks_set(handle_t *handle,
4346                                 struct ext4_inode *raw_inode,
4347                                 struct ext4_inode_info *ei)
4348 {
4349         struct inode *inode = &(ei->vfs_inode);
4350         u64 i_blocks = inode->i_blocks;
4351         struct super_block *sb = inode->i_sb;
4352
4353         if (i_blocks <= ~0U) {
4354                 /*
4355                  * i_blocks can be represented in a 32 bit variable
4356                  * as multiple of 512 bytes
4357                  */
4358                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4359                 raw_inode->i_blocks_high = 0;
4360                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4361                 return 0;
4362         }
4363         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4364                 return -EFBIG;
4365
4366         if (i_blocks <= 0xffffffffffffULL) {
4367                 /*
4368                  * i_blocks can be represented in a 48 bit variable
4369                  * as multiple of 512 bytes
4370                  */
4371                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4372                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4373                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4374         } else {
4375                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4376                 /* i_block is stored in file system block size */
4377                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4378                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4379                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4380         }
4381         return 0;
4382 }
4383
4384 /*
4385  * Post the struct inode info into an on-disk inode location in the
4386  * buffer-cache.  This gobbles the caller's reference to the
4387  * buffer_head in the inode location struct.
4388  *
4389  * The caller must have write access to iloc->bh.
4390  */
4391 static int ext4_do_update_inode(handle_t *handle,
4392                                 struct inode *inode,
4393                                 struct ext4_iloc *iloc)
4394 {
4395         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4396         struct ext4_inode_info *ei = EXT4_I(inode);
4397         struct buffer_head *bh = iloc->bh;
4398         int err = 0, rc, block;
4399         int need_datasync = 0;
4400         uid_t i_uid;
4401         gid_t i_gid;
4402
4403         /* For fields not not tracking in the in-memory inode,
4404          * initialise them to zero for new inodes. */
4405         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4406                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4407
4408         ext4_get_inode_flags(ei);
4409         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4410         i_uid = i_uid_read(inode);
4411         i_gid = i_gid_read(inode);
4412         if (!(test_opt(inode->i_sb, NO_UID32))) {
4413                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4414                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4415 /*
4416  * Fix up interoperability with old kernels. Otherwise, old inodes get
4417  * re-used with the upper 16 bits of the uid/gid intact
4418  */
4419                 if (!ei->i_dtime) {
4420                         raw_inode->i_uid_high =
4421                                 cpu_to_le16(high_16_bits(i_uid));
4422                         raw_inode->i_gid_high =
4423                                 cpu_to_le16(high_16_bits(i_gid));
4424                 } else {
4425                         raw_inode->i_uid_high = 0;
4426                         raw_inode->i_gid_high = 0;
4427                 }
4428         } else {
4429                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4430                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4431                 raw_inode->i_uid_high = 0;
4432                 raw_inode->i_gid_high = 0;
4433         }
4434         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4435
4436         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4437         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4438         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4439         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4440
4441         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4442                 goto out_brelse;
4443         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4444         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4445         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4446             cpu_to_le32(EXT4_OS_HURD))
4447                 raw_inode->i_file_acl_high =
4448                         cpu_to_le16(ei->i_file_acl >> 32);
4449         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4450         if (ei->i_disksize != ext4_isize(raw_inode)) {
4451                 ext4_isize_set(raw_inode, ei->i_disksize);
4452                 need_datasync = 1;
4453         }
4454         if (ei->i_disksize > 0x7fffffffULL) {
4455                 struct super_block *sb = inode->i_sb;
4456                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4457                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4458                                 EXT4_SB(sb)->s_es->s_rev_level ==
4459                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4460                         /* If this is the first large file
4461                          * created, add a flag to the superblock.
4462                          */
4463                         err = ext4_journal_get_write_access(handle,
4464                                         EXT4_SB(sb)->s_sbh);
4465                         if (err)
4466                                 goto out_brelse;
4467                         ext4_update_dynamic_rev(sb);
4468                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4469                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4470                         ext4_handle_sync(handle);
4471                         err = ext4_handle_dirty_super(handle, sb);
4472                 }
4473         }
4474         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4475         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4476                 if (old_valid_dev(inode->i_rdev)) {
4477                         raw_inode->i_block[0] =
4478                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4479                         raw_inode->i_block[1] = 0;
4480                 } else {
4481                         raw_inode->i_block[0] = 0;
4482                         raw_inode->i_block[1] =
4483                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4484                         raw_inode->i_block[2] = 0;
4485                 }
4486         } else if (!ext4_has_inline_data(inode)) {
4487                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4488                         raw_inode->i_block[block] = ei->i_data[block];
4489         }
4490
4491         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4492         if (ei->i_extra_isize) {
4493                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4494                         raw_inode->i_version_hi =
4495                         cpu_to_le32(inode->i_version >> 32);
4496                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4497         }
4498
4499         ext4_inode_csum_set(inode, raw_inode, ei);
4500
4501         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4502         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4503         if (!err)
4504                 err = rc;
4505         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4506
4507         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4508 out_brelse:
4509         brelse(bh);
4510         ext4_std_error(inode->i_sb, err);
4511         return err;
4512 }
4513
4514 /*
4515  * ext4_write_inode()
4516  *
4517  * We are called from a few places:
4518  *
4519  * - Within generic_file_write() for O_SYNC files.
4520  *   Here, there will be no transaction running. We wait for any running
4521  *   transaction to commit.
4522  *
4523  * - Within sys_sync(), kupdate and such.
4524  *   We wait on commit, if tol to.
4525  *
4526  * - Within prune_icache() (PF_MEMALLOC == true)
4527  *   Here we simply return.  We can't afford to block kswapd on the
4528  *   journal commit.
4529  *
4530  * In all cases it is actually safe for us to return without doing anything,
4531  * because the inode has been copied into a raw inode buffer in
4532  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4533  * knfsd.
4534  *
4535  * Note that we are absolutely dependent upon all inode dirtiers doing the
4536  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4537  * which we are interested.
4538  *
4539  * It would be a bug for them to not do this.  The code:
4540  *
4541  *      mark_inode_dirty(inode)
4542  *      stuff();
4543  *      inode->i_size = expr;
4544  *
4545  * is in error because a kswapd-driven write_inode() could occur while
4546  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4547  * will no longer be on the superblock's dirty inode list.
4548  */
4549 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4550 {
4551         int err;
4552
4553         if (current->flags & PF_MEMALLOC)
4554                 return 0;
4555
4556         if (EXT4_SB(inode->i_sb)->s_journal) {
4557                 if (ext4_journal_current_handle()) {
4558                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4559                         dump_stack();
4560                         return -EIO;
4561                 }
4562
4563                 if (wbc->sync_mode != WB_SYNC_ALL)
4564                         return 0;
4565
4566                 err = ext4_force_commit(inode->i_sb);
4567         } else {
4568                 struct ext4_iloc iloc;
4569
4570                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4571                 if (err)
4572                         return err;
4573                 if (wbc->sync_mode == WB_SYNC_ALL)
4574                         sync_dirty_buffer(iloc.bh);
4575                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4576                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4577                                          "IO error syncing inode");
4578                         err = -EIO;
4579                 }
4580                 brelse(iloc.bh);
4581         }
4582         return err;
4583 }
4584
4585 /*
4586  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4587  * buffers that are attached to a page stradding i_size and are undergoing
4588  * commit. In that case we have to wait for commit to finish and try again.
4589  */
4590 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4591 {
4592         struct page *page;
4593         unsigned offset;
4594         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4595         tid_t commit_tid = 0;
4596         int ret;
4597
4598         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4599         /*
4600          * All buffers in the last page remain valid? Then there's nothing to
4601          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4602          * blocksize case
4603          */
4604         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4605                 return;
4606         while (1) {
4607                 page = find_lock_page(inode->i_mapping,
4608                                       inode->i_size >> PAGE_CACHE_SHIFT);
4609                 if (!page)
4610                         return;
4611                 ret = __ext4_journalled_invalidatepage(page, offset);
4612                 unlock_page(page);
4613                 page_cache_release(page);
4614                 if (ret != -EBUSY)
4615                         return;
4616                 commit_tid = 0;
4617                 read_lock(&journal->j_state_lock);
4618                 if (journal->j_committing_transaction)
4619                         commit_tid = journal->j_committing_transaction->t_tid;
4620                 read_unlock(&journal->j_state_lock);
4621                 if (commit_tid)
4622                         jbd2_log_wait_commit(journal, commit_tid);
4623         }
4624 }
4625
4626 /*
4627  * ext4_setattr()
4628  *
4629  * Called from notify_change.
4630  *
4631  * We want to trap VFS attempts to truncate the file as soon as
4632  * possible.  In particular, we want to make sure that when the VFS
4633  * shrinks i_size, we put the inode on the orphan list and modify
4634  * i_disksize immediately, so that during the subsequent flushing of
4635  * dirty pages and freeing of disk blocks, we can guarantee that any
4636  * commit will leave the blocks being flushed in an unused state on
4637  * disk.  (On recovery, the inode will get truncated and the blocks will
4638  * be freed, so we have a strong guarantee that no future commit will
4639  * leave these blocks visible to the user.)
4640  *
4641  * Another thing we have to assure is that if we are in ordered mode
4642  * and inode is still attached to the committing transaction, we must
4643  * we start writeout of all the dirty pages which are being truncated.
4644  * This way we are sure that all the data written in the previous
4645  * transaction are already on disk (truncate waits for pages under
4646  * writeback).
4647  *
4648  * Called with inode->i_mutex down.
4649  */
4650 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4651 {
4652         struct inode *inode = dentry->d_inode;
4653         int error, rc = 0;
4654         int orphan = 0;
4655         const unsigned int ia_valid = attr->ia_valid;
4656
4657         error = inode_change_ok(inode, attr);
4658         if (error)
4659                 return error;
4660
4661         if (is_quota_modification(inode, attr))
4662                 dquot_initialize(inode);
4663         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4664             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4665                 handle_t *handle;
4666
4667                 /* (user+group)*(old+new) structure, inode write (sb,
4668                  * inode block, ? - but truncate inode update has it) */
4669                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4670                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4671                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4672                 if (IS_ERR(handle)) {
4673                         error = PTR_ERR(handle);
4674                         goto err_out;
4675                 }
4676                 error = dquot_transfer(inode, attr);
4677                 if (error) {
4678                         ext4_journal_stop(handle);
4679                         return error;
4680                 }
4681                 /* Update corresponding info in inode so that everything is in
4682                  * one transaction */
4683                 if (attr->ia_valid & ATTR_UID)
4684                         inode->i_uid = attr->ia_uid;
4685                 if (attr->ia_valid & ATTR_GID)
4686                         inode->i_gid = attr->ia_gid;
4687                 error = ext4_mark_inode_dirty(handle, inode);
4688                 ext4_journal_stop(handle);
4689         }
4690
4691         if (attr->ia_valid & ATTR_SIZE) {
4692
4693                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4694                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4695
4696                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4697                                 return -EFBIG;
4698                 }
4699         }
4700
4701         if (S_ISREG(inode->i_mode) &&
4702             attr->ia_valid & ATTR_SIZE &&
4703             (attr->ia_size < inode->i_size)) {
4704                 handle_t *handle;
4705
4706                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4707                 if (IS_ERR(handle)) {
4708                         error = PTR_ERR(handle);
4709                         goto err_out;
4710                 }
4711                 if (ext4_handle_valid(handle)) {
4712                         error = ext4_orphan_add(handle, inode);
4713                         orphan = 1;
4714                 }
4715                 EXT4_I(inode)->i_disksize = attr->ia_size;
4716                 rc = ext4_mark_inode_dirty(handle, inode);
4717                 if (!error)
4718                         error = rc;
4719                 ext4_journal_stop(handle);
4720
4721                 if (ext4_should_order_data(inode)) {
4722                         error = ext4_begin_ordered_truncate(inode,
4723                                                             attr->ia_size);
4724                         if (error) {
4725                                 /* Do as much error cleanup as possible */
4726                                 handle = ext4_journal_start(inode,
4727                                                             EXT4_HT_INODE, 3);
4728                                 if (IS_ERR(handle)) {
4729                                         ext4_orphan_del(NULL, inode);
4730                                         goto err_out;
4731                                 }
4732                                 ext4_orphan_del(handle, inode);
4733                                 orphan = 0;
4734                                 ext4_journal_stop(handle);
4735                                 goto err_out;
4736                         }
4737                 }
4738         }
4739
4740         if (attr->ia_valid & ATTR_SIZE) {
4741                 if (attr->ia_size != inode->i_size) {
4742                         loff_t oldsize = inode->i_size;
4743
4744                         i_size_write(inode, attr->ia_size);
4745                         /*
4746                          * Blocks are going to be removed from the inode. Wait
4747                          * for dio in flight.  Temporarily disable
4748                          * dioread_nolock to prevent livelock.
4749                          */
4750                         if (orphan) {
4751                                 if (!ext4_should_journal_data(inode)) {
4752                                         ext4_inode_block_unlocked_dio(inode);
4753                                         inode_dio_wait(inode);
4754                                         ext4_inode_resume_unlocked_dio(inode);
4755                                 } else
4756                                         ext4_wait_for_tail_page_commit(inode);
4757                         }
4758                         /*
4759                          * Truncate pagecache after we've waited for commit
4760                          * in data=journal mode to make pages freeable.
4761                          */
4762                         truncate_pagecache(inode, oldsize, inode->i_size);
4763                 }
4764                 ext4_truncate(inode);
4765         }
4766
4767         if (!rc) {
4768                 setattr_copy(inode, attr);
4769                 mark_inode_dirty(inode);
4770         }
4771
4772         /*
4773          * If the call to ext4_truncate failed to get a transaction handle at
4774          * all, we need to clean up the in-core orphan list manually.
4775          */
4776         if (orphan && inode->i_nlink)
4777                 ext4_orphan_del(NULL, inode);
4778
4779         if (!rc && (ia_valid & ATTR_MODE))
4780                 rc = ext4_acl_chmod(inode);
4781
4782 err_out:
4783         ext4_std_error(inode->i_sb, error);
4784         if (!error)
4785                 error = rc;
4786         return error;
4787 }
4788
4789 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4790                  struct kstat *stat)
4791 {
4792         struct inode *inode;
4793         unsigned long delalloc_blocks;
4794
4795         inode = dentry->d_inode;
4796         generic_fillattr(inode, stat);
4797
4798         /*
4799          * We can't update i_blocks if the block allocation is delayed
4800          * otherwise in the case of system crash before the real block
4801          * allocation is done, we will have i_blocks inconsistent with
4802          * on-disk file blocks.
4803          * We always keep i_blocks updated together with real
4804          * allocation. But to not confuse with user, stat
4805          * will return the blocks that include the delayed allocation
4806          * blocks for this file.
4807          */
4808         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4809                                 EXT4_I(inode)->i_reserved_data_blocks);
4810
4811         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4812         return 0;
4813 }
4814
4815 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4816 {
4817         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4818                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4819         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4820 }
4821
4822 /*
4823  * Account for index blocks, block groups bitmaps and block group
4824  * descriptor blocks if modify datablocks and index blocks
4825  * worse case, the indexs blocks spread over different block groups
4826  *
4827  * If datablocks are discontiguous, they are possible to spread over
4828  * different block groups too. If they are contiguous, with flexbg,
4829  * they could still across block group boundary.
4830  *
4831  * Also account for superblock, inode, quota and xattr blocks
4832  */
4833 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4834 {
4835         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4836         int gdpblocks;
4837         int idxblocks;
4838         int ret = 0;
4839
4840         /*
4841          * How many index blocks need to touch to modify nrblocks?
4842          * The "Chunk" flag indicating whether the nrblocks is
4843          * physically contiguous on disk
4844          *
4845          * For Direct IO and fallocate, they calls get_block to allocate
4846          * one single extent at a time, so they could set the "Chunk" flag
4847          */
4848         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4849
4850         ret = idxblocks;
4851
4852         /*
4853          * Now let's see how many group bitmaps and group descriptors need
4854          * to account
4855          */
4856         groups = idxblocks;
4857         if (chunk)
4858                 groups += 1;
4859         else
4860                 groups += nrblocks;
4861
4862         gdpblocks = groups;
4863         if (groups > ngroups)
4864                 groups = ngroups;
4865         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4866                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4867
4868         /* bitmaps and block group descriptor blocks */
4869         ret += groups + gdpblocks;
4870
4871         /* Blocks for super block, inode, quota and xattr blocks */
4872         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4873
4874         return ret;
4875 }
4876
4877 /*
4878  * Calculate the total number of credits to reserve to fit
4879  * the modification of a single pages into a single transaction,
4880  * which may include multiple chunks of block allocations.
4881  *
4882  * This could be called via ext4_write_begin()
4883  *
4884  * We need to consider the worse case, when
4885  * one new block per extent.
4886  */
4887 int ext4_writepage_trans_blocks(struct inode *inode)
4888 {
4889         int bpp = ext4_journal_blocks_per_page(inode);
4890         int ret;
4891
4892         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4893
4894         /* Account for data blocks for journalled mode */
4895         if (ext4_should_journal_data(inode))
4896                 ret += bpp;
4897         return ret;
4898 }
4899
4900 /*
4901  * Calculate the journal credits for a chunk of data modification.
4902  *
4903  * This is called from DIO, fallocate or whoever calling
4904  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4905  *
4906  * journal buffers for data blocks are not included here, as DIO
4907  * and fallocate do no need to journal data buffers.
4908  */
4909 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4910 {
4911         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4912 }
4913
4914 /*
4915  * The caller must have previously called ext4_reserve_inode_write().
4916  * Give this, we know that the caller already has write access to iloc->bh.
4917  */
4918 int ext4_mark_iloc_dirty(handle_t *handle,
4919                          struct inode *inode, struct ext4_iloc *iloc)
4920 {
4921         int err = 0;
4922
4923         if (IS_I_VERSION(inode))
4924                 inode_inc_iversion(inode);
4925
4926         /* the do_update_inode consumes one bh->b_count */
4927         get_bh(iloc->bh);
4928
4929         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4930         err = ext4_do_update_inode(handle, inode, iloc);
4931         put_bh(iloc->bh);
4932         return err;
4933 }
4934
4935 /*
4936  * On success, We end up with an outstanding reference count against
4937  * iloc->bh.  This _must_ be cleaned up later.
4938  */
4939
4940 int
4941 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4942                          struct ext4_iloc *iloc)
4943 {
4944         int err;
4945
4946         err = ext4_get_inode_loc(inode, iloc);
4947         if (!err) {
4948                 BUFFER_TRACE(iloc->bh, "get_write_access");
4949                 err = ext4_journal_get_write_access(handle, iloc->bh);
4950                 if (err) {
4951                         brelse(iloc->bh);
4952                         iloc->bh = NULL;
4953                 }
4954         }
4955         ext4_std_error(inode->i_sb, err);
4956         return err;
4957 }
4958
4959 /*
4960  * Expand an inode by new_extra_isize bytes.
4961  * Returns 0 on success or negative error number on failure.
4962  */
4963 static int ext4_expand_extra_isize(struct inode *inode,
4964                                    unsigned int new_extra_isize,
4965                                    struct ext4_iloc iloc,
4966                                    handle_t *handle)
4967 {
4968         struct ext4_inode *raw_inode;
4969         struct ext4_xattr_ibody_header *header;
4970
4971         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4972                 return 0;
4973
4974         raw_inode = ext4_raw_inode(&iloc);
4975
4976         header = IHDR(inode, raw_inode);
4977
4978         /* No extended attributes present */
4979         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4980             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4981                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4982                         new_extra_isize);
4983                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4984                 return 0;
4985         }
4986
4987         /* try to expand with EAs present */
4988         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4989                                           raw_inode, handle);
4990 }
4991
4992 /*
4993  * What we do here is to mark the in-core inode as clean with respect to inode
4994  * dirtiness (it may still be data-dirty).
4995  * This means that the in-core inode may be reaped by prune_icache
4996  * without having to perform any I/O.  This is a very good thing,
4997  * because *any* task may call prune_icache - even ones which
4998  * have a transaction open against a different journal.
4999  *
5000  * Is this cheating?  Not really.  Sure, we haven't written the
5001  * inode out, but prune_icache isn't a user-visible syncing function.
5002  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5003  * we start and wait on commits.
5004  */
5005 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5006 {
5007         struct ext4_iloc iloc;
5008         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5009         static unsigned int mnt_count;
5010         int err, ret;
5011
5012         might_sleep();
5013         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5014         err = ext4_reserve_inode_write(handle, inode, &iloc);
5015         if (ext4_handle_valid(handle) &&
5016             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5017             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5018                 /*
5019                  * We need extra buffer credits since we may write into EA block
5020                  * with this same handle. If journal_extend fails, then it will
5021                  * only result in a minor loss of functionality for that inode.
5022                  * If this is felt to be critical, then e2fsck should be run to
5023                  * force a large enough s_min_extra_isize.
5024                  */
5025                 if ((jbd2_journal_extend(handle,
5026                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5027                         ret = ext4_expand_extra_isize(inode,
5028                                                       sbi->s_want_extra_isize,
5029                                                       iloc, handle);
5030                         if (ret) {
5031                                 ext4_set_inode_state(inode,
5032                                                      EXT4_STATE_NO_EXPAND);
5033                                 if (mnt_count !=
5034                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5035                                         ext4_warning(inode->i_sb,
5036                                         "Unable to expand inode %lu. Delete"
5037                                         " some EAs or run e2fsck.",
5038                                         inode->i_ino);
5039                                         mnt_count =
5040                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5041                                 }
5042                         }
5043                 }
5044         }
5045         if (!err)
5046                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5047         return err;
5048 }
5049
5050 /*
5051  * ext4_dirty_inode() is called from __mark_inode_dirty()
5052  *
5053  * We're really interested in the case where a file is being extended.
5054  * i_size has been changed by generic_commit_write() and we thus need
5055  * to include the updated inode in the current transaction.
5056  *
5057  * Also, dquot_alloc_block() will always dirty the inode when blocks
5058  * are allocated to the file.
5059  *
5060  * If the inode is marked synchronous, we don't honour that here - doing
5061  * so would cause a commit on atime updates, which we don't bother doing.
5062  * We handle synchronous inodes at the highest possible level.
5063  */
5064 void ext4_dirty_inode(struct inode *inode, int flags)
5065 {
5066         handle_t *handle;
5067
5068         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5069         if (IS_ERR(handle))
5070                 goto out;
5071
5072         ext4_mark_inode_dirty(handle, inode);
5073
5074         ext4_journal_stop(handle);
5075 out:
5076         return;
5077 }
5078
5079 #if 0
5080 /*
5081  * Bind an inode's backing buffer_head into this transaction, to prevent
5082  * it from being flushed to disk early.  Unlike
5083  * ext4_reserve_inode_write, this leaves behind no bh reference and
5084  * returns no iloc structure, so the caller needs to repeat the iloc
5085  * lookup to mark the inode dirty later.
5086  */
5087 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5088 {
5089         struct ext4_iloc iloc;
5090
5091         int err = 0;
5092         if (handle) {
5093                 err = ext4_get_inode_loc(inode, &iloc);
5094                 if (!err) {
5095                         BUFFER_TRACE(iloc.bh, "get_write_access");
5096                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5097                         if (!err)
5098                                 err = ext4_handle_dirty_metadata(handle,
5099                                                                  NULL,
5100                                                                  iloc.bh);
5101                         brelse(iloc.bh);
5102                 }
5103         }
5104         ext4_std_error(inode->i_sb, err);
5105         return err;
5106 }
5107 #endif
5108
5109 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5110 {
5111         journal_t *journal;
5112         handle_t *handle;
5113         int err;
5114
5115         /*
5116          * We have to be very careful here: changing a data block's
5117          * journaling status dynamically is dangerous.  If we write a
5118          * data block to the journal, change the status and then delete
5119          * that block, we risk forgetting to revoke the old log record
5120          * from the journal and so a subsequent replay can corrupt data.
5121          * So, first we make sure that the journal is empty and that
5122          * nobody is changing anything.
5123          */
5124
5125         journal = EXT4_JOURNAL(inode);
5126         if (!journal)
5127                 return 0;
5128         if (is_journal_aborted(journal))
5129                 return -EROFS;
5130         /* We have to allocate physical blocks for delalloc blocks
5131          * before flushing journal. otherwise delalloc blocks can not
5132          * be allocated any more. even more truncate on delalloc blocks
5133          * could trigger BUG by flushing delalloc blocks in journal.
5134          * There is no delalloc block in non-journal data mode.
5135          */
5136         if (val && test_opt(inode->i_sb, DELALLOC)) {
5137                 err = ext4_alloc_da_blocks(inode);
5138                 if (err < 0)
5139                         return err;
5140         }
5141
5142         /* Wait for all existing dio workers */
5143         ext4_inode_block_unlocked_dio(inode);
5144         inode_dio_wait(inode);
5145
5146         jbd2_journal_lock_updates(journal);
5147
5148         /*
5149          * OK, there are no updates running now, and all cached data is
5150          * synced to disk.  We are now in a completely consistent state
5151          * which doesn't have anything in the journal, and we know that
5152          * no filesystem updates are running, so it is safe to modify
5153          * the inode's in-core data-journaling state flag now.
5154          */
5155
5156         if (val)
5157                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5158         else {
5159                 jbd2_journal_flush(journal);
5160                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5161         }
5162         ext4_set_aops(inode);
5163
5164         jbd2_journal_unlock_updates(journal);
5165         ext4_inode_resume_unlocked_dio(inode);
5166
5167         /* Finally we can mark the inode as dirty. */
5168
5169         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5170         if (IS_ERR(handle))
5171                 return PTR_ERR(handle);
5172
5173         err = ext4_mark_inode_dirty(handle, inode);
5174         ext4_handle_sync(handle);
5175         ext4_journal_stop(handle);
5176         ext4_std_error(inode->i_sb, err);
5177
5178         return err;
5179 }
5180
5181 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5182 {
5183         return !buffer_mapped(bh);
5184 }
5185
5186 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5187 {
5188         struct page *page = vmf->page;
5189         loff_t size;
5190         unsigned long len;
5191         int ret;
5192         struct file *file = vma->vm_file;
5193         struct inode *inode = file_inode(file);
5194         struct address_space *mapping = inode->i_mapping;
5195         handle_t *handle;
5196         get_block_t *get_block;
5197         int retries = 0;
5198
5199         sb_start_pagefault(inode->i_sb);
5200         file_update_time(vma->vm_file);
5201         /* Delalloc case is easy... */
5202         if (test_opt(inode->i_sb, DELALLOC) &&
5203             !ext4_should_journal_data(inode) &&
5204             !ext4_nonda_switch(inode->i_sb)) {
5205                 do {
5206                         ret = __block_page_mkwrite(vma, vmf,
5207                                                    ext4_da_get_block_prep);
5208                 } while (ret == -ENOSPC &&
5209                        ext4_should_retry_alloc(inode->i_sb, &retries));
5210                 goto out_ret;
5211         }
5212
5213         lock_page(page);
5214         size = i_size_read(inode);
5215         /* Page got truncated from under us? */
5216         if (page->mapping != mapping || page_offset(page) > size) {
5217                 unlock_page(page);
5218                 ret = VM_FAULT_NOPAGE;
5219                 goto out;
5220         }
5221
5222         if (page->index == size >> PAGE_CACHE_SHIFT)
5223                 len = size & ~PAGE_CACHE_MASK;
5224         else
5225                 len = PAGE_CACHE_SIZE;
5226         /*
5227          * Return if we have all the buffers mapped. This avoids the need to do
5228          * journal_start/journal_stop which can block and take a long time
5229          */
5230         if (page_has_buffers(page)) {
5231                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5232                                             0, len, NULL,
5233                                             ext4_bh_unmapped)) {
5234                         /* Wait so that we don't change page under IO */
5235                         wait_for_stable_page(page);
5236                         ret = VM_FAULT_LOCKED;
5237                         goto out;
5238                 }
5239         }
5240         unlock_page(page);
5241         /* OK, we need to fill the hole... */
5242         if (ext4_should_dioread_nolock(inode))
5243                 get_block = ext4_get_block_write;
5244         else
5245                 get_block = ext4_get_block;
5246 retry_alloc:
5247         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5248                                     ext4_writepage_trans_blocks(inode));
5249         if (IS_ERR(handle)) {
5250                 ret = VM_FAULT_SIGBUS;
5251                 goto out;
5252         }
5253         ret = __block_page_mkwrite(vma, vmf, get_block);
5254         if (!ret && ext4_should_journal_data(inode)) {
5255                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5256                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5257                         unlock_page(page);
5258                         ret = VM_FAULT_SIGBUS;
5259                         ext4_journal_stop(handle);
5260                         goto out;
5261                 }
5262                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5263         }
5264         ext4_journal_stop(handle);
5265         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5266                 goto retry_alloc;
5267 out_ret:
5268         ret = block_page_mkwrite_return(ret);
5269 out:
5270         sb_end_pagefault(inode->i_sb);
5271         return ret;
5272 }