ext4: remove duplicated declarations in inode.c
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136                                    struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142                 struct inode *inode, struct page *page, loff_t from,
143                 loff_t length, int flags);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 (inode->i_sb->s_blocksize >> 9) : 0;
152
153         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162                                  int nblocks)
163 {
164         int ret;
165
166         /*
167          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168          * moment, get_block can be called only for blocks inside i_size since
169          * page cache has been already dropped and writes are blocked by
170          * i_mutex. So we can safely drop the i_data_sem here.
171          */
172         BUG_ON(EXT4_JOURNAL(inode) == NULL);
173         jbd_debug(2, "restarting handle %p\n", handle);
174         up_write(&EXT4_I(inode)->i_data_sem);
175         ret = ext4_journal_restart(handle, nblocks);
176         down_write(&EXT4_I(inode)->i_data_sem);
177         ext4_discard_preallocations(inode);
178
179         return ret;
180 }
181
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187         handle_t *handle;
188         int err;
189
190         trace_ext4_evict_inode(inode);
191
192         ext4_ioend_wait(inode);
193
194         if (inode->i_nlink) {
195                 /*
196                  * When journalling data dirty buffers are tracked only in the
197                  * journal. So although mm thinks everything is clean and
198                  * ready for reaping the inode might still have some pages to
199                  * write in the running transaction or waiting to be
200                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
201                  * (via truncate_inode_pages()) to discard these buffers can
202                  * cause data loss. Also even if we did not discard these
203                  * buffers, we would have no way to find them after the inode
204                  * is reaped and thus user could see stale data if he tries to
205                  * read them before the transaction is checkpointed. So be
206                  * careful and force everything to disk here... We use
207                  * ei->i_datasync_tid to store the newest transaction
208                  * containing inode's data.
209                  *
210                  * Note that directories do not have this problem because they
211                  * don't use page cache.
212                  */
213                 if (ext4_should_journal_data(inode) &&
214                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218                         jbd2_log_start_commit(journal, commit_tid);
219                         jbd2_log_wait_commit(journal, commit_tid);
220                         filemap_write_and_wait(&inode->i_data);
221                 }
222                 truncate_inode_pages(&inode->i_data, 0);
223                 goto no_delete;
224         }
225
226         if (!is_bad_inode(inode))
227                 dquot_initialize(inode);
228
229         if (ext4_should_order_data(inode))
230                 ext4_begin_ordered_truncate(inode, 0);
231         truncate_inode_pages(&inode->i_data, 0);
232
233         if (is_bad_inode(inode))
234                 goto no_delete;
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331                 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333         return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341                                         int used, int quota_claim)
342 {
343         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344         struct ext4_inode_info *ei = EXT4_I(inode);
345
346         spin_lock(&ei->i_block_reservation_lock);
347         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348         if (unlikely(used > ei->i_reserved_data_blocks)) {
349                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350                          "with only %d reserved data blocks",
351                          __func__, inode->i_ino, used,
352                          ei->i_reserved_data_blocks);
353                 WARN_ON(1);
354                 used = ei->i_reserved_data_blocks;
355         }
356
357         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359                          "with only %d reserved metadata blocks\n", __func__,
360                          inode->i_ino, ei->i_allocated_meta_blocks,
361                          ei->i_reserved_meta_blocks);
362                 WARN_ON(1);
363                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364         }
365
366         /* Update per-inode reservations */
367         ei->i_reserved_data_blocks -= used;
368         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370                            used + ei->i_allocated_meta_blocks);
371         ei->i_allocated_meta_blocks = 0;
372
373         if (ei->i_reserved_data_blocks == 0) {
374                 /*
375                  * We can release all of the reserved metadata blocks
376                  * only when we have written all of the delayed
377                  * allocation blocks.
378                  */
379                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380                                    ei->i_reserved_meta_blocks);
381                 ei->i_reserved_meta_blocks = 0;
382                 ei->i_da_metadata_calc_len = 0;
383         }
384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386         /* Update quota subsystem for data blocks */
387         if (quota_claim)
388                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389         else {
390                 /*
391                  * We did fallocate with an offset that is already delayed
392                  * allocated. So on delayed allocated writeback we should
393                  * not re-claim the quota for fallocated blocks.
394                  */
395                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396         }
397
398         /*
399          * If we have done all the pending block allocations and if
400          * there aren't any writers on the inode, we can discard the
401          * inode's preallocations.
402          */
403         if ((ei->i_reserved_data_blocks == 0) &&
404             (atomic_read(&inode->i_writecount) == 0))
405                 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409                                 unsigned int line,
410                                 struct ext4_map_blocks *map)
411 {
412         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413                                    map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_len);
418                 return -EIO;
419         }
420         return 0;
421 }
422
423 #define check_block_validity(inode, map)        \
424         __check_block_validity((inode), __func__, __LINE__, (map))
425
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431                                     unsigned int max_pages)
432 {
433         struct address_space *mapping = inode->i_mapping;
434         pgoff_t index;
435         struct pagevec pvec;
436         pgoff_t num = 0;
437         int i, nr_pages, done = 0;
438
439         if (max_pages == 0)
440                 return 0;
441         pagevec_init(&pvec, 0);
442         while (!done) {
443                 index = idx;
444                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445                                               PAGECACHE_TAG_DIRTY,
446                                               (pgoff_t)PAGEVEC_SIZE);
447                 if (nr_pages == 0)
448                         break;
449                 for (i = 0; i < nr_pages; i++) {
450                         struct page *page = pvec.pages[i];
451                         struct buffer_head *bh, *head;
452
453                         lock_page(page);
454                         if (unlikely(page->mapping != mapping) ||
455                             !PageDirty(page) ||
456                             PageWriteback(page) ||
457                             page->index != idx) {
458                                 done = 1;
459                                 unlock_page(page);
460                                 break;
461                         }
462                         if (page_has_buffers(page)) {
463                                 bh = head = page_buffers(page);
464                                 do {
465                                         if (!buffer_delay(bh) &&
466                                             !buffer_unwritten(bh))
467                                                 done = 1;
468                                         bh = bh->b_this_page;
469                                 } while (!done && (bh != head));
470                         }
471                         unlock_page(page);
472                         if (done)
473                                 break;
474                         idx++;
475                         num++;
476                         if (num >= max_pages) {
477                                 done = 1;
478                                 break;
479                         }
480                 }
481                 pagevec_release(&pvec);
482         }
483         return num;
484 }
485
486 /*
487  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
488  */
489 static void set_buffers_da_mapped(struct inode *inode,
490                                    struct ext4_map_blocks *map)
491 {
492         struct address_space *mapping = inode->i_mapping;
493         struct pagevec pvec;
494         int i, nr_pages;
495         pgoff_t index, end;
496
497         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
498         end = (map->m_lblk + map->m_len - 1) >>
499                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
500
501         pagevec_init(&pvec, 0);
502         while (index <= end) {
503                 nr_pages = pagevec_lookup(&pvec, mapping, index,
504                                           min(end - index + 1,
505                                               (pgoff_t)PAGEVEC_SIZE));
506                 if (nr_pages == 0)
507                         break;
508                 for (i = 0; i < nr_pages; i++) {
509                         struct page *page = pvec.pages[i];
510                         struct buffer_head *bh, *head;
511
512                         if (unlikely(page->mapping != mapping) ||
513                             !PageDirty(page))
514                                 break;
515
516                         if (page_has_buffers(page)) {
517                                 bh = head = page_buffers(page);
518                                 do {
519                                         set_buffer_da_mapped(bh);
520                                         bh = bh->b_this_page;
521                                 } while (bh != head);
522                         }
523                         index++;
524                 }
525                 pagevec_release(&pvec);
526         }
527 }
528
529 /*
530  * The ext4_map_blocks() function tries to look up the requested blocks,
531  * and returns if the blocks are already mapped.
532  *
533  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
534  * and store the allocated blocks in the result buffer head and mark it
535  * mapped.
536  *
537  * If file type is extents based, it will call ext4_ext_map_blocks(),
538  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
539  * based files
540  *
541  * On success, it returns the number of blocks being mapped or allocate.
542  * if create==0 and the blocks are pre-allocated and uninitialized block,
543  * the result buffer head is unmapped. If the create ==1, it will make sure
544  * the buffer head is mapped.
545  *
546  * It returns 0 if plain look up failed (blocks have not been allocated), in
547  * that case, buffer head is unmapped
548  *
549  * It returns the error in case of allocation failure.
550  */
551 int ext4_map_blocks(handle_t *handle, struct inode *inode,
552                     struct ext4_map_blocks *map, int flags)
553 {
554         int retval;
555
556         map->m_flags = 0;
557         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
558                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
559                   (unsigned long) map->m_lblk);
560         /*
561          * Try to see if we can get the block without requesting a new
562          * file system block.
563          */
564         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
565                 down_read((&EXT4_I(inode)->i_data_sem));
566         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
567                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
568                                              EXT4_GET_BLOCKS_KEEP_SIZE);
569         } else {
570                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
571                                              EXT4_GET_BLOCKS_KEEP_SIZE);
572         }
573         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
574                 up_read((&EXT4_I(inode)->i_data_sem));
575
576         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577                 int ret = check_block_validity(inode, map);
578                 if (ret != 0)
579                         return ret;
580         }
581
582         /* If it is only a block(s) look up */
583         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584                 return retval;
585
586         /*
587          * Returns if the blocks have already allocated
588          *
589          * Note that if blocks have been preallocated
590          * ext4_ext_get_block() returns the create = 0
591          * with buffer head unmapped.
592          */
593         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594                 return retval;
595
596         /*
597          * When we call get_blocks without the create flag, the
598          * BH_Unwritten flag could have gotten set if the blocks
599          * requested were part of a uninitialized extent.  We need to
600          * clear this flag now that we are committed to convert all or
601          * part of the uninitialized extent to be an initialized
602          * extent.  This is because we need to avoid the combination
603          * of BH_Unwritten and BH_Mapped flags being simultaneously
604          * set on the buffer_head.
605          */
606         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
607
608         /*
609          * New blocks allocate and/or writing to uninitialized extent
610          * will possibly result in updating i_data, so we take
611          * the write lock of i_data_sem, and call get_blocks()
612          * with create == 1 flag.
613          */
614         down_write((&EXT4_I(inode)->i_data_sem));
615
616         /*
617          * if the caller is from delayed allocation writeout path
618          * we have already reserved fs blocks for allocation
619          * let the underlying get_block() function know to
620          * avoid double accounting
621          */
622         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
623                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
624         /*
625          * We need to check for EXT4 here because migrate
626          * could have changed the inode type in between
627          */
628         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
629                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
630         } else {
631                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
632
633                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
634                         /*
635                          * We allocated new blocks which will result in
636                          * i_data's format changing.  Force the migrate
637                          * to fail by clearing migrate flags
638                          */
639                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
640                 }
641
642                 /*
643                  * Update reserved blocks/metadata blocks after successful
644                  * block allocation which had been deferred till now. We don't
645                  * support fallocate for non extent files. So we can update
646                  * reserve space here.
647                  */
648                 if ((retval > 0) &&
649                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
650                         ext4_da_update_reserve_space(inode, retval, 1);
651         }
652         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
653                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
654
655                 /* If we have successfully mapped the delayed allocated blocks,
656                  * set the BH_Da_Mapped bit on them. Its important to do this
657                  * under the protection of i_data_sem.
658                  */
659                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
660                         set_buffers_da_mapped(inode, map);
661         }
662
663         up_write((&EXT4_I(inode)->i_data_sem));
664         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
665                 int ret = check_block_validity(inode, map);
666                 if (ret != 0)
667                         return ret;
668         }
669         return retval;
670 }
671
672 /* Maximum number of blocks we map for direct IO at once. */
673 #define DIO_MAX_BLOCKS 4096
674
675 static int _ext4_get_block(struct inode *inode, sector_t iblock,
676                            struct buffer_head *bh, int flags)
677 {
678         handle_t *handle = ext4_journal_current_handle();
679         struct ext4_map_blocks map;
680         int ret = 0, started = 0;
681         int dio_credits;
682
683         map.m_lblk = iblock;
684         map.m_len = bh->b_size >> inode->i_blkbits;
685
686         if (flags && !handle) {
687                 /* Direct IO write... */
688                 if (map.m_len > DIO_MAX_BLOCKS)
689                         map.m_len = DIO_MAX_BLOCKS;
690                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
691                 handle = ext4_journal_start(inode, dio_credits);
692                 if (IS_ERR(handle)) {
693                         ret = PTR_ERR(handle);
694                         return ret;
695                 }
696                 started = 1;
697         }
698
699         ret = ext4_map_blocks(handle, inode, &map, flags);
700         if (ret > 0) {
701                 map_bh(bh, inode->i_sb, map.m_pblk);
702                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
703                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
704                 ret = 0;
705         }
706         if (started)
707                 ext4_journal_stop(handle);
708         return ret;
709 }
710
711 int ext4_get_block(struct inode *inode, sector_t iblock,
712                    struct buffer_head *bh, int create)
713 {
714         return _ext4_get_block(inode, iblock, bh,
715                                create ? EXT4_GET_BLOCKS_CREATE : 0);
716 }
717
718 /*
719  * `handle' can be NULL if create is zero
720  */
721 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
722                                 ext4_lblk_t block, int create, int *errp)
723 {
724         struct ext4_map_blocks map;
725         struct buffer_head *bh;
726         int fatal = 0, err;
727
728         J_ASSERT(handle != NULL || create == 0);
729
730         map.m_lblk = block;
731         map.m_len = 1;
732         err = ext4_map_blocks(handle, inode, &map,
733                               create ? EXT4_GET_BLOCKS_CREATE : 0);
734
735         if (err < 0)
736                 *errp = err;
737         if (err <= 0)
738                 return NULL;
739         *errp = 0;
740
741         bh = sb_getblk(inode->i_sb, map.m_pblk);
742         if (!bh) {
743                 *errp = -EIO;
744                 return NULL;
745         }
746         if (map.m_flags & EXT4_MAP_NEW) {
747                 J_ASSERT(create != 0);
748                 J_ASSERT(handle != NULL);
749
750                 /*
751                  * Now that we do not always journal data, we should
752                  * keep in mind whether this should always journal the
753                  * new buffer as metadata.  For now, regular file
754                  * writes use ext4_get_block instead, so it's not a
755                  * problem.
756                  */
757                 lock_buffer(bh);
758                 BUFFER_TRACE(bh, "call get_create_access");
759                 fatal = ext4_journal_get_create_access(handle, bh);
760                 if (!fatal && !buffer_uptodate(bh)) {
761                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
762                         set_buffer_uptodate(bh);
763                 }
764                 unlock_buffer(bh);
765                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
766                 err = ext4_handle_dirty_metadata(handle, inode, bh);
767                 if (!fatal)
768                         fatal = err;
769         } else {
770                 BUFFER_TRACE(bh, "not a new buffer");
771         }
772         if (fatal) {
773                 *errp = fatal;
774                 brelse(bh);
775                 bh = NULL;
776         }
777         return bh;
778 }
779
780 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
781                                ext4_lblk_t block, int create, int *err)
782 {
783         struct buffer_head *bh;
784
785         bh = ext4_getblk(handle, inode, block, create, err);
786         if (!bh)
787                 return bh;
788         if (buffer_uptodate(bh))
789                 return bh;
790         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
791         wait_on_buffer(bh);
792         if (buffer_uptodate(bh))
793                 return bh;
794         put_bh(bh);
795         *err = -EIO;
796         return NULL;
797 }
798
799 static int walk_page_buffers(handle_t *handle,
800                              struct buffer_head *head,
801                              unsigned from,
802                              unsigned to,
803                              int *partial,
804                              int (*fn)(handle_t *handle,
805                                        struct buffer_head *bh))
806 {
807         struct buffer_head *bh;
808         unsigned block_start, block_end;
809         unsigned blocksize = head->b_size;
810         int err, ret = 0;
811         struct buffer_head *next;
812
813         for (bh = head, block_start = 0;
814              ret == 0 && (bh != head || !block_start);
815              block_start = block_end, bh = next) {
816                 next = bh->b_this_page;
817                 block_end = block_start + blocksize;
818                 if (block_end <= from || block_start >= to) {
819                         if (partial && !buffer_uptodate(bh))
820                                 *partial = 1;
821                         continue;
822                 }
823                 err = (*fn)(handle, bh);
824                 if (!ret)
825                         ret = err;
826         }
827         return ret;
828 }
829
830 /*
831  * To preserve ordering, it is essential that the hole instantiation and
832  * the data write be encapsulated in a single transaction.  We cannot
833  * close off a transaction and start a new one between the ext4_get_block()
834  * and the commit_write().  So doing the jbd2_journal_start at the start of
835  * prepare_write() is the right place.
836  *
837  * Also, this function can nest inside ext4_writepage() ->
838  * block_write_full_page(). In that case, we *know* that ext4_writepage()
839  * has generated enough buffer credits to do the whole page.  So we won't
840  * block on the journal in that case, which is good, because the caller may
841  * be PF_MEMALLOC.
842  *
843  * By accident, ext4 can be reentered when a transaction is open via
844  * quota file writes.  If we were to commit the transaction while thus
845  * reentered, there can be a deadlock - we would be holding a quota
846  * lock, and the commit would never complete if another thread had a
847  * transaction open and was blocking on the quota lock - a ranking
848  * violation.
849  *
850  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
851  * will _not_ run commit under these circumstances because handle->h_ref
852  * is elevated.  We'll still have enough credits for the tiny quotafile
853  * write.
854  */
855 static int do_journal_get_write_access(handle_t *handle,
856                                        struct buffer_head *bh)
857 {
858         int dirty = buffer_dirty(bh);
859         int ret;
860
861         if (!buffer_mapped(bh) || buffer_freed(bh))
862                 return 0;
863         /*
864          * __block_write_begin() could have dirtied some buffers. Clean
865          * the dirty bit as jbd2_journal_get_write_access() could complain
866          * otherwise about fs integrity issues. Setting of the dirty bit
867          * by __block_write_begin() isn't a real problem here as we clear
868          * the bit before releasing a page lock and thus writeback cannot
869          * ever write the buffer.
870          */
871         if (dirty)
872                 clear_buffer_dirty(bh);
873         ret = ext4_journal_get_write_access(handle, bh);
874         if (!ret && dirty)
875                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
876         return ret;
877 }
878
879 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
880                    struct buffer_head *bh_result, int create);
881 static int ext4_write_begin(struct file *file, struct address_space *mapping,
882                             loff_t pos, unsigned len, unsigned flags,
883                             struct page **pagep, void **fsdata)
884 {
885         struct inode *inode = mapping->host;
886         int ret, needed_blocks;
887         handle_t *handle;
888         int retries = 0;
889         struct page *page;
890         pgoff_t index;
891         unsigned from, to;
892
893         trace_ext4_write_begin(inode, pos, len, flags);
894         /*
895          * Reserve one block more for addition to orphan list in case
896          * we allocate blocks but write fails for some reason
897          */
898         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
899         index = pos >> PAGE_CACHE_SHIFT;
900         from = pos & (PAGE_CACHE_SIZE - 1);
901         to = from + len;
902
903 retry:
904         handle = ext4_journal_start(inode, needed_blocks);
905         if (IS_ERR(handle)) {
906                 ret = PTR_ERR(handle);
907                 goto out;
908         }
909
910         /* We cannot recurse into the filesystem as the transaction is already
911          * started */
912         flags |= AOP_FLAG_NOFS;
913
914         page = grab_cache_page_write_begin(mapping, index, flags);
915         if (!page) {
916                 ext4_journal_stop(handle);
917                 ret = -ENOMEM;
918                 goto out;
919         }
920         *pagep = page;
921
922         if (ext4_should_dioread_nolock(inode))
923                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
924         else
925                 ret = __block_write_begin(page, pos, len, ext4_get_block);
926
927         if (!ret && ext4_should_journal_data(inode)) {
928                 ret = walk_page_buffers(handle, page_buffers(page),
929                                 from, to, NULL, do_journal_get_write_access);
930         }
931
932         if (ret) {
933                 unlock_page(page);
934                 page_cache_release(page);
935                 /*
936                  * __block_write_begin may have instantiated a few blocks
937                  * outside i_size.  Trim these off again. Don't need
938                  * i_size_read because we hold i_mutex.
939                  *
940                  * Add inode to orphan list in case we crash before
941                  * truncate finishes
942                  */
943                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
944                         ext4_orphan_add(handle, inode);
945
946                 ext4_journal_stop(handle);
947                 if (pos + len > inode->i_size) {
948                         ext4_truncate_failed_write(inode);
949                         /*
950                          * If truncate failed early the inode might
951                          * still be on the orphan list; we need to
952                          * make sure the inode is removed from the
953                          * orphan list in that case.
954                          */
955                         if (inode->i_nlink)
956                                 ext4_orphan_del(NULL, inode);
957                 }
958         }
959
960         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
961                 goto retry;
962 out:
963         return ret;
964 }
965
966 /* For write_end() in data=journal mode */
967 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
968 {
969         if (!buffer_mapped(bh) || buffer_freed(bh))
970                 return 0;
971         set_buffer_uptodate(bh);
972         return ext4_handle_dirty_metadata(handle, NULL, bh);
973 }
974
975 static int ext4_generic_write_end(struct file *file,
976                                   struct address_space *mapping,
977                                   loff_t pos, unsigned len, unsigned copied,
978                                   struct page *page, void *fsdata)
979 {
980         int i_size_changed = 0;
981         struct inode *inode = mapping->host;
982         handle_t *handle = ext4_journal_current_handle();
983
984         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
985
986         /*
987          * No need to use i_size_read() here, the i_size
988          * cannot change under us because we hold i_mutex.
989          *
990          * But it's important to update i_size while still holding page lock:
991          * page writeout could otherwise come in and zero beyond i_size.
992          */
993         if (pos + copied > inode->i_size) {
994                 i_size_write(inode, pos + copied);
995                 i_size_changed = 1;
996         }
997
998         if (pos + copied >  EXT4_I(inode)->i_disksize) {
999                 /* We need to mark inode dirty even if
1000                  * new_i_size is less that inode->i_size
1001                  * bu greater than i_disksize.(hint delalloc)
1002                  */
1003                 ext4_update_i_disksize(inode, (pos + copied));
1004                 i_size_changed = 1;
1005         }
1006         unlock_page(page);
1007         page_cache_release(page);
1008
1009         /*
1010          * Don't mark the inode dirty under page lock. First, it unnecessarily
1011          * makes the holding time of page lock longer. Second, it forces lock
1012          * ordering of page lock and transaction start for journaling
1013          * filesystems.
1014          */
1015         if (i_size_changed)
1016                 ext4_mark_inode_dirty(handle, inode);
1017
1018         return copied;
1019 }
1020
1021 /*
1022  * We need to pick up the new inode size which generic_commit_write gave us
1023  * `file' can be NULL - eg, when called from page_symlink().
1024  *
1025  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1026  * buffers are managed internally.
1027  */
1028 static int ext4_ordered_write_end(struct file *file,
1029                                   struct address_space *mapping,
1030                                   loff_t pos, unsigned len, unsigned copied,
1031                                   struct page *page, void *fsdata)
1032 {
1033         handle_t *handle = ext4_journal_current_handle();
1034         struct inode *inode = mapping->host;
1035         int ret = 0, ret2;
1036
1037         trace_ext4_ordered_write_end(inode, pos, len, copied);
1038         ret = ext4_jbd2_file_inode(handle, inode);
1039
1040         if (ret == 0) {
1041                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1042                                                         page, fsdata);
1043                 copied = ret2;
1044                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1045                         /* if we have allocated more blocks and copied
1046                          * less. We will have blocks allocated outside
1047                          * inode->i_size. So truncate them
1048                          */
1049                         ext4_orphan_add(handle, inode);
1050                 if (ret2 < 0)
1051                         ret = ret2;
1052         } else {
1053                 unlock_page(page);
1054                 page_cache_release(page);
1055         }
1056
1057         ret2 = ext4_journal_stop(handle);
1058         if (!ret)
1059                 ret = ret2;
1060
1061         if (pos + len > inode->i_size) {
1062                 ext4_truncate_failed_write(inode);
1063                 /*
1064                  * If truncate failed early the inode might still be
1065                  * on the orphan list; we need to make sure the inode
1066                  * is removed from the orphan list in that case.
1067                  */
1068                 if (inode->i_nlink)
1069                         ext4_orphan_del(NULL, inode);
1070         }
1071
1072
1073         return ret ? ret : copied;
1074 }
1075
1076 static int ext4_writeback_write_end(struct file *file,
1077                                     struct address_space *mapping,
1078                                     loff_t pos, unsigned len, unsigned copied,
1079                                     struct page *page, void *fsdata)
1080 {
1081         handle_t *handle = ext4_journal_current_handle();
1082         struct inode *inode = mapping->host;
1083         int ret = 0, ret2;
1084
1085         trace_ext4_writeback_write_end(inode, pos, len, copied);
1086         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1087                                                         page, fsdata);
1088         copied = ret2;
1089         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1090                 /* if we have allocated more blocks and copied
1091                  * less. We will have blocks allocated outside
1092                  * inode->i_size. So truncate them
1093                  */
1094                 ext4_orphan_add(handle, inode);
1095
1096         if (ret2 < 0)
1097                 ret = ret2;
1098
1099         ret2 = ext4_journal_stop(handle);
1100         if (!ret)
1101                 ret = ret2;
1102
1103         if (pos + len > inode->i_size) {
1104                 ext4_truncate_failed_write(inode);
1105                 /*
1106                  * If truncate failed early the inode might still be
1107                  * on the orphan list; we need to make sure the inode
1108                  * is removed from the orphan list in that case.
1109                  */
1110                 if (inode->i_nlink)
1111                         ext4_orphan_del(NULL, inode);
1112         }
1113
1114         return ret ? ret : copied;
1115 }
1116
1117 static int ext4_journalled_write_end(struct file *file,
1118                                      struct address_space *mapping,
1119                                      loff_t pos, unsigned len, unsigned copied,
1120                                      struct page *page, void *fsdata)
1121 {
1122         handle_t *handle = ext4_journal_current_handle();
1123         struct inode *inode = mapping->host;
1124         int ret = 0, ret2;
1125         int partial = 0;
1126         unsigned from, to;
1127         loff_t new_i_size;
1128
1129         trace_ext4_journalled_write_end(inode, pos, len, copied);
1130         from = pos & (PAGE_CACHE_SIZE - 1);
1131         to = from + len;
1132
1133         BUG_ON(!ext4_handle_valid(handle));
1134
1135         if (copied < len) {
1136                 if (!PageUptodate(page))
1137                         copied = 0;
1138                 page_zero_new_buffers(page, from+copied, to);
1139         }
1140
1141         ret = walk_page_buffers(handle, page_buffers(page), from,
1142                                 to, &partial, write_end_fn);
1143         if (!partial)
1144                 SetPageUptodate(page);
1145         new_i_size = pos + copied;
1146         if (new_i_size > inode->i_size)
1147                 i_size_write(inode, pos+copied);
1148         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1149         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1150         if (new_i_size > EXT4_I(inode)->i_disksize) {
1151                 ext4_update_i_disksize(inode, new_i_size);
1152                 ret2 = ext4_mark_inode_dirty(handle, inode);
1153                 if (!ret)
1154                         ret = ret2;
1155         }
1156
1157         unlock_page(page);
1158         page_cache_release(page);
1159         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1160                 /* if we have allocated more blocks and copied
1161                  * less. We will have blocks allocated outside
1162                  * inode->i_size. So truncate them
1163                  */
1164                 ext4_orphan_add(handle, inode);
1165
1166         ret2 = ext4_journal_stop(handle);
1167         if (!ret)
1168                 ret = ret2;
1169         if (pos + len > inode->i_size) {
1170                 ext4_truncate_failed_write(inode);
1171                 /*
1172                  * If truncate failed early the inode might still be
1173                  * on the orphan list; we need to make sure the inode
1174                  * is removed from the orphan list in that case.
1175                  */
1176                 if (inode->i_nlink)
1177                         ext4_orphan_del(NULL, inode);
1178         }
1179
1180         return ret ? ret : copied;
1181 }
1182
1183 /*
1184  * Reserve a single cluster located at lblock
1185  */
1186 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1187 {
1188         int retries = 0;
1189         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1190         struct ext4_inode_info *ei = EXT4_I(inode);
1191         unsigned int md_needed;
1192         int ret;
1193         ext4_lblk_t save_last_lblock;
1194         int save_len;
1195
1196         /*
1197          * We will charge metadata quota at writeout time; this saves
1198          * us from metadata over-estimation, though we may go over by
1199          * a small amount in the end.  Here we just reserve for data.
1200          */
1201         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1202         if (ret)
1203                 return ret;
1204
1205         /*
1206          * recalculate the amount of metadata blocks to reserve
1207          * in order to allocate nrblocks
1208          * worse case is one extent per block
1209          */
1210 repeat:
1211         spin_lock(&ei->i_block_reservation_lock);
1212         /*
1213          * ext4_calc_metadata_amount() has side effects, which we have
1214          * to be prepared undo if we fail to claim space.
1215          */
1216         save_len = ei->i_da_metadata_calc_len;
1217         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1218         md_needed = EXT4_NUM_B2C(sbi,
1219                                  ext4_calc_metadata_amount(inode, lblock));
1220         trace_ext4_da_reserve_space(inode, md_needed);
1221
1222         /*
1223          * We do still charge estimated metadata to the sb though;
1224          * we cannot afford to run out of free blocks.
1225          */
1226         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1227                 ei->i_da_metadata_calc_len = save_len;
1228                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1229                 spin_unlock(&ei->i_block_reservation_lock);
1230                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1231                         yield();
1232                         goto repeat;
1233                 }
1234                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1235                 return -ENOSPC;
1236         }
1237         ei->i_reserved_data_blocks++;
1238         ei->i_reserved_meta_blocks += md_needed;
1239         spin_unlock(&ei->i_block_reservation_lock);
1240
1241         return 0;       /* success */
1242 }
1243
1244 static void ext4_da_release_space(struct inode *inode, int to_free)
1245 {
1246         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1247         struct ext4_inode_info *ei = EXT4_I(inode);
1248
1249         if (!to_free)
1250                 return;         /* Nothing to release, exit */
1251
1252         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1253
1254         trace_ext4_da_release_space(inode, to_free);
1255         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1256                 /*
1257                  * if there aren't enough reserved blocks, then the
1258                  * counter is messed up somewhere.  Since this
1259                  * function is called from invalidate page, it's
1260                  * harmless to return without any action.
1261                  */
1262                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1263                          "ino %lu, to_free %d with only %d reserved "
1264                          "data blocks", inode->i_ino, to_free,
1265                          ei->i_reserved_data_blocks);
1266                 WARN_ON(1);
1267                 to_free = ei->i_reserved_data_blocks;
1268         }
1269         ei->i_reserved_data_blocks -= to_free;
1270
1271         if (ei->i_reserved_data_blocks == 0) {
1272                 /*
1273                  * We can release all of the reserved metadata blocks
1274                  * only when we have written all of the delayed
1275                  * allocation blocks.
1276                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1277                  * i_reserved_data_blocks, etc. refer to number of clusters.
1278                  */
1279                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1280                                    ei->i_reserved_meta_blocks);
1281                 ei->i_reserved_meta_blocks = 0;
1282                 ei->i_da_metadata_calc_len = 0;
1283         }
1284
1285         /* update fs dirty data blocks counter */
1286         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1287
1288         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1289
1290         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1291 }
1292
1293 static void ext4_da_page_release_reservation(struct page *page,
1294                                              unsigned long offset)
1295 {
1296         int to_release = 0;
1297         struct buffer_head *head, *bh;
1298         unsigned int curr_off = 0;
1299         struct inode *inode = page->mapping->host;
1300         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1301         int num_clusters;
1302
1303         head = page_buffers(page);
1304         bh = head;
1305         do {
1306                 unsigned int next_off = curr_off + bh->b_size;
1307
1308                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1309                         to_release++;
1310                         clear_buffer_delay(bh);
1311                         clear_buffer_da_mapped(bh);
1312                 }
1313                 curr_off = next_off;
1314         } while ((bh = bh->b_this_page) != head);
1315
1316         /* If we have released all the blocks belonging to a cluster, then we
1317          * need to release the reserved space for that cluster. */
1318         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1319         while (num_clusters > 0) {
1320                 ext4_fsblk_t lblk;
1321                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1322                         ((num_clusters - 1) << sbi->s_cluster_bits);
1323                 if (sbi->s_cluster_ratio == 1 ||
1324                     !ext4_find_delalloc_cluster(inode, lblk, 1))
1325                         ext4_da_release_space(inode, 1);
1326
1327                 num_clusters--;
1328         }
1329 }
1330
1331 /*
1332  * Delayed allocation stuff
1333  */
1334
1335 /*
1336  * mpage_da_submit_io - walks through extent of pages and try to write
1337  * them with writepage() call back
1338  *
1339  * @mpd->inode: inode
1340  * @mpd->first_page: first page of the extent
1341  * @mpd->next_page: page after the last page of the extent
1342  *
1343  * By the time mpage_da_submit_io() is called we expect all blocks
1344  * to be allocated. this may be wrong if allocation failed.
1345  *
1346  * As pages are already locked by write_cache_pages(), we can't use it
1347  */
1348 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1349                               struct ext4_map_blocks *map)
1350 {
1351         struct pagevec pvec;
1352         unsigned long index, end;
1353         int ret = 0, err, nr_pages, i;
1354         struct inode *inode = mpd->inode;
1355         struct address_space *mapping = inode->i_mapping;
1356         loff_t size = i_size_read(inode);
1357         unsigned int len, block_start;
1358         struct buffer_head *bh, *page_bufs = NULL;
1359         int journal_data = ext4_should_journal_data(inode);
1360         sector_t pblock = 0, cur_logical = 0;
1361         struct ext4_io_submit io_submit;
1362
1363         BUG_ON(mpd->next_page <= mpd->first_page);
1364         memset(&io_submit, 0, sizeof(io_submit));
1365         /*
1366          * We need to start from the first_page to the next_page - 1
1367          * to make sure we also write the mapped dirty buffer_heads.
1368          * If we look at mpd->b_blocknr we would only be looking
1369          * at the currently mapped buffer_heads.
1370          */
1371         index = mpd->first_page;
1372         end = mpd->next_page - 1;
1373
1374         pagevec_init(&pvec, 0);
1375         while (index <= end) {
1376                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1377                 if (nr_pages == 0)
1378                         break;
1379                 for (i = 0; i < nr_pages; i++) {
1380                         int commit_write = 0, skip_page = 0;
1381                         struct page *page = pvec.pages[i];
1382
1383                         index = page->index;
1384                         if (index > end)
1385                                 break;
1386
1387                         if (index == size >> PAGE_CACHE_SHIFT)
1388                                 len = size & ~PAGE_CACHE_MASK;
1389                         else
1390                                 len = PAGE_CACHE_SIZE;
1391                         if (map) {
1392                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1393                                                         inode->i_blkbits);
1394                                 pblock = map->m_pblk + (cur_logical -
1395                                                         map->m_lblk);
1396                         }
1397                         index++;
1398
1399                         BUG_ON(!PageLocked(page));
1400                         BUG_ON(PageWriteback(page));
1401
1402                         /*
1403                          * If the page does not have buffers (for
1404                          * whatever reason), try to create them using
1405                          * __block_write_begin.  If this fails,
1406                          * skip the page and move on.
1407                          */
1408                         if (!page_has_buffers(page)) {
1409                                 if (__block_write_begin(page, 0, len,
1410                                                 noalloc_get_block_write)) {
1411                                 skip_page:
1412                                         unlock_page(page);
1413                                         continue;
1414                                 }
1415                                 commit_write = 1;
1416                         }
1417
1418                         bh = page_bufs = page_buffers(page);
1419                         block_start = 0;
1420                         do {
1421                                 if (!bh)
1422                                         goto skip_page;
1423                                 if (map && (cur_logical >= map->m_lblk) &&
1424                                     (cur_logical <= (map->m_lblk +
1425                                                      (map->m_len - 1)))) {
1426                                         if (buffer_delay(bh)) {
1427                                                 clear_buffer_delay(bh);
1428                                                 bh->b_blocknr = pblock;
1429                                         }
1430                                         if (buffer_da_mapped(bh))
1431                                                 clear_buffer_da_mapped(bh);
1432                                         if (buffer_unwritten(bh) ||
1433                                             buffer_mapped(bh))
1434                                                 BUG_ON(bh->b_blocknr != pblock);
1435                                         if (map->m_flags & EXT4_MAP_UNINIT)
1436                                                 set_buffer_uninit(bh);
1437                                         clear_buffer_unwritten(bh);
1438                                 }
1439
1440                                 /*
1441                                  * skip page if block allocation undone and
1442                                  * block is dirty
1443                                  */
1444                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1445                                         skip_page = 1;
1446                                 bh = bh->b_this_page;
1447                                 block_start += bh->b_size;
1448                                 cur_logical++;
1449                                 pblock++;
1450                         } while (bh != page_bufs);
1451
1452                         if (skip_page)
1453                                 goto skip_page;
1454
1455                         if (commit_write)
1456                                 /* mark the buffer_heads as dirty & uptodate */
1457                                 block_commit_write(page, 0, len);
1458
1459                         clear_page_dirty_for_io(page);
1460                         /*
1461                          * Delalloc doesn't support data journalling,
1462                          * but eventually maybe we'll lift this
1463                          * restriction.
1464                          */
1465                         if (unlikely(journal_data && PageChecked(page)))
1466                                 err = __ext4_journalled_writepage(page, len);
1467                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1468                                 err = ext4_bio_write_page(&io_submit, page,
1469                                                           len, mpd->wbc);
1470                         else if (buffer_uninit(page_bufs)) {
1471                                 ext4_set_bh_endio(page_bufs, inode);
1472                                 err = block_write_full_page_endio(page,
1473                                         noalloc_get_block_write,
1474                                         mpd->wbc, ext4_end_io_buffer_write);
1475                         } else
1476                                 err = block_write_full_page(page,
1477                                         noalloc_get_block_write, mpd->wbc);
1478
1479                         if (!err)
1480                                 mpd->pages_written++;
1481                         /*
1482                          * In error case, we have to continue because
1483                          * remaining pages are still locked
1484                          */
1485                         if (ret == 0)
1486                                 ret = err;
1487                 }
1488                 pagevec_release(&pvec);
1489         }
1490         ext4_io_submit(&io_submit);
1491         return ret;
1492 }
1493
1494 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1495 {
1496         int nr_pages, i;
1497         pgoff_t index, end;
1498         struct pagevec pvec;
1499         struct inode *inode = mpd->inode;
1500         struct address_space *mapping = inode->i_mapping;
1501
1502         index = mpd->first_page;
1503         end   = mpd->next_page - 1;
1504         while (index <= end) {
1505                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1506                 if (nr_pages == 0)
1507                         break;
1508                 for (i = 0; i < nr_pages; i++) {
1509                         struct page *page = pvec.pages[i];
1510                         if (page->index > end)
1511                                 break;
1512                         BUG_ON(!PageLocked(page));
1513                         BUG_ON(PageWriteback(page));
1514                         block_invalidatepage(page, 0);
1515                         ClearPageUptodate(page);
1516                         unlock_page(page);
1517                 }
1518                 index = pvec.pages[nr_pages - 1]->index + 1;
1519                 pagevec_release(&pvec);
1520         }
1521         return;
1522 }
1523
1524 static void ext4_print_free_blocks(struct inode *inode)
1525 {
1526         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527         struct super_block *sb = inode->i_sb;
1528
1529         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1530                EXT4_C2B(EXT4_SB(inode->i_sb),
1531                         ext4_count_free_clusters(inode->i_sb)));
1532         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1533         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1534                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1535                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1536         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1537                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1538                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1539         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1540         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1541                  EXT4_I(inode)->i_reserved_data_blocks);
1542         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1543                EXT4_I(inode)->i_reserved_meta_blocks);
1544         return;
1545 }
1546
1547 /*
1548  * mpage_da_map_and_submit - go through given space, map them
1549  *       if necessary, and then submit them for I/O
1550  *
1551  * @mpd - bh describing space
1552  *
1553  * The function skips space we know is already mapped to disk blocks.
1554  *
1555  */
1556 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1557 {
1558         int err, blks, get_blocks_flags;
1559         struct ext4_map_blocks map, *mapp = NULL;
1560         sector_t next = mpd->b_blocknr;
1561         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1562         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1563         handle_t *handle = NULL;
1564
1565         /*
1566          * If the blocks are mapped already, or we couldn't accumulate
1567          * any blocks, then proceed immediately to the submission stage.
1568          */
1569         if ((mpd->b_size == 0) ||
1570             ((mpd->b_state  & (1 << BH_Mapped)) &&
1571              !(mpd->b_state & (1 << BH_Delay)) &&
1572              !(mpd->b_state & (1 << BH_Unwritten))))
1573                 goto submit_io;
1574
1575         handle = ext4_journal_current_handle();
1576         BUG_ON(!handle);
1577
1578         /*
1579          * Call ext4_map_blocks() to allocate any delayed allocation
1580          * blocks, or to convert an uninitialized extent to be
1581          * initialized (in the case where we have written into
1582          * one or more preallocated blocks).
1583          *
1584          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1585          * indicate that we are on the delayed allocation path.  This
1586          * affects functions in many different parts of the allocation
1587          * call path.  This flag exists primarily because we don't
1588          * want to change *many* call functions, so ext4_map_blocks()
1589          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1590          * inode's allocation semaphore is taken.
1591          *
1592          * If the blocks in questions were delalloc blocks, set
1593          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1594          * variables are updated after the blocks have been allocated.
1595          */
1596         map.m_lblk = next;
1597         map.m_len = max_blocks;
1598         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1599         if (ext4_should_dioread_nolock(mpd->inode))
1600                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1601         if (mpd->b_state & (1 << BH_Delay))
1602                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1603
1604         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1605         if (blks < 0) {
1606                 struct super_block *sb = mpd->inode->i_sb;
1607
1608                 err = blks;
1609                 /*
1610                  * If get block returns EAGAIN or ENOSPC and there
1611                  * appears to be free blocks we will just let
1612                  * mpage_da_submit_io() unlock all of the pages.
1613                  */
1614                 if (err == -EAGAIN)
1615                         goto submit_io;
1616
1617                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1618                         mpd->retval = err;
1619                         goto submit_io;
1620                 }
1621
1622                 /*
1623                  * get block failure will cause us to loop in
1624                  * writepages, because a_ops->writepage won't be able
1625                  * to make progress. The page will be redirtied by
1626                  * writepage and writepages will again try to write
1627                  * the same.
1628                  */
1629                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1630                         ext4_msg(sb, KERN_CRIT,
1631                                  "delayed block allocation failed for inode %lu "
1632                                  "at logical offset %llu with max blocks %zd "
1633                                  "with error %d", mpd->inode->i_ino,
1634                                  (unsigned long long) next,
1635                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1636                         ext4_msg(sb, KERN_CRIT,
1637                                 "This should not happen!! Data will be lost\n");
1638                         if (err == -ENOSPC)
1639                                 ext4_print_free_blocks(mpd->inode);
1640                 }
1641                 /* invalidate all the pages */
1642                 ext4_da_block_invalidatepages(mpd);
1643
1644                 /* Mark this page range as having been completed */
1645                 mpd->io_done = 1;
1646                 return;
1647         }
1648         BUG_ON(blks == 0);
1649
1650         mapp = &map;
1651         if (map.m_flags & EXT4_MAP_NEW) {
1652                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1653                 int i;
1654
1655                 for (i = 0; i < map.m_len; i++)
1656                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1657
1658                 if (ext4_should_order_data(mpd->inode)) {
1659                         err = ext4_jbd2_file_inode(handle, mpd->inode);
1660                         if (err) {
1661                                 /* Only if the journal is aborted */
1662                                 mpd->retval = err;
1663                                 goto submit_io;
1664                         }
1665                 }
1666         }
1667
1668         /*
1669          * Update on-disk size along with block allocation.
1670          */
1671         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1672         if (disksize > i_size_read(mpd->inode))
1673                 disksize = i_size_read(mpd->inode);
1674         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1675                 ext4_update_i_disksize(mpd->inode, disksize);
1676                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1677                 if (err)
1678                         ext4_error(mpd->inode->i_sb,
1679                                    "Failed to mark inode %lu dirty",
1680                                    mpd->inode->i_ino);
1681         }
1682
1683 submit_io:
1684         mpage_da_submit_io(mpd, mapp);
1685         mpd->io_done = 1;
1686 }
1687
1688 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1689                 (1 << BH_Delay) | (1 << BH_Unwritten))
1690
1691 /*
1692  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1693  *
1694  * @mpd->lbh - extent of blocks
1695  * @logical - logical number of the block in the file
1696  * @bh - bh of the block (used to access block's state)
1697  *
1698  * the function is used to collect contig. blocks in same state
1699  */
1700 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1701                                    sector_t logical, size_t b_size,
1702                                    unsigned long b_state)
1703 {
1704         sector_t next;
1705         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1706
1707         /*
1708          * XXX Don't go larger than mballoc is willing to allocate
1709          * This is a stopgap solution.  We eventually need to fold
1710          * mpage_da_submit_io() into this function and then call
1711          * ext4_map_blocks() multiple times in a loop
1712          */
1713         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1714                 goto flush_it;
1715
1716         /* check if thereserved journal credits might overflow */
1717         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1718                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1719                         /*
1720                          * With non-extent format we are limited by the journal
1721                          * credit available.  Total credit needed to insert
1722                          * nrblocks contiguous blocks is dependent on the
1723                          * nrblocks.  So limit nrblocks.
1724                          */
1725                         goto flush_it;
1726                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1727                                 EXT4_MAX_TRANS_DATA) {
1728                         /*
1729                          * Adding the new buffer_head would make it cross the
1730                          * allowed limit for which we have journal credit
1731                          * reserved. So limit the new bh->b_size
1732                          */
1733                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1734                                                 mpd->inode->i_blkbits;
1735                         /* we will do mpage_da_submit_io in the next loop */
1736                 }
1737         }
1738         /*
1739          * First block in the extent
1740          */
1741         if (mpd->b_size == 0) {
1742                 mpd->b_blocknr = logical;
1743                 mpd->b_size = b_size;
1744                 mpd->b_state = b_state & BH_FLAGS;
1745                 return;
1746         }
1747
1748         next = mpd->b_blocknr + nrblocks;
1749         /*
1750          * Can we merge the block to our big extent?
1751          */
1752         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1753                 mpd->b_size += b_size;
1754                 return;
1755         }
1756
1757 flush_it:
1758         /*
1759          * We couldn't merge the block to our extent, so we
1760          * need to flush current  extent and start new one
1761          */
1762         mpage_da_map_and_submit(mpd);
1763         return;
1764 }
1765
1766 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1767 {
1768         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1769 }
1770
1771 /*
1772  * This function is grabs code from the very beginning of
1773  * ext4_map_blocks, but assumes that the caller is from delayed write
1774  * time. This function looks up the requested blocks and sets the
1775  * buffer delay bit under the protection of i_data_sem.
1776  */
1777 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1778                               struct ext4_map_blocks *map,
1779                               struct buffer_head *bh)
1780 {
1781         int retval;
1782         sector_t invalid_block = ~((sector_t) 0xffff);
1783
1784         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1785                 invalid_block = ~0;
1786
1787         map->m_flags = 0;
1788         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1789                   "logical block %lu\n", inode->i_ino, map->m_len,
1790                   (unsigned long) map->m_lblk);
1791         /*
1792          * Try to see if we can get the block without requesting a new
1793          * file system block.
1794          */
1795         down_read((&EXT4_I(inode)->i_data_sem));
1796         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1797                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1798         else
1799                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1800
1801         if (retval == 0) {
1802                 /*
1803                  * XXX: __block_prepare_write() unmaps passed block,
1804                  * is it OK?
1805                  */
1806                 /* If the block was allocated from previously allocated cluster,
1807                  * then we dont need to reserve it again. */
1808                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1809                         retval = ext4_da_reserve_space(inode, iblock);
1810                         if (retval)
1811                                 /* not enough space to reserve */
1812                                 goto out_unlock;
1813                 }
1814
1815                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1816                  * and it should not appear on the bh->b_state.
1817                  */
1818                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1819
1820                 map_bh(bh, inode->i_sb, invalid_block);
1821                 set_buffer_new(bh);
1822                 set_buffer_delay(bh);
1823         }
1824
1825 out_unlock:
1826         up_read((&EXT4_I(inode)->i_data_sem));
1827
1828         return retval;
1829 }
1830
1831 /*
1832  * This is a special get_blocks_t callback which is used by
1833  * ext4_da_write_begin().  It will either return mapped block or
1834  * reserve space for a single block.
1835  *
1836  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1837  * We also have b_blocknr = -1 and b_bdev initialized properly
1838  *
1839  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1840  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1841  * initialized properly.
1842  */
1843 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1844                                   struct buffer_head *bh, int create)
1845 {
1846         struct ext4_map_blocks map;
1847         int ret = 0;
1848
1849         BUG_ON(create == 0);
1850         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1851
1852         map.m_lblk = iblock;
1853         map.m_len = 1;
1854
1855         /*
1856          * first, we need to know whether the block is allocated already
1857          * preallocated blocks are unmapped but should treated
1858          * the same as allocated blocks.
1859          */
1860         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1861         if (ret <= 0)
1862                 return ret;
1863
1864         map_bh(bh, inode->i_sb, map.m_pblk);
1865         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1866
1867         if (buffer_unwritten(bh)) {
1868                 /* A delayed write to unwritten bh should be marked
1869                  * new and mapped.  Mapped ensures that we don't do
1870                  * get_block multiple times when we write to the same
1871                  * offset and new ensures that we do proper zero out
1872                  * for partial write.
1873                  */
1874                 set_buffer_new(bh);
1875                 set_buffer_mapped(bh);
1876         }
1877         return 0;
1878 }
1879
1880 /*
1881  * This function is used as a standard get_block_t calback function
1882  * when there is no desire to allocate any blocks.  It is used as a
1883  * callback function for block_write_begin() and block_write_full_page().
1884  * These functions should only try to map a single block at a time.
1885  *
1886  * Since this function doesn't do block allocations even if the caller
1887  * requests it by passing in create=1, it is critically important that
1888  * any caller checks to make sure that any buffer heads are returned
1889  * by this function are either all already mapped or marked for
1890  * delayed allocation before calling  block_write_full_page().  Otherwise,
1891  * b_blocknr could be left unitialized, and the page write functions will
1892  * be taken by surprise.
1893  */
1894 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1895                                    struct buffer_head *bh_result, int create)
1896 {
1897         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1898         return _ext4_get_block(inode, iblock, bh_result, 0);
1899 }
1900
1901 static int bget_one(handle_t *handle, struct buffer_head *bh)
1902 {
1903         get_bh(bh);
1904         return 0;
1905 }
1906
1907 static int bput_one(handle_t *handle, struct buffer_head *bh)
1908 {
1909         put_bh(bh);
1910         return 0;
1911 }
1912
1913 static int __ext4_journalled_writepage(struct page *page,
1914                                        unsigned int len)
1915 {
1916         struct address_space *mapping = page->mapping;
1917         struct inode *inode = mapping->host;
1918         struct buffer_head *page_bufs;
1919         handle_t *handle = NULL;
1920         int ret = 0;
1921         int err;
1922
1923         ClearPageChecked(page);
1924         page_bufs = page_buffers(page);
1925         BUG_ON(!page_bufs);
1926         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1927         /* As soon as we unlock the page, it can go away, but we have
1928          * references to buffers so we are safe */
1929         unlock_page(page);
1930
1931         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1932         if (IS_ERR(handle)) {
1933                 ret = PTR_ERR(handle);
1934                 goto out;
1935         }
1936
1937         BUG_ON(!ext4_handle_valid(handle));
1938
1939         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1940                                 do_journal_get_write_access);
1941
1942         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1943                                 write_end_fn);
1944         if (ret == 0)
1945                 ret = err;
1946         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1947         err = ext4_journal_stop(handle);
1948         if (!ret)
1949                 ret = err;
1950
1951         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1952         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1953 out:
1954         return ret;
1955 }
1956
1957 /*
1958  * Note that we don't need to start a transaction unless we're journaling data
1959  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1960  * need to file the inode to the transaction's list in ordered mode because if
1961  * we are writing back data added by write(), the inode is already there and if
1962  * we are writing back data modified via mmap(), no one guarantees in which
1963  * transaction the data will hit the disk. In case we are journaling data, we
1964  * cannot start transaction directly because transaction start ranks above page
1965  * lock so we have to do some magic.
1966  *
1967  * This function can get called via...
1968  *   - ext4_da_writepages after taking page lock (have journal handle)
1969  *   - journal_submit_inode_data_buffers (no journal handle)
1970  *   - shrink_page_list via pdflush (no journal handle)
1971  *   - grab_page_cache when doing write_begin (have journal handle)
1972  *
1973  * We don't do any block allocation in this function. If we have page with
1974  * multiple blocks we need to write those buffer_heads that are mapped. This
1975  * is important for mmaped based write. So if we do with blocksize 1K
1976  * truncate(f, 1024);
1977  * a = mmap(f, 0, 4096);
1978  * a[0] = 'a';
1979  * truncate(f, 4096);
1980  * we have in the page first buffer_head mapped via page_mkwrite call back
1981  * but other buffer_heads would be unmapped but dirty (dirty done via the
1982  * do_wp_page). So writepage should write the first block. If we modify
1983  * the mmap area beyond 1024 we will again get a page_fault and the
1984  * page_mkwrite callback will do the block allocation and mark the
1985  * buffer_heads mapped.
1986  *
1987  * We redirty the page if we have any buffer_heads that is either delay or
1988  * unwritten in the page.
1989  *
1990  * We can get recursively called as show below.
1991  *
1992  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1993  *              ext4_writepage()
1994  *
1995  * But since we don't do any block allocation we should not deadlock.
1996  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1997  */
1998 static int ext4_writepage(struct page *page,
1999                           struct writeback_control *wbc)
2000 {
2001         int ret = 0, commit_write = 0;
2002         loff_t size;
2003         unsigned int len;
2004         struct buffer_head *page_bufs = NULL;
2005         struct inode *inode = page->mapping->host;
2006
2007         trace_ext4_writepage(page);
2008         size = i_size_read(inode);
2009         if (page->index == size >> PAGE_CACHE_SHIFT)
2010                 len = size & ~PAGE_CACHE_MASK;
2011         else
2012                 len = PAGE_CACHE_SIZE;
2013
2014         /*
2015          * If the page does not have buffers (for whatever reason),
2016          * try to create them using __block_write_begin.  If this
2017          * fails, redirty the page and move on.
2018          */
2019         if (!page_has_buffers(page)) {
2020                 if (__block_write_begin(page, 0, len,
2021                                         noalloc_get_block_write)) {
2022                 redirty_page:
2023                         redirty_page_for_writepage(wbc, page);
2024                         unlock_page(page);
2025                         return 0;
2026                 }
2027                 commit_write = 1;
2028         }
2029         page_bufs = page_buffers(page);
2030         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2031                               ext4_bh_delay_or_unwritten)) {
2032                 /*
2033                  * We don't want to do block allocation, so redirty
2034                  * the page and return.  We may reach here when we do
2035                  * a journal commit via journal_submit_inode_data_buffers.
2036                  * We can also reach here via shrink_page_list but it
2037                  * should never be for direct reclaim so warn if that
2038                  * happens
2039                  */
2040                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2041                                                                 PF_MEMALLOC);
2042                 goto redirty_page;
2043         }
2044         if (commit_write)
2045                 /* now mark the buffer_heads as dirty and uptodate */
2046                 block_commit_write(page, 0, len);
2047
2048         if (PageChecked(page) && ext4_should_journal_data(inode))
2049                 /*
2050                  * It's mmapped pagecache.  Add buffers and journal it.  There
2051                  * doesn't seem much point in redirtying the page here.
2052                  */
2053                 return __ext4_journalled_writepage(page, len);
2054
2055         if (buffer_uninit(page_bufs)) {
2056                 ext4_set_bh_endio(page_bufs, inode);
2057                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2058                                             wbc, ext4_end_io_buffer_write);
2059         } else
2060                 ret = block_write_full_page(page, noalloc_get_block_write,
2061                                             wbc);
2062
2063         return ret;
2064 }
2065
2066 /*
2067  * This is called via ext4_da_writepages() to
2068  * calculate the total number of credits to reserve to fit
2069  * a single extent allocation into a single transaction,
2070  * ext4_da_writpeages() will loop calling this before
2071  * the block allocation.
2072  */
2073
2074 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2075 {
2076         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2077
2078         /*
2079          * With non-extent format the journal credit needed to
2080          * insert nrblocks contiguous block is dependent on
2081          * number of contiguous block. So we will limit
2082          * number of contiguous block to a sane value
2083          */
2084         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2085             (max_blocks > EXT4_MAX_TRANS_DATA))
2086                 max_blocks = EXT4_MAX_TRANS_DATA;
2087
2088         return ext4_chunk_trans_blocks(inode, max_blocks);
2089 }
2090
2091 /*
2092  * write_cache_pages_da - walk the list of dirty pages of the given
2093  * address space and accumulate pages that need writing, and call
2094  * mpage_da_map_and_submit to map a single contiguous memory region
2095  * and then write them.
2096  */
2097 static int write_cache_pages_da(struct address_space *mapping,
2098                                 struct writeback_control *wbc,
2099                                 struct mpage_da_data *mpd,
2100                                 pgoff_t *done_index)
2101 {
2102         struct buffer_head      *bh, *head;
2103         struct inode            *inode = mapping->host;
2104         struct pagevec          pvec;
2105         unsigned int            nr_pages;
2106         sector_t                logical;
2107         pgoff_t                 index, end;
2108         long                    nr_to_write = wbc->nr_to_write;
2109         int                     i, tag, ret = 0;
2110
2111         memset(mpd, 0, sizeof(struct mpage_da_data));
2112         mpd->wbc = wbc;
2113         mpd->inode = inode;
2114         pagevec_init(&pvec, 0);
2115         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2116         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2117
2118         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2119                 tag = PAGECACHE_TAG_TOWRITE;
2120         else
2121                 tag = PAGECACHE_TAG_DIRTY;
2122
2123         *done_index = index;
2124         while (index <= end) {
2125                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2126                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2127                 if (nr_pages == 0)
2128                         return 0;
2129
2130                 for (i = 0; i < nr_pages; i++) {
2131                         struct page *page = pvec.pages[i];
2132
2133                         /*
2134                          * At this point, the page may be truncated or
2135                          * invalidated (changing page->mapping to NULL), or
2136                          * even swizzled back from swapper_space to tmpfs file
2137                          * mapping. However, page->index will not change
2138                          * because we have a reference on the page.
2139                          */
2140                         if (page->index > end)
2141                                 goto out;
2142
2143                         *done_index = page->index + 1;
2144
2145                         /*
2146                          * If we can't merge this page, and we have
2147                          * accumulated an contiguous region, write it
2148                          */
2149                         if ((mpd->next_page != page->index) &&
2150                             (mpd->next_page != mpd->first_page)) {
2151                                 mpage_da_map_and_submit(mpd);
2152                                 goto ret_extent_tail;
2153                         }
2154
2155                         lock_page(page);
2156
2157                         /*
2158                          * If the page is no longer dirty, or its
2159                          * mapping no longer corresponds to inode we
2160                          * are writing (which means it has been
2161                          * truncated or invalidated), or the page is
2162                          * already under writeback and we are not
2163                          * doing a data integrity writeback, skip the page
2164                          */
2165                         if (!PageDirty(page) ||
2166                             (PageWriteback(page) &&
2167                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2168                             unlikely(page->mapping != mapping)) {
2169                                 unlock_page(page);
2170                                 continue;
2171                         }
2172
2173                         wait_on_page_writeback(page);
2174                         BUG_ON(PageWriteback(page));
2175
2176                         if (mpd->next_page != page->index)
2177                                 mpd->first_page = page->index;
2178                         mpd->next_page = page->index + 1;
2179                         logical = (sector_t) page->index <<
2180                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2181
2182                         if (!page_has_buffers(page)) {
2183                                 mpage_add_bh_to_extent(mpd, logical,
2184                                                        PAGE_CACHE_SIZE,
2185                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2186                                 if (mpd->io_done)
2187                                         goto ret_extent_tail;
2188                         } else {
2189                                 /*
2190                                  * Page with regular buffer heads,
2191                                  * just add all dirty ones
2192                                  */
2193                                 head = page_buffers(page);
2194                                 bh = head;
2195                                 do {
2196                                         BUG_ON(buffer_locked(bh));
2197                                         /*
2198                                          * We need to try to allocate
2199                                          * unmapped blocks in the same page.
2200                                          * Otherwise we won't make progress
2201                                          * with the page in ext4_writepage
2202                                          */
2203                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2204                                                 mpage_add_bh_to_extent(mpd, logical,
2205                                                                        bh->b_size,
2206                                                                        bh->b_state);
2207                                                 if (mpd->io_done)
2208                                                         goto ret_extent_tail;
2209                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2210                                                 /*
2211                                                  * mapped dirty buffer. We need
2212                                                  * to update the b_state
2213                                                  * because we look at b_state
2214                                                  * in mpage_da_map_blocks.  We
2215                                                  * don't update b_size because
2216                                                  * if we find an unmapped
2217                                                  * buffer_head later we need to
2218                                                  * use the b_state flag of that
2219                                                  * buffer_head.
2220                                                  */
2221                                                 if (mpd->b_size == 0)
2222                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2223                                         }
2224                                         logical++;
2225                                 } while ((bh = bh->b_this_page) != head);
2226                         }
2227
2228                         if (nr_to_write > 0) {
2229                                 nr_to_write--;
2230                                 if (nr_to_write == 0 &&
2231                                     wbc->sync_mode == WB_SYNC_NONE)
2232                                         /*
2233                                          * We stop writing back only if we are
2234                                          * not doing integrity sync. In case of
2235                                          * integrity sync we have to keep going
2236                                          * because someone may be concurrently
2237                                          * dirtying pages, and we might have
2238                                          * synced a lot of newly appeared dirty
2239                                          * pages, but have not synced all of the
2240                                          * old dirty pages.
2241                                          */
2242                                         goto out;
2243                         }
2244                 }
2245                 pagevec_release(&pvec);
2246                 cond_resched();
2247         }
2248         return 0;
2249 ret_extent_tail:
2250         ret = MPAGE_DA_EXTENT_TAIL;
2251 out:
2252         pagevec_release(&pvec);
2253         cond_resched();
2254         return ret;
2255 }
2256
2257
2258 static int ext4_da_writepages(struct address_space *mapping,
2259                               struct writeback_control *wbc)
2260 {
2261         pgoff_t index;
2262         int range_whole = 0;
2263         handle_t *handle = NULL;
2264         struct mpage_da_data mpd;
2265         struct inode *inode = mapping->host;
2266         int pages_written = 0;
2267         unsigned int max_pages;
2268         int range_cyclic, cycled = 1, io_done = 0;
2269         int needed_blocks, ret = 0;
2270         long desired_nr_to_write, nr_to_writebump = 0;
2271         loff_t range_start = wbc->range_start;
2272         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2273         pgoff_t done_index = 0;
2274         pgoff_t end;
2275         struct blk_plug plug;
2276
2277         trace_ext4_da_writepages(inode, wbc);
2278
2279         /*
2280          * No pages to write? This is mainly a kludge to avoid starting
2281          * a transaction for special inodes like journal inode on last iput()
2282          * because that could violate lock ordering on umount
2283          */
2284         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2285                 return 0;
2286
2287         /*
2288          * If the filesystem has aborted, it is read-only, so return
2289          * right away instead of dumping stack traces later on that
2290          * will obscure the real source of the problem.  We test
2291          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2292          * the latter could be true if the filesystem is mounted
2293          * read-only, and in that case, ext4_da_writepages should
2294          * *never* be called, so if that ever happens, we would want
2295          * the stack trace.
2296          */
2297         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2298                 return -EROFS;
2299
2300         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2301                 range_whole = 1;
2302
2303         range_cyclic = wbc->range_cyclic;
2304         if (wbc->range_cyclic) {
2305                 index = mapping->writeback_index;
2306                 if (index)
2307                         cycled = 0;
2308                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2309                 wbc->range_end  = LLONG_MAX;
2310                 wbc->range_cyclic = 0;
2311                 end = -1;
2312         } else {
2313                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2314                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2315         }
2316
2317         /*
2318          * This works around two forms of stupidity.  The first is in
2319          * the writeback code, which caps the maximum number of pages
2320          * written to be 1024 pages.  This is wrong on multiple
2321          * levels; different architectues have a different page size,
2322          * which changes the maximum amount of data which gets
2323          * written.  Secondly, 4 megabytes is way too small.  XFS
2324          * forces this value to be 16 megabytes by multiplying
2325          * nr_to_write parameter by four, and then relies on its
2326          * allocator to allocate larger extents to make them
2327          * contiguous.  Unfortunately this brings us to the second
2328          * stupidity, which is that ext4's mballoc code only allocates
2329          * at most 2048 blocks.  So we force contiguous writes up to
2330          * the number of dirty blocks in the inode, or
2331          * sbi->max_writeback_mb_bump whichever is smaller.
2332          */
2333         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2334         if (!range_cyclic && range_whole) {
2335                 if (wbc->nr_to_write == LONG_MAX)
2336                         desired_nr_to_write = wbc->nr_to_write;
2337                 else
2338                         desired_nr_to_write = wbc->nr_to_write * 8;
2339         } else
2340                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2341                                                            max_pages);
2342         if (desired_nr_to_write > max_pages)
2343                 desired_nr_to_write = max_pages;
2344
2345         if (wbc->nr_to_write < desired_nr_to_write) {
2346                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2347                 wbc->nr_to_write = desired_nr_to_write;
2348         }
2349
2350 retry:
2351         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2352                 tag_pages_for_writeback(mapping, index, end);
2353
2354         blk_start_plug(&plug);
2355         while (!ret && wbc->nr_to_write > 0) {
2356
2357                 /*
2358                  * we  insert one extent at a time. So we need
2359                  * credit needed for single extent allocation.
2360                  * journalled mode is currently not supported
2361                  * by delalloc
2362                  */
2363                 BUG_ON(ext4_should_journal_data(inode));
2364                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2365
2366                 /* start a new transaction*/
2367                 handle = ext4_journal_start(inode, needed_blocks);
2368                 if (IS_ERR(handle)) {
2369                         ret = PTR_ERR(handle);
2370                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2371                                "%ld pages, ino %lu; err %d", __func__,
2372                                 wbc->nr_to_write, inode->i_ino, ret);
2373                         blk_finish_plug(&plug);
2374                         goto out_writepages;
2375                 }
2376
2377                 /*
2378                  * Now call write_cache_pages_da() to find the next
2379                  * contiguous region of logical blocks that need
2380                  * blocks to be allocated by ext4 and submit them.
2381                  */
2382                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2383                 /*
2384                  * If we have a contiguous extent of pages and we
2385                  * haven't done the I/O yet, map the blocks and submit
2386                  * them for I/O.
2387                  */
2388                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2389                         mpage_da_map_and_submit(&mpd);
2390                         ret = MPAGE_DA_EXTENT_TAIL;
2391                 }
2392                 trace_ext4_da_write_pages(inode, &mpd);
2393                 wbc->nr_to_write -= mpd.pages_written;
2394
2395                 ext4_journal_stop(handle);
2396
2397                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2398                         /* commit the transaction which would
2399                          * free blocks released in the transaction
2400                          * and try again
2401                          */
2402                         jbd2_journal_force_commit_nested(sbi->s_journal);
2403                         ret = 0;
2404                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2405                         /*
2406                          * Got one extent now try with rest of the pages.
2407                          * If mpd.retval is set -EIO, journal is aborted.
2408                          * So we don't need to write any more.
2409                          */
2410                         pages_written += mpd.pages_written;
2411                         ret = mpd.retval;
2412                         io_done = 1;
2413                 } else if (wbc->nr_to_write)
2414                         /*
2415                          * There is no more writeout needed
2416                          * or we requested for a noblocking writeout
2417                          * and we found the device congested
2418                          */
2419                         break;
2420         }
2421         blk_finish_plug(&plug);
2422         if (!io_done && !cycled) {
2423                 cycled = 1;
2424                 index = 0;
2425                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2426                 wbc->range_end  = mapping->writeback_index - 1;
2427                 goto retry;
2428         }
2429
2430         /* Update index */
2431         wbc->range_cyclic = range_cyclic;
2432         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2433                 /*
2434                  * set the writeback_index so that range_cyclic
2435                  * mode will write it back later
2436                  */
2437                 mapping->writeback_index = done_index;
2438
2439 out_writepages:
2440         wbc->nr_to_write -= nr_to_writebump;
2441         wbc->range_start = range_start;
2442         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2443         return ret;
2444 }
2445
2446 #define FALL_BACK_TO_NONDELALLOC 1
2447 static int ext4_nonda_switch(struct super_block *sb)
2448 {
2449         s64 free_blocks, dirty_blocks;
2450         struct ext4_sb_info *sbi = EXT4_SB(sb);
2451
2452         /*
2453          * switch to non delalloc mode if we are running low
2454          * on free block. The free block accounting via percpu
2455          * counters can get slightly wrong with percpu_counter_batch getting
2456          * accumulated on each CPU without updating global counters
2457          * Delalloc need an accurate free block accounting. So switch
2458          * to non delalloc when we are near to error range.
2459          */
2460         free_blocks  = EXT4_C2B(sbi,
2461                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2462         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2463         if (2 * free_blocks < 3 * dirty_blocks ||
2464                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2465                 /*
2466                  * free block count is less than 150% of dirty blocks
2467                  * or free blocks is less than watermark
2468                  */
2469                 return 1;
2470         }
2471         /*
2472          * Even if we don't switch but are nearing capacity,
2473          * start pushing delalloc when 1/2 of free blocks are dirty.
2474          */
2475         if (free_blocks < 2 * dirty_blocks)
2476                 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2477
2478         return 0;
2479 }
2480
2481 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2482                                loff_t pos, unsigned len, unsigned flags,
2483                                struct page **pagep, void **fsdata)
2484 {
2485         int ret, retries = 0;
2486         struct page *page;
2487         pgoff_t index;
2488         struct inode *inode = mapping->host;
2489         handle_t *handle;
2490
2491         index = pos >> PAGE_CACHE_SHIFT;
2492
2493         if (ext4_nonda_switch(inode->i_sb)) {
2494                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2495                 return ext4_write_begin(file, mapping, pos,
2496                                         len, flags, pagep, fsdata);
2497         }
2498         *fsdata = (void *)0;
2499         trace_ext4_da_write_begin(inode, pos, len, flags);
2500 retry:
2501         /*
2502          * With delayed allocation, we don't log the i_disksize update
2503          * if there is delayed block allocation. But we still need
2504          * to journalling the i_disksize update if writes to the end
2505          * of file which has an already mapped buffer.
2506          */
2507         handle = ext4_journal_start(inode, 1);
2508         if (IS_ERR(handle)) {
2509                 ret = PTR_ERR(handle);
2510                 goto out;
2511         }
2512         /* We cannot recurse into the filesystem as the transaction is already
2513          * started */
2514         flags |= AOP_FLAG_NOFS;
2515
2516         page = grab_cache_page_write_begin(mapping, index, flags);
2517         if (!page) {
2518                 ext4_journal_stop(handle);
2519                 ret = -ENOMEM;
2520                 goto out;
2521         }
2522         *pagep = page;
2523
2524         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2525         if (ret < 0) {
2526                 unlock_page(page);
2527                 ext4_journal_stop(handle);
2528                 page_cache_release(page);
2529                 /*
2530                  * block_write_begin may have instantiated a few blocks
2531                  * outside i_size.  Trim these off again. Don't need
2532                  * i_size_read because we hold i_mutex.
2533                  */
2534                 if (pos + len > inode->i_size)
2535                         ext4_truncate_failed_write(inode);
2536         }
2537
2538         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2539                 goto retry;
2540 out:
2541         return ret;
2542 }
2543
2544 /*
2545  * Check if we should update i_disksize
2546  * when write to the end of file but not require block allocation
2547  */
2548 static int ext4_da_should_update_i_disksize(struct page *page,
2549                                             unsigned long offset)
2550 {
2551         struct buffer_head *bh;
2552         struct inode *inode = page->mapping->host;
2553         unsigned int idx;
2554         int i;
2555
2556         bh = page_buffers(page);
2557         idx = offset >> inode->i_blkbits;
2558
2559         for (i = 0; i < idx; i++)
2560                 bh = bh->b_this_page;
2561
2562         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2563                 return 0;
2564         return 1;
2565 }
2566
2567 static int ext4_da_write_end(struct file *file,
2568                              struct address_space *mapping,
2569                              loff_t pos, unsigned len, unsigned copied,
2570                              struct page *page, void *fsdata)
2571 {
2572         struct inode *inode = mapping->host;
2573         int ret = 0, ret2;
2574         handle_t *handle = ext4_journal_current_handle();
2575         loff_t new_i_size;
2576         unsigned long start, end;
2577         int write_mode = (int)(unsigned long)fsdata;
2578
2579         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2580                 switch (ext4_inode_journal_mode(inode)) {
2581                 case EXT4_INODE_ORDERED_DATA_MODE:
2582                         return ext4_ordered_write_end(file, mapping, pos,
2583                                         len, copied, page, fsdata);
2584                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2585                         return ext4_writeback_write_end(file, mapping, pos,
2586                                         len, copied, page, fsdata);
2587                 default:
2588                         BUG();
2589                 }
2590         }
2591
2592         trace_ext4_da_write_end(inode, pos, len, copied);
2593         start = pos & (PAGE_CACHE_SIZE - 1);
2594         end = start + copied - 1;
2595
2596         /*
2597          * generic_write_end() will run mark_inode_dirty() if i_size
2598          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2599          * into that.
2600          */
2601
2602         new_i_size = pos + copied;
2603         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2604                 if (ext4_da_should_update_i_disksize(page, end)) {
2605                         down_write(&EXT4_I(inode)->i_data_sem);
2606                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2607                                 /*
2608                                  * Updating i_disksize when extending file
2609                                  * without needing block allocation
2610                                  */
2611                                 if (ext4_should_order_data(inode))
2612                                         ret = ext4_jbd2_file_inode(handle,
2613                                                                    inode);
2614
2615                                 EXT4_I(inode)->i_disksize = new_i_size;
2616                         }
2617                         up_write(&EXT4_I(inode)->i_data_sem);
2618                         /* We need to mark inode dirty even if
2619                          * new_i_size is less that inode->i_size
2620                          * bu greater than i_disksize.(hint delalloc)
2621                          */
2622                         ext4_mark_inode_dirty(handle, inode);
2623                 }
2624         }
2625         ret2 = generic_write_end(file, mapping, pos, len, copied,
2626                                                         page, fsdata);
2627         copied = ret2;
2628         if (ret2 < 0)
2629                 ret = ret2;
2630         ret2 = ext4_journal_stop(handle);
2631         if (!ret)
2632                 ret = ret2;
2633
2634         return ret ? ret : copied;
2635 }
2636
2637 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2638 {
2639         /*
2640          * Drop reserved blocks
2641          */
2642         BUG_ON(!PageLocked(page));
2643         if (!page_has_buffers(page))
2644                 goto out;
2645
2646         ext4_da_page_release_reservation(page, offset);
2647
2648 out:
2649         ext4_invalidatepage(page, offset);
2650
2651         return;
2652 }
2653
2654 /*
2655  * Force all delayed allocation blocks to be allocated for a given inode.
2656  */
2657 int ext4_alloc_da_blocks(struct inode *inode)
2658 {
2659         trace_ext4_alloc_da_blocks(inode);
2660
2661         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2662             !EXT4_I(inode)->i_reserved_meta_blocks)
2663                 return 0;
2664
2665         /*
2666          * We do something simple for now.  The filemap_flush() will
2667          * also start triggering a write of the data blocks, which is
2668          * not strictly speaking necessary (and for users of
2669          * laptop_mode, not even desirable).  However, to do otherwise
2670          * would require replicating code paths in:
2671          *
2672          * ext4_da_writepages() ->
2673          *    write_cache_pages() ---> (via passed in callback function)
2674          *        __mpage_da_writepage() -->
2675          *           mpage_add_bh_to_extent()
2676          *           mpage_da_map_blocks()
2677          *
2678          * The problem is that write_cache_pages(), located in
2679          * mm/page-writeback.c, marks pages clean in preparation for
2680          * doing I/O, which is not desirable if we're not planning on
2681          * doing I/O at all.
2682          *
2683          * We could call write_cache_pages(), and then redirty all of
2684          * the pages by calling redirty_page_for_writepage() but that
2685          * would be ugly in the extreme.  So instead we would need to
2686          * replicate parts of the code in the above functions,
2687          * simplifying them because we wouldn't actually intend to
2688          * write out the pages, but rather only collect contiguous
2689          * logical block extents, call the multi-block allocator, and
2690          * then update the buffer heads with the block allocations.
2691          *
2692          * For now, though, we'll cheat by calling filemap_flush(),
2693          * which will map the blocks, and start the I/O, but not
2694          * actually wait for the I/O to complete.
2695          */
2696         return filemap_flush(inode->i_mapping);
2697 }
2698
2699 /*
2700  * bmap() is special.  It gets used by applications such as lilo and by
2701  * the swapper to find the on-disk block of a specific piece of data.
2702  *
2703  * Naturally, this is dangerous if the block concerned is still in the
2704  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2705  * filesystem and enables swap, then they may get a nasty shock when the
2706  * data getting swapped to that swapfile suddenly gets overwritten by
2707  * the original zero's written out previously to the journal and
2708  * awaiting writeback in the kernel's buffer cache.
2709  *
2710  * So, if we see any bmap calls here on a modified, data-journaled file,
2711  * take extra steps to flush any blocks which might be in the cache.
2712  */
2713 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2714 {
2715         struct inode *inode = mapping->host;
2716         journal_t *journal;
2717         int err;
2718
2719         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2720                         test_opt(inode->i_sb, DELALLOC)) {
2721                 /*
2722                  * With delalloc we want to sync the file
2723                  * so that we can make sure we allocate
2724                  * blocks for file
2725                  */
2726                 filemap_write_and_wait(mapping);
2727         }
2728
2729         if (EXT4_JOURNAL(inode) &&
2730             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2731                 /*
2732                  * This is a REALLY heavyweight approach, but the use of
2733                  * bmap on dirty files is expected to be extremely rare:
2734                  * only if we run lilo or swapon on a freshly made file
2735                  * do we expect this to happen.
2736                  *
2737                  * (bmap requires CAP_SYS_RAWIO so this does not
2738                  * represent an unprivileged user DOS attack --- we'd be
2739                  * in trouble if mortal users could trigger this path at
2740                  * will.)
2741                  *
2742                  * NB. EXT4_STATE_JDATA is not set on files other than
2743                  * regular files.  If somebody wants to bmap a directory
2744                  * or symlink and gets confused because the buffer
2745                  * hasn't yet been flushed to disk, they deserve
2746                  * everything they get.
2747                  */
2748
2749                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2750                 journal = EXT4_JOURNAL(inode);
2751                 jbd2_journal_lock_updates(journal);
2752                 err = jbd2_journal_flush(journal);
2753                 jbd2_journal_unlock_updates(journal);
2754
2755                 if (err)
2756                         return 0;
2757         }
2758
2759         return generic_block_bmap(mapping, block, ext4_get_block);
2760 }
2761
2762 static int ext4_readpage(struct file *file, struct page *page)
2763 {
2764         trace_ext4_readpage(page);
2765         return mpage_readpage(page, ext4_get_block);
2766 }
2767
2768 static int
2769 ext4_readpages(struct file *file, struct address_space *mapping,
2770                 struct list_head *pages, unsigned nr_pages)
2771 {
2772         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2773 }
2774
2775 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2776 {
2777         struct buffer_head *head, *bh;
2778         unsigned int curr_off = 0;
2779
2780         if (!page_has_buffers(page))
2781                 return;
2782         head = bh = page_buffers(page);
2783         do {
2784                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2785                                         && bh->b_private) {
2786                         ext4_free_io_end(bh->b_private);
2787                         bh->b_private = NULL;
2788                         bh->b_end_io = NULL;
2789                 }
2790                 curr_off = curr_off + bh->b_size;
2791                 bh = bh->b_this_page;
2792         } while (bh != head);
2793 }
2794
2795 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2796 {
2797         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2798
2799         trace_ext4_invalidatepage(page, offset);
2800
2801         /*
2802          * free any io_end structure allocated for buffers to be discarded
2803          */
2804         if (ext4_should_dioread_nolock(page->mapping->host))
2805                 ext4_invalidatepage_free_endio(page, offset);
2806         /*
2807          * If it's a full truncate we just forget about the pending dirtying
2808          */
2809         if (offset == 0)
2810                 ClearPageChecked(page);
2811
2812         if (journal)
2813                 jbd2_journal_invalidatepage(journal, page, offset);
2814         else
2815                 block_invalidatepage(page, offset);
2816 }
2817
2818 static int ext4_releasepage(struct page *page, gfp_t wait)
2819 {
2820         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2821
2822         trace_ext4_releasepage(page);
2823
2824         WARN_ON(PageChecked(page));
2825         if (!page_has_buffers(page))
2826                 return 0;
2827         if (journal)
2828                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2829         else
2830                 return try_to_free_buffers(page);
2831 }
2832
2833 /*
2834  * ext4_get_block used when preparing for a DIO write or buffer write.
2835  * We allocate an uinitialized extent if blocks haven't been allocated.
2836  * The extent will be converted to initialized after the IO is complete.
2837  */
2838 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2839                    struct buffer_head *bh_result, int create)
2840 {
2841         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2842                    inode->i_ino, create);
2843         return _ext4_get_block(inode, iblock, bh_result,
2844                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2845 }
2846
2847 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2848                    struct buffer_head *bh_result, int flags)
2849 {
2850         handle_t *handle = ext4_journal_current_handle();
2851         struct ext4_map_blocks map;
2852         int ret = 0;
2853
2854         ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n",
2855                    inode->i_ino, flags);
2856
2857         flags = EXT4_GET_BLOCKS_NO_LOCK;
2858
2859         map.m_lblk = iblock;
2860         map.m_len = bh_result->b_size >> inode->i_blkbits;
2861
2862         ret = ext4_map_blocks(handle, inode, &map, flags);
2863         if (ret > 0) {
2864                 map_bh(bh_result, inode->i_sb, map.m_pblk);
2865                 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
2866                                         map.m_flags;
2867                 bh_result->b_size = inode->i_sb->s_blocksize * map.m_len;
2868                 ret = 0;
2869         }
2870         return ret;
2871 }
2872
2873 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2874                             ssize_t size, void *private, int ret,
2875                             bool is_async)
2876 {
2877         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2878         ext4_io_end_t *io_end = iocb->private;
2879         struct workqueue_struct *wq;
2880         unsigned long flags;
2881         struct ext4_inode_info *ei;
2882
2883         /* if not async direct IO or dio with 0 bytes write, just return */
2884         if (!io_end || !size)
2885                 goto out;
2886
2887         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2888                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2889                   iocb->private, io_end->inode->i_ino, iocb, offset,
2890                   size);
2891
2892         iocb->private = NULL;
2893
2894         /* if not aio dio with unwritten extents, just free io and return */
2895         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2896                 ext4_free_io_end(io_end);
2897 out:
2898                 if (is_async)
2899                         aio_complete(iocb, ret, 0);
2900                 inode_dio_done(inode);
2901                 return;
2902         }
2903
2904         io_end->offset = offset;
2905         io_end->size = size;
2906         if (is_async) {
2907                 io_end->iocb = iocb;
2908                 io_end->result = ret;
2909         }
2910         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2911
2912         /* Add the io_end to per-inode completed aio dio list*/
2913         ei = EXT4_I(io_end->inode);
2914         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2915         list_add_tail(&io_end->list, &ei->i_completed_io_list);
2916         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2917
2918         /* queue the work to convert unwritten extents to written */
2919         queue_work(wq, &io_end->work);
2920 }
2921
2922 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2923 {
2924         ext4_io_end_t *io_end = bh->b_private;
2925         struct workqueue_struct *wq;
2926         struct inode *inode;
2927         unsigned long flags;
2928
2929         if (!test_clear_buffer_uninit(bh) || !io_end)
2930                 goto out;
2931
2932         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2933                 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2934                          "sb umounted, discard end_io request for inode %lu",
2935                          io_end->inode->i_ino);
2936                 ext4_free_io_end(io_end);
2937                 goto out;
2938         }
2939
2940         /*
2941          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2942          * but being more careful is always safe for the future change.
2943          */
2944         inode = io_end->inode;
2945         ext4_set_io_unwritten_flag(inode, io_end);
2946
2947         /* Add the io_end to per-inode completed io list*/
2948         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2949         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2950         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2951
2952         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2953         /* queue the work to convert unwritten extents to written */
2954         queue_work(wq, &io_end->work);
2955 out:
2956         bh->b_private = NULL;
2957         bh->b_end_io = NULL;
2958         clear_buffer_uninit(bh);
2959         end_buffer_async_write(bh, uptodate);
2960 }
2961
2962 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2963 {
2964         ext4_io_end_t *io_end;
2965         struct page *page = bh->b_page;
2966         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2967         size_t size = bh->b_size;
2968
2969 retry:
2970         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2971         if (!io_end) {
2972                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2973                 schedule();
2974                 goto retry;
2975         }
2976         io_end->offset = offset;
2977         io_end->size = size;
2978         /*
2979          * We need to hold a reference to the page to make sure it
2980          * doesn't get evicted before ext4_end_io_work() has a chance
2981          * to convert the extent from written to unwritten.
2982          */
2983         io_end->page = page;
2984         get_page(io_end->page);
2985
2986         bh->b_private = io_end;
2987         bh->b_end_io = ext4_end_io_buffer_write;
2988         return 0;
2989 }
2990
2991 /*
2992  * For ext4 extent files, ext4 will do direct-io write to holes,
2993  * preallocated extents, and those write extend the file, no need to
2994  * fall back to buffered IO.
2995  *
2996  * For holes, we fallocate those blocks, mark them as uninitialized
2997  * If those blocks were preallocated, we mark sure they are splited, but
2998  * still keep the range to write as uninitialized.
2999  *
3000  * The unwrritten extents will be converted to written when DIO is completed.
3001  * For async direct IO, since the IO may still pending when return, we
3002  * set up an end_io call back function, which will do the conversion
3003  * when async direct IO completed.
3004  *
3005  * If the O_DIRECT write will extend the file then add this inode to the
3006  * orphan list.  So recovery will truncate it back to the original size
3007  * if the machine crashes during the write.
3008  *
3009  */
3010 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3011                               const struct iovec *iov, loff_t offset,
3012                               unsigned long nr_segs)
3013 {
3014         struct file *file = iocb->ki_filp;
3015         struct inode *inode = file->f_mapping->host;
3016         ssize_t ret;
3017         size_t count = iov_length(iov, nr_segs);
3018
3019         loff_t final_size = offset + count;
3020         if (rw == WRITE && final_size <= inode->i_size) {
3021                 int overwrite = 0;
3022
3023                 BUG_ON(iocb->private == NULL);
3024
3025                 /* If we do a overwrite dio, i_mutex locking can be released */
3026                 overwrite = *((int *)iocb->private);
3027
3028                 if (overwrite) {
3029                         down_read(&EXT4_I(inode)->i_data_sem);
3030                         mutex_unlock(&inode->i_mutex);
3031                 }
3032
3033                 /*
3034                  * We could direct write to holes and fallocate.
3035                  *
3036                  * Allocated blocks to fill the hole are marked as uninitialized
3037                  * to prevent parallel buffered read to expose the stale data
3038                  * before DIO complete the data IO.
3039                  *
3040                  * As to previously fallocated extents, ext4 get_block
3041                  * will just simply mark the buffer mapped but still
3042                  * keep the extents uninitialized.
3043                  *
3044                  * for non AIO case, we will convert those unwritten extents
3045                  * to written after return back from blockdev_direct_IO.
3046                  *
3047                  * for async DIO, the conversion needs to be defered when
3048                  * the IO is completed. The ext4 end_io callback function
3049                  * will be called to take care of the conversion work.
3050                  * Here for async case, we allocate an io_end structure to
3051                  * hook to the iocb.
3052                  */
3053                 iocb->private = NULL;
3054                 EXT4_I(inode)->cur_aio_dio = NULL;
3055                 if (!is_sync_kiocb(iocb)) {
3056                         ext4_io_end_t *io_end =
3057                                 ext4_init_io_end(inode, GFP_NOFS);
3058                         if (!io_end) {
3059                                 ret = -ENOMEM;
3060                                 goto retake_lock;
3061                         }
3062                         io_end->flag |= EXT4_IO_END_DIRECT;
3063                         iocb->private = io_end;
3064                         /*
3065                          * we save the io structure for current async
3066                          * direct IO, so that later ext4_map_blocks()
3067                          * could flag the io structure whether there
3068                          * is a unwritten extents needs to be converted
3069                          * when IO is completed.
3070                          */
3071                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3072                 }
3073
3074                 if (overwrite)
3075                         ret = __blockdev_direct_IO(rw, iocb, inode,
3076                                                  inode->i_sb->s_bdev, iov,
3077                                                  offset, nr_segs,
3078                                                  ext4_get_block_write_nolock,
3079                                                  ext4_end_io_dio,
3080                                                  NULL,
3081                                                  0);
3082                 else
3083                         ret = __blockdev_direct_IO(rw, iocb, inode,
3084                                                  inode->i_sb->s_bdev, iov,
3085                                                  offset, nr_segs,
3086                                                  ext4_get_block_write,
3087                                                  ext4_end_io_dio,
3088                                                  NULL,
3089                                                  DIO_LOCKING);
3090                 if (iocb->private)
3091                         EXT4_I(inode)->cur_aio_dio = NULL;
3092                 /*
3093                  * The io_end structure takes a reference to the inode,
3094                  * that structure needs to be destroyed and the
3095                  * reference to the inode need to be dropped, when IO is
3096                  * complete, even with 0 byte write, or failed.
3097                  *
3098                  * In the successful AIO DIO case, the io_end structure will be
3099                  * desctroyed and the reference to the inode will be dropped
3100                  * after the end_io call back function is called.
3101                  *
3102                  * In the case there is 0 byte write, or error case, since
3103                  * VFS direct IO won't invoke the end_io call back function,
3104                  * we need to free the end_io structure here.
3105                  */
3106                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3107                         ext4_free_io_end(iocb->private);
3108                         iocb->private = NULL;
3109                 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3110                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3111                         int err;
3112                         /*
3113                          * for non AIO case, since the IO is already
3114                          * completed, we could do the conversion right here
3115                          */
3116                         err = ext4_convert_unwritten_extents(inode,
3117                                                              offset, ret);
3118                         if (err < 0)
3119                                 ret = err;
3120                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3121                 }
3122
3123         retake_lock:
3124                 /* take i_mutex locking again if we do a ovewrite dio */
3125                 if (overwrite) {
3126                         up_read(&EXT4_I(inode)->i_data_sem);
3127                         mutex_lock(&inode->i_mutex);
3128                 }
3129
3130                 return ret;
3131         }
3132
3133         /* for write the the end of file case, we fall back to old way */
3134         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3135 }
3136
3137 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3138                               const struct iovec *iov, loff_t offset,
3139                               unsigned long nr_segs)
3140 {
3141         struct file *file = iocb->ki_filp;
3142         struct inode *inode = file->f_mapping->host;
3143         ssize_t ret;
3144
3145         /*
3146          * If we are doing data journalling we don't support O_DIRECT
3147          */
3148         if (ext4_should_journal_data(inode))
3149                 return 0;
3150
3151         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3152         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3153                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3154         else
3155                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3156         trace_ext4_direct_IO_exit(inode, offset,
3157                                 iov_length(iov, nr_segs), rw, ret);
3158         return ret;
3159 }
3160
3161 /*
3162  * Pages can be marked dirty completely asynchronously from ext4's journalling
3163  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3164  * much here because ->set_page_dirty is called under VFS locks.  The page is
3165  * not necessarily locked.
3166  *
3167  * We cannot just dirty the page and leave attached buffers clean, because the
3168  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3169  * or jbddirty because all the journalling code will explode.
3170  *
3171  * So what we do is to mark the page "pending dirty" and next time writepage
3172  * is called, propagate that into the buffers appropriately.
3173  */
3174 static int ext4_journalled_set_page_dirty(struct page *page)
3175 {
3176         SetPageChecked(page);
3177         return __set_page_dirty_nobuffers(page);
3178 }
3179
3180 static const struct address_space_operations ext4_ordered_aops = {
3181         .readpage               = ext4_readpage,
3182         .readpages              = ext4_readpages,
3183         .writepage              = ext4_writepage,
3184         .write_begin            = ext4_write_begin,
3185         .write_end              = ext4_ordered_write_end,
3186         .bmap                   = ext4_bmap,
3187         .invalidatepage         = ext4_invalidatepage,
3188         .releasepage            = ext4_releasepage,
3189         .direct_IO              = ext4_direct_IO,
3190         .migratepage            = buffer_migrate_page,
3191         .is_partially_uptodate  = block_is_partially_uptodate,
3192         .error_remove_page      = generic_error_remove_page,
3193 };
3194
3195 static const struct address_space_operations ext4_writeback_aops = {
3196         .readpage               = ext4_readpage,
3197         .readpages              = ext4_readpages,
3198         .writepage              = ext4_writepage,
3199         .write_begin            = ext4_write_begin,
3200         .write_end              = ext4_writeback_write_end,
3201         .bmap                   = ext4_bmap,
3202         .invalidatepage         = ext4_invalidatepage,
3203         .releasepage            = ext4_releasepage,
3204         .direct_IO              = ext4_direct_IO,
3205         .migratepage            = buffer_migrate_page,
3206         .is_partially_uptodate  = block_is_partially_uptodate,
3207         .error_remove_page      = generic_error_remove_page,
3208 };
3209
3210 static const struct address_space_operations ext4_journalled_aops = {
3211         .readpage               = ext4_readpage,
3212         .readpages              = ext4_readpages,
3213         .writepage              = ext4_writepage,
3214         .write_begin            = ext4_write_begin,
3215         .write_end              = ext4_journalled_write_end,
3216         .set_page_dirty         = ext4_journalled_set_page_dirty,
3217         .bmap                   = ext4_bmap,
3218         .invalidatepage         = ext4_invalidatepage,
3219         .releasepage            = ext4_releasepage,
3220         .direct_IO              = ext4_direct_IO,
3221         .is_partially_uptodate  = block_is_partially_uptodate,
3222         .error_remove_page      = generic_error_remove_page,
3223 };
3224
3225 static const struct address_space_operations ext4_da_aops = {
3226         .readpage               = ext4_readpage,
3227         .readpages              = ext4_readpages,
3228         .writepage              = ext4_writepage,
3229         .writepages             = ext4_da_writepages,
3230         .write_begin            = ext4_da_write_begin,
3231         .write_end              = ext4_da_write_end,
3232         .bmap                   = ext4_bmap,
3233         .invalidatepage         = ext4_da_invalidatepage,
3234         .releasepage            = ext4_releasepage,
3235         .direct_IO              = ext4_direct_IO,
3236         .migratepage            = buffer_migrate_page,
3237         .is_partially_uptodate  = block_is_partially_uptodate,
3238         .error_remove_page      = generic_error_remove_page,
3239 };
3240
3241 void ext4_set_aops(struct inode *inode)
3242 {
3243         switch (ext4_inode_journal_mode(inode)) {
3244         case EXT4_INODE_ORDERED_DATA_MODE:
3245                 if (test_opt(inode->i_sb, DELALLOC))
3246                         inode->i_mapping->a_ops = &ext4_da_aops;
3247                 else
3248                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3249                 break;
3250         case EXT4_INODE_WRITEBACK_DATA_MODE:
3251                 if (test_opt(inode->i_sb, DELALLOC))
3252                         inode->i_mapping->a_ops = &ext4_da_aops;
3253                 else
3254                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3255                 break;
3256         case EXT4_INODE_JOURNAL_DATA_MODE:
3257                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3258                 break;
3259         default:
3260                 BUG();
3261         }
3262 }
3263
3264
3265 /*
3266  * ext4_discard_partial_page_buffers()
3267  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3268  * This function finds and locks the page containing the offset
3269  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3270  * Calling functions that already have the page locked should call
3271  * ext4_discard_partial_page_buffers_no_lock directly.
3272  */
3273 int ext4_discard_partial_page_buffers(handle_t *handle,
3274                 struct address_space *mapping, loff_t from,
3275                 loff_t length, int flags)
3276 {
3277         struct inode *inode = mapping->host;
3278         struct page *page;
3279         int err = 0;
3280
3281         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3282                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3283         if (!page)
3284                 return -ENOMEM;
3285
3286         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3287                 from, length, flags);
3288
3289         unlock_page(page);
3290         page_cache_release(page);
3291         return err;
3292 }
3293
3294 /*
3295  * ext4_discard_partial_page_buffers_no_lock()
3296  * Zeros a page range of length 'length' starting from offset 'from'.
3297  * Buffer heads that correspond to the block aligned regions of the
3298  * zeroed range will be unmapped.  Unblock aligned regions
3299  * will have the corresponding buffer head mapped if needed so that
3300  * that region of the page can be updated with the partial zero out.
3301  *
3302  * This function assumes that the page has already been  locked.  The
3303  * The range to be discarded must be contained with in the given page.
3304  * If the specified range exceeds the end of the page it will be shortened
3305  * to the end of the page that corresponds to 'from'.  This function is
3306  * appropriate for updating a page and it buffer heads to be unmapped and
3307  * zeroed for blocks that have been either released, or are going to be
3308  * released.
3309  *
3310  * handle: The journal handle
3311  * inode:  The files inode
3312  * page:   A locked page that contains the offset "from"
3313  * from:   The starting byte offset (from the begining of the file)
3314  *         to begin discarding
3315  * len:    The length of bytes to discard
3316  * flags:  Optional flags that may be used:
3317  *
3318  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3319  *         Only zero the regions of the page whose buffer heads
3320  *         have already been unmapped.  This flag is appropriate
3321  *         for updateing the contents of a page whose blocks may
3322  *         have already been released, and we only want to zero
3323  *         out the regions that correspond to those released blocks.
3324  *
3325  * Returns zero on sucess or negative on failure.
3326  */
3327 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3328                 struct inode *inode, struct page *page, loff_t from,
3329                 loff_t length, int flags)
3330 {
3331         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3332         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3333         unsigned int blocksize, max, pos;
3334         ext4_lblk_t iblock;
3335         struct buffer_head *bh;
3336         int err = 0;
3337
3338         blocksize = inode->i_sb->s_blocksize;
3339         max = PAGE_CACHE_SIZE - offset;
3340
3341         if (index != page->index)
3342                 return -EINVAL;
3343
3344         /*
3345          * correct length if it does not fall between
3346          * 'from' and the end of the page
3347          */
3348         if (length > max || length < 0)
3349                 length = max;
3350
3351         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3352
3353         if (!page_has_buffers(page))
3354                 create_empty_buffers(page, blocksize, 0);
3355
3356         /* Find the buffer that contains "offset" */
3357         bh = page_buffers(page);
3358         pos = blocksize;
3359         while (offset >= pos) {
3360                 bh = bh->b_this_page;
3361                 iblock++;
3362                 pos += blocksize;
3363         }
3364
3365         pos = offset;
3366         while (pos < offset + length) {
3367                 unsigned int end_of_block, range_to_discard;
3368
3369                 err = 0;
3370
3371                 /* The length of space left to zero and unmap */
3372                 range_to_discard = offset + length - pos;
3373
3374                 /* The length of space until the end of the block */
3375                 end_of_block = blocksize - (pos & (blocksize-1));
3376
3377                 /*
3378                  * Do not unmap or zero past end of block
3379                  * for this buffer head
3380                  */
3381                 if (range_to_discard > end_of_block)
3382                         range_to_discard = end_of_block;
3383
3384
3385                 /*
3386                  * Skip this buffer head if we are only zeroing unampped
3387                  * regions of the page
3388                  */
3389                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3390                         buffer_mapped(bh))
3391                                 goto next;
3392
3393                 /* If the range is block aligned, unmap */
3394                 if (range_to_discard == blocksize) {
3395                         clear_buffer_dirty(bh);
3396                         bh->b_bdev = NULL;
3397                         clear_buffer_mapped(bh);
3398                         clear_buffer_req(bh);
3399                         clear_buffer_new(bh);
3400                         clear_buffer_delay(bh);
3401                         clear_buffer_unwritten(bh);
3402                         clear_buffer_uptodate(bh);
3403                         zero_user(page, pos, range_to_discard);
3404                         BUFFER_TRACE(bh, "Buffer discarded");
3405                         goto next;
3406                 }
3407
3408                 /*
3409                  * If this block is not completely contained in the range
3410                  * to be discarded, then it is not going to be released. Because
3411                  * we need to keep this block, we need to make sure this part
3412                  * of the page is uptodate before we modify it by writeing
3413                  * partial zeros on it.
3414                  */
3415                 if (!buffer_mapped(bh)) {
3416                         /*
3417                          * Buffer head must be mapped before we can read
3418                          * from the block
3419                          */
3420                         BUFFER_TRACE(bh, "unmapped");
3421                         ext4_get_block(inode, iblock, bh, 0);
3422                         /* unmapped? It's a hole - nothing to do */
3423                         if (!buffer_mapped(bh)) {
3424                                 BUFFER_TRACE(bh, "still unmapped");
3425                                 goto next;
3426                         }
3427                 }
3428
3429                 /* Ok, it's mapped. Make sure it's up-to-date */
3430                 if (PageUptodate(page))
3431                         set_buffer_uptodate(bh);
3432
3433                 if (!buffer_uptodate(bh)) {
3434                         err = -EIO;
3435                         ll_rw_block(READ, 1, &bh);
3436                         wait_on_buffer(bh);
3437                         /* Uhhuh. Read error. Complain and punt.*/
3438                         if (!buffer_uptodate(bh))
3439                                 goto next;
3440                 }
3441
3442                 if (ext4_should_journal_data(inode)) {
3443                         BUFFER_TRACE(bh, "get write access");
3444                         err = ext4_journal_get_write_access(handle, bh);
3445                         if (err)
3446                                 goto next;
3447                 }
3448
3449                 zero_user(page, pos, range_to_discard);
3450
3451                 err = 0;
3452                 if (ext4_should_journal_data(inode)) {
3453                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3454                 } else
3455                         mark_buffer_dirty(bh);
3456
3457                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3458 next:
3459                 bh = bh->b_this_page;
3460                 iblock++;
3461                 pos += range_to_discard;
3462         }
3463
3464         return err;
3465 }
3466
3467 int ext4_can_truncate(struct inode *inode)
3468 {
3469         if (S_ISREG(inode->i_mode))
3470                 return 1;
3471         if (S_ISDIR(inode->i_mode))
3472                 return 1;
3473         if (S_ISLNK(inode->i_mode))
3474                 return !ext4_inode_is_fast_symlink(inode);
3475         return 0;
3476 }
3477
3478 /*
3479  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3480  * associated with the given offset and length
3481  *
3482  * @inode:  File inode
3483  * @offset: The offset where the hole will begin
3484  * @len:    The length of the hole
3485  *
3486  * Returns: 0 on sucess or negative on failure
3487  */
3488
3489 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3490 {
3491         struct inode *inode = file->f_path.dentry->d_inode;
3492         if (!S_ISREG(inode->i_mode))
3493                 return -EOPNOTSUPP;
3494
3495         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3496                 /* TODO: Add support for non extent hole punching */
3497                 return -EOPNOTSUPP;
3498         }
3499
3500         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3501                 /* TODO: Add support for bigalloc file systems */
3502                 return -EOPNOTSUPP;
3503         }
3504
3505         return ext4_ext_punch_hole(file, offset, length);
3506 }
3507
3508 /*
3509  * ext4_truncate()
3510  *
3511  * We block out ext4_get_block() block instantiations across the entire
3512  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3513  * simultaneously on behalf of the same inode.
3514  *
3515  * As we work through the truncate and commit bits of it to the journal there
3516  * is one core, guiding principle: the file's tree must always be consistent on
3517  * disk.  We must be able to restart the truncate after a crash.
3518  *
3519  * The file's tree may be transiently inconsistent in memory (although it
3520  * probably isn't), but whenever we close off and commit a journal transaction,
3521  * the contents of (the filesystem + the journal) must be consistent and
3522  * restartable.  It's pretty simple, really: bottom up, right to left (although
3523  * left-to-right works OK too).
3524  *
3525  * Note that at recovery time, journal replay occurs *before* the restart of
3526  * truncate against the orphan inode list.
3527  *
3528  * The committed inode has the new, desired i_size (which is the same as
3529  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3530  * that this inode's truncate did not complete and it will again call
3531  * ext4_truncate() to have another go.  So there will be instantiated blocks
3532  * to the right of the truncation point in a crashed ext4 filesystem.  But
3533  * that's fine - as long as they are linked from the inode, the post-crash
3534  * ext4_truncate() run will find them and release them.
3535  */
3536 void ext4_truncate(struct inode *inode)
3537 {
3538         trace_ext4_truncate_enter(inode);
3539
3540         if (!ext4_can_truncate(inode))
3541                 return;
3542
3543         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3544
3545         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3546                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3547
3548         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3549                 ext4_ext_truncate(inode);
3550         else
3551                 ext4_ind_truncate(inode);
3552
3553         trace_ext4_truncate_exit(inode);
3554 }
3555
3556 /*
3557  * ext4_get_inode_loc returns with an extra refcount against the inode's
3558  * underlying buffer_head on success. If 'in_mem' is true, we have all
3559  * data in memory that is needed to recreate the on-disk version of this
3560  * inode.
3561  */
3562 static int __ext4_get_inode_loc(struct inode *inode,
3563                                 struct ext4_iloc *iloc, int in_mem)
3564 {
3565         struct ext4_group_desc  *gdp;
3566         struct buffer_head      *bh;
3567         struct super_block      *sb = inode->i_sb;
3568         ext4_fsblk_t            block;
3569         int                     inodes_per_block, inode_offset;
3570
3571         iloc->bh = NULL;
3572         if (!ext4_valid_inum(sb, inode->i_ino))
3573                 return -EIO;
3574
3575         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3576         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3577         if (!gdp)
3578                 return -EIO;
3579
3580         /*
3581          * Figure out the offset within the block group inode table
3582          */
3583         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3584         inode_offset = ((inode->i_ino - 1) %
3585                         EXT4_INODES_PER_GROUP(sb));
3586         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3587         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3588
3589         bh = sb_getblk(sb, block);
3590         if (!bh) {
3591                 EXT4_ERROR_INODE_BLOCK(inode, block,
3592                                        "unable to read itable block");
3593                 return -EIO;
3594         }
3595         if (!buffer_uptodate(bh)) {
3596                 lock_buffer(bh);
3597
3598                 /*
3599                  * If the buffer has the write error flag, we have failed
3600                  * to write out another inode in the same block.  In this
3601                  * case, we don't have to read the block because we may
3602                  * read the old inode data successfully.
3603                  */
3604                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3605                         set_buffer_uptodate(bh);
3606
3607                 if (buffer_uptodate(bh)) {
3608                         /* someone brought it uptodate while we waited */
3609                         unlock_buffer(bh);
3610                         goto has_buffer;
3611                 }
3612
3613                 /*
3614                  * If we have all information of the inode in memory and this
3615                  * is the only valid inode in the block, we need not read the
3616                  * block.
3617                  */
3618                 if (in_mem) {
3619                         struct buffer_head *bitmap_bh;
3620                         int i, start;
3621
3622                         start = inode_offset & ~(inodes_per_block - 1);
3623
3624                         /* Is the inode bitmap in cache? */
3625                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3626                         if (!bitmap_bh)
3627                                 goto make_io;
3628
3629                         /*
3630                          * If the inode bitmap isn't in cache then the
3631                          * optimisation may end up performing two reads instead
3632                          * of one, so skip it.
3633                          */
3634                         if (!buffer_uptodate(bitmap_bh)) {
3635                                 brelse(bitmap_bh);
3636                                 goto make_io;
3637                         }
3638                         for (i = start; i < start + inodes_per_block; i++) {
3639                                 if (i == inode_offset)
3640                                         continue;
3641                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3642                                         break;
3643                         }
3644                         brelse(bitmap_bh);
3645                         if (i == start + inodes_per_block) {
3646                                 /* all other inodes are free, so skip I/O */
3647                                 memset(bh->b_data, 0, bh->b_size);
3648                                 set_buffer_uptodate(bh);
3649                                 unlock_buffer(bh);
3650                                 goto has_buffer;
3651                         }
3652                 }
3653
3654 make_io:
3655                 /*
3656                  * If we need to do any I/O, try to pre-readahead extra
3657                  * blocks from the inode table.
3658                  */
3659                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3660                         ext4_fsblk_t b, end, table;
3661                         unsigned num;
3662
3663                         table = ext4_inode_table(sb, gdp);
3664                         /* s_inode_readahead_blks is always a power of 2 */
3665                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3666                         if (table > b)
3667                                 b = table;
3668                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3669                         num = EXT4_INODES_PER_GROUP(sb);
3670                         if (ext4_has_group_desc_csum(sb))
3671                                 num -= ext4_itable_unused_count(sb, gdp);
3672                         table += num / inodes_per_block;
3673                         if (end > table)
3674                                 end = table;
3675                         while (b <= end)
3676                                 sb_breadahead(sb, b++);
3677                 }
3678
3679                 /*
3680                  * There are other valid inodes in the buffer, this inode
3681                  * has in-inode xattrs, or we don't have this inode in memory.
3682                  * Read the block from disk.
3683                  */
3684                 trace_ext4_load_inode(inode);
3685                 get_bh(bh);
3686                 bh->b_end_io = end_buffer_read_sync;
3687                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3688                 wait_on_buffer(bh);
3689                 if (!buffer_uptodate(bh)) {
3690                         EXT4_ERROR_INODE_BLOCK(inode, block,
3691                                                "unable to read itable block");
3692                         brelse(bh);
3693                         return -EIO;
3694                 }
3695         }
3696 has_buffer:
3697         iloc->bh = bh;
3698         return 0;
3699 }
3700
3701 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3702 {
3703         /* We have all inode data except xattrs in memory here. */
3704         return __ext4_get_inode_loc(inode, iloc,
3705                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3706 }
3707
3708 void ext4_set_inode_flags(struct inode *inode)
3709 {
3710         unsigned int flags = EXT4_I(inode)->i_flags;
3711
3712         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3713         if (flags & EXT4_SYNC_FL)
3714                 inode->i_flags |= S_SYNC;
3715         if (flags & EXT4_APPEND_FL)
3716                 inode->i_flags |= S_APPEND;
3717         if (flags & EXT4_IMMUTABLE_FL)
3718                 inode->i_flags |= S_IMMUTABLE;
3719         if (flags & EXT4_NOATIME_FL)
3720                 inode->i_flags |= S_NOATIME;
3721         if (flags & EXT4_DIRSYNC_FL)
3722                 inode->i_flags |= S_DIRSYNC;
3723 }
3724
3725 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3726 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3727 {
3728         unsigned int vfs_fl;
3729         unsigned long old_fl, new_fl;
3730
3731         do {
3732                 vfs_fl = ei->vfs_inode.i_flags;
3733                 old_fl = ei->i_flags;
3734                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3735                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3736                                 EXT4_DIRSYNC_FL);
3737                 if (vfs_fl & S_SYNC)
3738                         new_fl |= EXT4_SYNC_FL;
3739                 if (vfs_fl & S_APPEND)
3740                         new_fl |= EXT4_APPEND_FL;
3741                 if (vfs_fl & S_IMMUTABLE)
3742                         new_fl |= EXT4_IMMUTABLE_FL;
3743                 if (vfs_fl & S_NOATIME)
3744                         new_fl |= EXT4_NOATIME_FL;
3745                 if (vfs_fl & S_DIRSYNC)
3746                         new_fl |= EXT4_DIRSYNC_FL;
3747         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3748 }
3749
3750 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3751                                   struct ext4_inode_info *ei)
3752 {
3753         blkcnt_t i_blocks ;
3754         struct inode *inode = &(ei->vfs_inode);
3755         struct super_block *sb = inode->i_sb;
3756
3757         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3758                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3759                 /* we are using combined 48 bit field */
3760                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3761                                         le32_to_cpu(raw_inode->i_blocks_lo);
3762                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3763                         /* i_blocks represent file system block size */
3764                         return i_blocks  << (inode->i_blkbits - 9);
3765                 } else {
3766                         return i_blocks;
3767                 }
3768         } else {
3769                 return le32_to_cpu(raw_inode->i_blocks_lo);
3770         }
3771 }
3772
3773 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3774 {
3775         struct ext4_iloc iloc;
3776         struct ext4_inode *raw_inode;
3777         struct ext4_inode_info *ei;
3778         struct inode *inode;
3779         journal_t *journal = EXT4_SB(sb)->s_journal;
3780         long ret;
3781         int block;
3782         uid_t i_uid;
3783         gid_t i_gid;
3784
3785         inode = iget_locked(sb, ino);
3786         if (!inode)
3787                 return ERR_PTR(-ENOMEM);
3788         if (!(inode->i_state & I_NEW))
3789                 return inode;
3790
3791         ei = EXT4_I(inode);
3792         iloc.bh = NULL;
3793
3794         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3795         if (ret < 0)
3796                 goto bad_inode;
3797         raw_inode = ext4_raw_inode(&iloc);
3798
3799         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3800                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3801                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3802                     EXT4_INODE_SIZE(inode->i_sb)) {
3803                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3804                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3805                                 EXT4_INODE_SIZE(inode->i_sb));
3806                         ret = -EIO;
3807                         goto bad_inode;
3808                 }
3809         } else
3810                 ei->i_extra_isize = 0;
3811
3812         /* Precompute checksum seed for inode metadata */
3813         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3814                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3815                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3816                 __u32 csum;
3817                 __le32 inum = cpu_to_le32(inode->i_ino);
3818                 __le32 gen = raw_inode->i_generation;
3819                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3820                                    sizeof(inum));
3821                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3822                                               sizeof(gen));
3823         }
3824
3825         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3826                 EXT4_ERROR_INODE(inode, "checksum invalid");
3827                 ret = -EIO;
3828                 goto bad_inode;
3829         }
3830
3831         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3832         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3833         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3834         if (!(test_opt(inode->i_sb, NO_UID32))) {
3835                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3836                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3837         }
3838         i_uid_write(inode, i_uid);
3839         i_gid_write(inode, i_gid);
3840         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3841
3842         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3843         ei->i_dir_start_lookup = 0;
3844         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3845         /* We now have enough fields to check if the inode was active or not.
3846          * This is needed because nfsd might try to access dead inodes
3847          * the test is that same one that e2fsck uses
3848          * NeilBrown 1999oct15
3849          */
3850         if (inode->i_nlink == 0) {
3851                 if (inode->i_mode == 0 ||
3852                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3853                         /* this inode is deleted */
3854                         ret = -ESTALE;
3855                         goto bad_inode;
3856                 }
3857                 /* The only unlinked inodes we let through here have
3858                  * valid i_mode and are being read by the orphan
3859                  * recovery code: that's fine, we're about to complete
3860                  * the process of deleting those. */
3861         }
3862         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3863         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3864         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3865         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3866                 ei->i_file_acl |=
3867                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3868         inode->i_size = ext4_isize(raw_inode);
3869         ei->i_disksize = inode->i_size;
3870 #ifdef CONFIG_QUOTA
3871         ei->i_reserved_quota = 0;
3872 #endif
3873         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3874         ei->i_block_group = iloc.block_group;
3875         ei->i_last_alloc_group = ~0;
3876         /*
3877          * NOTE! The in-memory inode i_data array is in little-endian order
3878          * even on big-endian machines: we do NOT byteswap the block numbers!
3879          */
3880         for (block = 0; block < EXT4_N_BLOCKS; block++)
3881                 ei->i_data[block] = raw_inode->i_block[block];
3882         INIT_LIST_HEAD(&ei->i_orphan);
3883
3884         /*
3885          * Set transaction id's of transactions that have to be committed
3886          * to finish f[data]sync. We set them to currently running transaction
3887          * as we cannot be sure that the inode or some of its metadata isn't
3888          * part of the transaction - the inode could have been reclaimed and
3889          * now it is reread from disk.
3890          */
3891         if (journal) {
3892                 transaction_t *transaction;
3893                 tid_t tid;
3894
3895                 read_lock(&journal->j_state_lock);
3896                 if (journal->j_running_transaction)
3897                         transaction = journal->j_running_transaction;
3898                 else
3899                         transaction = journal->j_committing_transaction;
3900                 if (transaction)
3901                         tid = transaction->t_tid;
3902                 else
3903                         tid = journal->j_commit_sequence;
3904                 read_unlock(&journal->j_state_lock);
3905                 ei->i_sync_tid = tid;
3906                 ei->i_datasync_tid = tid;
3907         }
3908
3909         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3910                 if (ei->i_extra_isize == 0) {
3911                         /* The extra space is currently unused. Use it. */
3912                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3913                                             EXT4_GOOD_OLD_INODE_SIZE;
3914                 } else {
3915                         __le32 *magic = (void *)raw_inode +
3916                                         EXT4_GOOD_OLD_INODE_SIZE +
3917                                         ei->i_extra_isize;
3918                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3919                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3920                 }
3921         }
3922
3923         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3924         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3925         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3926         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3927
3928         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3929         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3930                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3931                         inode->i_version |=
3932                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3933         }
3934
3935         ret = 0;
3936         if (ei->i_file_acl &&
3937             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3938                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3939                                  ei->i_file_acl);
3940                 ret = -EIO;
3941                 goto bad_inode;
3942         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3943                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3944                     (S_ISLNK(inode->i_mode) &&
3945                      !ext4_inode_is_fast_symlink(inode)))
3946                         /* Validate extent which is part of inode */
3947                         ret = ext4_ext_check_inode(inode);
3948         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3949                    (S_ISLNK(inode->i_mode) &&
3950                     !ext4_inode_is_fast_symlink(inode))) {
3951                 /* Validate block references which are part of inode */
3952                 ret = ext4_ind_check_inode(inode);
3953         }
3954         if (ret)
3955                 goto bad_inode;
3956
3957         if (S_ISREG(inode->i_mode)) {
3958                 inode->i_op = &ext4_file_inode_operations;
3959                 inode->i_fop = &ext4_file_operations;
3960                 ext4_set_aops(inode);
3961         } else if (S_ISDIR(inode->i_mode)) {
3962                 inode->i_op = &ext4_dir_inode_operations;
3963                 inode->i_fop = &ext4_dir_operations;
3964         } else if (S_ISLNK(inode->i_mode)) {
3965                 if (ext4_inode_is_fast_symlink(inode)) {
3966                         inode->i_op = &ext4_fast_symlink_inode_operations;
3967                         nd_terminate_link(ei->i_data, inode->i_size,
3968                                 sizeof(ei->i_data) - 1);
3969                 } else {
3970                         inode->i_op = &ext4_symlink_inode_operations;
3971                         ext4_set_aops(inode);
3972                 }
3973         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3974               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3975                 inode->i_op = &ext4_special_inode_operations;
3976                 if (raw_inode->i_block[0])
3977                         init_special_inode(inode, inode->i_mode,
3978                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3979                 else
3980                         init_special_inode(inode, inode->i_mode,
3981                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3982         } else {
3983                 ret = -EIO;
3984                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3985                 goto bad_inode;
3986         }
3987         brelse(iloc.bh);
3988         ext4_set_inode_flags(inode);
3989         unlock_new_inode(inode);
3990         return inode;
3991
3992 bad_inode:
3993         brelse(iloc.bh);
3994         iget_failed(inode);
3995         return ERR_PTR(ret);
3996 }
3997
3998 static int ext4_inode_blocks_set(handle_t *handle,
3999                                 struct ext4_inode *raw_inode,
4000                                 struct ext4_inode_info *ei)
4001 {
4002         struct inode *inode = &(ei->vfs_inode);
4003         u64 i_blocks = inode->i_blocks;
4004         struct super_block *sb = inode->i_sb;
4005
4006         if (i_blocks <= ~0U) {
4007                 /*
4008                  * i_blocks can be represnted in a 32 bit variable
4009                  * as multiple of 512 bytes
4010                  */
4011                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4012                 raw_inode->i_blocks_high = 0;
4013                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4014                 return 0;
4015         }
4016         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4017                 return -EFBIG;
4018
4019         if (i_blocks <= 0xffffffffffffULL) {
4020                 /*
4021                  * i_blocks can be represented in a 48 bit variable
4022                  * as multiple of 512 bytes
4023                  */
4024                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4025                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4026                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4027         } else {
4028                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4029                 /* i_block is stored in file system block size */
4030                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4031                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4032                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4033         }
4034         return 0;
4035 }
4036
4037 /*
4038  * Post the struct inode info into an on-disk inode location in the
4039  * buffer-cache.  This gobbles the caller's reference to the
4040  * buffer_head in the inode location struct.
4041  *
4042  * The caller must have write access to iloc->bh.
4043  */
4044 static int ext4_do_update_inode(handle_t *handle,
4045                                 struct inode *inode,
4046                                 struct ext4_iloc *iloc)
4047 {
4048         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4049         struct ext4_inode_info *ei = EXT4_I(inode);
4050         struct buffer_head *bh = iloc->bh;
4051         int err = 0, rc, block;
4052         uid_t i_uid;
4053         gid_t i_gid;
4054
4055         /* For fields not not tracking in the in-memory inode,
4056          * initialise them to zero for new inodes. */
4057         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4058                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4059
4060         ext4_get_inode_flags(ei);
4061         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4062         i_uid = i_uid_read(inode);
4063         i_gid = i_gid_read(inode);
4064         if (!(test_opt(inode->i_sb, NO_UID32))) {
4065                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4066                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4067 /*
4068  * Fix up interoperability with old kernels. Otherwise, old inodes get
4069  * re-used with the upper 16 bits of the uid/gid intact
4070  */
4071                 if (!ei->i_dtime) {
4072                         raw_inode->i_uid_high =
4073                                 cpu_to_le16(high_16_bits(i_uid));
4074                         raw_inode->i_gid_high =
4075                                 cpu_to_le16(high_16_bits(i_gid));
4076                 } else {
4077                         raw_inode->i_uid_high = 0;
4078                         raw_inode->i_gid_high = 0;
4079                 }
4080         } else {
4081                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4082                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4083                 raw_inode->i_uid_high = 0;
4084                 raw_inode->i_gid_high = 0;
4085         }
4086         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4087
4088         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4089         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4090         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4091         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4092
4093         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4094                 goto out_brelse;
4095         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4096         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4097         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4098             cpu_to_le32(EXT4_OS_HURD))
4099                 raw_inode->i_file_acl_high =
4100                         cpu_to_le16(ei->i_file_acl >> 32);
4101         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4102         ext4_isize_set(raw_inode, ei->i_disksize);
4103         if (ei->i_disksize > 0x7fffffffULL) {
4104                 struct super_block *sb = inode->i_sb;
4105                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4106                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4107                                 EXT4_SB(sb)->s_es->s_rev_level ==
4108                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4109                         /* If this is the first large file
4110                          * created, add a flag to the superblock.
4111                          */
4112                         err = ext4_journal_get_write_access(handle,
4113                                         EXT4_SB(sb)->s_sbh);
4114                         if (err)
4115                                 goto out_brelse;
4116                         ext4_update_dynamic_rev(sb);
4117                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4118                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4119                         ext4_handle_sync(handle);
4120                         err = ext4_handle_dirty_super(handle, sb);
4121                 }
4122         }
4123         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4124         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4125                 if (old_valid_dev(inode->i_rdev)) {
4126                         raw_inode->i_block[0] =
4127                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4128                         raw_inode->i_block[1] = 0;
4129                 } else {
4130                         raw_inode->i_block[0] = 0;
4131                         raw_inode->i_block[1] =
4132                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4133                         raw_inode->i_block[2] = 0;
4134                 }
4135         } else
4136                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4137                         raw_inode->i_block[block] = ei->i_data[block];
4138
4139         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4140         if (ei->i_extra_isize) {
4141                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4142                         raw_inode->i_version_hi =
4143                         cpu_to_le32(inode->i_version >> 32);
4144                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4145         }
4146
4147         ext4_inode_csum_set(inode, raw_inode, ei);
4148
4149         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4150         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4151         if (!err)
4152                 err = rc;
4153         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4154
4155         ext4_update_inode_fsync_trans(handle, inode, 0);
4156 out_brelse:
4157         brelse(bh);
4158         ext4_std_error(inode->i_sb, err);
4159         return err;
4160 }
4161
4162 /*
4163  * ext4_write_inode()
4164  *
4165  * We are called from a few places:
4166  *
4167  * - Within generic_file_write() for O_SYNC files.
4168  *   Here, there will be no transaction running. We wait for any running
4169  *   trasnaction to commit.
4170  *
4171  * - Within sys_sync(), kupdate and such.
4172  *   We wait on commit, if tol to.
4173  *
4174  * - Within prune_icache() (PF_MEMALLOC == true)
4175  *   Here we simply return.  We can't afford to block kswapd on the
4176  *   journal commit.
4177  *
4178  * In all cases it is actually safe for us to return without doing anything,
4179  * because the inode has been copied into a raw inode buffer in
4180  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4181  * knfsd.
4182  *
4183  * Note that we are absolutely dependent upon all inode dirtiers doing the
4184  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4185  * which we are interested.
4186  *
4187  * It would be a bug for them to not do this.  The code:
4188  *
4189  *      mark_inode_dirty(inode)
4190  *      stuff();
4191  *      inode->i_size = expr;
4192  *
4193  * is in error because a kswapd-driven write_inode() could occur while
4194  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4195  * will no longer be on the superblock's dirty inode list.
4196  */
4197 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4198 {
4199         int err;
4200
4201         if (current->flags & PF_MEMALLOC)
4202                 return 0;
4203
4204         if (EXT4_SB(inode->i_sb)->s_journal) {
4205                 if (ext4_journal_current_handle()) {
4206                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4207                         dump_stack();
4208                         return -EIO;
4209                 }
4210
4211                 if (wbc->sync_mode != WB_SYNC_ALL)
4212                         return 0;
4213
4214                 err = ext4_force_commit(inode->i_sb);
4215         } else {
4216                 struct ext4_iloc iloc;
4217
4218                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4219                 if (err)
4220                         return err;
4221                 if (wbc->sync_mode == WB_SYNC_ALL)
4222                         sync_dirty_buffer(iloc.bh);
4223                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4224                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4225                                          "IO error syncing inode");
4226                         err = -EIO;
4227                 }
4228                 brelse(iloc.bh);
4229         }
4230         return err;
4231 }
4232
4233 /*
4234  * ext4_setattr()
4235  *
4236  * Called from notify_change.
4237  *
4238  * We want to trap VFS attempts to truncate the file as soon as
4239  * possible.  In particular, we want to make sure that when the VFS
4240  * shrinks i_size, we put the inode on the orphan list and modify
4241  * i_disksize immediately, so that during the subsequent flushing of
4242  * dirty pages and freeing of disk blocks, we can guarantee that any
4243  * commit will leave the blocks being flushed in an unused state on
4244  * disk.  (On recovery, the inode will get truncated and the blocks will
4245  * be freed, so we have a strong guarantee that no future commit will
4246  * leave these blocks visible to the user.)
4247  *
4248  * Another thing we have to assure is that if we are in ordered mode
4249  * and inode is still attached to the committing transaction, we must
4250  * we start writeout of all the dirty pages which are being truncated.
4251  * This way we are sure that all the data written in the previous
4252  * transaction are already on disk (truncate waits for pages under
4253  * writeback).
4254  *
4255  * Called with inode->i_mutex down.
4256  */
4257 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4258 {
4259         struct inode *inode = dentry->d_inode;
4260         int error, rc = 0;
4261         int orphan = 0;
4262         const unsigned int ia_valid = attr->ia_valid;
4263
4264         error = inode_change_ok(inode, attr);
4265         if (error)
4266                 return error;
4267
4268         if (is_quota_modification(inode, attr))
4269                 dquot_initialize(inode);
4270         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4271             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4272                 handle_t *handle;
4273
4274                 /* (user+group)*(old+new) structure, inode write (sb,
4275                  * inode block, ? - but truncate inode update has it) */
4276                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4277                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4278                 if (IS_ERR(handle)) {
4279                         error = PTR_ERR(handle);
4280                         goto err_out;
4281                 }
4282                 error = dquot_transfer(inode, attr);
4283                 if (error) {
4284                         ext4_journal_stop(handle);
4285                         return error;
4286                 }
4287                 /* Update corresponding info in inode so that everything is in
4288                  * one transaction */
4289                 if (attr->ia_valid & ATTR_UID)
4290                         inode->i_uid = attr->ia_uid;
4291                 if (attr->ia_valid & ATTR_GID)
4292                         inode->i_gid = attr->ia_gid;
4293                 error = ext4_mark_inode_dirty(handle, inode);
4294                 ext4_journal_stop(handle);
4295         }
4296
4297         if (attr->ia_valid & ATTR_SIZE) {
4298                 inode_dio_wait(inode);
4299
4300                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4301                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4302
4303                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4304                                 return -EFBIG;
4305                 }
4306         }
4307
4308         if (S_ISREG(inode->i_mode) &&
4309             attr->ia_valid & ATTR_SIZE &&
4310             (attr->ia_size < inode->i_size)) {
4311                 handle_t *handle;
4312
4313                 handle = ext4_journal_start(inode, 3);
4314                 if (IS_ERR(handle)) {
4315                         error = PTR_ERR(handle);
4316                         goto err_out;
4317                 }
4318                 if (ext4_handle_valid(handle)) {
4319                         error = ext4_orphan_add(handle, inode);
4320                         orphan = 1;
4321                 }
4322                 EXT4_I(inode)->i_disksize = attr->ia_size;
4323                 rc = ext4_mark_inode_dirty(handle, inode);
4324                 if (!error)
4325                         error = rc;
4326                 ext4_journal_stop(handle);
4327
4328                 if (ext4_should_order_data(inode)) {
4329                         error = ext4_begin_ordered_truncate(inode,
4330                                                             attr->ia_size);
4331                         if (error) {
4332                                 /* Do as much error cleanup as possible */
4333                                 handle = ext4_journal_start(inode, 3);
4334                                 if (IS_ERR(handle)) {
4335                                         ext4_orphan_del(NULL, inode);
4336                                         goto err_out;
4337                                 }
4338                                 ext4_orphan_del(handle, inode);
4339                                 orphan = 0;
4340                                 ext4_journal_stop(handle);
4341                                 goto err_out;
4342                         }
4343                 }
4344         }
4345
4346         if (attr->ia_valid & ATTR_SIZE) {
4347                 if (attr->ia_size != i_size_read(inode))
4348                         truncate_setsize(inode, attr->ia_size);
4349                 ext4_truncate(inode);
4350         }
4351
4352         if (!rc) {
4353                 setattr_copy(inode, attr);
4354                 mark_inode_dirty(inode);
4355         }
4356
4357         /*
4358          * If the call to ext4_truncate failed to get a transaction handle at
4359          * all, we need to clean up the in-core orphan list manually.
4360          */
4361         if (orphan && inode->i_nlink)
4362                 ext4_orphan_del(NULL, inode);
4363
4364         if (!rc && (ia_valid & ATTR_MODE))
4365                 rc = ext4_acl_chmod(inode);
4366
4367 err_out:
4368         ext4_std_error(inode->i_sb, error);
4369         if (!error)
4370                 error = rc;
4371         return error;
4372 }
4373
4374 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4375                  struct kstat *stat)
4376 {
4377         struct inode *inode;
4378         unsigned long delalloc_blocks;
4379
4380         inode = dentry->d_inode;
4381         generic_fillattr(inode, stat);
4382
4383         /*
4384          * We can't update i_blocks if the block allocation is delayed
4385          * otherwise in the case of system crash before the real block
4386          * allocation is done, we will have i_blocks inconsistent with
4387          * on-disk file blocks.
4388          * We always keep i_blocks updated together with real
4389          * allocation. But to not confuse with user, stat
4390          * will return the blocks that include the delayed allocation
4391          * blocks for this file.
4392          */
4393         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4394                                 EXT4_I(inode)->i_reserved_data_blocks);
4395
4396         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4397         return 0;
4398 }
4399
4400 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4401 {
4402         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4403                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4404         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4405 }
4406
4407 /*
4408  * Account for index blocks, block groups bitmaps and block group
4409  * descriptor blocks if modify datablocks and index blocks
4410  * worse case, the indexs blocks spread over different block groups
4411  *
4412  * If datablocks are discontiguous, they are possible to spread over
4413  * different block groups too. If they are contiuguous, with flexbg,
4414  * they could still across block group boundary.
4415  *
4416  * Also account for superblock, inode, quota and xattr blocks
4417  */
4418 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4419 {
4420         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4421         int gdpblocks;
4422         int idxblocks;
4423         int ret = 0;
4424
4425         /*
4426          * How many index blocks need to touch to modify nrblocks?
4427          * The "Chunk" flag indicating whether the nrblocks is
4428          * physically contiguous on disk
4429          *
4430          * For Direct IO and fallocate, they calls get_block to allocate
4431          * one single extent at a time, so they could set the "Chunk" flag
4432          */
4433         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4434
4435         ret = idxblocks;
4436
4437         /*
4438          * Now let's see how many group bitmaps and group descriptors need
4439          * to account
4440          */
4441         groups = idxblocks;
4442         if (chunk)
4443                 groups += 1;
4444         else
4445                 groups += nrblocks;
4446
4447         gdpblocks = groups;
4448         if (groups > ngroups)
4449                 groups = ngroups;
4450         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4451                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4452
4453         /* bitmaps and block group descriptor blocks */
4454         ret += groups + gdpblocks;
4455
4456         /* Blocks for super block, inode, quota and xattr blocks */
4457         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4458
4459         return ret;
4460 }
4461
4462 /*
4463  * Calculate the total number of credits to reserve to fit
4464  * the modification of a single pages into a single transaction,
4465  * which may include multiple chunks of block allocations.
4466  *
4467  * This could be called via ext4_write_begin()
4468  *
4469  * We need to consider the worse case, when
4470  * one new block per extent.
4471  */
4472 int ext4_writepage_trans_blocks(struct inode *inode)
4473 {
4474         int bpp = ext4_journal_blocks_per_page(inode);
4475         int ret;
4476
4477         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4478
4479         /* Account for data blocks for journalled mode */
4480         if (ext4_should_journal_data(inode))
4481                 ret += bpp;
4482         return ret;
4483 }
4484
4485 /*
4486  * Calculate the journal credits for a chunk of data modification.
4487  *
4488  * This is called from DIO, fallocate or whoever calling
4489  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4490  *
4491  * journal buffers for data blocks are not included here, as DIO
4492  * and fallocate do no need to journal data buffers.
4493  */
4494 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4495 {
4496         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4497 }
4498
4499 /*
4500  * The caller must have previously called ext4_reserve_inode_write().
4501  * Give this, we know that the caller already has write access to iloc->bh.
4502  */
4503 int ext4_mark_iloc_dirty(handle_t *handle,
4504                          struct inode *inode, struct ext4_iloc *iloc)
4505 {
4506         int err = 0;
4507
4508         if (IS_I_VERSION(inode))
4509                 inode_inc_iversion(inode);
4510
4511         /* the do_update_inode consumes one bh->b_count */
4512         get_bh(iloc->bh);
4513
4514         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4515         err = ext4_do_update_inode(handle, inode, iloc);
4516         put_bh(iloc->bh);
4517         return err;
4518 }
4519
4520 /*
4521  * On success, We end up with an outstanding reference count against
4522  * iloc->bh.  This _must_ be cleaned up later.
4523  */
4524
4525 int
4526 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4527                          struct ext4_iloc *iloc)
4528 {
4529         int err;
4530
4531         err = ext4_get_inode_loc(inode, iloc);
4532         if (!err) {
4533                 BUFFER_TRACE(iloc->bh, "get_write_access");
4534                 err = ext4_journal_get_write_access(handle, iloc->bh);
4535                 if (err) {
4536                         brelse(iloc->bh);
4537                         iloc->bh = NULL;
4538                 }
4539         }
4540         ext4_std_error(inode->i_sb, err);
4541         return err;
4542 }
4543
4544 /*
4545  * Expand an inode by new_extra_isize bytes.
4546  * Returns 0 on success or negative error number on failure.
4547  */
4548 static int ext4_expand_extra_isize(struct inode *inode,
4549                                    unsigned int new_extra_isize,
4550                                    struct ext4_iloc iloc,
4551                                    handle_t *handle)
4552 {
4553         struct ext4_inode *raw_inode;
4554         struct ext4_xattr_ibody_header *header;
4555
4556         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4557                 return 0;
4558
4559         raw_inode = ext4_raw_inode(&iloc);
4560
4561         header = IHDR(inode, raw_inode);
4562
4563         /* No extended attributes present */
4564         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4565             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4566                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4567                         new_extra_isize);
4568                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4569                 return 0;
4570         }
4571
4572         /* try to expand with EAs present */
4573         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4574                                           raw_inode, handle);
4575 }
4576
4577 /*
4578  * What we do here is to mark the in-core inode as clean with respect to inode
4579  * dirtiness (it may still be data-dirty).
4580  * This means that the in-core inode may be reaped by prune_icache
4581  * without having to perform any I/O.  This is a very good thing,
4582  * because *any* task may call prune_icache - even ones which
4583  * have a transaction open against a different journal.
4584  *
4585  * Is this cheating?  Not really.  Sure, we haven't written the
4586  * inode out, but prune_icache isn't a user-visible syncing function.
4587  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4588  * we start and wait on commits.
4589  *
4590  * Is this efficient/effective?  Well, we're being nice to the system
4591  * by cleaning up our inodes proactively so they can be reaped
4592  * without I/O.  But we are potentially leaving up to five seconds'
4593  * worth of inodes floating about which prune_icache wants us to
4594  * write out.  One way to fix that would be to get prune_icache()
4595  * to do a write_super() to free up some memory.  It has the desired
4596  * effect.
4597  */
4598 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4599 {
4600         struct ext4_iloc iloc;
4601         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4602         static unsigned int mnt_count;
4603         int err, ret;
4604
4605         might_sleep();
4606         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4607         err = ext4_reserve_inode_write(handle, inode, &iloc);
4608         if (ext4_handle_valid(handle) &&
4609             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4610             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4611                 /*
4612                  * We need extra buffer credits since we may write into EA block
4613                  * with this same handle. If journal_extend fails, then it will
4614                  * only result in a minor loss of functionality for that inode.
4615                  * If this is felt to be critical, then e2fsck should be run to
4616                  * force a large enough s_min_extra_isize.
4617                  */
4618                 if ((jbd2_journal_extend(handle,
4619                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4620                         ret = ext4_expand_extra_isize(inode,
4621                                                       sbi->s_want_extra_isize,
4622                                                       iloc, handle);
4623                         if (ret) {
4624                                 ext4_set_inode_state(inode,
4625                                                      EXT4_STATE_NO_EXPAND);
4626                                 if (mnt_count !=
4627                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4628                                         ext4_warning(inode->i_sb,
4629                                         "Unable to expand inode %lu. Delete"
4630                                         " some EAs or run e2fsck.",
4631                                         inode->i_ino);
4632                                         mnt_count =
4633                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4634                                 }
4635                         }
4636                 }
4637         }
4638         if (!err)
4639                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4640         return err;
4641 }
4642
4643 /*
4644  * ext4_dirty_inode() is called from __mark_inode_dirty()
4645  *
4646  * We're really interested in the case where a file is being extended.
4647  * i_size has been changed by generic_commit_write() and we thus need
4648  * to include the updated inode in the current transaction.
4649  *
4650  * Also, dquot_alloc_block() will always dirty the inode when blocks
4651  * are allocated to the file.
4652  *
4653  * If the inode is marked synchronous, we don't honour that here - doing
4654  * so would cause a commit on atime updates, which we don't bother doing.
4655  * We handle synchronous inodes at the highest possible level.
4656  */
4657 void ext4_dirty_inode(struct inode *inode, int flags)
4658 {
4659         handle_t *handle;
4660
4661         handle = ext4_journal_start(inode, 2);
4662         if (IS_ERR(handle))
4663                 goto out;
4664
4665         ext4_mark_inode_dirty(handle, inode);
4666
4667         ext4_journal_stop(handle);
4668 out:
4669         return;
4670 }
4671
4672 #if 0
4673 /*
4674  * Bind an inode's backing buffer_head into this transaction, to prevent
4675  * it from being flushed to disk early.  Unlike
4676  * ext4_reserve_inode_write, this leaves behind no bh reference and
4677  * returns no iloc structure, so the caller needs to repeat the iloc
4678  * lookup to mark the inode dirty later.
4679  */
4680 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4681 {
4682         struct ext4_iloc iloc;
4683
4684         int err = 0;
4685         if (handle) {
4686                 err = ext4_get_inode_loc(inode, &iloc);
4687                 if (!err) {
4688                         BUFFER_TRACE(iloc.bh, "get_write_access");
4689                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4690                         if (!err)
4691                                 err = ext4_handle_dirty_metadata(handle,
4692                                                                  NULL,
4693                                                                  iloc.bh);
4694                         brelse(iloc.bh);
4695                 }
4696         }
4697         ext4_std_error(inode->i_sb, err);
4698         return err;
4699 }
4700 #endif
4701
4702 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4703 {
4704         journal_t *journal;
4705         handle_t *handle;
4706         int err;
4707
4708         /*
4709          * We have to be very careful here: changing a data block's
4710          * journaling status dynamically is dangerous.  If we write a
4711          * data block to the journal, change the status and then delete
4712          * that block, we risk forgetting to revoke the old log record
4713          * from the journal and so a subsequent replay can corrupt data.
4714          * So, first we make sure that the journal is empty and that
4715          * nobody is changing anything.
4716          */
4717
4718         journal = EXT4_JOURNAL(inode);
4719         if (!journal)
4720                 return 0;
4721         if (is_journal_aborted(journal))
4722                 return -EROFS;
4723         /* We have to allocate physical blocks for delalloc blocks
4724          * before flushing journal. otherwise delalloc blocks can not
4725          * be allocated any more. even more truncate on delalloc blocks
4726          * could trigger BUG by flushing delalloc blocks in journal.
4727          * There is no delalloc block in non-journal data mode.
4728          */
4729         if (val && test_opt(inode->i_sb, DELALLOC)) {
4730                 err = ext4_alloc_da_blocks(inode);
4731                 if (err < 0)
4732                         return err;
4733         }
4734
4735         jbd2_journal_lock_updates(journal);
4736
4737         /*
4738          * OK, there are no updates running now, and all cached data is
4739          * synced to disk.  We are now in a completely consistent state
4740          * which doesn't have anything in the journal, and we know that
4741          * no filesystem updates are running, so it is safe to modify
4742          * the inode's in-core data-journaling state flag now.
4743          */
4744
4745         if (val)
4746                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4747         else {
4748                 jbd2_journal_flush(journal);
4749                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4750         }
4751         ext4_set_aops(inode);
4752
4753         jbd2_journal_unlock_updates(journal);
4754
4755         /* Finally we can mark the inode as dirty. */
4756
4757         handle = ext4_journal_start(inode, 1);
4758         if (IS_ERR(handle))
4759                 return PTR_ERR(handle);
4760
4761         err = ext4_mark_inode_dirty(handle, inode);
4762         ext4_handle_sync(handle);
4763         ext4_journal_stop(handle);
4764         ext4_std_error(inode->i_sb, err);
4765
4766         return err;
4767 }
4768
4769 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4770 {
4771         return !buffer_mapped(bh);
4772 }
4773
4774 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4775 {
4776         struct page *page = vmf->page;
4777         loff_t size;
4778         unsigned long len;
4779         int ret;
4780         struct file *file = vma->vm_file;
4781         struct inode *inode = file->f_path.dentry->d_inode;
4782         struct address_space *mapping = inode->i_mapping;
4783         handle_t *handle;
4784         get_block_t *get_block;
4785         int retries = 0;
4786
4787         sb_start_pagefault(inode->i_sb);
4788         /* Delalloc case is easy... */
4789         if (test_opt(inode->i_sb, DELALLOC) &&
4790             !ext4_should_journal_data(inode) &&
4791             !ext4_nonda_switch(inode->i_sb)) {
4792                 do {
4793                         ret = __block_page_mkwrite(vma, vmf,
4794                                                    ext4_da_get_block_prep);
4795                 } while (ret == -ENOSPC &&
4796                        ext4_should_retry_alloc(inode->i_sb, &retries));
4797                 goto out_ret;
4798         }
4799
4800         lock_page(page);
4801         size = i_size_read(inode);
4802         /* Page got truncated from under us? */
4803         if (page->mapping != mapping || page_offset(page) > size) {
4804                 unlock_page(page);
4805                 ret = VM_FAULT_NOPAGE;
4806                 goto out;
4807         }
4808
4809         if (page->index == size >> PAGE_CACHE_SHIFT)
4810                 len = size & ~PAGE_CACHE_MASK;
4811         else
4812                 len = PAGE_CACHE_SIZE;
4813         /*
4814          * Return if we have all the buffers mapped. This avoids the need to do
4815          * journal_start/journal_stop which can block and take a long time
4816          */
4817         if (page_has_buffers(page)) {
4818                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4819                                         ext4_bh_unmapped)) {
4820                         /* Wait so that we don't change page under IO */
4821                         wait_on_page_writeback(page);
4822                         ret = VM_FAULT_LOCKED;
4823                         goto out;
4824                 }
4825         }
4826         unlock_page(page);
4827         /* OK, we need to fill the hole... */
4828         if (ext4_should_dioread_nolock(inode))
4829                 get_block = ext4_get_block_write;
4830         else
4831                 get_block = ext4_get_block;
4832 retry_alloc:
4833         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4834         if (IS_ERR(handle)) {
4835                 ret = VM_FAULT_SIGBUS;
4836                 goto out;
4837         }
4838         ret = __block_page_mkwrite(vma, vmf, get_block);
4839         if (!ret && ext4_should_journal_data(inode)) {
4840                 if (walk_page_buffers(handle, page_buffers(page), 0,
4841                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4842                         unlock_page(page);
4843                         ret = VM_FAULT_SIGBUS;
4844                         ext4_journal_stop(handle);
4845                         goto out;
4846                 }
4847                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4848         }
4849         ext4_journal_stop(handle);
4850         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4851                 goto retry_alloc;
4852 out_ret:
4853         ret = block_page_mkwrite_return(ret);
4854 out:
4855         sb_end_pagefault(inode->i_sb);
4856         return ret;
4857 }