ext4: Convert to new freezing mechanism
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136                                    struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142                 struct inode *inode, struct page *page, loff_t from,
143                 loff_t length, int flags);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 (inode->i_sb->s_blocksize >> 9) : 0;
152
153         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162                                  int nblocks)
163 {
164         int ret;
165
166         /*
167          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168          * moment, get_block can be called only for blocks inside i_size since
169          * page cache has been already dropped and writes are blocked by
170          * i_mutex. So we can safely drop the i_data_sem here.
171          */
172         BUG_ON(EXT4_JOURNAL(inode) == NULL);
173         jbd_debug(2, "restarting handle %p\n", handle);
174         up_write(&EXT4_I(inode)->i_data_sem);
175         ret = ext4_journal_restart(handle, nblocks);
176         down_write(&EXT4_I(inode)->i_data_sem);
177         ext4_discard_preallocations(inode);
178
179         return ret;
180 }
181
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187         handle_t *handle;
188         int err;
189
190         trace_ext4_evict_inode(inode);
191
192         ext4_ioend_wait(inode);
193
194         if (inode->i_nlink) {
195                 /*
196                  * When journalling data dirty buffers are tracked only in the
197                  * journal. So although mm thinks everything is clean and
198                  * ready for reaping the inode might still have some pages to
199                  * write in the running transaction or waiting to be
200                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
201                  * (via truncate_inode_pages()) to discard these buffers can
202                  * cause data loss. Also even if we did not discard these
203                  * buffers, we would have no way to find them after the inode
204                  * is reaped and thus user could see stale data if he tries to
205                  * read them before the transaction is checkpointed. So be
206                  * careful and force everything to disk here... We use
207                  * ei->i_datasync_tid to store the newest transaction
208                  * containing inode's data.
209                  *
210                  * Note that directories do not have this problem because they
211                  * don't use page cache.
212                  */
213                 if (ext4_should_journal_data(inode) &&
214                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218                         jbd2_log_start_commit(journal, commit_tid);
219                         jbd2_log_wait_commit(journal, commit_tid);
220                         filemap_write_and_wait(&inode->i_data);
221                 }
222                 truncate_inode_pages(&inode->i_data, 0);
223                 goto no_delete;
224         }
225
226         if (!is_bad_inode(inode))
227                 dquot_initialize(inode);
228
229         if (ext4_should_order_data(inode))
230                 ext4_begin_ordered_truncate(inode, 0);
231         truncate_inode_pages(&inode->i_data, 0);
232
233         if (is_bad_inode(inode))
234                 goto no_delete;
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331                 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333         return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341                                         int used, int quota_claim)
342 {
343         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344         struct ext4_inode_info *ei = EXT4_I(inode);
345
346         spin_lock(&ei->i_block_reservation_lock);
347         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348         if (unlikely(used > ei->i_reserved_data_blocks)) {
349                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350                          "with only %d reserved data blocks",
351                          __func__, inode->i_ino, used,
352                          ei->i_reserved_data_blocks);
353                 WARN_ON(1);
354                 used = ei->i_reserved_data_blocks;
355         }
356
357         /* Update per-inode reservations */
358         ei->i_reserved_data_blocks -= used;
359         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
360         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
361                            used + ei->i_allocated_meta_blocks);
362         ei->i_allocated_meta_blocks = 0;
363
364         if (ei->i_reserved_data_blocks == 0) {
365                 /*
366                  * We can release all of the reserved metadata blocks
367                  * only when we have written all of the delayed
368                  * allocation blocks.
369                  */
370                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                                    ei->i_reserved_meta_blocks);
372                 ei->i_reserved_meta_blocks = 0;
373                 ei->i_da_metadata_calc_len = 0;
374         }
375         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
376
377         /* Update quota subsystem for data blocks */
378         if (quota_claim)
379                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
380         else {
381                 /*
382                  * We did fallocate with an offset that is already delayed
383                  * allocated. So on delayed allocated writeback we should
384                  * not re-claim the quota for fallocated blocks.
385                  */
386                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
387         }
388
389         /*
390          * If we have done all the pending block allocations and if
391          * there aren't any writers on the inode, we can discard the
392          * inode's preallocations.
393          */
394         if ((ei->i_reserved_data_blocks == 0) &&
395             (atomic_read(&inode->i_writecount) == 0))
396                 ext4_discard_preallocations(inode);
397 }
398
399 static int __check_block_validity(struct inode *inode, const char *func,
400                                 unsigned int line,
401                                 struct ext4_map_blocks *map)
402 {
403         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
404                                    map->m_len)) {
405                 ext4_error_inode(inode, func, line, map->m_pblk,
406                                  "lblock %lu mapped to illegal pblock "
407                                  "(length %d)", (unsigned long) map->m_lblk,
408                                  map->m_len);
409                 return -EIO;
410         }
411         return 0;
412 }
413
414 #define check_block_validity(inode, map)        \
415         __check_block_validity((inode), __func__, __LINE__, (map))
416
417 /*
418  * Return the number of contiguous dirty pages in a given inode
419  * starting at page frame idx.
420  */
421 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
422                                     unsigned int max_pages)
423 {
424         struct address_space *mapping = inode->i_mapping;
425         pgoff_t index;
426         struct pagevec pvec;
427         pgoff_t num = 0;
428         int i, nr_pages, done = 0;
429
430         if (max_pages == 0)
431                 return 0;
432         pagevec_init(&pvec, 0);
433         while (!done) {
434                 index = idx;
435                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
436                                               PAGECACHE_TAG_DIRTY,
437                                               (pgoff_t)PAGEVEC_SIZE);
438                 if (nr_pages == 0)
439                         break;
440                 for (i = 0; i < nr_pages; i++) {
441                         struct page *page = pvec.pages[i];
442                         struct buffer_head *bh, *head;
443
444                         lock_page(page);
445                         if (unlikely(page->mapping != mapping) ||
446                             !PageDirty(page) ||
447                             PageWriteback(page) ||
448                             page->index != idx) {
449                                 done = 1;
450                                 unlock_page(page);
451                                 break;
452                         }
453                         if (page_has_buffers(page)) {
454                                 bh = head = page_buffers(page);
455                                 do {
456                                         if (!buffer_delay(bh) &&
457                                             !buffer_unwritten(bh))
458                                                 done = 1;
459                                         bh = bh->b_this_page;
460                                 } while (!done && (bh != head));
461                         }
462                         unlock_page(page);
463                         if (done)
464                                 break;
465                         idx++;
466                         num++;
467                         if (num >= max_pages) {
468                                 done = 1;
469                                 break;
470                         }
471                 }
472                 pagevec_release(&pvec);
473         }
474         return num;
475 }
476
477 /*
478  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
479  */
480 static void set_buffers_da_mapped(struct inode *inode,
481                                    struct ext4_map_blocks *map)
482 {
483         struct address_space *mapping = inode->i_mapping;
484         struct pagevec pvec;
485         int i, nr_pages;
486         pgoff_t index, end;
487
488         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
489         end = (map->m_lblk + map->m_len - 1) >>
490                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
491
492         pagevec_init(&pvec, 0);
493         while (index <= end) {
494                 nr_pages = pagevec_lookup(&pvec, mapping, index,
495                                           min(end - index + 1,
496                                               (pgoff_t)PAGEVEC_SIZE));
497                 if (nr_pages == 0)
498                         break;
499                 for (i = 0; i < nr_pages; i++) {
500                         struct page *page = pvec.pages[i];
501                         struct buffer_head *bh, *head;
502
503                         if (unlikely(page->mapping != mapping) ||
504                             !PageDirty(page))
505                                 break;
506
507                         if (page_has_buffers(page)) {
508                                 bh = head = page_buffers(page);
509                                 do {
510                                         set_buffer_da_mapped(bh);
511                                         bh = bh->b_this_page;
512                                 } while (bh != head);
513                         }
514                         index++;
515                 }
516                 pagevec_release(&pvec);
517         }
518 }
519
520 /*
521  * The ext4_map_blocks() function tries to look up the requested blocks,
522  * and returns if the blocks are already mapped.
523  *
524  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
525  * and store the allocated blocks in the result buffer head and mark it
526  * mapped.
527  *
528  * If file type is extents based, it will call ext4_ext_map_blocks(),
529  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
530  * based files
531  *
532  * On success, it returns the number of blocks being mapped or allocate.
533  * if create==0 and the blocks are pre-allocated and uninitialized block,
534  * the result buffer head is unmapped. If the create ==1, it will make sure
535  * the buffer head is mapped.
536  *
537  * It returns 0 if plain look up failed (blocks have not been allocated), in
538  * that case, buffer head is unmapped
539  *
540  * It returns the error in case of allocation failure.
541  */
542 int ext4_map_blocks(handle_t *handle, struct inode *inode,
543                     struct ext4_map_blocks *map, int flags)
544 {
545         int retval;
546
547         map->m_flags = 0;
548         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
549                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
550                   (unsigned long) map->m_lblk);
551         /*
552          * Try to see if we can get the block without requesting a new
553          * file system block.
554          */
555         down_read((&EXT4_I(inode)->i_data_sem));
556         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
557                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
558                                              EXT4_GET_BLOCKS_KEEP_SIZE);
559         } else {
560                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
561                                              EXT4_GET_BLOCKS_KEEP_SIZE);
562         }
563         up_read((&EXT4_I(inode)->i_data_sem));
564
565         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
566                 int ret = check_block_validity(inode, map);
567                 if (ret != 0)
568                         return ret;
569         }
570
571         /* If it is only a block(s) look up */
572         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
573                 return retval;
574
575         /*
576          * Returns if the blocks have already allocated
577          *
578          * Note that if blocks have been preallocated
579          * ext4_ext_get_block() returns the create = 0
580          * with buffer head unmapped.
581          */
582         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
583                 return retval;
584
585         /*
586          * When we call get_blocks without the create flag, the
587          * BH_Unwritten flag could have gotten set if the blocks
588          * requested were part of a uninitialized extent.  We need to
589          * clear this flag now that we are committed to convert all or
590          * part of the uninitialized extent to be an initialized
591          * extent.  This is because we need to avoid the combination
592          * of BH_Unwritten and BH_Mapped flags being simultaneously
593          * set on the buffer_head.
594          */
595         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
596
597         /*
598          * New blocks allocate and/or writing to uninitialized extent
599          * will possibly result in updating i_data, so we take
600          * the write lock of i_data_sem, and call get_blocks()
601          * with create == 1 flag.
602          */
603         down_write((&EXT4_I(inode)->i_data_sem));
604
605         /*
606          * if the caller is from delayed allocation writeout path
607          * we have already reserved fs blocks for allocation
608          * let the underlying get_block() function know to
609          * avoid double accounting
610          */
611         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
612                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
613         /*
614          * We need to check for EXT4 here because migrate
615          * could have changed the inode type in between
616          */
617         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
618                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
619         } else {
620                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
621
622                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
623                         /*
624                          * We allocated new blocks which will result in
625                          * i_data's format changing.  Force the migrate
626                          * to fail by clearing migrate flags
627                          */
628                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
629                 }
630
631                 /*
632                  * Update reserved blocks/metadata blocks after successful
633                  * block allocation which had been deferred till now. We don't
634                  * support fallocate for non extent files. So we can update
635                  * reserve space here.
636                  */
637                 if ((retval > 0) &&
638                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
639                         ext4_da_update_reserve_space(inode, retval, 1);
640         }
641         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
642                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
643
644                 /* If we have successfully mapped the delayed allocated blocks,
645                  * set the BH_Da_Mapped bit on them. Its important to do this
646                  * under the protection of i_data_sem.
647                  */
648                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
649                         set_buffers_da_mapped(inode, map);
650         }
651
652         up_write((&EXT4_I(inode)->i_data_sem));
653         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
654                 int ret = check_block_validity(inode, map);
655                 if (ret != 0)
656                         return ret;
657         }
658         return retval;
659 }
660
661 /* Maximum number of blocks we map for direct IO at once. */
662 #define DIO_MAX_BLOCKS 4096
663
664 static int _ext4_get_block(struct inode *inode, sector_t iblock,
665                            struct buffer_head *bh, int flags)
666 {
667         handle_t *handle = ext4_journal_current_handle();
668         struct ext4_map_blocks map;
669         int ret = 0, started = 0;
670         int dio_credits;
671
672         map.m_lblk = iblock;
673         map.m_len = bh->b_size >> inode->i_blkbits;
674
675         if (flags && !handle) {
676                 /* Direct IO write... */
677                 if (map.m_len > DIO_MAX_BLOCKS)
678                         map.m_len = DIO_MAX_BLOCKS;
679                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
680                 handle = ext4_journal_start(inode, dio_credits);
681                 if (IS_ERR(handle)) {
682                         ret = PTR_ERR(handle);
683                         return ret;
684                 }
685                 started = 1;
686         }
687
688         ret = ext4_map_blocks(handle, inode, &map, flags);
689         if (ret > 0) {
690                 map_bh(bh, inode->i_sb, map.m_pblk);
691                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
692                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
693                 ret = 0;
694         }
695         if (started)
696                 ext4_journal_stop(handle);
697         return ret;
698 }
699
700 int ext4_get_block(struct inode *inode, sector_t iblock,
701                    struct buffer_head *bh, int create)
702 {
703         return _ext4_get_block(inode, iblock, bh,
704                                create ? EXT4_GET_BLOCKS_CREATE : 0);
705 }
706
707 /*
708  * `handle' can be NULL if create is zero
709  */
710 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
711                                 ext4_lblk_t block, int create, int *errp)
712 {
713         struct ext4_map_blocks map;
714         struct buffer_head *bh;
715         int fatal = 0, err;
716
717         J_ASSERT(handle != NULL || create == 0);
718
719         map.m_lblk = block;
720         map.m_len = 1;
721         err = ext4_map_blocks(handle, inode, &map,
722                               create ? EXT4_GET_BLOCKS_CREATE : 0);
723
724         if (err < 0)
725                 *errp = err;
726         if (err <= 0)
727                 return NULL;
728         *errp = 0;
729
730         bh = sb_getblk(inode->i_sb, map.m_pblk);
731         if (!bh) {
732                 *errp = -EIO;
733                 return NULL;
734         }
735         if (map.m_flags & EXT4_MAP_NEW) {
736                 J_ASSERT(create != 0);
737                 J_ASSERT(handle != NULL);
738
739                 /*
740                  * Now that we do not always journal data, we should
741                  * keep in mind whether this should always journal the
742                  * new buffer as metadata.  For now, regular file
743                  * writes use ext4_get_block instead, so it's not a
744                  * problem.
745                  */
746                 lock_buffer(bh);
747                 BUFFER_TRACE(bh, "call get_create_access");
748                 fatal = ext4_journal_get_create_access(handle, bh);
749                 if (!fatal && !buffer_uptodate(bh)) {
750                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
751                         set_buffer_uptodate(bh);
752                 }
753                 unlock_buffer(bh);
754                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
755                 err = ext4_handle_dirty_metadata(handle, inode, bh);
756                 if (!fatal)
757                         fatal = err;
758         } else {
759                 BUFFER_TRACE(bh, "not a new buffer");
760         }
761         if (fatal) {
762                 *errp = fatal;
763                 brelse(bh);
764                 bh = NULL;
765         }
766         return bh;
767 }
768
769 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
770                                ext4_lblk_t block, int create, int *err)
771 {
772         struct buffer_head *bh;
773
774         bh = ext4_getblk(handle, inode, block, create, err);
775         if (!bh)
776                 return bh;
777         if (buffer_uptodate(bh))
778                 return bh;
779         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
780         wait_on_buffer(bh);
781         if (buffer_uptodate(bh))
782                 return bh;
783         put_bh(bh);
784         *err = -EIO;
785         return NULL;
786 }
787
788 static int walk_page_buffers(handle_t *handle,
789                              struct buffer_head *head,
790                              unsigned from,
791                              unsigned to,
792                              int *partial,
793                              int (*fn)(handle_t *handle,
794                                        struct buffer_head *bh))
795 {
796         struct buffer_head *bh;
797         unsigned block_start, block_end;
798         unsigned blocksize = head->b_size;
799         int err, ret = 0;
800         struct buffer_head *next;
801
802         for (bh = head, block_start = 0;
803              ret == 0 && (bh != head || !block_start);
804              block_start = block_end, bh = next) {
805                 next = bh->b_this_page;
806                 block_end = block_start + blocksize;
807                 if (block_end <= from || block_start >= to) {
808                         if (partial && !buffer_uptodate(bh))
809                                 *partial = 1;
810                         continue;
811                 }
812                 err = (*fn)(handle, bh);
813                 if (!ret)
814                         ret = err;
815         }
816         return ret;
817 }
818
819 /*
820  * To preserve ordering, it is essential that the hole instantiation and
821  * the data write be encapsulated in a single transaction.  We cannot
822  * close off a transaction and start a new one between the ext4_get_block()
823  * and the commit_write().  So doing the jbd2_journal_start at the start of
824  * prepare_write() is the right place.
825  *
826  * Also, this function can nest inside ext4_writepage() ->
827  * block_write_full_page(). In that case, we *know* that ext4_writepage()
828  * has generated enough buffer credits to do the whole page.  So we won't
829  * block on the journal in that case, which is good, because the caller may
830  * be PF_MEMALLOC.
831  *
832  * By accident, ext4 can be reentered when a transaction is open via
833  * quota file writes.  If we were to commit the transaction while thus
834  * reentered, there can be a deadlock - we would be holding a quota
835  * lock, and the commit would never complete if another thread had a
836  * transaction open and was blocking on the quota lock - a ranking
837  * violation.
838  *
839  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
840  * will _not_ run commit under these circumstances because handle->h_ref
841  * is elevated.  We'll still have enough credits for the tiny quotafile
842  * write.
843  */
844 static int do_journal_get_write_access(handle_t *handle,
845                                        struct buffer_head *bh)
846 {
847         int dirty = buffer_dirty(bh);
848         int ret;
849
850         if (!buffer_mapped(bh) || buffer_freed(bh))
851                 return 0;
852         /*
853          * __block_write_begin() could have dirtied some buffers. Clean
854          * the dirty bit as jbd2_journal_get_write_access() could complain
855          * otherwise about fs integrity issues. Setting of the dirty bit
856          * by __block_write_begin() isn't a real problem here as we clear
857          * the bit before releasing a page lock and thus writeback cannot
858          * ever write the buffer.
859          */
860         if (dirty)
861                 clear_buffer_dirty(bh);
862         ret = ext4_journal_get_write_access(handle, bh);
863         if (!ret && dirty)
864                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
865         return ret;
866 }
867
868 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
869                    struct buffer_head *bh_result, int create);
870 static int ext4_write_begin(struct file *file, struct address_space *mapping,
871                             loff_t pos, unsigned len, unsigned flags,
872                             struct page **pagep, void **fsdata)
873 {
874         struct inode *inode = mapping->host;
875         int ret, needed_blocks;
876         handle_t *handle;
877         int retries = 0;
878         struct page *page;
879         pgoff_t index;
880         unsigned from, to;
881
882         trace_ext4_write_begin(inode, pos, len, flags);
883         /*
884          * Reserve one block more for addition to orphan list in case
885          * we allocate blocks but write fails for some reason
886          */
887         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
888         index = pos >> PAGE_CACHE_SHIFT;
889         from = pos & (PAGE_CACHE_SIZE - 1);
890         to = from + len;
891
892 retry:
893         handle = ext4_journal_start(inode, needed_blocks);
894         if (IS_ERR(handle)) {
895                 ret = PTR_ERR(handle);
896                 goto out;
897         }
898
899         /* We cannot recurse into the filesystem as the transaction is already
900          * started */
901         flags |= AOP_FLAG_NOFS;
902
903         page = grab_cache_page_write_begin(mapping, index, flags);
904         if (!page) {
905                 ext4_journal_stop(handle);
906                 ret = -ENOMEM;
907                 goto out;
908         }
909         *pagep = page;
910
911         if (ext4_should_dioread_nolock(inode))
912                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
913         else
914                 ret = __block_write_begin(page, pos, len, ext4_get_block);
915
916         if (!ret && ext4_should_journal_data(inode)) {
917                 ret = walk_page_buffers(handle, page_buffers(page),
918                                 from, to, NULL, do_journal_get_write_access);
919         }
920
921         if (ret) {
922                 unlock_page(page);
923                 page_cache_release(page);
924                 /*
925                  * __block_write_begin may have instantiated a few blocks
926                  * outside i_size.  Trim these off again. Don't need
927                  * i_size_read because we hold i_mutex.
928                  *
929                  * Add inode to orphan list in case we crash before
930                  * truncate finishes
931                  */
932                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
933                         ext4_orphan_add(handle, inode);
934
935                 ext4_journal_stop(handle);
936                 if (pos + len > inode->i_size) {
937                         ext4_truncate_failed_write(inode);
938                         /*
939                          * If truncate failed early the inode might
940                          * still be on the orphan list; we need to
941                          * make sure the inode is removed from the
942                          * orphan list in that case.
943                          */
944                         if (inode->i_nlink)
945                                 ext4_orphan_del(NULL, inode);
946                 }
947         }
948
949         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
950                 goto retry;
951 out:
952         return ret;
953 }
954
955 /* For write_end() in data=journal mode */
956 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
957 {
958         if (!buffer_mapped(bh) || buffer_freed(bh))
959                 return 0;
960         set_buffer_uptodate(bh);
961         return ext4_handle_dirty_metadata(handle, NULL, bh);
962 }
963
964 static int ext4_generic_write_end(struct file *file,
965                                   struct address_space *mapping,
966                                   loff_t pos, unsigned len, unsigned copied,
967                                   struct page *page, void *fsdata)
968 {
969         int i_size_changed = 0;
970         struct inode *inode = mapping->host;
971         handle_t *handle = ext4_journal_current_handle();
972
973         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
974
975         /*
976          * No need to use i_size_read() here, the i_size
977          * cannot change under us because we hold i_mutex.
978          *
979          * But it's important to update i_size while still holding page lock:
980          * page writeout could otherwise come in and zero beyond i_size.
981          */
982         if (pos + copied > inode->i_size) {
983                 i_size_write(inode, pos + copied);
984                 i_size_changed = 1;
985         }
986
987         if (pos + copied >  EXT4_I(inode)->i_disksize) {
988                 /* We need to mark inode dirty even if
989                  * new_i_size is less that inode->i_size
990                  * bu greater than i_disksize.(hint delalloc)
991                  */
992                 ext4_update_i_disksize(inode, (pos + copied));
993                 i_size_changed = 1;
994         }
995         unlock_page(page);
996         page_cache_release(page);
997
998         /*
999          * Don't mark the inode dirty under page lock. First, it unnecessarily
1000          * makes the holding time of page lock longer. Second, it forces lock
1001          * ordering of page lock and transaction start for journaling
1002          * filesystems.
1003          */
1004         if (i_size_changed)
1005                 ext4_mark_inode_dirty(handle, inode);
1006
1007         return copied;
1008 }
1009
1010 /*
1011  * We need to pick up the new inode size which generic_commit_write gave us
1012  * `file' can be NULL - eg, when called from page_symlink().
1013  *
1014  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1015  * buffers are managed internally.
1016  */
1017 static int ext4_ordered_write_end(struct file *file,
1018                                   struct address_space *mapping,
1019                                   loff_t pos, unsigned len, unsigned copied,
1020                                   struct page *page, void *fsdata)
1021 {
1022         handle_t *handle = ext4_journal_current_handle();
1023         struct inode *inode = mapping->host;
1024         int ret = 0, ret2;
1025
1026         trace_ext4_ordered_write_end(inode, pos, len, copied);
1027         ret = ext4_jbd2_file_inode(handle, inode);
1028
1029         if (ret == 0) {
1030                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1031                                                         page, fsdata);
1032                 copied = ret2;
1033                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1034                         /* if we have allocated more blocks and copied
1035                          * less. We will have blocks allocated outside
1036                          * inode->i_size. So truncate them
1037                          */
1038                         ext4_orphan_add(handle, inode);
1039                 if (ret2 < 0)
1040                         ret = ret2;
1041         } else {
1042                 unlock_page(page);
1043                 page_cache_release(page);
1044         }
1045
1046         ret2 = ext4_journal_stop(handle);
1047         if (!ret)
1048                 ret = ret2;
1049
1050         if (pos + len > inode->i_size) {
1051                 ext4_truncate_failed_write(inode);
1052                 /*
1053                  * If truncate failed early the inode might still be
1054                  * on the orphan list; we need to make sure the inode
1055                  * is removed from the orphan list in that case.
1056                  */
1057                 if (inode->i_nlink)
1058                         ext4_orphan_del(NULL, inode);
1059         }
1060
1061
1062         return ret ? ret : copied;
1063 }
1064
1065 static int ext4_writeback_write_end(struct file *file,
1066                                     struct address_space *mapping,
1067                                     loff_t pos, unsigned len, unsigned copied,
1068                                     struct page *page, void *fsdata)
1069 {
1070         handle_t *handle = ext4_journal_current_handle();
1071         struct inode *inode = mapping->host;
1072         int ret = 0, ret2;
1073
1074         trace_ext4_writeback_write_end(inode, pos, len, copied);
1075         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1076                                                         page, fsdata);
1077         copied = ret2;
1078         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1079                 /* if we have allocated more blocks and copied
1080                  * less. We will have blocks allocated outside
1081                  * inode->i_size. So truncate them
1082                  */
1083                 ext4_orphan_add(handle, inode);
1084
1085         if (ret2 < 0)
1086                 ret = ret2;
1087
1088         ret2 = ext4_journal_stop(handle);
1089         if (!ret)
1090                 ret = ret2;
1091
1092         if (pos + len > inode->i_size) {
1093                 ext4_truncate_failed_write(inode);
1094                 /*
1095                  * If truncate failed early the inode might still be
1096                  * on the orphan list; we need to make sure the inode
1097                  * is removed from the orphan list in that case.
1098                  */
1099                 if (inode->i_nlink)
1100                         ext4_orphan_del(NULL, inode);
1101         }
1102
1103         return ret ? ret : copied;
1104 }
1105
1106 static int ext4_journalled_write_end(struct file *file,
1107                                      struct address_space *mapping,
1108                                      loff_t pos, unsigned len, unsigned copied,
1109                                      struct page *page, void *fsdata)
1110 {
1111         handle_t *handle = ext4_journal_current_handle();
1112         struct inode *inode = mapping->host;
1113         int ret = 0, ret2;
1114         int partial = 0;
1115         unsigned from, to;
1116         loff_t new_i_size;
1117
1118         trace_ext4_journalled_write_end(inode, pos, len, copied);
1119         from = pos & (PAGE_CACHE_SIZE - 1);
1120         to = from + len;
1121
1122         BUG_ON(!ext4_handle_valid(handle));
1123
1124         if (copied < len) {
1125                 if (!PageUptodate(page))
1126                         copied = 0;
1127                 page_zero_new_buffers(page, from+copied, to);
1128         }
1129
1130         ret = walk_page_buffers(handle, page_buffers(page), from,
1131                                 to, &partial, write_end_fn);
1132         if (!partial)
1133                 SetPageUptodate(page);
1134         new_i_size = pos + copied;
1135         if (new_i_size > inode->i_size)
1136                 i_size_write(inode, pos+copied);
1137         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1138         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1139         if (new_i_size > EXT4_I(inode)->i_disksize) {
1140                 ext4_update_i_disksize(inode, new_i_size);
1141                 ret2 = ext4_mark_inode_dirty(handle, inode);
1142                 if (!ret)
1143                         ret = ret2;
1144         }
1145
1146         unlock_page(page);
1147         page_cache_release(page);
1148         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1149                 /* if we have allocated more blocks and copied
1150                  * less. We will have blocks allocated outside
1151                  * inode->i_size. So truncate them
1152                  */
1153                 ext4_orphan_add(handle, inode);
1154
1155         ret2 = ext4_journal_stop(handle);
1156         if (!ret)
1157                 ret = ret2;
1158         if (pos + len > inode->i_size) {
1159                 ext4_truncate_failed_write(inode);
1160                 /*
1161                  * If truncate failed early the inode might still be
1162                  * on the orphan list; we need to make sure the inode
1163                  * is removed from the orphan list in that case.
1164                  */
1165                 if (inode->i_nlink)
1166                         ext4_orphan_del(NULL, inode);
1167         }
1168
1169         return ret ? ret : copied;
1170 }
1171
1172 /*
1173  * Reserve a single cluster located at lblock
1174  */
1175 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1176 {
1177         int retries = 0;
1178         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1179         struct ext4_inode_info *ei = EXT4_I(inode);
1180         unsigned int md_needed;
1181         int ret;
1182
1183         /*
1184          * recalculate the amount of metadata blocks to reserve
1185          * in order to allocate nrblocks
1186          * worse case is one extent per block
1187          */
1188 repeat:
1189         spin_lock(&ei->i_block_reservation_lock);
1190         md_needed = EXT4_NUM_B2C(sbi,
1191                                  ext4_calc_metadata_amount(inode, lblock));
1192         trace_ext4_da_reserve_space(inode, md_needed);
1193         spin_unlock(&ei->i_block_reservation_lock);
1194
1195         /*
1196          * We will charge metadata quota at writeout time; this saves
1197          * us from metadata over-estimation, though we may go over by
1198          * a small amount in the end.  Here we just reserve for data.
1199          */
1200         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1201         if (ret)
1202                 return ret;
1203         /*
1204          * We do still charge estimated metadata to the sb though;
1205          * we cannot afford to run out of free blocks.
1206          */
1207         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1208                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1209                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1210                         yield();
1211                         goto repeat;
1212                 }
1213                 return -ENOSPC;
1214         }
1215         spin_lock(&ei->i_block_reservation_lock);
1216         ei->i_reserved_data_blocks++;
1217         ei->i_reserved_meta_blocks += md_needed;
1218         spin_unlock(&ei->i_block_reservation_lock);
1219
1220         return 0;       /* success */
1221 }
1222
1223 static void ext4_da_release_space(struct inode *inode, int to_free)
1224 {
1225         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1226         struct ext4_inode_info *ei = EXT4_I(inode);
1227
1228         if (!to_free)
1229                 return;         /* Nothing to release, exit */
1230
1231         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1232
1233         trace_ext4_da_release_space(inode, to_free);
1234         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1235                 /*
1236                  * if there aren't enough reserved blocks, then the
1237                  * counter is messed up somewhere.  Since this
1238                  * function is called from invalidate page, it's
1239                  * harmless to return without any action.
1240                  */
1241                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1242                          "ino %lu, to_free %d with only %d reserved "
1243                          "data blocks", inode->i_ino, to_free,
1244                          ei->i_reserved_data_blocks);
1245                 WARN_ON(1);
1246                 to_free = ei->i_reserved_data_blocks;
1247         }
1248         ei->i_reserved_data_blocks -= to_free;
1249
1250         if (ei->i_reserved_data_blocks == 0) {
1251                 /*
1252                  * We can release all of the reserved metadata blocks
1253                  * only when we have written all of the delayed
1254                  * allocation blocks.
1255                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1256                  * i_reserved_data_blocks, etc. refer to number of clusters.
1257                  */
1258                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1259                                    ei->i_reserved_meta_blocks);
1260                 ei->i_reserved_meta_blocks = 0;
1261                 ei->i_da_metadata_calc_len = 0;
1262         }
1263
1264         /* update fs dirty data blocks counter */
1265         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1266
1267         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1268
1269         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1270 }
1271
1272 static void ext4_da_page_release_reservation(struct page *page,
1273                                              unsigned long offset)
1274 {
1275         int to_release = 0;
1276         struct buffer_head *head, *bh;
1277         unsigned int curr_off = 0;
1278         struct inode *inode = page->mapping->host;
1279         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1280         int num_clusters;
1281
1282         head = page_buffers(page);
1283         bh = head;
1284         do {
1285                 unsigned int next_off = curr_off + bh->b_size;
1286
1287                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1288                         to_release++;
1289                         clear_buffer_delay(bh);
1290                         clear_buffer_da_mapped(bh);
1291                 }
1292                 curr_off = next_off;
1293         } while ((bh = bh->b_this_page) != head);
1294
1295         /* If we have released all the blocks belonging to a cluster, then we
1296          * need to release the reserved space for that cluster. */
1297         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1298         while (num_clusters > 0) {
1299                 ext4_fsblk_t lblk;
1300                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1301                         ((num_clusters - 1) << sbi->s_cluster_bits);
1302                 if (sbi->s_cluster_ratio == 1 ||
1303                     !ext4_find_delalloc_cluster(inode, lblk, 1))
1304                         ext4_da_release_space(inode, 1);
1305
1306                 num_clusters--;
1307         }
1308 }
1309
1310 /*
1311  * Delayed allocation stuff
1312  */
1313
1314 /*
1315  * mpage_da_submit_io - walks through extent of pages and try to write
1316  * them with writepage() call back
1317  *
1318  * @mpd->inode: inode
1319  * @mpd->first_page: first page of the extent
1320  * @mpd->next_page: page after the last page of the extent
1321  *
1322  * By the time mpage_da_submit_io() is called we expect all blocks
1323  * to be allocated. this may be wrong if allocation failed.
1324  *
1325  * As pages are already locked by write_cache_pages(), we can't use it
1326  */
1327 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1328                               struct ext4_map_blocks *map)
1329 {
1330         struct pagevec pvec;
1331         unsigned long index, end;
1332         int ret = 0, err, nr_pages, i;
1333         struct inode *inode = mpd->inode;
1334         struct address_space *mapping = inode->i_mapping;
1335         loff_t size = i_size_read(inode);
1336         unsigned int len, block_start;
1337         struct buffer_head *bh, *page_bufs = NULL;
1338         int journal_data = ext4_should_journal_data(inode);
1339         sector_t pblock = 0, cur_logical = 0;
1340         struct ext4_io_submit io_submit;
1341
1342         BUG_ON(mpd->next_page <= mpd->first_page);
1343         memset(&io_submit, 0, sizeof(io_submit));
1344         /*
1345          * We need to start from the first_page to the next_page - 1
1346          * to make sure we also write the mapped dirty buffer_heads.
1347          * If we look at mpd->b_blocknr we would only be looking
1348          * at the currently mapped buffer_heads.
1349          */
1350         index = mpd->first_page;
1351         end = mpd->next_page - 1;
1352
1353         pagevec_init(&pvec, 0);
1354         while (index <= end) {
1355                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1356                 if (nr_pages == 0)
1357                         break;
1358                 for (i = 0; i < nr_pages; i++) {
1359                         int commit_write = 0, skip_page = 0;
1360                         struct page *page = pvec.pages[i];
1361
1362                         index = page->index;
1363                         if (index > end)
1364                                 break;
1365
1366                         if (index == size >> PAGE_CACHE_SHIFT)
1367                                 len = size & ~PAGE_CACHE_MASK;
1368                         else
1369                                 len = PAGE_CACHE_SIZE;
1370                         if (map) {
1371                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1372                                                         inode->i_blkbits);
1373                                 pblock = map->m_pblk + (cur_logical -
1374                                                         map->m_lblk);
1375                         }
1376                         index++;
1377
1378                         BUG_ON(!PageLocked(page));
1379                         BUG_ON(PageWriteback(page));
1380
1381                         /*
1382                          * If the page does not have buffers (for
1383                          * whatever reason), try to create them using
1384                          * __block_write_begin.  If this fails,
1385                          * skip the page and move on.
1386                          */
1387                         if (!page_has_buffers(page)) {
1388                                 if (__block_write_begin(page, 0, len,
1389                                                 noalloc_get_block_write)) {
1390                                 skip_page:
1391                                         unlock_page(page);
1392                                         continue;
1393                                 }
1394                                 commit_write = 1;
1395                         }
1396
1397                         bh = page_bufs = page_buffers(page);
1398                         block_start = 0;
1399                         do {
1400                                 if (!bh)
1401                                         goto skip_page;
1402                                 if (map && (cur_logical >= map->m_lblk) &&
1403                                     (cur_logical <= (map->m_lblk +
1404                                                      (map->m_len - 1)))) {
1405                                         if (buffer_delay(bh)) {
1406                                                 clear_buffer_delay(bh);
1407                                                 bh->b_blocknr = pblock;
1408                                         }
1409                                         if (buffer_da_mapped(bh))
1410                                                 clear_buffer_da_mapped(bh);
1411                                         if (buffer_unwritten(bh) ||
1412                                             buffer_mapped(bh))
1413                                                 BUG_ON(bh->b_blocknr != pblock);
1414                                         if (map->m_flags & EXT4_MAP_UNINIT)
1415                                                 set_buffer_uninit(bh);
1416                                         clear_buffer_unwritten(bh);
1417                                 }
1418
1419                                 /*
1420                                  * skip page if block allocation undone and
1421                                  * block is dirty
1422                                  */
1423                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1424                                         skip_page = 1;
1425                                 bh = bh->b_this_page;
1426                                 block_start += bh->b_size;
1427                                 cur_logical++;
1428                                 pblock++;
1429                         } while (bh != page_bufs);
1430
1431                         if (skip_page)
1432                                 goto skip_page;
1433
1434                         if (commit_write)
1435                                 /* mark the buffer_heads as dirty & uptodate */
1436                                 block_commit_write(page, 0, len);
1437
1438                         clear_page_dirty_for_io(page);
1439                         /*
1440                          * Delalloc doesn't support data journalling,
1441                          * but eventually maybe we'll lift this
1442                          * restriction.
1443                          */
1444                         if (unlikely(journal_data && PageChecked(page)))
1445                                 err = __ext4_journalled_writepage(page, len);
1446                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1447                                 err = ext4_bio_write_page(&io_submit, page,
1448                                                           len, mpd->wbc);
1449                         else if (buffer_uninit(page_bufs)) {
1450                                 ext4_set_bh_endio(page_bufs, inode);
1451                                 err = block_write_full_page_endio(page,
1452                                         noalloc_get_block_write,
1453                                         mpd->wbc, ext4_end_io_buffer_write);
1454                         } else
1455                                 err = block_write_full_page(page,
1456                                         noalloc_get_block_write, mpd->wbc);
1457
1458                         if (!err)
1459                                 mpd->pages_written++;
1460                         /*
1461                          * In error case, we have to continue because
1462                          * remaining pages are still locked
1463                          */
1464                         if (ret == 0)
1465                                 ret = err;
1466                 }
1467                 pagevec_release(&pvec);
1468         }
1469         ext4_io_submit(&io_submit);
1470         return ret;
1471 }
1472
1473 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1474 {
1475         int nr_pages, i;
1476         pgoff_t index, end;
1477         struct pagevec pvec;
1478         struct inode *inode = mpd->inode;
1479         struct address_space *mapping = inode->i_mapping;
1480
1481         index = mpd->first_page;
1482         end   = mpd->next_page - 1;
1483         while (index <= end) {
1484                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1485                 if (nr_pages == 0)
1486                         break;
1487                 for (i = 0; i < nr_pages; i++) {
1488                         struct page *page = pvec.pages[i];
1489                         if (page->index > end)
1490                                 break;
1491                         BUG_ON(!PageLocked(page));
1492                         BUG_ON(PageWriteback(page));
1493                         block_invalidatepage(page, 0);
1494                         ClearPageUptodate(page);
1495                         unlock_page(page);
1496                 }
1497                 index = pvec.pages[nr_pages - 1]->index + 1;
1498                 pagevec_release(&pvec);
1499         }
1500         return;
1501 }
1502
1503 static void ext4_print_free_blocks(struct inode *inode)
1504 {
1505         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1506         struct super_block *sb = inode->i_sb;
1507
1508         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1509                EXT4_C2B(EXT4_SB(inode->i_sb),
1510                         ext4_count_free_clusters(inode->i_sb)));
1511         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1512         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1513                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1514                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1515         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1516                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1517                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1518         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1519         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1520                  EXT4_I(inode)->i_reserved_data_blocks);
1521         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1522                EXT4_I(inode)->i_reserved_meta_blocks);
1523         return;
1524 }
1525
1526 /*
1527  * mpage_da_map_and_submit - go through given space, map them
1528  *       if necessary, and then submit them for I/O
1529  *
1530  * @mpd - bh describing space
1531  *
1532  * The function skips space we know is already mapped to disk blocks.
1533  *
1534  */
1535 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1536 {
1537         int err, blks, get_blocks_flags;
1538         struct ext4_map_blocks map, *mapp = NULL;
1539         sector_t next = mpd->b_blocknr;
1540         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1541         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1542         handle_t *handle = NULL;
1543
1544         /*
1545          * If the blocks are mapped already, or we couldn't accumulate
1546          * any blocks, then proceed immediately to the submission stage.
1547          */
1548         if ((mpd->b_size == 0) ||
1549             ((mpd->b_state  & (1 << BH_Mapped)) &&
1550              !(mpd->b_state & (1 << BH_Delay)) &&
1551              !(mpd->b_state & (1 << BH_Unwritten))))
1552                 goto submit_io;
1553
1554         handle = ext4_journal_current_handle();
1555         BUG_ON(!handle);
1556
1557         /*
1558          * Call ext4_map_blocks() to allocate any delayed allocation
1559          * blocks, or to convert an uninitialized extent to be
1560          * initialized (in the case where we have written into
1561          * one or more preallocated blocks).
1562          *
1563          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1564          * indicate that we are on the delayed allocation path.  This
1565          * affects functions in many different parts of the allocation
1566          * call path.  This flag exists primarily because we don't
1567          * want to change *many* call functions, so ext4_map_blocks()
1568          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1569          * inode's allocation semaphore is taken.
1570          *
1571          * If the blocks in questions were delalloc blocks, set
1572          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1573          * variables are updated after the blocks have been allocated.
1574          */
1575         map.m_lblk = next;
1576         map.m_len = max_blocks;
1577         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1578         if (ext4_should_dioread_nolock(mpd->inode))
1579                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1580         if (mpd->b_state & (1 << BH_Delay))
1581                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1582
1583         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1584         if (blks < 0) {
1585                 struct super_block *sb = mpd->inode->i_sb;
1586
1587                 err = blks;
1588                 /*
1589                  * If get block returns EAGAIN or ENOSPC and there
1590                  * appears to be free blocks we will just let
1591                  * mpage_da_submit_io() unlock all of the pages.
1592                  */
1593                 if (err == -EAGAIN)
1594                         goto submit_io;
1595
1596                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1597                         mpd->retval = err;
1598                         goto submit_io;
1599                 }
1600
1601                 /*
1602                  * get block failure will cause us to loop in
1603                  * writepages, because a_ops->writepage won't be able
1604                  * to make progress. The page will be redirtied by
1605                  * writepage and writepages will again try to write
1606                  * the same.
1607                  */
1608                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1609                         ext4_msg(sb, KERN_CRIT,
1610                                  "delayed block allocation failed for inode %lu "
1611                                  "at logical offset %llu with max blocks %zd "
1612                                  "with error %d", mpd->inode->i_ino,
1613                                  (unsigned long long) next,
1614                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1615                         ext4_msg(sb, KERN_CRIT,
1616                                 "This should not happen!! Data will be lost\n");
1617                         if (err == -ENOSPC)
1618                                 ext4_print_free_blocks(mpd->inode);
1619                 }
1620                 /* invalidate all the pages */
1621                 ext4_da_block_invalidatepages(mpd);
1622
1623                 /* Mark this page range as having been completed */
1624                 mpd->io_done = 1;
1625                 return;
1626         }
1627         BUG_ON(blks == 0);
1628
1629         mapp = &map;
1630         if (map.m_flags & EXT4_MAP_NEW) {
1631                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1632                 int i;
1633
1634                 for (i = 0; i < map.m_len; i++)
1635                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1636
1637                 if (ext4_should_order_data(mpd->inode)) {
1638                         err = ext4_jbd2_file_inode(handle, mpd->inode);
1639                         if (err) {
1640                                 /* Only if the journal is aborted */
1641                                 mpd->retval = err;
1642                                 goto submit_io;
1643                         }
1644                 }
1645         }
1646
1647         /*
1648          * Update on-disk size along with block allocation.
1649          */
1650         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1651         if (disksize > i_size_read(mpd->inode))
1652                 disksize = i_size_read(mpd->inode);
1653         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1654                 ext4_update_i_disksize(mpd->inode, disksize);
1655                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1656                 if (err)
1657                         ext4_error(mpd->inode->i_sb,
1658                                    "Failed to mark inode %lu dirty",
1659                                    mpd->inode->i_ino);
1660         }
1661
1662 submit_io:
1663         mpage_da_submit_io(mpd, mapp);
1664         mpd->io_done = 1;
1665 }
1666
1667 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1668                 (1 << BH_Delay) | (1 << BH_Unwritten))
1669
1670 /*
1671  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1672  *
1673  * @mpd->lbh - extent of blocks
1674  * @logical - logical number of the block in the file
1675  * @bh - bh of the block (used to access block's state)
1676  *
1677  * the function is used to collect contig. blocks in same state
1678  */
1679 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1680                                    sector_t logical, size_t b_size,
1681                                    unsigned long b_state)
1682 {
1683         sector_t next;
1684         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1685
1686         /*
1687          * XXX Don't go larger than mballoc is willing to allocate
1688          * This is a stopgap solution.  We eventually need to fold
1689          * mpage_da_submit_io() into this function and then call
1690          * ext4_map_blocks() multiple times in a loop
1691          */
1692         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1693                 goto flush_it;
1694
1695         /* check if thereserved journal credits might overflow */
1696         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1697                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1698                         /*
1699                          * With non-extent format we are limited by the journal
1700                          * credit available.  Total credit needed to insert
1701                          * nrblocks contiguous blocks is dependent on the
1702                          * nrblocks.  So limit nrblocks.
1703                          */
1704                         goto flush_it;
1705                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1706                                 EXT4_MAX_TRANS_DATA) {
1707                         /*
1708                          * Adding the new buffer_head would make it cross the
1709                          * allowed limit for which we have journal credit
1710                          * reserved. So limit the new bh->b_size
1711                          */
1712                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1713                                                 mpd->inode->i_blkbits;
1714                         /* we will do mpage_da_submit_io in the next loop */
1715                 }
1716         }
1717         /*
1718          * First block in the extent
1719          */
1720         if (mpd->b_size == 0) {
1721                 mpd->b_blocknr = logical;
1722                 mpd->b_size = b_size;
1723                 mpd->b_state = b_state & BH_FLAGS;
1724                 return;
1725         }
1726
1727         next = mpd->b_blocknr + nrblocks;
1728         /*
1729          * Can we merge the block to our big extent?
1730          */
1731         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1732                 mpd->b_size += b_size;
1733                 return;
1734         }
1735
1736 flush_it:
1737         /*
1738          * We couldn't merge the block to our extent, so we
1739          * need to flush current  extent and start new one
1740          */
1741         mpage_da_map_and_submit(mpd);
1742         return;
1743 }
1744
1745 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1746 {
1747         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1748 }
1749
1750 /*
1751  * This function is grabs code from the very beginning of
1752  * ext4_map_blocks, but assumes that the caller is from delayed write
1753  * time. This function looks up the requested blocks and sets the
1754  * buffer delay bit under the protection of i_data_sem.
1755  */
1756 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1757                               struct ext4_map_blocks *map,
1758                               struct buffer_head *bh)
1759 {
1760         int retval;
1761         sector_t invalid_block = ~((sector_t) 0xffff);
1762
1763         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1764                 invalid_block = ~0;
1765
1766         map->m_flags = 0;
1767         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1768                   "logical block %lu\n", inode->i_ino, map->m_len,
1769                   (unsigned long) map->m_lblk);
1770         /*
1771          * Try to see if we can get the block without requesting a new
1772          * file system block.
1773          */
1774         down_read((&EXT4_I(inode)->i_data_sem));
1775         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1776                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1777         else
1778                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1779
1780         if (retval == 0) {
1781                 /*
1782                  * XXX: __block_prepare_write() unmaps passed block,
1783                  * is it OK?
1784                  */
1785                 /* If the block was allocated from previously allocated cluster,
1786                  * then we dont need to reserve it again. */
1787                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1788                         retval = ext4_da_reserve_space(inode, iblock);
1789                         if (retval)
1790                                 /* not enough space to reserve */
1791                                 goto out_unlock;
1792                 }
1793
1794                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1795                  * and it should not appear on the bh->b_state.
1796                  */
1797                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1798
1799                 map_bh(bh, inode->i_sb, invalid_block);
1800                 set_buffer_new(bh);
1801                 set_buffer_delay(bh);
1802         }
1803
1804 out_unlock:
1805         up_read((&EXT4_I(inode)->i_data_sem));
1806
1807         return retval;
1808 }
1809
1810 /*
1811  * This is a special get_blocks_t callback which is used by
1812  * ext4_da_write_begin().  It will either return mapped block or
1813  * reserve space for a single block.
1814  *
1815  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1816  * We also have b_blocknr = -1 and b_bdev initialized properly
1817  *
1818  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1819  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1820  * initialized properly.
1821  */
1822 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1823                                   struct buffer_head *bh, int create)
1824 {
1825         struct ext4_map_blocks map;
1826         int ret = 0;
1827
1828         BUG_ON(create == 0);
1829         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1830
1831         map.m_lblk = iblock;
1832         map.m_len = 1;
1833
1834         /*
1835          * first, we need to know whether the block is allocated already
1836          * preallocated blocks are unmapped but should treated
1837          * the same as allocated blocks.
1838          */
1839         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1840         if (ret <= 0)
1841                 return ret;
1842
1843         map_bh(bh, inode->i_sb, map.m_pblk);
1844         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1845
1846         if (buffer_unwritten(bh)) {
1847                 /* A delayed write to unwritten bh should be marked
1848                  * new and mapped.  Mapped ensures that we don't do
1849                  * get_block multiple times when we write to the same
1850                  * offset and new ensures that we do proper zero out
1851                  * for partial write.
1852                  */
1853                 set_buffer_new(bh);
1854                 set_buffer_mapped(bh);
1855         }
1856         return 0;
1857 }
1858
1859 /*
1860  * This function is used as a standard get_block_t calback function
1861  * when there is no desire to allocate any blocks.  It is used as a
1862  * callback function for block_write_begin() and block_write_full_page().
1863  * These functions should only try to map a single block at a time.
1864  *
1865  * Since this function doesn't do block allocations even if the caller
1866  * requests it by passing in create=1, it is critically important that
1867  * any caller checks to make sure that any buffer heads are returned
1868  * by this function are either all already mapped or marked for
1869  * delayed allocation before calling  block_write_full_page().  Otherwise,
1870  * b_blocknr could be left unitialized, and the page write functions will
1871  * be taken by surprise.
1872  */
1873 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1874                                    struct buffer_head *bh_result, int create)
1875 {
1876         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1877         return _ext4_get_block(inode, iblock, bh_result, 0);
1878 }
1879
1880 static int bget_one(handle_t *handle, struct buffer_head *bh)
1881 {
1882         get_bh(bh);
1883         return 0;
1884 }
1885
1886 static int bput_one(handle_t *handle, struct buffer_head *bh)
1887 {
1888         put_bh(bh);
1889         return 0;
1890 }
1891
1892 static int __ext4_journalled_writepage(struct page *page,
1893                                        unsigned int len)
1894 {
1895         struct address_space *mapping = page->mapping;
1896         struct inode *inode = mapping->host;
1897         struct buffer_head *page_bufs;
1898         handle_t *handle = NULL;
1899         int ret = 0;
1900         int err;
1901
1902         ClearPageChecked(page);
1903         page_bufs = page_buffers(page);
1904         BUG_ON(!page_bufs);
1905         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1906         /* As soon as we unlock the page, it can go away, but we have
1907          * references to buffers so we are safe */
1908         unlock_page(page);
1909
1910         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1911         if (IS_ERR(handle)) {
1912                 ret = PTR_ERR(handle);
1913                 goto out;
1914         }
1915
1916         BUG_ON(!ext4_handle_valid(handle));
1917
1918         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1919                                 do_journal_get_write_access);
1920
1921         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1922                                 write_end_fn);
1923         if (ret == 0)
1924                 ret = err;
1925         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1926         err = ext4_journal_stop(handle);
1927         if (!ret)
1928                 ret = err;
1929
1930         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1931         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1932 out:
1933         return ret;
1934 }
1935
1936 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1937 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1938
1939 /*
1940  * Note that we don't need to start a transaction unless we're journaling data
1941  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1942  * need to file the inode to the transaction's list in ordered mode because if
1943  * we are writing back data added by write(), the inode is already there and if
1944  * we are writing back data modified via mmap(), no one guarantees in which
1945  * transaction the data will hit the disk. In case we are journaling data, we
1946  * cannot start transaction directly because transaction start ranks above page
1947  * lock so we have to do some magic.
1948  *
1949  * This function can get called via...
1950  *   - ext4_da_writepages after taking page lock (have journal handle)
1951  *   - journal_submit_inode_data_buffers (no journal handle)
1952  *   - shrink_page_list via pdflush (no journal handle)
1953  *   - grab_page_cache when doing write_begin (have journal handle)
1954  *
1955  * We don't do any block allocation in this function. If we have page with
1956  * multiple blocks we need to write those buffer_heads that are mapped. This
1957  * is important for mmaped based write. So if we do with blocksize 1K
1958  * truncate(f, 1024);
1959  * a = mmap(f, 0, 4096);
1960  * a[0] = 'a';
1961  * truncate(f, 4096);
1962  * we have in the page first buffer_head mapped via page_mkwrite call back
1963  * but other buffer_heads would be unmapped but dirty (dirty done via the
1964  * do_wp_page). So writepage should write the first block. If we modify
1965  * the mmap area beyond 1024 we will again get a page_fault and the
1966  * page_mkwrite callback will do the block allocation and mark the
1967  * buffer_heads mapped.
1968  *
1969  * We redirty the page if we have any buffer_heads that is either delay or
1970  * unwritten in the page.
1971  *
1972  * We can get recursively called as show below.
1973  *
1974  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1975  *              ext4_writepage()
1976  *
1977  * But since we don't do any block allocation we should not deadlock.
1978  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1979  */
1980 static int ext4_writepage(struct page *page,
1981                           struct writeback_control *wbc)
1982 {
1983         int ret = 0, commit_write = 0;
1984         loff_t size;
1985         unsigned int len;
1986         struct buffer_head *page_bufs = NULL;
1987         struct inode *inode = page->mapping->host;
1988
1989         trace_ext4_writepage(page);
1990         size = i_size_read(inode);
1991         if (page->index == size >> PAGE_CACHE_SHIFT)
1992                 len = size & ~PAGE_CACHE_MASK;
1993         else
1994                 len = PAGE_CACHE_SIZE;
1995
1996         /*
1997          * If the page does not have buffers (for whatever reason),
1998          * try to create them using __block_write_begin.  If this
1999          * fails, redirty the page and move on.
2000          */
2001         if (!page_has_buffers(page)) {
2002                 if (__block_write_begin(page, 0, len,
2003                                         noalloc_get_block_write)) {
2004                 redirty_page:
2005                         redirty_page_for_writepage(wbc, page);
2006                         unlock_page(page);
2007                         return 0;
2008                 }
2009                 commit_write = 1;
2010         }
2011         page_bufs = page_buffers(page);
2012         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2013                               ext4_bh_delay_or_unwritten)) {
2014                 /*
2015                  * We don't want to do block allocation, so redirty
2016                  * the page and return.  We may reach here when we do
2017                  * a journal commit via journal_submit_inode_data_buffers.
2018                  * We can also reach here via shrink_page_list but it
2019                  * should never be for direct reclaim so warn if that
2020                  * happens
2021                  */
2022                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2023                                                                 PF_MEMALLOC);
2024                 goto redirty_page;
2025         }
2026         if (commit_write)
2027                 /* now mark the buffer_heads as dirty and uptodate */
2028                 block_commit_write(page, 0, len);
2029
2030         if (PageChecked(page) && ext4_should_journal_data(inode))
2031                 /*
2032                  * It's mmapped pagecache.  Add buffers and journal it.  There
2033                  * doesn't seem much point in redirtying the page here.
2034                  */
2035                 return __ext4_journalled_writepage(page, len);
2036
2037         if (buffer_uninit(page_bufs)) {
2038                 ext4_set_bh_endio(page_bufs, inode);
2039                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2040                                             wbc, ext4_end_io_buffer_write);
2041         } else
2042                 ret = block_write_full_page(page, noalloc_get_block_write,
2043                                             wbc);
2044
2045         return ret;
2046 }
2047
2048 /*
2049  * This is called via ext4_da_writepages() to
2050  * calculate the total number of credits to reserve to fit
2051  * a single extent allocation into a single transaction,
2052  * ext4_da_writpeages() will loop calling this before
2053  * the block allocation.
2054  */
2055
2056 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2057 {
2058         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2059
2060         /*
2061          * With non-extent format the journal credit needed to
2062          * insert nrblocks contiguous block is dependent on
2063          * number of contiguous block. So we will limit
2064          * number of contiguous block to a sane value
2065          */
2066         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2067             (max_blocks > EXT4_MAX_TRANS_DATA))
2068                 max_blocks = EXT4_MAX_TRANS_DATA;
2069
2070         return ext4_chunk_trans_blocks(inode, max_blocks);
2071 }
2072
2073 /*
2074  * write_cache_pages_da - walk the list of dirty pages of the given
2075  * address space and accumulate pages that need writing, and call
2076  * mpage_da_map_and_submit to map a single contiguous memory region
2077  * and then write them.
2078  */
2079 static int write_cache_pages_da(struct address_space *mapping,
2080                                 struct writeback_control *wbc,
2081                                 struct mpage_da_data *mpd,
2082                                 pgoff_t *done_index)
2083 {
2084         struct buffer_head      *bh, *head;
2085         struct inode            *inode = mapping->host;
2086         struct pagevec          pvec;
2087         unsigned int            nr_pages;
2088         sector_t                logical;
2089         pgoff_t                 index, end;
2090         long                    nr_to_write = wbc->nr_to_write;
2091         int                     i, tag, ret = 0;
2092
2093         memset(mpd, 0, sizeof(struct mpage_da_data));
2094         mpd->wbc = wbc;
2095         mpd->inode = inode;
2096         pagevec_init(&pvec, 0);
2097         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2098         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2099
2100         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2101                 tag = PAGECACHE_TAG_TOWRITE;
2102         else
2103                 tag = PAGECACHE_TAG_DIRTY;
2104
2105         *done_index = index;
2106         while (index <= end) {
2107                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2108                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2109                 if (nr_pages == 0)
2110                         return 0;
2111
2112                 for (i = 0; i < nr_pages; i++) {
2113                         struct page *page = pvec.pages[i];
2114
2115                         /*
2116                          * At this point, the page may be truncated or
2117                          * invalidated (changing page->mapping to NULL), or
2118                          * even swizzled back from swapper_space to tmpfs file
2119                          * mapping. However, page->index will not change
2120                          * because we have a reference on the page.
2121                          */
2122                         if (page->index > end)
2123                                 goto out;
2124
2125                         *done_index = page->index + 1;
2126
2127                         /*
2128                          * If we can't merge this page, and we have
2129                          * accumulated an contiguous region, write it
2130                          */
2131                         if ((mpd->next_page != page->index) &&
2132                             (mpd->next_page != mpd->first_page)) {
2133                                 mpage_da_map_and_submit(mpd);
2134                                 goto ret_extent_tail;
2135                         }
2136
2137                         lock_page(page);
2138
2139                         /*
2140                          * If the page is no longer dirty, or its
2141                          * mapping no longer corresponds to inode we
2142                          * are writing (which means it has been
2143                          * truncated or invalidated), or the page is
2144                          * already under writeback and we are not
2145                          * doing a data integrity writeback, skip the page
2146                          */
2147                         if (!PageDirty(page) ||
2148                             (PageWriteback(page) &&
2149                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2150                             unlikely(page->mapping != mapping)) {
2151                                 unlock_page(page);
2152                                 continue;
2153                         }
2154
2155                         wait_on_page_writeback(page);
2156                         BUG_ON(PageWriteback(page));
2157
2158                         if (mpd->next_page != page->index)
2159                                 mpd->first_page = page->index;
2160                         mpd->next_page = page->index + 1;
2161                         logical = (sector_t) page->index <<
2162                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2163
2164                         if (!page_has_buffers(page)) {
2165                                 mpage_add_bh_to_extent(mpd, logical,
2166                                                        PAGE_CACHE_SIZE,
2167                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2168                                 if (mpd->io_done)
2169                                         goto ret_extent_tail;
2170                         } else {
2171                                 /*
2172                                  * Page with regular buffer heads,
2173                                  * just add all dirty ones
2174                                  */
2175                                 head = page_buffers(page);
2176                                 bh = head;
2177                                 do {
2178                                         BUG_ON(buffer_locked(bh));
2179                                         /*
2180                                          * We need to try to allocate
2181                                          * unmapped blocks in the same page.
2182                                          * Otherwise we won't make progress
2183                                          * with the page in ext4_writepage
2184                                          */
2185                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2186                                                 mpage_add_bh_to_extent(mpd, logical,
2187                                                                        bh->b_size,
2188                                                                        bh->b_state);
2189                                                 if (mpd->io_done)
2190                                                         goto ret_extent_tail;
2191                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2192                                                 /*
2193                                                  * mapped dirty buffer. We need
2194                                                  * to update the b_state
2195                                                  * because we look at b_state
2196                                                  * in mpage_da_map_blocks.  We
2197                                                  * don't update b_size because
2198                                                  * if we find an unmapped
2199                                                  * buffer_head later we need to
2200                                                  * use the b_state flag of that
2201                                                  * buffer_head.
2202                                                  */
2203                                                 if (mpd->b_size == 0)
2204                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2205                                         }
2206                                         logical++;
2207                                 } while ((bh = bh->b_this_page) != head);
2208                         }
2209
2210                         if (nr_to_write > 0) {
2211                                 nr_to_write--;
2212                                 if (nr_to_write == 0 &&
2213                                     wbc->sync_mode == WB_SYNC_NONE)
2214                                         /*
2215                                          * We stop writing back only if we are
2216                                          * not doing integrity sync. In case of
2217                                          * integrity sync we have to keep going
2218                                          * because someone may be concurrently
2219                                          * dirtying pages, and we might have
2220                                          * synced a lot of newly appeared dirty
2221                                          * pages, but have not synced all of the
2222                                          * old dirty pages.
2223                                          */
2224                                         goto out;
2225                         }
2226                 }
2227                 pagevec_release(&pvec);
2228                 cond_resched();
2229         }
2230         return 0;
2231 ret_extent_tail:
2232         ret = MPAGE_DA_EXTENT_TAIL;
2233 out:
2234         pagevec_release(&pvec);
2235         cond_resched();
2236         return ret;
2237 }
2238
2239
2240 static int ext4_da_writepages(struct address_space *mapping,
2241                               struct writeback_control *wbc)
2242 {
2243         pgoff_t index;
2244         int range_whole = 0;
2245         handle_t *handle = NULL;
2246         struct mpage_da_data mpd;
2247         struct inode *inode = mapping->host;
2248         int pages_written = 0;
2249         unsigned int max_pages;
2250         int range_cyclic, cycled = 1, io_done = 0;
2251         int needed_blocks, ret = 0;
2252         long desired_nr_to_write, nr_to_writebump = 0;
2253         loff_t range_start = wbc->range_start;
2254         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2255         pgoff_t done_index = 0;
2256         pgoff_t end;
2257         struct blk_plug plug;
2258
2259         trace_ext4_da_writepages(inode, wbc);
2260
2261         /*
2262          * No pages to write? This is mainly a kludge to avoid starting
2263          * a transaction for special inodes like journal inode on last iput()
2264          * because that could violate lock ordering on umount
2265          */
2266         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2267                 return 0;
2268
2269         /*
2270          * If the filesystem has aborted, it is read-only, so return
2271          * right away instead of dumping stack traces later on that
2272          * will obscure the real source of the problem.  We test
2273          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2274          * the latter could be true if the filesystem is mounted
2275          * read-only, and in that case, ext4_da_writepages should
2276          * *never* be called, so if that ever happens, we would want
2277          * the stack trace.
2278          */
2279         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2280                 return -EROFS;
2281
2282         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2283                 range_whole = 1;
2284
2285         range_cyclic = wbc->range_cyclic;
2286         if (wbc->range_cyclic) {
2287                 index = mapping->writeback_index;
2288                 if (index)
2289                         cycled = 0;
2290                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2291                 wbc->range_end  = LLONG_MAX;
2292                 wbc->range_cyclic = 0;
2293                 end = -1;
2294         } else {
2295                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2296                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2297         }
2298
2299         /*
2300          * This works around two forms of stupidity.  The first is in
2301          * the writeback code, which caps the maximum number of pages
2302          * written to be 1024 pages.  This is wrong on multiple
2303          * levels; different architectues have a different page size,
2304          * which changes the maximum amount of data which gets
2305          * written.  Secondly, 4 megabytes is way too small.  XFS
2306          * forces this value to be 16 megabytes by multiplying
2307          * nr_to_write parameter by four, and then relies on its
2308          * allocator to allocate larger extents to make them
2309          * contiguous.  Unfortunately this brings us to the second
2310          * stupidity, which is that ext4's mballoc code only allocates
2311          * at most 2048 blocks.  So we force contiguous writes up to
2312          * the number of dirty blocks in the inode, or
2313          * sbi->max_writeback_mb_bump whichever is smaller.
2314          */
2315         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2316         if (!range_cyclic && range_whole) {
2317                 if (wbc->nr_to_write == LONG_MAX)
2318                         desired_nr_to_write = wbc->nr_to_write;
2319                 else
2320                         desired_nr_to_write = wbc->nr_to_write * 8;
2321         } else
2322                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2323                                                            max_pages);
2324         if (desired_nr_to_write > max_pages)
2325                 desired_nr_to_write = max_pages;
2326
2327         if (wbc->nr_to_write < desired_nr_to_write) {
2328                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2329                 wbc->nr_to_write = desired_nr_to_write;
2330         }
2331
2332 retry:
2333         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2334                 tag_pages_for_writeback(mapping, index, end);
2335
2336         blk_start_plug(&plug);
2337         while (!ret && wbc->nr_to_write > 0) {
2338
2339                 /*
2340                  * we  insert one extent at a time. So we need
2341                  * credit needed for single extent allocation.
2342                  * journalled mode is currently not supported
2343                  * by delalloc
2344                  */
2345                 BUG_ON(ext4_should_journal_data(inode));
2346                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2347
2348                 /* start a new transaction*/
2349                 handle = ext4_journal_start(inode, needed_blocks);
2350                 if (IS_ERR(handle)) {
2351                         ret = PTR_ERR(handle);
2352                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2353                                "%ld pages, ino %lu; err %d", __func__,
2354                                 wbc->nr_to_write, inode->i_ino, ret);
2355                         blk_finish_plug(&plug);
2356                         goto out_writepages;
2357                 }
2358
2359                 /*
2360                  * Now call write_cache_pages_da() to find the next
2361                  * contiguous region of logical blocks that need
2362                  * blocks to be allocated by ext4 and submit them.
2363                  */
2364                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2365                 /*
2366                  * If we have a contiguous extent of pages and we
2367                  * haven't done the I/O yet, map the blocks and submit
2368                  * them for I/O.
2369                  */
2370                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2371                         mpage_da_map_and_submit(&mpd);
2372                         ret = MPAGE_DA_EXTENT_TAIL;
2373                 }
2374                 trace_ext4_da_write_pages(inode, &mpd);
2375                 wbc->nr_to_write -= mpd.pages_written;
2376
2377                 ext4_journal_stop(handle);
2378
2379                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2380                         /* commit the transaction which would
2381                          * free blocks released in the transaction
2382                          * and try again
2383                          */
2384                         jbd2_journal_force_commit_nested(sbi->s_journal);
2385                         ret = 0;
2386                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2387                         /*
2388                          * Got one extent now try with rest of the pages.
2389                          * If mpd.retval is set -EIO, journal is aborted.
2390                          * So we don't need to write any more.
2391                          */
2392                         pages_written += mpd.pages_written;
2393                         ret = mpd.retval;
2394                         io_done = 1;
2395                 } else if (wbc->nr_to_write)
2396                         /*
2397                          * There is no more writeout needed
2398                          * or we requested for a noblocking writeout
2399                          * and we found the device congested
2400                          */
2401                         break;
2402         }
2403         blk_finish_plug(&plug);
2404         if (!io_done && !cycled) {
2405                 cycled = 1;
2406                 index = 0;
2407                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2408                 wbc->range_end  = mapping->writeback_index - 1;
2409                 goto retry;
2410         }
2411
2412         /* Update index */
2413         wbc->range_cyclic = range_cyclic;
2414         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2415                 /*
2416                  * set the writeback_index so that range_cyclic
2417                  * mode will write it back later
2418                  */
2419                 mapping->writeback_index = done_index;
2420
2421 out_writepages:
2422         wbc->nr_to_write -= nr_to_writebump;
2423         wbc->range_start = range_start;
2424         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2425         return ret;
2426 }
2427
2428 #define FALL_BACK_TO_NONDELALLOC 1
2429 static int ext4_nonda_switch(struct super_block *sb)
2430 {
2431         s64 free_blocks, dirty_blocks;
2432         struct ext4_sb_info *sbi = EXT4_SB(sb);
2433
2434         /*
2435          * switch to non delalloc mode if we are running low
2436          * on free block. The free block accounting via percpu
2437          * counters can get slightly wrong with percpu_counter_batch getting
2438          * accumulated on each CPU without updating global counters
2439          * Delalloc need an accurate free block accounting. So switch
2440          * to non delalloc when we are near to error range.
2441          */
2442         free_blocks  = EXT4_C2B(sbi,
2443                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2444         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2445         if (2 * free_blocks < 3 * dirty_blocks ||
2446                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2447                 /*
2448                  * free block count is less than 150% of dirty blocks
2449                  * or free blocks is less than watermark
2450                  */
2451                 return 1;
2452         }
2453         /*
2454          * Even if we don't switch but are nearing capacity,
2455          * start pushing delalloc when 1/2 of free blocks are dirty.
2456          */
2457         if (free_blocks < 2 * dirty_blocks)
2458                 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2459
2460         return 0;
2461 }
2462
2463 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2464                                loff_t pos, unsigned len, unsigned flags,
2465                                struct page **pagep, void **fsdata)
2466 {
2467         int ret, retries = 0;
2468         struct page *page;
2469         pgoff_t index;
2470         struct inode *inode = mapping->host;
2471         handle_t *handle;
2472
2473         index = pos >> PAGE_CACHE_SHIFT;
2474
2475         if (ext4_nonda_switch(inode->i_sb)) {
2476                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2477                 return ext4_write_begin(file, mapping, pos,
2478                                         len, flags, pagep, fsdata);
2479         }
2480         *fsdata = (void *)0;
2481         trace_ext4_da_write_begin(inode, pos, len, flags);
2482 retry:
2483         /*
2484          * With delayed allocation, we don't log the i_disksize update
2485          * if there is delayed block allocation. But we still need
2486          * to journalling the i_disksize update if writes to the end
2487          * of file which has an already mapped buffer.
2488          */
2489         handle = ext4_journal_start(inode, 1);
2490         if (IS_ERR(handle)) {
2491                 ret = PTR_ERR(handle);
2492                 goto out;
2493         }
2494         /* We cannot recurse into the filesystem as the transaction is already
2495          * started */
2496         flags |= AOP_FLAG_NOFS;
2497
2498         page = grab_cache_page_write_begin(mapping, index, flags);
2499         if (!page) {
2500                 ext4_journal_stop(handle);
2501                 ret = -ENOMEM;
2502                 goto out;
2503         }
2504         *pagep = page;
2505
2506         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2507         if (ret < 0) {
2508                 unlock_page(page);
2509                 ext4_journal_stop(handle);
2510                 page_cache_release(page);
2511                 /*
2512                  * block_write_begin may have instantiated a few blocks
2513                  * outside i_size.  Trim these off again. Don't need
2514                  * i_size_read because we hold i_mutex.
2515                  */
2516                 if (pos + len > inode->i_size)
2517                         ext4_truncate_failed_write(inode);
2518         }
2519
2520         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2521                 goto retry;
2522 out:
2523         return ret;
2524 }
2525
2526 /*
2527  * Check if we should update i_disksize
2528  * when write to the end of file but not require block allocation
2529  */
2530 static int ext4_da_should_update_i_disksize(struct page *page,
2531                                             unsigned long offset)
2532 {
2533         struct buffer_head *bh;
2534         struct inode *inode = page->mapping->host;
2535         unsigned int idx;
2536         int i;
2537
2538         bh = page_buffers(page);
2539         idx = offset >> inode->i_blkbits;
2540
2541         for (i = 0; i < idx; i++)
2542                 bh = bh->b_this_page;
2543
2544         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2545                 return 0;
2546         return 1;
2547 }
2548
2549 static int ext4_da_write_end(struct file *file,
2550                              struct address_space *mapping,
2551                              loff_t pos, unsigned len, unsigned copied,
2552                              struct page *page, void *fsdata)
2553 {
2554         struct inode *inode = mapping->host;
2555         int ret = 0, ret2;
2556         handle_t *handle = ext4_journal_current_handle();
2557         loff_t new_i_size;
2558         unsigned long start, end;
2559         int write_mode = (int)(unsigned long)fsdata;
2560
2561         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2562                 switch (ext4_inode_journal_mode(inode)) {
2563                 case EXT4_INODE_ORDERED_DATA_MODE:
2564                         return ext4_ordered_write_end(file, mapping, pos,
2565                                         len, copied, page, fsdata);
2566                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2567                         return ext4_writeback_write_end(file, mapping, pos,
2568                                         len, copied, page, fsdata);
2569                 default:
2570                         BUG();
2571                 }
2572         }
2573
2574         trace_ext4_da_write_end(inode, pos, len, copied);
2575         start = pos & (PAGE_CACHE_SIZE - 1);
2576         end = start + copied - 1;
2577
2578         /*
2579          * generic_write_end() will run mark_inode_dirty() if i_size
2580          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2581          * into that.
2582          */
2583
2584         new_i_size = pos + copied;
2585         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2586                 if (ext4_da_should_update_i_disksize(page, end)) {
2587                         down_write(&EXT4_I(inode)->i_data_sem);
2588                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2589                                 /*
2590                                  * Updating i_disksize when extending file
2591                                  * without needing block allocation
2592                                  */
2593                                 if (ext4_should_order_data(inode))
2594                                         ret = ext4_jbd2_file_inode(handle,
2595                                                                    inode);
2596
2597                                 EXT4_I(inode)->i_disksize = new_i_size;
2598                         }
2599                         up_write(&EXT4_I(inode)->i_data_sem);
2600                         /* We need to mark inode dirty even if
2601                          * new_i_size is less that inode->i_size
2602                          * bu greater than i_disksize.(hint delalloc)
2603                          */
2604                         ext4_mark_inode_dirty(handle, inode);
2605                 }
2606         }
2607         ret2 = generic_write_end(file, mapping, pos, len, copied,
2608                                                         page, fsdata);
2609         copied = ret2;
2610         if (ret2 < 0)
2611                 ret = ret2;
2612         ret2 = ext4_journal_stop(handle);
2613         if (!ret)
2614                 ret = ret2;
2615
2616         return ret ? ret : copied;
2617 }
2618
2619 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2620 {
2621         /*
2622          * Drop reserved blocks
2623          */
2624         BUG_ON(!PageLocked(page));
2625         if (!page_has_buffers(page))
2626                 goto out;
2627
2628         ext4_da_page_release_reservation(page, offset);
2629
2630 out:
2631         ext4_invalidatepage(page, offset);
2632
2633         return;
2634 }
2635
2636 /*
2637  * Force all delayed allocation blocks to be allocated for a given inode.
2638  */
2639 int ext4_alloc_da_blocks(struct inode *inode)
2640 {
2641         trace_ext4_alloc_da_blocks(inode);
2642
2643         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2644             !EXT4_I(inode)->i_reserved_meta_blocks)
2645                 return 0;
2646
2647         /*
2648          * We do something simple for now.  The filemap_flush() will
2649          * also start triggering a write of the data blocks, which is
2650          * not strictly speaking necessary (and for users of
2651          * laptop_mode, not even desirable).  However, to do otherwise
2652          * would require replicating code paths in:
2653          *
2654          * ext4_da_writepages() ->
2655          *    write_cache_pages() ---> (via passed in callback function)
2656          *        __mpage_da_writepage() -->
2657          *           mpage_add_bh_to_extent()
2658          *           mpage_da_map_blocks()
2659          *
2660          * The problem is that write_cache_pages(), located in
2661          * mm/page-writeback.c, marks pages clean in preparation for
2662          * doing I/O, which is not desirable if we're not planning on
2663          * doing I/O at all.
2664          *
2665          * We could call write_cache_pages(), and then redirty all of
2666          * the pages by calling redirty_page_for_writepage() but that
2667          * would be ugly in the extreme.  So instead we would need to
2668          * replicate parts of the code in the above functions,
2669          * simplifying them because we wouldn't actually intend to
2670          * write out the pages, but rather only collect contiguous
2671          * logical block extents, call the multi-block allocator, and
2672          * then update the buffer heads with the block allocations.
2673          *
2674          * For now, though, we'll cheat by calling filemap_flush(),
2675          * which will map the blocks, and start the I/O, but not
2676          * actually wait for the I/O to complete.
2677          */
2678         return filemap_flush(inode->i_mapping);
2679 }
2680
2681 /*
2682  * bmap() is special.  It gets used by applications such as lilo and by
2683  * the swapper to find the on-disk block of a specific piece of data.
2684  *
2685  * Naturally, this is dangerous if the block concerned is still in the
2686  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2687  * filesystem and enables swap, then they may get a nasty shock when the
2688  * data getting swapped to that swapfile suddenly gets overwritten by
2689  * the original zero's written out previously to the journal and
2690  * awaiting writeback in the kernel's buffer cache.
2691  *
2692  * So, if we see any bmap calls here on a modified, data-journaled file,
2693  * take extra steps to flush any blocks which might be in the cache.
2694  */
2695 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2696 {
2697         struct inode *inode = mapping->host;
2698         journal_t *journal;
2699         int err;
2700
2701         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2702                         test_opt(inode->i_sb, DELALLOC)) {
2703                 /*
2704                  * With delalloc we want to sync the file
2705                  * so that we can make sure we allocate
2706                  * blocks for file
2707                  */
2708                 filemap_write_and_wait(mapping);
2709         }
2710
2711         if (EXT4_JOURNAL(inode) &&
2712             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2713                 /*
2714                  * This is a REALLY heavyweight approach, but the use of
2715                  * bmap on dirty files is expected to be extremely rare:
2716                  * only if we run lilo or swapon on a freshly made file
2717                  * do we expect this to happen.
2718                  *
2719                  * (bmap requires CAP_SYS_RAWIO so this does not
2720                  * represent an unprivileged user DOS attack --- we'd be
2721                  * in trouble if mortal users could trigger this path at
2722                  * will.)
2723                  *
2724                  * NB. EXT4_STATE_JDATA is not set on files other than
2725                  * regular files.  If somebody wants to bmap a directory
2726                  * or symlink and gets confused because the buffer
2727                  * hasn't yet been flushed to disk, they deserve
2728                  * everything they get.
2729                  */
2730
2731                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2732                 journal = EXT4_JOURNAL(inode);
2733                 jbd2_journal_lock_updates(journal);
2734                 err = jbd2_journal_flush(journal);
2735                 jbd2_journal_unlock_updates(journal);
2736
2737                 if (err)
2738                         return 0;
2739         }
2740
2741         return generic_block_bmap(mapping, block, ext4_get_block);
2742 }
2743
2744 static int ext4_readpage(struct file *file, struct page *page)
2745 {
2746         trace_ext4_readpage(page);
2747         return mpage_readpage(page, ext4_get_block);
2748 }
2749
2750 static int
2751 ext4_readpages(struct file *file, struct address_space *mapping,
2752                 struct list_head *pages, unsigned nr_pages)
2753 {
2754         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2755 }
2756
2757 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2758 {
2759         struct buffer_head *head, *bh;
2760         unsigned int curr_off = 0;
2761
2762         if (!page_has_buffers(page))
2763                 return;
2764         head = bh = page_buffers(page);
2765         do {
2766                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2767                                         && bh->b_private) {
2768                         ext4_free_io_end(bh->b_private);
2769                         bh->b_private = NULL;
2770                         bh->b_end_io = NULL;
2771                 }
2772                 curr_off = curr_off + bh->b_size;
2773                 bh = bh->b_this_page;
2774         } while (bh != head);
2775 }
2776
2777 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2778 {
2779         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2780
2781         trace_ext4_invalidatepage(page, offset);
2782
2783         /*
2784          * free any io_end structure allocated for buffers to be discarded
2785          */
2786         if (ext4_should_dioread_nolock(page->mapping->host))
2787                 ext4_invalidatepage_free_endio(page, offset);
2788         /*
2789          * If it's a full truncate we just forget about the pending dirtying
2790          */
2791         if (offset == 0)
2792                 ClearPageChecked(page);
2793
2794         if (journal)
2795                 jbd2_journal_invalidatepage(journal, page, offset);
2796         else
2797                 block_invalidatepage(page, offset);
2798 }
2799
2800 static int ext4_releasepage(struct page *page, gfp_t wait)
2801 {
2802         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2803
2804         trace_ext4_releasepage(page);
2805
2806         WARN_ON(PageChecked(page));
2807         if (!page_has_buffers(page))
2808                 return 0;
2809         if (journal)
2810                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2811         else
2812                 return try_to_free_buffers(page);
2813 }
2814
2815 /*
2816  * ext4_get_block used when preparing for a DIO write or buffer write.
2817  * We allocate an uinitialized extent if blocks haven't been allocated.
2818  * The extent will be converted to initialized after the IO is complete.
2819  */
2820 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2821                    struct buffer_head *bh_result, int create)
2822 {
2823         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2824                    inode->i_ino, create);
2825         return _ext4_get_block(inode, iblock, bh_result,
2826                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2827 }
2828
2829 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2830                             ssize_t size, void *private, int ret,
2831                             bool is_async)
2832 {
2833         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2834         ext4_io_end_t *io_end = iocb->private;
2835         struct workqueue_struct *wq;
2836         unsigned long flags;
2837         struct ext4_inode_info *ei;
2838
2839         /* if not async direct IO or dio with 0 bytes write, just return */
2840         if (!io_end || !size)
2841                 goto out;
2842
2843         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2844                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2845                   iocb->private, io_end->inode->i_ino, iocb, offset,
2846                   size);
2847
2848         iocb->private = NULL;
2849
2850         /* if not aio dio with unwritten extents, just free io and return */
2851         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2852                 ext4_free_io_end(io_end);
2853 out:
2854                 if (is_async)
2855                         aio_complete(iocb, ret, 0);
2856                 inode_dio_done(inode);
2857                 return;
2858         }
2859
2860         io_end->offset = offset;
2861         io_end->size = size;
2862         if (is_async) {
2863                 io_end->iocb = iocb;
2864                 io_end->result = ret;
2865         }
2866         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2867
2868         /* Add the io_end to per-inode completed aio dio list*/
2869         ei = EXT4_I(io_end->inode);
2870         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2871         list_add_tail(&io_end->list, &ei->i_completed_io_list);
2872         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2873
2874         /* queue the work to convert unwritten extents to written */
2875         queue_work(wq, &io_end->work);
2876 }
2877
2878 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2879 {
2880         ext4_io_end_t *io_end = bh->b_private;
2881         struct workqueue_struct *wq;
2882         struct inode *inode;
2883         unsigned long flags;
2884
2885         if (!test_clear_buffer_uninit(bh) || !io_end)
2886                 goto out;
2887
2888         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2889                 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2890                          "sb umounted, discard end_io request for inode %lu",
2891                          io_end->inode->i_ino);
2892                 ext4_free_io_end(io_end);
2893                 goto out;
2894         }
2895
2896         /*
2897          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2898          * but being more careful is always safe for the future change.
2899          */
2900         inode = io_end->inode;
2901         ext4_set_io_unwritten_flag(inode, io_end);
2902
2903         /* Add the io_end to per-inode completed io list*/
2904         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2905         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2906         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2907
2908         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2909         /* queue the work to convert unwritten extents to written */
2910         queue_work(wq, &io_end->work);
2911 out:
2912         bh->b_private = NULL;
2913         bh->b_end_io = NULL;
2914         clear_buffer_uninit(bh);
2915         end_buffer_async_write(bh, uptodate);
2916 }
2917
2918 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2919 {
2920         ext4_io_end_t *io_end;
2921         struct page *page = bh->b_page;
2922         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2923         size_t size = bh->b_size;
2924
2925 retry:
2926         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2927         if (!io_end) {
2928                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2929                 schedule();
2930                 goto retry;
2931         }
2932         io_end->offset = offset;
2933         io_end->size = size;
2934         /*
2935          * We need to hold a reference to the page to make sure it
2936          * doesn't get evicted before ext4_end_io_work() has a chance
2937          * to convert the extent from written to unwritten.
2938          */
2939         io_end->page = page;
2940         get_page(io_end->page);
2941
2942         bh->b_private = io_end;
2943         bh->b_end_io = ext4_end_io_buffer_write;
2944         return 0;
2945 }
2946
2947 /*
2948  * For ext4 extent files, ext4 will do direct-io write to holes,
2949  * preallocated extents, and those write extend the file, no need to
2950  * fall back to buffered IO.
2951  *
2952  * For holes, we fallocate those blocks, mark them as uninitialized
2953  * If those blocks were preallocated, we mark sure they are splited, but
2954  * still keep the range to write as uninitialized.
2955  *
2956  * The unwrritten extents will be converted to written when DIO is completed.
2957  * For async direct IO, since the IO may still pending when return, we
2958  * set up an end_io call back function, which will do the conversion
2959  * when async direct IO completed.
2960  *
2961  * If the O_DIRECT write will extend the file then add this inode to the
2962  * orphan list.  So recovery will truncate it back to the original size
2963  * if the machine crashes during the write.
2964  *
2965  */
2966 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2967                               const struct iovec *iov, loff_t offset,
2968                               unsigned long nr_segs)
2969 {
2970         struct file *file = iocb->ki_filp;
2971         struct inode *inode = file->f_mapping->host;
2972         ssize_t ret;
2973         size_t count = iov_length(iov, nr_segs);
2974
2975         loff_t final_size = offset + count;
2976         if (rw == WRITE && final_size <= inode->i_size) {
2977                 /*
2978                  * We could direct write to holes and fallocate.
2979                  *
2980                  * Allocated blocks to fill the hole are marked as uninitialized
2981                  * to prevent parallel buffered read to expose the stale data
2982                  * before DIO complete the data IO.
2983                  *
2984                  * As to previously fallocated extents, ext4 get_block
2985                  * will just simply mark the buffer mapped but still
2986                  * keep the extents uninitialized.
2987                  *
2988                  * for non AIO case, we will convert those unwritten extents
2989                  * to written after return back from blockdev_direct_IO.
2990                  *
2991                  * for async DIO, the conversion needs to be defered when
2992                  * the IO is completed. The ext4 end_io callback function
2993                  * will be called to take care of the conversion work.
2994                  * Here for async case, we allocate an io_end structure to
2995                  * hook to the iocb.
2996                  */
2997                 iocb->private = NULL;
2998                 EXT4_I(inode)->cur_aio_dio = NULL;
2999                 if (!is_sync_kiocb(iocb)) {
3000                         ext4_io_end_t *io_end =
3001                                 ext4_init_io_end(inode, GFP_NOFS);
3002                         if (!io_end)
3003                                 return -ENOMEM;
3004                         io_end->flag |= EXT4_IO_END_DIRECT;
3005                         iocb->private = io_end;
3006                         /*
3007                          * we save the io structure for current async
3008                          * direct IO, so that later ext4_map_blocks()
3009                          * could flag the io structure whether there
3010                          * is a unwritten extents needs to be converted
3011                          * when IO is completed.
3012                          */
3013                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3014                 }
3015
3016                 ret = __blockdev_direct_IO(rw, iocb, inode,
3017                                          inode->i_sb->s_bdev, iov,
3018                                          offset, nr_segs,
3019                                          ext4_get_block_write,
3020                                          ext4_end_io_dio,
3021                                          NULL,
3022                                          DIO_LOCKING);
3023                 if (iocb->private)
3024                         EXT4_I(inode)->cur_aio_dio = NULL;
3025                 /*
3026                  * The io_end structure takes a reference to the inode,
3027                  * that structure needs to be destroyed and the
3028                  * reference to the inode need to be dropped, when IO is
3029                  * complete, even with 0 byte write, or failed.
3030                  *
3031                  * In the successful AIO DIO case, the io_end structure will be
3032                  * desctroyed and the reference to the inode will be dropped
3033                  * after the end_io call back function is called.
3034                  *
3035                  * In the case there is 0 byte write, or error case, since
3036                  * VFS direct IO won't invoke the end_io call back function,
3037                  * we need to free the end_io structure here.
3038                  */
3039                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3040                         ext4_free_io_end(iocb->private);
3041                         iocb->private = NULL;
3042                 } else if (ret > 0 && ext4_test_inode_state(inode,
3043                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3044                         int err;
3045                         /*
3046                          * for non AIO case, since the IO is already
3047                          * completed, we could do the conversion right here
3048                          */
3049                         err = ext4_convert_unwritten_extents(inode,
3050                                                              offset, ret);
3051                         if (err < 0)
3052                                 ret = err;
3053                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3054                 }
3055                 return ret;
3056         }
3057
3058         /* for write the the end of file case, we fall back to old way */
3059         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3060 }
3061
3062 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3063                               const struct iovec *iov, loff_t offset,
3064                               unsigned long nr_segs)
3065 {
3066         struct file *file = iocb->ki_filp;
3067         struct inode *inode = file->f_mapping->host;
3068         ssize_t ret;
3069
3070         /*
3071          * If we are doing data journalling we don't support O_DIRECT
3072          */
3073         if (ext4_should_journal_data(inode))
3074                 return 0;
3075
3076         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3077         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3078                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3079         else
3080                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3081         trace_ext4_direct_IO_exit(inode, offset,
3082                                 iov_length(iov, nr_segs), rw, ret);
3083         return ret;
3084 }
3085
3086 /*
3087  * Pages can be marked dirty completely asynchronously from ext4's journalling
3088  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3089  * much here because ->set_page_dirty is called under VFS locks.  The page is
3090  * not necessarily locked.
3091  *
3092  * We cannot just dirty the page and leave attached buffers clean, because the
3093  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3094  * or jbddirty because all the journalling code will explode.
3095  *
3096  * So what we do is to mark the page "pending dirty" and next time writepage
3097  * is called, propagate that into the buffers appropriately.
3098  */
3099 static int ext4_journalled_set_page_dirty(struct page *page)
3100 {
3101         SetPageChecked(page);
3102         return __set_page_dirty_nobuffers(page);
3103 }
3104
3105 static const struct address_space_operations ext4_ordered_aops = {
3106         .readpage               = ext4_readpage,
3107         .readpages              = ext4_readpages,
3108         .writepage              = ext4_writepage,
3109         .write_begin            = ext4_write_begin,
3110         .write_end              = ext4_ordered_write_end,
3111         .bmap                   = ext4_bmap,
3112         .invalidatepage         = ext4_invalidatepage,
3113         .releasepage            = ext4_releasepage,
3114         .direct_IO              = ext4_direct_IO,
3115         .migratepage            = buffer_migrate_page,
3116         .is_partially_uptodate  = block_is_partially_uptodate,
3117         .error_remove_page      = generic_error_remove_page,
3118 };
3119
3120 static const struct address_space_operations ext4_writeback_aops = {
3121         .readpage               = ext4_readpage,
3122         .readpages              = ext4_readpages,
3123         .writepage              = ext4_writepage,
3124         .write_begin            = ext4_write_begin,
3125         .write_end              = ext4_writeback_write_end,
3126         .bmap                   = ext4_bmap,
3127         .invalidatepage         = ext4_invalidatepage,
3128         .releasepage            = ext4_releasepage,
3129         .direct_IO              = ext4_direct_IO,
3130         .migratepage            = buffer_migrate_page,
3131         .is_partially_uptodate  = block_is_partially_uptodate,
3132         .error_remove_page      = generic_error_remove_page,
3133 };
3134
3135 static const struct address_space_operations ext4_journalled_aops = {
3136         .readpage               = ext4_readpage,
3137         .readpages              = ext4_readpages,
3138         .writepage              = ext4_writepage,
3139         .write_begin            = ext4_write_begin,
3140         .write_end              = ext4_journalled_write_end,
3141         .set_page_dirty         = ext4_journalled_set_page_dirty,
3142         .bmap                   = ext4_bmap,
3143         .invalidatepage         = ext4_invalidatepage,
3144         .releasepage            = ext4_releasepage,
3145         .direct_IO              = ext4_direct_IO,
3146         .is_partially_uptodate  = block_is_partially_uptodate,
3147         .error_remove_page      = generic_error_remove_page,
3148 };
3149
3150 static const struct address_space_operations ext4_da_aops = {
3151         .readpage               = ext4_readpage,
3152         .readpages              = ext4_readpages,
3153         .writepage              = ext4_writepage,
3154         .writepages             = ext4_da_writepages,
3155         .write_begin            = ext4_da_write_begin,
3156         .write_end              = ext4_da_write_end,
3157         .bmap                   = ext4_bmap,
3158         .invalidatepage         = ext4_da_invalidatepage,
3159         .releasepage            = ext4_releasepage,
3160         .direct_IO              = ext4_direct_IO,
3161         .migratepage            = buffer_migrate_page,
3162         .is_partially_uptodate  = block_is_partially_uptodate,
3163         .error_remove_page      = generic_error_remove_page,
3164 };
3165
3166 void ext4_set_aops(struct inode *inode)
3167 {
3168         switch (ext4_inode_journal_mode(inode)) {
3169         case EXT4_INODE_ORDERED_DATA_MODE:
3170                 if (test_opt(inode->i_sb, DELALLOC))
3171                         inode->i_mapping->a_ops = &ext4_da_aops;
3172                 else
3173                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3174                 break;
3175         case EXT4_INODE_WRITEBACK_DATA_MODE:
3176                 if (test_opt(inode->i_sb, DELALLOC))
3177                         inode->i_mapping->a_ops = &ext4_da_aops;
3178                 else
3179                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3180                 break;
3181         case EXT4_INODE_JOURNAL_DATA_MODE:
3182                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3183                 break;
3184         default:
3185                 BUG();
3186         }
3187 }
3188
3189
3190 /*
3191  * ext4_discard_partial_page_buffers()
3192  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3193  * This function finds and locks the page containing the offset
3194  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3195  * Calling functions that already have the page locked should call
3196  * ext4_discard_partial_page_buffers_no_lock directly.
3197  */
3198 int ext4_discard_partial_page_buffers(handle_t *handle,
3199                 struct address_space *mapping, loff_t from,
3200                 loff_t length, int flags)
3201 {
3202         struct inode *inode = mapping->host;
3203         struct page *page;
3204         int err = 0;
3205
3206         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3207                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3208         if (!page)
3209                 return -ENOMEM;
3210
3211         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3212                 from, length, flags);
3213
3214         unlock_page(page);
3215         page_cache_release(page);
3216         return err;
3217 }
3218
3219 /*
3220  * ext4_discard_partial_page_buffers_no_lock()
3221  * Zeros a page range of length 'length' starting from offset 'from'.
3222  * Buffer heads that correspond to the block aligned regions of the
3223  * zeroed range will be unmapped.  Unblock aligned regions
3224  * will have the corresponding buffer head mapped if needed so that
3225  * that region of the page can be updated with the partial zero out.
3226  *
3227  * This function assumes that the page has already been  locked.  The
3228  * The range to be discarded must be contained with in the given page.
3229  * If the specified range exceeds the end of the page it will be shortened
3230  * to the end of the page that corresponds to 'from'.  This function is
3231  * appropriate for updating a page and it buffer heads to be unmapped and
3232  * zeroed for blocks that have been either released, or are going to be
3233  * released.
3234  *
3235  * handle: The journal handle
3236  * inode:  The files inode
3237  * page:   A locked page that contains the offset "from"
3238  * from:   The starting byte offset (from the begining of the file)
3239  *         to begin discarding
3240  * len:    The length of bytes to discard
3241  * flags:  Optional flags that may be used:
3242  *
3243  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3244  *         Only zero the regions of the page whose buffer heads
3245  *         have already been unmapped.  This flag is appropriate
3246  *         for updateing the contents of a page whose blocks may
3247  *         have already been released, and we only want to zero
3248  *         out the regions that correspond to those released blocks.
3249  *
3250  * Returns zero on sucess or negative on failure.
3251  */
3252 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3253                 struct inode *inode, struct page *page, loff_t from,
3254                 loff_t length, int flags)
3255 {
3256         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3257         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3258         unsigned int blocksize, max, pos;
3259         ext4_lblk_t iblock;
3260         struct buffer_head *bh;
3261         int err = 0;
3262
3263         blocksize = inode->i_sb->s_blocksize;
3264         max = PAGE_CACHE_SIZE - offset;
3265
3266         if (index != page->index)
3267                 return -EINVAL;
3268
3269         /*
3270          * correct length if it does not fall between
3271          * 'from' and the end of the page
3272          */
3273         if (length > max || length < 0)
3274                 length = max;
3275
3276         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3277
3278         if (!page_has_buffers(page))
3279                 create_empty_buffers(page, blocksize, 0);
3280
3281         /* Find the buffer that contains "offset" */
3282         bh = page_buffers(page);
3283         pos = blocksize;
3284         while (offset >= pos) {
3285                 bh = bh->b_this_page;
3286                 iblock++;
3287                 pos += blocksize;
3288         }
3289
3290         pos = offset;
3291         while (pos < offset + length) {
3292                 unsigned int end_of_block, range_to_discard;
3293
3294                 err = 0;
3295
3296                 /* The length of space left to zero and unmap */
3297                 range_to_discard = offset + length - pos;
3298
3299                 /* The length of space until the end of the block */
3300                 end_of_block = blocksize - (pos & (blocksize-1));
3301
3302                 /*
3303                  * Do not unmap or zero past end of block
3304                  * for this buffer head
3305                  */
3306                 if (range_to_discard > end_of_block)
3307                         range_to_discard = end_of_block;
3308
3309
3310                 /*
3311                  * Skip this buffer head if we are only zeroing unampped
3312                  * regions of the page
3313                  */
3314                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3315                         buffer_mapped(bh))
3316                                 goto next;
3317
3318                 /* If the range is block aligned, unmap */
3319                 if (range_to_discard == blocksize) {
3320                         clear_buffer_dirty(bh);
3321                         bh->b_bdev = NULL;
3322                         clear_buffer_mapped(bh);
3323                         clear_buffer_req(bh);
3324                         clear_buffer_new(bh);
3325                         clear_buffer_delay(bh);
3326                         clear_buffer_unwritten(bh);
3327                         clear_buffer_uptodate(bh);
3328                         zero_user(page, pos, range_to_discard);
3329                         BUFFER_TRACE(bh, "Buffer discarded");
3330                         goto next;
3331                 }
3332
3333                 /*
3334                  * If this block is not completely contained in the range
3335                  * to be discarded, then it is not going to be released. Because
3336                  * we need to keep this block, we need to make sure this part
3337                  * of the page is uptodate before we modify it by writeing
3338                  * partial zeros on it.
3339                  */
3340                 if (!buffer_mapped(bh)) {
3341                         /*
3342                          * Buffer head must be mapped before we can read
3343                          * from the block
3344                          */
3345                         BUFFER_TRACE(bh, "unmapped");
3346                         ext4_get_block(inode, iblock, bh, 0);
3347                         /* unmapped? It's a hole - nothing to do */
3348                         if (!buffer_mapped(bh)) {
3349                                 BUFFER_TRACE(bh, "still unmapped");
3350                                 goto next;
3351                         }
3352                 }
3353
3354                 /* Ok, it's mapped. Make sure it's up-to-date */
3355                 if (PageUptodate(page))
3356                         set_buffer_uptodate(bh);
3357
3358                 if (!buffer_uptodate(bh)) {
3359                         err = -EIO;
3360                         ll_rw_block(READ, 1, &bh);
3361                         wait_on_buffer(bh);
3362                         /* Uhhuh. Read error. Complain and punt.*/
3363                         if (!buffer_uptodate(bh))
3364                                 goto next;
3365                 }
3366
3367                 if (ext4_should_journal_data(inode)) {
3368                         BUFFER_TRACE(bh, "get write access");
3369                         err = ext4_journal_get_write_access(handle, bh);
3370                         if (err)
3371                                 goto next;
3372                 }
3373
3374                 zero_user(page, pos, range_to_discard);
3375
3376                 err = 0;
3377                 if (ext4_should_journal_data(inode)) {
3378                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3379                 } else
3380                         mark_buffer_dirty(bh);
3381
3382                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3383 next:
3384                 bh = bh->b_this_page;
3385                 iblock++;
3386                 pos += range_to_discard;
3387         }
3388
3389         return err;
3390 }
3391
3392 int ext4_can_truncate(struct inode *inode)
3393 {
3394         if (S_ISREG(inode->i_mode))
3395                 return 1;
3396         if (S_ISDIR(inode->i_mode))
3397                 return 1;
3398         if (S_ISLNK(inode->i_mode))
3399                 return !ext4_inode_is_fast_symlink(inode);
3400         return 0;
3401 }
3402
3403 /*
3404  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3405  * associated with the given offset and length
3406  *
3407  * @inode:  File inode
3408  * @offset: The offset where the hole will begin
3409  * @len:    The length of the hole
3410  *
3411  * Returns: 0 on sucess or negative on failure
3412  */
3413
3414 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3415 {
3416         struct inode *inode = file->f_path.dentry->d_inode;
3417         if (!S_ISREG(inode->i_mode))
3418                 return -EOPNOTSUPP;
3419
3420         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3421                 /* TODO: Add support for non extent hole punching */
3422                 return -EOPNOTSUPP;
3423         }
3424
3425         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3426                 /* TODO: Add support for bigalloc file systems */
3427                 return -EOPNOTSUPP;
3428         }
3429
3430         return ext4_ext_punch_hole(file, offset, length);
3431 }
3432
3433 /*
3434  * ext4_truncate()
3435  *
3436  * We block out ext4_get_block() block instantiations across the entire
3437  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3438  * simultaneously on behalf of the same inode.
3439  *
3440  * As we work through the truncate and commit bits of it to the journal there
3441  * is one core, guiding principle: the file's tree must always be consistent on
3442  * disk.  We must be able to restart the truncate after a crash.
3443  *
3444  * The file's tree may be transiently inconsistent in memory (although it
3445  * probably isn't), but whenever we close off and commit a journal transaction,
3446  * the contents of (the filesystem + the journal) must be consistent and
3447  * restartable.  It's pretty simple, really: bottom up, right to left (although
3448  * left-to-right works OK too).
3449  *
3450  * Note that at recovery time, journal replay occurs *before* the restart of
3451  * truncate against the orphan inode list.
3452  *
3453  * The committed inode has the new, desired i_size (which is the same as
3454  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3455  * that this inode's truncate did not complete and it will again call
3456  * ext4_truncate() to have another go.  So there will be instantiated blocks
3457  * to the right of the truncation point in a crashed ext4 filesystem.  But
3458  * that's fine - as long as they are linked from the inode, the post-crash
3459  * ext4_truncate() run will find them and release them.
3460  */
3461 void ext4_truncate(struct inode *inode)
3462 {
3463         trace_ext4_truncate_enter(inode);
3464
3465         if (!ext4_can_truncate(inode))
3466                 return;
3467
3468         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3469
3470         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3471                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3472
3473         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3474                 ext4_ext_truncate(inode);
3475         else
3476                 ext4_ind_truncate(inode);
3477
3478         trace_ext4_truncate_exit(inode);
3479 }
3480
3481 /*
3482  * ext4_get_inode_loc returns with an extra refcount against the inode's
3483  * underlying buffer_head on success. If 'in_mem' is true, we have all
3484  * data in memory that is needed to recreate the on-disk version of this
3485  * inode.
3486  */
3487 static int __ext4_get_inode_loc(struct inode *inode,
3488                                 struct ext4_iloc *iloc, int in_mem)
3489 {
3490         struct ext4_group_desc  *gdp;
3491         struct buffer_head      *bh;
3492         struct super_block      *sb = inode->i_sb;
3493         ext4_fsblk_t            block;
3494         int                     inodes_per_block, inode_offset;
3495
3496         iloc->bh = NULL;
3497         if (!ext4_valid_inum(sb, inode->i_ino))
3498                 return -EIO;
3499
3500         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3501         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3502         if (!gdp)
3503                 return -EIO;
3504
3505         /*
3506          * Figure out the offset within the block group inode table
3507          */
3508         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3509         inode_offset = ((inode->i_ino - 1) %
3510                         EXT4_INODES_PER_GROUP(sb));
3511         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3512         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3513
3514         bh = sb_getblk(sb, block);
3515         if (!bh) {
3516                 EXT4_ERROR_INODE_BLOCK(inode, block,
3517                                        "unable to read itable block");
3518                 return -EIO;
3519         }
3520         if (!buffer_uptodate(bh)) {
3521                 lock_buffer(bh);
3522
3523                 /*
3524                  * If the buffer has the write error flag, we have failed
3525                  * to write out another inode in the same block.  In this
3526                  * case, we don't have to read the block because we may
3527                  * read the old inode data successfully.
3528                  */
3529                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3530                         set_buffer_uptodate(bh);
3531
3532                 if (buffer_uptodate(bh)) {
3533                         /* someone brought it uptodate while we waited */
3534                         unlock_buffer(bh);
3535                         goto has_buffer;
3536                 }
3537
3538                 /*
3539                  * If we have all information of the inode in memory and this
3540                  * is the only valid inode in the block, we need not read the
3541                  * block.
3542                  */
3543                 if (in_mem) {
3544                         struct buffer_head *bitmap_bh;
3545                         int i, start;
3546
3547                         start = inode_offset & ~(inodes_per_block - 1);
3548
3549                         /* Is the inode bitmap in cache? */
3550                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3551                         if (!bitmap_bh)
3552                                 goto make_io;
3553
3554                         /*
3555                          * If the inode bitmap isn't in cache then the
3556                          * optimisation may end up performing two reads instead
3557                          * of one, so skip it.
3558                          */
3559                         if (!buffer_uptodate(bitmap_bh)) {
3560                                 brelse(bitmap_bh);
3561                                 goto make_io;
3562                         }
3563                         for (i = start; i < start + inodes_per_block; i++) {
3564                                 if (i == inode_offset)
3565                                         continue;
3566                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3567                                         break;
3568                         }
3569                         brelse(bitmap_bh);
3570                         if (i == start + inodes_per_block) {
3571                                 /* all other inodes are free, so skip I/O */
3572                                 memset(bh->b_data, 0, bh->b_size);
3573                                 set_buffer_uptodate(bh);
3574                                 unlock_buffer(bh);
3575                                 goto has_buffer;
3576                         }
3577                 }
3578
3579 make_io:
3580                 /*
3581                  * If we need to do any I/O, try to pre-readahead extra
3582                  * blocks from the inode table.
3583                  */
3584                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3585                         ext4_fsblk_t b, end, table;
3586                         unsigned num;
3587
3588                         table = ext4_inode_table(sb, gdp);
3589                         /* s_inode_readahead_blks is always a power of 2 */
3590                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3591                         if (table > b)
3592                                 b = table;
3593                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3594                         num = EXT4_INODES_PER_GROUP(sb);
3595                         if (ext4_has_group_desc_csum(sb))
3596                                 num -= ext4_itable_unused_count(sb, gdp);
3597                         table += num / inodes_per_block;
3598                         if (end > table)
3599                                 end = table;
3600                         while (b <= end)
3601                                 sb_breadahead(sb, b++);
3602                 }
3603
3604                 /*
3605                  * There are other valid inodes in the buffer, this inode
3606                  * has in-inode xattrs, or we don't have this inode in memory.
3607                  * Read the block from disk.
3608                  */
3609                 trace_ext4_load_inode(inode);
3610                 get_bh(bh);
3611                 bh->b_end_io = end_buffer_read_sync;
3612                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3613                 wait_on_buffer(bh);
3614                 if (!buffer_uptodate(bh)) {
3615                         EXT4_ERROR_INODE_BLOCK(inode, block,
3616                                                "unable to read itable block");
3617                         brelse(bh);
3618                         return -EIO;
3619                 }
3620         }
3621 has_buffer:
3622         iloc->bh = bh;
3623         return 0;
3624 }
3625
3626 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3627 {
3628         /* We have all inode data except xattrs in memory here. */
3629         return __ext4_get_inode_loc(inode, iloc,
3630                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3631 }
3632
3633 void ext4_set_inode_flags(struct inode *inode)
3634 {
3635         unsigned int flags = EXT4_I(inode)->i_flags;
3636
3637         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3638         if (flags & EXT4_SYNC_FL)
3639                 inode->i_flags |= S_SYNC;
3640         if (flags & EXT4_APPEND_FL)
3641                 inode->i_flags |= S_APPEND;
3642         if (flags & EXT4_IMMUTABLE_FL)
3643                 inode->i_flags |= S_IMMUTABLE;
3644         if (flags & EXT4_NOATIME_FL)
3645                 inode->i_flags |= S_NOATIME;
3646         if (flags & EXT4_DIRSYNC_FL)
3647                 inode->i_flags |= S_DIRSYNC;
3648 }
3649
3650 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3651 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3652 {
3653         unsigned int vfs_fl;
3654         unsigned long old_fl, new_fl;
3655
3656         do {
3657                 vfs_fl = ei->vfs_inode.i_flags;
3658                 old_fl = ei->i_flags;
3659                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3660                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3661                                 EXT4_DIRSYNC_FL);
3662                 if (vfs_fl & S_SYNC)
3663                         new_fl |= EXT4_SYNC_FL;
3664                 if (vfs_fl & S_APPEND)
3665                         new_fl |= EXT4_APPEND_FL;
3666                 if (vfs_fl & S_IMMUTABLE)
3667                         new_fl |= EXT4_IMMUTABLE_FL;
3668                 if (vfs_fl & S_NOATIME)
3669                         new_fl |= EXT4_NOATIME_FL;
3670                 if (vfs_fl & S_DIRSYNC)
3671                         new_fl |= EXT4_DIRSYNC_FL;
3672         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3673 }
3674
3675 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3676                                   struct ext4_inode_info *ei)
3677 {
3678         blkcnt_t i_blocks ;
3679         struct inode *inode = &(ei->vfs_inode);
3680         struct super_block *sb = inode->i_sb;
3681
3682         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3683                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3684                 /* we are using combined 48 bit field */
3685                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3686                                         le32_to_cpu(raw_inode->i_blocks_lo);
3687                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3688                         /* i_blocks represent file system block size */
3689                         return i_blocks  << (inode->i_blkbits - 9);
3690                 } else {
3691                         return i_blocks;
3692                 }
3693         } else {
3694                 return le32_to_cpu(raw_inode->i_blocks_lo);
3695         }
3696 }
3697
3698 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3699 {
3700         struct ext4_iloc iloc;
3701         struct ext4_inode *raw_inode;
3702         struct ext4_inode_info *ei;
3703         struct inode *inode;
3704         journal_t *journal = EXT4_SB(sb)->s_journal;
3705         long ret;
3706         int block;
3707         uid_t i_uid;
3708         gid_t i_gid;
3709
3710         inode = iget_locked(sb, ino);
3711         if (!inode)
3712                 return ERR_PTR(-ENOMEM);
3713         if (!(inode->i_state & I_NEW))
3714                 return inode;
3715
3716         ei = EXT4_I(inode);
3717         iloc.bh = NULL;
3718
3719         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3720         if (ret < 0)
3721                 goto bad_inode;
3722         raw_inode = ext4_raw_inode(&iloc);
3723
3724         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3725                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3726                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3727                     EXT4_INODE_SIZE(inode->i_sb)) {
3728                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3729                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3730                                 EXT4_INODE_SIZE(inode->i_sb));
3731                         ret = -EIO;
3732                         goto bad_inode;
3733                 }
3734         } else
3735                 ei->i_extra_isize = 0;
3736
3737         /* Precompute checksum seed for inode metadata */
3738         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3739                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3740                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3741                 __u32 csum;
3742                 __le32 inum = cpu_to_le32(inode->i_ino);
3743                 __le32 gen = raw_inode->i_generation;
3744                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3745                                    sizeof(inum));
3746                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3747                                               sizeof(gen));
3748         }
3749
3750         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3751                 EXT4_ERROR_INODE(inode, "checksum invalid");
3752                 ret = -EIO;
3753                 goto bad_inode;
3754         }
3755
3756         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3757         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3758         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3759         if (!(test_opt(inode->i_sb, NO_UID32))) {
3760                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3761                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3762         }
3763         i_uid_write(inode, i_uid);
3764         i_gid_write(inode, i_gid);
3765         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3766
3767         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3768         ei->i_dir_start_lookup = 0;
3769         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3770         /* We now have enough fields to check if the inode was active or not.
3771          * This is needed because nfsd might try to access dead inodes
3772          * the test is that same one that e2fsck uses
3773          * NeilBrown 1999oct15
3774          */
3775         if (inode->i_nlink == 0) {
3776                 if (inode->i_mode == 0 ||
3777                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3778                         /* this inode is deleted */
3779                         ret = -ESTALE;
3780                         goto bad_inode;
3781                 }
3782                 /* The only unlinked inodes we let through here have
3783                  * valid i_mode and are being read by the orphan
3784                  * recovery code: that's fine, we're about to complete
3785                  * the process of deleting those. */
3786         }
3787         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3788         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3789         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3790         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3791                 ei->i_file_acl |=
3792                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3793         inode->i_size = ext4_isize(raw_inode);
3794         ei->i_disksize = inode->i_size;
3795 #ifdef CONFIG_QUOTA
3796         ei->i_reserved_quota = 0;
3797 #endif
3798         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3799         ei->i_block_group = iloc.block_group;
3800         ei->i_last_alloc_group = ~0;
3801         /*
3802          * NOTE! The in-memory inode i_data array is in little-endian order
3803          * even on big-endian machines: we do NOT byteswap the block numbers!
3804          */
3805         for (block = 0; block < EXT4_N_BLOCKS; block++)
3806                 ei->i_data[block] = raw_inode->i_block[block];
3807         INIT_LIST_HEAD(&ei->i_orphan);
3808
3809         /*
3810          * Set transaction id's of transactions that have to be committed
3811          * to finish f[data]sync. We set them to currently running transaction
3812          * as we cannot be sure that the inode or some of its metadata isn't
3813          * part of the transaction - the inode could have been reclaimed and
3814          * now it is reread from disk.
3815          */
3816         if (journal) {
3817                 transaction_t *transaction;
3818                 tid_t tid;
3819
3820                 read_lock(&journal->j_state_lock);
3821                 if (journal->j_running_transaction)
3822                         transaction = journal->j_running_transaction;
3823                 else
3824                         transaction = journal->j_committing_transaction;
3825                 if (transaction)
3826                         tid = transaction->t_tid;
3827                 else
3828                         tid = journal->j_commit_sequence;
3829                 read_unlock(&journal->j_state_lock);
3830                 ei->i_sync_tid = tid;
3831                 ei->i_datasync_tid = tid;
3832         }
3833
3834         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3835                 if (ei->i_extra_isize == 0) {
3836                         /* The extra space is currently unused. Use it. */
3837                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3838                                             EXT4_GOOD_OLD_INODE_SIZE;
3839                 } else {
3840                         __le32 *magic = (void *)raw_inode +
3841                                         EXT4_GOOD_OLD_INODE_SIZE +
3842                                         ei->i_extra_isize;
3843                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3844                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3845                 }
3846         }
3847
3848         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3849         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3850         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3851         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3852
3853         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3854         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3855                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3856                         inode->i_version |=
3857                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3858         }
3859
3860         ret = 0;
3861         if (ei->i_file_acl &&
3862             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3863                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3864                                  ei->i_file_acl);
3865                 ret = -EIO;
3866                 goto bad_inode;
3867         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3868                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3869                     (S_ISLNK(inode->i_mode) &&
3870                      !ext4_inode_is_fast_symlink(inode)))
3871                         /* Validate extent which is part of inode */
3872                         ret = ext4_ext_check_inode(inode);
3873         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3874                    (S_ISLNK(inode->i_mode) &&
3875                     !ext4_inode_is_fast_symlink(inode))) {
3876                 /* Validate block references which are part of inode */
3877                 ret = ext4_ind_check_inode(inode);
3878         }
3879         if (ret)
3880                 goto bad_inode;
3881
3882         if (S_ISREG(inode->i_mode)) {
3883                 inode->i_op = &ext4_file_inode_operations;
3884                 inode->i_fop = &ext4_file_operations;
3885                 ext4_set_aops(inode);
3886         } else if (S_ISDIR(inode->i_mode)) {
3887                 inode->i_op = &ext4_dir_inode_operations;
3888                 inode->i_fop = &ext4_dir_operations;
3889         } else if (S_ISLNK(inode->i_mode)) {
3890                 if (ext4_inode_is_fast_symlink(inode)) {
3891                         inode->i_op = &ext4_fast_symlink_inode_operations;
3892                         nd_terminate_link(ei->i_data, inode->i_size,
3893                                 sizeof(ei->i_data) - 1);
3894                 } else {
3895                         inode->i_op = &ext4_symlink_inode_operations;
3896                         ext4_set_aops(inode);
3897                 }
3898         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3899               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3900                 inode->i_op = &ext4_special_inode_operations;
3901                 if (raw_inode->i_block[0])
3902                         init_special_inode(inode, inode->i_mode,
3903                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3904                 else
3905                         init_special_inode(inode, inode->i_mode,
3906                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3907         } else {
3908                 ret = -EIO;
3909                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3910                 goto bad_inode;
3911         }
3912         brelse(iloc.bh);
3913         ext4_set_inode_flags(inode);
3914         unlock_new_inode(inode);
3915         return inode;
3916
3917 bad_inode:
3918         brelse(iloc.bh);
3919         iget_failed(inode);
3920         return ERR_PTR(ret);
3921 }
3922
3923 static int ext4_inode_blocks_set(handle_t *handle,
3924                                 struct ext4_inode *raw_inode,
3925                                 struct ext4_inode_info *ei)
3926 {
3927         struct inode *inode = &(ei->vfs_inode);
3928         u64 i_blocks = inode->i_blocks;
3929         struct super_block *sb = inode->i_sb;
3930
3931         if (i_blocks <= ~0U) {
3932                 /*
3933                  * i_blocks can be represnted in a 32 bit variable
3934                  * as multiple of 512 bytes
3935                  */
3936                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3937                 raw_inode->i_blocks_high = 0;
3938                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3939                 return 0;
3940         }
3941         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3942                 return -EFBIG;
3943
3944         if (i_blocks <= 0xffffffffffffULL) {
3945                 /*
3946                  * i_blocks can be represented in a 48 bit variable
3947                  * as multiple of 512 bytes
3948                  */
3949                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3950                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3951                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3952         } else {
3953                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3954                 /* i_block is stored in file system block size */
3955                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3956                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3957                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3958         }
3959         return 0;
3960 }
3961
3962 /*
3963  * Post the struct inode info into an on-disk inode location in the
3964  * buffer-cache.  This gobbles the caller's reference to the
3965  * buffer_head in the inode location struct.
3966  *
3967  * The caller must have write access to iloc->bh.
3968  */
3969 static int ext4_do_update_inode(handle_t *handle,
3970                                 struct inode *inode,
3971                                 struct ext4_iloc *iloc)
3972 {
3973         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3974         struct ext4_inode_info *ei = EXT4_I(inode);
3975         struct buffer_head *bh = iloc->bh;
3976         int err = 0, rc, block;
3977         uid_t i_uid;
3978         gid_t i_gid;
3979
3980         /* For fields not not tracking in the in-memory inode,
3981          * initialise them to zero for new inodes. */
3982         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3983                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3984
3985         ext4_get_inode_flags(ei);
3986         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3987         i_uid = i_uid_read(inode);
3988         i_gid = i_gid_read(inode);
3989         if (!(test_opt(inode->i_sb, NO_UID32))) {
3990                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3991                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3992 /*
3993  * Fix up interoperability with old kernels. Otherwise, old inodes get
3994  * re-used with the upper 16 bits of the uid/gid intact
3995  */
3996                 if (!ei->i_dtime) {
3997                         raw_inode->i_uid_high =
3998                                 cpu_to_le16(high_16_bits(i_uid));
3999                         raw_inode->i_gid_high =
4000                                 cpu_to_le16(high_16_bits(i_gid));
4001                 } else {
4002                         raw_inode->i_uid_high = 0;
4003                         raw_inode->i_gid_high = 0;
4004                 }
4005         } else {
4006                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4007                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4008                 raw_inode->i_uid_high = 0;
4009                 raw_inode->i_gid_high = 0;
4010         }
4011         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4012
4013         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4014         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4015         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4016         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4017
4018         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4019                 goto out_brelse;
4020         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4021         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4022         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4023             cpu_to_le32(EXT4_OS_HURD))
4024                 raw_inode->i_file_acl_high =
4025                         cpu_to_le16(ei->i_file_acl >> 32);
4026         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4027         ext4_isize_set(raw_inode, ei->i_disksize);
4028         if (ei->i_disksize > 0x7fffffffULL) {
4029                 struct super_block *sb = inode->i_sb;
4030                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4031                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4032                                 EXT4_SB(sb)->s_es->s_rev_level ==
4033                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4034                         /* If this is the first large file
4035                          * created, add a flag to the superblock.
4036                          */
4037                         err = ext4_journal_get_write_access(handle,
4038                                         EXT4_SB(sb)->s_sbh);
4039                         if (err)
4040                                 goto out_brelse;
4041                         ext4_update_dynamic_rev(sb);
4042                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4043                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4044                         ext4_handle_sync(handle);
4045                         err = ext4_handle_dirty_super_now(handle, sb);
4046                 }
4047         }
4048         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4049         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4050                 if (old_valid_dev(inode->i_rdev)) {
4051                         raw_inode->i_block[0] =
4052                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4053                         raw_inode->i_block[1] = 0;
4054                 } else {
4055                         raw_inode->i_block[0] = 0;
4056                         raw_inode->i_block[1] =
4057                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4058                         raw_inode->i_block[2] = 0;
4059                 }
4060         } else
4061                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4062                         raw_inode->i_block[block] = ei->i_data[block];
4063
4064         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4065         if (ei->i_extra_isize) {
4066                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4067                         raw_inode->i_version_hi =
4068                         cpu_to_le32(inode->i_version >> 32);
4069                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4070         }
4071
4072         ext4_inode_csum_set(inode, raw_inode, ei);
4073
4074         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4075         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4076         if (!err)
4077                 err = rc;
4078         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4079
4080         ext4_update_inode_fsync_trans(handle, inode, 0);
4081 out_brelse:
4082         brelse(bh);
4083         ext4_std_error(inode->i_sb, err);
4084         return err;
4085 }
4086
4087 /*
4088  * ext4_write_inode()
4089  *
4090  * We are called from a few places:
4091  *
4092  * - Within generic_file_write() for O_SYNC files.
4093  *   Here, there will be no transaction running. We wait for any running
4094  *   trasnaction to commit.
4095  *
4096  * - Within sys_sync(), kupdate and such.
4097  *   We wait on commit, if tol to.
4098  *
4099  * - Within prune_icache() (PF_MEMALLOC == true)
4100  *   Here we simply return.  We can't afford to block kswapd on the
4101  *   journal commit.
4102  *
4103  * In all cases it is actually safe for us to return without doing anything,
4104  * because the inode has been copied into a raw inode buffer in
4105  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4106  * knfsd.
4107  *
4108  * Note that we are absolutely dependent upon all inode dirtiers doing the
4109  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4110  * which we are interested.
4111  *
4112  * It would be a bug for them to not do this.  The code:
4113  *
4114  *      mark_inode_dirty(inode)
4115  *      stuff();
4116  *      inode->i_size = expr;
4117  *
4118  * is in error because a kswapd-driven write_inode() could occur while
4119  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4120  * will no longer be on the superblock's dirty inode list.
4121  */
4122 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4123 {
4124         int err;
4125
4126         if (current->flags & PF_MEMALLOC)
4127                 return 0;
4128
4129         if (EXT4_SB(inode->i_sb)->s_journal) {
4130                 if (ext4_journal_current_handle()) {
4131                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4132                         dump_stack();
4133                         return -EIO;
4134                 }
4135
4136                 if (wbc->sync_mode != WB_SYNC_ALL)
4137                         return 0;
4138
4139                 err = ext4_force_commit(inode->i_sb);
4140         } else {
4141                 struct ext4_iloc iloc;
4142
4143                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4144                 if (err)
4145                         return err;
4146                 if (wbc->sync_mode == WB_SYNC_ALL)
4147                         sync_dirty_buffer(iloc.bh);
4148                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4149                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4150                                          "IO error syncing inode");
4151                         err = -EIO;
4152                 }
4153                 brelse(iloc.bh);
4154         }
4155         return err;
4156 }
4157
4158 /*
4159  * ext4_setattr()
4160  *
4161  * Called from notify_change.
4162  *
4163  * We want to trap VFS attempts to truncate the file as soon as
4164  * possible.  In particular, we want to make sure that when the VFS
4165  * shrinks i_size, we put the inode on the orphan list and modify
4166  * i_disksize immediately, so that during the subsequent flushing of
4167  * dirty pages and freeing of disk blocks, we can guarantee that any
4168  * commit will leave the blocks being flushed in an unused state on
4169  * disk.  (On recovery, the inode will get truncated and the blocks will
4170  * be freed, so we have a strong guarantee that no future commit will
4171  * leave these blocks visible to the user.)
4172  *
4173  * Another thing we have to assure is that if we are in ordered mode
4174  * and inode is still attached to the committing transaction, we must
4175  * we start writeout of all the dirty pages which are being truncated.
4176  * This way we are sure that all the data written in the previous
4177  * transaction are already on disk (truncate waits for pages under
4178  * writeback).
4179  *
4180  * Called with inode->i_mutex down.
4181  */
4182 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4183 {
4184         struct inode *inode = dentry->d_inode;
4185         int error, rc = 0;
4186         int orphan = 0;
4187         const unsigned int ia_valid = attr->ia_valid;
4188
4189         error = inode_change_ok(inode, attr);
4190         if (error)
4191                 return error;
4192
4193         if (is_quota_modification(inode, attr))
4194                 dquot_initialize(inode);
4195         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4196             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4197                 handle_t *handle;
4198
4199                 /* (user+group)*(old+new) structure, inode write (sb,
4200                  * inode block, ? - but truncate inode update has it) */
4201                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4202                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4203                 if (IS_ERR(handle)) {
4204                         error = PTR_ERR(handle);
4205                         goto err_out;
4206                 }
4207                 error = dquot_transfer(inode, attr);
4208                 if (error) {
4209                         ext4_journal_stop(handle);
4210                         return error;
4211                 }
4212                 /* Update corresponding info in inode so that everything is in
4213                  * one transaction */
4214                 if (attr->ia_valid & ATTR_UID)
4215                         inode->i_uid = attr->ia_uid;
4216                 if (attr->ia_valid & ATTR_GID)
4217                         inode->i_gid = attr->ia_gid;
4218                 error = ext4_mark_inode_dirty(handle, inode);
4219                 ext4_journal_stop(handle);
4220         }
4221
4222         if (attr->ia_valid & ATTR_SIZE) {
4223                 inode_dio_wait(inode);
4224
4225                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4226                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4227
4228                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4229                                 return -EFBIG;
4230                 }
4231         }
4232
4233         if (S_ISREG(inode->i_mode) &&
4234             attr->ia_valid & ATTR_SIZE &&
4235             (attr->ia_size < inode->i_size)) {
4236                 handle_t *handle;
4237
4238                 handle = ext4_journal_start(inode, 3);
4239                 if (IS_ERR(handle)) {
4240                         error = PTR_ERR(handle);
4241                         goto err_out;
4242                 }
4243                 if (ext4_handle_valid(handle)) {
4244                         error = ext4_orphan_add(handle, inode);
4245                         orphan = 1;
4246                 }
4247                 EXT4_I(inode)->i_disksize = attr->ia_size;
4248                 rc = ext4_mark_inode_dirty(handle, inode);
4249                 if (!error)
4250                         error = rc;
4251                 ext4_journal_stop(handle);
4252
4253                 if (ext4_should_order_data(inode)) {
4254                         error = ext4_begin_ordered_truncate(inode,
4255                                                             attr->ia_size);
4256                         if (error) {
4257                                 /* Do as much error cleanup as possible */
4258                                 handle = ext4_journal_start(inode, 3);
4259                                 if (IS_ERR(handle)) {
4260                                         ext4_orphan_del(NULL, inode);
4261                                         goto err_out;
4262                                 }
4263                                 ext4_orphan_del(handle, inode);
4264                                 orphan = 0;
4265                                 ext4_journal_stop(handle);
4266                                 goto err_out;
4267                         }
4268                 }
4269         }
4270
4271         if (attr->ia_valid & ATTR_SIZE) {
4272                 if (attr->ia_size != i_size_read(inode))
4273                         truncate_setsize(inode, attr->ia_size);
4274                 ext4_truncate(inode);
4275         }
4276
4277         if (!rc) {
4278                 setattr_copy(inode, attr);
4279                 mark_inode_dirty(inode);
4280         }
4281
4282         /*
4283          * If the call to ext4_truncate failed to get a transaction handle at
4284          * all, we need to clean up the in-core orphan list manually.
4285          */
4286         if (orphan && inode->i_nlink)
4287                 ext4_orphan_del(NULL, inode);
4288
4289         if (!rc && (ia_valid & ATTR_MODE))
4290                 rc = ext4_acl_chmod(inode);
4291
4292 err_out:
4293         ext4_std_error(inode->i_sb, error);
4294         if (!error)
4295                 error = rc;
4296         return error;
4297 }
4298
4299 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4300                  struct kstat *stat)
4301 {
4302         struct inode *inode;
4303         unsigned long delalloc_blocks;
4304
4305         inode = dentry->d_inode;
4306         generic_fillattr(inode, stat);
4307
4308         /*
4309          * We can't update i_blocks if the block allocation is delayed
4310          * otherwise in the case of system crash before the real block
4311          * allocation is done, we will have i_blocks inconsistent with
4312          * on-disk file blocks.
4313          * We always keep i_blocks updated together with real
4314          * allocation. But to not confuse with user, stat
4315          * will return the blocks that include the delayed allocation
4316          * blocks for this file.
4317          */
4318         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4319                                 EXT4_I(inode)->i_reserved_data_blocks);
4320
4321         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4322         return 0;
4323 }
4324
4325 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4326 {
4327         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4328                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4329         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4330 }
4331
4332 /*
4333  * Account for index blocks, block groups bitmaps and block group
4334  * descriptor blocks if modify datablocks and index blocks
4335  * worse case, the indexs blocks spread over different block groups
4336  *
4337  * If datablocks are discontiguous, they are possible to spread over
4338  * different block groups too. If they are contiuguous, with flexbg,
4339  * they could still across block group boundary.
4340  *
4341  * Also account for superblock, inode, quota and xattr blocks
4342  */
4343 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4344 {
4345         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4346         int gdpblocks;
4347         int idxblocks;
4348         int ret = 0;
4349
4350         /*
4351          * How many index blocks need to touch to modify nrblocks?
4352          * The "Chunk" flag indicating whether the nrblocks is
4353          * physically contiguous on disk
4354          *
4355          * For Direct IO and fallocate, they calls get_block to allocate
4356          * one single extent at a time, so they could set the "Chunk" flag
4357          */
4358         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4359
4360         ret = idxblocks;
4361
4362         /*
4363          * Now let's see how many group bitmaps and group descriptors need
4364          * to account
4365          */
4366         groups = idxblocks;
4367         if (chunk)
4368                 groups += 1;
4369         else
4370                 groups += nrblocks;
4371
4372         gdpblocks = groups;
4373         if (groups > ngroups)
4374                 groups = ngroups;
4375         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4376                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4377
4378         /* bitmaps and block group descriptor blocks */
4379         ret += groups + gdpblocks;
4380
4381         /* Blocks for super block, inode, quota and xattr blocks */
4382         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4383
4384         return ret;
4385 }
4386
4387 /*
4388  * Calculate the total number of credits to reserve to fit
4389  * the modification of a single pages into a single transaction,
4390  * which may include multiple chunks of block allocations.
4391  *
4392  * This could be called via ext4_write_begin()
4393  *
4394  * We need to consider the worse case, when
4395  * one new block per extent.
4396  */
4397 int ext4_writepage_trans_blocks(struct inode *inode)
4398 {
4399         int bpp = ext4_journal_blocks_per_page(inode);
4400         int ret;
4401
4402         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4403
4404         /* Account for data blocks for journalled mode */
4405         if (ext4_should_journal_data(inode))
4406                 ret += bpp;
4407         return ret;
4408 }
4409
4410 /*
4411  * Calculate the journal credits for a chunk of data modification.
4412  *
4413  * This is called from DIO, fallocate or whoever calling
4414  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4415  *
4416  * journal buffers for data blocks are not included here, as DIO
4417  * and fallocate do no need to journal data buffers.
4418  */
4419 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4420 {
4421         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4422 }
4423
4424 /*
4425  * The caller must have previously called ext4_reserve_inode_write().
4426  * Give this, we know that the caller already has write access to iloc->bh.
4427  */
4428 int ext4_mark_iloc_dirty(handle_t *handle,
4429                          struct inode *inode, struct ext4_iloc *iloc)
4430 {
4431         int err = 0;
4432
4433         if (IS_I_VERSION(inode))
4434                 inode_inc_iversion(inode);
4435
4436         /* the do_update_inode consumes one bh->b_count */
4437         get_bh(iloc->bh);
4438
4439         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4440         err = ext4_do_update_inode(handle, inode, iloc);
4441         put_bh(iloc->bh);
4442         return err;
4443 }
4444
4445 /*
4446  * On success, We end up with an outstanding reference count against
4447  * iloc->bh.  This _must_ be cleaned up later.
4448  */
4449
4450 int
4451 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4452                          struct ext4_iloc *iloc)
4453 {
4454         int err;
4455
4456         err = ext4_get_inode_loc(inode, iloc);
4457         if (!err) {
4458                 BUFFER_TRACE(iloc->bh, "get_write_access");
4459                 err = ext4_journal_get_write_access(handle, iloc->bh);
4460                 if (err) {
4461                         brelse(iloc->bh);
4462                         iloc->bh = NULL;
4463                 }
4464         }
4465         ext4_std_error(inode->i_sb, err);
4466         return err;
4467 }
4468
4469 /*
4470  * Expand an inode by new_extra_isize bytes.
4471  * Returns 0 on success or negative error number on failure.
4472  */
4473 static int ext4_expand_extra_isize(struct inode *inode,
4474                                    unsigned int new_extra_isize,
4475                                    struct ext4_iloc iloc,
4476                                    handle_t *handle)
4477 {
4478         struct ext4_inode *raw_inode;
4479         struct ext4_xattr_ibody_header *header;
4480
4481         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4482                 return 0;
4483
4484         raw_inode = ext4_raw_inode(&iloc);
4485
4486         header = IHDR(inode, raw_inode);
4487
4488         /* No extended attributes present */
4489         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4490             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4491                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4492                         new_extra_isize);
4493                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4494                 return 0;
4495         }
4496
4497         /* try to expand with EAs present */
4498         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4499                                           raw_inode, handle);
4500 }
4501
4502 /*
4503  * What we do here is to mark the in-core inode as clean with respect to inode
4504  * dirtiness (it may still be data-dirty).
4505  * This means that the in-core inode may be reaped by prune_icache
4506  * without having to perform any I/O.  This is a very good thing,
4507  * because *any* task may call prune_icache - even ones which
4508  * have a transaction open against a different journal.
4509  *
4510  * Is this cheating?  Not really.  Sure, we haven't written the
4511  * inode out, but prune_icache isn't a user-visible syncing function.
4512  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4513  * we start and wait on commits.
4514  *
4515  * Is this efficient/effective?  Well, we're being nice to the system
4516  * by cleaning up our inodes proactively so they can be reaped
4517  * without I/O.  But we are potentially leaving up to five seconds'
4518  * worth of inodes floating about which prune_icache wants us to
4519  * write out.  One way to fix that would be to get prune_icache()
4520  * to do a write_super() to free up some memory.  It has the desired
4521  * effect.
4522  */
4523 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4524 {
4525         struct ext4_iloc iloc;
4526         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4527         static unsigned int mnt_count;
4528         int err, ret;
4529
4530         might_sleep();
4531         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4532         err = ext4_reserve_inode_write(handle, inode, &iloc);
4533         if (ext4_handle_valid(handle) &&
4534             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4535             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4536                 /*
4537                  * We need extra buffer credits since we may write into EA block
4538                  * with this same handle. If journal_extend fails, then it will
4539                  * only result in a minor loss of functionality for that inode.
4540                  * If this is felt to be critical, then e2fsck should be run to
4541                  * force a large enough s_min_extra_isize.
4542                  */
4543                 if ((jbd2_journal_extend(handle,
4544                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4545                         ret = ext4_expand_extra_isize(inode,
4546                                                       sbi->s_want_extra_isize,
4547                                                       iloc, handle);
4548                         if (ret) {
4549                                 ext4_set_inode_state(inode,
4550                                                      EXT4_STATE_NO_EXPAND);
4551                                 if (mnt_count !=
4552                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4553                                         ext4_warning(inode->i_sb,
4554                                         "Unable to expand inode %lu. Delete"
4555                                         " some EAs or run e2fsck.",
4556                                         inode->i_ino);
4557                                         mnt_count =
4558                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4559                                 }
4560                         }
4561                 }
4562         }
4563         if (!err)
4564                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4565         return err;
4566 }
4567
4568 /*
4569  * ext4_dirty_inode() is called from __mark_inode_dirty()
4570  *
4571  * We're really interested in the case where a file is being extended.
4572  * i_size has been changed by generic_commit_write() and we thus need
4573  * to include the updated inode in the current transaction.
4574  *
4575  * Also, dquot_alloc_block() will always dirty the inode when blocks
4576  * are allocated to the file.
4577  *
4578  * If the inode is marked synchronous, we don't honour that here - doing
4579  * so would cause a commit on atime updates, which we don't bother doing.
4580  * We handle synchronous inodes at the highest possible level.
4581  */
4582 void ext4_dirty_inode(struct inode *inode, int flags)
4583 {
4584         handle_t *handle;
4585
4586         handle = ext4_journal_start(inode, 2);
4587         if (IS_ERR(handle))
4588                 goto out;
4589
4590         ext4_mark_inode_dirty(handle, inode);
4591
4592         ext4_journal_stop(handle);
4593 out:
4594         return;
4595 }
4596
4597 #if 0
4598 /*
4599  * Bind an inode's backing buffer_head into this transaction, to prevent
4600  * it from being flushed to disk early.  Unlike
4601  * ext4_reserve_inode_write, this leaves behind no bh reference and
4602  * returns no iloc structure, so the caller needs to repeat the iloc
4603  * lookup to mark the inode dirty later.
4604  */
4605 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4606 {
4607         struct ext4_iloc iloc;
4608
4609         int err = 0;
4610         if (handle) {
4611                 err = ext4_get_inode_loc(inode, &iloc);
4612                 if (!err) {
4613                         BUFFER_TRACE(iloc.bh, "get_write_access");
4614                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4615                         if (!err)
4616                                 err = ext4_handle_dirty_metadata(handle,
4617                                                                  NULL,
4618                                                                  iloc.bh);
4619                         brelse(iloc.bh);
4620                 }
4621         }
4622         ext4_std_error(inode->i_sb, err);
4623         return err;
4624 }
4625 #endif
4626
4627 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4628 {
4629         journal_t *journal;
4630         handle_t *handle;
4631         int err;
4632
4633         /*
4634          * We have to be very careful here: changing a data block's
4635          * journaling status dynamically is dangerous.  If we write a
4636          * data block to the journal, change the status and then delete
4637          * that block, we risk forgetting to revoke the old log record
4638          * from the journal and so a subsequent replay can corrupt data.
4639          * So, first we make sure that the journal is empty and that
4640          * nobody is changing anything.
4641          */
4642
4643         journal = EXT4_JOURNAL(inode);
4644         if (!journal)
4645                 return 0;
4646         if (is_journal_aborted(journal))
4647                 return -EROFS;
4648         /* We have to allocate physical blocks for delalloc blocks
4649          * before flushing journal. otherwise delalloc blocks can not
4650          * be allocated any more. even more truncate on delalloc blocks
4651          * could trigger BUG by flushing delalloc blocks in journal.
4652          * There is no delalloc block in non-journal data mode.
4653          */
4654         if (val && test_opt(inode->i_sb, DELALLOC)) {
4655                 err = ext4_alloc_da_blocks(inode);
4656                 if (err < 0)
4657                         return err;
4658         }
4659
4660         jbd2_journal_lock_updates(journal);
4661
4662         /*
4663          * OK, there are no updates running now, and all cached data is
4664          * synced to disk.  We are now in a completely consistent state
4665          * which doesn't have anything in the journal, and we know that
4666          * no filesystem updates are running, so it is safe to modify
4667          * the inode's in-core data-journaling state flag now.
4668          */
4669
4670         if (val)
4671                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4672         else {
4673                 jbd2_journal_flush(journal);
4674                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4675         }
4676         ext4_set_aops(inode);
4677
4678         jbd2_journal_unlock_updates(journal);
4679
4680         /* Finally we can mark the inode as dirty. */
4681
4682         handle = ext4_journal_start(inode, 1);
4683         if (IS_ERR(handle))
4684                 return PTR_ERR(handle);
4685
4686         err = ext4_mark_inode_dirty(handle, inode);
4687         ext4_handle_sync(handle);
4688         ext4_journal_stop(handle);
4689         ext4_std_error(inode->i_sb, err);
4690
4691         return err;
4692 }
4693
4694 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4695 {
4696         return !buffer_mapped(bh);
4697 }
4698
4699 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4700 {
4701         struct page *page = vmf->page;
4702         loff_t size;
4703         unsigned long len;
4704         int ret;
4705         struct file *file = vma->vm_file;
4706         struct inode *inode = file->f_path.dentry->d_inode;
4707         struct address_space *mapping = inode->i_mapping;
4708         handle_t *handle;
4709         get_block_t *get_block;
4710         int retries = 0;
4711
4712         sb_start_pagefault(inode->i_sb);
4713         /* Delalloc case is easy... */
4714         if (test_opt(inode->i_sb, DELALLOC) &&
4715             !ext4_should_journal_data(inode) &&
4716             !ext4_nonda_switch(inode->i_sb)) {
4717                 do {
4718                         ret = __block_page_mkwrite(vma, vmf,
4719                                                    ext4_da_get_block_prep);
4720                 } while (ret == -ENOSPC &&
4721                        ext4_should_retry_alloc(inode->i_sb, &retries));
4722                 goto out_ret;
4723         }
4724
4725         lock_page(page);
4726         size = i_size_read(inode);
4727         /* Page got truncated from under us? */
4728         if (page->mapping != mapping || page_offset(page) > size) {
4729                 unlock_page(page);
4730                 ret = VM_FAULT_NOPAGE;
4731                 goto out;
4732         }
4733
4734         if (page->index == size >> PAGE_CACHE_SHIFT)
4735                 len = size & ~PAGE_CACHE_MASK;
4736         else
4737                 len = PAGE_CACHE_SIZE;
4738         /*
4739          * Return if we have all the buffers mapped. This avoids the need to do
4740          * journal_start/journal_stop which can block and take a long time
4741          */
4742         if (page_has_buffers(page)) {
4743                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4744                                         ext4_bh_unmapped)) {
4745                         /* Wait so that we don't change page under IO */
4746                         wait_on_page_writeback(page);
4747                         ret = VM_FAULT_LOCKED;
4748                         goto out;
4749                 }
4750         }
4751         unlock_page(page);
4752         /* OK, we need to fill the hole... */
4753         if (ext4_should_dioread_nolock(inode))
4754                 get_block = ext4_get_block_write;
4755         else
4756                 get_block = ext4_get_block;
4757 retry_alloc:
4758         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4759         if (IS_ERR(handle)) {
4760                 ret = VM_FAULT_SIGBUS;
4761                 goto out;
4762         }
4763         ret = __block_page_mkwrite(vma, vmf, get_block);
4764         if (!ret && ext4_should_journal_data(inode)) {
4765                 if (walk_page_buffers(handle, page_buffers(page), 0,
4766                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4767                         unlock_page(page);
4768                         ret = VM_FAULT_SIGBUS;
4769                         ext4_journal_stop(handle);
4770                         goto out;
4771                 }
4772                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4773         }
4774         ext4_journal_stop(handle);
4775         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4776                 goto retry_alloc;
4777 out_ret:
4778         ret = block_page_mkwrite_return(ret);
4779 out:
4780         sb_end_pagefault(inode->i_sb);
4781         return ret;
4782 }