ext4/jbd2: don't wait (forever) for stale tid caused by wraparound
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138                 struct inode *inode, struct page *page, loff_t from,
139                 loff_t length, int flags);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 (inode->i_sb->s_blocksize >> 9) : 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         if (inode->i_nlink) {
189                 /*
190                  * When journalling data dirty buffers are tracked only in the
191                  * journal. So although mm thinks everything is clean and
192                  * ready for reaping the inode might still have some pages to
193                  * write in the running transaction or waiting to be
194                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
195                  * (via truncate_inode_pages()) to discard these buffers can
196                  * cause data loss. Also even if we did not discard these
197                  * buffers, we would have no way to find them after the inode
198                  * is reaped and thus user could see stale data if he tries to
199                  * read them before the transaction is checkpointed. So be
200                  * careful and force everything to disk here... We use
201                  * ei->i_datasync_tid to store the newest transaction
202                  * containing inode's data.
203                  *
204                  * Note that directories do not have this problem because they
205                  * don't use page cache.
206                  */
207                 if (ext4_should_journal_data(inode) &&
208                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209                     inode->i_ino != EXT4_JOURNAL_INO) {
210                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
213                         jbd2_complete_transaction(journal, commit_tid);
214                         filemap_write_and_wait(&inode->i_data);
215                 }
216                 truncate_inode_pages(&inode->i_data, 0);
217                 ext4_ioend_shutdown(inode);
218                 goto no_delete;
219         }
220
221         if (!is_bad_inode(inode))
222                 dquot_initialize(inode);
223
224         if (ext4_should_order_data(inode))
225                 ext4_begin_ordered_truncate(inode, 0);
226         truncate_inode_pages(&inode->i_data, 0);
227         ext4_ioend_shutdown(inode);
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238                                     ext4_blocks_for_truncate(inode)+3);
239         if (IS_ERR(handle)) {
240                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241                 /*
242                  * If we're going to skip the normal cleanup, we still need to
243                  * make sure that the in-core orphan linked list is properly
244                  * cleaned up.
245                  */
246                 ext4_orphan_del(NULL, inode);
247                 sb_end_intwrite(inode->i_sb);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 ext4_handle_sync(handle);
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks)
261                 ext4_truncate(inode);
262
263         /*
264          * ext4_ext_truncate() doesn't reserve any slop when it
265          * restarts journal transactions; therefore there may not be
266          * enough credits left in the handle to remove the inode from
267          * the orphan list and set the dtime field.
268          */
269         if (!ext4_handle_has_enough_credits(handle, 3)) {
270                 err = ext4_journal_extend(handle, 3);
271                 if (err > 0)
272                         err = ext4_journal_restart(handle, 3);
273                 if (err != 0) {
274                         ext4_warning(inode->i_sb,
275                                      "couldn't extend journal (err %d)", err);
276                 stop_handle:
277                         ext4_journal_stop(handle);
278                         ext4_orphan_del(NULL, inode);
279                         sb_end_intwrite(inode->i_sb);
280                         goto no_delete;
281                 }
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = get_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         sb_end_intwrite(inode->i_sb);
309         return;
310 no_delete:
311         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317         return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322  * Calculate the number of metadata blocks need to reserve
323  * to allocate a block located at @lblock
324  */
325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326 {
327         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328                 return ext4_ext_calc_metadata_amount(inode, lblock);
329
330         return ext4_ind_calc_metadata_amount(inode, lblock);
331 }
332
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338                                         int used, int quota_claim)
339 {
340         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341         struct ext4_inode_info *ei = EXT4_I(inode);
342
343         spin_lock(&ei->i_block_reservation_lock);
344         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345         if (unlikely(used > ei->i_reserved_data_blocks)) {
346                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347                          "with only %d reserved data blocks",
348                          __func__, inode->i_ino, used,
349                          ei->i_reserved_data_blocks);
350                 WARN_ON(1);
351                 used = ei->i_reserved_data_blocks;
352         }
353
354         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356                         "with only %d reserved metadata blocks "
357                         "(releasing %d blocks with reserved %d data blocks)",
358                         inode->i_ino, ei->i_allocated_meta_blocks,
359                              ei->i_reserved_meta_blocks, used,
360                              ei->i_reserved_data_blocks);
361                 WARN_ON(1);
362                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363         }
364
365         /* Update per-inode reservations */
366         ei->i_reserved_data_blocks -= used;
367         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369                            used + ei->i_allocated_meta_blocks);
370         ei->i_allocated_meta_blocks = 0;
371
372         if (ei->i_reserved_data_blocks == 0) {
373                 /*
374                  * We can release all of the reserved metadata blocks
375                  * only when we have written all of the delayed
376                  * allocation blocks.
377                  */
378                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379                                    ei->i_reserved_meta_blocks);
380                 ei->i_reserved_meta_blocks = 0;
381                 ei->i_da_metadata_calc_len = 0;
382         }
383         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384
385         /* Update quota subsystem for data blocks */
386         if (quota_claim)
387                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
388         else {
389                 /*
390                  * We did fallocate with an offset that is already delayed
391                  * allocated. So on delayed allocated writeback we should
392                  * not re-claim the quota for fallocated blocks.
393                  */
394                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395         }
396
397         /*
398          * If we have done all the pending block allocations and if
399          * there aren't any writers on the inode, we can discard the
400          * inode's preallocations.
401          */
402         if ((ei->i_reserved_data_blocks == 0) &&
403             (atomic_read(&inode->i_writecount) == 0))
404                 ext4_discard_preallocations(inode);
405 }
406
407 static int __check_block_validity(struct inode *inode, const char *func,
408                                 unsigned int line,
409                                 struct ext4_map_blocks *map)
410 {
411         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412                                    map->m_len)) {
413                 ext4_error_inode(inode, func, line, map->m_pblk,
414                                  "lblock %lu mapped to illegal pblock "
415                                  "(length %d)", (unsigned long) map->m_lblk,
416                                  map->m_len);
417                 return -EIO;
418         }
419         return 0;
420 }
421
422 #define check_block_validity(inode, map)        \
423         __check_block_validity((inode), __func__, __LINE__, (map))
424
425 /*
426  * Return the number of contiguous dirty pages in a given inode
427  * starting at page frame idx.
428  */
429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430                                     unsigned int max_pages)
431 {
432         struct address_space *mapping = inode->i_mapping;
433         pgoff_t index;
434         struct pagevec pvec;
435         pgoff_t num = 0;
436         int i, nr_pages, done = 0;
437
438         if (max_pages == 0)
439                 return 0;
440         pagevec_init(&pvec, 0);
441         while (!done) {
442                 index = idx;
443                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444                                               PAGECACHE_TAG_DIRTY,
445                                               (pgoff_t)PAGEVEC_SIZE);
446                 if (nr_pages == 0)
447                         break;
448                 for (i = 0; i < nr_pages; i++) {
449                         struct page *page = pvec.pages[i];
450                         struct buffer_head *bh, *head;
451
452                         lock_page(page);
453                         if (unlikely(page->mapping != mapping) ||
454                             !PageDirty(page) ||
455                             PageWriteback(page) ||
456                             page->index != idx) {
457                                 done = 1;
458                                 unlock_page(page);
459                                 break;
460                         }
461                         if (page_has_buffers(page)) {
462                                 bh = head = page_buffers(page);
463                                 do {
464                                         if (!buffer_delay(bh) &&
465                                             !buffer_unwritten(bh))
466                                                 done = 1;
467                                         bh = bh->b_this_page;
468                                 } while (!done && (bh != head));
469                         }
470                         unlock_page(page);
471                         if (done)
472                                 break;
473                         idx++;
474                         num++;
475                         if (num >= max_pages) {
476                                 done = 1;
477                                 break;
478                         }
479                 }
480                 pagevec_release(&pvec);
481         }
482         return num;
483 }
484
485 #ifdef ES_AGGRESSIVE_TEST
486 static void ext4_map_blocks_es_recheck(handle_t *handle,
487                                        struct inode *inode,
488                                        struct ext4_map_blocks *es_map,
489                                        struct ext4_map_blocks *map,
490                                        int flags)
491 {
492         int retval;
493
494         map->m_flags = 0;
495         /*
496          * There is a race window that the result is not the same.
497          * e.g. xfstests #223 when dioread_nolock enables.  The reason
498          * is that we lookup a block mapping in extent status tree with
499          * out taking i_data_sem.  So at the time the unwritten extent
500          * could be converted.
501          */
502         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
503                 down_read((&EXT4_I(inode)->i_data_sem));
504         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
505                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
506                                              EXT4_GET_BLOCKS_KEEP_SIZE);
507         } else {
508                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
509                                              EXT4_GET_BLOCKS_KEEP_SIZE);
510         }
511         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512                 up_read((&EXT4_I(inode)->i_data_sem));
513         /*
514          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
515          * because it shouldn't be marked in es_map->m_flags.
516          */
517         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
518
519         /*
520          * We don't check m_len because extent will be collpased in status
521          * tree.  So the m_len might not equal.
522          */
523         if (es_map->m_lblk != map->m_lblk ||
524             es_map->m_flags != map->m_flags ||
525             es_map->m_pblk != map->m_pblk) {
526                 printk("ES cache assertation failed for inode: %lu "
527                        "es_cached ex [%d/%d/%llu/%x] != "
528                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
529                        inode->i_ino, es_map->m_lblk, es_map->m_len,
530                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
531                        map->m_len, map->m_pblk, map->m_flags,
532                        retval, flags);
533         }
534 }
535 #endif /* ES_AGGRESSIVE_TEST */
536
537 /*
538  * The ext4_map_blocks() function tries to look up the requested blocks,
539  * and returns if the blocks are already mapped.
540  *
541  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
542  * and store the allocated blocks in the result buffer head and mark it
543  * mapped.
544  *
545  * If file type is extents based, it will call ext4_ext_map_blocks(),
546  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
547  * based files
548  *
549  * On success, it returns the number of blocks being mapped or allocate.
550  * if create==0 and the blocks are pre-allocated and uninitialized block,
551  * the result buffer head is unmapped. If the create ==1, it will make sure
552  * the buffer head is mapped.
553  *
554  * It returns 0 if plain look up failed (blocks have not been allocated), in
555  * that case, buffer head is unmapped
556  *
557  * It returns the error in case of allocation failure.
558  */
559 int ext4_map_blocks(handle_t *handle, struct inode *inode,
560                     struct ext4_map_blocks *map, int flags)
561 {
562         struct extent_status es;
563         int retval;
564 #ifdef ES_AGGRESSIVE_TEST
565         struct ext4_map_blocks orig_map;
566
567         memcpy(&orig_map, map, sizeof(*map));
568 #endif
569
570         map->m_flags = 0;
571         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
572                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
573                   (unsigned long) map->m_lblk);
574
575         /* Lookup extent status tree firstly */
576         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
577                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
578                         map->m_pblk = ext4_es_pblock(&es) +
579                                         map->m_lblk - es.es_lblk;
580                         map->m_flags |= ext4_es_is_written(&es) ?
581                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
582                         retval = es.es_len - (map->m_lblk - es.es_lblk);
583                         if (retval > map->m_len)
584                                 retval = map->m_len;
585                         map->m_len = retval;
586                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
587                         retval = 0;
588                 } else {
589                         BUG_ON(1);
590                 }
591 #ifdef ES_AGGRESSIVE_TEST
592                 ext4_map_blocks_es_recheck(handle, inode, map,
593                                            &orig_map, flags);
594 #endif
595                 goto found;
596         }
597
598         /*
599          * Try to see if we can get the block without requesting a new
600          * file system block.
601          */
602         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
603                 down_read((&EXT4_I(inode)->i_data_sem));
604         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
605                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
606                                              EXT4_GET_BLOCKS_KEEP_SIZE);
607         } else {
608                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
609                                              EXT4_GET_BLOCKS_KEEP_SIZE);
610         }
611         if (retval > 0) {
612                 int ret;
613                 unsigned long long status;
614
615 #ifdef ES_AGGRESSIVE_TEST
616                 if (retval != map->m_len) {
617                         printk("ES len assertation failed for inode: %lu "
618                                "retval %d != map->m_len %d "
619                                "in %s (lookup)\n", inode->i_ino, retval,
620                                map->m_len, __func__);
621                 }
622 #endif
623
624                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
625                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
626                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
627                     ext4_find_delalloc_range(inode, map->m_lblk,
628                                              map->m_lblk + map->m_len - 1))
629                         status |= EXTENT_STATUS_DELAYED;
630                 ret = ext4_es_insert_extent(inode, map->m_lblk,
631                                             map->m_len, map->m_pblk, status);
632                 if (ret < 0)
633                         retval = ret;
634         }
635         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
636                 up_read((&EXT4_I(inode)->i_data_sem));
637
638 found:
639         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
640                 int ret = check_block_validity(inode, map);
641                 if (ret != 0)
642                         return ret;
643         }
644
645         /* If it is only a block(s) look up */
646         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
647                 return retval;
648
649         /*
650          * Returns if the blocks have already allocated
651          *
652          * Note that if blocks have been preallocated
653          * ext4_ext_get_block() returns the create = 0
654          * with buffer head unmapped.
655          */
656         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
657                 return retval;
658
659         /*
660          * Here we clear m_flags because after allocating an new extent,
661          * it will be set again.
662          */
663         map->m_flags &= ~EXT4_MAP_FLAGS;
664
665         /*
666          * New blocks allocate and/or writing to uninitialized extent
667          * will possibly result in updating i_data, so we take
668          * the write lock of i_data_sem, and call get_blocks()
669          * with create == 1 flag.
670          */
671         down_write((&EXT4_I(inode)->i_data_sem));
672
673         /*
674          * if the caller is from delayed allocation writeout path
675          * we have already reserved fs blocks for allocation
676          * let the underlying get_block() function know to
677          * avoid double accounting
678          */
679         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
680                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
681         /*
682          * We need to check for EXT4 here because migrate
683          * could have changed the inode type in between
684          */
685         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
686                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
687         } else {
688                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
689
690                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
691                         /*
692                          * We allocated new blocks which will result in
693                          * i_data's format changing.  Force the migrate
694                          * to fail by clearing migrate flags
695                          */
696                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
697                 }
698
699                 /*
700                  * Update reserved blocks/metadata blocks after successful
701                  * block allocation which had been deferred till now. We don't
702                  * support fallocate for non extent files. So we can update
703                  * reserve space here.
704                  */
705                 if ((retval > 0) &&
706                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
707                         ext4_da_update_reserve_space(inode, retval, 1);
708         }
709         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
710                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
711
712         if (retval > 0) {
713                 int ret;
714                 unsigned long long status;
715
716 #ifdef ES_AGGRESSIVE_TEST
717                 if (retval != map->m_len) {
718                         printk("ES len assertation failed for inode: %lu "
719                                "retval %d != map->m_len %d "
720                                "in %s (allocation)\n", inode->i_ino, retval,
721                                map->m_len, __func__);
722                 }
723 #endif
724
725                 /*
726                  * If the extent has been zeroed out, we don't need to update
727                  * extent status tree.
728                  */
729                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
730                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
731                         if (ext4_es_is_written(&es))
732                                 goto has_zeroout;
733                 }
734                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
735                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
736                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
737                     ext4_find_delalloc_range(inode, map->m_lblk,
738                                              map->m_lblk + map->m_len - 1))
739                         status |= EXTENT_STATUS_DELAYED;
740                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
741                                             map->m_pblk, status);
742                 if (ret < 0)
743                         retval = ret;
744         }
745
746 has_zeroout:
747         up_write((&EXT4_I(inode)->i_data_sem));
748         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
749                 int ret = check_block_validity(inode, map);
750                 if (ret != 0)
751                         return ret;
752         }
753         return retval;
754 }
755
756 /* Maximum number of blocks we map for direct IO at once. */
757 #define DIO_MAX_BLOCKS 4096
758
759 static int _ext4_get_block(struct inode *inode, sector_t iblock,
760                            struct buffer_head *bh, int flags)
761 {
762         handle_t *handle = ext4_journal_current_handle();
763         struct ext4_map_blocks map;
764         int ret = 0, started = 0;
765         int dio_credits;
766
767         if (ext4_has_inline_data(inode))
768                 return -ERANGE;
769
770         map.m_lblk = iblock;
771         map.m_len = bh->b_size >> inode->i_blkbits;
772
773         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
774                 /* Direct IO write... */
775                 if (map.m_len > DIO_MAX_BLOCKS)
776                         map.m_len = DIO_MAX_BLOCKS;
777                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
778                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
779                                             dio_credits);
780                 if (IS_ERR(handle)) {
781                         ret = PTR_ERR(handle);
782                         return ret;
783                 }
784                 started = 1;
785         }
786
787         ret = ext4_map_blocks(handle, inode, &map, flags);
788         if (ret > 0) {
789                 map_bh(bh, inode->i_sb, map.m_pblk);
790                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
791                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
792                 ret = 0;
793         }
794         if (started)
795                 ext4_journal_stop(handle);
796         return ret;
797 }
798
799 int ext4_get_block(struct inode *inode, sector_t iblock,
800                    struct buffer_head *bh, int create)
801 {
802         return _ext4_get_block(inode, iblock, bh,
803                                create ? EXT4_GET_BLOCKS_CREATE : 0);
804 }
805
806 /*
807  * `handle' can be NULL if create is zero
808  */
809 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
810                                 ext4_lblk_t block, int create, int *errp)
811 {
812         struct ext4_map_blocks map;
813         struct buffer_head *bh;
814         int fatal = 0, err;
815
816         J_ASSERT(handle != NULL || create == 0);
817
818         map.m_lblk = block;
819         map.m_len = 1;
820         err = ext4_map_blocks(handle, inode, &map,
821                               create ? EXT4_GET_BLOCKS_CREATE : 0);
822
823         /* ensure we send some value back into *errp */
824         *errp = 0;
825
826         if (create && err == 0)
827                 err = -ENOSPC;  /* should never happen */
828         if (err < 0)
829                 *errp = err;
830         if (err <= 0)
831                 return NULL;
832
833         bh = sb_getblk(inode->i_sb, map.m_pblk);
834         if (unlikely(!bh)) {
835                 *errp = -ENOMEM;
836                 return NULL;
837         }
838         if (map.m_flags & EXT4_MAP_NEW) {
839                 J_ASSERT(create != 0);
840                 J_ASSERT(handle != NULL);
841
842                 /*
843                  * Now that we do not always journal data, we should
844                  * keep in mind whether this should always journal the
845                  * new buffer as metadata.  For now, regular file
846                  * writes use ext4_get_block instead, so it's not a
847                  * problem.
848                  */
849                 lock_buffer(bh);
850                 BUFFER_TRACE(bh, "call get_create_access");
851                 fatal = ext4_journal_get_create_access(handle, bh);
852                 if (!fatal && !buffer_uptodate(bh)) {
853                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
854                         set_buffer_uptodate(bh);
855                 }
856                 unlock_buffer(bh);
857                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
858                 err = ext4_handle_dirty_metadata(handle, inode, bh);
859                 if (!fatal)
860                         fatal = err;
861         } else {
862                 BUFFER_TRACE(bh, "not a new buffer");
863         }
864         if (fatal) {
865                 *errp = fatal;
866                 brelse(bh);
867                 bh = NULL;
868         }
869         return bh;
870 }
871
872 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
873                                ext4_lblk_t block, int create, int *err)
874 {
875         struct buffer_head *bh;
876
877         bh = ext4_getblk(handle, inode, block, create, err);
878         if (!bh)
879                 return bh;
880         if (buffer_uptodate(bh))
881                 return bh;
882         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
883         wait_on_buffer(bh);
884         if (buffer_uptodate(bh))
885                 return bh;
886         put_bh(bh);
887         *err = -EIO;
888         return NULL;
889 }
890
891 int ext4_walk_page_buffers(handle_t *handle,
892                            struct buffer_head *head,
893                            unsigned from,
894                            unsigned to,
895                            int *partial,
896                            int (*fn)(handle_t *handle,
897                                      struct buffer_head *bh))
898 {
899         struct buffer_head *bh;
900         unsigned block_start, block_end;
901         unsigned blocksize = head->b_size;
902         int err, ret = 0;
903         struct buffer_head *next;
904
905         for (bh = head, block_start = 0;
906              ret == 0 && (bh != head || !block_start);
907              block_start = block_end, bh = next) {
908                 next = bh->b_this_page;
909                 block_end = block_start + blocksize;
910                 if (block_end <= from || block_start >= to) {
911                         if (partial && !buffer_uptodate(bh))
912                                 *partial = 1;
913                         continue;
914                 }
915                 err = (*fn)(handle, bh);
916                 if (!ret)
917                         ret = err;
918         }
919         return ret;
920 }
921
922 /*
923  * To preserve ordering, it is essential that the hole instantiation and
924  * the data write be encapsulated in a single transaction.  We cannot
925  * close off a transaction and start a new one between the ext4_get_block()
926  * and the commit_write().  So doing the jbd2_journal_start at the start of
927  * prepare_write() is the right place.
928  *
929  * Also, this function can nest inside ext4_writepage().  In that case, we
930  * *know* that ext4_writepage() has generated enough buffer credits to do the
931  * whole page.  So we won't block on the journal in that case, which is good,
932  * because the caller may be PF_MEMALLOC.
933  *
934  * By accident, ext4 can be reentered when a transaction is open via
935  * quota file writes.  If we were to commit the transaction while thus
936  * reentered, there can be a deadlock - we would be holding a quota
937  * lock, and the commit would never complete if another thread had a
938  * transaction open and was blocking on the quota lock - a ranking
939  * violation.
940  *
941  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
942  * will _not_ run commit under these circumstances because handle->h_ref
943  * is elevated.  We'll still have enough credits for the tiny quotafile
944  * write.
945  */
946 int do_journal_get_write_access(handle_t *handle,
947                                 struct buffer_head *bh)
948 {
949         int dirty = buffer_dirty(bh);
950         int ret;
951
952         if (!buffer_mapped(bh) || buffer_freed(bh))
953                 return 0;
954         /*
955          * __block_write_begin() could have dirtied some buffers. Clean
956          * the dirty bit as jbd2_journal_get_write_access() could complain
957          * otherwise about fs integrity issues. Setting of the dirty bit
958          * by __block_write_begin() isn't a real problem here as we clear
959          * the bit before releasing a page lock and thus writeback cannot
960          * ever write the buffer.
961          */
962         if (dirty)
963                 clear_buffer_dirty(bh);
964         ret = ext4_journal_get_write_access(handle, bh);
965         if (!ret && dirty)
966                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
967         return ret;
968 }
969
970 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
971                    struct buffer_head *bh_result, int create);
972 static int ext4_write_begin(struct file *file, struct address_space *mapping,
973                             loff_t pos, unsigned len, unsigned flags,
974                             struct page **pagep, void **fsdata)
975 {
976         struct inode *inode = mapping->host;
977         int ret, needed_blocks;
978         handle_t *handle;
979         int retries = 0;
980         struct page *page;
981         pgoff_t index;
982         unsigned from, to;
983
984         trace_ext4_write_begin(inode, pos, len, flags);
985         /*
986          * Reserve one block more for addition to orphan list in case
987          * we allocate blocks but write fails for some reason
988          */
989         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990         index = pos >> PAGE_CACHE_SHIFT;
991         from = pos & (PAGE_CACHE_SIZE - 1);
992         to = from + len;
993
994         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996                                                     flags, pagep);
997                 if (ret < 0)
998                         return ret;
999                 if (ret == 1)
1000                         return 0;
1001         }
1002
1003         /*
1004          * grab_cache_page_write_begin() can take a long time if the
1005          * system is thrashing due to memory pressure, or if the page
1006          * is being written back.  So grab it first before we start
1007          * the transaction handle.  This also allows us to allocate
1008          * the page (if needed) without using GFP_NOFS.
1009          */
1010 retry_grab:
1011         page = grab_cache_page_write_begin(mapping, index, flags);
1012         if (!page)
1013                 return -ENOMEM;
1014         unlock_page(page);
1015
1016 retry_journal:
1017         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018         if (IS_ERR(handle)) {
1019                 page_cache_release(page);
1020                 return PTR_ERR(handle);
1021         }
1022
1023         lock_page(page);
1024         if (page->mapping != mapping) {
1025                 /* The page got truncated from under us */
1026                 unlock_page(page);
1027                 page_cache_release(page);
1028                 ext4_journal_stop(handle);
1029                 goto retry_grab;
1030         }
1031         wait_on_page_writeback(page);
1032
1033         if (ext4_should_dioread_nolock(inode))
1034                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1035         else
1036                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1037
1038         if (!ret && ext4_should_journal_data(inode)) {
1039                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1040                                              from, to, NULL,
1041                                              do_journal_get_write_access);
1042         }
1043
1044         if (ret) {
1045                 unlock_page(page);
1046                 /*
1047                  * __block_write_begin may have instantiated a few blocks
1048                  * outside i_size.  Trim these off again. Don't need
1049                  * i_size_read because we hold i_mutex.
1050                  *
1051                  * Add inode to orphan list in case we crash before
1052                  * truncate finishes
1053                  */
1054                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1055                         ext4_orphan_add(handle, inode);
1056
1057                 ext4_journal_stop(handle);
1058                 if (pos + len > inode->i_size) {
1059                         ext4_truncate_failed_write(inode);
1060                         /*
1061                          * If truncate failed early the inode might
1062                          * still be on the orphan list; we need to
1063                          * make sure the inode is removed from the
1064                          * orphan list in that case.
1065                          */
1066                         if (inode->i_nlink)
1067                                 ext4_orphan_del(NULL, inode);
1068                 }
1069
1070                 if (ret == -ENOSPC &&
1071                     ext4_should_retry_alloc(inode->i_sb, &retries))
1072                         goto retry_journal;
1073                 page_cache_release(page);
1074                 return ret;
1075         }
1076         *pagep = page;
1077         return ret;
1078 }
1079
1080 /* For write_end() in data=journal mode */
1081 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1082 {
1083         if (!buffer_mapped(bh) || buffer_freed(bh))
1084                 return 0;
1085         set_buffer_uptodate(bh);
1086         return ext4_handle_dirty_metadata(handle, NULL, bh);
1087 }
1088
1089 /*
1090  * We need to pick up the new inode size which generic_commit_write gave us
1091  * `file' can be NULL - eg, when called from page_symlink().
1092  *
1093  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1094  * buffers are managed internally.
1095  */
1096 static int ext4_write_end(struct file *file,
1097                           struct address_space *mapping,
1098                           loff_t pos, unsigned len, unsigned copied,
1099                           struct page *page, void *fsdata)
1100 {
1101         handle_t *handle = ext4_journal_current_handle();
1102         struct inode *inode = mapping->host;
1103         int ret = 0, ret2;
1104         int i_size_changed = 0;
1105
1106         trace_ext4_write_end(inode, pos, len, copied);
1107         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1108                 ret = ext4_jbd2_file_inode(handle, inode);
1109                 if (ret) {
1110                         unlock_page(page);
1111                         page_cache_release(page);
1112                         goto errout;
1113                 }
1114         }
1115
1116         if (ext4_has_inline_data(inode))
1117                 copied = ext4_write_inline_data_end(inode, pos, len,
1118                                                     copied, page);
1119         else
1120                 copied = block_write_end(file, mapping, pos,
1121                                          len, copied, page, fsdata);
1122
1123         /*
1124          * No need to use i_size_read() here, the i_size
1125          * cannot change under us because we hole i_mutex.
1126          *
1127          * But it's important to update i_size while still holding page lock:
1128          * page writeout could otherwise come in and zero beyond i_size.
1129          */
1130         if (pos + copied > inode->i_size) {
1131                 i_size_write(inode, pos + copied);
1132                 i_size_changed = 1;
1133         }
1134
1135         if (pos + copied > EXT4_I(inode)->i_disksize) {
1136                 /* We need to mark inode dirty even if
1137                  * new_i_size is less that inode->i_size
1138                  * but greater than i_disksize. (hint delalloc)
1139                  */
1140                 ext4_update_i_disksize(inode, (pos + copied));
1141                 i_size_changed = 1;
1142         }
1143         unlock_page(page);
1144         page_cache_release(page);
1145
1146         /*
1147          * Don't mark the inode dirty under page lock. First, it unnecessarily
1148          * makes the holding time of page lock longer. Second, it forces lock
1149          * ordering of page lock and transaction start for journaling
1150          * filesystems.
1151          */
1152         if (i_size_changed)
1153                 ext4_mark_inode_dirty(handle, inode);
1154
1155         if (copied < 0)
1156                 ret = copied;
1157         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1158                 /* if we have allocated more blocks and copied
1159                  * less. We will have blocks allocated outside
1160                  * inode->i_size. So truncate them
1161                  */
1162                 ext4_orphan_add(handle, inode);
1163 errout:
1164         ret2 = ext4_journal_stop(handle);
1165         if (!ret)
1166                 ret = ret2;
1167
1168         if (pos + len > inode->i_size) {
1169                 ext4_truncate_failed_write(inode);
1170                 /*
1171                  * If truncate failed early the inode might still be
1172                  * on the orphan list; we need to make sure the inode
1173                  * is removed from the orphan list in that case.
1174                  */
1175                 if (inode->i_nlink)
1176                         ext4_orphan_del(NULL, inode);
1177         }
1178
1179         return ret ? ret : copied;
1180 }
1181
1182 static int ext4_journalled_write_end(struct file *file,
1183                                      struct address_space *mapping,
1184                                      loff_t pos, unsigned len, unsigned copied,
1185                                      struct page *page, void *fsdata)
1186 {
1187         handle_t *handle = ext4_journal_current_handle();
1188         struct inode *inode = mapping->host;
1189         int ret = 0, ret2;
1190         int partial = 0;
1191         unsigned from, to;
1192         loff_t new_i_size;
1193
1194         trace_ext4_journalled_write_end(inode, pos, len, copied);
1195         from = pos & (PAGE_CACHE_SIZE - 1);
1196         to = from + len;
1197
1198         BUG_ON(!ext4_handle_valid(handle));
1199
1200         if (ext4_has_inline_data(inode))
1201                 copied = ext4_write_inline_data_end(inode, pos, len,
1202                                                     copied, page);
1203         else {
1204                 if (copied < len) {
1205                         if (!PageUptodate(page))
1206                                 copied = 0;
1207                         page_zero_new_buffers(page, from+copied, to);
1208                 }
1209
1210                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1211                                              to, &partial, write_end_fn);
1212                 if (!partial)
1213                         SetPageUptodate(page);
1214         }
1215         new_i_size = pos + copied;
1216         if (new_i_size > inode->i_size)
1217                 i_size_write(inode, pos+copied);
1218         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1219         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1220         if (new_i_size > EXT4_I(inode)->i_disksize) {
1221                 ext4_update_i_disksize(inode, new_i_size);
1222                 ret2 = ext4_mark_inode_dirty(handle, inode);
1223                 if (!ret)
1224                         ret = ret2;
1225         }
1226
1227         unlock_page(page);
1228         page_cache_release(page);
1229         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1230                 /* if we have allocated more blocks and copied
1231                  * less. We will have blocks allocated outside
1232                  * inode->i_size. So truncate them
1233                  */
1234                 ext4_orphan_add(handle, inode);
1235
1236         ret2 = ext4_journal_stop(handle);
1237         if (!ret)
1238                 ret = ret2;
1239         if (pos + len > inode->i_size) {
1240                 ext4_truncate_failed_write(inode);
1241                 /*
1242                  * If truncate failed early the inode might still be
1243                  * on the orphan list; we need to make sure the inode
1244                  * is removed from the orphan list in that case.
1245                  */
1246                 if (inode->i_nlink)
1247                         ext4_orphan_del(NULL, inode);
1248         }
1249
1250         return ret ? ret : copied;
1251 }
1252
1253 /*
1254  * Reserve a metadata for a single block located at lblock
1255  */
1256 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1257 {
1258         int retries = 0;
1259         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1260         struct ext4_inode_info *ei = EXT4_I(inode);
1261         unsigned int md_needed;
1262         ext4_lblk_t save_last_lblock;
1263         int save_len;
1264
1265         /*
1266          * recalculate the amount of metadata blocks to reserve
1267          * in order to allocate nrblocks
1268          * worse case is one extent per block
1269          */
1270 repeat:
1271         spin_lock(&ei->i_block_reservation_lock);
1272         /*
1273          * ext4_calc_metadata_amount() has side effects, which we have
1274          * to be prepared undo if we fail to claim space.
1275          */
1276         save_len = ei->i_da_metadata_calc_len;
1277         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1278         md_needed = EXT4_NUM_B2C(sbi,
1279                                  ext4_calc_metadata_amount(inode, lblock));
1280         trace_ext4_da_reserve_space(inode, md_needed);
1281
1282         /*
1283          * We do still charge estimated metadata to the sb though;
1284          * we cannot afford to run out of free blocks.
1285          */
1286         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1287                 ei->i_da_metadata_calc_len = save_len;
1288                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1289                 spin_unlock(&ei->i_block_reservation_lock);
1290                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1291                         cond_resched();
1292                         goto repeat;
1293                 }
1294                 return -ENOSPC;
1295         }
1296         ei->i_reserved_meta_blocks += md_needed;
1297         spin_unlock(&ei->i_block_reservation_lock);
1298
1299         return 0;       /* success */
1300 }
1301
1302 /*
1303  * Reserve a single cluster located at lblock
1304  */
1305 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1306 {
1307         int retries = 0;
1308         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1309         struct ext4_inode_info *ei = EXT4_I(inode);
1310         unsigned int md_needed;
1311         int ret;
1312         ext4_lblk_t save_last_lblock;
1313         int save_len;
1314
1315         /*
1316          * We will charge metadata quota at writeout time; this saves
1317          * us from metadata over-estimation, though we may go over by
1318          * a small amount in the end.  Here we just reserve for data.
1319          */
1320         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1321         if (ret)
1322                 return ret;
1323
1324         /*
1325          * recalculate the amount of metadata blocks to reserve
1326          * in order to allocate nrblocks
1327          * worse case is one extent per block
1328          */
1329 repeat:
1330         spin_lock(&ei->i_block_reservation_lock);
1331         /*
1332          * ext4_calc_metadata_amount() has side effects, which we have
1333          * to be prepared undo if we fail to claim space.
1334          */
1335         save_len = ei->i_da_metadata_calc_len;
1336         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1337         md_needed = EXT4_NUM_B2C(sbi,
1338                                  ext4_calc_metadata_amount(inode, lblock));
1339         trace_ext4_da_reserve_space(inode, md_needed);
1340
1341         /*
1342          * We do still charge estimated metadata to the sb though;
1343          * we cannot afford to run out of free blocks.
1344          */
1345         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1346                 ei->i_da_metadata_calc_len = save_len;
1347                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1348                 spin_unlock(&ei->i_block_reservation_lock);
1349                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1350                         cond_resched();
1351                         goto repeat;
1352                 }
1353                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1354                 return -ENOSPC;
1355         }
1356         ei->i_reserved_data_blocks++;
1357         ei->i_reserved_meta_blocks += md_needed;
1358         spin_unlock(&ei->i_block_reservation_lock);
1359
1360         return 0;       /* success */
1361 }
1362
1363 static void ext4_da_release_space(struct inode *inode, int to_free)
1364 {
1365         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1366         struct ext4_inode_info *ei = EXT4_I(inode);
1367
1368         if (!to_free)
1369                 return;         /* Nothing to release, exit */
1370
1371         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1372
1373         trace_ext4_da_release_space(inode, to_free);
1374         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1375                 /*
1376                  * if there aren't enough reserved blocks, then the
1377                  * counter is messed up somewhere.  Since this
1378                  * function is called from invalidate page, it's
1379                  * harmless to return without any action.
1380                  */
1381                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1382                          "ino %lu, to_free %d with only %d reserved "
1383                          "data blocks", inode->i_ino, to_free,
1384                          ei->i_reserved_data_blocks);
1385                 WARN_ON(1);
1386                 to_free = ei->i_reserved_data_blocks;
1387         }
1388         ei->i_reserved_data_blocks -= to_free;
1389
1390         if (ei->i_reserved_data_blocks == 0) {
1391                 /*
1392                  * We can release all of the reserved metadata blocks
1393                  * only when we have written all of the delayed
1394                  * allocation blocks.
1395                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1396                  * i_reserved_data_blocks, etc. refer to number of clusters.
1397                  */
1398                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1399                                    ei->i_reserved_meta_blocks);
1400                 ei->i_reserved_meta_blocks = 0;
1401                 ei->i_da_metadata_calc_len = 0;
1402         }
1403
1404         /* update fs dirty data blocks counter */
1405         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1406
1407         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1408
1409         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1410 }
1411
1412 static void ext4_da_page_release_reservation(struct page *page,
1413                                              unsigned long offset)
1414 {
1415         int to_release = 0;
1416         struct buffer_head *head, *bh;
1417         unsigned int curr_off = 0;
1418         struct inode *inode = page->mapping->host;
1419         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1420         int num_clusters;
1421         ext4_fsblk_t lblk;
1422
1423         head = page_buffers(page);
1424         bh = head;
1425         do {
1426                 unsigned int next_off = curr_off + bh->b_size;
1427
1428                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1429                         to_release++;
1430                         clear_buffer_delay(bh);
1431                 }
1432                 curr_off = next_off;
1433         } while ((bh = bh->b_this_page) != head);
1434
1435         if (to_release) {
1436                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1437                 ext4_es_remove_extent(inode, lblk, to_release);
1438         }
1439
1440         /* If we have released all the blocks belonging to a cluster, then we
1441          * need to release the reserved space for that cluster. */
1442         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1443         while (num_clusters > 0) {
1444                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1445                         ((num_clusters - 1) << sbi->s_cluster_bits);
1446                 if (sbi->s_cluster_ratio == 1 ||
1447                     !ext4_find_delalloc_cluster(inode, lblk))
1448                         ext4_da_release_space(inode, 1);
1449
1450                 num_clusters--;
1451         }
1452 }
1453
1454 /*
1455  * Delayed allocation stuff
1456  */
1457
1458 /*
1459  * mpage_da_submit_io - walks through extent of pages and try to write
1460  * them with writepage() call back
1461  *
1462  * @mpd->inode: inode
1463  * @mpd->first_page: first page of the extent
1464  * @mpd->next_page: page after the last page of the extent
1465  *
1466  * By the time mpage_da_submit_io() is called we expect all blocks
1467  * to be allocated. this may be wrong if allocation failed.
1468  *
1469  * As pages are already locked by write_cache_pages(), we can't use it
1470  */
1471 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1472                               struct ext4_map_blocks *map)
1473 {
1474         struct pagevec pvec;
1475         unsigned long index, end;
1476         int ret = 0, err, nr_pages, i;
1477         struct inode *inode = mpd->inode;
1478         struct address_space *mapping = inode->i_mapping;
1479         loff_t size = i_size_read(inode);
1480         unsigned int len, block_start;
1481         struct buffer_head *bh, *page_bufs = NULL;
1482         sector_t pblock = 0, cur_logical = 0;
1483         struct ext4_io_submit io_submit;
1484
1485         BUG_ON(mpd->next_page <= mpd->first_page);
1486         memset(&io_submit, 0, sizeof(io_submit));
1487         /*
1488          * We need to start from the first_page to the next_page - 1
1489          * to make sure we also write the mapped dirty buffer_heads.
1490          * If we look at mpd->b_blocknr we would only be looking
1491          * at the currently mapped buffer_heads.
1492          */
1493         index = mpd->first_page;
1494         end = mpd->next_page - 1;
1495
1496         pagevec_init(&pvec, 0);
1497         while (index <= end) {
1498                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1499                 if (nr_pages == 0)
1500                         break;
1501                 for (i = 0; i < nr_pages; i++) {
1502                         int skip_page = 0;
1503                         struct page *page = pvec.pages[i];
1504
1505                         index = page->index;
1506                         if (index > end)
1507                                 break;
1508
1509                         if (index == size >> PAGE_CACHE_SHIFT)
1510                                 len = size & ~PAGE_CACHE_MASK;
1511                         else
1512                                 len = PAGE_CACHE_SIZE;
1513                         if (map) {
1514                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1515                                                         inode->i_blkbits);
1516                                 pblock = map->m_pblk + (cur_logical -
1517                                                         map->m_lblk);
1518                         }
1519                         index++;
1520
1521                         BUG_ON(!PageLocked(page));
1522                         BUG_ON(PageWriteback(page));
1523
1524                         bh = page_bufs = page_buffers(page);
1525                         block_start = 0;
1526                         do {
1527                                 if (map && (cur_logical >= map->m_lblk) &&
1528                                     (cur_logical <= (map->m_lblk +
1529                                                      (map->m_len - 1)))) {
1530                                         if (buffer_delay(bh)) {
1531                                                 clear_buffer_delay(bh);
1532                                                 bh->b_blocknr = pblock;
1533                                         }
1534                                         if (buffer_unwritten(bh) ||
1535                                             buffer_mapped(bh))
1536                                                 BUG_ON(bh->b_blocknr != pblock);
1537                                         if (map->m_flags & EXT4_MAP_UNINIT)
1538                                                 set_buffer_uninit(bh);
1539                                         clear_buffer_unwritten(bh);
1540                                 }
1541
1542                                 /*
1543                                  * skip page if block allocation undone and
1544                                  * block is dirty
1545                                  */
1546                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1547                                         skip_page = 1;
1548                                 bh = bh->b_this_page;
1549                                 block_start += bh->b_size;
1550                                 cur_logical++;
1551                                 pblock++;
1552                         } while (bh != page_bufs);
1553
1554                         if (skip_page) {
1555                                 unlock_page(page);
1556                                 continue;
1557                         }
1558
1559                         clear_page_dirty_for_io(page);
1560                         err = ext4_bio_write_page(&io_submit, page, len,
1561                                                   mpd->wbc);
1562                         if (!err)
1563                                 mpd->pages_written++;
1564                         /*
1565                          * In error case, we have to continue because
1566                          * remaining pages are still locked
1567                          */
1568                         if (ret == 0)
1569                                 ret = err;
1570                 }
1571                 pagevec_release(&pvec);
1572         }
1573         ext4_io_submit(&io_submit);
1574         return ret;
1575 }
1576
1577 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1578 {
1579         int nr_pages, i;
1580         pgoff_t index, end;
1581         struct pagevec pvec;
1582         struct inode *inode = mpd->inode;
1583         struct address_space *mapping = inode->i_mapping;
1584         ext4_lblk_t start, last;
1585
1586         index = mpd->first_page;
1587         end   = mpd->next_page - 1;
1588
1589         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1590         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1591         ext4_es_remove_extent(inode, start, last - start + 1);
1592
1593         pagevec_init(&pvec, 0);
1594         while (index <= end) {
1595                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1596                 if (nr_pages == 0)
1597                         break;
1598                 for (i = 0; i < nr_pages; i++) {
1599                         struct page *page = pvec.pages[i];
1600                         if (page->index > end)
1601                                 break;
1602                         BUG_ON(!PageLocked(page));
1603                         BUG_ON(PageWriteback(page));
1604                         block_invalidatepage(page, 0);
1605                         ClearPageUptodate(page);
1606                         unlock_page(page);
1607                 }
1608                 index = pvec.pages[nr_pages - 1]->index + 1;
1609                 pagevec_release(&pvec);
1610         }
1611         return;
1612 }
1613
1614 static void ext4_print_free_blocks(struct inode *inode)
1615 {
1616         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1617         struct super_block *sb = inode->i_sb;
1618
1619         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1620                EXT4_C2B(EXT4_SB(inode->i_sb),
1621                         ext4_count_free_clusters(inode->i_sb)));
1622         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1623         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1624                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1625                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1626         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1627                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1628                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1629         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1630         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1631                  EXT4_I(inode)->i_reserved_data_blocks);
1632         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1633                EXT4_I(inode)->i_reserved_meta_blocks);
1634         return;
1635 }
1636
1637 /*
1638  * mpage_da_map_and_submit - go through given space, map them
1639  *       if necessary, and then submit them for I/O
1640  *
1641  * @mpd - bh describing space
1642  *
1643  * The function skips space we know is already mapped to disk blocks.
1644  *
1645  */
1646 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1647 {
1648         int err, blks, get_blocks_flags;
1649         struct ext4_map_blocks map, *mapp = NULL;
1650         sector_t next = mpd->b_blocknr;
1651         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1652         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1653         handle_t *handle = NULL;
1654
1655         /*
1656          * If the blocks are mapped already, or we couldn't accumulate
1657          * any blocks, then proceed immediately to the submission stage.
1658          */
1659         if ((mpd->b_size == 0) ||
1660             ((mpd->b_state  & (1 << BH_Mapped)) &&
1661              !(mpd->b_state & (1 << BH_Delay)) &&
1662              !(mpd->b_state & (1 << BH_Unwritten))))
1663                 goto submit_io;
1664
1665         handle = ext4_journal_current_handle();
1666         BUG_ON(!handle);
1667
1668         /*
1669          * Call ext4_map_blocks() to allocate any delayed allocation
1670          * blocks, or to convert an uninitialized extent to be
1671          * initialized (in the case where we have written into
1672          * one or more preallocated blocks).
1673          *
1674          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1675          * indicate that we are on the delayed allocation path.  This
1676          * affects functions in many different parts of the allocation
1677          * call path.  This flag exists primarily because we don't
1678          * want to change *many* call functions, so ext4_map_blocks()
1679          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1680          * inode's allocation semaphore is taken.
1681          *
1682          * If the blocks in questions were delalloc blocks, set
1683          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1684          * variables are updated after the blocks have been allocated.
1685          */
1686         map.m_lblk = next;
1687         map.m_len = max_blocks;
1688         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1689         if (ext4_should_dioread_nolock(mpd->inode))
1690                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1691         if (mpd->b_state & (1 << BH_Delay))
1692                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1693
1694         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1695         if (blks < 0) {
1696                 struct super_block *sb = mpd->inode->i_sb;
1697
1698                 err = blks;
1699                 /*
1700                  * If get block returns EAGAIN or ENOSPC and there
1701                  * appears to be free blocks we will just let
1702                  * mpage_da_submit_io() unlock all of the pages.
1703                  */
1704                 if (err == -EAGAIN)
1705                         goto submit_io;
1706
1707                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1708                         mpd->retval = err;
1709                         goto submit_io;
1710                 }
1711
1712                 /*
1713                  * get block failure will cause us to loop in
1714                  * writepages, because a_ops->writepage won't be able
1715                  * to make progress. The page will be redirtied by
1716                  * writepage and writepages will again try to write
1717                  * the same.
1718                  */
1719                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1720                         ext4_msg(sb, KERN_CRIT,
1721                                  "delayed block allocation failed for inode %lu "
1722                                  "at logical offset %llu with max blocks %zd "
1723                                  "with error %d", mpd->inode->i_ino,
1724                                  (unsigned long long) next,
1725                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1726                         ext4_msg(sb, KERN_CRIT,
1727                                 "This should not happen!! Data will be lost");
1728                         if (err == -ENOSPC)
1729                                 ext4_print_free_blocks(mpd->inode);
1730                 }
1731                 /* invalidate all the pages */
1732                 ext4_da_block_invalidatepages(mpd);
1733
1734                 /* Mark this page range as having been completed */
1735                 mpd->io_done = 1;
1736                 return;
1737         }
1738         BUG_ON(blks == 0);
1739
1740         mapp = &map;
1741         if (map.m_flags & EXT4_MAP_NEW) {
1742                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1743                 int i;
1744
1745                 for (i = 0; i < map.m_len; i++)
1746                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1747         }
1748
1749         /*
1750          * Update on-disk size along with block allocation.
1751          */
1752         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1753         if (disksize > i_size_read(mpd->inode))
1754                 disksize = i_size_read(mpd->inode);
1755         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1756                 ext4_update_i_disksize(mpd->inode, disksize);
1757                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1758                 if (err)
1759                         ext4_error(mpd->inode->i_sb,
1760                                    "Failed to mark inode %lu dirty",
1761                                    mpd->inode->i_ino);
1762         }
1763
1764 submit_io:
1765         mpage_da_submit_io(mpd, mapp);
1766         mpd->io_done = 1;
1767 }
1768
1769 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1770                 (1 << BH_Delay) | (1 << BH_Unwritten))
1771
1772 /*
1773  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1774  *
1775  * @mpd->lbh - extent of blocks
1776  * @logical - logical number of the block in the file
1777  * @b_state - b_state of the buffer head added
1778  *
1779  * the function is used to collect contig. blocks in same state
1780  */
1781 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1782                                    unsigned long b_state)
1783 {
1784         sector_t next;
1785         int blkbits = mpd->inode->i_blkbits;
1786         int nrblocks = mpd->b_size >> blkbits;
1787
1788         /*
1789          * XXX Don't go larger than mballoc is willing to allocate
1790          * This is a stopgap solution.  We eventually need to fold
1791          * mpage_da_submit_io() into this function and then call
1792          * ext4_map_blocks() multiple times in a loop
1793          */
1794         if (nrblocks >= (8*1024*1024 >> blkbits))
1795                 goto flush_it;
1796
1797         /* check if the reserved journal credits might overflow */
1798         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1799                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1800                         /*
1801                          * With non-extent format we are limited by the journal
1802                          * credit available.  Total credit needed to insert
1803                          * nrblocks contiguous blocks is dependent on the
1804                          * nrblocks.  So limit nrblocks.
1805                          */
1806                         goto flush_it;
1807                 }
1808         }
1809         /*
1810          * First block in the extent
1811          */
1812         if (mpd->b_size == 0) {
1813                 mpd->b_blocknr = logical;
1814                 mpd->b_size = 1 << blkbits;
1815                 mpd->b_state = b_state & BH_FLAGS;
1816                 return;
1817         }
1818
1819         next = mpd->b_blocknr + nrblocks;
1820         /*
1821          * Can we merge the block to our big extent?
1822          */
1823         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1824                 mpd->b_size += 1 << blkbits;
1825                 return;
1826         }
1827
1828 flush_it:
1829         /*
1830          * We couldn't merge the block to our extent, so we
1831          * need to flush current  extent and start new one
1832          */
1833         mpage_da_map_and_submit(mpd);
1834         return;
1835 }
1836
1837 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1838 {
1839         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1840 }
1841
1842 /*
1843  * This function is grabs code from the very beginning of
1844  * ext4_map_blocks, but assumes that the caller is from delayed write
1845  * time. This function looks up the requested blocks and sets the
1846  * buffer delay bit under the protection of i_data_sem.
1847  */
1848 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1849                               struct ext4_map_blocks *map,
1850                               struct buffer_head *bh)
1851 {
1852         struct extent_status es;
1853         int retval;
1854         sector_t invalid_block = ~((sector_t) 0xffff);
1855 #ifdef ES_AGGRESSIVE_TEST
1856         struct ext4_map_blocks orig_map;
1857
1858         memcpy(&orig_map, map, sizeof(*map));
1859 #endif
1860
1861         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1862                 invalid_block = ~0;
1863
1864         map->m_flags = 0;
1865         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1866                   "logical block %lu\n", inode->i_ino, map->m_len,
1867                   (unsigned long) map->m_lblk);
1868
1869         /* Lookup extent status tree firstly */
1870         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1871
1872                 if (ext4_es_is_hole(&es)) {
1873                         retval = 0;
1874                         down_read((&EXT4_I(inode)->i_data_sem));
1875                         goto add_delayed;
1876                 }
1877
1878                 /*
1879                  * Delayed extent could be allocated by fallocate.
1880                  * So we need to check it.
1881                  */
1882                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1883                         map_bh(bh, inode->i_sb, invalid_block);
1884                         set_buffer_new(bh);
1885                         set_buffer_delay(bh);
1886                         return 0;
1887                 }
1888
1889                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1890                 retval = es.es_len - (iblock - es.es_lblk);
1891                 if (retval > map->m_len)
1892                         retval = map->m_len;
1893                 map->m_len = retval;
1894                 if (ext4_es_is_written(&es))
1895                         map->m_flags |= EXT4_MAP_MAPPED;
1896                 else if (ext4_es_is_unwritten(&es))
1897                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1898                 else
1899                         BUG_ON(1);
1900
1901 #ifdef ES_AGGRESSIVE_TEST
1902                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1903 #endif
1904                 return retval;
1905         }
1906
1907         /*
1908          * Try to see if we can get the block without requesting a new
1909          * file system block.
1910          */
1911         down_read((&EXT4_I(inode)->i_data_sem));
1912         if (ext4_has_inline_data(inode)) {
1913                 /*
1914                  * We will soon create blocks for this page, and let
1915                  * us pretend as if the blocks aren't allocated yet.
1916                  * In case of clusters, we have to handle the work
1917                  * of mapping from cluster so that the reserved space
1918                  * is calculated properly.
1919                  */
1920                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1921                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1922                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1923                 retval = 0;
1924         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1925                 retval = ext4_ext_map_blocks(NULL, inode, map,
1926                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1927         else
1928                 retval = ext4_ind_map_blocks(NULL, inode, map,
1929                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1930
1931 add_delayed:
1932         if (retval == 0) {
1933                 int ret;
1934                 /*
1935                  * XXX: __block_prepare_write() unmaps passed block,
1936                  * is it OK?
1937                  */
1938                 /*
1939                  * If the block was allocated from previously allocated cluster,
1940                  * then we don't need to reserve it again. However we still need
1941                  * to reserve metadata for every block we're going to write.
1942                  */
1943                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1944                         ret = ext4_da_reserve_space(inode, iblock);
1945                         if (ret) {
1946                                 /* not enough space to reserve */
1947                                 retval = ret;
1948                                 goto out_unlock;
1949                         }
1950                 } else {
1951                         ret = ext4_da_reserve_metadata(inode, iblock);
1952                         if (ret) {
1953                                 /* not enough space to reserve */
1954                                 retval = ret;
1955                                 goto out_unlock;
1956                         }
1957                 }
1958
1959                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1960                                             ~0, EXTENT_STATUS_DELAYED);
1961                 if (ret) {
1962                         retval = ret;
1963                         goto out_unlock;
1964                 }
1965
1966                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1967                  * and it should not appear on the bh->b_state.
1968                  */
1969                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1970
1971                 map_bh(bh, inode->i_sb, invalid_block);
1972                 set_buffer_new(bh);
1973                 set_buffer_delay(bh);
1974         } else if (retval > 0) {
1975                 int ret;
1976                 unsigned long long status;
1977
1978 #ifdef ES_AGGRESSIVE_TEST
1979                 if (retval != map->m_len) {
1980                         printk("ES len assertation failed for inode: %lu "
1981                                "retval %d != map->m_len %d "
1982                                "in %s (lookup)\n", inode->i_ino, retval,
1983                                map->m_len, __func__);
1984                 }
1985 #endif
1986
1987                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1988                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1989                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1990                                             map->m_pblk, status);
1991                 if (ret != 0)
1992                         retval = ret;
1993         }
1994
1995 out_unlock:
1996         up_read((&EXT4_I(inode)->i_data_sem));
1997
1998         return retval;
1999 }
2000
2001 /*
2002  * This is a special get_blocks_t callback which is used by
2003  * ext4_da_write_begin().  It will either return mapped block or
2004  * reserve space for a single block.
2005  *
2006  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2007  * We also have b_blocknr = -1 and b_bdev initialized properly
2008  *
2009  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2010  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2011  * initialized properly.
2012  */
2013 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2014                            struct buffer_head *bh, int create)
2015 {
2016         struct ext4_map_blocks map;
2017         int ret = 0;
2018
2019         BUG_ON(create == 0);
2020         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2021
2022         map.m_lblk = iblock;
2023         map.m_len = 1;
2024
2025         /*
2026          * first, we need to know whether the block is allocated already
2027          * preallocated blocks are unmapped but should treated
2028          * the same as allocated blocks.
2029          */
2030         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2031         if (ret <= 0)
2032                 return ret;
2033
2034         map_bh(bh, inode->i_sb, map.m_pblk);
2035         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2036
2037         if (buffer_unwritten(bh)) {
2038                 /* A delayed write to unwritten bh should be marked
2039                  * new and mapped.  Mapped ensures that we don't do
2040                  * get_block multiple times when we write to the same
2041                  * offset and new ensures that we do proper zero out
2042                  * for partial write.
2043                  */
2044                 set_buffer_new(bh);
2045                 set_buffer_mapped(bh);
2046         }
2047         return 0;
2048 }
2049
2050 static int bget_one(handle_t *handle, struct buffer_head *bh)
2051 {
2052         get_bh(bh);
2053         return 0;
2054 }
2055
2056 static int bput_one(handle_t *handle, struct buffer_head *bh)
2057 {
2058         put_bh(bh);
2059         return 0;
2060 }
2061
2062 static int __ext4_journalled_writepage(struct page *page,
2063                                        unsigned int len)
2064 {
2065         struct address_space *mapping = page->mapping;
2066         struct inode *inode = mapping->host;
2067         struct buffer_head *page_bufs = NULL;
2068         handle_t *handle = NULL;
2069         int ret = 0, err = 0;
2070         int inline_data = ext4_has_inline_data(inode);
2071         struct buffer_head *inode_bh = NULL;
2072
2073         ClearPageChecked(page);
2074
2075         if (inline_data) {
2076                 BUG_ON(page->index != 0);
2077                 BUG_ON(len > ext4_get_max_inline_size(inode));
2078                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2079                 if (inode_bh == NULL)
2080                         goto out;
2081         } else {
2082                 page_bufs = page_buffers(page);
2083                 if (!page_bufs) {
2084                         BUG();
2085                         goto out;
2086                 }
2087                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2088                                        NULL, bget_one);
2089         }
2090         /* As soon as we unlock the page, it can go away, but we have
2091          * references to buffers so we are safe */
2092         unlock_page(page);
2093
2094         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2095                                     ext4_writepage_trans_blocks(inode));
2096         if (IS_ERR(handle)) {
2097                 ret = PTR_ERR(handle);
2098                 goto out;
2099         }
2100
2101         BUG_ON(!ext4_handle_valid(handle));
2102
2103         if (inline_data) {
2104                 ret = ext4_journal_get_write_access(handle, inode_bh);
2105
2106                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2107
2108         } else {
2109                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2110                                              do_journal_get_write_access);
2111
2112                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2113                                              write_end_fn);
2114         }
2115         if (ret == 0)
2116                 ret = err;
2117         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2118         err = ext4_journal_stop(handle);
2119         if (!ret)
2120                 ret = err;
2121
2122         if (!ext4_has_inline_data(inode))
2123                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2124                                        NULL, bput_one);
2125         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2126 out:
2127         brelse(inode_bh);
2128         return ret;
2129 }
2130
2131 /*
2132  * Note that we don't need to start a transaction unless we're journaling data
2133  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2134  * need to file the inode to the transaction's list in ordered mode because if
2135  * we are writing back data added by write(), the inode is already there and if
2136  * we are writing back data modified via mmap(), no one guarantees in which
2137  * transaction the data will hit the disk. In case we are journaling data, we
2138  * cannot start transaction directly because transaction start ranks above page
2139  * lock so we have to do some magic.
2140  *
2141  * This function can get called via...
2142  *   - ext4_da_writepages after taking page lock (have journal handle)
2143  *   - journal_submit_inode_data_buffers (no journal handle)
2144  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2145  *   - grab_page_cache when doing write_begin (have journal handle)
2146  *
2147  * We don't do any block allocation in this function. If we have page with
2148  * multiple blocks we need to write those buffer_heads that are mapped. This
2149  * is important for mmaped based write. So if we do with blocksize 1K
2150  * truncate(f, 1024);
2151  * a = mmap(f, 0, 4096);
2152  * a[0] = 'a';
2153  * truncate(f, 4096);
2154  * we have in the page first buffer_head mapped via page_mkwrite call back
2155  * but other buffer_heads would be unmapped but dirty (dirty done via the
2156  * do_wp_page). So writepage should write the first block. If we modify
2157  * the mmap area beyond 1024 we will again get a page_fault and the
2158  * page_mkwrite callback will do the block allocation and mark the
2159  * buffer_heads mapped.
2160  *
2161  * We redirty the page if we have any buffer_heads that is either delay or
2162  * unwritten in the page.
2163  *
2164  * We can get recursively called as show below.
2165  *
2166  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2167  *              ext4_writepage()
2168  *
2169  * But since we don't do any block allocation we should not deadlock.
2170  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2171  */
2172 static int ext4_writepage(struct page *page,
2173                           struct writeback_control *wbc)
2174 {
2175         int ret = 0;
2176         loff_t size;
2177         unsigned int len;
2178         struct buffer_head *page_bufs = NULL;
2179         struct inode *inode = page->mapping->host;
2180         struct ext4_io_submit io_submit;
2181
2182         trace_ext4_writepage(page);
2183         size = i_size_read(inode);
2184         if (page->index == size >> PAGE_CACHE_SHIFT)
2185                 len = size & ~PAGE_CACHE_MASK;
2186         else
2187                 len = PAGE_CACHE_SIZE;
2188
2189         page_bufs = page_buffers(page);
2190         /*
2191          * We cannot do block allocation or other extent handling in this
2192          * function. If there are buffers needing that, we have to redirty
2193          * the page. But we may reach here when we do a journal commit via
2194          * journal_submit_inode_data_buffers() and in that case we must write
2195          * allocated buffers to achieve data=ordered mode guarantees.
2196          */
2197         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2198                                    ext4_bh_delay_or_unwritten)) {
2199                 redirty_page_for_writepage(wbc, page);
2200                 if (current->flags & PF_MEMALLOC) {
2201                         /*
2202                          * For memory cleaning there's no point in writing only
2203                          * some buffers. So just bail out. Warn if we came here
2204                          * from direct reclaim.
2205                          */
2206                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2207                                                         == PF_MEMALLOC);
2208                         unlock_page(page);
2209                         return 0;
2210                 }
2211         }
2212
2213         if (PageChecked(page) && ext4_should_journal_data(inode))
2214                 /*
2215                  * It's mmapped pagecache.  Add buffers and journal it.  There
2216                  * doesn't seem much point in redirtying the page here.
2217                  */
2218                 return __ext4_journalled_writepage(page, len);
2219
2220         memset(&io_submit, 0, sizeof(io_submit));
2221         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2222         ext4_io_submit(&io_submit);
2223         return ret;
2224 }
2225
2226 /*
2227  * This is called via ext4_da_writepages() to
2228  * calculate the total number of credits to reserve to fit
2229  * a single extent allocation into a single transaction,
2230  * ext4_da_writpeages() will loop calling this before
2231  * the block allocation.
2232  */
2233
2234 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2235 {
2236         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2237
2238         /*
2239          * With non-extent format the journal credit needed to
2240          * insert nrblocks contiguous block is dependent on
2241          * number of contiguous block. So we will limit
2242          * number of contiguous block to a sane value
2243          */
2244         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2245             (max_blocks > EXT4_MAX_TRANS_DATA))
2246                 max_blocks = EXT4_MAX_TRANS_DATA;
2247
2248         return ext4_chunk_trans_blocks(inode, max_blocks);
2249 }
2250
2251 /*
2252  * write_cache_pages_da - walk the list of dirty pages of the given
2253  * address space and accumulate pages that need writing, and call
2254  * mpage_da_map_and_submit to map a single contiguous memory region
2255  * and then write them.
2256  */
2257 static int write_cache_pages_da(handle_t *handle,
2258                                 struct address_space *mapping,
2259                                 struct writeback_control *wbc,
2260                                 struct mpage_da_data *mpd,
2261                                 pgoff_t *done_index)
2262 {
2263         struct buffer_head      *bh, *head;
2264         struct inode            *inode = mapping->host;
2265         struct pagevec          pvec;
2266         unsigned int            nr_pages;
2267         sector_t                logical;
2268         pgoff_t                 index, end;
2269         long                    nr_to_write = wbc->nr_to_write;
2270         int                     i, tag, ret = 0;
2271
2272         memset(mpd, 0, sizeof(struct mpage_da_data));
2273         mpd->wbc = wbc;
2274         mpd->inode = inode;
2275         pagevec_init(&pvec, 0);
2276         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2277         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2278
2279         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2280                 tag = PAGECACHE_TAG_TOWRITE;
2281         else
2282                 tag = PAGECACHE_TAG_DIRTY;
2283
2284         *done_index = index;
2285         while (index <= end) {
2286                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2287                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2288                 if (nr_pages == 0)
2289                         return 0;
2290
2291                 for (i = 0; i < nr_pages; i++) {
2292                         struct page *page = pvec.pages[i];
2293
2294                         /*
2295                          * At this point, the page may be truncated or
2296                          * invalidated (changing page->mapping to NULL), or
2297                          * even swizzled back from swapper_space to tmpfs file
2298                          * mapping. However, page->index will not change
2299                          * because we have a reference on the page.
2300                          */
2301                         if (page->index > end)
2302                                 goto out;
2303
2304                         *done_index = page->index + 1;
2305
2306                         /*
2307                          * If we can't merge this page, and we have
2308                          * accumulated an contiguous region, write it
2309                          */
2310                         if ((mpd->next_page != page->index) &&
2311                             (mpd->next_page != mpd->first_page)) {
2312                                 mpage_da_map_and_submit(mpd);
2313                                 goto ret_extent_tail;
2314                         }
2315
2316                         lock_page(page);
2317
2318                         /*
2319                          * If the page is no longer dirty, or its
2320                          * mapping no longer corresponds to inode we
2321                          * are writing (which means it has been
2322                          * truncated or invalidated), or the page is
2323                          * already under writeback and we are not
2324                          * doing a data integrity writeback, skip the page
2325                          */
2326                         if (!PageDirty(page) ||
2327                             (PageWriteback(page) &&
2328                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2329                             unlikely(page->mapping != mapping)) {
2330                                 unlock_page(page);
2331                                 continue;
2332                         }
2333
2334                         wait_on_page_writeback(page);
2335                         BUG_ON(PageWriteback(page));
2336
2337                         /*
2338                          * If we have inline data and arrive here, it means that
2339                          * we will soon create the block for the 1st page, so
2340                          * we'd better clear the inline data here.
2341                          */
2342                         if (ext4_has_inline_data(inode)) {
2343                                 BUG_ON(ext4_test_inode_state(inode,
2344                                                 EXT4_STATE_MAY_INLINE_DATA));
2345                                 ext4_destroy_inline_data(handle, inode);
2346                         }
2347
2348                         if (mpd->next_page != page->index)
2349                                 mpd->first_page = page->index;
2350                         mpd->next_page = page->index + 1;
2351                         logical = (sector_t) page->index <<
2352                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2353
2354                         /* Add all dirty buffers to mpd */
2355                         head = page_buffers(page);
2356                         bh = head;
2357                         do {
2358                                 BUG_ON(buffer_locked(bh));
2359                                 /*
2360                                  * We need to try to allocate unmapped blocks
2361                                  * in the same page.  Otherwise we won't make
2362                                  * progress with the page in ext4_writepage
2363                                  */
2364                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2365                                         mpage_add_bh_to_extent(mpd, logical,
2366                                                                bh->b_state);
2367                                         if (mpd->io_done)
2368                                                 goto ret_extent_tail;
2369                                 } else if (buffer_dirty(bh) &&
2370                                            buffer_mapped(bh)) {
2371                                         /*
2372                                          * mapped dirty buffer. We need to
2373                                          * update the b_state because we look
2374                                          * at b_state in mpage_da_map_blocks.
2375                                          * We don't update b_size because if we
2376                                          * find an unmapped buffer_head later
2377                                          * we need to use the b_state flag of
2378                                          * that buffer_head.
2379                                          */
2380                                         if (mpd->b_size == 0)
2381                                                 mpd->b_state =
2382                                                         bh->b_state & BH_FLAGS;
2383                                 }
2384                                 logical++;
2385                         } while ((bh = bh->b_this_page) != head);
2386
2387                         if (nr_to_write > 0) {
2388                                 nr_to_write--;
2389                                 if (nr_to_write == 0 &&
2390                                     wbc->sync_mode == WB_SYNC_NONE)
2391                                         /*
2392                                          * We stop writing back only if we are
2393                                          * not doing integrity sync. In case of
2394                                          * integrity sync we have to keep going
2395                                          * because someone may be concurrently
2396                                          * dirtying pages, and we might have
2397                                          * synced a lot of newly appeared dirty
2398                                          * pages, but have not synced all of the
2399                                          * old dirty pages.
2400                                          */
2401                                         goto out;
2402                         }
2403                 }
2404                 pagevec_release(&pvec);
2405                 cond_resched();
2406         }
2407         return 0;
2408 ret_extent_tail:
2409         ret = MPAGE_DA_EXTENT_TAIL;
2410 out:
2411         pagevec_release(&pvec);
2412         cond_resched();
2413         return ret;
2414 }
2415
2416
2417 static int ext4_da_writepages(struct address_space *mapping,
2418                               struct writeback_control *wbc)
2419 {
2420         pgoff_t index;
2421         int range_whole = 0;
2422         handle_t *handle = NULL;
2423         struct mpage_da_data mpd;
2424         struct inode *inode = mapping->host;
2425         int pages_written = 0;
2426         unsigned int max_pages;
2427         int range_cyclic, cycled = 1, io_done = 0;
2428         int needed_blocks, ret = 0;
2429         long desired_nr_to_write, nr_to_writebump = 0;
2430         loff_t range_start = wbc->range_start;
2431         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2432         pgoff_t done_index = 0;
2433         pgoff_t end;
2434         struct blk_plug plug;
2435
2436         trace_ext4_da_writepages(inode, wbc);
2437
2438         /*
2439          * No pages to write? This is mainly a kludge to avoid starting
2440          * a transaction for special inodes like journal inode on last iput()
2441          * because that could violate lock ordering on umount
2442          */
2443         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2444                 return 0;
2445
2446         /*
2447          * If the filesystem has aborted, it is read-only, so return
2448          * right away instead of dumping stack traces later on that
2449          * will obscure the real source of the problem.  We test
2450          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2451          * the latter could be true if the filesystem is mounted
2452          * read-only, and in that case, ext4_da_writepages should
2453          * *never* be called, so if that ever happens, we would want
2454          * the stack trace.
2455          */
2456         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2457                 return -EROFS;
2458
2459         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2460                 range_whole = 1;
2461
2462         range_cyclic = wbc->range_cyclic;
2463         if (wbc->range_cyclic) {
2464                 index = mapping->writeback_index;
2465                 if (index)
2466                         cycled = 0;
2467                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2468                 wbc->range_end  = LLONG_MAX;
2469                 wbc->range_cyclic = 0;
2470                 end = -1;
2471         } else {
2472                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2473                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2474         }
2475
2476         /*
2477          * This works around two forms of stupidity.  The first is in
2478          * the writeback code, which caps the maximum number of pages
2479          * written to be 1024 pages.  This is wrong on multiple
2480          * levels; different architectues have a different page size,
2481          * which changes the maximum amount of data which gets
2482          * written.  Secondly, 4 megabytes is way too small.  XFS
2483          * forces this value to be 16 megabytes by multiplying
2484          * nr_to_write parameter by four, and then relies on its
2485          * allocator to allocate larger extents to make them
2486          * contiguous.  Unfortunately this brings us to the second
2487          * stupidity, which is that ext4's mballoc code only allocates
2488          * at most 2048 blocks.  So we force contiguous writes up to
2489          * the number of dirty blocks in the inode, or
2490          * sbi->max_writeback_mb_bump whichever is smaller.
2491          */
2492         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2493         if (!range_cyclic && range_whole) {
2494                 if (wbc->nr_to_write == LONG_MAX)
2495                         desired_nr_to_write = wbc->nr_to_write;
2496                 else
2497                         desired_nr_to_write = wbc->nr_to_write * 8;
2498         } else
2499                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2500                                                            max_pages);
2501         if (desired_nr_to_write > max_pages)
2502                 desired_nr_to_write = max_pages;
2503
2504         if (wbc->nr_to_write < desired_nr_to_write) {
2505                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2506                 wbc->nr_to_write = desired_nr_to_write;
2507         }
2508
2509 retry:
2510         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2511                 tag_pages_for_writeback(mapping, index, end);
2512
2513         blk_start_plug(&plug);
2514         while (!ret && wbc->nr_to_write > 0) {
2515
2516                 /*
2517                  * we  insert one extent at a time. So we need
2518                  * credit needed for single extent allocation.
2519                  * journalled mode is currently not supported
2520                  * by delalloc
2521                  */
2522                 BUG_ON(ext4_should_journal_data(inode));
2523                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2524
2525                 /* start a new transaction*/
2526                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2527                                             needed_blocks);
2528                 if (IS_ERR(handle)) {
2529                         ret = PTR_ERR(handle);
2530                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2531                                "%ld pages, ino %lu; err %d", __func__,
2532                                 wbc->nr_to_write, inode->i_ino, ret);
2533                         blk_finish_plug(&plug);
2534                         goto out_writepages;
2535                 }
2536
2537                 /*
2538                  * Now call write_cache_pages_da() to find the next
2539                  * contiguous region of logical blocks that need
2540                  * blocks to be allocated by ext4 and submit them.
2541                  */
2542                 ret = write_cache_pages_da(handle, mapping,
2543                                            wbc, &mpd, &done_index);
2544                 /*
2545                  * If we have a contiguous extent of pages and we
2546                  * haven't done the I/O yet, map the blocks and submit
2547                  * them for I/O.
2548                  */
2549                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2550                         mpage_da_map_and_submit(&mpd);
2551                         ret = MPAGE_DA_EXTENT_TAIL;
2552                 }
2553                 trace_ext4_da_write_pages(inode, &mpd);
2554                 wbc->nr_to_write -= mpd.pages_written;
2555
2556                 ext4_journal_stop(handle);
2557
2558                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2559                         /* commit the transaction which would
2560                          * free blocks released in the transaction
2561                          * and try again
2562                          */
2563                         jbd2_journal_force_commit_nested(sbi->s_journal);
2564                         ret = 0;
2565                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2566                         /*
2567                          * Got one extent now try with rest of the pages.
2568                          * If mpd.retval is set -EIO, journal is aborted.
2569                          * So we don't need to write any more.
2570                          */
2571                         pages_written += mpd.pages_written;
2572                         ret = mpd.retval;
2573                         io_done = 1;
2574                 } else if (wbc->nr_to_write)
2575                         /*
2576                          * There is no more writeout needed
2577                          * or we requested for a noblocking writeout
2578                          * and we found the device congested
2579                          */
2580                         break;
2581         }
2582         blk_finish_plug(&plug);
2583         if (!io_done && !cycled) {
2584                 cycled = 1;
2585                 index = 0;
2586                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2587                 wbc->range_end  = mapping->writeback_index - 1;
2588                 goto retry;
2589         }
2590
2591         /* Update index */
2592         wbc->range_cyclic = range_cyclic;
2593         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2594                 /*
2595                  * set the writeback_index so that range_cyclic
2596                  * mode will write it back later
2597                  */
2598                 mapping->writeback_index = done_index;
2599
2600 out_writepages:
2601         wbc->nr_to_write -= nr_to_writebump;
2602         wbc->range_start = range_start;
2603         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2604         return ret;
2605 }
2606
2607 static int ext4_nonda_switch(struct super_block *sb)
2608 {
2609         s64 free_blocks, dirty_blocks;
2610         struct ext4_sb_info *sbi = EXT4_SB(sb);
2611
2612         /*
2613          * switch to non delalloc mode if we are running low
2614          * on free block. The free block accounting via percpu
2615          * counters can get slightly wrong with percpu_counter_batch getting
2616          * accumulated on each CPU without updating global counters
2617          * Delalloc need an accurate free block accounting. So switch
2618          * to non delalloc when we are near to error range.
2619          */
2620         free_blocks  = EXT4_C2B(sbi,
2621                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2622         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2623         /*
2624          * Start pushing delalloc when 1/2 of free blocks are dirty.
2625          */
2626         if (dirty_blocks && (free_blocks < 2 * dirty_blocks))
2627                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2628
2629         if (2 * free_blocks < 3 * dirty_blocks ||
2630                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2631                 /*
2632                  * free block count is less than 150% of dirty blocks
2633                  * or free blocks is less than watermark
2634                  */
2635                 return 1;
2636         }
2637         return 0;
2638 }
2639
2640 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2641                                loff_t pos, unsigned len, unsigned flags,
2642                                struct page **pagep, void **fsdata)
2643 {
2644         int ret, retries = 0;
2645         struct page *page;
2646         pgoff_t index;
2647         struct inode *inode = mapping->host;
2648         handle_t *handle;
2649
2650         index = pos >> PAGE_CACHE_SHIFT;
2651
2652         if (ext4_nonda_switch(inode->i_sb)) {
2653                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2654                 return ext4_write_begin(file, mapping, pos,
2655                                         len, flags, pagep, fsdata);
2656         }
2657         *fsdata = (void *)0;
2658         trace_ext4_da_write_begin(inode, pos, len, flags);
2659
2660         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2661                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2662                                                       pos, len, flags,
2663                                                       pagep, fsdata);
2664                 if (ret < 0)
2665                         return ret;
2666                 if (ret == 1)
2667                         return 0;
2668         }
2669
2670         /*
2671          * grab_cache_page_write_begin() can take a long time if the
2672          * system is thrashing due to memory pressure, or if the page
2673          * is being written back.  So grab it first before we start
2674          * the transaction handle.  This also allows us to allocate
2675          * the page (if needed) without using GFP_NOFS.
2676          */
2677 retry_grab:
2678         page = grab_cache_page_write_begin(mapping, index, flags);
2679         if (!page)
2680                 return -ENOMEM;
2681         unlock_page(page);
2682
2683         /*
2684          * With delayed allocation, we don't log the i_disksize update
2685          * if there is delayed block allocation. But we still need
2686          * to journalling the i_disksize update if writes to the end
2687          * of file which has an already mapped buffer.
2688          */
2689 retry_journal:
2690         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2691         if (IS_ERR(handle)) {
2692                 page_cache_release(page);
2693                 return PTR_ERR(handle);
2694         }
2695
2696         lock_page(page);
2697         if (page->mapping != mapping) {
2698                 /* The page got truncated from under us */
2699                 unlock_page(page);
2700                 page_cache_release(page);
2701                 ext4_journal_stop(handle);
2702                 goto retry_grab;
2703         }
2704         /* In case writeback began while the page was unlocked */
2705         wait_on_page_writeback(page);
2706
2707         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2708         if (ret < 0) {
2709                 unlock_page(page);
2710                 ext4_journal_stop(handle);
2711                 /*
2712                  * block_write_begin may have instantiated a few blocks
2713                  * outside i_size.  Trim these off again. Don't need
2714                  * i_size_read because we hold i_mutex.
2715                  */
2716                 if (pos + len > inode->i_size)
2717                         ext4_truncate_failed_write(inode);
2718
2719                 if (ret == -ENOSPC &&
2720                     ext4_should_retry_alloc(inode->i_sb, &retries))
2721                         goto retry_journal;
2722
2723                 page_cache_release(page);
2724                 return ret;
2725         }
2726
2727         *pagep = page;
2728         return ret;
2729 }
2730
2731 /*
2732  * Check if we should update i_disksize
2733  * when write to the end of file but not require block allocation
2734  */
2735 static int ext4_da_should_update_i_disksize(struct page *page,
2736                                             unsigned long offset)
2737 {
2738         struct buffer_head *bh;
2739         struct inode *inode = page->mapping->host;
2740         unsigned int idx;
2741         int i;
2742
2743         bh = page_buffers(page);
2744         idx = offset >> inode->i_blkbits;
2745
2746         for (i = 0; i < idx; i++)
2747                 bh = bh->b_this_page;
2748
2749         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2750                 return 0;
2751         return 1;
2752 }
2753
2754 static int ext4_da_write_end(struct file *file,
2755                              struct address_space *mapping,
2756                              loff_t pos, unsigned len, unsigned copied,
2757                              struct page *page, void *fsdata)
2758 {
2759         struct inode *inode = mapping->host;
2760         int ret = 0, ret2;
2761         handle_t *handle = ext4_journal_current_handle();
2762         loff_t new_i_size;
2763         unsigned long start, end;
2764         int write_mode = (int)(unsigned long)fsdata;
2765
2766         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2767                 return ext4_write_end(file, mapping, pos,
2768                                       len, copied, page, fsdata);
2769
2770         trace_ext4_da_write_end(inode, pos, len, copied);
2771         start = pos & (PAGE_CACHE_SIZE - 1);
2772         end = start + copied - 1;
2773
2774         /*
2775          * generic_write_end() will run mark_inode_dirty() if i_size
2776          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2777          * into that.
2778          */
2779         new_i_size = pos + copied;
2780         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2781                 if (ext4_has_inline_data(inode) ||
2782                     ext4_da_should_update_i_disksize(page, end)) {
2783                         down_write(&EXT4_I(inode)->i_data_sem);
2784                         if (new_i_size > EXT4_I(inode)->i_disksize)
2785                                 EXT4_I(inode)->i_disksize = new_i_size;
2786                         up_write(&EXT4_I(inode)->i_data_sem);
2787                         /* We need to mark inode dirty even if
2788                          * new_i_size is less that inode->i_size
2789                          * bu greater than i_disksize.(hint delalloc)
2790                          */
2791                         ext4_mark_inode_dirty(handle, inode);
2792                 }
2793         }
2794
2795         if (write_mode != CONVERT_INLINE_DATA &&
2796             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2797             ext4_has_inline_data(inode))
2798                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2799                                                      page);
2800         else
2801                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2802                                                         page, fsdata);
2803
2804         copied = ret2;
2805         if (ret2 < 0)
2806                 ret = ret2;
2807         ret2 = ext4_journal_stop(handle);
2808         if (!ret)
2809                 ret = ret2;
2810
2811         return ret ? ret : copied;
2812 }
2813
2814 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2815 {
2816         /*
2817          * Drop reserved blocks
2818          */
2819         BUG_ON(!PageLocked(page));
2820         if (!page_has_buffers(page))
2821                 goto out;
2822
2823         ext4_da_page_release_reservation(page, offset);
2824
2825 out:
2826         ext4_invalidatepage(page, offset);
2827
2828         return;
2829 }
2830
2831 /*
2832  * Force all delayed allocation blocks to be allocated for a given inode.
2833  */
2834 int ext4_alloc_da_blocks(struct inode *inode)
2835 {
2836         trace_ext4_alloc_da_blocks(inode);
2837
2838         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2839             !EXT4_I(inode)->i_reserved_meta_blocks)
2840                 return 0;
2841
2842         /*
2843          * We do something simple for now.  The filemap_flush() will
2844          * also start triggering a write of the data blocks, which is
2845          * not strictly speaking necessary (and for users of
2846          * laptop_mode, not even desirable).  However, to do otherwise
2847          * would require replicating code paths in:
2848          *
2849          * ext4_da_writepages() ->
2850          *    write_cache_pages() ---> (via passed in callback function)
2851          *        __mpage_da_writepage() -->
2852          *           mpage_add_bh_to_extent()
2853          *           mpage_da_map_blocks()
2854          *
2855          * The problem is that write_cache_pages(), located in
2856          * mm/page-writeback.c, marks pages clean in preparation for
2857          * doing I/O, which is not desirable if we're not planning on
2858          * doing I/O at all.
2859          *
2860          * We could call write_cache_pages(), and then redirty all of
2861          * the pages by calling redirty_page_for_writepage() but that
2862          * would be ugly in the extreme.  So instead we would need to
2863          * replicate parts of the code in the above functions,
2864          * simplifying them because we wouldn't actually intend to
2865          * write out the pages, but rather only collect contiguous
2866          * logical block extents, call the multi-block allocator, and
2867          * then update the buffer heads with the block allocations.
2868          *
2869          * For now, though, we'll cheat by calling filemap_flush(),
2870          * which will map the blocks, and start the I/O, but not
2871          * actually wait for the I/O to complete.
2872          */
2873         return filemap_flush(inode->i_mapping);
2874 }
2875
2876 /*
2877  * bmap() is special.  It gets used by applications such as lilo and by
2878  * the swapper to find the on-disk block of a specific piece of data.
2879  *
2880  * Naturally, this is dangerous if the block concerned is still in the
2881  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2882  * filesystem and enables swap, then they may get a nasty shock when the
2883  * data getting swapped to that swapfile suddenly gets overwritten by
2884  * the original zero's written out previously to the journal and
2885  * awaiting writeback in the kernel's buffer cache.
2886  *
2887  * So, if we see any bmap calls here on a modified, data-journaled file,
2888  * take extra steps to flush any blocks which might be in the cache.
2889  */
2890 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2891 {
2892         struct inode *inode = mapping->host;
2893         journal_t *journal;
2894         int err;
2895
2896         /*
2897          * We can get here for an inline file via the FIBMAP ioctl
2898          */
2899         if (ext4_has_inline_data(inode))
2900                 return 0;
2901
2902         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2903                         test_opt(inode->i_sb, DELALLOC)) {
2904                 /*
2905                  * With delalloc we want to sync the file
2906                  * so that we can make sure we allocate
2907                  * blocks for file
2908                  */
2909                 filemap_write_and_wait(mapping);
2910         }
2911
2912         if (EXT4_JOURNAL(inode) &&
2913             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2914                 /*
2915                  * This is a REALLY heavyweight approach, but the use of
2916                  * bmap on dirty files is expected to be extremely rare:
2917                  * only if we run lilo or swapon on a freshly made file
2918                  * do we expect this to happen.
2919                  *
2920                  * (bmap requires CAP_SYS_RAWIO so this does not
2921                  * represent an unprivileged user DOS attack --- we'd be
2922                  * in trouble if mortal users could trigger this path at
2923                  * will.)
2924                  *
2925                  * NB. EXT4_STATE_JDATA is not set on files other than
2926                  * regular files.  If somebody wants to bmap a directory
2927                  * or symlink and gets confused because the buffer
2928                  * hasn't yet been flushed to disk, they deserve
2929                  * everything they get.
2930                  */
2931
2932                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2933                 journal = EXT4_JOURNAL(inode);
2934                 jbd2_journal_lock_updates(journal);
2935                 err = jbd2_journal_flush(journal);
2936                 jbd2_journal_unlock_updates(journal);
2937
2938                 if (err)
2939                         return 0;
2940         }
2941
2942         return generic_block_bmap(mapping, block, ext4_get_block);
2943 }
2944
2945 static int ext4_readpage(struct file *file, struct page *page)
2946 {
2947         int ret = -EAGAIN;
2948         struct inode *inode = page->mapping->host;
2949
2950         trace_ext4_readpage(page);
2951
2952         if (ext4_has_inline_data(inode))
2953                 ret = ext4_readpage_inline(inode, page);
2954
2955         if (ret == -EAGAIN)
2956                 return mpage_readpage(page, ext4_get_block);
2957
2958         return ret;
2959 }
2960
2961 static int
2962 ext4_readpages(struct file *file, struct address_space *mapping,
2963                 struct list_head *pages, unsigned nr_pages)
2964 {
2965         struct inode *inode = mapping->host;
2966
2967         /* If the file has inline data, no need to do readpages. */
2968         if (ext4_has_inline_data(inode))
2969                 return 0;
2970
2971         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2972 }
2973
2974 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2975 {
2976         trace_ext4_invalidatepage(page, offset);
2977
2978         /* No journalling happens on data buffers when this function is used */
2979         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2980
2981         block_invalidatepage(page, offset);
2982 }
2983
2984 static int __ext4_journalled_invalidatepage(struct page *page,
2985                                             unsigned long offset)
2986 {
2987         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2988
2989         trace_ext4_journalled_invalidatepage(page, offset);
2990
2991         /*
2992          * If it's a full truncate we just forget about the pending dirtying
2993          */
2994         if (offset == 0)
2995                 ClearPageChecked(page);
2996
2997         return jbd2_journal_invalidatepage(journal, page, offset);
2998 }
2999
3000 /* Wrapper for aops... */
3001 static void ext4_journalled_invalidatepage(struct page *page,
3002                                            unsigned long offset)
3003 {
3004         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3005 }
3006
3007 static int ext4_releasepage(struct page *page, gfp_t wait)
3008 {
3009         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3010
3011         trace_ext4_releasepage(page);
3012
3013         /* Page has dirty journalled data -> cannot release */
3014         if (PageChecked(page))
3015                 return 0;
3016         if (journal)
3017                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3018         else
3019                 return try_to_free_buffers(page);
3020 }
3021
3022 /*
3023  * ext4_get_block used when preparing for a DIO write or buffer write.
3024  * We allocate an uinitialized extent if blocks haven't been allocated.
3025  * The extent will be converted to initialized after the IO is complete.
3026  */
3027 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3028                    struct buffer_head *bh_result, int create)
3029 {
3030         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3031                    inode->i_ino, create);
3032         return _ext4_get_block(inode, iblock, bh_result,
3033                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3034 }
3035
3036 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3037                    struct buffer_head *bh_result, int create)
3038 {
3039         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3040                    inode->i_ino, create);
3041         return _ext4_get_block(inode, iblock, bh_result,
3042                                EXT4_GET_BLOCKS_NO_LOCK);
3043 }
3044
3045 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3046                             ssize_t size, void *private, int ret,
3047                             bool is_async)
3048 {
3049         struct inode *inode = file_inode(iocb->ki_filp);
3050         ext4_io_end_t *io_end = iocb->private;
3051
3052         /* if not async direct IO or dio with 0 bytes write, just return */
3053         if (!io_end || !size)
3054                 goto out;
3055
3056         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3057                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3058                   iocb->private, io_end->inode->i_ino, iocb, offset,
3059                   size);
3060
3061         iocb->private = NULL;
3062
3063         /* if not aio dio with unwritten extents, just free io and return */
3064         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3065                 ext4_free_io_end(io_end);
3066 out:
3067                 inode_dio_done(inode);
3068                 if (is_async)
3069                         aio_complete(iocb, ret, 0);
3070                 return;
3071         }
3072
3073         io_end->offset = offset;
3074         io_end->size = size;
3075         if (is_async) {
3076                 io_end->iocb = iocb;
3077                 io_end->result = ret;
3078         }
3079
3080         ext4_add_complete_io(io_end);
3081 }
3082
3083 /*
3084  * For ext4 extent files, ext4 will do direct-io write to holes,
3085  * preallocated extents, and those write extend the file, no need to
3086  * fall back to buffered IO.
3087  *
3088  * For holes, we fallocate those blocks, mark them as uninitialized
3089  * If those blocks were preallocated, we mark sure they are split, but
3090  * still keep the range to write as uninitialized.
3091  *
3092  * The unwritten extents will be converted to written when DIO is completed.
3093  * For async direct IO, since the IO may still pending when return, we
3094  * set up an end_io call back function, which will do the conversion
3095  * when async direct IO completed.
3096  *
3097  * If the O_DIRECT write will extend the file then add this inode to the
3098  * orphan list.  So recovery will truncate it back to the original size
3099  * if the machine crashes during the write.
3100  *
3101  */
3102 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3103                               const struct iovec *iov, loff_t offset,
3104                               unsigned long nr_segs)
3105 {
3106         struct file *file = iocb->ki_filp;
3107         struct inode *inode = file->f_mapping->host;
3108         ssize_t ret;
3109         size_t count = iov_length(iov, nr_segs);
3110         int overwrite = 0;
3111         get_block_t *get_block_func = NULL;
3112         int dio_flags = 0;
3113         loff_t final_size = offset + count;
3114
3115         /* Use the old path for reads and writes beyond i_size. */
3116         if (rw != WRITE || final_size > inode->i_size)
3117                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3118
3119         BUG_ON(iocb->private == NULL);
3120
3121         /* If we do a overwrite dio, i_mutex locking can be released */
3122         overwrite = *((int *)iocb->private);
3123
3124         if (overwrite) {
3125                 atomic_inc(&inode->i_dio_count);
3126                 down_read(&EXT4_I(inode)->i_data_sem);
3127                 mutex_unlock(&inode->i_mutex);
3128         }
3129
3130         /*
3131          * We could direct write to holes and fallocate.
3132          *
3133          * Allocated blocks to fill the hole are marked as
3134          * uninitialized to prevent parallel buffered read to expose
3135          * the stale data before DIO complete the data IO.
3136          *
3137          * As to previously fallocated extents, ext4 get_block will
3138          * just simply mark the buffer mapped but still keep the
3139          * extents uninitialized.
3140          *
3141          * For non AIO case, we will convert those unwritten extents
3142          * to written after return back from blockdev_direct_IO.
3143          *
3144          * For async DIO, the conversion needs to be deferred when the
3145          * IO is completed. The ext4 end_io callback function will be
3146          * called to take care of the conversion work.  Here for async
3147          * case, we allocate an io_end structure to hook to the iocb.
3148          */
3149         iocb->private = NULL;
3150         ext4_inode_aio_set(inode, NULL);
3151         if (!is_sync_kiocb(iocb)) {
3152                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3153                 if (!io_end) {
3154                         ret = -ENOMEM;
3155                         goto retake_lock;
3156                 }
3157                 io_end->flag |= EXT4_IO_END_DIRECT;
3158                 iocb->private = io_end;
3159                 /*
3160                  * we save the io structure for current async direct
3161                  * IO, so that later ext4_map_blocks() could flag the
3162                  * io structure whether there is a unwritten extents
3163                  * needs to be converted when IO is completed.
3164                  */
3165                 ext4_inode_aio_set(inode, io_end);
3166         }
3167
3168         if (overwrite) {
3169                 get_block_func = ext4_get_block_write_nolock;
3170         } else {
3171                 get_block_func = ext4_get_block_write;
3172                 dio_flags = DIO_LOCKING;
3173         }
3174         ret = __blockdev_direct_IO(rw, iocb, inode,
3175                                    inode->i_sb->s_bdev, iov,
3176                                    offset, nr_segs,
3177                                    get_block_func,
3178                                    ext4_end_io_dio,
3179                                    NULL,
3180                                    dio_flags);
3181
3182         if (iocb->private)
3183                 ext4_inode_aio_set(inode, NULL);
3184         /*
3185          * The io_end structure takes a reference to the inode, that
3186          * structure needs to be destroyed and the reference to the
3187          * inode need to be dropped, when IO is complete, even with 0
3188          * byte write, or failed.
3189          *
3190          * In the successful AIO DIO case, the io_end structure will
3191          * be destroyed and the reference to the inode will be dropped
3192          * after the end_io call back function is called.
3193          *
3194          * In the case there is 0 byte write, or error case, since VFS
3195          * direct IO won't invoke the end_io call back function, we
3196          * need to free the end_io structure here.
3197          */
3198         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3199                 ext4_free_io_end(iocb->private);
3200                 iocb->private = NULL;
3201         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3202                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3203                 int err;
3204                 /*
3205                  * for non AIO case, since the IO is already
3206                  * completed, we could do the conversion right here
3207                  */
3208                 err = ext4_convert_unwritten_extents(inode,
3209                                                      offset, ret);
3210                 if (err < 0)
3211                         ret = err;
3212                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3213         }
3214
3215 retake_lock:
3216         /* take i_mutex locking again if we do a ovewrite dio */
3217         if (overwrite) {
3218                 inode_dio_done(inode);
3219                 up_read(&EXT4_I(inode)->i_data_sem);
3220                 mutex_lock(&inode->i_mutex);
3221         }
3222
3223         return ret;
3224 }
3225
3226 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3227                               const struct iovec *iov, loff_t offset,
3228                               unsigned long nr_segs)
3229 {
3230         struct file *file = iocb->ki_filp;
3231         struct inode *inode = file->f_mapping->host;
3232         ssize_t ret;
3233
3234         /*
3235          * If we are doing data journalling we don't support O_DIRECT
3236          */
3237         if (ext4_should_journal_data(inode))
3238                 return 0;
3239
3240         /* Let buffer I/O handle the inline data case. */
3241         if (ext4_has_inline_data(inode))
3242                 return 0;
3243
3244         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3245         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3246                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3247         else
3248                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3249         trace_ext4_direct_IO_exit(inode, offset,
3250                                 iov_length(iov, nr_segs), rw, ret);
3251         return ret;
3252 }
3253
3254 /*
3255  * Pages can be marked dirty completely asynchronously from ext4's journalling
3256  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3257  * much here because ->set_page_dirty is called under VFS locks.  The page is
3258  * not necessarily locked.
3259  *
3260  * We cannot just dirty the page and leave attached buffers clean, because the
3261  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3262  * or jbddirty because all the journalling code will explode.
3263  *
3264  * So what we do is to mark the page "pending dirty" and next time writepage
3265  * is called, propagate that into the buffers appropriately.
3266  */
3267 static int ext4_journalled_set_page_dirty(struct page *page)
3268 {
3269         SetPageChecked(page);
3270         return __set_page_dirty_nobuffers(page);
3271 }
3272
3273 static const struct address_space_operations ext4_aops = {
3274         .readpage               = ext4_readpage,
3275         .readpages              = ext4_readpages,
3276         .writepage              = ext4_writepage,
3277         .write_begin            = ext4_write_begin,
3278         .write_end              = ext4_write_end,
3279         .bmap                   = ext4_bmap,
3280         .invalidatepage         = ext4_invalidatepage,
3281         .releasepage            = ext4_releasepage,
3282         .direct_IO              = ext4_direct_IO,
3283         .migratepage            = buffer_migrate_page,
3284         .is_partially_uptodate  = block_is_partially_uptodate,
3285         .error_remove_page      = generic_error_remove_page,
3286 };
3287
3288 static const struct address_space_operations ext4_journalled_aops = {
3289         .readpage               = ext4_readpage,
3290         .readpages              = ext4_readpages,
3291         .writepage              = ext4_writepage,
3292         .write_begin            = ext4_write_begin,
3293         .write_end              = ext4_journalled_write_end,
3294         .set_page_dirty         = ext4_journalled_set_page_dirty,
3295         .bmap                   = ext4_bmap,
3296         .invalidatepage         = ext4_journalled_invalidatepage,
3297         .releasepage            = ext4_releasepage,
3298         .direct_IO              = ext4_direct_IO,
3299         .is_partially_uptodate  = block_is_partially_uptodate,
3300         .error_remove_page      = generic_error_remove_page,
3301 };
3302
3303 static const struct address_space_operations ext4_da_aops = {
3304         .readpage               = ext4_readpage,
3305         .readpages              = ext4_readpages,
3306         .writepage              = ext4_writepage,
3307         .writepages             = ext4_da_writepages,
3308         .write_begin            = ext4_da_write_begin,
3309         .write_end              = ext4_da_write_end,
3310         .bmap                   = ext4_bmap,
3311         .invalidatepage         = ext4_da_invalidatepage,
3312         .releasepage            = ext4_releasepage,
3313         .direct_IO              = ext4_direct_IO,
3314         .migratepage            = buffer_migrate_page,
3315         .is_partially_uptodate  = block_is_partially_uptodate,
3316         .error_remove_page      = generic_error_remove_page,
3317 };
3318
3319 void ext4_set_aops(struct inode *inode)
3320 {
3321         switch (ext4_inode_journal_mode(inode)) {
3322         case EXT4_INODE_ORDERED_DATA_MODE:
3323                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3324                 break;
3325         case EXT4_INODE_WRITEBACK_DATA_MODE:
3326                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3327                 break;
3328         case EXT4_INODE_JOURNAL_DATA_MODE:
3329                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3330                 return;
3331         default:
3332                 BUG();
3333         }
3334         if (test_opt(inode->i_sb, DELALLOC))
3335                 inode->i_mapping->a_ops = &ext4_da_aops;
3336         else
3337                 inode->i_mapping->a_ops = &ext4_aops;
3338 }
3339
3340
3341 /*
3342  * ext4_discard_partial_page_buffers()
3343  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3344  * This function finds and locks the page containing the offset
3345  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3346  * Calling functions that already have the page locked should call
3347  * ext4_discard_partial_page_buffers_no_lock directly.
3348  */
3349 int ext4_discard_partial_page_buffers(handle_t *handle,
3350                 struct address_space *mapping, loff_t from,
3351                 loff_t length, int flags)
3352 {
3353         struct inode *inode = mapping->host;
3354         struct page *page;
3355         int err = 0;
3356
3357         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3358                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3359         if (!page)
3360                 return -ENOMEM;
3361
3362         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3363                 from, length, flags);
3364
3365         unlock_page(page);
3366         page_cache_release(page);
3367         return err;
3368 }
3369
3370 /*
3371  * ext4_discard_partial_page_buffers_no_lock()
3372  * Zeros a page range of length 'length' starting from offset 'from'.
3373  * Buffer heads that correspond to the block aligned regions of the
3374  * zeroed range will be unmapped.  Unblock aligned regions
3375  * will have the corresponding buffer head mapped if needed so that
3376  * that region of the page can be updated with the partial zero out.
3377  *
3378  * This function assumes that the page has already been  locked.  The
3379  * The range to be discarded must be contained with in the given page.
3380  * If the specified range exceeds the end of the page it will be shortened
3381  * to the end of the page that corresponds to 'from'.  This function is
3382  * appropriate for updating a page and it buffer heads to be unmapped and
3383  * zeroed for blocks that have been either released, or are going to be
3384  * released.
3385  *
3386  * handle: The journal handle
3387  * inode:  The files inode
3388  * page:   A locked page that contains the offset "from"
3389  * from:   The starting byte offset (from the beginning of the file)
3390  *         to begin discarding
3391  * len:    The length of bytes to discard
3392  * flags:  Optional flags that may be used:
3393  *
3394  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3395  *         Only zero the regions of the page whose buffer heads
3396  *         have already been unmapped.  This flag is appropriate
3397  *         for updating the contents of a page whose blocks may
3398  *         have already been released, and we only want to zero
3399  *         out the regions that correspond to those released blocks.
3400  *
3401  * Returns zero on success or negative on failure.
3402  */
3403 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3404                 struct inode *inode, struct page *page, loff_t from,
3405                 loff_t length, int flags)
3406 {
3407         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3408         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3409         unsigned int blocksize, max, pos;
3410         ext4_lblk_t iblock;
3411         struct buffer_head *bh;
3412         int err = 0;
3413
3414         blocksize = inode->i_sb->s_blocksize;
3415         max = PAGE_CACHE_SIZE - offset;
3416
3417         if (index != page->index)
3418                 return -EINVAL;
3419
3420         /*
3421          * correct length if it does not fall between
3422          * 'from' and the end of the page
3423          */
3424         if (length > max || length < 0)
3425                 length = max;
3426
3427         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3428
3429         if (!page_has_buffers(page))
3430                 create_empty_buffers(page, blocksize, 0);
3431
3432         /* Find the buffer that contains "offset" */
3433         bh = page_buffers(page);
3434         pos = blocksize;
3435         while (offset >= pos) {
3436                 bh = bh->b_this_page;
3437                 iblock++;
3438                 pos += blocksize;
3439         }
3440
3441         pos = offset;
3442         while (pos < offset + length) {
3443                 unsigned int end_of_block, range_to_discard;
3444
3445                 err = 0;
3446
3447                 /* The length of space left to zero and unmap */
3448                 range_to_discard = offset + length - pos;
3449
3450                 /* The length of space until the end of the block */
3451                 end_of_block = blocksize - (pos & (blocksize-1));
3452
3453                 /*
3454                  * Do not unmap or zero past end of block
3455                  * for this buffer head
3456                  */
3457                 if (range_to_discard > end_of_block)
3458                         range_to_discard = end_of_block;
3459
3460
3461                 /*
3462                  * Skip this buffer head if we are only zeroing unampped
3463                  * regions of the page
3464                  */
3465                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3466                         buffer_mapped(bh))
3467                                 goto next;
3468
3469                 /* If the range is block aligned, unmap */
3470                 if (range_to_discard == blocksize) {
3471                         clear_buffer_dirty(bh);
3472                         bh->b_bdev = NULL;
3473                         clear_buffer_mapped(bh);
3474                         clear_buffer_req(bh);
3475                         clear_buffer_new(bh);
3476                         clear_buffer_delay(bh);
3477                         clear_buffer_unwritten(bh);
3478                         clear_buffer_uptodate(bh);
3479                         zero_user(page, pos, range_to_discard);
3480                         BUFFER_TRACE(bh, "Buffer discarded");
3481                         goto next;
3482                 }
3483
3484                 /*
3485                  * If this block is not completely contained in the range
3486                  * to be discarded, then it is not going to be released. Because
3487                  * we need to keep this block, we need to make sure this part
3488                  * of the page is uptodate before we modify it by writeing
3489                  * partial zeros on it.
3490                  */
3491                 if (!buffer_mapped(bh)) {
3492                         /*
3493                          * Buffer head must be mapped before we can read
3494                          * from the block
3495                          */
3496                         BUFFER_TRACE(bh, "unmapped");
3497                         ext4_get_block(inode, iblock, bh, 0);
3498                         /* unmapped? It's a hole - nothing to do */
3499                         if (!buffer_mapped(bh)) {
3500                                 BUFFER_TRACE(bh, "still unmapped");
3501                                 goto next;
3502                         }
3503                 }
3504
3505                 /* Ok, it's mapped. Make sure it's up-to-date */
3506                 if (PageUptodate(page))
3507                         set_buffer_uptodate(bh);
3508
3509                 if (!buffer_uptodate(bh)) {
3510                         err = -EIO;
3511                         ll_rw_block(READ, 1, &bh);
3512                         wait_on_buffer(bh);
3513                         /* Uhhuh. Read error. Complain and punt.*/
3514                         if (!buffer_uptodate(bh))
3515                                 goto next;
3516                 }
3517
3518                 if (ext4_should_journal_data(inode)) {
3519                         BUFFER_TRACE(bh, "get write access");
3520                         err = ext4_journal_get_write_access(handle, bh);
3521                         if (err)
3522                                 goto next;
3523                 }
3524
3525                 zero_user(page, pos, range_to_discard);
3526
3527                 err = 0;
3528                 if (ext4_should_journal_data(inode)) {
3529                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3530                 } else
3531                         mark_buffer_dirty(bh);
3532
3533                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3534 next:
3535                 bh = bh->b_this_page;
3536                 iblock++;
3537                 pos += range_to_discard;
3538         }
3539
3540         return err;
3541 }
3542
3543 int ext4_can_truncate(struct inode *inode)
3544 {
3545         if (S_ISREG(inode->i_mode))
3546                 return 1;
3547         if (S_ISDIR(inode->i_mode))
3548                 return 1;
3549         if (S_ISLNK(inode->i_mode))
3550                 return !ext4_inode_is_fast_symlink(inode);
3551         return 0;
3552 }
3553
3554 /*
3555  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3556  * associated with the given offset and length
3557  *
3558  * @inode:  File inode
3559  * @offset: The offset where the hole will begin
3560  * @len:    The length of the hole
3561  *
3562  * Returns: 0 on success or negative on failure
3563  */
3564
3565 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3566 {
3567         struct inode *inode = file_inode(file);
3568         struct super_block *sb = inode->i_sb;
3569         ext4_lblk_t first_block, stop_block;
3570         struct address_space *mapping = inode->i_mapping;
3571         loff_t first_page, last_page, page_len;
3572         loff_t first_page_offset, last_page_offset;
3573         handle_t *handle;
3574         unsigned int credits;
3575         int ret = 0;
3576
3577         if (!S_ISREG(inode->i_mode))
3578                 return -EOPNOTSUPP;
3579
3580         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3581                 /* TODO: Add support for bigalloc file systems */
3582                 return -EOPNOTSUPP;
3583         }
3584
3585         trace_ext4_punch_hole(inode, offset, length);
3586
3587         /*
3588          * Write out all dirty pages to avoid race conditions
3589          * Then release them.
3590          */
3591         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3592                 ret = filemap_write_and_wait_range(mapping, offset,
3593                                                    offset + length - 1);
3594                 if (ret)
3595                         return ret;
3596         }
3597
3598         mutex_lock(&inode->i_mutex);
3599         /* It's not possible punch hole on append only file */
3600         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3601                 ret = -EPERM;
3602                 goto out_mutex;
3603         }
3604         if (IS_SWAPFILE(inode)) {
3605                 ret = -ETXTBSY;
3606                 goto out_mutex;
3607         }
3608
3609         /* No need to punch hole beyond i_size */
3610         if (offset >= inode->i_size)
3611                 goto out_mutex;
3612
3613         /*
3614          * If the hole extends beyond i_size, set the hole
3615          * to end after the page that contains i_size
3616          */
3617         if (offset + length > inode->i_size) {
3618                 length = inode->i_size +
3619                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3620                    offset;
3621         }
3622
3623         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3624         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3625
3626         first_page_offset = first_page << PAGE_CACHE_SHIFT;
3627         last_page_offset = last_page << PAGE_CACHE_SHIFT;
3628
3629         /* Now release the pages */
3630         if (last_page_offset > first_page_offset) {
3631                 truncate_pagecache_range(inode, first_page_offset,
3632                                          last_page_offset - 1);
3633         }
3634
3635         /* Wait all existing dio workers, newcomers will block on i_mutex */
3636         ext4_inode_block_unlocked_dio(inode);
3637         ret = ext4_flush_unwritten_io(inode);
3638         if (ret)
3639                 goto out_dio;
3640         inode_dio_wait(inode);
3641
3642         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3643                 credits = ext4_writepage_trans_blocks(inode);
3644         else
3645                 credits = ext4_blocks_for_truncate(inode);
3646         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3647         if (IS_ERR(handle)) {
3648                 ret = PTR_ERR(handle);
3649                 ext4_std_error(sb, ret);
3650                 goto out_dio;
3651         }
3652
3653         /*
3654          * Now we need to zero out the non-page-aligned data in the
3655          * pages at the start and tail of the hole, and unmap the
3656          * buffer heads for the block aligned regions of the page that
3657          * were completely zeroed.
3658          */
3659         if (first_page > last_page) {
3660                 /*
3661                  * If the file space being truncated is contained
3662                  * within a page just zero out and unmap the middle of
3663                  * that page
3664                  */
3665                 ret = ext4_discard_partial_page_buffers(handle,
3666                         mapping, offset, length, 0);
3667
3668                 if (ret)
3669                         goto out_stop;
3670         } else {
3671                 /*
3672                  * zero out and unmap the partial page that contains
3673                  * the start of the hole
3674                  */
3675                 page_len = first_page_offset - offset;
3676                 if (page_len > 0) {
3677                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3678                                                 offset, page_len, 0);
3679                         if (ret)
3680                                 goto out_stop;
3681                 }
3682
3683                 /*
3684                  * zero out and unmap the partial page that contains
3685                  * the end of the hole
3686                  */
3687                 page_len = offset + length - last_page_offset;
3688                 if (page_len > 0) {
3689                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3690                                         last_page_offset, page_len, 0);
3691                         if (ret)
3692                                 goto out_stop;
3693                 }
3694         }
3695
3696         /*
3697          * If i_size is contained in the last page, we need to
3698          * unmap and zero the partial page after i_size
3699          */
3700         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3701            inode->i_size % PAGE_CACHE_SIZE != 0) {
3702                 page_len = PAGE_CACHE_SIZE -
3703                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3704
3705                 if (page_len > 0) {
3706                         ret = ext4_discard_partial_page_buffers(handle,
3707                                         mapping, inode->i_size, page_len, 0);
3708
3709                         if (ret)
3710                                 goto out_stop;
3711                 }
3712         }
3713
3714         first_block = (offset + sb->s_blocksize - 1) >>
3715                 EXT4_BLOCK_SIZE_BITS(sb);
3716         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3717
3718         /* If there are no blocks to remove, return now */
3719         if (first_block >= stop_block)
3720                 goto out_stop;
3721
3722         down_write(&EXT4_I(inode)->i_data_sem);
3723         ext4_discard_preallocations(inode);
3724
3725         ret = ext4_es_remove_extent(inode, first_block,
3726                                     stop_block - first_block);
3727         if (ret) {
3728                 up_write(&EXT4_I(inode)->i_data_sem);
3729                 goto out_stop;
3730         }
3731
3732         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3733                 ret = ext4_ext_remove_space(inode, first_block,
3734                                             stop_block - 1);
3735         else
3736                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3737                                             stop_block);
3738
3739         ext4_discard_preallocations(inode);
3740         up_write(&EXT4_I(inode)->i_data_sem);
3741         if (IS_SYNC(inode))
3742                 ext4_handle_sync(handle);
3743         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3744         ext4_mark_inode_dirty(handle, inode);
3745 out_stop:
3746         ext4_journal_stop(handle);
3747 out_dio:
3748         ext4_inode_resume_unlocked_dio(inode);
3749 out_mutex:
3750         mutex_unlock(&inode->i_mutex);
3751         return ret;
3752 }
3753
3754 /*
3755  * ext4_truncate()
3756  *
3757  * We block out ext4_get_block() block instantiations across the entire
3758  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3759  * simultaneously on behalf of the same inode.
3760  *
3761  * As we work through the truncate and commit bits of it to the journal there
3762  * is one core, guiding principle: the file's tree must always be consistent on
3763  * disk.  We must be able to restart the truncate after a crash.
3764  *
3765  * The file's tree may be transiently inconsistent in memory (although it
3766  * probably isn't), but whenever we close off and commit a journal transaction,
3767  * the contents of (the filesystem + the journal) must be consistent and
3768  * restartable.  It's pretty simple, really: bottom up, right to left (although
3769  * left-to-right works OK too).
3770  *
3771  * Note that at recovery time, journal replay occurs *before* the restart of
3772  * truncate against the orphan inode list.
3773  *
3774  * The committed inode has the new, desired i_size (which is the same as
3775  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3776  * that this inode's truncate did not complete and it will again call
3777  * ext4_truncate() to have another go.  So there will be instantiated blocks
3778  * to the right of the truncation point in a crashed ext4 filesystem.  But
3779  * that's fine - as long as they are linked from the inode, the post-crash
3780  * ext4_truncate() run will find them and release them.
3781  */
3782 void ext4_truncate(struct inode *inode)
3783 {
3784         struct ext4_inode_info *ei = EXT4_I(inode);
3785         unsigned int credits;
3786         handle_t *handle;
3787         struct address_space *mapping = inode->i_mapping;
3788         loff_t page_len;
3789
3790         /*
3791          * There is a possibility that we're either freeing the inode
3792          * or it completely new indode. In those cases we might not
3793          * have i_mutex locked because it's not necessary.
3794          */
3795         if (!(inode->i_state & (I_NEW|I_FREEING)))
3796                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3797         trace_ext4_truncate_enter(inode);
3798
3799         if (!ext4_can_truncate(inode))
3800                 return;
3801
3802         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3803
3804         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3805                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3806
3807         if (ext4_has_inline_data(inode)) {
3808                 int has_inline = 1;
3809
3810                 ext4_inline_data_truncate(inode, &has_inline);
3811                 if (has_inline)
3812                         return;
3813         }
3814
3815         /*
3816          * finish any pending end_io work so we won't run the risk of
3817          * converting any truncated blocks to initialized later
3818          */
3819         ext4_flush_unwritten_io(inode);
3820
3821         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3822                 credits = ext4_writepage_trans_blocks(inode);
3823         else
3824                 credits = ext4_blocks_for_truncate(inode);
3825
3826         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3827         if (IS_ERR(handle)) {
3828                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3829                 return;
3830         }
3831
3832         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3833                 page_len = PAGE_CACHE_SIZE -
3834                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3835
3836                 if (ext4_discard_partial_page_buffers(handle,
3837                                 mapping, inode->i_size, page_len, 0))
3838                         goto out_stop;
3839         }
3840
3841         /*
3842          * We add the inode to the orphan list, so that if this
3843          * truncate spans multiple transactions, and we crash, we will
3844          * resume the truncate when the filesystem recovers.  It also
3845          * marks the inode dirty, to catch the new size.
3846          *
3847          * Implication: the file must always be in a sane, consistent
3848          * truncatable state while each transaction commits.
3849          */
3850         if (ext4_orphan_add(handle, inode))
3851                 goto out_stop;
3852
3853         down_write(&EXT4_I(inode)->i_data_sem);
3854
3855         ext4_discard_preallocations(inode);
3856
3857         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3858                 ext4_ext_truncate(handle, inode);
3859         else
3860                 ext4_ind_truncate(handle, inode);
3861
3862         up_write(&ei->i_data_sem);
3863
3864         if (IS_SYNC(inode))
3865                 ext4_handle_sync(handle);
3866
3867 out_stop:
3868         /*
3869          * If this was a simple ftruncate() and the file will remain alive,
3870          * then we need to clear up the orphan record which we created above.
3871          * However, if this was a real unlink then we were called by
3872          * ext4_delete_inode(), and we allow that function to clean up the
3873          * orphan info for us.
3874          */
3875         if (inode->i_nlink)
3876                 ext4_orphan_del(handle, inode);
3877
3878         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3879         ext4_mark_inode_dirty(handle, inode);
3880         ext4_journal_stop(handle);
3881
3882         trace_ext4_truncate_exit(inode);
3883 }
3884
3885 /*
3886  * ext4_get_inode_loc returns with an extra refcount against the inode's
3887  * underlying buffer_head on success. If 'in_mem' is true, we have all
3888  * data in memory that is needed to recreate the on-disk version of this
3889  * inode.
3890  */
3891 static int __ext4_get_inode_loc(struct inode *inode,
3892                                 struct ext4_iloc *iloc, int in_mem)
3893 {
3894         struct ext4_group_desc  *gdp;
3895         struct buffer_head      *bh;
3896         struct super_block      *sb = inode->i_sb;
3897         ext4_fsblk_t            block;
3898         int                     inodes_per_block, inode_offset;
3899
3900         iloc->bh = NULL;
3901         if (!ext4_valid_inum(sb, inode->i_ino))
3902                 return -EIO;
3903
3904         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3905         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3906         if (!gdp)
3907                 return -EIO;
3908
3909         /*
3910          * Figure out the offset within the block group inode table
3911          */
3912         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3913         inode_offset = ((inode->i_ino - 1) %
3914                         EXT4_INODES_PER_GROUP(sb));
3915         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3916         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3917
3918         bh = sb_getblk(sb, block);
3919         if (unlikely(!bh))
3920                 return -ENOMEM;
3921         if (!buffer_uptodate(bh)) {
3922                 lock_buffer(bh);
3923
3924                 /*
3925                  * If the buffer has the write error flag, we have failed
3926                  * to write out another inode in the same block.  In this
3927                  * case, we don't have to read the block because we may
3928                  * read the old inode data successfully.
3929                  */
3930                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3931                         set_buffer_uptodate(bh);
3932
3933                 if (buffer_uptodate(bh)) {
3934                         /* someone brought it uptodate while we waited */
3935                         unlock_buffer(bh);
3936                         goto has_buffer;
3937                 }
3938
3939                 /*
3940                  * If we have all information of the inode in memory and this
3941                  * is the only valid inode in the block, we need not read the
3942                  * block.
3943                  */
3944                 if (in_mem) {
3945                         struct buffer_head *bitmap_bh;
3946                         int i, start;
3947
3948                         start = inode_offset & ~(inodes_per_block - 1);
3949
3950                         /* Is the inode bitmap in cache? */
3951                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3952                         if (unlikely(!bitmap_bh))
3953                                 goto make_io;
3954
3955                         /*
3956                          * If the inode bitmap isn't in cache then the
3957                          * optimisation may end up performing two reads instead
3958                          * of one, so skip it.
3959                          */
3960                         if (!buffer_uptodate(bitmap_bh)) {
3961                                 brelse(bitmap_bh);
3962                                 goto make_io;
3963                         }
3964                         for (i = start; i < start + inodes_per_block; i++) {
3965                                 if (i == inode_offset)
3966                                         continue;
3967                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3968                                         break;
3969                         }
3970                         brelse(bitmap_bh);
3971                         if (i == start + inodes_per_block) {
3972                                 /* all other inodes are free, so skip I/O */
3973                                 memset(bh->b_data, 0, bh->b_size);
3974                                 set_buffer_uptodate(bh);
3975                                 unlock_buffer(bh);
3976                                 goto has_buffer;
3977                         }
3978                 }
3979
3980 make_io:
3981                 /*
3982                  * If we need to do any I/O, try to pre-readahead extra
3983                  * blocks from the inode table.
3984                  */
3985                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3986                         ext4_fsblk_t b, end, table;
3987                         unsigned num;
3988
3989                         table = ext4_inode_table(sb, gdp);
3990                         /* s_inode_readahead_blks is always a power of 2 */
3991                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3992                         if (table > b)
3993                                 b = table;
3994                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3995                         num = EXT4_INODES_PER_GROUP(sb);
3996                         if (ext4_has_group_desc_csum(sb))
3997                                 num -= ext4_itable_unused_count(sb, gdp);
3998                         table += num / inodes_per_block;
3999                         if (end > table)
4000                                 end = table;
4001                         while (b <= end)
4002                                 sb_breadahead(sb, b++);
4003                 }
4004
4005                 /*
4006                  * There are other valid inodes in the buffer, this inode
4007                  * has in-inode xattrs, or we don't have this inode in memory.
4008                  * Read the block from disk.
4009                  */
4010                 trace_ext4_load_inode(inode);
4011                 get_bh(bh);
4012                 bh->b_end_io = end_buffer_read_sync;
4013                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4014                 wait_on_buffer(bh);
4015                 if (!buffer_uptodate(bh)) {
4016                         EXT4_ERROR_INODE_BLOCK(inode, block,
4017                                                "unable to read itable block");
4018                         brelse(bh);
4019                         return -EIO;
4020                 }
4021         }
4022 has_buffer:
4023         iloc->bh = bh;
4024         return 0;
4025 }
4026
4027 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4028 {
4029         /* We have all inode data except xattrs in memory here. */
4030         return __ext4_get_inode_loc(inode, iloc,
4031                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4032 }
4033
4034 void ext4_set_inode_flags(struct inode *inode)
4035 {
4036         unsigned int flags = EXT4_I(inode)->i_flags;
4037
4038         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4039         if (flags & EXT4_SYNC_FL)
4040                 inode->i_flags |= S_SYNC;
4041         if (flags & EXT4_APPEND_FL)
4042                 inode->i_flags |= S_APPEND;
4043         if (flags & EXT4_IMMUTABLE_FL)
4044                 inode->i_flags |= S_IMMUTABLE;
4045         if (flags & EXT4_NOATIME_FL)
4046                 inode->i_flags |= S_NOATIME;
4047         if (flags & EXT4_DIRSYNC_FL)
4048                 inode->i_flags |= S_DIRSYNC;
4049 }
4050
4051 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4052 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4053 {
4054         unsigned int vfs_fl;
4055         unsigned long old_fl, new_fl;
4056
4057         do {
4058                 vfs_fl = ei->vfs_inode.i_flags;
4059                 old_fl = ei->i_flags;
4060                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4061                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4062                                 EXT4_DIRSYNC_FL);
4063                 if (vfs_fl & S_SYNC)
4064                         new_fl |= EXT4_SYNC_FL;
4065                 if (vfs_fl & S_APPEND)
4066                         new_fl |= EXT4_APPEND_FL;
4067                 if (vfs_fl & S_IMMUTABLE)
4068                         new_fl |= EXT4_IMMUTABLE_FL;
4069                 if (vfs_fl & S_NOATIME)
4070                         new_fl |= EXT4_NOATIME_FL;
4071                 if (vfs_fl & S_DIRSYNC)
4072                         new_fl |= EXT4_DIRSYNC_FL;
4073         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4074 }
4075
4076 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4077                                   struct ext4_inode_info *ei)
4078 {
4079         blkcnt_t i_blocks ;
4080         struct inode *inode = &(ei->vfs_inode);
4081         struct super_block *sb = inode->i_sb;
4082
4083         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4084                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4085                 /* we are using combined 48 bit field */
4086                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4087                                         le32_to_cpu(raw_inode->i_blocks_lo);
4088                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4089                         /* i_blocks represent file system block size */
4090                         return i_blocks  << (inode->i_blkbits - 9);
4091                 } else {
4092                         return i_blocks;
4093                 }
4094         } else {
4095                 return le32_to_cpu(raw_inode->i_blocks_lo);
4096         }
4097 }
4098
4099 static inline void ext4_iget_extra_inode(struct inode *inode,
4100                                          struct ext4_inode *raw_inode,
4101                                          struct ext4_inode_info *ei)
4102 {
4103         __le32 *magic = (void *)raw_inode +
4104                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4105         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4106                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4107                 ext4_find_inline_data_nolock(inode);
4108         } else
4109                 EXT4_I(inode)->i_inline_off = 0;
4110 }
4111
4112 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4113 {
4114         struct ext4_iloc iloc;
4115         struct ext4_inode *raw_inode;
4116         struct ext4_inode_info *ei;
4117         struct inode *inode;
4118         journal_t *journal = EXT4_SB(sb)->s_journal;
4119         long ret;
4120         int block;
4121         uid_t i_uid;
4122         gid_t i_gid;
4123
4124         inode = iget_locked(sb, ino);
4125         if (!inode)
4126                 return ERR_PTR(-ENOMEM);
4127         if (!(inode->i_state & I_NEW))
4128                 return inode;
4129
4130         ei = EXT4_I(inode);
4131         iloc.bh = NULL;
4132
4133         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4134         if (ret < 0)
4135                 goto bad_inode;
4136         raw_inode = ext4_raw_inode(&iloc);
4137
4138         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4139                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4140                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4141                     EXT4_INODE_SIZE(inode->i_sb)) {
4142                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4143                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4144                                 EXT4_INODE_SIZE(inode->i_sb));
4145                         ret = -EIO;
4146                         goto bad_inode;
4147                 }
4148         } else
4149                 ei->i_extra_isize = 0;
4150
4151         /* Precompute checksum seed for inode metadata */
4152         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4153                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4154                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4155                 __u32 csum;
4156                 __le32 inum = cpu_to_le32(inode->i_ino);
4157                 __le32 gen = raw_inode->i_generation;
4158                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4159                                    sizeof(inum));
4160                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4161                                               sizeof(gen));
4162         }
4163
4164         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4165                 EXT4_ERROR_INODE(inode, "checksum invalid");
4166                 ret = -EIO;
4167                 goto bad_inode;
4168         }
4169
4170         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4171         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4172         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4173         if (!(test_opt(inode->i_sb, NO_UID32))) {
4174                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4175                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4176         }
4177         i_uid_write(inode, i_uid);
4178         i_gid_write(inode, i_gid);
4179         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4180
4181         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4182         ei->i_inline_off = 0;
4183         ei->i_dir_start_lookup = 0;
4184         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4185         /* We now have enough fields to check if the inode was active or not.
4186          * This is needed because nfsd might try to access dead inodes
4187          * the test is that same one that e2fsck uses
4188          * NeilBrown 1999oct15
4189          */
4190         if (inode->i_nlink == 0) {
4191                 if (inode->i_mode == 0 ||
4192                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4193                         /* this inode is deleted */
4194                         ret = -ESTALE;
4195                         goto bad_inode;
4196                 }
4197                 /* The only unlinked inodes we let through here have
4198                  * valid i_mode and are being read by the orphan
4199                  * recovery code: that's fine, we're about to complete
4200                  * the process of deleting those. */
4201         }
4202         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4203         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4204         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4205         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4206                 ei->i_file_acl |=
4207                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4208         inode->i_size = ext4_isize(raw_inode);
4209         ei->i_disksize = inode->i_size;
4210 #ifdef CONFIG_QUOTA
4211         ei->i_reserved_quota = 0;
4212 #endif
4213         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4214         ei->i_block_group = iloc.block_group;
4215         ei->i_last_alloc_group = ~0;
4216         /*
4217          * NOTE! The in-memory inode i_data array is in little-endian order
4218          * even on big-endian machines: we do NOT byteswap the block numbers!
4219          */
4220         for (block = 0; block < EXT4_N_BLOCKS; block++)
4221                 ei->i_data[block] = raw_inode->i_block[block];
4222         INIT_LIST_HEAD(&ei->i_orphan);
4223
4224         /*
4225          * Set transaction id's of transactions that have to be committed
4226          * to finish f[data]sync. We set them to currently running transaction
4227          * as we cannot be sure that the inode or some of its metadata isn't
4228          * part of the transaction - the inode could have been reclaimed and
4229          * now it is reread from disk.
4230          */
4231         if (journal) {
4232                 transaction_t *transaction;
4233                 tid_t tid;
4234
4235                 read_lock(&journal->j_state_lock);
4236                 if (journal->j_running_transaction)
4237                         transaction = journal->j_running_transaction;
4238                 else
4239                         transaction = journal->j_committing_transaction;
4240                 if (transaction)
4241                         tid = transaction->t_tid;
4242                 else
4243                         tid = journal->j_commit_sequence;
4244                 read_unlock(&journal->j_state_lock);
4245                 ei->i_sync_tid = tid;
4246                 ei->i_datasync_tid = tid;
4247         }
4248
4249         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4250                 if (ei->i_extra_isize == 0) {
4251                         /* The extra space is currently unused. Use it. */
4252                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4253                                             EXT4_GOOD_OLD_INODE_SIZE;
4254                 } else {
4255                         ext4_iget_extra_inode(inode, raw_inode, ei);
4256                 }
4257         }
4258
4259         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4260         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4261         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4262         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4263
4264         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4265         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4266                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4267                         inode->i_version |=
4268                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4269         }
4270
4271         ret = 0;
4272         if (ei->i_file_acl &&
4273             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4274                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4275                                  ei->i_file_acl);
4276                 ret = -EIO;
4277                 goto bad_inode;
4278         } else if (!ext4_has_inline_data(inode)) {
4279                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4280                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4281                             (S_ISLNK(inode->i_mode) &&
4282                              !ext4_inode_is_fast_symlink(inode))))
4283                                 /* Validate extent which is part of inode */
4284                                 ret = ext4_ext_check_inode(inode);
4285                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4286                            (S_ISLNK(inode->i_mode) &&
4287                             !ext4_inode_is_fast_symlink(inode))) {
4288                         /* Validate block references which are part of inode */
4289                         ret = ext4_ind_check_inode(inode);
4290                 }
4291         }
4292         if (ret)
4293                 goto bad_inode;
4294
4295         if (S_ISREG(inode->i_mode)) {
4296                 inode->i_op = &ext4_file_inode_operations;
4297                 inode->i_fop = &ext4_file_operations;
4298                 ext4_set_aops(inode);
4299         } else if (S_ISDIR(inode->i_mode)) {
4300                 inode->i_op = &ext4_dir_inode_operations;
4301                 inode->i_fop = &ext4_dir_operations;
4302         } else if (S_ISLNK(inode->i_mode)) {
4303                 if (ext4_inode_is_fast_symlink(inode)) {
4304                         inode->i_op = &ext4_fast_symlink_inode_operations;
4305                         nd_terminate_link(ei->i_data, inode->i_size,
4306                                 sizeof(ei->i_data) - 1);
4307                 } else {
4308                         inode->i_op = &ext4_symlink_inode_operations;
4309                         ext4_set_aops(inode);
4310                 }
4311         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4312               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4313                 inode->i_op = &ext4_special_inode_operations;
4314                 if (raw_inode->i_block[0])
4315                         init_special_inode(inode, inode->i_mode,
4316                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4317                 else
4318                         init_special_inode(inode, inode->i_mode,
4319                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4320         } else {
4321                 ret = -EIO;
4322                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4323                 goto bad_inode;
4324         }
4325         brelse(iloc.bh);
4326         ext4_set_inode_flags(inode);
4327         unlock_new_inode(inode);
4328         return inode;
4329
4330 bad_inode:
4331         brelse(iloc.bh);
4332         iget_failed(inode);
4333         return ERR_PTR(ret);
4334 }
4335
4336 static int ext4_inode_blocks_set(handle_t *handle,
4337                                 struct ext4_inode *raw_inode,
4338                                 struct ext4_inode_info *ei)
4339 {
4340         struct inode *inode = &(ei->vfs_inode);
4341         u64 i_blocks = inode->i_blocks;
4342         struct super_block *sb = inode->i_sb;
4343
4344         if (i_blocks <= ~0U) {
4345                 /*
4346                  * i_blocks can be represented in a 32 bit variable
4347                  * as multiple of 512 bytes
4348                  */
4349                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4350                 raw_inode->i_blocks_high = 0;
4351                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4352                 return 0;
4353         }
4354         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4355                 return -EFBIG;
4356
4357         if (i_blocks <= 0xffffffffffffULL) {
4358                 /*
4359                  * i_blocks can be represented in a 48 bit variable
4360                  * as multiple of 512 bytes
4361                  */
4362                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4363                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4364                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4365         } else {
4366                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4367                 /* i_block is stored in file system block size */
4368                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4369                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4370                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4371         }
4372         return 0;
4373 }
4374
4375 /*
4376  * Post the struct inode info into an on-disk inode location in the
4377  * buffer-cache.  This gobbles the caller's reference to the
4378  * buffer_head in the inode location struct.
4379  *
4380  * The caller must have write access to iloc->bh.
4381  */
4382 static int ext4_do_update_inode(handle_t *handle,
4383                                 struct inode *inode,
4384                                 struct ext4_iloc *iloc)
4385 {
4386         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4387         struct ext4_inode_info *ei = EXT4_I(inode);
4388         struct buffer_head *bh = iloc->bh;
4389         int err = 0, rc, block;
4390         int need_datasync = 0;
4391         uid_t i_uid;
4392         gid_t i_gid;
4393
4394         /* For fields not not tracking in the in-memory inode,
4395          * initialise them to zero for new inodes. */
4396         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4397                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4398
4399         ext4_get_inode_flags(ei);
4400         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4401         i_uid = i_uid_read(inode);
4402         i_gid = i_gid_read(inode);
4403         if (!(test_opt(inode->i_sb, NO_UID32))) {
4404                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4405                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4406 /*
4407  * Fix up interoperability with old kernels. Otherwise, old inodes get
4408  * re-used with the upper 16 bits of the uid/gid intact
4409  */
4410                 if (!ei->i_dtime) {
4411                         raw_inode->i_uid_high =
4412                                 cpu_to_le16(high_16_bits(i_uid));
4413                         raw_inode->i_gid_high =
4414                                 cpu_to_le16(high_16_bits(i_gid));
4415                 } else {
4416                         raw_inode->i_uid_high = 0;
4417                         raw_inode->i_gid_high = 0;
4418                 }
4419         } else {
4420                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4421                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4422                 raw_inode->i_uid_high = 0;
4423                 raw_inode->i_gid_high = 0;
4424         }
4425         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4426
4427         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4428         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4429         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4430         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4431
4432         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4433                 goto out_brelse;
4434         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4435         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4436         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4437             cpu_to_le32(EXT4_OS_HURD))
4438                 raw_inode->i_file_acl_high =
4439                         cpu_to_le16(ei->i_file_acl >> 32);
4440         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4441         if (ei->i_disksize != ext4_isize(raw_inode)) {
4442                 ext4_isize_set(raw_inode, ei->i_disksize);
4443                 need_datasync = 1;
4444         }
4445         if (ei->i_disksize > 0x7fffffffULL) {
4446                 struct super_block *sb = inode->i_sb;
4447                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4448                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4449                                 EXT4_SB(sb)->s_es->s_rev_level ==
4450                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4451                         /* If this is the first large file
4452                          * created, add a flag to the superblock.
4453                          */
4454                         err = ext4_journal_get_write_access(handle,
4455                                         EXT4_SB(sb)->s_sbh);
4456                         if (err)
4457                                 goto out_brelse;
4458                         ext4_update_dynamic_rev(sb);
4459                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4460                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4461                         ext4_handle_sync(handle);
4462                         err = ext4_handle_dirty_super(handle, sb);
4463                 }
4464         }
4465         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4466         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4467                 if (old_valid_dev(inode->i_rdev)) {
4468                         raw_inode->i_block[0] =
4469                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4470                         raw_inode->i_block[1] = 0;
4471                 } else {
4472                         raw_inode->i_block[0] = 0;
4473                         raw_inode->i_block[1] =
4474                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4475                         raw_inode->i_block[2] = 0;
4476                 }
4477         } else if (!ext4_has_inline_data(inode)) {
4478                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4479                         raw_inode->i_block[block] = ei->i_data[block];
4480         }
4481
4482         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4483         if (ei->i_extra_isize) {
4484                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4485                         raw_inode->i_version_hi =
4486                         cpu_to_le32(inode->i_version >> 32);
4487                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4488         }
4489
4490         ext4_inode_csum_set(inode, raw_inode, ei);
4491
4492         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4493         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4494         if (!err)
4495                 err = rc;
4496         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4497
4498         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4499 out_brelse:
4500         brelse(bh);
4501         ext4_std_error(inode->i_sb, err);
4502         return err;
4503 }
4504
4505 /*
4506  * ext4_write_inode()
4507  *
4508  * We are called from a few places:
4509  *
4510  * - Within generic_file_write() for O_SYNC files.
4511  *   Here, there will be no transaction running. We wait for any running
4512  *   transaction to commit.
4513  *
4514  * - Within sys_sync(), kupdate and such.
4515  *   We wait on commit, if tol to.
4516  *
4517  * - Within prune_icache() (PF_MEMALLOC == true)
4518  *   Here we simply return.  We can't afford to block kswapd on the
4519  *   journal commit.
4520  *
4521  * In all cases it is actually safe for us to return without doing anything,
4522  * because the inode has been copied into a raw inode buffer in
4523  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4524  * knfsd.
4525  *
4526  * Note that we are absolutely dependent upon all inode dirtiers doing the
4527  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4528  * which we are interested.
4529  *
4530  * It would be a bug for them to not do this.  The code:
4531  *
4532  *      mark_inode_dirty(inode)
4533  *      stuff();
4534  *      inode->i_size = expr;
4535  *
4536  * is in error because a kswapd-driven write_inode() could occur while
4537  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4538  * will no longer be on the superblock's dirty inode list.
4539  */
4540 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4541 {
4542         int err;
4543
4544         if (current->flags & PF_MEMALLOC)
4545                 return 0;
4546
4547         if (EXT4_SB(inode->i_sb)->s_journal) {
4548                 if (ext4_journal_current_handle()) {
4549                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4550                         dump_stack();
4551                         return -EIO;
4552                 }
4553
4554                 if (wbc->sync_mode != WB_SYNC_ALL)
4555                         return 0;
4556
4557                 err = ext4_force_commit(inode->i_sb);
4558         } else {
4559                 struct ext4_iloc iloc;
4560
4561                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4562                 if (err)
4563                         return err;
4564                 if (wbc->sync_mode == WB_SYNC_ALL)
4565                         sync_dirty_buffer(iloc.bh);
4566                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4567                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4568                                          "IO error syncing inode");
4569                         err = -EIO;
4570                 }
4571                 brelse(iloc.bh);
4572         }
4573         return err;
4574 }
4575
4576 /*
4577  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4578  * buffers that are attached to a page stradding i_size and are undergoing
4579  * commit. In that case we have to wait for commit to finish and try again.
4580  */
4581 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4582 {
4583         struct page *page;
4584         unsigned offset;
4585         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4586         tid_t commit_tid = 0;
4587         int ret;
4588
4589         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4590         /*
4591          * All buffers in the last page remain valid? Then there's nothing to
4592          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4593          * blocksize case
4594          */
4595         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4596                 return;
4597         while (1) {
4598                 page = find_lock_page(inode->i_mapping,
4599                                       inode->i_size >> PAGE_CACHE_SHIFT);
4600                 if (!page)
4601                         return;
4602                 ret = __ext4_journalled_invalidatepage(page, offset);
4603                 unlock_page(page);
4604                 page_cache_release(page);
4605                 if (ret != -EBUSY)
4606                         return;
4607                 commit_tid = 0;
4608                 read_lock(&journal->j_state_lock);
4609                 if (journal->j_committing_transaction)
4610                         commit_tid = journal->j_committing_transaction->t_tid;
4611                 read_unlock(&journal->j_state_lock);
4612                 if (commit_tid)
4613                         jbd2_log_wait_commit(journal, commit_tid);
4614         }
4615 }
4616
4617 /*
4618  * ext4_setattr()
4619  *
4620  * Called from notify_change.
4621  *
4622  * We want to trap VFS attempts to truncate the file as soon as
4623  * possible.  In particular, we want to make sure that when the VFS
4624  * shrinks i_size, we put the inode on the orphan list and modify
4625  * i_disksize immediately, so that during the subsequent flushing of
4626  * dirty pages and freeing of disk blocks, we can guarantee that any
4627  * commit will leave the blocks being flushed in an unused state on
4628  * disk.  (On recovery, the inode will get truncated and the blocks will
4629  * be freed, so we have a strong guarantee that no future commit will
4630  * leave these blocks visible to the user.)
4631  *
4632  * Another thing we have to assure is that if we are in ordered mode
4633  * and inode is still attached to the committing transaction, we must
4634  * we start writeout of all the dirty pages which are being truncated.
4635  * This way we are sure that all the data written in the previous
4636  * transaction are already on disk (truncate waits for pages under
4637  * writeback).
4638  *
4639  * Called with inode->i_mutex down.
4640  */
4641 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4642 {
4643         struct inode *inode = dentry->d_inode;
4644         int error, rc = 0;
4645         int orphan = 0;
4646         const unsigned int ia_valid = attr->ia_valid;
4647
4648         error = inode_change_ok(inode, attr);
4649         if (error)
4650                 return error;
4651
4652         if (is_quota_modification(inode, attr))
4653                 dquot_initialize(inode);
4654         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4655             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4656                 handle_t *handle;
4657
4658                 /* (user+group)*(old+new) structure, inode write (sb,
4659                  * inode block, ? - but truncate inode update has it) */
4660                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4661                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4662                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4663                 if (IS_ERR(handle)) {
4664                         error = PTR_ERR(handle);
4665                         goto err_out;
4666                 }
4667                 error = dquot_transfer(inode, attr);
4668                 if (error) {
4669                         ext4_journal_stop(handle);
4670                         return error;
4671                 }
4672                 /* Update corresponding info in inode so that everything is in
4673                  * one transaction */
4674                 if (attr->ia_valid & ATTR_UID)
4675                         inode->i_uid = attr->ia_uid;
4676                 if (attr->ia_valid & ATTR_GID)
4677                         inode->i_gid = attr->ia_gid;
4678                 error = ext4_mark_inode_dirty(handle, inode);
4679                 ext4_journal_stop(handle);
4680         }
4681
4682         if (attr->ia_valid & ATTR_SIZE) {
4683
4684                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4685                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4686
4687                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4688                                 return -EFBIG;
4689                 }
4690         }
4691
4692         if (S_ISREG(inode->i_mode) &&
4693             attr->ia_valid & ATTR_SIZE &&
4694             (attr->ia_size < inode->i_size)) {
4695                 handle_t *handle;
4696
4697                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4698                 if (IS_ERR(handle)) {
4699                         error = PTR_ERR(handle);
4700                         goto err_out;
4701                 }
4702                 if (ext4_handle_valid(handle)) {
4703                         error = ext4_orphan_add(handle, inode);
4704                         orphan = 1;
4705                 }
4706                 EXT4_I(inode)->i_disksize = attr->ia_size;
4707                 rc = ext4_mark_inode_dirty(handle, inode);
4708                 if (!error)
4709                         error = rc;
4710                 ext4_journal_stop(handle);
4711
4712                 if (ext4_should_order_data(inode)) {
4713                         error = ext4_begin_ordered_truncate(inode,
4714                                                             attr->ia_size);
4715                         if (error) {
4716                                 /* Do as much error cleanup as possible */
4717                                 handle = ext4_journal_start(inode,
4718                                                             EXT4_HT_INODE, 3);
4719                                 if (IS_ERR(handle)) {
4720                                         ext4_orphan_del(NULL, inode);
4721                                         goto err_out;
4722                                 }
4723                                 ext4_orphan_del(handle, inode);
4724                                 orphan = 0;
4725                                 ext4_journal_stop(handle);
4726                                 goto err_out;
4727                         }
4728                 }
4729         }
4730
4731         if (attr->ia_valid & ATTR_SIZE) {
4732                 if (attr->ia_size != inode->i_size) {
4733                         loff_t oldsize = inode->i_size;
4734
4735                         i_size_write(inode, attr->ia_size);
4736                         /*
4737                          * Blocks are going to be removed from the inode. Wait
4738                          * for dio in flight.  Temporarily disable
4739                          * dioread_nolock to prevent livelock.
4740                          */
4741                         if (orphan) {
4742                                 if (!ext4_should_journal_data(inode)) {
4743                                         ext4_inode_block_unlocked_dio(inode);
4744                                         inode_dio_wait(inode);
4745                                         ext4_inode_resume_unlocked_dio(inode);
4746                                 } else
4747                                         ext4_wait_for_tail_page_commit(inode);
4748                         }
4749                         /*
4750                          * Truncate pagecache after we've waited for commit
4751                          * in data=journal mode to make pages freeable.
4752                          */
4753                         truncate_pagecache(inode, oldsize, inode->i_size);
4754                 }
4755                 ext4_truncate(inode);
4756         }
4757
4758         if (!rc) {
4759                 setattr_copy(inode, attr);
4760                 mark_inode_dirty(inode);
4761         }
4762
4763         /*
4764          * If the call to ext4_truncate failed to get a transaction handle at
4765          * all, we need to clean up the in-core orphan list manually.
4766          */
4767         if (orphan && inode->i_nlink)
4768                 ext4_orphan_del(NULL, inode);
4769
4770         if (!rc && (ia_valid & ATTR_MODE))
4771                 rc = ext4_acl_chmod(inode);
4772
4773 err_out:
4774         ext4_std_error(inode->i_sb, error);
4775         if (!error)
4776                 error = rc;
4777         return error;
4778 }
4779
4780 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4781                  struct kstat *stat)
4782 {
4783         struct inode *inode;
4784         unsigned long delalloc_blocks;
4785
4786         inode = dentry->d_inode;
4787         generic_fillattr(inode, stat);
4788
4789         /*
4790          * We can't update i_blocks if the block allocation is delayed
4791          * otherwise in the case of system crash before the real block
4792          * allocation is done, we will have i_blocks inconsistent with
4793          * on-disk file blocks.
4794          * We always keep i_blocks updated together with real
4795          * allocation. But to not confuse with user, stat
4796          * will return the blocks that include the delayed allocation
4797          * blocks for this file.
4798          */
4799         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4800                                 EXT4_I(inode)->i_reserved_data_blocks);
4801
4802         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4803         return 0;
4804 }
4805
4806 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4807 {
4808         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4809                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4810         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4811 }
4812
4813 /*
4814  * Account for index blocks, block groups bitmaps and block group
4815  * descriptor blocks if modify datablocks and index blocks
4816  * worse case, the indexs blocks spread over different block groups
4817  *
4818  * If datablocks are discontiguous, they are possible to spread over
4819  * different block groups too. If they are contiguous, with flexbg,
4820  * they could still across block group boundary.
4821  *
4822  * Also account for superblock, inode, quota and xattr blocks
4823  */
4824 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4825 {
4826         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4827         int gdpblocks;
4828         int idxblocks;
4829         int ret = 0;
4830
4831         /*
4832          * How many index blocks need to touch to modify nrblocks?
4833          * The "Chunk" flag indicating whether the nrblocks is
4834          * physically contiguous on disk
4835          *
4836          * For Direct IO and fallocate, they calls get_block to allocate
4837          * one single extent at a time, so they could set the "Chunk" flag
4838          */
4839         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4840
4841         ret = idxblocks;
4842
4843         /*
4844          * Now let's see how many group bitmaps and group descriptors need
4845          * to account
4846          */
4847         groups = idxblocks;
4848         if (chunk)
4849                 groups += 1;
4850         else
4851                 groups += nrblocks;
4852
4853         gdpblocks = groups;
4854         if (groups > ngroups)
4855                 groups = ngroups;
4856         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4857                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4858
4859         /* bitmaps and block group descriptor blocks */
4860         ret += groups + gdpblocks;
4861
4862         /* Blocks for super block, inode, quota and xattr blocks */
4863         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4864
4865         return ret;
4866 }
4867
4868 /*
4869  * Calculate the total number of credits to reserve to fit
4870  * the modification of a single pages into a single transaction,
4871  * which may include multiple chunks of block allocations.
4872  *
4873  * This could be called via ext4_write_begin()
4874  *
4875  * We need to consider the worse case, when
4876  * one new block per extent.
4877  */
4878 int ext4_writepage_trans_blocks(struct inode *inode)
4879 {
4880         int bpp = ext4_journal_blocks_per_page(inode);
4881         int ret;
4882
4883         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4884
4885         /* Account for data blocks for journalled mode */
4886         if (ext4_should_journal_data(inode))
4887                 ret += bpp;
4888         return ret;
4889 }
4890
4891 /*
4892  * Calculate the journal credits for a chunk of data modification.
4893  *
4894  * This is called from DIO, fallocate or whoever calling
4895  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4896  *
4897  * journal buffers for data blocks are not included here, as DIO
4898  * and fallocate do no need to journal data buffers.
4899  */
4900 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4901 {
4902         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4903 }
4904
4905 /*
4906  * The caller must have previously called ext4_reserve_inode_write().
4907  * Give this, we know that the caller already has write access to iloc->bh.
4908  */
4909 int ext4_mark_iloc_dirty(handle_t *handle,
4910                          struct inode *inode, struct ext4_iloc *iloc)
4911 {
4912         int err = 0;
4913
4914         if (IS_I_VERSION(inode))
4915                 inode_inc_iversion(inode);
4916
4917         /* the do_update_inode consumes one bh->b_count */
4918         get_bh(iloc->bh);
4919
4920         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4921         err = ext4_do_update_inode(handle, inode, iloc);
4922         put_bh(iloc->bh);
4923         return err;
4924 }
4925
4926 /*
4927  * On success, We end up with an outstanding reference count against
4928  * iloc->bh.  This _must_ be cleaned up later.
4929  */
4930
4931 int
4932 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4933                          struct ext4_iloc *iloc)
4934 {
4935         int err;
4936
4937         err = ext4_get_inode_loc(inode, iloc);
4938         if (!err) {
4939                 BUFFER_TRACE(iloc->bh, "get_write_access");
4940                 err = ext4_journal_get_write_access(handle, iloc->bh);
4941                 if (err) {
4942                         brelse(iloc->bh);
4943                         iloc->bh = NULL;
4944                 }
4945         }
4946         ext4_std_error(inode->i_sb, err);
4947         return err;
4948 }
4949
4950 /*
4951  * Expand an inode by new_extra_isize bytes.
4952  * Returns 0 on success or negative error number on failure.
4953  */
4954 static int ext4_expand_extra_isize(struct inode *inode,
4955                                    unsigned int new_extra_isize,
4956                                    struct ext4_iloc iloc,
4957                                    handle_t *handle)
4958 {
4959         struct ext4_inode *raw_inode;
4960         struct ext4_xattr_ibody_header *header;
4961
4962         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4963                 return 0;
4964
4965         raw_inode = ext4_raw_inode(&iloc);
4966
4967         header = IHDR(inode, raw_inode);
4968
4969         /* No extended attributes present */
4970         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4971             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4972                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4973                         new_extra_isize);
4974                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4975                 return 0;
4976         }
4977
4978         /* try to expand with EAs present */
4979         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4980                                           raw_inode, handle);
4981 }
4982
4983 /*
4984  * What we do here is to mark the in-core inode as clean with respect to inode
4985  * dirtiness (it may still be data-dirty).
4986  * This means that the in-core inode may be reaped by prune_icache
4987  * without having to perform any I/O.  This is a very good thing,
4988  * because *any* task may call prune_icache - even ones which
4989  * have a transaction open against a different journal.
4990  *
4991  * Is this cheating?  Not really.  Sure, we haven't written the
4992  * inode out, but prune_icache isn't a user-visible syncing function.
4993  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4994  * we start and wait on commits.
4995  */
4996 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4997 {
4998         struct ext4_iloc iloc;
4999         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5000         static unsigned int mnt_count;
5001         int err, ret;
5002
5003         might_sleep();
5004         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5005         err = ext4_reserve_inode_write(handle, inode, &iloc);
5006         if (ext4_handle_valid(handle) &&
5007             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5008             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5009                 /*
5010                  * We need extra buffer credits since we may write into EA block
5011                  * with this same handle. If journal_extend fails, then it will
5012                  * only result in a minor loss of functionality for that inode.
5013                  * If this is felt to be critical, then e2fsck should be run to
5014                  * force a large enough s_min_extra_isize.
5015                  */
5016                 if ((jbd2_journal_extend(handle,
5017                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5018                         ret = ext4_expand_extra_isize(inode,
5019                                                       sbi->s_want_extra_isize,
5020                                                       iloc, handle);
5021                         if (ret) {
5022                                 ext4_set_inode_state(inode,
5023                                                      EXT4_STATE_NO_EXPAND);
5024                                 if (mnt_count !=
5025                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5026                                         ext4_warning(inode->i_sb,
5027                                         "Unable to expand inode %lu. Delete"
5028                                         " some EAs or run e2fsck.",
5029                                         inode->i_ino);
5030                                         mnt_count =
5031                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5032                                 }
5033                         }
5034                 }
5035         }
5036         if (!err)
5037                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5038         return err;
5039 }
5040
5041 /*
5042  * ext4_dirty_inode() is called from __mark_inode_dirty()
5043  *
5044  * We're really interested in the case where a file is being extended.
5045  * i_size has been changed by generic_commit_write() and we thus need
5046  * to include the updated inode in the current transaction.
5047  *
5048  * Also, dquot_alloc_block() will always dirty the inode when blocks
5049  * are allocated to the file.
5050  *
5051  * If the inode is marked synchronous, we don't honour that here - doing
5052  * so would cause a commit on atime updates, which we don't bother doing.
5053  * We handle synchronous inodes at the highest possible level.
5054  */
5055 void ext4_dirty_inode(struct inode *inode, int flags)
5056 {
5057         handle_t *handle;
5058
5059         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5060         if (IS_ERR(handle))
5061                 goto out;
5062
5063         ext4_mark_inode_dirty(handle, inode);
5064
5065         ext4_journal_stop(handle);
5066 out:
5067         return;
5068 }
5069
5070 #if 0
5071 /*
5072  * Bind an inode's backing buffer_head into this transaction, to prevent
5073  * it from being flushed to disk early.  Unlike
5074  * ext4_reserve_inode_write, this leaves behind no bh reference and
5075  * returns no iloc structure, so the caller needs to repeat the iloc
5076  * lookup to mark the inode dirty later.
5077  */
5078 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5079 {
5080         struct ext4_iloc iloc;
5081
5082         int err = 0;
5083         if (handle) {
5084                 err = ext4_get_inode_loc(inode, &iloc);
5085                 if (!err) {
5086                         BUFFER_TRACE(iloc.bh, "get_write_access");
5087                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5088                         if (!err)
5089                                 err = ext4_handle_dirty_metadata(handle,
5090                                                                  NULL,
5091                                                                  iloc.bh);
5092                         brelse(iloc.bh);
5093                 }
5094         }
5095         ext4_std_error(inode->i_sb, err);
5096         return err;
5097 }
5098 #endif
5099
5100 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5101 {
5102         journal_t *journal;
5103         handle_t *handle;
5104         int err;
5105
5106         /*
5107          * We have to be very careful here: changing a data block's
5108          * journaling status dynamically is dangerous.  If we write a
5109          * data block to the journal, change the status and then delete
5110          * that block, we risk forgetting to revoke the old log record
5111          * from the journal and so a subsequent replay can corrupt data.
5112          * So, first we make sure that the journal is empty and that
5113          * nobody is changing anything.
5114          */
5115
5116         journal = EXT4_JOURNAL(inode);
5117         if (!journal)
5118                 return 0;
5119         if (is_journal_aborted(journal))
5120                 return -EROFS;
5121         /* We have to allocate physical blocks for delalloc blocks
5122          * before flushing journal. otherwise delalloc blocks can not
5123          * be allocated any more. even more truncate on delalloc blocks
5124          * could trigger BUG by flushing delalloc blocks in journal.
5125          * There is no delalloc block in non-journal data mode.
5126          */
5127         if (val && test_opt(inode->i_sb, DELALLOC)) {
5128                 err = ext4_alloc_da_blocks(inode);
5129                 if (err < 0)
5130                         return err;
5131         }
5132
5133         /* Wait for all existing dio workers */
5134         ext4_inode_block_unlocked_dio(inode);
5135         inode_dio_wait(inode);
5136
5137         jbd2_journal_lock_updates(journal);
5138
5139         /*
5140          * OK, there are no updates running now, and all cached data is
5141          * synced to disk.  We are now in a completely consistent state
5142          * which doesn't have anything in the journal, and we know that
5143          * no filesystem updates are running, so it is safe to modify
5144          * the inode's in-core data-journaling state flag now.
5145          */
5146
5147         if (val)
5148                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5149         else {
5150                 jbd2_journal_flush(journal);
5151                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5152         }
5153         ext4_set_aops(inode);
5154
5155         jbd2_journal_unlock_updates(journal);
5156         ext4_inode_resume_unlocked_dio(inode);
5157
5158         /* Finally we can mark the inode as dirty. */
5159
5160         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5161         if (IS_ERR(handle))
5162                 return PTR_ERR(handle);
5163
5164         err = ext4_mark_inode_dirty(handle, inode);
5165         ext4_handle_sync(handle);
5166         ext4_journal_stop(handle);
5167         ext4_std_error(inode->i_sb, err);
5168
5169         return err;
5170 }
5171
5172 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5173 {
5174         return !buffer_mapped(bh);
5175 }
5176
5177 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5178 {
5179         struct page *page = vmf->page;
5180         loff_t size;
5181         unsigned long len;
5182         int ret;
5183         struct file *file = vma->vm_file;
5184         struct inode *inode = file_inode(file);
5185         struct address_space *mapping = inode->i_mapping;
5186         handle_t *handle;
5187         get_block_t *get_block;
5188         int retries = 0;
5189
5190         sb_start_pagefault(inode->i_sb);
5191         file_update_time(vma->vm_file);
5192         /* Delalloc case is easy... */
5193         if (test_opt(inode->i_sb, DELALLOC) &&
5194             !ext4_should_journal_data(inode) &&
5195             !ext4_nonda_switch(inode->i_sb)) {
5196                 do {
5197                         ret = __block_page_mkwrite(vma, vmf,
5198                                                    ext4_da_get_block_prep);
5199                 } while (ret == -ENOSPC &&
5200                        ext4_should_retry_alloc(inode->i_sb, &retries));
5201                 goto out_ret;
5202         }
5203
5204         lock_page(page);
5205         size = i_size_read(inode);
5206         /* Page got truncated from under us? */
5207         if (page->mapping != mapping || page_offset(page) > size) {
5208                 unlock_page(page);
5209                 ret = VM_FAULT_NOPAGE;
5210                 goto out;
5211         }
5212
5213         if (page->index == size >> PAGE_CACHE_SHIFT)
5214                 len = size & ~PAGE_CACHE_MASK;
5215         else
5216                 len = PAGE_CACHE_SIZE;
5217         /*
5218          * Return if we have all the buffers mapped. This avoids the need to do
5219          * journal_start/journal_stop which can block and take a long time
5220          */
5221         if (page_has_buffers(page)) {
5222                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5223                                             0, len, NULL,
5224                                             ext4_bh_unmapped)) {
5225                         /* Wait so that we don't change page under IO */
5226                         wait_for_stable_page(page);
5227                         ret = VM_FAULT_LOCKED;
5228                         goto out;
5229                 }
5230         }
5231         unlock_page(page);
5232         /* OK, we need to fill the hole... */
5233         if (ext4_should_dioread_nolock(inode))
5234                 get_block = ext4_get_block_write;
5235         else
5236                 get_block = ext4_get_block;
5237 retry_alloc:
5238         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5239                                     ext4_writepage_trans_blocks(inode));
5240         if (IS_ERR(handle)) {
5241                 ret = VM_FAULT_SIGBUS;
5242                 goto out;
5243         }
5244         ret = __block_page_mkwrite(vma, vmf, get_block);
5245         if (!ret && ext4_should_journal_data(inode)) {
5246                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5247                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5248                         unlock_page(page);
5249                         ret = VM_FAULT_SIGBUS;
5250                         ext4_journal_stop(handle);
5251                         goto out;
5252                 }
5253                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5254         }
5255         ext4_journal_stop(handle);
5256         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5257                 goto retry_alloc;
5258 out_ret:
5259         ret = block_page_mkwrite_return(ret);
5260 out:
5261         sb_end_pagefault(inode->i_sb);
5262         return ret;
5263 }