ext4: fold ext4_generic_write_end() into ext4_write_end()
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138                 struct inode *inode, struct page *page, loff_t from,
139                 loff_t length, int flags);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 (inode->i_sb->s_blocksize >> 9) : 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         if (inode->i_nlink) {
189                 /*
190                  * When journalling data dirty buffers are tracked only in the
191                  * journal. So although mm thinks everything is clean and
192                  * ready for reaping the inode might still have some pages to
193                  * write in the running transaction or waiting to be
194                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
195                  * (via truncate_inode_pages()) to discard these buffers can
196                  * cause data loss. Also even if we did not discard these
197                  * buffers, we would have no way to find them after the inode
198                  * is reaped and thus user could see stale data if he tries to
199                  * read them before the transaction is checkpointed. So be
200                  * careful and force everything to disk here... We use
201                  * ei->i_datasync_tid to store the newest transaction
202                  * containing inode's data.
203                  *
204                  * Note that directories do not have this problem because they
205                  * don't use page cache.
206                  */
207                 if (ext4_should_journal_data(inode) &&
208                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209                     inode->i_ino != EXT4_JOURNAL_INO) {
210                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
213                         jbd2_log_start_commit(journal, commit_tid);
214                         jbd2_log_wait_commit(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218                 ext4_ioend_shutdown(inode);
219                 goto no_delete;
220         }
221
222         if (!is_bad_inode(inode))
223                 dquot_initialize(inode);
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228         ext4_ioend_shutdown(inode);
229
230         if (is_bad_inode(inode))
231                 goto no_delete;
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                                     ext4_blocks_for_truncate(inode)+3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254         inode->i_size = 0;
255         err = ext4_mark_inode_dirty(handle, inode);
256         if (err) {
257                 ext4_warning(inode->i_sb,
258                              "couldn't mark inode dirty (err %d)", err);
259                 goto stop_handle;
260         }
261         if (inode->i_blocks)
262                 ext4_truncate(inode);
263
264         /*
265          * ext4_ext_truncate() doesn't reserve any slop when it
266          * restarts journal transactions; therefore there may not be
267          * enough credits left in the handle to remove the inode from
268          * the orphan list and set the dtime field.
269          */
270         if (!ext4_handle_has_enough_credits(handle, 3)) {
271                 err = ext4_journal_extend(handle, 3);
272                 if (err > 0)
273                         err = ext4_journal_restart(handle, 3);
274                 if (err != 0) {
275                         ext4_warning(inode->i_sb,
276                                      "couldn't extend journal (err %d)", err);
277                 stop_handle:
278                         ext4_journal_stop(handle);
279                         ext4_orphan_del(NULL, inode);
280                         sb_end_intwrite(inode->i_sb);
281                         goto no_delete;
282                 }
283         }
284
285         /*
286          * Kill off the orphan record which ext4_truncate created.
287          * AKPM: I think this can be inside the above `if'.
288          * Note that ext4_orphan_del() has to be able to cope with the
289          * deletion of a non-existent orphan - this is because we don't
290          * know if ext4_truncate() actually created an orphan record.
291          * (Well, we could do this if we need to, but heck - it works)
292          */
293         ext4_orphan_del(handle, inode);
294         EXT4_I(inode)->i_dtime  = get_seconds();
295
296         /*
297          * One subtle ordering requirement: if anything has gone wrong
298          * (transaction abort, IO errors, whatever), then we can still
299          * do these next steps (the fs will already have been marked as
300          * having errors), but we can't free the inode if the mark_dirty
301          * fails.
302          */
303         if (ext4_mark_inode_dirty(handle, inode))
304                 /* If that failed, just do the required in-core inode clear. */
305                 ext4_clear_inode(inode);
306         else
307                 ext4_free_inode(handle, inode);
308         ext4_journal_stop(handle);
309         sb_end_intwrite(inode->i_sb);
310         return;
311 no_delete:
312         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318         return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323  * Calculate the number of metadata blocks need to reserve
324  * to allocate a block located at @lblock
325  */
326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 {
328         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329                 return ext4_ext_calc_metadata_amount(inode, lblock);
330
331         return ext4_ind_calc_metadata_amount(inode, lblock);
332 }
333
334 /*
335  * Called with i_data_sem down, which is important since we can call
336  * ext4_discard_preallocations() from here.
337  */
338 void ext4_da_update_reserve_space(struct inode *inode,
339                                         int used, int quota_claim)
340 {
341         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342         struct ext4_inode_info *ei = EXT4_I(inode);
343
344         spin_lock(&ei->i_block_reservation_lock);
345         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346         if (unlikely(used > ei->i_reserved_data_blocks)) {
347                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348                          "with only %d reserved data blocks",
349                          __func__, inode->i_ino, used,
350                          ei->i_reserved_data_blocks);
351                 WARN_ON(1);
352                 used = ei->i_reserved_data_blocks;
353         }
354
355         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357                         "with only %d reserved metadata blocks "
358                         "(releasing %d blocks with reserved %d data blocks)",
359                         inode->i_ino, ei->i_allocated_meta_blocks,
360                              ei->i_reserved_meta_blocks, used,
361                              ei->i_reserved_data_blocks);
362                 WARN_ON(1);
363                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364         }
365
366         /* Update per-inode reservations */
367         ei->i_reserved_data_blocks -= used;
368         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370                            used + ei->i_allocated_meta_blocks);
371         ei->i_allocated_meta_blocks = 0;
372
373         if (ei->i_reserved_data_blocks == 0) {
374                 /*
375                  * We can release all of the reserved metadata blocks
376                  * only when we have written all of the delayed
377                  * allocation blocks.
378                  */
379                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380                                    ei->i_reserved_meta_blocks);
381                 ei->i_reserved_meta_blocks = 0;
382                 ei->i_da_metadata_calc_len = 0;
383         }
384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386         /* Update quota subsystem for data blocks */
387         if (quota_claim)
388                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389         else {
390                 /*
391                  * We did fallocate with an offset that is already delayed
392                  * allocated. So on delayed allocated writeback we should
393                  * not re-claim the quota for fallocated blocks.
394                  */
395                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396         }
397
398         /*
399          * If we have done all the pending block allocations and if
400          * there aren't any writers on the inode, we can discard the
401          * inode's preallocations.
402          */
403         if ((ei->i_reserved_data_blocks == 0) &&
404             (atomic_read(&inode->i_writecount) == 0))
405                 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409                                 unsigned int line,
410                                 struct ext4_map_blocks *map)
411 {
412         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413                                    map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_len);
418                 return -EIO;
419         }
420         return 0;
421 }
422
423 #define check_block_validity(inode, map)        \
424         __check_block_validity((inode), __func__, __LINE__, (map))
425
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431                                     unsigned int max_pages)
432 {
433         struct address_space *mapping = inode->i_mapping;
434         pgoff_t index;
435         struct pagevec pvec;
436         pgoff_t num = 0;
437         int i, nr_pages, done = 0;
438
439         if (max_pages == 0)
440                 return 0;
441         pagevec_init(&pvec, 0);
442         while (!done) {
443                 index = idx;
444                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445                                               PAGECACHE_TAG_DIRTY,
446                                               (pgoff_t)PAGEVEC_SIZE);
447                 if (nr_pages == 0)
448                         break;
449                 for (i = 0; i < nr_pages; i++) {
450                         struct page *page = pvec.pages[i];
451                         struct buffer_head *bh, *head;
452
453                         lock_page(page);
454                         if (unlikely(page->mapping != mapping) ||
455                             !PageDirty(page) ||
456                             PageWriteback(page) ||
457                             page->index != idx) {
458                                 done = 1;
459                                 unlock_page(page);
460                                 break;
461                         }
462                         if (page_has_buffers(page)) {
463                                 bh = head = page_buffers(page);
464                                 do {
465                                         if (!buffer_delay(bh) &&
466                                             !buffer_unwritten(bh))
467                                                 done = 1;
468                                         bh = bh->b_this_page;
469                                 } while (!done && (bh != head));
470                         }
471                         unlock_page(page);
472                         if (done)
473                                 break;
474                         idx++;
475                         num++;
476                         if (num >= max_pages) {
477                                 done = 1;
478                                 break;
479                         }
480                 }
481                 pagevec_release(&pvec);
482         }
483         return num;
484 }
485
486 #ifdef ES_AGGRESSIVE_TEST
487 static void ext4_map_blocks_es_recheck(handle_t *handle,
488                                        struct inode *inode,
489                                        struct ext4_map_blocks *es_map,
490                                        struct ext4_map_blocks *map,
491                                        int flags)
492 {
493         int retval;
494
495         map->m_flags = 0;
496         /*
497          * There is a race window that the result is not the same.
498          * e.g. xfstests #223 when dioread_nolock enables.  The reason
499          * is that we lookup a block mapping in extent status tree with
500          * out taking i_data_sem.  So at the time the unwritten extent
501          * could be converted.
502          */
503         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
504                 down_read((&EXT4_I(inode)->i_data_sem));
505         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
506                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
507                                              EXT4_GET_BLOCKS_KEEP_SIZE);
508         } else {
509                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
510                                              EXT4_GET_BLOCKS_KEEP_SIZE);
511         }
512         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513                 up_read((&EXT4_I(inode)->i_data_sem));
514         /*
515          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
516          * because it shouldn't be marked in es_map->m_flags.
517          */
518         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
519
520         /*
521          * We don't check m_len because extent will be collpased in status
522          * tree.  So the m_len might not equal.
523          */
524         if (es_map->m_lblk != map->m_lblk ||
525             es_map->m_flags != map->m_flags ||
526             es_map->m_pblk != map->m_pblk) {
527                 printk("ES cache assertation failed for inode: %lu "
528                        "es_cached ex [%d/%d/%llu/%x] != "
529                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
530                        inode->i_ino, es_map->m_lblk, es_map->m_len,
531                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
532                        map->m_len, map->m_pblk, map->m_flags,
533                        retval, flags);
534         }
535 }
536 #endif /* ES_AGGRESSIVE_TEST */
537
538 /*
539  * The ext4_map_blocks() function tries to look up the requested blocks,
540  * and returns if the blocks are already mapped.
541  *
542  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
543  * and store the allocated blocks in the result buffer head and mark it
544  * mapped.
545  *
546  * If file type is extents based, it will call ext4_ext_map_blocks(),
547  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
548  * based files
549  *
550  * On success, it returns the number of blocks being mapped or allocate.
551  * if create==0 and the blocks are pre-allocated and uninitialized block,
552  * the result buffer head is unmapped. If the create ==1, it will make sure
553  * the buffer head is mapped.
554  *
555  * It returns 0 if plain look up failed (blocks have not been allocated), in
556  * that case, buffer head is unmapped
557  *
558  * It returns the error in case of allocation failure.
559  */
560 int ext4_map_blocks(handle_t *handle, struct inode *inode,
561                     struct ext4_map_blocks *map, int flags)
562 {
563         struct extent_status es;
564         int retval;
565 #ifdef ES_AGGRESSIVE_TEST
566         struct ext4_map_blocks orig_map;
567
568         memcpy(&orig_map, map, sizeof(*map));
569 #endif
570
571         map->m_flags = 0;
572         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
573                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
574                   (unsigned long) map->m_lblk);
575
576         /* Lookup extent status tree firstly */
577         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
578                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
579                         map->m_pblk = ext4_es_pblock(&es) +
580                                         map->m_lblk - es.es_lblk;
581                         map->m_flags |= ext4_es_is_written(&es) ?
582                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
583                         retval = es.es_len - (map->m_lblk - es.es_lblk);
584                         if (retval > map->m_len)
585                                 retval = map->m_len;
586                         map->m_len = retval;
587                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
588                         retval = 0;
589                 } else {
590                         BUG_ON(1);
591                 }
592 #ifdef ES_AGGRESSIVE_TEST
593                 ext4_map_blocks_es_recheck(handle, inode, map,
594                                            &orig_map, flags);
595 #endif
596                 goto found;
597         }
598
599         /*
600          * Try to see if we can get the block without requesting a new
601          * file system block.
602          */
603         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
604                 down_read((&EXT4_I(inode)->i_data_sem));
605         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
607                                              EXT4_GET_BLOCKS_KEEP_SIZE);
608         } else {
609                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
610                                              EXT4_GET_BLOCKS_KEEP_SIZE);
611         }
612         if (retval > 0) {
613                 int ret;
614                 unsigned long long status;
615
616 #ifdef ES_AGGRESSIVE_TEST
617                 if (retval != map->m_len) {
618                         printk("ES len assertation failed for inode: %lu "
619                                "retval %d != map->m_len %d "
620                                "in %s (lookup)\n", inode->i_ino, retval,
621                                map->m_len, __func__);
622                 }
623 #endif
624
625                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
626                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
627                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
628                     ext4_find_delalloc_range(inode, map->m_lblk,
629                                              map->m_lblk + map->m_len - 1))
630                         status |= EXTENT_STATUS_DELAYED;
631                 ret = ext4_es_insert_extent(inode, map->m_lblk,
632                                             map->m_len, map->m_pblk, status);
633                 if (ret < 0)
634                         retval = ret;
635         }
636         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
637                 up_read((&EXT4_I(inode)->i_data_sem));
638
639 found:
640         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
641                 int ret = check_block_validity(inode, map);
642                 if (ret != 0)
643                         return ret;
644         }
645
646         /* If it is only a block(s) look up */
647         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
648                 return retval;
649
650         /*
651          * Returns if the blocks have already allocated
652          *
653          * Note that if blocks have been preallocated
654          * ext4_ext_get_block() returns the create = 0
655          * with buffer head unmapped.
656          */
657         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
658                 return retval;
659
660         /*
661          * Here we clear m_flags because after allocating an new extent,
662          * it will be set again.
663          */
664         map->m_flags &= ~EXT4_MAP_FLAGS;
665
666         /*
667          * New blocks allocate and/or writing to uninitialized extent
668          * will possibly result in updating i_data, so we take
669          * the write lock of i_data_sem, and call get_blocks()
670          * with create == 1 flag.
671          */
672         down_write((&EXT4_I(inode)->i_data_sem));
673
674         /*
675          * if the caller is from delayed allocation writeout path
676          * we have already reserved fs blocks for allocation
677          * let the underlying get_block() function know to
678          * avoid double accounting
679          */
680         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
681                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
682         /*
683          * We need to check for EXT4 here because migrate
684          * could have changed the inode type in between
685          */
686         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
687                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
688         } else {
689                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
690
691                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
692                         /*
693                          * We allocated new blocks which will result in
694                          * i_data's format changing.  Force the migrate
695                          * to fail by clearing migrate flags
696                          */
697                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
698                 }
699
700                 /*
701                  * Update reserved blocks/metadata blocks after successful
702                  * block allocation which had been deferred till now. We don't
703                  * support fallocate for non extent files. So we can update
704                  * reserve space here.
705                  */
706                 if ((retval > 0) &&
707                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
708                         ext4_da_update_reserve_space(inode, retval, 1);
709         }
710         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
711                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
712
713         if (retval > 0) {
714                 int ret;
715                 unsigned long long status;
716
717 #ifdef ES_AGGRESSIVE_TEST
718                 if (retval != map->m_len) {
719                         printk("ES len assertation failed for inode: %lu "
720                                "retval %d != map->m_len %d "
721                                "in %s (allocation)\n", inode->i_ino, retval,
722                                map->m_len, __func__);
723                 }
724 #endif
725
726                 /*
727                  * If the extent has been zeroed out, we don't need to update
728                  * extent status tree.
729                  */
730                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
731                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
732                         if (ext4_es_is_written(&es))
733                                 goto has_zeroout;
734                 }
735                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
736                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
737                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
738                     ext4_find_delalloc_range(inode, map->m_lblk,
739                                              map->m_lblk + map->m_len - 1))
740                         status |= EXTENT_STATUS_DELAYED;
741                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
742                                             map->m_pblk, status);
743                 if (ret < 0)
744                         retval = ret;
745         }
746
747 has_zeroout:
748         up_write((&EXT4_I(inode)->i_data_sem));
749         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
750                 int ret = check_block_validity(inode, map);
751                 if (ret != 0)
752                         return ret;
753         }
754         return retval;
755 }
756
757 /* Maximum number of blocks we map for direct IO at once. */
758 #define DIO_MAX_BLOCKS 4096
759
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761                            struct buffer_head *bh, int flags)
762 {
763         handle_t *handle = ext4_journal_current_handle();
764         struct ext4_map_blocks map;
765         int ret = 0, started = 0;
766         int dio_credits;
767
768         if (ext4_has_inline_data(inode))
769                 return -ERANGE;
770
771         map.m_lblk = iblock;
772         map.m_len = bh->b_size >> inode->i_blkbits;
773
774         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
775                 /* Direct IO write... */
776                 if (map.m_len > DIO_MAX_BLOCKS)
777                         map.m_len = DIO_MAX_BLOCKS;
778                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
779                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
780                                             dio_credits);
781                 if (IS_ERR(handle)) {
782                         ret = PTR_ERR(handle);
783                         return ret;
784                 }
785                 started = 1;
786         }
787
788         ret = ext4_map_blocks(handle, inode, &map, flags);
789         if (ret > 0) {
790                 map_bh(bh, inode->i_sb, map.m_pblk);
791                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
792                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793                 ret = 0;
794         }
795         if (started)
796                 ext4_journal_stop(handle);
797         return ret;
798 }
799
800 int ext4_get_block(struct inode *inode, sector_t iblock,
801                    struct buffer_head *bh, int create)
802 {
803         return _ext4_get_block(inode, iblock, bh,
804                                create ? EXT4_GET_BLOCKS_CREATE : 0);
805 }
806
807 /*
808  * `handle' can be NULL if create is zero
809  */
810 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
811                                 ext4_lblk_t block, int create, int *errp)
812 {
813         struct ext4_map_blocks map;
814         struct buffer_head *bh;
815         int fatal = 0, err;
816
817         J_ASSERT(handle != NULL || create == 0);
818
819         map.m_lblk = block;
820         map.m_len = 1;
821         err = ext4_map_blocks(handle, inode, &map,
822                               create ? EXT4_GET_BLOCKS_CREATE : 0);
823
824         /* ensure we send some value back into *errp */
825         *errp = 0;
826
827         if (create && err == 0)
828                 err = -ENOSPC;  /* should never happen */
829         if (err < 0)
830                 *errp = err;
831         if (err <= 0)
832                 return NULL;
833
834         bh = sb_getblk(inode->i_sb, map.m_pblk);
835         if (unlikely(!bh)) {
836                 *errp = -ENOMEM;
837                 return NULL;
838         }
839         if (map.m_flags & EXT4_MAP_NEW) {
840                 J_ASSERT(create != 0);
841                 J_ASSERT(handle != NULL);
842
843                 /*
844                  * Now that we do not always journal data, we should
845                  * keep in mind whether this should always journal the
846                  * new buffer as metadata.  For now, regular file
847                  * writes use ext4_get_block instead, so it's not a
848                  * problem.
849                  */
850                 lock_buffer(bh);
851                 BUFFER_TRACE(bh, "call get_create_access");
852                 fatal = ext4_journal_get_create_access(handle, bh);
853                 if (!fatal && !buffer_uptodate(bh)) {
854                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855                         set_buffer_uptodate(bh);
856                 }
857                 unlock_buffer(bh);
858                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859                 err = ext4_handle_dirty_metadata(handle, inode, bh);
860                 if (!fatal)
861                         fatal = err;
862         } else {
863                 BUFFER_TRACE(bh, "not a new buffer");
864         }
865         if (fatal) {
866                 *errp = fatal;
867                 brelse(bh);
868                 bh = NULL;
869         }
870         return bh;
871 }
872
873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
874                                ext4_lblk_t block, int create, int *err)
875 {
876         struct buffer_head *bh;
877
878         bh = ext4_getblk(handle, inode, block, create, err);
879         if (!bh)
880                 return bh;
881         if (buffer_uptodate(bh))
882                 return bh;
883         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
884         wait_on_buffer(bh);
885         if (buffer_uptodate(bh))
886                 return bh;
887         put_bh(bh);
888         *err = -EIO;
889         return NULL;
890 }
891
892 int ext4_walk_page_buffers(handle_t *handle,
893                            struct buffer_head *head,
894                            unsigned from,
895                            unsigned to,
896                            int *partial,
897                            int (*fn)(handle_t *handle,
898                                      struct buffer_head *bh))
899 {
900         struct buffer_head *bh;
901         unsigned block_start, block_end;
902         unsigned blocksize = head->b_size;
903         int err, ret = 0;
904         struct buffer_head *next;
905
906         for (bh = head, block_start = 0;
907              ret == 0 && (bh != head || !block_start);
908              block_start = block_end, bh = next) {
909                 next = bh->b_this_page;
910                 block_end = block_start + blocksize;
911                 if (block_end <= from || block_start >= to) {
912                         if (partial && !buffer_uptodate(bh))
913                                 *partial = 1;
914                         continue;
915                 }
916                 err = (*fn)(handle, bh);
917                 if (!ret)
918                         ret = err;
919         }
920         return ret;
921 }
922
923 /*
924  * To preserve ordering, it is essential that the hole instantiation and
925  * the data write be encapsulated in a single transaction.  We cannot
926  * close off a transaction and start a new one between the ext4_get_block()
927  * and the commit_write().  So doing the jbd2_journal_start at the start of
928  * prepare_write() is the right place.
929  *
930  * Also, this function can nest inside ext4_writepage().  In that case, we
931  * *know* that ext4_writepage() has generated enough buffer credits to do the
932  * whole page.  So we won't block on the journal in that case, which is good,
933  * because the caller may be PF_MEMALLOC.
934  *
935  * By accident, ext4 can be reentered when a transaction is open via
936  * quota file writes.  If we were to commit the transaction while thus
937  * reentered, there can be a deadlock - we would be holding a quota
938  * lock, and the commit would never complete if another thread had a
939  * transaction open and was blocking on the quota lock - a ranking
940  * violation.
941  *
942  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
943  * will _not_ run commit under these circumstances because handle->h_ref
944  * is elevated.  We'll still have enough credits for the tiny quotafile
945  * write.
946  */
947 int do_journal_get_write_access(handle_t *handle,
948                                 struct buffer_head *bh)
949 {
950         int dirty = buffer_dirty(bh);
951         int ret;
952
953         if (!buffer_mapped(bh) || buffer_freed(bh))
954                 return 0;
955         /*
956          * __block_write_begin() could have dirtied some buffers. Clean
957          * the dirty bit as jbd2_journal_get_write_access() could complain
958          * otherwise about fs integrity issues. Setting of the dirty bit
959          * by __block_write_begin() isn't a real problem here as we clear
960          * the bit before releasing a page lock and thus writeback cannot
961          * ever write the buffer.
962          */
963         if (dirty)
964                 clear_buffer_dirty(bh);
965         ret = ext4_journal_get_write_access(handle, bh);
966         if (!ret && dirty)
967                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
968         return ret;
969 }
970
971 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
972                    struct buffer_head *bh_result, int create);
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974                             loff_t pos, unsigned len, unsigned flags,
975                             struct page **pagep, void **fsdata)
976 {
977         struct inode *inode = mapping->host;
978         int ret, needed_blocks;
979         handle_t *handle;
980         int retries = 0;
981         struct page *page;
982         pgoff_t index;
983         unsigned from, to;
984
985         trace_ext4_write_begin(inode, pos, len, flags);
986         /*
987          * Reserve one block more for addition to orphan list in case
988          * we allocate blocks but write fails for some reason
989          */
990         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991         index = pos >> PAGE_CACHE_SHIFT;
992         from = pos & (PAGE_CACHE_SIZE - 1);
993         to = from + len;
994
995         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997                                                     flags, pagep);
998                 if (ret < 0)
999                         return ret;
1000                 if (ret == 1)
1001                         return 0;
1002         }
1003
1004         /*
1005          * grab_cache_page_write_begin() can take a long time if the
1006          * system is thrashing due to memory pressure, or if the page
1007          * is being written back.  So grab it first before we start
1008          * the transaction handle.  This also allows us to allocate
1009          * the page (if needed) without using GFP_NOFS.
1010          */
1011 retry_grab:
1012         page = grab_cache_page_write_begin(mapping, index, flags);
1013         if (!page)
1014                 return -ENOMEM;
1015         unlock_page(page);
1016
1017 retry_journal:
1018         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019         if (IS_ERR(handle)) {
1020                 page_cache_release(page);
1021                 return PTR_ERR(handle);
1022         }
1023
1024         lock_page(page);
1025         if (page->mapping != mapping) {
1026                 /* The page got truncated from under us */
1027                 unlock_page(page);
1028                 page_cache_release(page);
1029                 ext4_journal_stop(handle);
1030                 goto retry_grab;
1031         }
1032         wait_on_page_writeback(page);
1033
1034         if (ext4_should_dioread_nolock(inode))
1035                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1036         else
1037                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1038
1039         if (!ret && ext4_should_journal_data(inode)) {
1040                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1041                                              from, to, NULL,
1042                                              do_journal_get_write_access);
1043         }
1044
1045         if (ret) {
1046                 unlock_page(page);
1047                 /*
1048                  * __block_write_begin may have instantiated a few blocks
1049                  * outside i_size.  Trim these off again. Don't need
1050                  * i_size_read because we hold i_mutex.
1051                  *
1052                  * Add inode to orphan list in case we crash before
1053                  * truncate finishes
1054                  */
1055                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056                         ext4_orphan_add(handle, inode);
1057
1058                 ext4_journal_stop(handle);
1059                 if (pos + len > inode->i_size) {
1060                         ext4_truncate_failed_write(inode);
1061                         /*
1062                          * If truncate failed early the inode might
1063                          * still be on the orphan list; we need to
1064                          * make sure the inode is removed from the
1065                          * orphan list in that case.
1066                          */
1067                         if (inode->i_nlink)
1068                                 ext4_orphan_del(NULL, inode);
1069                 }
1070
1071                 if (ret == -ENOSPC &&
1072                     ext4_should_retry_alloc(inode->i_sb, &retries))
1073                         goto retry_journal;
1074                 page_cache_release(page);
1075                 return ret;
1076         }
1077         *pagep = page;
1078         return ret;
1079 }
1080
1081 /* For write_end() in data=journal mode */
1082 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1083 {
1084         if (!buffer_mapped(bh) || buffer_freed(bh))
1085                 return 0;
1086         set_buffer_uptodate(bh);
1087         return ext4_handle_dirty_metadata(handle, NULL, bh);
1088 }
1089
1090 /*
1091  * We need to pick up the new inode size which generic_commit_write gave us
1092  * `file' can be NULL - eg, when called from page_symlink().
1093  *
1094  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1095  * buffers are managed internally.
1096  */
1097 static int ext4_write_end(struct file *file,
1098                           struct address_space *mapping,
1099                           loff_t pos, unsigned len, unsigned copied,
1100                           struct page *page, void *fsdata)
1101 {
1102         handle_t *handle = ext4_journal_current_handle();
1103         struct inode *inode = mapping->host;
1104         int ret = 0, ret2;
1105         int i_size_changed = 0;
1106
1107         trace_ext4_write_end(inode, pos, len, copied);
1108         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1109                 ret = ext4_jbd2_file_inode(handle, inode);
1110                 if (ret) {
1111                         unlock_page(page);
1112                         page_cache_release(page);
1113                         goto errout;
1114                 }
1115         }
1116
1117         if (ext4_has_inline_data(inode))
1118                 copied = ext4_write_inline_data_end(inode, pos, len,
1119                                                     copied, page);
1120         else
1121                 copied = block_write_end(file, mapping, pos,
1122                                          len, copied, page, fsdata);
1123
1124         /*
1125          * No need to use i_size_read() here, the i_size
1126          * cannot change under us because we hole i_mutex.
1127          *
1128          * But it's important to update i_size while still holding page lock:
1129          * page writeout could otherwise come in and zero beyond i_size.
1130          */
1131         if (pos + copied > inode->i_size) {
1132                 i_size_write(inode, pos + copied);
1133                 i_size_changed = 1;
1134         }
1135
1136         if (pos + copied > EXT4_I(inode)->i_disksize) {
1137                 /* We need to mark inode dirty even if
1138                  * new_i_size is less that inode->i_size
1139                  * but greater than i_disksize. (hint delalloc)
1140                  */
1141                 ext4_update_i_disksize(inode, (pos + copied));
1142                 i_size_changed = 1;
1143         }
1144         unlock_page(page);
1145         page_cache_release(page);
1146
1147         /*
1148          * Don't mark the inode dirty under page lock. First, it unnecessarily
1149          * makes the holding time of page lock longer. Second, it forces lock
1150          * ordering of page lock and transaction start for journaling
1151          * filesystems.
1152          */
1153         if (i_size_changed)
1154                 ext4_mark_inode_dirty(handle, inode);
1155
1156         if (copied < 0)
1157                 ret = copied;
1158         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1159                 /* if we have allocated more blocks and copied
1160                  * less. We will have blocks allocated outside
1161                  * inode->i_size. So truncate them
1162                  */
1163                 ext4_orphan_add(handle, inode);
1164 errout:
1165         ret2 = ext4_journal_stop(handle);
1166         if (!ret)
1167                 ret = ret2;
1168
1169         if (pos + len > inode->i_size) {
1170                 ext4_truncate_failed_write(inode);
1171                 /*
1172                  * If truncate failed early the inode might still be
1173                  * on the orphan list; we need to make sure the inode
1174                  * is removed from the orphan list in that case.
1175                  */
1176                 if (inode->i_nlink)
1177                         ext4_orphan_del(NULL, inode);
1178         }
1179
1180         return ret ? ret : copied;
1181 }
1182
1183 static int ext4_journalled_write_end(struct file *file,
1184                                      struct address_space *mapping,
1185                                      loff_t pos, unsigned len, unsigned copied,
1186                                      struct page *page, void *fsdata)
1187 {
1188         handle_t *handle = ext4_journal_current_handle();
1189         struct inode *inode = mapping->host;
1190         int ret = 0, ret2;
1191         int partial = 0;
1192         unsigned from, to;
1193         loff_t new_i_size;
1194
1195         trace_ext4_journalled_write_end(inode, pos, len, copied);
1196         from = pos & (PAGE_CACHE_SIZE - 1);
1197         to = from + len;
1198
1199         BUG_ON(!ext4_handle_valid(handle));
1200
1201         if (ext4_has_inline_data(inode))
1202                 copied = ext4_write_inline_data_end(inode, pos, len,
1203                                                     copied, page);
1204         else {
1205                 if (copied < len) {
1206                         if (!PageUptodate(page))
1207                                 copied = 0;
1208                         page_zero_new_buffers(page, from+copied, to);
1209                 }
1210
1211                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1212                                              to, &partial, write_end_fn);
1213                 if (!partial)
1214                         SetPageUptodate(page);
1215         }
1216         new_i_size = pos + copied;
1217         if (new_i_size > inode->i_size)
1218                 i_size_write(inode, pos+copied);
1219         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1220         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1221         if (new_i_size > EXT4_I(inode)->i_disksize) {
1222                 ext4_update_i_disksize(inode, new_i_size);
1223                 ret2 = ext4_mark_inode_dirty(handle, inode);
1224                 if (!ret)
1225                         ret = ret2;
1226         }
1227
1228         unlock_page(page);
1229         page_cache_release(page);
1230         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1231                 /* if we have allocated more blocks and copied
1232                  * less. We will have blocks allocated outside
1233                  * inode->i_size. So truncate them
1234                  */
1235                 ext4_orphan_add(handle, inode);
1236
1237         ret2 = ext4_journal_stop(handle);
1238         if (!ret)
1239                 ret = ret2;
1240         if (pos + len > inode->i_size) {
1241                 ext4_truncate_failed_write(inode);
1242                 /*
1243                  * If truncate failed early the inode might still be
1244                  * on the orphan list; we need to make sure the inode
1245                  * is removed from the orphan list in that case.
1246                  */
1247                 if (inode->i_nlink)
1248                         ext4_orphan_del(NULL, inode);
1249         }
1250
1251         return ret ? ret : copied;
1252 }
1253
1254 /*
1255  * Reserve a metadata for a single block located at lblock
1256  */
1257 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1258 {
1259         int retries = 0;
1260         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1261         struct ext4_inode_info *ei = EXT4_I(inode);
1262         unsigned int md_needed;
1263         ext4_lblk_t save_last_lblock;
1264         int save_len;
1265
1266         /*
1267          * recalculate the amount of metadata blocks to reserve
1268          * in order to allocate nrblocks
1269          * worse case is one extent per block
1270          */
1271 repeat:
1272         spin_lock(&ei->i_block_reservation_lock);
1273         /*
1274          * ext4_calc_metadata_amount() has side effects, which we have
1275          * to be prepared undo if we fail to claim space.
1276          */
1277         save_len = ei->i_da_metadata_calc_len;
1278         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1279         md_needed = EXT4_NUM_B2C(sbi,
1280                                  ext4_calc_metadata_amount(inode, lblock));
1281         trace_ext4_da_reserve_space(inode, md_needed);
1282
1283         /*
1284          * We do still charge estimated metadata to the sb though;
1285          * we cannot afford to run out of free blocks.
1286          */
1287         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1288                 ei->i_da_metadata_calc_len = save_len;
1289                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1290                 spin_unlock(&ei->i_block_reservation_lock);
1291                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1292                         cond_resched();
1293                         goto repeat;
1294                 }
1295                 return -ENOSPC;
1296         }
1297         ei->i_reserved_meta_blocks += md_needed;
1298         spin_unlock(&ei->i_block_reservation_lock);
1299
1300         return 0;       /* success */
1301 }
1302
1303 /*
1304  * Reserve a single cluster located at lblock
1305  */
1306 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1307 {
1308         int retries = 0;
1309         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1310         struct ext4_inode_info *ei = EXT4_I(inode);
1311         unsigned int md_needed;
1312         int ret;
1313         ext4_lblk_t save_last_lblock;
1314         int save_len;
1315
1316         /*
1317          * We will charge metadata quota at writeout time; this saves
1318          * us from metadata over-estimation, though we may go over by
1319          * a small amount in the end.  Here we just reserve for data.
1320          */
1321         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1322         if (ret)
1323                 return ret;
1324
1325         /*
1326          * recalculate the amount of metadata blocks to reserve
1327          * in order to allocate nrblocks
1328          * worse case is one extent per block
1329          */
1330 repeat:
1331         spin_lock(&ei->i_block_reservation_lock);
1332         /*
1333          * ext4_calc_metadata_amount() has side effects, which we have
1334          * to be prepared undo if we fail to claim space.
1335          */
1336         save_len = ei->i_da_metadata_calc_len;
1337         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1338         md_needed = EXT4_NUM_B2C(sbi,
1339                                  ext4_calc_metadata_amount(inode, lblock));
1340         trace_ext4_da_reserve_space(inode, md_needed);
1341
1342         /*
1343          * We do still charge estimated metadata to the sb though;
1344          * we cannot afford to run out of free blocks.
1345          */
1346         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1347                 ei->i_da_metadata_calc_len = save_len;
1348                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1349                 spin_unlock(&ei->i_block_reservation_lock);
1350                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1351                         cond_resched();
1352                         goto repeat;
1353                 }
1354                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1355                 return -ENOSPC;
1356         }
1357         ei->i_reserved_data_blocks++;
1358         ei->i_reserved_meta_blocks += md_needed;
1359         spin_unlock(&ei->i_block_reservation_lock);
1360
1361         return 0;       /* success */
1362 }
1363
1364 static void ext4_da_release_space(struct inode *inode, int to_free)
1365 {
1366         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1367         struct ext4_inode_info *ei = EXT4_I(inode);
1368
1369         if (!to_free)
1370                 return;         /* Nothing to release, exit */
1371
1372         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1373
1374         trace_ext4_da_release_space(inode, to_free);
1375         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1376                 /*
1377                  * if there aren't enough reserved blocks, then the
1378                  * counter is messed up somewhere.  Since this
1379                  * function is called from invalidate page, it's
1380                  * harmless to return without any action.
1381                  */
1382                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1383                          "ino %lu, to_free %d with only %d reserved "
1384                          "data blocks", inode->i_ino, to_free,
1385                          ei->i_reserved_data_blocks);
1386                 WARN_ON(1);
1387                 to_free = ei->i_reserved_data_blocks;
1388         }
1389         ei->i_reserved_data_blocks -= to_free;
1390
1391         if (ei->i_reserved_data_blocks == 0) {
1392                 /*
1393                  * We can release all of the reserved metadata blocks
1394                  * only when we have written all of the delayed
1395                  * allocation blocks.
1396                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1397                  * i_reserved_data_blocks, etc. refer to number of clusters.
1398                  */
1399                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1400                                    ei->i_reserved_meta_blocks);
1401                 ei->i_reserved_meta_blocks = 0;
1402                 ei->i_da_metadata_calc_len = 0;
1403         }
1404
1405         /* update fs dirty data blocks counter */
1406         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1407
1408         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1409
1410         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1411 }
1412
1413 static void ext4_da_page_release_reservation(struct page *page,
1414                                              unsigned long offset)
1415 {
1416         int to_release = 0;
1417         struct buffer_head *head, *bh;
1418         unsigned int curr_off = 0;
1419         struct inode *inode = page->mapping->host;
1420         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1421         int num_clusters;
1422         ext4_fsblk_t lblk;
1423
1424         head = page_buffers(page);
1425         bh = head;
1426         do {
1427                 unsigned int next_off = curr_off + bh->b_size;
1428
1429                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1430                         to_release++;
1431                         clear_buffer_delay(bh);
1432                 }
1433                 curr_off = next_off;
1434         } while ((bh = bh->b_this_page) != head);
1435
1436         if (to_release) {
1437                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1438                 ext4_es_remove_extent(inode, lblk, to_release);
1439         }
1440
1441         /* If we have released all the blocks belonging to a cluster, then we
1442          * need to release the reserved space for that cluster. */
1443         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1444         while (num_clusters > 0) {
1445                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1446                         ((num_clusters - 1) << sbi->s_cluster_bits);
1447                 if (sbi->s_cluster_ratio == 1 ||
1448                     !ext4_find_delalloc_cluster(inode, lblk))
1449                         ext4_da_release_space(inode, 1);
1450
1451                 num_clusters--;
1452         }
1453 }
1454
1455 /*
1456  * Delayed allocation stuff
1457  */
1458
1459 /*
1460  * mpage_da_submit_io - walks through extent of pages and try to write
1461  * them with writepage() call back
1462  *
1463  * @mpd->inode: inode
1464  * @mpd->first_page: first page of the extent
1465  * @mpd->next_page: page after the last page of the extent
1466  *
1467  * By the time mpage_da_submit_io() is called we expect all blocks
1468  * to be allocated. this may be wrong if allocation failed.
1469  *
1470  * As pages are already locked by write_cache_pages(), we can't use it
1471  */
1472 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1473                               struct ext4_map_blocks *map)
1474 {
1475         struct pagevec pvec;
1476         unsigned long index, end;
1477         int ret = 0, err, nr_pages, i;
1478         struct inode *inode = mpd->inode;
1479         struct address_space *mapping = inode->i_mapping;
1480         loff_t size = i_size_read(inode);
1481         unsigned int len, block_start;
1482         struct buffer_head *bh, *page_bufs = NULL;
1483         sector_t pblock = 0, cur_logical = 0;
1484         struct ext4_io_submit io_submit;
1485
1486         BUG_ON(mpd->next_page <= mpd->first_page);
1487         memset(&io_submit, 0, sizeof(io_submit));
1488         /*
1489          * We need to start from the first_page to the next_page - 1
1490          * to make sure we also write the mapped dirty buffer_heads.
1491          * If we look at mpd->b_blocknr we would only be looking
1492          * at the currently mapped buffer_heads.
1493          */
1494         index = mpd->first_page;
1495         end = mpd->next_page - 1;
1496
1497         pagevec_init(&pvec, 0);
1498         while (index <= end) {
1499                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1500                 if (nr_pages == 0)
1501                         break;
1502                 for (i = 0; i < nr_pages; i++) {
1503                         int skip_page = 0;
1504                         struct page *page = pvec.pages[i];
1505
1506                         index = page->index;
1507                         if (index > end)
1508                                 break;
1509
1510                         if (index == size >> PAGE_CACHE_SHIFT)
1511                                 len = size & ~PAGE_CACHE_MASK;
1512                         else
1513                                 len = PAGE_CACHE_SIZE;
1514                         if (map) {
1515                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1516                                                         inode->i_blkbits);
1517                                 pblock = map->m_pblk + (cur_logical -
1518                                                         map->m_lblk);
1519                         }
1520                         index++;
1521
1522                         BUG_ON(!PageLocked(page));
1523                         BUG_ON(PageWriteback(page));
1524
1525                         bh = page_bufs = page_buffers(page);
1526                         block_start = 0;
1527                         do {
1528                                 if (map && (cur_logical >= map->m_lblk) &&
1529                                     (cur_logical <= (map->m_lblk +
1530                                                      (map->m_len - 1)))) {
1531                                         if (buffer_delay(bh)) {
1532                                                 clear_buffer_delay(bh);
1533                                                 bh->b_blocknr = pblock;
1534                                         }
1535                                         if (buffer_unwritten(bh) ||
1536                                             buffer_mapped(bh))
1537                                                 BUG_ON(bh->b_blocknr != pblock);
1538                                         if (map->m_flags & EXT4_MAP_UNINIT)
1539                                                 set_buffer_uninit(bh);
1540                                         clear_buffer_unwritten(bh);
1541                                 }
1542
1543                                 /*
1544                                  * skip page if block allocation undone and
1545                                  * block is dirty
1546                                  */
1547                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1548                                         skip_page = 1;
1549                                 bh = bh->b_this_page;
1550                                 block_start += bh->b_size;
1551                                 cur_logical++;
1552                                 pblock++;
1553                         } while (bh != page_bufs);
1554
1555                         if (skip_page) {
1556                                 unlock_page(page);
1557                                 continue;
1558                         }
1559
1560                         clear_page_dirty_for_io(page);
1561                         err = ext4_bio_write_page(&io_submit, page, len,
1562                                                   mpd->wbc);
1563                         if (!err)
1564                                 mpd->pages_written++;
1565                         /*
1566                          * In error case, we have to continue because
1567                          * remaining pages are still locked
1568                          */
1569                         if (ret == 0)
1570                                 ret = err;
1571                 }
1572                 pagevec_release(&pvec);
1573         }
1574         ext4_io_submit(&io_submit);
1575         return ret;
1576 }
1577
1578 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1579 {
1580         int nr_pages, i;
1581         pgoff_t index, end;
1582         struct pagevec pvec;
1583         struct inode *inode = mpd->inode;
1584         struct address_space *mapping = inode->i_mapping;
1585         ext4_lblk_t start, last;
1586
1587         index = mpd->first_page;
1588         end   = mpd->next_page - 1;
1589
1590         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1591         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1592         ext4_es_remove_extent(inode, start, last - start + 1);
1593
1594         pagevec_init(&pvec, 0);
1595         while (index <= end) {
1596                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1597                 if (nr_pages == 0)
1598                         break;
1599                 for (i = 0; i < nr_pages; i++) {
1600                         struct page *page = pvec.pages[i];
1601                         if (page->index > end)
1602                                 break;
1603                         BUG_ON(!PageLocked(page));
1604                         BUG_ON(PageWriteback(page));
1605                         block_invalidatepage(page, 0);
1606                         ClearPageUptodate(page);
1607                         unlock_page(page);
1608                 }
1609                 index = pvec.pages[nr_pages - 1]->index + 1;
1610                 pagevec_release(&pvec);
1611         }
1612         return;
1613 }
1614
1615 static void ext4_print_free_blocks(struct inode *inode)
1616 {
1617         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1618         struct super_block *sb = inode->i_sb;
1619
1620         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1621                EXT4_C2B(EXT4_SB(inode->i_sb),
1622                         ext4_count_free_clusters(inode->i_sb)));
1623         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1624         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1625                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1626                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1627         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1628                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1629                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1630         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1631         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1632                  EXT4_I(inode)->i_reserved_data_blocks);
1633         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1634                EXT4_I(inode)->i_reserved_meta_blocks);
1635         return;
1636 }
1637
1638 /*
1639  * mpage_da_map_and_submit - go through given space, map them
1640  *       if necessary, and then submit them for I/O
1641  *
1642  * @mpd - bh describing space
1643  *
1644  * The function skips space we know is already mapped to disk blocks.
1645  *
1646  */
1647 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1648 {
1649         int err, blks, get_blocks_flags;
1650         struct ext4_map_blocks map, *mapp = NULL;
1651         sector_t next = mpd->b_blocknr;
1652         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1653         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1654         handle_t *handle = NULL;
1655
1656         /*
1657          * If the blocks are mapped already, or we couldn't accumulate
1658          * any blocks, then proceed immediately to the submission stage.
1659          */
1660         if ((mpd->b_size == 0) ||
1661             ((mpd->b_state  & (1 << BH_Mapped)) &&
1662              !(mpd->b_state & (1 << BH_Delay)) &&
1663              !(mpd->b_state & (1 << BH_Unwritten))))
1664                 goto submit_io;
1665
1666         handle = ext4_journal_current_handle();
1667         BUG_ON(!handle);
1668
1669         /*
1670          * Call ext4_map_blocks() to allocate any delayed allocation
1671          * blocks, or to convert an uninitialized extent to be
1672          * initialized (in the case where we have written into
1673          * one or more preallocated blocks).
1674          *
1675          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1676          * indicate that we are on the delayed allocation path.  This
1677          * affects functions in many different parts of the allocation
1678          * call path.  This flag exists primarily because we don't
1679          * want to change *many* call functions, so ext4_map_blocks()
1680          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1681          * inode's allocation semaphore is taken.
1682          *
1683          * If the blocks in questions were delalloc blocks, set
1684          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1685          * variables are updated after the blocks have been allocated.
1686          */
1687         map.m_lblk = next;
1688         map.m_len = max_blocks;
1689         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1690         if (ext4_should_dioread_nolock(mpd->inode))
1691                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1692         if (mpd->b_state & (1 << BH_Delay))
1693                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1694
1695         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1696         if (blks < 0) {
1697                 struct super_block *sb = mpd->inode->i_sb;
1698
1699                 err = blks;
1700                 /*
1701                  * If get block returns EAGAIN or ENOSPC and there
1702                  * appears to be free blocks we will just let
1703                  * mpage_da_submit_io() unlock all of the pages.
1704                  */
1705                 if (err == -EAGAIN)
1706                         goto submit_io;
1707
1708                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1709                         mpd->retval = err;
1710                         goto submit_io;
1711                 }
1712
1713                 /*
1714                  * get block failure will cause us to loop in
1715                  * writepages, because a_ops->writepage won't be able
1716                  * to make progress. The page will be redirtied by
1717                  * writepage and writepages will again try to write
1718                  * the same.
1719                  */
1720                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1721                         ext4_msg(sb, KERN_CRIT,
1722                                  "delayed block allocation failed for inode %lu "
1723                                  "at logical offset %llu with max blocks %zd "
1724                                  "with error %d", mpd->inode->i_ino,
1725                                  (unsigned long long) next,
1726                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1727                         ext4_msg(sb, KERN_CRIT,
1728                                 "This should not happen!! Data will be lost");
1729                         if (err == -ENOSPC)
1730                                 ext4_print_free_blocks(mpd->inode);
1731                 }
1732                 /* invalidate all the pages */
1733                 ext4_da_block_invalidatepages(mpd);
1734
1735                 /* Mark this page range as having been completed */
1736                 mpd->io_done = 1;
1737                 return;
1738         }
1739         BUG_ON(blks == 0);
1740
1741         mapp = &map;
1742         if (map.m_flags & EXT4_MAP_NEW) {
1743                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1744                 int i;
1745
1746                 for (i = 0; i < map.m_len; i++)
1747                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1748         }
1749
1750         /*
1751          * Update on-disk size along with block allocation.
1752          */
1753         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1754         if (disksize > i_size_read(mpd->inode))
1755                 disksize = i_size_read(mpd->inode);
1756         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1757                 ext4_update_i_disksize(mpd->inode, disksize);
1758                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1759                 if (err)
1760                         ext4_error(mpd->inode->i_sb,
1761                                    "Failed to mark inode %lu dirty",
1762                                    mpd->inode->i_ino);
1763         }
1764
1765 submit_io:
1766         mpage_da_submit_io(mpd, mapp);
1767         mpd->io_done = 1;
1768 }
1769
1770 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1771                 (1 << BH_Delay) | (1 << BH_Unwritten))
1772
1773 /*
1774  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1775  *
1776  * @mpd->lbh - extent of blocks
1777  * @logical - logical number of the block in the file
1778  * @b_state - b_state of the buffer head added
1779  *
1780  * the function is used to collect contig. blocks in same state
1781  */
1782 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1783                                    unsigned long b_state)
1784 {
1785         sector_t next;
1786         int blkbits = mpd->inode->i_blkbits;
1787         int nrblocks = mpd->b_size >> blkbits;
1788
1789         /*
1790          * XXX Don't go larger than mballoc is willing to allocate
1791          * This is a stopgap solution.  We eventually need to fold
1792          * mpage_da_submit_io() into this function and then call
1793          * ext4_map_blocks() multiple times in a loop
1794          */
1795         if (nrblocks >= (8*1024*1024 >> blkbits))
1796                 goto flush_it;
1797
1798         /* check if the reserved journal credits might overflow */
1799         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1800                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1801                         /*
1802                          * With non-extent format we are limited by the journal
1803                          * credit available.  Total credit needed to insert
1804                          * nrblocks contiguous blocks is dependent on the
1805                          * nrblocks.  So limit nrblocks.
1806                          */
1807                         goto flush_it;
1808                 }
1809         }
1810         /*
1811          * First block in the extent
1812          */
1813         if (mpd->b_size == 0) {
1814                 mpd->b_blocknr = logical;
1815                 mpd->b_size = 1 << blkbits;
1816                 mpd->b_state = b_state & BH_FLAGS;
1817                 return;
1818         }
1819
1820         next = mpd->b_blocknr + nrblocks;
1821         /*
1822          * Can we merge the block to our big extent?
1823          */
1824         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1825                 mpd->b_size += 1 << blkbits;
1826                 return;
1827         }
1828
1829 flush_it:
1830         /*
1831          * We couldn't merge the block to our extent, so we
1832          * need to flush current  extent and start new one
1833          */
1834         mpage_da_map_and_submit(mpd);
1835         return;
1836 }
1837
1838 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1839 {
1840         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1841 }
1842
1843 /*
1844  * This function is grabs code from the very beginning of
1845  * ext4_map_blocks, but assumes that the caller is from delayed write
1846  * time. This function looks up the requested blocks and sets the
1847  * buffer delay bit under the protection of i_data_sem.
1848  */
1849 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1850                               struct ext4_map_blocks *map,
1851                               struct buffer_head *bh)
1852 {
1853         struct extent_status es;
1854         int retval;
1855         sector_t invalid_block = ~((sector_t) 0xffff);
1856 #ifdef ES_AGGRESSIVE_TEST
1857         struct ext4_map_blocks orig_map;
1858
1859         memcpy(&orig_map, map, sizeof(*map));
1860 #endif
1861
1862         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1863                 invalid_block = ~0;
1864
1865         map->m_flags = 0;
1866         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1867                   "logical block %lu\n", inode->i_ino, map->m_len,
1868                   (unsigned long) map->m_lblk);
1869
1870         /* Lookup extent status tree firstly */
1871         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1872
1873                 if (ext4_es_is_hole(&es)) {
1874                         retval = 0;
1875                         down_read((&EXT4_I(inode)->i_data_sem));
1876                         goto add_delayed;
1877                 }
1878
1879                 /*
1880                  * Delayed extent could be allocated by fallocate.
1881                  * So we need to check it.
1882                  */
1883                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1884                         map_bh(bh, inode->i_sb, invalid_block);
1885                         set_buffer_new(bh);
1886                         set_buffer_delay(bh);
1887                         return 0;
1888                 }
1889
1890                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1891                 retval = es.es_len - (iblock - es.es_lblk);
1892                 if (retval > map->m_len)
1893                         retval = map->m_len;
1894                 map->m_len = retval;
1895                 if (ext4_es_is_written(&es))
1896                         map->m_flags |= EXT4_MAP_MAPPED;
1897                 else if (ext4_es_is_unwritten(&es))
1898                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1899                 else
1900                         BUG_ON(1);
1901
1902 #ifdef ES_AGGRESSIVE_TEST
1903                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1904 #endif
1905                 return retval;
1906         }
1907
1908         /*
1909          * Try to see if we can get the block without requesting a new
1910          * file system block.
1911          */
1912         down_read((&EXT4_I(inode)->i_data_sem));
1913         if (ext4_has_inline_data(inode)) {
1914                 /*
1915                  * We will soon create blocks for this page, and let
1916                  * us pretend as if the blocks aren't allocated yet.
1917                  * In case of clusters, we have to handle the work
1918                  * of mapping from cluster so that the reserved space
1919                  * is calculated properly.
1920                  */
1921                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1922                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1923                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1924                 retval = 0;
1925         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1926                 retval = ext4_ext_map_blocks(NULL, inode, map,
1927                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1928         else
1929                 retval = ext4_ind_map_blocks(NULL, inode, map,
1930                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1931
1932 add_delayed:
1933         if (retval == 0) {
1934                 int ret;
1935                 /*
1936                  * XXX: __block_prepare_write() unmaps passed block,
1937                  * is it OK?
1938                  */
1939                 /*
1940                  * If the block was allocated from previously allocated cluster,
1941                  * then we don't need to reserve it again. However we still need
1942                  * to reserve metadata for every block we're going to write.
1943                  */
1944                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1945                         ret = ext4_da_reserve_space(inode, iblock);
1946                         if (ret) {
1947                                 /* not enough space to reserve */
1948                                 retval = ret;
1949                                 goto out_unlock;
1950                         }
1951                 } else {
1952                         ret = ext4_da_reserve_metadata(inode, iblock);
1953                         if (ret) {
1954                                 /* not enough space to reserve */
1955                                 retval = ret;
1956                                 goto out_unlock;
1957                         }
1958                 }
1959
1960                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1961                                             ~0, EXTENT_STATUS_DELAYED);
1962                 if (ret) {
1963                         retval = ret;
1964                         goto out_unlock;
1965                 }
1966
1967                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1968                  * and it should not appear on the bh->b_state.
1969                  */
1970                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1971
1972                 map_bh(bh, inode->i_sb, invalid_block);
1973                 set_buffer_new(bh);
1974                 set_buffer_delay(bh);
1975         } else if (retval > 0) {
1976                 int ret;
1977                 unsigned long long status;
1978
1979 #ifdef ES_AGGRESSIVE_TEST
1980                 if (retval != map->m_len) {
1981                         printk("ES len assertation failed for inode: %lu "
1982                                "retval %d != map->m_len %d "
1983                                "in %s (lookup)\n", inode->i_ino, retval,
1984                                map->m_len, __func__);
1985                 }
1986 #endif
1987
1988                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1989                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1990                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1991                                             map->m_pblk, status);
1992                 if (ret != 0)
1993                         retval = ret;
1994         }
1995
1996 out_unlock:
1997         up_read((&EXT4_I(inode)->i_data_sem));
1998
1999         return retval;
2000 }
2001
2002 /*
2003  * This is a special get_blocks_t callback which is used by
2004  * ext4_da_write_begin().  It will either return mapped block or
2005  * reserve space for a single block.
2006  *
2007  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2008  * We also have b_blocknr = -1 and b_bdev initialized properly
2009  *
2010  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2011  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2012  * initialized properly.
2013  */
2014 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2015                            struct buffer_head *bh, int create)
2016 {
2017         struct ext4_map_blocks map;
2018         int ret = 0;
2019
2020         BUG_ON(create == 0);
2021         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2022
2023         map.m_lblk = iblock;
2024         map.m_len = 1;
2025
2026         /*
2027          * first, we need to know whether the block is allocated already
2028          * preallocated blocks are unmapped but should treated
2029          * the same as allocated blocks.
2030          */
2031         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2032         if (ret <= 0)
2033                 return ret;
2034
2035         map_bh(bh, inode->i_sb, map.m_pblk);
2036         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2037
2038         if (buffer_unwritten(bh)) {
2039                 /* A delayed write to unwritten bh should be marked
2040                  * new and mapped.  Mapped ensures that we don't do
2041                  * get_block multiple times when we write to the same
2042                  * offset and new ensures that we do proper zero out
2043                  * for partial write.
2044                  */
2045                 set_buffer_new(bh);
2046                 set_buffer_mapped(bh);
2047         }
2048         return 0;
2049 }
2050
2051 static int bget_one(handle_t *handle, struct buffer_head *bh)
2052 {
2053         get_bh(bh);
2054         return 0;
2055 }
2056
2057 static int bput_one(handle_t *handle, struct buffer_head *bh)
2058 {
2059         put_bh(bh);
2060         return 0;
2061 }
2062
2063 static int __ext4_journalled_writepage(struct page *page,
2064                                        unsigned int len)
2065 {
2066         struct address_space *mapping = page->mapping;
2067         struct inode *inode = mapping->host;
2068         struct buffer_head *page_bufs = NULL;
2069         handle_t *handle = NULL;
2070         int ret = 0, err = 0;
2071         int inline_data = ext4_has_inline_data(inode);
2072         struct buffer_head *inode_bh = NULL;
2073
2074         ClearPageChecked(page);
2075
2076         if (inline_data) {
2077                 BUG_ON(page->index != 0);
2078                 BUG_ON(len > ext4_get_max_inline_size(inode));
2079                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2080                 if (inode_bh == NULL)
2081                         goto out;
2082         } else {
2083                 page_bufs = page_buffers(page);
2084                 if (!page_bufs) {
2085                         BUG();
2086                         goto out;
2087                 }
2088                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2089                                        NULL, bget_one);
2090         }
2091         /* As soon as we unlock the page, it can go away, but we have
2092          * references to buffers so we are safe */
2093         unlock_page(page);
2094
2095         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2096                                     ext4_writepage_trans_blocks(inode));
2097         if (IS_ERR(handle)) {
2098                 ret = PTR_ERR(handle);
2099                 goto out;
2100         }
2101
2102         BUG_ON(!ext4_handle_valid(handle));
2103
2104         if (inline_data) {
2105                 ret = ext4_journal_get_write_access(handle, inode_bh);
2106
2107                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2108
2109         } else {
2110                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2111                                              do_journal_get_write_access);
2112
2113                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2114                                              write_end_fn);
2115         }
2116         if (ret == 0)
2117                 ret = err;
2118         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2119         err = ext4_journal_stop(handle);
2120         if (!ret)
2121                 ret = err;
2122
2123         if (!ext4_has_inline_data(inode))
2124                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2125                                        NULL, bput_one);
2126         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2127 out:
2128         brelse(inode_bh);
2129         return ret;
2130 }
2131
2132 /*
2133  * Note that we don't need to start a transaction unless we're journaling data
2134  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2135  * need to file the inode to the transaction's list in ordered mode because if
2136  * we are writing back data added by write(), the inode is already there and if
2137  * we are writing back data modified via mmap(), no one guarantees in which
2138  * transaction the data will hit the disk. In case we are journaling data, we
2139  * cannot start transaction directly because transaction start ranks above page
2140  * lock so we have to do some magic.
2141  *
2142  * This function can get called via...
2143  *   - ext4_da_writepages after taking page lock (have journal handle)
2144  *   - journal_submit_inode_data_buffers (no journal handle)
2145  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2146  *   - grab_page_cache when doing write_begin (have journal handle)
2147  *
2148  * We don't do any block allocation in this function. If we have page with
2149  * multiple blocks we need to write those buffer_heads that are mapped. This
2150  * is important for mmaped based write. So if we do with blocksize 1K
2151  * truncate(f, 1024);
2152  * a = mmap(f, 0, 4096);
2153  * a[0] = 'a';
2154  * truncate(f, 4096);
2155  * we have in the page first buffer_head mapped via page_mkwrite call back
2156  * but other buffer_heads would be unmapped but dirty (dirty done via the
2157  * do_wp_page). So writepage should write the first block. If we modify
2158  * the mmap area beyond 1024 we will again get a page_fault and the
2159  * page_mkwrite callback will do the block allocation and mark the
2160  * buffer_heads mapped.
2161  *
2162  * We redirty the page if we have any buffer_heads that is either delay or
2163  * unwritten in the page.
2164  *
2165  * We can get recursively called as show below.
2166  *
2167  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2168  *              ext4_writepage()
2169  *
2170  * But since we don't do any block allocation we should not deadlock.
2171  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2172  */
2173 static int ext4_writepage(struct page *page,
2174                           struct writeback_control *wbc)
2175 {
2176         int ret = 0;
2177         loff_t size;
2178         unsigned int len;
2179         struct buffer_head *page_bufs = NULL;
2180         struct inode *inode = page->mapping->host;
2181         struct ext4_io_submit io_submit;
2182
2183         trace_ext4_writepage(page);
2184         size = i_size_read(inode);
2185         if (page->index == size >> PAGE_CACHE_SHIFT)
2186                 len = size & ~PAGE_CACHE_MASK;
2187         else
2188                 len = PAGE_CACHE_SIZE;
2189
2190         page_bufs = page_buffers(page);
2191         /*
2192          * We cannot do block allocation or other extent handling in this
2193          * function. If there are buffers needing that, we have to redirty
2194          * the page. But we may reach here when we do a journal commit via
2195          * journal_submit_inode_data_buffers() and in that case we must write
2196          * allocated buffers to achieve data=ordered mode guarantees.
2197          */
2198         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2199                                    ext4_bh_delay_or_unwritten)) {
2200                 redirty_page_for_writepage(wbc, page);
2201                 if (current->flags & PF_MEMALLOC) {
2202                         /*
2203                          * For memory cleaning there's no point in writing only
2204                          * some buffers. So just bail out. Warn if we came here
2205                          * from direct reclaim.
2206                          */
2207                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2208                                                         == PF_MEMALLOC);
2209                         unlock_page(page);
2210                         return 0;
2211                 }
2212         }
2213
2214         if (PageChecked(page) && ext4_should_journal_data(inode))
2215                 /*
2216                  * It's mmapped pagecache.  Add buffers and journal it.  There
2217                  * doesn't seem much point in redirtying the page here.
2218                  */
2219                 return __ext4_journalled_writepage(page, len);
2220
2221         memset(&io_submit, 0, sizeof(io_submit));
2222         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2223         ext4_io_submit(&io_submit);
2224         return ret;
2225 }
2226
2227 /*
2228  * This is called via ext4_da_writepages() to
2229  * calculate the total number of credits to reserve to fit
2230  * a single extent allocation into a single transaction,
2231  * ext4_da_writpeages() will loop calling this before
2232  * the block allocation.
2233  */
2234
2235 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2236 {
2237         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2238
2239         /*
2240          * With non-extent format the journal credit needed to
2241          * insert nrblocks contiguous block is dependent on
2242          * number of contiguous block. So we will limit
2243          * number of contiguous block to a sane value
2244          */
2245         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2246             (max_blocks > EXT4_MAX_TRANS_DATA))
2247                 max_blocks = EXT4_MAX_TRANS_DATA;
2248
2249         return ext4_chunk_trans_blocks(inode, max_blocks);
2250 }
2251
2252 /*
2253  * write_cache_pages_da - walk the list of dirty pages of the given
2254  * address space and accumulate pages that need writing, and call
2255  * mpage_da_map_and_submit to map a single contiguous memory region
2256  * and then write them.
2257  */
2258 static int write_cache_pages_da(handle_t *handle,
2259                                 struct address_space *mapping,
2260                                 struct writeback_control *wbc,
2261                                 struct mpage_da_data *mpd,
2262                                 pgoff_t *done_index)
2263 {
2264         struct buffer_head      *bh, *head;
2265         struct inode            *inode = mapping->host;
2266         struct pagevec          pvec;
2267         unsigned int            nr_pages;
2268         sector_t                logical;
2269         pgoff_t                 index, end;
2270         long                    nr_to_write = wbc->nr_to_write;
2271         int                     i, tag, ret = 0;
2272
2273         memset(mpd, 0, sizeof(struct mpage_da_data));
2274         mpd->wbc = wbc;
2275         mpd->inode = inode;
2276         pagevec_init(&pvec, 0);
2277         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2278         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2279
2280         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2281                 tag = PAGECACHE_TAG_TOWRITE;
2282         else
2283                 tag = PAGECACHE_TAG_DIRTY;
2284
2285         *done_index = index;
2286         while (index <= end) {
2287                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2288                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2289                 if (nr_pages == 0)
2290                         return 0;
2291
2292                 for (i = 0; i < nr_pages; i++) {
2293                         struct page *page = pvec.pages[i];
2294
2295                         /*
2296                          * At this point, the page may be truncated or
2297                          * invalidated (changing page->mapping to NULL), or
2298                          * even swizzled back from swapper_space to tmpfs file
2299                          * mapping. However, page->index will not change
2300                          * because we have a reference on the page.
2301                          */
2302                         if (page->index > end)
2303                                 goto out;
2304
2305                         *done_index = page->index + 1;
2306
2307                         /*
2308                          * If we can't merge this page, and we have
2309                          * accumulated an contiguous region, write it
2310                          */
2311                         if ((mpd->next_page != page->index) &&
2312                             (mpd->next_page != mpd->first_page)) {
2313                                 mpage_da_map_and_submit(mpd);
2314                                 goto ret_extent_tail;
2315                         }
2316
2317                         lock_page(page);
2318
2319                         /*
2320                          * If the page is no longer dirty, or its
2321                          * mapping no longer corresponds to inode we
2322                          * are writing (which means it has been
2323                          * truncated or invalidated), or the page is
2324                          * already under writeback and we are not
2325                          * doing a data integrity writeback, skip the page
2326                          */
2327                         if (!PageDirty(page) ||
2328                             (PageWriteback(page) &&
2329                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2330                             unlikely(page->mapping != mapping)) {
2331                                 unlock_page(page);
2332                                 continue;
2333                         }
2334
2335                         wait_on_page_writeback(page);
2336                         BUG_ON(PageWriteback(page));
2337
2338                         /*
2339                          * If we have inline data and arrive here, it means that
2340                          * we will soon create the block for the 1st page, so
2341                          * we'd better clear the inline data here.
2342                          */
2343                         if (ext4_has_inline_data(inode)) {
2344                                 BUG_ON(ext4_test_inode_state(inode,
2345                                                 EXT4_STATE_MAY_INLINE_DATA));
2346                                 ext4_destroy_inline_data(handle, inode);
2347                         }
2348
2349                         if (mpd->next_page != page->index)
2350                                 mpd->first_page = page->index;
2351                         mpd->next_page = page->index + 1;
2352                         logical = (sector_t) page->index <<
2353                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2354
2355                         /* Add all dirty buffers to mpd */
2356                         head = page_buffers(page);
2357                         bh = head;
2358                         do {
2359                                 BUG_ON(buffer_locked(bh));
2360                                 /*
2361                                  * We need to try to allocate unmapped blocks
2362                                  * in the same page.  Otherwise we won't make
2363                                  * progress with the page in ext4_writepage
2364                                  */
2365                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2366                                         mpage_add_bh_to_extent(mpd, logical,
2367                                                                bh->b_state);
2368                                         if (mpd->io_done)
2369                                                 goto ret_extent_tail;
2370                                 } else if (buffer_dirty(bh) &&
2371                                            buffer_mapped(bh)) {
2372                                         /*
2373                                          * mapped dirty buffer. We need to
2374                                          * update the b_state because we look
2375                                          * at b_state in mpage_da_map_blocks.
2376                                          * We don't update b_size because if we
2377                                          * find an unmapped buffer_head later
2378                                          * we need to use the b_state flag of
2379                                          * that buffer_head.
2380                                          */
2381                                         if (mpd->b_size == 0)
2382                                                 mpd->b_state =
2383                                                         bh->b_state & BH_FLAGS;
2384                                 }
2385                                 logical++;
2386                         } while ((bh = bh->b_this_page) != head);
2387
2388                         if (nr_to_write > 0) {
2389                                 nr_to_write--;
2390                                 if (nr_to_write == 0 &&
2391                                     wbc->sync_mode == WB_SYNC_NONE)
2392                                         /*
2393                                          * We stop writing back only if we are
2394                                          * not doing integrity sync. In case of
2395                                          * integrity sync we have to keep going
2396                                          * because someone may be concurrently
2397                                          * dirtying pages, and we might have
2398                                          * synced a lot of newly appeared dirty
2399                                          * pages, but have not synced all of the
2400                                          * old dirty pages.
2401                                          */
2402                                         goto out;
2403                         }
2404                 }
2405                 pagevec_release(&pvec);
2406                 cond_resched();
2407         }
2408         return 0;
2409 ret_extent_tail:
2410         ret = MPAGE_DA_EXTENT_TAIL;
2411 out:
2412         pagevec_release(&pvec);
2413         cond_resched();
2414         return ret;
2415 }
2416
2417
2418 static int ext4_da_writepages(struct address_space *mapping,
2419                               struct writeback_control *wbc)
2420 {
2421         pgoff_t index;
2422         int range_whole = 0;
2423         handle_t *handle = NULL;
2424         struct mpage_da_data mpd;
2425         struct inode *inode = mapping->host;
2426         int pages_written = 0;
2427         unsigned int max_pages;
2428         int range_cyclic, cycled = 1, io_done = 0;
2429         int needed_blocks, ret = 0;
2430         long desired_nr_to_write, nr_to_writebump = 0;
2431         loff_t range_start = wbc->range_start;
2432         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2433         pgoff_t done_index = 0;
2434         pgoff_t end;
2435         struct blk_plug plug;
2436
2437         trace_ext4_da_writepages(inode, wbc);
2438
2439         /*
2440          * No pages to write? This is mainly a kludge to avoid starting
2441          * a transaction for special inodes like journal inode on last iput()
2442          * because that could violate lock ordering on umount
2443          */
2444         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2445                 return 0;
2446
2447         /*
2448          * If the filesystem has aborted, it is read-only, so return
2449          * right away instead of dumping stack traces later on that
2450          * will obscure the real source of the problem.  We test
2451          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2452          * the latter could be true if the filesystem is mounted
2453          * read-only, and in that case, ext4_da_writepages should
2454          * *never* be called, so if that ever happens, we would want
2455          * the stack trace.
2456          */
2457         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2458                 return -EROFS;
2459
2460         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2461                 range_whole = 1;
2462
2463         range_cyclic = wbc->range_cyclic;
2464         if (wbc->range_cyclic) {
2465                 index = mapping->writeback_index;
2466                 if (index)
2467                         cycled = 0;
2468                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2469                 wbc->range_end  = LLONG_MAX;
2470                 wbc->range_cyclic = 0;
2471                 end = -1;
2472         } else {
2473                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2474                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2475         }
2476
2477         /*
2478          * This works around two forms of stupidity.  The first is in
2479          * the writeback code, which caps the maximum number of pages
2480          * written to be 1024 pages.  This is wrong on multiple
2481          * levels; different architectues have a different page size,
2482          * which changes the maximum amount of data which gets
2483          * written.  Secondly, 4 megabytes is way too small.  XFS
2484          * forces this value to be 16 megabytes by multiplying
2485          * nr_to_write parameter by four, and then relies on its
2486          * allocator to allocate larger extents to make them
2487          * contiguous.  Unfortunately this brings us to the second
2488          * stupidity, which is that ext4's mballoc code only allocates
2489          * at most 2048 blocks.  So we force contiguous writes up to
2490          * the number of dirty blocks in the inode, or
2491          * sbi->max_writeback_mb_bump whichever is smaller.
2492          */
2493         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2494         if (!range_cyclic && range_whole) {
2495                 if (wbc->nr_to_write == LONG_MAX)
2496                         desired_nr_to_write = wbc->nr_to_write;
2497                 else
2498                         desired_nr_to_write = wbc->nr_to_write * 8;
2499         } else
2500                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2501                                                            max_pages);
2502         if (desired_nr_to_write > max_pages)
2503                 desired_nr_to_write = max_pages;
2504
2505         if (wbc->nr_to_write < desired_nr_to_write) {
2506                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2507                 wbc->nr_to_write = desired_nr_to_write;
2508         }
2509
2510 retry:
2511         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2512                 tag_pages_for_writeback(mapping, index, end);
2513
2514         blk_start_plug(&plug);
2515         while (!ret && wbc->nr_to_write > 0) {
2516
2517                 /*
2518                  * we  insert one extent at a time. So we need
2519                  * credit needed for single extent allocation.
2520                  * journalled mode is currently not supported
2521                  * by delalloc
2522                  */
2523                 BUG_ON(ext4_should_journal_data(inode));
2524                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2525
2526                 /* start a new transaction*/
2527                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2528                                             needed_blocks);
2529                 if (IS_ERR(handle)) {
2530                         ret = PTR_ERR(handle);
2531                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2532                                "%ld pages, ino %lu; err %d", __func__,
2533                                 wbc->nr_to_write, inode->i_ino, ret);
2534                         blk_finish_plug(&plug);
2535                         goto out_writepages;
2536                 }
2537
2538                 /*
2539                  * Now call write_cache_pages_da() to find the next
2540                  * contiguous region of logical blocks that need
2541                  * blocks to be allocated by ext4 and submit them.
2542                  */
2543                 ret = write_cache_pages_da(handle, mapping,
2544                                            wbc, &mpd, &done_index);
2545                 /*
2546                  * If we have a contiguous extent of pages and we
2547                  * haven't done the I/O yet, map the blocks and submit
2548                  * them for I/O.
2549                  */
2550                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2551                         mpage_da_map_and_submit(&mpd);
2552                         ret = MPAGE_DA_EXTENT_TAIL;
2553                 }
2554                 trace_ext4_da_write_pages(inode, &mpd);
2555                 wbc->nr_to_write -= mpd.pages_written;
2556
2557                 ext4_journal_stop(handle);
2558
2559                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2560                         /* commit the transaction which would
2561                          * free blocks released in the transaction
2562                          * and try again
2563                          */
2564                         jbd2_journal_force_commit_nested(sbi->s_journal);
2565                         ret = 0;
2566                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2567                         /*
2568                          * Got one extent now try with rest of the pages.
2569                          * If mpd.retval is set -EIO, journal is aborted.
2570                          * So we don't need to write any more.
2571                          */
2572                         pages_written += mpd.pages_written;
2573                         ret = mpd.retval;
2574                         io_done = 1;
2575                 } else if (wbc->nr_to_write)
2576                         /*
2577                          * There is no more writeout needed
2578                          * or we requested for a noblocking writeout
2579                          * and we found the device congested
2580                          */
2581                         break;
2582         }
2583         blk_finish_plug(&plug);
2584         if (!io_done && !cycled) {
2585                 cycled = 1;
2586                 index = 0;
2587                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2588                 wbc->range_end  = mapping->writeback_index - 1;
2589                 goto retry;
2590         }
2591
2592         /* Update index */
2593         wbc->range_cyclic = range_cyclic;
2594         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2595                 /*
2596                  * set the writeback_index so that range_cyclic
2597                  * mode will write it back later
2598                  */
2599                 mapping->writeback_index = done_index;
2600
2601 out_writepages:
2602         wbc->nr_to_write -= nr_to_writebump;
2603         wbc->range_start = range_start;
2604         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2605         return ret;
2606 }
2607
2608 static int ext4_nonda_switch(struct super_block *sb)
2609 {
2610         s64 free_blocks, dirty_blocks;
2611         struct ext4_sb_info *sbi = EXT4_SB(sb);
2612
2613         /*
2614          * switch to non delalloc mode if we are running low
2615          * on free block. The free block accounting via percpu
2616          * counters can get slightly wrong with percpu_counter_batch getting
2617          * accumulated on each CPU without updating global counters
2618          * Delalloc need an accurate free block accounting. So switch
2619          * to non delalloc when we are near to error range.
2620          */
2621         free_blocks  = EXT4_C2B(sbi,
2622                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2623         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2624         /*
2625          * Start pushing delalloc when 1/2 of free blocks are dirty.
2626          */
2627         if (dirty_blocks && (free_blocks < 2 * dirty_blocks))
2628                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2629
2630         if (2 * free_blocks < 3 * dirty_blocks ||
2631                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2632                 /*
2633                  * free block count is less than 150% of dirty blocks
2634                  * or free blocks is less than watermark
2635                  */
2636                 return 1;
2637         }
2638         return 0;
2639 }
2640
2641 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2642                                loff_t pos, unsigned len, unsigned flags,
2643                                struct page **pagep, void **fsdata)
2644 {
2645         int ret, retries = 0;
2646         struct page *page;
2647         pgoff_t index;
2648         struct inode *inode = mapping->host;
2649         handle_t *handle;
2650
2651         index = pos >> PAGE_CACHE_SHIFT;
2652
2653         if (ext4_nonda_switch(inode->i_sb)) {
2654                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2655                 return ext4_write_begin(file, mapping, pos,
2656                                         len, flags, pagep, fsdata);
2657         }
2658         *fsdata = (void *)0;
2659         trace_ext4_da_write_begin(inode, pos, len, flags);
2660
2661         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2662                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2663                                                       pos, len, flags,
2664                                                       pagep, fsdata);
2665                 if (ret < 0)
2666                         return ret;
2667                 if (ret == 1)
2668                         return 0;
2669         }
2670
2671         /*
2672          * grab_cache_page_write_begin() can take a long time if the
2673          * system is thrashing due to memory pressure, or if the page
2674          * is being written back.  So grab it first before we start
2675          * the transaction handle.  This also allows us to allocate
2676          * the page (if needed) without using GFP_NOFS.
2677          */
2678 retry_grab:
2679         page = grab_cache_page_write_begin(mapping, index, flags);
2680         if (!page)
2681                 return -ENOMEM;
2682         unlock_page(page);
2683
2684         /*
2685          * With delayed allocation, we don't log the i_disksize update
2686          * if there is delayed block allocation. But we still need
2687          * to journalling the i_disksize update if writes to the end
2688          * of file which has an already mapped buffer.
2689          */
2690 retry_journal:
2691         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2692         if (IS_ERR(handle)) {
2693                 page_cache_release(page);
2694                 return PTR_ERR(handle);
2695         }
2696
2697         lock_page(page);
2698         if (page->mapping != mapping) {
2699                 /* The page got truncated from under us */
2700                 unlock_page(page);
2701                 page_cache_release(page);
2702                 ext4_journal_stop(handle);
2703                 goto retry_grab;
2704         }
2705         /* In case writeback began while the page was unlocked */
2706         wait_on_page_writeback(page);
2707
2708         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2709         if (ret < 0) {
2710                 unlock_page(page);
2711                 ext4_journal_stop(handle);
2712                 /*
2713                  * block_write_begin may have instantiated a few blocks
2714                  * outside i_size.  Trim these off again. Don't need
2715                  * i_size_read because we hold i_mutex.
2716                  */
2717                 if (pos + len > inode->i_size)
2718                         ext4_truncate_failed_write(inode);
2719
2720                 if (ret == -ENOSPC &&
2721                     ext4_should_retry_alloc(inode->i_sb, &retries))
2722                         goto retry_journal;
2723
2724                 page_cache_release(page);
2725                 return ret;
2726         }
2727
2728         *pagep = page;
2729         return ret;
2730 }
2731
2732 /*
2733  * Check if we should update i_disksize
2734  * when write to the end of file but not require block allocation
2735  */
2736 static int ext4_da_should_update_i_disksize(struct page *page,
2737                                             unsigned long offset)
2738 {
2739         struct buffer_head *bh;
2740         struct inode *inode = page->mapping->host;
2741         unsigned int idx;
2742         int i;
2743
2744         bh = page_buffers(page);
2745         idx = offset >> inode->i_blkbits;
2746
2747         for (i = 0; i < idx; i++)
2748                 bh = bh->b_this_page;
2749
2750         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2751                 return 0;
2752         return 1;
2753 }
2754
2755 static int ext4_da_write_end(struct file *file,
2756                              struct address_space *mapping,
2757                              loff_t pos, unsigned len, unsigned copied,
2758                              struct page *page, void *fsdata)
2759 {
2760         struct inode *inode = mapping->host;
2761         int ret = 0, ret2;
2762         handle_t *handle = ext4_journal_current_handle();
2763         loff_t new_i_size;
2764         unsigned long start, end;
2765         int write_mode = (int)(unsigned long)fsdata;
2766
2767         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2768                 return ext4_write_end(file, mapping, pos,
2769                                       len, copied, page, fsdata);
2770
2771         trace_ext4_da_write_end(inode, pos, len, copied);
2772         start = pos & (PAGE_CACHE_SIZE - 1);
2773         end = start + copied - 1;
2774
2775         /*
2776          * generic_write_end() will run mark_inode_dirty() if i_size
2777          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2778          * into that.
2779          */
2780         new_i_size = pos + copied;
2781         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2782                 if (ext4_has_inline_data(inode) ||
2783                     ext4_da_should_update_i_disksize(page, end)) {
2784                         down_write(&EXT4_I(inode)->i_data_sem);
2785                         if (new_i_size > EXT4_I(inode)->i_disksize)
2786                                 EXT4_I(inode)->i_disksize = new_i_size;
2787                         up_write(&EXT4_I(inode)->i_data_sem);
2788                         /* We need to mark inode dirty even if
2789                          * new_i_size is less that inode->i_size
2790                          * bu greater than i_disksize.(hint delalloc)
2791                          */
2792                         ext4_mark_inode_dirty(handle, inode);
2793                 }
2794         }
2795
2796         if (write_mode != CONVERT_INLINE_DATA &&
2797             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2798             ext4_has_inline_data(inode))
2799                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2800                                                      page);
2801         else
2802                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2803                                                         page, fsdata);
2804
2805         copied = ret2;
2806         if (ret2 < 0)
2807                 ret = ret2;
2808         ret2 = ext4_journal_stop(handle);
2809         if (!ret)
2810                 ret = ret2;
2811
2812         return ret ? ret : copied;
2813 }
2814
2815 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2816 {
2817         /*
2818          * Drop reserved blocks
2819          */
2820         BUG_ON(!PageLocked(page));
2821         if (!page_has_buffers(page))
2822                 goto out;
2823
2824         ext4_da_page_release_reservation(page, offset);
2825
2826 out:
2827         ext4_invalidatepage(page, offset);
2828
2829         return;
2830 }
2831
2832 /*
2833  * Force all delayed allocation blocks to be allocated for a given inode.
2834  */
2835 int ext4_alloc_da_blocks(struct inode *inode)
2836 {
2837         trace_ext4_alloc_da_blocks(inode);
2838
2839         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2840             !EXT4_I(inode)->i_reserved_meta_blocks)
2841                 return 0;
2842
2843         /*
2844          * We do something simple for now.  The filemap_flush() will
2845          * also start triggering a write of the data blocks, which is
2846          * not strictly speaking necessary (and for users of
2847          * laptop_mode, not even desirable).  However, to do otherwise
2848          * would require replicating code paths in:
2849          *
2850          * ext4_da_writepages() ->
2851          *    write_cache_pages() ---> (via passed in callback function)
2852          *        __mpage_da_writepage() -->
2853          *           mpage_add_bh_to_extent()
2854          *           mpage_da_map_blocks()
2855          *
2856          * The problem is that write_cache_pages(), located in
2857          * mm/page-writeback.c, marks pages clean in preparation for
2858          * doing I/O, which is not desirable if we're not planning on
2859          * doing I/O at all.
2860          *
2861          * We could call write_cache_pages(), and then redirty all of
2862          * the pages by calling redirty_page_for_writepage() but that
2863          * would be ugly in the extreme.  So instead we would need to
2864          * replicate parts of the code in the above functions,
2865          * simplifying them because we wouldn't actually intend to
2866          * write out the pages, but rather only collect contiguous
2867          * logical block extents, call the multi-block allocator, and
2868          * then update the buffer heads with the block allocations.
2869          *
2870          * For now, though, we'll cheat by calling filemap_flush(),
2871          * which will map the blocks, and start the I/O, but not
2872          * actually wait for the I/O to complete.
2873          */
2874         return filemap_flush(inode->i_mapping);
2875 }
2876
2877 /*
2878  * bmap() is special.  It gets used by applications such as lilo and by
2879  * the swapper to find the on-disk block of a specific piece of data.
2880  *
2881  * Naturally, this is dangerous if the block concerned is still in the
2882  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2883  * filesystem and enables swap, then they may get a nasty shock when the
2884  * data getting swapped to that swapfile suddenly gets overwritten by
2885  * the original zero's written out previously to the journal and
2886  * awaiting writeback in the kernel's buffer cache.
2887  *
2888  * So, if we see any bmap calls here on a modified, data-journaled file,
2889  * take extra steps to flush any blocks which might be in the cache.
2890  */
2891 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2892 {
2893         struct inode *inode = mapping->host;
2894         journal_t *journal;
2895         int err;
2896
2897         /*
2898          * We can get here for an inline file via the FIBMAP ioctl
2899          */
2900         if (ext4_has_inline_data(inode))
2901                 return 0;
2902
2903         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2904                         test_opt(inode->i_sb, DELALLOC)) {
2905                 /*
2906                  * With delalloc we want to sync the file
2907                  * so that we can make sure we allocate
2908                  * blocks for file
2909                  */
2910                 filemap_write_and_wait(mapping);
2911         }
2912
2913         if (EXT4_JOURNAL(inode) &&
2914             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2915                 /*
2916                  * This is a REALLY heavyweight approach, but the use of
2917                  * bmap on dirty files is expected to be extremely rare:
2918                  * only if we run lilo or swapon on a freshly made file
2919                  * do we expect this to happen.
2920                  *
2921                  * (bmap requires CAP_SYS_RAWIO so this does not
2922                  * represent an unprivileged user DOS attack --- we'd be
2923                  * in trouble if mortal users could trigger this path at
2924                  * will.)
2925                  *
2926                  * NB. EXT4_STATE_JDATA is not set on files other than
2927                  * regular files.  If somebody wants to bmap a directory
2928                  * or symlink and gets confused because the buffer
2929                  * hasn't yet been flushed to disk, they deserve
2930                  * everything they get.
2931                  */
2932
2933                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2934                 journal = EXT4_JOURNAL(inode);
2935                 jbd2_journal_lock_updates(journal);
2936                 err = jbd2_journal_flush(journal);
2937                 jbd2_journal_unlock_updates(journal);
2938
2939                 if (err)
2940                         return 0;
2941         }
2942
2943         return generic_block_bmap(mapping, block, ext4_get_block);
2944 }
2945
2946 static int ext4_readpage(struct file *file, struct page *page)
2947 {
2948         int ret = -EAGAIN;
2949         struct inode *inode = page->mapping->host;
2950
2951         trace_ext4_readpage(page);
2952
2953         if (ext4_has_inline_data(inode))
2954                 ret = ext4_readpage_inline(inode, page);
2955
2956         if (ret == -EAGAIN)
2957                 return mpage_readpage(page, ext4_get_block);
2958
2959         return ret;
2960 }
2961
2962 static int
2963 ext4_readpages(struct file *file, struct address_space *mapping,
2964                 struct list_head *pages, unsigned nr_pages)
2965 {
2966         struct inode *inode = mapping->host;
2967
2968         /* If the file has inline data, no need to do readpages. */
2969         if (ext4_has_inline_data(inode))
2970                 return 0;
2971
2972         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2973 }
2974
2975 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2976 {
2977         trace_ext4_invalidatepage(page, offset);
2978
2979         /* No journalling happens on data buffers when this function is used */
2980         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2981
2982         block_invalidatepage(page, offset);
2983 }
2984
2985 static int __ext4_journalled_invalidatepage(struct page *page,
2986                                             unsigned long offset)
2987 {
2988         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2989
2990         trace_ext4_journalled_invalidatepage(page, offset);
2991
2992         /*
2993          * If it's a full truncate we just forget about the pending dirtying
2994          */
2995         if (offset == 0)
2996                 ClearPageChecked(page);
2997
2998         return jbd2_journal_invalidatepage(journal, page, offset);
2999 }
3000
3001 /* Wrapper for aops... */
3002 static void ext4_journalled_invalidatepage(struct page *page,
3003                                            unsigned long offset)
3004 {
3005         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3006 }
3007
3008 static int ext4_releasepage(struct page *page, gfp_t wait)
3009 {
3010         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3011
3012         trace_ext4_releasepage(page);
3013
3014         /* Page has dirty journalled data -> cannot release */
3015         if (PageChecked(page))
3016                 return 0;
3017         if (journal)
3018                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3019         else
3020                 return try_to_free_buffers(page);
3021 }
3022
3023 /*
3024  * ext4_get_block used when preparing for a DIO write or buffer write.
3025  * We allocate an uinitialized extent if blocks haven't been allocated.
3026  * The extent will be converted to initialized after the IO is complete.
3027  */
3028 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3029                    struct buffer_head *bh_result, int create)
3030 {
3031         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3032                    inode->i_ino, create);
3033         return _ext4_get_block(inode, iblock, bh_result,
3034                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3035 }
3036
3037 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3038                    struct buffer_head *bh_result, int create)
3039 {
3040         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3041                    inode->i_ino, create);
3042         return _ext4_get_block(inode, iblock, bh_result,
3043                                EXT4_GET_BLOCKS_NO_LOCK);
3044 }
3045
3046 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3047                             ssize_t size, void *private, int ret,
3048                             bool is_async)
3049 {
3050         struct inode *inode = file_inode(iocb->ki_filp);
3051         ext4_io_end_t *io_end = iocb->private;
3052
3053         /* if not async direct IO or dio with 0 bytes write, just return */
3054         if (!io_end || !size)
3055                 goto out;
3056
3057         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3058                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3059                   iocb->private, io_end->inode->i_ino, iocb, offset,
3060                   size);
3061
3062         iocb->private = NULL;
3063
3064         /* if not aio dio with unwritten extents, just free io and return */
3065         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3066                 ext4_free_io_end(io_end);
3067 out:
3068                 inode_dio_done(inode);
3069                 if (is_async)
3070                         aio_complete(iocb, ret, 0);
3071                 return;
3072         }
3073
3074         io_end->offset = offset;
3075         io_end->size = size;
3076         if (is_async) {
3077                 io_end->iocb = iocb;
3078                 io_end->result = ret;
3079         }
3080
3081         ext4_add_complete_io(io_end);
3082 }
3083
3084 /*
3085  * For ext4 extent files, ext4 will do direct-io write to holes,
3086  * preallocated extents, and those write extend the file, no need to
3087  * fall back to buffered IO.
3088  *
3089  * For holes, we fallocate those blocks, mark them as uninitialized
3090  * If those blocks were preallocated, we mark sure they are split, but
3091  * still keep the range to write as uninitialized.
3092  *
3093  * The unwritten extents will be converted to written when DIO is completed.
3094  * For async direct IO, since the IO may still pending when return, we
3095  * set up an end_io call back function, which will do the conversion
3096  * when async direct IO completed.
3097  *
3098  * If the O_DIRECT write will extend the file then add this inode to the
3099  * orphan list.  So recovery will truncate it back to the original size
3100  * if the machine crashes during the write.
3101  *
3102  */
3103 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3104                               const struct iovec *iov, loff_t offset,
3105                               unsigned long nr_segs)
3106 {
3107         struct file *file = iocb->ki_filp;
3108         struct inode *inode = file->f_mapping->host;
3109         ssize_t ret;
3110         size_t count = iov_length(iov, nr_segs);
3111         int overwrite = 0;
3112         get_block_t *get_block_func = NULL;
3113         int dio_flags = 0;
3114         loff_t final_size = offset + count;
3115
3116         /* Use the old path for reads and writes beyond i_size. */
3117         if (rw != WRITE || final_size > inode->i_size)
3118                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3119
3120         BUG_ON(iocb->private == NULL);
3121
3122         /* If we do a overwrite dio, i_mutex locking can be released */
3123         overwrite = *((int *)iocb->private);
3124
3125         if (overwrite) {
3126                 atomic_inc(&inode->i_dio_count);
3127                 down_read(&EXT4_I(inode)->i_data_sem);
3128                 mutex_unlock(&inode->i_mutex);
3129         }
3130
3131         /*
3132          * We could direct write to holes and fallocate.
3133          *
3134          * Allocated blocks to fill the hole are marked as
3135          * uninitialized to prevent parallel buffered read to expose
3136          * the stale data before DIO complete the data IO.
3137          *
3138          * As to previously fallocated extents, ext4 get_block will
3139          * just simply mark the buffer mapped but still keep the
3140          * extents uninitialized.
3141          *
3142          * For non AIO case, we will convert those unwritten extents
3143          * to written after return back from blockdev_direct_IO.
3144          *
3145          * For async DIO, the conversion needs to be deferred when the
3146          * IO is completed. The ext4 end_io callback function will be
3147          * called to take care of the conversion work.  Here for async
3148          * case, we allocate an io_end structure to hook to the iocb.
3149          */
3150         iocb->private = NULL;
3151         ext4_inode_aio_set(inode, NULL);
3152         if (!is_sync_kiocb(iocb)) {
3153                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3154                 if (!io_end) {
3155                         ret = -ENOMEM;
3156                         goto retake_lock;
3157                 }
3158                 io_end->flag |= EXT4_IO_END_DIRECT;
3159                 iocb->private = io_end;
3160                 /*
3161                  * we save the io structure for current async direct
3162                  * IO, so that later ext4_map_blocks() could flag the
3163                  * io structure whether there is a unwritten extents
3164                  * needs to be converted when IO is completed.
3165                  */
3166                 ext4_inode_aio_set(inode, io_end);
3167         }
3168
3169         if (overwrite) {
3170                 get_block_func = ext4_get_block_write_nolock;
3171         } else {
3172                 get_block_func = ext4_get_block_write;
3173                 dio_flags = DIO_LOCKING;
3174         }
3175         ret = __blockdev_direct_IO(rw, iocb, inode,
3176                                    inode->i_sb->s_bdev, iov,
3177                                    offset, nr_segs,
3178                                    get_block_func,
3179                                    ext4_end_io_dio,
3180                                    NULL,
3181                                    dio_flags);
3182
3183         if (iocb->private)
3184                 ext4_inode_aio_set(inode, NULL);
3185         /*
3186          * The io_end structure takes a reference to the inode, that
3187          * structure needs to be destroyed and the reference to the
3188          * inode need to be dropped, when IO is complete, even with 0
3189          * byte write, or failed.
3190          *
3191          * In the successful AIO DIO case, the io_end structure will
3192          * be destroyed and the reference to the inode will be dropped
3193          * after the end_io call back function is called.
3194          *
3195          * In the case there is 0 byte write, or error case, since VFS
3196          * direct IO won't invoke the end_io call back function, we
3197          * need to free the end_io structure here.
3198          */
3199         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3200                 ext4_free_io_end(iocb->private);
3201                 iocb->private = NULL;
3202         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3203                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3204                 int err;
3205                 /*
3206                  * for non AIO case, since the IO is already
3207                  * completed, we could do the conversion right here
3208                  */
3209                 err = ext4_convert_unwritten_extents(inode,
3210                                                      offset, ret);
3211                 if (err < 0)
3212                         ret = err;
3213                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3214         }
3215
3216 retake_lock:
3217         /* take i_mutex locking again if we do a ovewrite dio */
3218         if (overwrite) {
3219                 inode_dio_done(inode);
3220                 up_read(&EXT4_I(inode)->i_data_sem);
3221                 mutex_lock(&inode->i_mutex);
3222         }
3223
3224         return ret;
3225 }
3226
3227 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3228                               const struct iovec *iov, loff_t offset,
3229                               unsigned long nr_segs)
3230 {
3231         struct file *file = iocb->ki_filp;
3232         struct inode *inode = file->f_mapping->host;
3233         ssize_t ret;
3234
3235         /*
3236          * If we are doing data journalling we don't support O_DIRECT
3237          */
3238         if (ext4_should_journal_data(inode))
3239                 return 0;
3240
3241         /* Let buffer I/O handle the inline data case. */
3242         if (ext4_has_inline_data(inode))
3243                 return 0;
3244
3245         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3246         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3247                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3248         else
3249                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3250         trace_ext4_direct_IO_exit(inode, offset,
3251                                 iov_length(iov, nr_segs), rw, ret);
3252         return ret;
3253 }
3254
3255 /*
3256  * Pages can be marked dirty completely asynchronously from ext4's journalling
3257  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3258  * much here because ->set_page_dirty is called under VFS locks.  The page is
3259  * not necessarily locked.
3260  *
3261  * We cannot just dirty the page and leave attached buffers clean, because the
3262  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3263  * or jbddirty because all the journalling code will explode.
3264  *
3265  * So what we do is to mark the page "pending dirty" and next time writepage
3266  * is called, propagate that into the buffers appropriately.
3267  */
3268 static int ext4_journalled_set_page_dirty(struct page *page)
3269 {
3270         SetPageChecked(page);
3271         return __set_page_dirty_nobuffers(page);
3272 }
3273
3274 static const struct address_space_operations ext4_aops = {
3275         .readpage               = ext4_readpage,
3276         .readpages              = ext4_readpages,
3277         .writepage              = ext4_writepage,
3278         .write_begin            = ext4_write_begin,
3279         .write_end              = ext4_write_end,
3280         .bmap                   = ext4_bmap,
3281         .invalidatepage         = ext4_invalidatepage,
3282         .releasepage            = ext4_releasepage,
3283         .direct_IO              = ext4_direct_IO,
3284         .migratepage            = buffer_migrate_page,
3285         .is_partially_uptodate  = block_is_partially_uptodate,
3286         .error_remove_page      = generic_error_remove_page,
3287 };
3288
3289 static const struct address_space_operations ext4_journalled_aops = {
3290         .readpage               = ext4_readpage,
3291         .readpages              = ext4_readpages,
3292         .writepage              = ext4_writepage,
3293         .write_begin            = ext4_write_begin,
3294         .write_end              = ext4_journalled_write_end,
3295         .set_page_dirty         = ext4_journalled_set_page_dirty,
3296         .bmap                   = ext4_bmap,
3297         .invalidatepage         = ext4_journalled_invalidatepage,
3298         .releasepage            = ext4_releasepage,
3299         .direct_IO              = ext4_direct_IO,
3300         .is_partially_uptodate  = block_is_partially_uptodate,
3301         .error_remove_page      = generic_error_remove_page,
3302 };
3303
3304 static const struct address_space_operations ext4_da_aops = {
3305         .readpage               = ext4_readpage,
3306         .readpages              = ext4_readpages,
3307         .writepage              = ext4_writepage,
3308         .writepages             = ext4_da_writepages,
3309         .write_begin            = ext4_da_write_begin,
3310         .write_end              = ext4_da_write_end,
3311         .bmap                   = ext4_bmap,
3312         .invalidatepage         = ext4_da_invalidatepage,
3313         .releasepage            = ext4_releasepage,
3314         .direct_IO              = ext4_direct_IO,
3315         .migratepage            = buffer_migrate_page,
3316         .is_partially_uptodate  = block_is_partially_uptodate,
3317         .error_remove_page      = generic_error_remove_page,
3318 };
3319
3320 void ext4_set_aops(struct inode *inode)
3321 {
3322         switch (ext4_inode_journal_mode(inode)) {
3323         case EXT4_INODE_ORDERED_DATA_MODE:
3324                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3325                 break;
3326         case EXT4_INODE_WRITEBACK_DATA_MODE:
3327                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3328                 break;
3329         case EXT4_INODE_JOURNAL_DATA_MODE:
3330                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3331                 return;
3332         default:
3333                 BUG();
3334         }
3335         if (test_opt(inode->i_sb, DELALLOC))
3336                 inode->i_mapping->a_ops = &ext4_da_aops;
3337         else
3338                 inode->i_mapping->a_ops = &ext4_aops;
3339 }
3340
3341
3342 /*
3343  * ext4_discard_partial_page_buffers()
3344  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3345  * This function finds and locks the page containing the offset
3346  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3347  * Calling functions that already have the page locked should call
3348  * ext4_discard_partial_page_buffers_no_lock directly.
3349  */
3350 int ext4_discard_partial_page_buffers(handle_t *handle,
3351                 struct address_space *mapping, loff_t from,
3352                 loff_t length, int flags)
3353 {
3354         struct inode *inode = mapping->host;
3355         struct page *page;
3356         int err = 0;
3357
3358         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3359                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3360         if (!page)
3361                 return -ENOMEM;
3362
3363         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3364                 from, length, flags);
3365
3366         unlock_page(page);
3367         page_cache_release(page);
3368         return err;
3369 }
3370
3371 /*
3372  * ext4_discard_partial_page_buffers_no_lock()
3373  * Zeros a page range of length 'length' starting from offset 'from'.
3374  * Buffer heads that correspond to the block aligned regions of the
3375  * zeroed range will be unmapped.  Unblock aligned regions
3376  * will have the corresponding buffer head mapped if needed so that
3377  * that region of the page can be updated with the partial zero out.
3378  *
3379  * This function assumes that the page has already been  locked.  The
3380  * The range to be discarded must be contained with in the given page.
3381  * If the specified range exceeds the end of the page it will be shortened
3382  * to the end of the page that corresponds to 'from'.  This function is
3383  * appropriate for updating a page and it buffer heads to be unmapped and
3384  * zeroed for blocks that have been either released, or are going to be
3385  * released.
3386  *
3387  * handle: The journal handle
3388  * inode:  The files inode
3389  * page:   A locked page that contains the offset "from"
3390  * from:   The starting byte offset (from the beginning of the file)
3391  *         to begin discarding
3392  * len:    The length of bytes to discard
3393  * flags:  Optional flags that may be used:
3394  *
3395  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3396  *         Only zero the regions of the page whose buffer heads
3397  *         have already been unmapped.  This flag is appropriate
3398  *         for updating the contents of a page whose blocks may
3399  *         have already been released, and we only want to zero
3400  *         out the regions that correspond to those released blocks.
3401  *
3402  * Returns zero on success or negative on failure.
3403  */
3404 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3405                 struct inode *inode, struct page *page, loff_t from,
3406                 loff_t length, int flags)
3407 {
3408         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3409         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3410         unsigned int blocksize, max, pos;
3411         ext4_lblk_t iblock;
3412         struct buffer_head *bh;
3413         int err = 0;
3414
3415         blocksize = inode->i_sb->s_blocksize;
3416         max = PAGE_CACHE_SIZE - offset;
3417
3418         if (index != page->index)
3419                 return -EINVAL;
3420
3421         /*
3422          * correct length if it does not fall between
3423          * 'from' and the end of the page
3424          */
3425         if (length > max || length < 0)
3426                 length = max;
3427
3428         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3429
3430         if (!page_has_buffers(page))
3431                 create_empty_buffers(page, blocksize, 0);
3432
3433         /* Find the buffer that contains "offset" */
3434         bh = page_buffers(page);
3435         pos = blocksize;
3436         while (offset >= pos) {
3437                 bh = bh->b_this_page;
3438                 iblock++;
3439                 pos += blocksize;
3440         }
3441
3442         pos = offset;
3443         while (pos < offset + length) {
3444                 unsigned int end_of_block, range_to_discard;
3445
3446                 err = 0;
3447
3448                 /* The length of space left to zero and unmap */
3449                 range_to_discard = offset + length - pos;
3450
3451                 /* The length of space until the end of the block */
3452                 end_of_block = blocksize - (pos & (blocksize-1));
3453
3454                 /*
3455                  * Do not unmap or zero past end of block
3456                  * for this buffer head
3457                  */
3458                 if (range_to_discard > end_of_block)
3459                         range_to_discard = end_of_block;
3460
3461
3462                 /*
3463                  * Skip this buffer head if we are only zeroing unampped
3464                  * regions of the page
3465                  */
3466                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3467                         buffer_mapped(bh))
3468                                 goto next;
3469
3470                 /* If the range is block aligned, unmap */
3471                 if (range_to_discard == blocksize) {
3472                         clear_buffer_dirty(bh);
3473                         bh->b_bdev = NULL;
3474                         clear_buffer_mapped(bh);
3475                         clear_buffer_req(bh);
3476                         clear_buffer_new(bh);
3477                         clear_buffer_delay(bh);
3478                         clear_buffer_unwritten(bh);
3479                         clear_buffer_uptodate(bh);
3480                         zero_user(page, pos, range_to_discard);
3481                         BUFFER_TRACE(bh, "Buffer discarded");
3482                         goto next;
3483                 }
3484
3485                 /*
3486                  * If this block is not completely contained in the range
3487                  * to be discarded, then it is not going to be released. Because
3488                  * we need to keep this block, we need to make sure this part
3489                  * of the page is uptodate before we modify it by writeing
3490                  * partial zeros on it.
3491                  */
3492                 if (!buffer_mapped(bh)) {
3493                         /*
3494                          * Buffer head must be mapped before we can read
3495                          * from the block
3496                          */
3497                         BUFFER_TRACE(bh, "unmapped");
3498                         ext4_get_block(inode, iblock, bh, 0);
3499                         /* unmapped? It's a hole - nothing to do */
3500                         if (!buffer_mapped(bh)) {
3501                                 BUFFER_TRACE(bh, "still unmapped");
3502                                 goto next;
3503                         }
3504                 }
3505
3506                 /* Ok, it's mapped. Make sure it's up-to-date */
3507                 if (PageUptodate(page))
3508                         set_buffer_uptodate(bh);
3509
3510                 if (!buffer_uptodate(bh)) {
3511                         err = -EIO;
3512                         ll_rw_block(READ, 1, &bh);
3513                         wait_on_buffer(bh);
3514                         /* Uhhuh. Read error. Complain and punt.*/
3515                         if (!buffer_uptodate(bh))
3516                                 goto next;
3517                 }
3518
3519                 if (ext4_should_journal_data(inode)) {
3520                         BUFFER_TRACE(bh, "get write access");
3521                         err = ext4_journal_get_write_access(handle, bh);
3522                         if (err)
3523                                 goto next;
3524                 }
3525
3526                 zero_user(page, pos, range_to_discard);
3527
3528                 err = 0;
3529                 if (ext4_should_journal_data(inode)) {
3530                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3531                 } else
3532                         mark_buffer_dirty(bh);
3533
3534                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3535 next:
3536                 bh = bh->b_this_page;
3537                 iblock++;
3538                 pos += range_to_discard;
3539         }
3540
3541         return err;
3542 }
3543
3544 int ext4_can_truncate(struct inode *inode)
3545 {
3546         if (S_ISREG(inode->i_mode))
3547                 return 1;
3548         if (S_ISDIR(inode->i_mode))
3549                 return 1;
3550         if (S_ISLNK(inode->i_mode))
3551                 return !ext4_inode_is_fast_symlink(inode);
3552         return 0;
3553 }
3554
3555 /*
3556  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3557  * associated with the given offset and length
3558  *
3559  * @inode:  File inode
3560  * @offset: The offset where the hole will begin
3561  * @len:    The length of the hole
3562  *
3563  * Returns: 0 on success or negative on failure
3564  */
3565
3566 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3567 {
3568         struct inode *inode = file_inode(file);
3569         if (!S_ISREG(inode->i_mode))
3570                 return -EOPNOTSUPP;
3571
3572         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3573                 return ext4_ind_punch_hole(file, offset, length);
3574
3575         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3576                 /* TODO: Add support for bigalloc file systems */
3577                 return -EOPNOTSUPP;
3578         }
3579
3580         trace_ext4_punch_hole(inode, offset, length);
3581
3582         return ext4_ext_punch_hole(file, offset, length);
3583 }
3584
3585 /*
3586  * ext4_truncate()
3587  *
3588  * We block out ext4_get_block() block instantiations across the entire
3589  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3590  * simultaneously on behalf of the same inode.
3591  *
3592  * As we work through the truncate and commit bits of it to the journal there
3593  * is one core, guiding principle: the file's tree must always be consistent on
3594  * disk.  We must be able to restart the truncate after a crash.
3595  *
3596  * The file's tree may be transiently inconsistent in memory (although it
3597  * probably isn't), but whenever we close off and commit a journal transaction,
3598  * the contents of (the filesystem + the journal) must be consistent and
3599  * restartable.  It's pretty simple, really: bottom up, right to left (although
3600  * left-to-right works OK too).
3601  *
3602  * Note that at recovery time, journal replay occurs *before* the restart of
3603  * truncate against the orphan inode list.
3604  *
3605  * The committed inode has the new, desired i_size (which is the same as
3606  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3607  * that this inode's truncate did not complete and it will again call
3608  * ext4_truncate() to have another go.  So there will be instantiated blocks
3609  * to the right of the truncation point in a crashed ext4 filesystem.  But
3610  * that's fine - as long as they are linked from the inode, the post-crash
3611  * ext4_truncate() run will find them and release them.
3612  */
3613 void ext4_truncate(struct inode *inode)
3614 {
3615         trace_ext4_truncate_enter(inode);
3616
3617         if (!ext4_can_truncate(inode))
3618                 return;
3619
3620         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3621
3622         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3623                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3624
3625         if (ext4_has_inline_data(inode)) {
3626                 int has_inline = 1;
3627
3628                 ext4_inline_data_truncate(inode, &has_inline);
3629                 if (has_inline)
3630                         return;
3631         }
3632
3633         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3634                 ext4_ext_truncate(inode);
3635         else
3636                 ext4_ind_truncate(inode);
3637
3638         trace_ext4_truncate_exit(inode);
3639 }
3640
3641 /*
3642  * ext4_get_inode_loc returns with an extra refcount against the inode's
3643  * underlying buffer_head on success. If 'in_mem' is true, we have all
3644  * data in memory that is needed to recreate the on-disk version of this
3645  * inode.
3646  */
3647 static int __ext4_get_inode_loc(struct inode *inode,
3648                                 struct ext4_iloc *iloc, int in_mem)
3649 {
3650         struct ext4_group_desc  *gdp;
3651         struct buffer_head      *bh;
3652         struct super_block      *sb = inode->i_sb;
3653         ext4_fsblk_t            block;
3654         int                     inodes_per_block, inode_offset;
3655
3656         iloc->bh = NULL;
3657         if (!ext4_valid_inum(sb, inode->i_ino))
3658                 return -EIO;
3659
3660         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3661         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3662         if (!gdp)
3663                 return -EIO;
3664
3665         /*
3666          * Figure out the offset within the block group inode table
3667          */
3668         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3669         inode_offset = ((inode->i_ino - 1) %
3670                         EXT4_INODES_PER_GROUP(sb));
3671         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3672         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3673
3674         bh = sb_getblk(sb, block);
3675         if (unlikely(!bh))
3676                 return -ENOMEM;
3677         if (!buffer_uptodate(bh)) {
3678                 lock_buffer(bh);
3679
3680                 /*
3681                  * If the buffer has the write error flag, we have failed
3682                  * to write out another inode in the same block.  In this
3683                  * case, we don't have to read the block because we may
3684                  * read the old inode data successfully.
3685                  */
3686                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3687                         set_buffer_uptodate(bh);
3688
3689                 if (buffer_uptodate(bh)) {
3690                         /* someone brought it uptodate while we waited */
3691                         unlock_buffer(bh);
3692                         goto has_buffer;
3693                 }
3694
3695                 /*
3696                  * If we have all information of the inode in memory and this
3697                  * is the only valid inode in the block, we need not read the
3698                  * block.
3699                  */
3700                 if (in_mem) {
3701                         struct buffer_head *bitmap_bh;
3702                         int i, start;
3703
3704                         start = inode_offset & ~(inodes_per_block - 1);
3705
3706                         /* Is the inode bitmap in cache? */
3707                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3708                         if (unlikely(!bitmap_bh))
3709                                 goto make_io;
3710
3711                         /*
3712                          * If the inode bitmap isn't in cache then the
3713                          * optimisation may end up performing two reads instead
3714                          * of one, so skip it.
3715                          */
3716                         if (!buffer_uptodate(bitmap_bh)) {
3717                                 brelse(bitmap_bh);
3718                                 goto make_io;
3719                         }
3720                         for (i = start; i < start + inodes_per_block; i++) {
3721                                 if (i == inode_offset)
3722                                         continue;
3723                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3724                                         break;
3725                         }
3726                         brelse(bitmap_bh);
3727                         if (i == start + inodes_per_block) {
3728                                 /* all other inodes are free, so skip I/O */
3729                                 memset(bh->b_data, 0, bh->b_size);
3730                                 set_buffer_uptodate(bh);
3731                                 unlock_buffer(bh);
3732                                 goto has_buffer;
3733                         }
3734                 }
3735
3736 make_io:
3737                 /*
3738                  * If we need to do any I/O, try to pre-readahead extra
3739                  * blocks from the inode table.
3740                  */
3741                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3742                         ext4_fsblk_t b, end, table;
3743                         unsigned num;
3744
3745                         table = ext4_inode_table(sb, gdp);
3746                         /* s_inode_readahead_blks is always a power of 2 */
3747                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3748                         if (table > b)
3749                                 b = table;
3750                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3751                         num = EXT4_INODES_PER_GROUP(sb);
3752                         if (ext4_has_group_desc_csum(sb))
3753                                 num -= ext4_itable_unused_count(sb, gdp);
3754                         table += num / inodes_per_block;
3755                         if (end > table)
3756                                 end = table;
3757                         while (b <= end)
3758                                 sb_breadahead(sb, b++);
3759                 }
3760
3761                 /*
3762                  * There are other valid inodes in the buffer, this inode
3763                  * has in-inode xattrs, or we don't have this inode in memory.
3764                  * Read the block from disk.
3765                  */
3766                 trace_ext4_load_inode(inode);
3767                 get_bh(bh);
3768                 bh->b_end_io = end_buffer_read_sync;
3769                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3770                 wait_on_buffer(bh);
3771                 if (!buffer_uptodate(bh)) {
3772                         EXT4_ERROR_INODE_BLOCK(inode, block,
3773                                                "unable to read itable block");
3774                         brelse(bh);
3775                         return -EIO;
3776                 }
3777         }
3778 has_buffer:
3779         iloc->bh = bh;
3780         return 0;
3781 }
3782
3783 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3784 {
3785         /* We have all inode data except xattrs in memory here. */
3786         return __ext4_get_inode_loc(inode, iloc,
3787                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3788 }
3789
3790 void ext4_set_inode_flags(struct inode *inode)
3791 {
3792         unsigned int flags = EXT4_I(inode)->i_flags;
3793
3794         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3795         if (flags & EXT4_SYNC_FL)
3796                 inode->i_flags |= S_SYNC;
3797         if (flags & EXT4_APPEND_FL)
3798                 inode->i_flags |= S_APPEND;
3799         if (flags & EXT4_IMMUTABLE_FL)
3800                 inode->i_flags |= S_IMMUTABLE;
3801         if (flags & EXT4_NOATIME_FL)
3802                 inode->i_flags |= S_NOATIME;
3803         if (flags & EXT4_DIRSYNC_FL)
3804                 inode->i_flags |= S_DIRSYNC;
3805 }
3806
3807 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3808 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3809 {
3810         unsigned int vfs_fl;
3811         unsigned long old_fl, new_fl;
3812
3813         do {
3814                 vfs_fl = ei->vfs_inode.i_flags;
3815                 old_fl = ei->i_flags;
3816                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3817                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3818                                 EXT4_DIRSYNC_FL);
3819                 if (vfs_fl & S_SYNC)
3820                         new_fl |= EXT4_SYNC_FL;
3821                 if (vfs_fl & S_APPEND)
3822                         new_fl |= EXT4_APPEND_FL;
3823                 if (vfs_fl & S_IMMUTABLE)
3824                         new_fl |= EXT4_IMMUTABLE_FL;
3825                 if (vfs_fl & S_NOATIME)
3826                         new_fl |= EXT4_NOATIME_FL;
3827                 if (vfs_fl & S_DIRSYNC)
3828                         new_fl |= EXT4_DIRSYNC_FL;
3829         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3830 }
3831
3832 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3833                                   struct ext4_inode_info *ei)
3834 {
3835         blkcnt_t i_blocks ;
3836         struct inode *inode = &(ei->vfs_inode);
3837         struct super_block *sb = inode->i_sb;
3838
3839         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3840                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3841                 /* we are using combined 48 bit field */
3842                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3843                                         le32_to_cpu(raw_inode->i_blocks_lo);
3844                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3845                         /* i_blocks represent file system block size */
3846                         return i_blocks  << (inode->i_blkbits - 9);
3847                 } else {
3848                         return i_blocks;
3849                 }
3850         } else {
3851                 return le32_to_cpu(raw_inode->i_blocks_lo);
3852         }
3853 }
3854
3855 static inline void ext4_iget_extra_inode(struct inode *inode,
3856                                          struct ext4_inode *raw_inode,
3857                                          struct ext4_inode_info *ei)
3858 {
3859         __le32 *magic = (void *)raw_inode +
3860                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3861         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3862                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3863                 ext4_find_inline_data_nolock(inode);
3864         } else
3865                 EXT4_I(inode)->i_inline_off = 0;
3866 }
3867
3868 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3869 {
3870         struct ext4_iloc iloc;
3871         struct ext4_inode *raw_inode;
3872         struct ext4_inode_info *ei;
3873         struct inode *inode;
3874         journal_t *journal = EXT4_SB(sb)->s_journal;
3875         long ret;
3876         int block;
3877         uid_t i_uid;
3878         gid_t i_gid;
3879
3880         inode = iget_locked(sb, ino);
3881         if (!inode)
3882                 return ERR_PTR(-ENOMEM);
3883         if (!(inode->i_state & I_NEW))
3884                 return inode;
3885
3886         ei = EXT4_I(inode);
3887         iloc.bh = NULL;
3888
3889         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3890         if (ret < 0)
3891                 goto bad_inode;
3892         raw_inode = ext4_raw_inode(&iloc);
3893
3894         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3895                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3896                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3897                     EXT4_INODE_SIZE(inode->i_sb)) {
3898                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3899                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3900                                 EXT4_INODE_SIZE(inode->i_sb));
3901                         ret = -EIO;
3902                         goto bad_inode;
3903                 }
3904         } else
3905                 ei->i_extra_isize = 0;
3906
3907         /* Precompute checksum seed for inode metadata */
3908         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3909                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3910                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3911                 __u32 csum;
3912                 __le32 inum = cpu_to_le32(inode->i_ino);
3913                 __le32 gen = raw_inode->i_generation;
3914                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3915                                    sizeof(inum));
3916                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3917                                               sizeof(gen));
3918         }
3919
3920         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3921                 EXT4_ERROR_INODE(inode, "checksum invalid");
3922                 ret = -EIO;
3923                 goto bad_inode;
3924         }
3925
3926         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3927         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3928         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3929         if (!(test_opt(inode->i_sb, NO_UID32))) {
3930                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3931                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3932         }
3933         i_uid_write(inode, i_uid);
3934         i_gid_write(inode, i_gid);
3935         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3936
3937         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3938         ei->i_inline_off = 0;
3939         ei->i_dir_start_lookup = 0;
3940         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3941         /* We now have enough fields to check if the inode was active or not.
3942          * This is needed because nfsd might try to access dead inodes
3943          * the test is that same one that e2fsck uses
3944          * NeilBrown 1999oct15
3945          */
3946         if (inode->i_nlink == 0) {
3947                 if (inode->i_mode == 0 ||
3948                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3949                         /* this inode is deleted */
3950                         ret = -ESTALE;
3951                         goto bad_inode;
3952                 }
3953                 /* The only unlinked inodes we let through here have
3954                  * valid i_mode and are being read by the orphan
3955                  * recovery code: that's fine, we're about to complete
3956                  * the process of deleting those. */
3957         }
3958         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3959         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3960         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3961         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3962                 ei->i_file_acl |=
3963                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3964         inode->i_size = ext4_isize(raw_inode);
3965         ei->i_disksize = inode->i_size;
3966 #ifdef CONFIG_QUOTA
3967         ei->i_reserved_quota = 0;
3968 #endif
3969         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3970         ei->i_block_group = iloc.block_group;
3971         ei->i_last_alloc_group = ~0;
3972         /*
3973          * NOTE! The in-memory inode i_data array is in little-endian order
3974          * even on big-endian machines: we do NOT byteswap the block numbers!
3975          */
3976         for (block = 0; block < EXT4_N_BLOCKS; block++)
3977                 ei->i_data[block] = raw_inode->i_block[block];
3978         INIT_LIST_HEAD(&ei->i_orphan);
3979
3980         /*
3981          * Set transaction id's of transactions that have to be committed
3982          * to finish f[data]sync. We set them to currently running transaction
3983          * as we cannot be sure that the inode or some of its metadata isn't
3984          * part of the transaction - the inode could have been reclaimed and
3985          * now it is reread from disk.
3986          */
3987         if (journal) {
3988                 transaction_t *transaction;
3989                 tid_t tid;
3990
3991                 read_lock(&journal->j_state_lock);
3992                 if (journal->j_running_transaction)
3993                         transaction = journal->j_running_transaction;
3994                 else
3995                         transaction = journal->j_committing_transaction;
3996                 if (transaction)
3997                         tid = transaction->t_tid;
3998                 else
3999                         tid = journal->j_commit_sequence;
4000                 read_unlock(&journal->j_state_lock);
4001                 ei->i_sync_tid = tid;
4002                 ei->i_datasync_tid = tid;
4003         }
4004
4005         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4006                 if (ei->i_extra_isize == 0) {
4007                         /* The extra space is currently unused. Use it. */
4008                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4009                                             EXT4_GOOD_OLD_INODE_SIZE;
4010                 } else {
4011                         ext4_iget_extra_inode(inode, raw_inode, ei);
4012                 }
4013         }
4014
4015         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4016         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4017         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4018         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4019
4020         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4021         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4022                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4023                         inode->i_version |=
4024                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4025         }
4026
4027         ret = 0;
4028         if (ei->i_file_acl &&
4029             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4030                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4031                                  ei->i_file_acl);
4032                 ret = -EIO;
4033                 goto bad_inode;
4034         } else if (!ext4_has_inline_data(inode)) {
4035                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4036                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4037                             (S_ISLNK(inode->i_mode) &&
4038                              !ext4_inode_is_fast_symlink(inode))))
4039                                 /* Validate extent which is part of inode */
4040                                 ret = ext4_ext_check_inode(inode);
4041                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4042                            (S_ISLNK(inode->i_mode) &&
4043                             !ext4_inode_is_fast_symlink(inode))) {
4044                         /* Validate block references which are part of inode */
4045                         ret = ext4_ind_check_inode(inode);
4046                 }
4047         }
4048         if (ret)
4049                 goto bad_inode;
4050
4051         if (S_ISREG(inode->i_mode)) {
4052                 inode->i_op = &ext4_file_inode_operations;
4053                 inode->i_fop = &ext4_file_operations;
4054                 ext4_set_aops(inode);
4055         } else if (S_ISDIR(inode->i_mode)) {
4056                 inode->i_op = &ext4_dir_inode_operations;
4057                 inode->i_fop = &ext4_dir_operations;
4058         } else if (S_ISLNK(inode->i_mode)) {
4059                 if (ext4_inode_is_fast_symlink(inode)) {
4060                         inode->i_op = &ext4_fast_symlink_inode_operations;
4061                         nd_terminate_link(ei->i_data, inode->i_size,
4062                                 sizeof(ei->i_data) - 1);
4063                 } else {
4064                         inode->i_op = &ext4_symlink_inode_operations;
4065                         ext4_set_aops(inode);
4066                 }
4067         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4068               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4069                 inode->i_op = &ext4_special_inode_operations;
4070                 if (raw_inode->i_block[0])
4071                         init_special_inode(inode, inode->i_mode,
4072                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4073                 else
4074                         init_special_inode(inode, inode->i_mode,
4075                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4076         } else {
4077                 ret = -EIO;
4078                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4079                 goto bad_inode;
4080         }
4081         brelse(iloc.bh);
4082         ext4_set_inode_flags(inode);
4083         unlock_new_inode(inode);
4084         return inode;
4085
4086 bad_inode:
4087         brelse(iloc.bh);
4088         iget_failed(inode);
4089         return ERR_PTR(ret);
4090 }
4091
4092 static int ext4_inode_blocks_set(handle_t *handle,
4093                                 struct ext4_inode *raw_inode,
4094                                 struct ext4_inode_info *ei)
4095 {
4096         struct inode *inode = &(ei->vfs_inode);
4097         u64 i_blocks = inode->i_blocks;
4098         struct super_block *sb = inode->i_sb;
4099
4100         if (i_blocks <= ~0U) {
4101                 /*
4102                  * i_blocks can be represented in a 32 bit variable
4103                  * as multiple of 512 bytes
4104                  */
4105                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4106                 raw_inode->i_blocks_high = 0;
4107                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4108                 return 0;
4109         }
4110         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4111                 return -EFBIG;
4112
4113         if (i_blocks <= 0xffffffffffffULL) {
4114                 /*
4115                  * i_blocks can be represented in a 48 bit variable
4116                  * as multiple of 512 bytes
4117                  */
4118                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4119                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4120                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4121         } else {
4122                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4123                 /* i_block is stored in file system block size */
4124                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4125                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4126                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4127         }
4128         return 0;
4129 }
4130
4131 /*
4132  * Post the struct inode info into an on-disk inode location in the
4133  * buffer-cache.  This gobbles the caller's reference to the
4134  * buffer_head in the inode location struct.
4135  *
4136  * The caller must have write access to iloc->bh.
4137  */
4138 static int ext4_do_update_inode(handle_t *handle,
4139                                 struct inode *inode,
4140                                 struct ext4_iloc *iloc)
4141 {
4142         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4143         struct ext4_inode_info *ei = EXT4_I(inode);
4144         struct buffer_head *bh = iloc->bh;
4145         int err = 0, rc, block;
4146         int need_datasync = 0;
4147         uid_t i_uid;
4148         gid_t i_gid;
4149
4150         /* For fields not not tracking in the in-memory inode,
4151          * initialise them to zero for new inodes. */
4152         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4153                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4154
4155         ext4_get_inode_flags(ei);
4156         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4157         i_uid = i_uid_read(inode);
4158         i_gid = i_gid_read(inode);
4159         if (!(test_opt(inode->i_sb, NO_UID32))) {
4160                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4161                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4162 /*
4163  * Fix up interoperability with old kernels. Otherwise, old inodes get
4164  * re-used with the upper 16 bits of the uid/gid intact
4165  */
4166                 if (!ei->i_dtime) {
4167                         raw_inode->i_uid_high =
4168                                 cpu_to_le16(high_16_bits(i_uid));
4169                         raw_inode->i_gid_high =
4170                                 cpu_to_le16(high_16_bits(i_gid));
4171                 } else {
4172                         raw_inode->i_uid_high = 0;
4173                         raw_inode->i_gid_high = 0;
4174                 }
4175         } else {
4176                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4177                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4178                 raw_inode->i_uid_high = 0;
4179                 raw_inode->i_gid_high = 0;
4180         }
4181         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4182
4183         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4184         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4185         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4186         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4187
4188         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4189                 goto out_brelse;
4190         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4191         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4192         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4193             cpu_to_le32(EXT4_OS_HURD))
4194                 raw_inode->i_file_acl_high =
4195                         cpu_to_le16(ei->i_file_acl >> 32);
4196         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4197         if (ei->i_disksize != ext4_isize(raw_inode)) {
4198                 ext4_isize_set(raw_inode, ei->i_disksize);
4199                 need_datasync = 1;
4200         }
4201         if (ei->i_disksize > 0x7fffffffULL) {
4202                 struct super_block *sb = inode->i_sb;
4203                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4204                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4205                                 EXT4_SB(sb)->s_es->s_rev_level ==
4206                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4207                         /* If this is the first large file
4208                          * created, add a flag to the superblock.
4209                          */
4210                         err = ext4_journal_get_write_access(handle,
4211                                         EXT4_SB(sb)->s_sbh);
4212                         if (err)
4213                                 goto out_brelse;
4214                         ext4_update_dynamic_rev(sb);
4215                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4216                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4217                         ext4_handle_sync(handle);
4218                         err = ext4_handle_dirty_super(handle, sb);
4219                 }
4220         }
4221         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4222         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4223                 if (old_valid_dev(inode->i_rdev)) {
4224                         raw_inode->i_block[0] =
4225                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4226                         raw_inode->i_block[1] = 0;
4227                 } else {
4228                         raw_inode->i_block[0] = 0;
4229                         raw_inode->i_block[1] =
4230                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4231                         raw_inode->i_block[2] = 0;
4232                 }
4233         } else if (!ext4_has_inline_data(inode)) {
4234                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4235                         raw_inode->i_block[block] = ei->i_data[block];
4236         }
4237
4238         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4239         if (ei->i_extra_isize) {
4240                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4241                         raw_inode->i_version_hi =
4242                         cpu_to_le32(inode->i_version >> 32);
4243                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4244         }
4245
4246         ext4_inode_csum_set(inode, raw_inode, ei);
4247
4248         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4249         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4250         if (!err)
4251                 err = rc;
4252         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4253
4254         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4255 out_brelse:
4256         brelse(bh);
4257         ext4_std_error(inode->i_sb, err);
4258         return err;
4259 }
4260
4261 /*
4262  * ext4_write_inode()
4263  *
4264  * We are called from a few places:
4265  *
4266  * - Within generic_file_write() for O_SYNC files.
4267  *   Here, there will be no transaction running. We wait for any running
4268  *   transaction to commit.
4269  *
4270  * - Within sys_sync(), kupdate and such.
4271  *   We wait on commit, if tol to.
4272  *
4273  * - Within prune_icache() (PF_MEMALLOC == true)
4274  *   Here we simply return.  We can't afford to block kswapd on the
4275  *   journal commit.
4276  *
4277  * In all cases it is actually safe for us to return without doing anything,
4278  * because the inode has been copied into a raw inode buffer in
4279  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4280  * knfsd.
4281  *
4282  * Note that we are absolutely dependent upon all inode dirtiers doing the
4283  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4284  * which we are interested.
4285  *
4286  * It would be a bug for them to not do this.  The code:
4287  *
4288  *      mark_inode_dirty(inode)
4289  *      stuff();
4290  *      inode->i_size = expr;
4291  *
4292  * is in error because a kswapd-driven write_inode() could occur while
4293  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4294  * will no longer be on the superblock's dirty inode list.
4295  */
4296 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4297 {
4298         int err;
4299
4300         if (current->flags & PF_MEMALLOC)
4301                 return 0;
4302
4303         if (EXT4_SB(inode->i_sb)->s_journal) {
4304                 if (ext4_journal_current_handle()) {
4305                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4306                         dump_stack();
4307                         return -EIO;
4308                 }
4309
4310                 if (wbc->sync_mode != WB_SYNC_ALL)
4311                         return 0;
4312
4313                 err = ext4_force_commit(inode->i_sb);
4314         } else {
4315                 struct ext4_iloc iloc;
4316
4317                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4318                 if (err)
4319                         return err;
4320                 if (wbc->sync_mode == WB_SYNC_ALL)
4321                         sync_dirty_buffer(iloc.bh);
4322                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4323                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4324                                          "IO error syncing inode");
4325                         err = -EIO;
4326                 }
4327                 brelse(iloc.bh);
4328         }
4329         return err;
4330 }
4331
4332 /*
4333  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4334  * buffers that are attached to a page stradding i_size and are undergoing
4335  * commit. In that case we have to wait for commit to finish and try again.
4336  */
4337 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4338 {
4339         struct page *page;
4340         unsigned offset;
4341         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4342         tid_t commit_tid = 0;
4343         int ret;
4344
4345         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4346         /*
4347          * All buffers in the last page remain valid? Then there's nothing to
4348          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4349          * blocksize case
4350          */
4351         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4352                 return;
4353         while (1) {
4354                 page = find_lock_page(inode->i_mapping,
4355                                       inode->i_size >> PAGE_CACHE_SHIFT);
4356                 if (!page)
4357                         return;
4358                 ret = __ext4_journalled_invalidatepage(page, offset);
4359                 unlock_page(page);
4360                 page_cache_release(page);
4361                 if (ret != -EBUSY)
4362                         return;
4363                 commit_tid = 0;
4364                 read_lock(&journal->j_state_lock);
4365                 if (journal->j_committing_transaction)
4366                         commit_tid = journal->j_committing_transaction->t_tid;
4367                 read_unlock(&journal->j_state_lock);
4368                 if (commit_tid)
4369                         jbd2_log_wait_commit(journal, commit_tid);
4370         }
4371 }
4372
4373 /*
4374  * ext4_setattr()
4375  *
4376  * Called from notify_change.
4377  *
4378  * We want to trap VFS attempts to truncate the file as soon as
4379  * possible.  In particular, we want to make sure that when the VFS
4380  * shrinks i_size, we put the inode on the orphan list and modify
4381  * i_disksize immediately, so that during the subsequent flushing of
4382  * dirty pages and freeing of disk blocks, we can guarantee that any
4383  * commit will leave the blocks being flushed in an unused state on
4384  * disk.  (On recovery, the inode will get truncated and the blocks will
4385  * be freed, so we have a strong guarantee that no future commit will
4386  * leave these blocks visible to the user.)
4387  *
4388  * Another thing we have to assure is that if we are in ordered mode
4389  * and inode is still attached to the committing transaction, we must
4390  * we start writeout of all the dirty pages which are being truncated.
4391  * This way we are sure that all the data written in the previous
4392  * transaction are already on disk (truncate waits for pages under
4393  * writeback).
4394  *
4395  * Called with inode->i_mutex down.
4396  */
4397 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4398 {
4399         struct inode *inode = dentry->d_inode;
4400         int error, rc = 0;
4401         int orphan = 0;
4402         const unsigned int ia_valid = attr->ia_valid;
4403
4404         error = inode_change_ok(inode, attr);
4405         if (error)
4406                 return error;
4407
4408         if (is_quota_modification(inode, attr))
4409                 dquot_initialize(inode);
4410         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4411             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4412                 handle_t *handle;
4413
4414                 /* (user+group)*(old+new) structure, inode write (sb,
4415                  * inode block, ? - but truncate inode update has it) */
4416                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4417                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4418                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4419                 if (IS_ERR(handle)) {
4420                         error = PTR_ERR(handle);
4421                         goto err_out;
4422                 }
4423                 error = dquot_transfer(inode, attr);
4424                 if (error) {
4425                         ext4_journal_stop(handle);
4426                         return error;
4427                 }
4428                 /* Update corresponding info in inode so that everything is in
4429                  * one transaction */
4430                 if (attr->ia_valid & ATTR_UID)
4431                         inode->i_uid = attr->ia_uid;
4432                 if (attr->ia_valid & ATTR_GID)
4433                         inode->i_gid = attr->ia_gid;
4434                 error = ext4_mark_inode_dirty(handle, inode);
4435                 ext4_journal_stop(handle);
4436         }
4437
4438         if (attr->ia_valid & ATTR_SIZE) {
4439
4440                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4441                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4442
4443                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4444                                 return -EFBIG;
4445                 }
4446         }
4447
4448         if (S_ISREG(inode->i_mode) &&
4449             attr->ia_valid & ATTR_SIZE &&
4450             (attr->ia_size < inode->i_size)) {
4451                 handle_t *handle;
4452
4453                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4454                 if (IS_ERR(handle)) {
4455                         error = PTR_ERR(handle);
4456                         goto err_out;
4457                 }
4458                 if (ext4_handle_valid(handle)) {
4459                         error = ext4_orphan_add(handle, inode);
4460                         orphan = 1;
4461                 }
4462                 EXT4_I(inode)->i_disksize = attr->ia_size;
4463                 rc = ext4_mark_inode_dirty(handle, inode);
4464                 if (!error)
4465                         error = rc;
4466                 ext4_journal_stop(handle);
4467
4468                 if (ext4_should_order_data(inode)) {
4469                         error = ext4_begin_ordered_truncate(inode,
4470                                                             attr->ia_size);
4471                         if (error) {
4472                                 /* Do as much error cleanup as possible */
4473                                 handle = ext4_journal_start(inode,
4474                                                             EXT4_HT_INODE, 3);
4475                                 if (IS_ERR(handle)) {
4476                                         ext4_orphan_del(NULL, inode);
4477                                         goto err_out;
4478                                 }
4479                                 ext4_orphan_del(handle, inode);
4480                                 orphan = 0;
4481                                 ext4_journal_stop(handle);
4482                                 goto err_out;
4483                         }
4484                 }
4485         }
4486
4487         if (attr->ia_valid & ATTR_SIZE) {
4488                 if (attr->ia_size != inode->i_size) {
4489                         loff_t oldsize = inode->i_size;
4490
4491                         i_size_write(inode, attr->ia_size);
4492                         /*
4493                          * Blocks are going to be removed from the inode. Wait
4494                          * for dio in flight.  Temporarily disable
4495                          * dioread_nolock to prevent livelock.
4496                          */
4497                         if (orphan) {
4498                                 if (!ext4_should_journal_data(inode)) {
4499                                         ext4_inode_block_unlocked_dio(inode);
4500                                         inode_dio_wait(inode);
4501                                         ext4_inode_resume_unlocked_dio(inode);
4502                                 } else
4503                                         ext4_wait_for_tail_page_commit(inode);
4504                         }
4505                         /*
4506                          * Truncate pagecache after we've waited for commit
4507                          * in data=journal mode to make pages freeable.
4508                          */
4509                         truncate_pagecache(inode, oldsize, inode->i_size);
4510                 }
4511                 ext4_truncate(inode);
4512         }
4513
4514         if (!rc) {
4515                 setattr_copy(inode, attr);
4516                 mark_inode_dirty(inode);
4517         }
4518
4519         /*
4520          * If the call to ext4_truncate failed to get a transaction handle at
4521          * all, we need to clean up the in-core orphan list manually.
4522          */
4523         if (orphan && inode->i_nlink)
4524                 ext4_orphan_del(NULL, inode);
4525
4526         if (!rc && (ia_valid & ATTR_MODE))
4527                 rc = ext4_acl_chmod(inode);
4528
4529 err_out:
4530         ext4_std_error(inode->i_sb, error);
4531         if (!error)
4532                 error = rc;
4533         return error;
4534 }
4535
4536 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4537                  struct kstat *stat)
4538 {
4539         struct inode *inode;
4540         unsigned long delalloc_blocks;
4541
4542         inode = dentry->d_inode;
4543         generic_fillattr(inode, stat);
4544
4545         /*
4546          * We can't update i_blocks if the block allocation is delayed
4547          * otherwise in the case of system crash before the real block
4548          * allocation is done, we will have i_blocks inconsistent with
4549          * on-disk file blocks.
4550          * We always keep i_blocks updated together with real
4551          * allocation. But to not confuse with user, stat
4552          * will return the blocks that include the delayed allocation
4553          * blocks for this file.
4554          */
4555         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4556                                 EXT4_I(inode)->i_reserved_data_blocks);
4557
4558         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4559         return 0;
4560 }
4561
4562 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4563 {
4564         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4565                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4566         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4567 }
4568
4569 /*
4570  * Account for index blocks, block groups bitmaps and block group
4571  * descriptor blocks if modify datablocks and index blocks
4572  * worse case, the indexs blocks spread over different block groups
4573  *
4574  * If datablocks are discontiguous, they are possible to spread over
4575  * different block groups too. If they are contiguous, with flexbg,
4576  * they could still across block group boundary.
4577  *
4578  * Also account for superblock, inode, quota and xattr blocks
4579  */
4580 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4581 {
4582         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4583         int gdpblocks;
4584         int idxblocks;
4585         int ret = 0;
4586
4587         /*
4588          * How many index blocks need to touch to modify nrblocks?
4589          * The "Chunk" flag indicating whether the nrblocks is
4590          * physically contiguous on disk
4591          *
4592          * For Direct IO and fallocate, they calls get_block to allocate
4593          * one single extent at a time, so they could set the "Chunk" flag
4594          */
4595         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4596
4597         ret = idxblocks;
4598
4599         /*
4600          * Now let's see how many group bitmaps and group descriptors need
4601          * to account
4602          */
4603         groups = idxblocks;
4604         if (chunk)
4605                 groups += 1;
4606         else
4607                 groups += nrblocks;
4608
4609         gdpblocks = groups;
4610         if (groups > ngroups)
4611                 groups = ngroups;
4612         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4613                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4614
4615         /* bitmaps and block group descriptor blocks */
4616         ret += groups + gdpblocks;
4617
4618         /* Blocks for super block, inode, quota and xattr blocks */
4619         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4620
4621         return ret;
4622 }
4623
4624 /*
4625  * Calculate the total number of credits to reserve to fit
4626  * the modification of a single pages into a single transaction,
4627  * which may include multiple chunks of block allocations.
4628  *
4629  * This could be called via ext4_write_begin()
4630  *
4631  * We need to consider the worse case, when
4632  * one new block per extent.
4633  */
4634 int ext4_writepage_trans_blocks(struct inode *inode)
4635 {
4636         int bpp = ext4_journal_blocks_per_page(inode);
4637         int ret;
4638
4639         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4640
4641         /* Account for data blocks for journalled mode */
4642         if (ext4_should_journal_data(inode))
4643                 ret += bpp;
4644         return ret;
4645 }
4646
4647 /*
4648  * Calculate the journal credits for a chunk of data modification.
4649  *
4650  * This is called from DIO, fallocate or whoever calling
4651  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4652  *
4653  * journal buffers for data blocks are not included here, as DIO
4654  * and fallocate do no need to journal data buffers.
4655  */
4656 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4657 {
4658         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4659 }
4660
4661 /*
4662  * The caller must have previously called ext4_reserve_inode_write().
4663  * Give this, we know that the caller already has write access to iloc->bh.
4664  */
4665 int ext4_mark_iloc_dirty(handle_t *handle,
4666                          struct inode *inode, struct ext4_iloc *iloc)
4667 {
4668         int err = 0;
4669
4670         if (IS_I_VERSION(inode))
4671                 inode_inc_iversion(inode);
4672
4673         /* the do_update_inode consumes one bh->b_count */
4674         get_bh(iloc->bh);
4675
4676         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4677         err = ext4_do_update_inode(handle, inode, iloc);
4678         put_bh(iloc->bh);
4679         return err;
4680 }
4681
4682 /*
4683  * On success, We end up with an outstanding reference count against
4684  * iloc->bh.  This _must_ be cleaned up later.
4685  */
4686
4687 int
4688 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4689                          struct ext4_iloc *iloc)
4690 {
4691         int err;
4692
4693         err = ext4_get_inode_loc(inode, iloc);
4694         if (!err) {
4695                 BUFFER_TRACE(iloc->bh, "get_write_access");
4696                 err = ext4_journal_get_write_access(handle, iloc->bh);
4697                 if (err) {
4698                         brelse(iloc->bh);
4699                         iloc->bh = NULL;
4700                 }
4701         }
4702         ext4_std_error(inode->i_sb, err);
4703         return err;
4704 }
4705
4706 /*
4707  * Expand an inode by new_extra_isize bytes.
4708  * Returns 0 on success or negative error number on failure.
4709  */
4710 static int ext4_expand_extra_isize(struct inode *inode,
4711                                    unsigned int new_extra_isize,
4712                                    struct ext4_iloc iloc,
4713                                    handle_t *handle)
4714 {
4715         struct ext4_inode *raw_inode;
4716         struct ext4_xattr_ibody_header *header;
4717
4718         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4719                 return 0;
4720
4721         raw_inode = ext4_raw_inode(&iloc);
4722
4723         header = IHDR(inode, raw_inode);
4724
4725         /* No extended attributes present */
4726         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4727             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4728                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4729                         new_extra_isize);
4730                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4731                 return 0;
4732         }
4733
4734         /* try to expand with EAs present */
4735         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4736                                           raw_inode, handle);
4737 }
4738
4739 /*
4740  * What we do here is to mark the in-core inode as clean with respect to inode
4741  * dirtiness (it may still be data-dirty).
4742  * This means that the in-core inode may be reaped by prune_icache
4743  * without having to perform any I/O.  This is a very good thing,
4744  * because *any* task may call prune_icache - even ones which
4745  * have a transaction open against a different journal.
4746  *
4747  * Is this cheating?  Not really.  Sure, we haven't written the
4748  * inode out, but prune_icache isn't a user-visible syncing function.
4749  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4750  * we start and wait on commits.
4751  */
4752 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4753 {
4754         struct ext4_iloc iloc;
4755         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4756         static unsigned int mnt_count;
4757         int err, ret;
4758
4759         might_sleep();
4760         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4761         err = ext4_reserve_inode_write(handle, inode, &iloc);
4762         if (ext4_handle_valid(handle) &&
4763             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4764             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4765                 /*
4766                  * We need extra buffer credits since we may write into EA block
4767                  * with this same handle. If journal_extend fails, then it will
4768                  * only result in a minor loss of functionality for that inode.
4769                  * If this is felt to be critical, then e2fsck should be run to
4770                  * force a large enough s_min_extra_isize.
4771                  */
4772                 if ((jbd2_journal_extend(handle,
4773                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4774                         ret = ext4_expand_extra_isize(inode,
4775                                                       sbi->s_want_extra_isize,
4776                                                       iloc, handle);
4777                         if (ret) {
4778                                 ext4_set_inode_state(inode,
4779                                                      EXT4_STATE_NO_EXPAND);
4780                                 if (mnt_count !=
4781                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4782                                         ext4_warning(inode->i_sb,
4783                                         "Unable to expand inode %lu. Delete"
4784                                         " some EAs or run e2fsck.",
4785                                         inode->i_ino);
4786                                         mnt_count =
4787                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4788                                 }
4789                         }
4790                 }
4791         }
4792         if (!err)
4793                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4794         return err;
4795 }
4796
4797 /*
4798  * ext4_dirty_inode() is called from __mark_inode_dirty()
4799  *
4800  * We're really interested in the case where a file is being extended.
4801  * i_size has been changed by generic_commit_write() and we thus need
4802  * to include the updated inode in the current transaction.
4803  *
4804  * Also, dquot_alloc_block() will always dirty the inode when blocks
4805  * are allocated to the file.
4806  *
4807  * If the inode is marked synchronous, we don't honour that here - doing
4808  * so would cause a commit on atime updates, which we don't bother doing.
4809  * We handle synchronous inodes at the highest possible level.
4810  */
4811 void ext4_dirty_inode(struct inode *inode, int flags)
4812 {
4813         handle_t *handle;
4814
4815         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4816         if (IS_ERR(handle))
4817                 goto out;
4818
4819         ext4_mark_inode_dirty(handle, inode);
4820
4821         ext4_journal_stop(handle);
4822 out:
4823         return;
4824 }
4825
4826 #if 0
4827 /*
4828  * Bind an inode's backing buffer_head into this transaction, to prevent
4829  * it from being flushed to disk early.  Unlike
4830  * ext4_reserve_inode_write, this leaves behind no bh reference and
4831  * returns no iloc structure, so the caller needs to repeat the iloc
4832  * lookup to mark the inode dirty later.
4833  */
4834 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4835 {
4836         struct ext4_iloc iloc;
4837
4838         int err = 0;
4839         if (handle) {
4840                 err = ext4_get_inode_loc(inode, &iloc);
4841                 if (!err) {
4842                         BUFFER_TRACE(iloc.bh, "get_write_access");
4843                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4844                         if (!err)
4845                                 err = ext4_handle_dirty_metadata(handle,
4846                                                                  NULL,
4847                                                                  iloc.bh);
4848                         brelse(iloc.bh);
4849                 }
4850         }
4851         ext4_std_error(inode->i_sb, err);
4852         return err;
4853 }
4854 #endif
4855
4856 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4857 {
4858         journal_t *journal;
4859         handle_t *handle;
4860         int err;
4861
4862         /*
4863          * We have to be very careful here: changing a data block's
4864          * journaling status dynamically is dangerous.  If we write a
4865          * data block to the journal, change the status and then delete
4866          * that block, we risk forgetting to revoke the old log record
4867          * from the journal and so a subsequent replay can corrupt data.
4868          * So, first we make sure that the journal is empty and that
4869          * nobody is changing anything.
4870          */
4871
4872         journal = EXT4_JOURNAL(inode);
4873         if (!journal)
4874                 return 0;
4875         if (is_journal_aborted(journal))
4876                 return -EROFS;
4877         /* We have to allocate physical blocks for delalloc blocks
4878          * before flushing journal. otherwise delalloc blocks can not
4879          * be allocated any more. even more truncate on delalloc blocks
4880          * could trigger BUG by flushing delalloc blocks in journal.
4881          * There is no delalloc block in non-journal data mode.
4882          */
4883         if (val && test_opt(inode->i_sb, DELALLOC)) {
4884                 err = ext4_alloc_da_blocks(inode);
4885                 if (err < 0)
4886                         return err;
4887         }
4888
4889         /* Wait for all existing dio workers */
4890         ext4_inode_block_unlocked_dio(inode);
4891         inode_dio_wait(inode);
4892
4893         jbd2_journal_lock_updates(journal);
4894
4895         /*
4896          * OK, there are no updates running now, and all cached data is
4897          * synced to disk.  We are now in a completely consistent state
4898          * which doesn't have anything in the journal, and we know that
4899          * no filesystem updates are running, so it is safe to modify
4900          * the inode's in-core data-journaling state flag now.
4901          */
4902
4903         if (val)
4904                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4905         else {
4906                 jbd2_journal_flush(journal);
4907                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4908         }
4909         ext4_set_aops(inode);
4910
4911         jbd2_journal_unlock_updates(journal);
4912         ext4_inode_resume_unlocked_dio(inode);
4913
4914         /* Finally we can mark the inode as dirty. */
4915
4916         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4917         if (IS_ERR(handle))
4918                 return PTR_ERR(handle);
4919
4920         err = ext4_mark_inode_dirty(handle, inode);
4921         ext4_handle_sync(handle);
4922         ext4_journal_stop(handle);
4923         ext4_std_error(inode->i_sb, err);
4924
4925         return err;
4926 }
4927
4928 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4929 {
4930         return !buffer_mapped(bh);
4931 }
4932
4933 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4934 {
4935         struct page *page = vmf->page;
4936         loff_t size;
4937         unsigned long len;
4938         int ret;
4939         struct file *file = vma->vm_file;
4940         struct inode *inode = file_inode(file);
4941         struct address_space *mapping = inode->i_mapping;
4942         handle_t *handle;
4943         get_block_t *get_block;
4944         int retries = 0;
4945
4946         sb_start_pagefault(inode->i_sb);
4947         file_update_time(vma->vm_file);
4948         /* Delalloc case is easy... */
4949         if (test_opt(inode->i_sb, DELALLOC) &&
4950             !ext4_should_journal_data(inode) &&
4951             !ext4_nonda_switch(inode->i_sb)) {
4952                 do {
4953                         ret = __block_page_mkwrite(vma, vmf,
4954                                                    ext4_da_get_block_prep);
4955                 } while (ret == -ENOSPC &&
4956                        ext4_should_retry_alloc(inode->i_sb, &retries));
4957                 goto out_ret;
4958         }
4959
4960         lock_page(page);
4961         size = i_size_read(inode);
4962         /* Page got truncated from under us? */
4963         if (page->mapping != mapping || page_offset(page) > size) {
4964                 unlock_page(page);
4965                 ret = VM_FAULT_NOPAGE;
4966                 goto out;
4967         }
4968
4969         if (page->index == size >> PAGE_CACHE_SHIFT)
4970                 len = size & ~PAGE_CACHE_MASK;
4971         else
4972                 len = PAGE_CACHE_SIZE;
4973         /*
4974          * Return if we have all the buffers mapped. This avoids the need to do
4975          * journal_start/journal_stop which can block and take a long time
4976          */
4977         if (page_has_buffers(page)) {
4978                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4979                                             0, len, NULL,
4980                                             ext4_bh_unmapped)) {
4981                         /* Wait so that we don't change page under IO */
4982                         wait_for_stable_page(page);
4983                         ret = VM_FAULT_LOCKED;
4984                         goto out;
4985                 }
4986         }
4987         unlock_page(page);
4988         /* OK, we need to fill the hole... */
4989         if (ext4_should_dioread_nolock(inode))
4990                 get_block = ext4_get_block_write;
4991         else
4992                 get_block = ext4_get_block;
4993 retry_alloc:
4994         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
4995                                     ext4_writepage_trans_blocks(inode));
4996         if (IS_ERR(handle)) {
4997                 ret = VM_FAULT_SIGBUS;
4998                 goto out;
4999         }
5000         ret = __block_page_mkwrite(vma, vmf, get_block);
5001         if (!ret && ext4_should_journal_data(inode)) {
5002                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5003                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5004                         unlock_page(page);
5005                         ret = VM_FAULT_SIGBUS;
5006                         ext4_journal_stop(handle);
5007                         goto out;
5008                 }
5009                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5010         }
5011         ext4_journal_stop(handle);
5012         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5013                 goto retry_alloc;
5014 out_ret:
5015         ret = block_page_mkwrite_return(ret);
5016 out:
5017         sb_end_pagefault(inode->i_sb);
5018         return ret;
5019 }