f2fs: convert recover_orphan_inodes to void
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = sbi->meta_inode->i_mapping;
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page(mapping, index);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41
42         /* We wait writeback only inside grab_meta_page() */
43         wait_on_page_writeback(page);
44         SetPageUptodate(page);
45         return page;
46 }
47
48 /*
49  * We guarantee no failure on the returned page.
50  */
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 {
53         struct address_space *mapping = sbi->meta_inode->i_mapping;
54         struct page *page;
55 repeat:
56         page = grab_cache_page(mapping, index);
57         if (!page) {
58                 cond_resched();
59                 goto repeat;
60         }
61         if (PageUptodate(page))
62                 goto out;
63
64         if (f2fs_readpage(sbi, page, index, READ_SYNC | REQ_META | REQ_PRIO))
65                 goto repeat;
66
67         lock_page(page);
68         if (page->mapping != mapping) {
69                 f2fs_put_page(page, 1);
70                 goto repeat;
71         }
72 out:
73         mark_page_accessed(page);
74         return page;
75 }
76
77 static int f2fs_write_meta_page(struct page *page,
78                                 struct writeback_control *wbc)
79 {
80         struct inode *inode = page->mapping->host;
81         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
82
83         /* Should not write any meta pages, if any IO error was occurred */
84         if (wbc->for_reclaim || sbi->por_doing ||
85                         is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
86                 dec_page_count(sbi, F2FS_DIRTY_META);
87                 wbc->pages_skipped++;
88                 set_page_dirty(page);
89                 return AOP_WRITEPAGE_ACTIVATE;
90         }
91
92         wait_on_page_writeback(page);
93
94         write_meta_page(sbi, page);
95         dec_page_count(sbi, F2FS_DIRTY_META);
96         unlock_page(page);
97         return 0;
98 }
99
100 static int f2fs_write_meta_pages(struct address_space *mapping,
101                                 struct writeback_control *wbc)
102 {
103         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
104         struct block_device *bdev = sbi->sb->s_bdev;
105         long written;
106
107         if (wbc->for_kupdate)
108                 return 0;
109
110         if (get_pages(sbi, F2FS_DIRTY_META) == 0)
111                 return 0;
112
113         /* if mounting is failed, skip writing node pages */
114         mutex_lock(&sbi->cp_mutex);
115         written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
116         mutex_unlock(&sbi->cp_mutex);
117         wbc->nr_to_write -= written;
118         return 0;
119 }
120
121 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
122                                                 long nr_to_write)
123 {
124         struct address_space *mapping = sbi->meta_inode->i_mapping;
125         pgoff_t index = 0, end = LONG_MAX;
126         struct pagevec pvec;
127         long nwritten = 0;
128         struct writeback_control wbc = {
129                 .for_reclaim = 0,
130         };
131
132         pagevec_init(&pvec, 0);
133
134         while (index <= end) {
135                 int i, nr_pages;
136                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
137                                 PAGECACHE_TAG_DIRTY,
138                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
139                 if (nr_pages == 0)
140                         break;
141
142                 for (i = 0; i < nr_pages; i++) {
143                         struct page *page = pvec.pages[i];
144                         lock_page(page);
145                         f2fs_bug_on(page->mapping != mapping);
146                         f2fs_bug_on(!PageDirty(page));
147                         clear_page_dirty_for_io(page);
148                         if (f2fs_write_meta_page(page, &wbc)) {
149                                 unlock_page(page);
150                                 break;
151                         }
152                         if (nwritten++ >= nr_to_write)
153                                 break;
154                 }
155                 pagevec_release(&pvec);
156                 cond_resched();
157         }
158
159         if (nwritten)
160                 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
161
162         return nwritten;
163 }
164
165 static int f2fs_set_meta_page_dirty(struct page *page)
166 {
167         struct address_space *mapping = page->mapping;
168         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
169
170         trace_f2fs_set_page_dirty(page, META);
171
172         SetPageUptodate(page);
173         if (!PageDirty(page)) {
174                 __set_page_dirty_nobuffers(page);
175                 inc_page_count(sbi, F2FS_DIRTY_META);
176                 return 1;
177         }
178         return 0;
179 }
180
181 const struct address_space_operations f2fs_meta_aops = {
182         .writepage      = f2fs_write_meta_page,
183         .writepages     = f2fs_write_meta_pages,
184         .set_page_dirty = f2fs_set_meta_page_dirty,
185 };
186
187 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
188 {
189         unsigned int max_orphans;
190         int err = 0;
191
192         /*
193          * considering 512 blocks in a segment 8 blocks are needed for cp
194          * and log segment summaries. Remaining blocks are used to keep
195          * orphan entries with the limitation one reserved segment
196          * for cp pack we can have max 1020*504 orphan entries
197          */
198         max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
199                                 * F2FS_ORPHANS_PER_BLOCK;
200         mutex_lock(&sbi->orphan_inode_mutex);
201         if (sbi->n_orphans >= max_orphans)
202                 err = -ENOSPC;
203         else
204                 sbi->n_orphans++;
205         mutex_unlock(&sbi->orphan_inode_mutex);
206         return err;
207 }
208
209 void release_orphan_inode(struct f2fs_sb_info *sbi)
210 {
211         mutex_lock(&sbi->orphan_inode_mutex);
212         f2fs_bug_on(sbi->n_orphans == 0);
213         sbi->n_orphans--;
214         mutex_unlock(&sbi->orphan_inode_mutex);
215 }
216
217 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
218 {
219         struct list_head *head, *this;
220         struct orphan_inode_entry *new = NULL, *orphan = NULL;
221
222         mutex_lock(&sbi->orphan_inode_mutex);
223         head = &sbi->orphan_inode_list;
224         list_for_each(this, head) {
225                 orphan = list_entry(this, struct orphan_inode_entry, list);
226                 if (orphan->ino == ino)
227                         goto out;
228                 if (orphan->ino > ino)
229                         break;
230                 orphan = NULL;
231         }
232
233         new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
234         new->ino = ino;
235
236         /* add new_oentry into list which is sorted by inode number */
237         if (orphan)
238                 list_add(&new->list, this->prev);
239         else
240                 list_add_tail(&new->list, head);
241 out:
242         mutex_unlock(&sbi->orphan_inode_mutex);
243 }
244
245 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
246 {
247         struct list_head *head;
248         struct orphan_inode_entry *orphan;
249
250         mutex_lock(&sbi->orphan_inode_mutex);
251         head = &sbi->orphan_inode_list;
252         list_for_each_entry(orphan, head, list) {
253                 if (orphan->ino == ino) {
254                         list_del(&orphan->list);
255                         kmem_cache_free(orphan_entry_slab, orphan);
256                         f2fs_bug_on(sbi->n_orphans == 0);
257                         sbi->n_orphans--;
258                         break;
259                 }
260         }
261         mutex_unlock(&sbi->orphan_inode_mutex);
262 }
263
264 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
265 {
266         struct inode *inode = f2fs_iget(sbi->sb, ino);
267         f2fs_bug_on(IS_ERR(inode));
268         clear_nlink(inode);
269
270         /* truncate all the data during iput */
271         iput(inode);
272 }
273
274 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
275 {
276         block_t start_blk, orphan_blkaddr, i, j;
277
278         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
279                 return;
280
281         sbi->por_doing = true;
282         start_blk = __start_cp_addr(sbi) + 1;
283         orphan_blkaddr = __start_sum_addr(sbi) - 1;
284
285         for (i = 0; i < orphan_blkaddr; i++) {
286                 struct page *page = get_meta_page(sbi, start_blk + i);
287                 struct f2fs_orphan_block *orphan_blk;
288
289                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
290                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
291                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
292                         recover_orphan_inode(sbi, ino);
293                 }
294                 f2fs_put_page(page, 1);
295         }
296         /* clear Orphan Flag */
297         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
298         sbi->por_doing = false;
299         return;
300 }
301
302 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
303 {
304         struct list_head *head;
305         struct f2fs_orphan_block *orphan_blk = NULL;
306         struct page *page = NULL;
307         unsigned int nentries = 0;
308         unsigned short index = 1;
309         unsigned short orphan_blocks;
310         struct orphan_inode_entry *orphan = NULL;
311
312         orphan_blocks = (unsigned short)((sbi->n_orphans +
313                 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
314
315         mutex_lock(&sbi->orphan_inode_mutex);
316         head = &sbi->orphan_inode_list;
317
318         /* loop for each orphan inode entry and write them in Jornal block */
319         list_for_each_entry(orphan, head, list) {
320                 if (!page) {
321                         page = grab_meta_page(sbi, start_blk);
322                         orphan_blk =
323                                 (struct f2fs_orphan_block *)page_address(page);
324                         memset(orphan_blk, 0, sizeof(*orphan_blk));
325                 }
326
327                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
328
329                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
330                         /*
331                          * an orphan block is full of 1020 entries,
332                          * then we need to flush current orphan blocks
333                          * and bring another one in memory
334                          */
335                         orphan_blk->blk_addr = cpu_to_le16(index);
336                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
337                         orphan_blk->entry_count = cpu_to_le32(nentries);
338                         set_page_dirty(page);
339                         f2fs_put_page(page, 1);
340                         index++;
341                         start_blk++;
342                         nentries = 0;
343                         page = NULL;
344                 }
345         }
346
347         if (page) {
348                 orphan_blk->blk_addr = cpu_to_le16(index);
349                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
350                 orphan_blk->entry_count = cpu_to_le32(nentries);
351                 set_page_dirty(page);
352                 f2fs_put_page(page, 1);
353         }
354
355         mutex_unlock(&sbi->orphan_inode_mutex);
356 }
357
358 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
359                                 block_t cp_addr, unsigned long long *version)
360 {
361         struct page *cp_page_1, *cp_page_2 = NULL;
362         unsigned long blk_size = sbi->blocksize;
363         struct f2fs_checkpoint *cp_block;
364         unsigned long long cur_version = 0, pre_version = 0;
365         size_t crc_offset;
366         __u32 crc = 0;
367
368         /* Read the 1st cp block in this CP pack */
369         cp_page_1 = get_meta_page(sbi, cp_addr);
370
371         /* get the version number */
372         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
373         crc_offset = le32_to_cpu(cp_block->checksum_offset);
374         if (crc_offset >= blk_size)
375                 goto invalid_cp1;
376
377         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
378         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
379                 goto invalid_cp1;
380
381         pre_version = cur_cp_version(cp_block);
382
383         /* Read the 2nd cp block in this CP pack */
384         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
385         cp_page_2 = get_meta_page(sbi, cp_addr);
386
387         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
388         crc_offset = le32_to_cpu(cp_block->checksum_offset);
389         if (crc_offset >= blk_size)
390                 goto invalid_cp2;
391
392         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
393         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
394                 goto invalid_cp2;
395
396         cur_version = cur_cp_version(cp_block);
397
398         if (cur_version == pre_version) {
399                 *version = cur_version;
400                 f2fs_put_page(cp_page_2, 1);
401                 return cp_page_1;
402         }
403 invalid_cp2:
404         f2fs_put_page(cp_page_2, 1);
405 invalid_cp1:
406         f2fs_put_page(cp_page_1, 1);
407         return NULL;
408 }
409
410 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
411 {
412         struct f2fs_checkpoint *cp_block;
413         struct f2fs_super_block *fsb = sbi->raw_super;
414         struct page *cp1, *cp2, *cur_page;
415         unsigned long blk_size = sbi->blocksize;
416         unsigned long long cp1_version = 0, cp2_version = 0;
417         unsigned long long cp_start_blk_no;
418
419         sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
420         if (!sbi->ckpt)
421                 return -ENOMEM;
422         /*
423          * Finding out valid cp block involves read both
424          * sets( cp pack1 and cp pack 2)
425          */
426         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
427         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
428
429         /* The second checkpoint pack should start at the next segment */
430         cp_start_blk_no += ((unsigned long long)1) <<
431                                 le32_to_cpu(fsb->log_blocks_per_seg);
432         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
433
434         if (cp1 && cp2) {
435                 if (ver_after(cp2_version, cp1_version))
436                         cur_page = cp2;
437                 else
438                         cur_page = cp1;
439         } else if (cp1) {
440                 cur_page = cp1;
441         } else if (cp2) {
442                 cur_page = cp2;
443         } else {
444                 goto fail_no_cp;
445         }
446
447         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
448         memcpy(sbi->ckpt, cp_block, blk_size);
449
450         f2fs_put_page(cp1, 1);
451         f2fs_put_page(cp2, 1);
452         return 0;
453
454 fail_no_cp:
455         kfree(sbi->ckpt);
456         return -EINVAL;
457 }
458
459 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
460 {
461         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
462         struct list_head *head = &sbi->dir_inode_list;
463         struct list_head *this;
464
465         list_for_each(this, head) {
466                 struct dir_inode_entry *entry;
467                 entry = list_entry(this, struct dir_inode_entry, list);
468                 if (entry->inode == inode)
469                         return -EEXIST;
470         }
471         list_add_tail(&new->list, head);
472         stat_inc_dirty_dir(sbi);
473         return 0;
474 }
475
476 void set_dirty_dir_page(struct inode *inode, struct page *page)
477 {
478         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
479         struct dir_inode_entry *new;
480
481         if (!S_ISDIR(inode->i_mode))
482                 return;
483
484         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
485         new->inode = inode;
486         INIT_LIST_HEAD(&new->list);
487
488         spin_lock(&sbi->dir_inode_lock);
489         if (__add_dirty_inode(inode, new))
490                 kmem_cache_free(inode_entry_slab, new);
491
492         inc_page_count(sbi, F2FS_DIRTY_DENTS);
493         inode_inc_dirty_dents(inode);
494         SetPagePrivate(page);
495         spin_unlock(&sbi->dir_inode_lock);
496 }
497
498 void add_dirty_dir_inode(struct inode *inode)
499 {
500         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
501         struct dir_inode_entry *new =
502                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
503
504         new->inode = inode;
505         INIT_LIST_HEAD(&new->list);
506
507         spin_lock(&sbi->dir_inode_lock);
508         if (__add_dirty_inode(inode, new))
509                 kmem_cache_free(inode_entry_slab, new);
510         spin_unlock(&sbi->dir_inode_lock);
511 }
512
513 void remove_dirty_dir_inode(struct inode *inode)
514 {
515         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
516
517         struct list_head *this, *head;
518
519         if (!S_ISDIR(inode->i_mode))
520                 return;
521
522         spin_lock(&sbi->dir_inode_lock);
523         if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
524                 spin_unlock(&sbi->dir_inode_lock);
525                 return;
526         }
527
528         head = &sbi->dir_inode_list;
529         list_for_each(this, head) {
530                 struct dir_inode_entry *entry;
531                 entry = list_entry(this, struct dir_inode_entry, list);
532                 if (entry->inode == inode) {
533                         list_del(&entry->list);
534                         kmem_cache_free(inode_entry_slab, entry);
535                         stat_dec_dirty_dir(sbi);
536                         break;
537                 }
538         }
539         spin_unlock(&sbi->dir_inode_lock);
540
541         /* Only from the recovery routine */
542         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
543                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
544                 iput(inode);
545         }
546 }
547
548 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
549 {
550
551         struct list_head *this, *head;
552         struct inode *inode = NULL;
553
554         spin_lock(&sbi->dir_inode_lock);
555
556         head = &sbi->dir_inode_list;
557         list_for_each(this, head) {
558                 struct dir_inode_entry *entry;
559                 entry = list_entry(this, struct dir_inode_entry, list);
560                 if (entry->inode->i_ino == ino) {
561                         inode = entry->inode;
562                         break;
563                 }
564         }
565         spin_unlock(&sbi->dir_inode_lock);
566         return inode;
567 }
568
569 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
570 {
571         struct list_head *head;
572         struct dir_inode_entry *entry;
573         struct inode *inode;
574 retry:
575         spin_lock(&sbi->dir_inode_lock);
576
577         head = &sbi->dir_inode_list;
578         if (list_empty(head)) {
579                 spin_unlock(&sbi->dir_inode_lock);
580                 return;
581         }
582         entry = list_entry(head->next, struct dir_inode_entry, list);
583         inode = igrab(entry->inode);
584         spin_unlock(&sbi->dir_inode_lock);
585         if (inode) {
586                 filemap_flush(inode->i_mapping);
587                 iput(inode);
588         } else {
589                 /*
590                  * We should submit bio, since it exists several
591                  * wribacking dentry pages in the freeing inode.
592                  */
593                 f2fs_submit_bio(sbi, DATA, true);
594         }
595         goto retry;
596 }
597
598 /*
599  * Freeze all the FS-operations for checkpoint.
600  */
601 static void block_operations(struct f2fs_sb_info *sbi)
602 {
603         struct writeback_control wbc = {
604                 .sync_mode = WB_SYNC_ALL,
605                 .nr_to_write = LONG_MAX,
606                 .for_reclaim = 0,
607         };
608         struct blk_plug plug;
609
610         blk_start_plug(&plug);
611
612 retry_flush_dents:
613         f2fs_lock_all(sbi);
614         /* write all the dirty dentry pages */
615         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
616                 f2fs_unlock_all(sbi);
617                 sync_dirty_dir_inodes(sbi);
618                 goto retry_flush_dents;
619         }
620
621         /*
622          * POR: we should ensure that there is no dirty node pages
623          * until finishing nat/sit flush.
624          */
625 retry_flush_nodes:
626         mutex_lock(&sbi->node_write);
627
628         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
629                 mutex_unlock(&sbi->node_write);
630                 sync_node_pages(sbi, 0, &wbc);
631                 goto retry_flush_nodes;
632         }
633         blk_finish_plug(&plug);
634 }
635
636 static void unblock_operations(struct f2fs_sb_info *sbi)
637 {
638         mutex_unlock(&sbi->node_write);
639         f2fs_unlock_all(sbi);
640 }
641
642 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
643 {
644         DEFINE_WAIT(wait);
645
646         for (;;) {
647                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
648
649                 if (!get_pages(sbi, F2FS_WRITEBACK))
650                         break;
651
652                 io_schedule();
653         }
654         finish_wait(&sbi->cp_wait, &wait);
655 }
656
657 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
658 {
659         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
660         nid_t last_nid = 0;
661         block_t start_blk;
662         struct page *cp_page;
663         unsigned int data_sum_blocks, orphan_blocks;
664         __u32 crc32 = 0;
665         void *kaddr;
666         int i;
667
668         /* Flush all the NAT/SIT pages */
669         while (get_pages(sbi, F2FS_DIRTY_META))
670                 sync_meta_pages(sbi, META, LONG_MAX);
671
672         next_free_nid(sbi, &last_nid);
673
674         /*
675          * modify checkpoint
676          * version number is already updated
677          */
678         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
679         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
680         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
681         for (i = 0; i < 3; i++) {
682                 ckpt->cur_node_segno[i] =
683                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
684                 ckpt->cur_node_blkoff[i] =
685                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
686                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
687                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
688         }
689         for (i = 0; i < 3; i++) {
690                 ckpt->cur_data_segno[i] =
691                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
692                 ckpt->cur_data_blkoff[i] =
693                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
694                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
695                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
696         }
697
698         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
699         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
700         ckpt->next_free_nid = cpu_to_le32(last_nid);
701
702         /* 2 cp  + n data seg summary + orphan inode blocks */
703         data_sum_blocks = npages_for_summary_flush(sbi);
704         if (data_sum_blocks < 3)
705                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
706         else
707                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
708
709         orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
710                                         / F2FS_ORPHANS_PER_BLOCK;
711         ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
712
713         if (is_umount) {
714                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
715                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
716                         data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
717         } else {
718                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
719                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
720                         data_sum_blocks + orphan_blocks);
721         }
722
723         if (sbi->n_orphans)
724                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
725         else
726                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
727
728         /* update SIT/NAT bitmap */
729         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
730         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
731
732         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
733         *((__le32 *)((unsigned char *)ckpt +
734                                 le32_to_cpu(ckpt->checksum_offset)))
735                                 = cpu_to_le32(crc32);
736
737         start_blk = __start_cp_addr(sbi);
738
739         /* write out checkpoint buffer at block 0 */
740         cp_page = grab_meta_page(sbi, start_blk++);
741         kaddr = page_address(cp_page);
742         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
743         set_page_dirty(cp_page);
744         f2fs_put_page(cp_page, 1);
745
746         if (sbi->n_orphans) {
747                 write_orphan_inodes(sbi, start_blk);
748                 start_blk += orphan_blocks;
749         }
750
751         write_data_summaries(sbi, start_blk);
752         start_blk += data_sum_blocks;
753         if (is_umount) {
754                 write_node_summaries(sbi, start_blk);
755                 start_blk += NR_CURSEG_NODE_TYPE;
756         }
757
758         /* writeout checkpoint block */
759         cp_page = grab_meta_page(sbi, start_blk);
760         kaddr = page_address(cp_page);
761         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
762         set_page_dirty(cp_page);
763         f2fs_put_page(cp_page, 1);
764
765         /* wait for previous submitted node/meta pages writeback */
766         wait_on_all_pages_writeback(sbi);
767
768         filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
769         filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
770
771         /* update user_block_counts */
772         sbi->last_valid_block_count = sbi->total_valid_block_count;
773         sbi->alloc_valid_block_count = 0;
774
775         /* Here, we only have one bio having CP pack */
776         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
777
778         if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
779                 clear_prefree_segments(sbi);
780                 F2FS_RESET_SB_DIRT(sbi);
781         }
782 }
783
784 /*
785  * We guarantee that this checkpoint procedure should not fail.
786  */
787 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
788 {
789         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
790         unsigned long long ckpt_ver;
791
792         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
793
794         mutex_lock(&sbi->cp_mutex);
795         block_operations(sbi);
796
797         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
798
799         f2fs_submit_bio(sbi, DATA, true);
800         f2fs_submit_bio(sbi, NODE, true);
801         f2fs_submit_bio(sbi, META, true);
802
803         /*
804          * update checkpoint pack index
805          * Increase the version number so that
806          * SIT entries and seg summaries are written at correct place
807          */
808         ckpt_ver = cur_cp_version(ckpt);
809         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
810
811         /* write cached NAT/SIT entries to NAT/SIT area */
812         flush_nat_entries(sbi);
813         flush_sit_entries(sbi);
814
815         /* unlock all the fs_lock[] in do_checkpoint() */
816         do_checkpoint(sbi, is_umount);
817
818         unblock_operations(sbi);
819         mutex_unlock(&sbi->cp_mutex);
820
821         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
822 }
823
824 void init_orphan_info(struct f2fs_sb_info *sbi)
825 {
826         mutex_init(&sbi->orphan_inode_mutex);
827         INIT_LIST_HEAD(&sbi->orphan_inode_list);
828         sbi->n_orphans = 0;
829 }
830
831 int __init create_checkpoint_caches(void)
832 {
833         orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
834                         sizeof(struct orphan_inode_entry), NULL);
835         if (unlikely(!orphan_entry_slab))
836                 return -ENOMEM;
837         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
838                         sizeof(struct dir_inode_entry), NULL);
839         if (unlikely(!inode_entry_slab)) {
840                 kmem_cache_destroy(orphan_entry_slab);
841                 return -ENOMEM;
842         }
843         return 0;
844 }
845
846 void destroy_checkpoint_caches(void)
847 {
848         kmem_cache_destroy(orphan_entry_slab);
849         kmem_cache_destroy(inode_entry_slab);
850 }