4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
23 #include <trace/events/f2fs.h>
25 static struct kmem_cache *ino_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
29 * We guarantee no failure on the returned page.
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 struct address_space *mapping = META_MAPPING(sbi);
34 struct page *page = NULL;
36 page = grab_cache_page(mapping, index);
41 f2fs_wait_on_page_writeback(page, META);
42 SetPageUptodate(page);
47 * We guarantee no failure on the returned page.
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 struct address_space *mapping = META_MAPPING(sbi);
54 page = grab_cache_page(mapping, index);
59 if (PageUptodate(page))
62 if (f2fs_submit_page_bio(sbi, page, index,
63 READ_SYNC | REQ_META | REQ_PRIO))
67 if (unlikely(page->mapping != mapping)) {
68 f2fs_put_page(page, 1);
75 static inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
79 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
81 return SIT_BLK_CNT(sbi);
91 * Readahead CP/NAT/SIT/SSA pages
93 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
95 block_t prev_blk_addr = 0;
98 int max_blks = get_max_meta_blks(sbi, type);
100 struct f2fs_io_info fio = {
102 .rw = READ_SYNC | REQ_META | REQ_PRIO
105 for (; nrpages-- > 0; blkno++) {
110 /* get nat block addr */
111 if (unlikely(blkno >= max_blks))
113 blk_addr = current_nat_addr(sbi,
114 blkno * NAT_ENTRY_PER_BLOCK);
117 /* get sit block addr */
118 if (unlikely(blkno >= max_blks))
120 blk_addr = current_sit_addr(sbi,
121 blkno * SIT_ENTRY_PER_BLOCK);
122 if (blkno != start && prev_blk_addr + 1 != blk_addr)
124 prev_blk_addr = blk_addr;
128 /* get ssa/cp block addr */
135 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
138 if (PageUptodate(page)) {
139 f2fs_put_page(page, 1);
143 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
144 f2fs_put_page(page, 0);
147 f2fs_submit_merged_bio(sbi, META, READ);
148 return blkno - start;
151 static int f2fs_write_meta_page(struct page *page,
152 struct writeback_control *wbc)
154 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
156 trace_f2fs_writepage(page, META);
158 if (unlikely(sbi->por_doing))
160 if (wbc->for_reclaim)
162 if (unlikely(f2fs_cp_error(sbi)))
165 f2fs_wait_on_page_writeback(page, META);
166 write_meta_page(sbi, page);
167 dec_page_count(sbi, F2FS_DIRTY_META);
172 redirty_page_for_writepage(wbc, page);
173 return AOP_WRITEPAGE_ACTIVATE;
176 static int f2fs_write_meta_pages(struct address_space *mapping,
177 struct writeback_control *wbc)
179 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
182 trace_f2fs_writepages(mapping->host, wbc, META);
184 /* collect a number of dirty meta pages and write together */
185 if (wbc->for_kupdate ||
186 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
189 /* if mounting is failed, skip writing node pages */
190 mutex_lock(&sbi->cp_mutex);
191 diff = nr_pages_to_write(sbi, META, wbc);
192 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
193 mutex_unlock(&sbi->cp_mutex);
194 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
198 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
202 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
205 struct address_space *mapping = META_MAPPING(sbi);
206 pgoff_t index = 0, end = LONG_MAX;
209 struct writeback_control wbc = {
213 pagevec_init(&pvec, 0);
215 while (index <= end) {
217 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
219 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
220 if (unlikely(nr_pages == 0))
223 for (i = 0; i < nr_pages; i++) {
224 struct page *page = pvec.pages[i];
228 if (unlikely(page->mapping != mapping)) {
233 if (!PageDirty(page)) {
234 /* someone wrote it for us */
235 goto continue_unlock;
238 if (!clear_page_dirty_for_io(page))
239 goto continue_unlock;
241 if (f2fs_write_meta_page(page, &wbc)) {
246 if (unlikely(nwritten >= nr_to_write))
249 pagevec_release(&pvec);
254 f2fs_submit_merged_bio(sbi, type, WRITE);
259 static int f2fs_set_meta_page_dirty(struct page *page)
261 trace_f2fs_set_page_dirty(page, META);
263 SetPageUptodate(page);
264 if (!PageDirty(page)) {
265 __set_page_dirty_nobuffers(page);
266 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
272 const struct address_space_operations f2fs_meta_aops = {
273 .writepage = f2fs_write_meta_page,
274 .writepages = f2fs_write_meta_pages,
275 .set_page_dirty = f2fs_set_meta_page_dirty,
278 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
282 spin_lock(&sbi->ino_lock[type]);
284 e = radix_tree_lookup(&sbi->ino_root[type], ino);
286 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
288 spin_unlock(&sbi->ino_lock[type]);
291 if (radix_tree_insert(&sbi->ino_root[type], ino, e)) {
292 spin_unlock(&sbi->ino_lock[type]);
293 kmem_cache_free(ino_entry_slab, e);
296 memset(e, 0, sizeof(struct ino_entry));
299 list_add_tail(&e->list, &sbi->ino_list[type]);
301 spin_unlock(&sbi->ino_lock[type]);
304 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
308 spin_lock(&sbi->ino_lock[type]);
309 e = radix_tree_lookup(&sbi->ino_root[type], ino);
312 radix_tree_delete(&sbi->ino_root[type], ino);
313 if (type == ORPHAN_INO)
315 spin_unlock(&sbi->ino_lock[type]);
316 kmem_cache_free(ino_entry_slab, e);
319 spin_unlock(&sbi->ino_lock[type]);
322 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
324 /* add new dirty ino entry into list */
325 __add_ino_entry(sbi, ino, type);
328 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
330 /* remove dirty ino entry from list */
331 __remove_ino_entry(sbi, ino, type);
334 /* mode should be APPEND_INO or UPDATE_INO */
335 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
338 spin_lock(&sbi->ino_lock[mode]);
339 e = radix_tree_lookup(&sbi->ino_root[mode], ino);
340 spin_unlock(&sbi->ino_lock[mode]);
341 return e ? true : false;
344 void release_dirty_inode(struct f2fs_sb_info *sbi)
346 struct ino_entry *e, *tmp;
349 for (i = APPEND_INO; i <= UPDATE_INO; i++) {
350 spin_lock(&sbi->ino_lock[i]);
351 list_for_each_entry_safe(e, tmp, &sbi->ino_list[i], list) {
353 radix_tree_delete(&sbi->ino_root[i], e->ino);
354 kmem_cache_free(ino_entry_slab, e);
356 spin_unlock(&sbi->ino_lock[i]);
360 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
364 spin_lock(&sbi->ino_lock[ORPHAN_INO]);
365 if (unlikely(sbi->n_orphans >= sbi->max_orphans))
369 spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
374 void release_orphan_inode(struct f2fs_sb_info *sbi)
376 spin_lock(&sbi->ino_lock[ORPHAN_INO]);
377 f2fs_bug_on(sbi->n_orphans == 0);
379 spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
382 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
384 /* add new orphan ino entry into list */
385 __add_ino_entry(sbi, ino, ORPHAN_INO);
388 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
390 /* remove orphan entry from orphan list */
391 __remove_ino_entry(sbi, ino, ORPHAN_INO);
394 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
396 struct inode *inode = f2fs_iget(sbi->sb, ino);
397 f2fs_bug_on(IS_ERR(inode));
400 /* truncate all the data during iput */
404 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
406 block_t start_blk, orphan_blkaddr, i, j;
408 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
411 sbi->por_doing = true;
413 start_blk = __start_cp_addr(sbi) + 1 +
414 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
415 orphan_blkaddr = __start_sum_addr(sbi) - 1;
417 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
419 for (i = 0; i < orphan_blkaddr; i++) {
420 struct page *page = get_meta_page(sbi, start_blk + i);
421 struct f2fs_orphan_block *orphan_blk;
423 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
424 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
425 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
426 recover_orphan_inode(sbi, ino);
428 f2fs_put_page(page, 1);
430 /* clear Orphan Flag */
431 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
432 sbi->por_doing = false;
436 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
438 struct list_head *head;
439 struct f2fs_orphan_block *orphan_blk = NULL;
440 unsigned int nentries = 0;
441 unsigned short index;
442 unsigned short orphan_blocks =
443 (unsigned short)GET_ORPHAN_BLOCKS(sbi->n_orphans);
444 struct page *page = NULL;
445 struct ino_entry *orphan = NULL;
447 for (index = 0; index < orphan_blocks; index++)
448 grab_meta_page(sbi, start_blk + index);
451 spin_lock(&sbi->ino_lock[ORPHAN_INO]);
452 head = &sbi->ino_list[ORPHAN_INO];
454 /* loop for each orphan inode entry and write them in Jornal block */
455 list_for_each_entry(orphan, head, list) {
457 page = find_get_page(META_MAPPING(sbi), start_blk++);
460 (struct f2fs_orphan_block *)page_address(page);
461 memset(orphan_blk, 0, sizeof(*orphan_blk));
462 f2fs_put_page(page, 0);
465 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
467 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
469 * an orphan block is full of 1020 entries,
470 * then we need to flush current orphan blocks
471 * and bring another one in memory
473 orphan_blk->blk_addr = cpu_to_le16(index);
474 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
475 orphan_blk->entry_count = cpu_to_le32(nentries);
476 set_page_dirty(page);
477 f2fs_put_page(page, 1);
485 orphan_blk->blk_addr = cpu_to_le16(index);
486 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
487 orphan_blk->entry_count = cpu_to_le32(nentries);
488 set_page_dirty(page);
489 f2fs_put_page(page, 1);
492 spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
495 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
496 block_t cp_addr, unsigned long long *version)
498 struct page *cp_page_1, *cp_page_2 = NULL;
499 unsigned long blk_size = sbi->blocksize;
500 struct f2fs_checkpoint *cp_block;
501 unsigned long long cur_version = 0, pre_version = 0;
505 /* Read the 1st cp block in this CP pack */
506 cp_page_1 = get_meta_page(sbi, cp_addr);
508 /* get the version number */
509 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
510 crc_offset = le32_to_cpu(cp_block->checksum_offset);
511 if (crc_offset >= blk_size)
514 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
515 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
518 pre_version = cur_cp_version(cp_block);
520 /* Read the 2nd cp block in this CP pack */
521 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
522 cp_page_2 = get_meta_page(sbi, cp_addr);
524 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
525 crc_offset = le32_to_cpu(cp_block->checksum_offset);
526 if (crc_offset >= blk_size)
529 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
530 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
533 cur_version = cur_cp_version(cp_block);
535 if (cur_version == pre_version) {
536 *version = cur_version;
537 f2fs_put_page(cp_page_2, 1);
541 f2fs_put_page(cp_page_2, 1);
543 f2fs_put_page(cp_page_1, 1);
547 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
549 struct f2fs_checkpoint *cp_block;
550 struct f2fs_super_block *fsb = sbi->raw_super;
551 struct page *cp1, *cp2, *cur_page;
552 unsigned long blk_size = sbi->blocksize;
553 unsigned long long cp1_version = 0, cp2_version = 0;
554 unsigned long long cp_start_blk_no;
555 unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
559 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
563 * Finding out valid cp block involves read both
564 * sets( cp pack1 and cp pack 2)
566 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
567 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
569 /* The second checkpoint pack should start at the next segment */
570 cp_start_blk_no += ((unsigned long long)1) <<
571 le32_to_cpu(fsb->log_blocks_per_seg);
572 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
575 if (ver_after(cp2_version, cp1_version))
587 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
588 memcpy(sbi->ckpt, cp_block, blk_size);
593 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
595 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
597 for (i = 1; i < cp_blks; i++) {
598 void *sit_bitmap_ptr;
599 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
601 cur_page = get_meta_page(sbi, cp_blk_no + i);
602 sit_bitmap_ptr = page_address(cur_page);
603 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
604 f2fs_put_page(cur_page, 1);
607 f2fs_put_page(cp1, 1);
608 f2fs_put_page(cp2, 1);
616 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
618 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
620 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
623 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
624 F2FS_I(inode)->dirty_dir = new;
625 list_add_tail(&new->list, &sbi->dir_inode_list);
626 stat_inc_dirty_dir(sbi);
630 void set_dirty_dir_page(struct inode *inode, struct page *page)
632 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
633 struct dir_inode_entry *new;
636 if (!S_ISDIR(inode->i_mode))
639 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
641 INIT_LIST_HEAD(&new->list);
643 spin_lock(&sbi->dir_inode_lock);
644 ret = __add_dirty_inode(inode, new);
645 inode_inc_dirty_dents(inode);
646 SetPagePrivate(page);
647 spin_unlock(&sbi->dir_inode_lock);
650 kmem_cache_free(inode_entry_slab, new);
653 void add_dirty_dir_inode(struct inode *inode)
655 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
656 struct dir_inode_entry *new =
657 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
661 INIT_LIST_HEAD(&new->list);
663 spin_lock(&sbi->dir_inode_lock);
664 ret = __add_dirty_inode(inode, new);
665 spin_unlock(&sbi->dir_inode_lock);
668 kmem_cache_free(inode_entry_slab, new);
671 void remove_dirty_dir_inode(struct inode *inode)
673 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
674 struct dir_inode_entry *entry;
676 if (!S_ISDIR(inode->i_mode))
679 spin_lock(&sbi->dir_inode_lock);
680 if (get_dirty_dents(inode) ||
681 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
682 spin_unlock(&sbi->dir_inode_lock);
686 entry = F2FS_I(inode)->dirty_dir;
687 list_del(&entry->list);
688 F2FS_I(inode)->dirty_dir = NULL;
689 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
690 stat_dec_dirty_dir(sbi);
691 spin_unlock(&sbi->dir_inode_lock);
692 kmem_cache_free(inode_entry_slab, entry);
694 /* Only from the recovery routine */
695 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
696 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
701 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
703 struct list_head *head;
704 struct dir_inode_entry *entry;
707 spin_lock(&sbi->dir_inode_lock);
709 head = &sbi->dir_inode_list;
710 if (list_empty(head)) {
711 spin_unlock(&sbi->dir_inode_lock);
714 entry = list_entry(head->next, struct dir_inode_entry, list);
715 inode = igrab(entry->inode);
716 spin_unlock(&sbi->dir_inode_lock);
718 filemap_fdatawrite(inode->i_mapping);
722 * We should submit bio, since it exists several
723 * wribacking dentry pages in the freeing inode.
725 f2fs_submit_merged_bio(sbi, DATA, WRITE);
731 * Freeze all the FS-operations for checkpoint.
733 static int block_operations(struct f2fs_sb_info *sbi)
735 struct writeback_control wbc = {
736 .sync_mode = WB_SYNC_ALL,
737 .nr_to_write = LONG_MAX,
740 struct blk_plug plug;
743 blk_start_plug(&plug);
747 /* write all the dirty dentry pages */
748 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
749 f2fs_unlock_all(sbi);
750 sync_dirty_dir_inodes(sbi);
751 if (unlikely(f2fs_cp_error(sbi))) {
755 goto retry_flush_dents;
759 * POR: we should ensure that there are no dirty node pages
760 * until finishing nat/sit flush.
763 down_write(&sbi->node_write);
765 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
766 up_write(&sbi->node_write);
767 sync_node_pages(sbi, 0, &wbc);
768 if (unlikely(f2fs_cp_error(sbi))) {
769 f2fs_unlock_all(sbi);
773 goto retry_flush_nodes;
776 blk_finish_plug(&plug);
780 static void unblock_operations(struct f2fs_sb_info *sbi)
782 up_write(&sbi->node_write);
783 f2fs_unlock_all(sbi);
786 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
791 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
793 if (!get_pages(sbi, F2FS_WRITEBACK))
798 finish_wait(&sbi->cp_wait, &wait);
801 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
803 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
804 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
807 struct page *cp_page;
808 unsigned int data_sum_blocks, orphan_blocks;
812 int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
815 * This avoids to conduct wrong roll-forward operations and uses
816 * metapages, so should be called prior to sync_meta_pages below.
818 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
820 /* Flush all the NAT/SIT pages */
821 while (get_pages(sbi, F2FS_DIRTY_META)) {
822 sync_meta_pages(sbi, META, LONG_MAX);
823 if (unlikely(f2fs_cp_error(sbi)))
827 next_free_nid(sbi, &last_nid);
831 * version number is already updated
833 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
834 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
835 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
836 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
837 ckpt->cur_node_segno[i] =
838 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
839 ckpt->cur_node_blkoff[i] =
840 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
841 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
842 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
844 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
845 ckpt->cur_data_segno[i] =
846 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
847 ckpt->cur_data_blkoff[i] =
848 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
849 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
850 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
853 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
854 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
855 ckpt->next_free_nid = cpu_to_le32(last_nid);
857 /* 2 cp + n data seg summary + orphan inode blocks */
858 data_sum_blocks = npages_for_summary_flush(sbi);
859 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
860 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
862 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
864 orphan_blocks = GET_ORPHAN_BLOCKS(sbi->n_orphans);
865 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
869 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
870 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
871 cp_payload_blks + data_sum_blocks +
872 orphan_blocks + NR_CURSEG_NODE_TYPE);
874 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
875 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
876 cp_payload_blks + data_sum_blocks +
881 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
883 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
886 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
888 /* update SIT/NAT bitmap */
889 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
890 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
892 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
893 *((__le32 *)((unsigned char *)ckpt +
894 le32_to_cpu(ckpt->checksum_offset)))
895 = cpu_to_le32(crc32);
897 start_blk = __start_cp_addr(sbi);
899 /* write out checkpoint buffer at block 0 */
900 cp_page = grab_meta_page(sbi, start_blk++);
901 kaddr = page_address(cp_page);
902 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
903 set_page_dirty(cp_page);
904 f2fs_put_page(cp_page, 1);
906 for (i = 1; i < 1 + cp_payload_blks; i++) {
907 cp_page = grab_meta_page(sbi, start_blk++);
908 kaddr = page_address(cp_page);
909 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
910 (1 << sbi->log_blocksize));
911 set_page_dirty(cp_page);
912 f2fs_put_page(cp_page, 1);
915 if (sbi->n_orphans) {
916 write_orphan_inodes(sbi, start_blk);
917 start_blk += orphan_blocks;
920 write_data_summaries(sbi, start_blk);
921 start_blk += data_sum_blocks;
923 write_node_summaries(sbi, start_blk);
924 start_blk += NR_CURSEG_NODE_TYPE;
927 /* writeout checkpoint block */
928 cp_page = grab_meta_page(sbi, start_blk);
929 kaddr = page_address(cp_page);
930 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
931 set_page_dirty(cp_page);
932 f2fs_put_page(cp_page, 1);
934 /* wait for previous submitted node/meta pages writeback */
935 wait_on_all_pages_writeback(sbi);
937 if (unlikely(f2fs_cp_error(sbi)))
940 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
941 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
943 /* update user_block_counts */
944 sbi->last_valid_block_count = sbi->total_valid_block_count;
945 sbi->alloc_valid_block_count = 0;
947 /* Here, we only have one bio having CP pack */
948 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
950 release_dirty_inode(sbi);
952 if (unlikely(f2fs_cp_error(sbi)))
955 clear_prefree_segments(sbi);
956 F2FS_RESET_SB_DIRT(sbi);
960 * We guarantee that this checkpoint procedure will not fail.
962 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
964 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
965 unsigned long long ckpt_ver;
967 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
969 mutex_lock(&sbi->cp_mutex);
973 if (unlikely(f2fs_cp_error(sbi)))
975 if (block_operations(sbi))
978 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
980 f2fs_submit_merged_bio(sbi, DATA, WRITE);
981 f2fs_submit_merged_bio(sbi, NODE, WRITE);
982 f2fs_submit_merged_bio(sbi, META, WRITE);
985 * update checkpoint pack index
986 * Increase the version number so that
987 * SIT entries and seg summaries are written at correct place
989 ckpt_ver = cur_cp_version(ckpt);
990 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
992 /* write cached NAT/SIT entries to NAT/SIT area */
993 flush_nat_entries(sbi);
994 flush_sit_entries(sbi);
996 /* unlock all the fs_lock[] in do_checkpoint() */
997 do_checkpoint(sbi, is_umount);
999 unblock_operations(sbi);
1000 stat_inc_cp_count(sbi->stat_info);
1002 mutex_unlock(&sbi->cp_mutex);
1003 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
1006 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1010 for (i = 0; i < MAX_INO_ENTRY; i++) {
1011 INIT_RADIX_TREE(&sbi->ino_root[i], GFP_ATOMIC);
1012 spin_lock_init(&sbi->ino_lock[i]);
1013 INIT_LIST_HEAD(&sbi->ino_list[i]);
1017 * considering 512 blocks in a segment 8 blocks are needed for cp
1018 * and log segment summaries. Remaining blocks are used to keep
1019 * orphan entries with the limitation one reserved segment
1020 * for cp pack we can have max 1020*504 orphan entries
1023 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1024 NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
1027 int __init create_checkpoint_caches(void)
1029 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1030 sizeof(struct ino_entry));
1031 if (!ino_entry_slab)
1033 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
1034 sizeof(struct dir_inode_entry));
1035 if (!inode_entry_slab) {
1036 kmem_cache_destroy(ino_entry_slab);
1042 void destroy_checkpoint_caches(void)
1044 kmem_cache_destroy(ino_entry_slab);
1045 kmem_cache_destroy(inode_entry_slab);