9f5317c9ad7292f238246f076bce11adada814ab
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34         struct address_space *mapping = META_MAPPING(sbi);
35         struct page *page = NULL;
36 repeat:
37         page = grab_cache_page(mapping, index);
38         if (!page) {
39                 cond_resched();
40                 goto repeat;
41         }
42         f2fs_wait_on_page_writeback(page, META);
43         SetPageUptodate(page);
44         return page;
45 }
46
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52         struct address_space *mapping = META_MAPPING(sbi);
53         struct page *page;
54         struct f2fs_io_info fio = {
55                 .type = META,
56                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
57                 .blk_addr = index,
58         };
59 repeat:
60         page = grab_cache_page(mapping, index);
61         if (!page) {
62                 cond_resched();
63                 goto repeat;
64         }
65         if (PageUptodate(page))
66                 goto out;
67
68         if (f2fs_submit_page_bio(sbi, page, &fio))
69                 goto repeat;
70
71         lock_page(page);
72         if (unlikely(page->mapping != mapping)) {
73                 f2fs_put_page(page, 1);
74                 goto repeat;
75         }
76 out:
77         return page;
78 }
79
80 static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi,
81                                                 block_t blkaddr, int type)
82 {
83         switch (type) {
84         case META_NAT:
85                 break;
86         case META_SIT:
87                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
88                         return false;
89                 break;
90         case META_SSA:
91                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
92                         blkaddr < SM_I(sbi)->ssa_blkaddr))
93                         return false;
94                 break;
95         case META_CP:
96                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
97                         blkaddr < __start_cp_addr(sbi)))
98                         return false;
99                 break;
100         case META_POR:
101                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
102                         blkaddr < MAIN_BLKADDR(sbi)))
103                         return false;
104                 break;
105         default:
106                 BUG();
107         }
108
109         return true;
110 }
111
112 /*
113  * Readahead CP/NAT/SIT/SSA pages
114  */
115 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
116 {
117         block_t prev_blk_addr = 0;
118         struct page *page;
119         block_t blkno = start;
120         struct f2fs_io_info fio = {
121                 .type = META,
122                 .rw = READ_SYNC | REQ_META | REQ_PRIO
123         };
124
125         for (; nrpages-- > 0; blkno++) {
126
127                 if (!is_valid_blkaddr(sbi, blkno, type))
128                         goto out;
129
130                 switch (type) {
131                 case META_NAT:
132                         if (unlikely(blkno >=
133                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
134                                 blkno = 0;
135                         /* get nat block addr */
136                         fio.blk_addr = current_nat_addr(sbi,
137                                         blkno * NAT_ENTRY_PER_BLOCK);
138                         break;
139                 case META_SIT:
140                         /* get sit block addr */
141                         fio.blk_addr = current_sit_addr(sbi,
142                                         blkno * SIT_ENTRY_PER_BLOCK);
143                         if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
144                                 goto out;
145                         prev_blk_addr = fio.blk_addr;
146                         break;
147                 case META_SSA:
148                 case META_CP:
149                 case META_POR:
150                         fio.blk_addr = blkno;
151                         break;
152                 default:
153                         BUG();
154                 }
155
156                 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
157                 if (!page)
158                         continue;
159                 if (PageUptodate(page)) {
160                         f2fs_put_page(page, 1);
161                         continue;
162                 }
163
164                 f2fs_submit_page_mbio(sbi, page, &fio);
165                 f2fs_put_page(page, 0);
166         }
167 out:
168         f2fs_submit_merged_bio(sbi, META, READ);
169         return blkno - start;
170 }
171
172 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
173 {
174         struct page *page;
175         bool readahead = false;
176
177         page = find_get_page(META_MAPPING(sbi), index);
178         if (!page || (page && !PageUptodate(page)))
179                 readahead = true;
180         f2fs_put_page(page, 0);
181
182         if (readahead)
183                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
184 }
185
186 static int f2fs_write_meta_page(struct page *page,
187                                 struct writeback_control *wbc)
188 {
189         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
190
191         trace_f2fs_writepage(page, META);
192
193         if (unlikely(sbi->por_doing))
194                 goto redirty_out;
195         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
196                 goto redirty_out;
197         if (unlikely(f2fs_cp_error(sbi)))
198                 goto redirty_out;
199
200         f2fs_wait_on_page_writeback(page, META);
201         write_meta_page(sbi, page);
202         dec_page_count(sbi, F2FS_DIRTY_META);
203         unlock_page(page);
204
205         if (wbc->for_reclaim)
206                 f2fs_submit_merged_bio(sbi, META, WRITE);
207         return 0;
208
209 redirty_out:
210         redirty_page_for_writepage(wbc, page);
211         return AOP_WRITEPAGE_ACTIVATE;
212 }
213
214 static int f2fs_write_meta_pages(struct address_space *mapping,
215                                 struct writeback_control *wbc)
216 {
217         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
218         long diff, written;
219
220         trace_f2fs_writepages(mapping->host, wbc, META);
221
222         /* collect a number of dirty meta pages and write together */
223         if (wbc->for_kupdate ||
224                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
225                 goto skip_write;
226
227         /* if mounting is failed, skip writing node pages */
228         mutex_lock(&sbi->cp_mutex);
229         diff = nr_pages_to_write(sbi, META, wbc);
230         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
231         mutex_unlock(&sbi->cp_mutex);
232         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
233         return 0;
234
235 skip_write:
236         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
237         return 0;
238 }
239
240 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
241                                                 long nr_to_write)
242 {
243         struct address_space *mapping = META_MAPPING(sbi);
244         pgoff_t index = 0, end = LONG_MAX;
245         struct pagevec pvec;
246         long nwritten = 0;
247         struct writeback_control wbc = {
248                 .for_reclaim = 0,
249         };
250
251         pagevec_init(&pvec, 0);
252
253         while (index <= end) {
254                 int i, nr_pages;
255                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
256                                 PAGECACHE_TAG_DIRTY,
257                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
258                 if (unlikely(nr_pages == 0))
259                         break;
260
261                 for (i = 0; i < nr_pages; i++) {
262                         struct page *page = pvec.pages[i];
263
264                         lock_page(page);
265
266                         if (unlikely(page->mapping != mapping)) {
267 continue_unlock:
268                                 unlock_page(page);
269                                 continue;
270                         }
271                         if (!PageDirty(page)) {
272                                 /* someone wrote it for us */
273                                 goto continue_unlock;
274                         }
275
276                         if (!clear_page_dirty_for_io(page))
277                                 goto continue_unlock;
278
279                         if (f2fs_write_meta_page(page, &wbc)) {
280                                 unlock_page(page);
281                                 break;
282                         }
283                         nwritten++;
284                         if (unlikely(nwritten >= nr_to_write))
285                                 break;
286                 }
287                 pagevec_release(&pvec);
288                 cond_resched();
289         }
290
291         if (nwritten)
292                 f2fs_submit_merged_bio(sbi, type, WRITE);
293
294         return nwritten;
295 }
296
297 static int f2fs_set_meta_page_dirty(struct page *page)
298 {
299         trace_f2fs_set_page_dirty(page, META);
300
301         SetPageUptodate(page);
302         if (!PageDirty(page)) {
303                 __set_page_dirty_nobuffers(page);
304                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
305                 f2fs_trace_pid(page);
306                 return 1;
307         }
308         return 0;
309 }
310
311 const struct address_space_operations f2fs_meta_aops = {
312         .writepage      = f2fs_write_meta_page,
313         .writepages     = f2fs_write_meta_pages,
314         .set_page_dirty = f2fs_set_meta_page_dirty,
315 };
316
317 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
318 {
319         struct inode_management *im = &sbi->im[type];
320         struct ino_entry *e;
321 retry:
322         if (radix_tree_preload(GFP_NOFS)) {
323                 cond_resched();
324                 goto retry;
325         }
326
327         spin_lock(&im->ino_lock);
328
329         e = radix_tree_lookup(&im->ino_root, ino);
330         if (!e) {
331                 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
332                 if (!e) {
333                         spin_unlock(&im->ino_lock);
334                         radix_tree_preload_end();
335                         goto retry;
336                 }
337                 if (radix_tree_insert(&im->ino_root, ino, e)) {
338                         spin_unlock(&im->ino_lock);
339                         kmem_cache_free(ino_entry_slab, e);
340                         radix_tree_preload_end();
341                         goto retry;
342                 }
343                 memset(e, 0, sizeof(struct ino_entry));
344                 e->ino = ino;
345
346                 list_add_tail(&e->list, &im->ino_list);
347                 if (type != ORPHAN_INO)
348                         im->ino_num++;
349         }
350         spin_unlock(&im->ino_lock);
351         radix_tree_preload_end();
352 }
353
354 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
355 {
356         struct inode_management *im = &sbi->im[type];
357         struct ino_entry *e;
358
359         spin_lock(&im->ino_lock);
360         e = radix_tree_lookup(&im->ino_root, ino);
361         if (e) {
362                 list_del(&e->list);
363                 radix_tree_delete(&im->ino_root, ino);
364                 im->ino_num--;
365                 spin_unlock(&im->ino_lock);
366                 kmem_cache_free(ino_entry_slab, e);
367                 return;
368         }
369         spin_unlock(&im->ino_lock);
370 }
371
372 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
373 {
374         /* add new dirty ino entry into list */
375         __add_ino_entry(sbi, ino, type);
376 }
377
378 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
379 {
380         /* remove dirty ino entry from list */
381         __remove_ino_entry(sbi, ino, type);
382 }
383
384 /* mode should be APPEND_INO or UPDATE_INO */
385 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
386 {
387         struct inode_management *im = &sbi->im[mode];
388         struct ino_entry *e;
389
390         spin_lock(&im->ino_lock);
391         e = radix_tree_lookup(&im->ino_root, ino);
392         spin_unlock(&im->ino_lock);
393         return e ? true : false;
394 }
395
396 void release_dirty_inode(struct f2fs_sb_info *sbi)
397 {
398         struct ino_entry *e, *tmp;
399         int i;
400
401         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
402                 struct inode_management *im = &sbi->im[i];
403
404                 spin_lock(&im->ino_lock);
405                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
406                         list_del(&e->list);
407                         radix_tree_delete(&im->ino_root, e->ino);
408                         kmem_cache_free(ino_entry_slab, e);
409                         im->ino_num--;
410                 }
411                 spin_unlock(&im->ino_lock);
412         }
413 }
414
415 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
416 {
417         struct inode_management *im = &sbi->im[ORPHAN_INO];
418         int err = 0;
419
420         spin_lock(&im->ino_lock);
421         if (unlikely(im->ino_num >= sbi->max_orphans))
422                 err = -ENOSPC;
423         else
424                 im->ino_num++;
425         spin_unlock(&im->ino_lock);
426
427         return err;
428 }
429
430 void release_orphan_inode(struct f2fs_sb_info *sbi)
431 {
432         struct inode_management *im = &sbi->im[ORPHAN_INO];
433
434         spin_lock(&im->ino_lock);
435         f2fs_bug_on(sbi, im->ino_num == 0);
436         im->ino_num--;
437         spin_unlock(&im->ino_lock);
438 }
439
440 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
441 {
442         /* add new orphan ino entry into list */
443         __add_ino_entry(sbi, ino, ORPHAN_INO);
444 }
445
446 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
447 {
448         /* remove orphan entry from orphan list */
449         __remove_ino_entry(sbi, ino, ORPHAN_INO);
450 }
451
452 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
453 {
454         struct inode *inode = f2fs_iget(sbi->sb, ino);
455         f2fs_bug_on(sbi, IS_ERR(inode));
456         clear_nlink(inode);
457
458         /* truncate all the data during iput */
459         iput(inode);
460 }
461
462 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
463 {
464         block_t start_blk, orphan_blkaddr, i, j;
465
466         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
467                 return;
468
469         sbi->por_doing = true;
470
471         start_blk = __start_cp_addr(sbi) + 1 +
472                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
473         orphan_blkaddr = __start_sum_addr(sbi) - 1;
474
475         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
476
477         for (i = 0; i < orphan_blkaddr; i++) {
478                 struct page *page = get_meta_page(sbi, start_blk + i);
479                 struct f2fs_orphan_block *orphan_blk;
480
481                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
482                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
483                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
484                         recover_orphan_inode(sbi, ino);
485                 }
486                 f2fs_put_page(page, 1);
487         }
488         /* clear Orphan Flag */
489         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
490         sbi->por_doing = false;
491         return;
492 }
493
494 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
495 {
496         struct list_head *head;
497         struct f2fs_orphan_block *orphan_blk = NULL;
498         unsigned int nentries = 0;
499         unsigned short index;
500         unsigned short orphan_blocks;
501         struct page *page = NULL;
502         struct ino_entry *orphan = NULL;
503         struct inode_management *im = &sbi->im[ORPHAN_INO];
504
505         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
506
507         for (index = 0; index < orphan_blocks; index++)
508                 grab_meta_page(sbi, start_blk + index);
509
510         index = 1;
511         spin_lock(&im->ino_lock);
512         head = &im->ino_list;
513
514         /* loop for each orphan inode entry and write them in Jornal block */
515         list_for_each_entry(orphan, head, list) {
516                 if (!page) {
517                         page = find_get_page(META_MAPPING(sbi), start_blk++);
518                         f2fs_bug_on(sbi, !page);
519                         orphan_blk =
520                                 (struct f2fs_orphan_block *)page_address(page);
521                         memset(orphan_blk, 0, sizeof(*orphan_blk));
522                         f2fs_put_page(page, 0);
523                 }
524
525                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
526
527                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
528                         /*
529                          * an orphan block is full of 1020 entries,
530                          * then we need to flush current orphan blocks
531                          * and bring another one in memory
532                          */
533                         orphan_blk->blk_addr = cpu_to_le16(index);
534                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
535                         orphan_blk->entry_count = cpu_to_le32(nentries);
536                         set_page_dirty(page);
537                         f2fs_put_page(page, 1);
538                         index++;
539                         nentries = 0;
540                         page = NULL;
541                 }
542         }
543
544         if (page) {
545                 orphan_blk->blk_addr = cpu_to_le16(index);
546                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
547                 orphan_blk->entry_count = cpu_to_le32(nentries);
548                 set_page_dirty(page);
549                 f2fs_put_page(page, 1);
550         }
551
552         spin_unlock(&im->ino_lock);
553 }
554
555 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
556                                 block_t cp_addr, unsigned long long *version)
557 {
558         struct page *cp_page_1, *cp_page_2 = NULL;
559         unsigned long blk_size = sbi->blocksize;
560         struct f2fs_checkpoint *cp_block;
561         unsigned long long cur_version = 0, pre_version = 0;
562         size_t crc_offset;
563         __u32 crc = 0;
564
565         /* Read the 1st cp block in this CP pack */
566         cp_page_1 = get_meta_page(sbi, cp_addr);
567
568         /* get the version number */
569         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
570         crc_offset = le32_to_cpu(cp_block->checksum_offset);
571         if (crc_offset >= blk_size)
572                 goto invalid_cp1;
573
574         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
575         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
576                 goto invalid_cp1;
577
578         pre_version = cur_cp_version(cp_block);
579
580         /* Read the 2nd cp block in this CP pack */
581         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
582         cp_page_2 = get_meta_page(sbi, cp_addr);
583
584         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
585         crc_offset = le32_to_cpu(cp_block->checksum_offset);
586         if (crc_offset >= blk_size)
587                 goto invalid_cp2;
588
589         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
590         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
591                 goto invalid_cp2;
592
593         cur_version = cur_cp_version(cp_block);
594
595         if (cur_version == pre_version) {
596                 *version = cur_version;
597                 f2fs_put_page(cp_page_2, 1);
598                 return cp_page_1;
599         }
600 invalid_cp2:
601         f2fs_put_page(cp_page_2, 1);
602 invalid_cp1:
603         f2fs_put_page(cp_page_1, 1);
604         return NULL;
605 }
606
607 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
608 {
609         struct f2fs_checkpoint *cp_block;
610         struct f2fs_super_block *fsb = sbi->raw_super;
611         struct page *cp1, *cp2, *cur_page;
612         unsigned long blk_size = sbi->blocksize;
613         unsigned long long cp1_version = 0, cp2_version = 0;
614         unsigned long long cp_start_blk_no;
615         unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
616         block_t cp_blk_no;
617         int i;
618
619         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
620         if (!sbi->ckpt)
621                 return -ENOMEM;
622         /*
623          * Finding out valid cp block involves read both
624          * sets( cp pack1 and cp pack 2)
625          */
626         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
627         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
628
629         /* The second checkpoint pack should start at the next segment */
630         cp_start_blk_no += ((unsigned long long)1) <<
631                                 le32_to_cpu(fsb->log_blocks_per_seg);
632         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
633
634         if (cp1 && cp2) {
635                 if (ver_after(cp2_version, cp1_version))
636                         cur_page = cp2;
637                 else
638                         cur_page = cp1;
639         } else if (cp1) {
640                 cur_page = cp1;
641         } else if (cp2) {
642                 cur_page = cp2;
643         } else {
644                 goto fail_no_cp;
645         }
646
647         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
648         memcpy(sbi->ckpt, cp_block, blk_size);
649
650         if (cp_blks <= 1)
651                 goto done;
652
653         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
654         if (cur_page == cp2)
655                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
656
657         for (i = 1; i < cp_blks; i++) {
658                 void *sit_bitmap_ptr;
659                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
660
661                 cur_page = get_meta_page(sbi, cp_blk_no + i);
662                 sit_bitmap_ptr = page_address(cur_page);
663                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
664                 f2fs_put_page(cur_page, 1);
665         }
666 done:
667         f2fs_put_page(cp1, 1);
668         f2fs_put_page(cp2, 1);
669         return 0;
670
671 fail_no_cp:
672         kfree(sbi->ckpt);
673         return -EINVAL;
674 }
675
676 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
677 {
678         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
679
680         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
681                 return -EEXIST;
682
683         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
684         F2FS_I(inode)->dirty_dir = new;
685         list_add_tail(&new->list, &sbi->dir_inode_list);
686         stat_inc_dirty_dir(sbi);
687         return 0;
688 }
689
690 void update_dirty_page(struct inode *inode, struct page *page)
691 {
692         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
693         struct inode_entry *new;
694         int ret = 0;
695
696         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
697                 return;
698
699         if (!S_ISDIR(inode->i_mode)) {
700                 inode_inc_dirty_pages(inode);
701                 goto out;
702         }
703
704         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
705         new->inode = inode;
706         INIT_LIST_HEAD(&new->list);
707
708         spin_lock(&sbi->dir_inode_lock);
709         ret = __add_dirty_inode(inode, new);
710         inode_inc_dirty_pages(inode);
711         spin_unlock(&sbi->dir_inode_lock);
712
713         if (ret)
714                 kmem_cache_free(inode_entry_slab, new);
715 out:
716         SetPagePrivate(page);
717         f2fs_trace_pid(page);
718 }
719
720 void add_dirty_dir_inode(struct inode *inode)
721 {
722         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
723         struct inode_entry *new =
724                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
725         int ret = 0;
726
727         new->inode = inode;
728         INIT_LIST_HEAD(&new->list);
729
730         spin_lock(&sbi->dir_inode_lock);
731         ret = __add_dirty_inode(inode, new);
732         spin_unlock(&sbi->dir_inode_lock);
733
734         if (ret)
735                 kmem_cache_free(inode_entry_slab, new);
736 }
737
738 void remove_dirty_dir_inode(struct inode *inode)
739 {
740         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
741         struct inode_entry *entry;
742
743         if (!S_ISDIR(inode->i_mode))
744                 return;
745
746         spin_lock(&sbi->dir_inode_lock);
747         if (get_dirty_pages(inode) ||
748                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
749                 spin_unlock(&sbi->dir_inode_lock);
750                 return;
751         }
752
753         entry = F2FS_I(inode)->dirty_dir;
754         list_del(&entry->list);
755         F2FS_I(inode)->dirty_dir = NULL;
756         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
757         stat_dec_dirty_dir(sbi);
758         spin_unlock(&sbi->dir_inode_lock);
759         kmem_cache_free(inode_entry_slab, entry);
760
761         /* Only from the recovery routine */
762         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
763                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
764                 iput(inode);
765         }
766 }
767
768 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
769 {
770         struct list_head *head;
771         struct inode_entry *entry;
772         struct inode *inode;
773 retry:
774         if (unlikely(f2fs_cp_error(sbi)))
775                 return;
776
777         spin_lock(&sbi->dir_inode_lock);
778
779         head = &sbi->dir_inode_list;
780         if (list_empty(head)) {
781                 spin_unlock(&sbi->dir_inode_lock);
782                 return;
783         }
784         entry = list_entry(head->next, struct inode_entry, list);
785         inode = igrab(entry->inode);
786         spin_unlock(&sbi->dir_inode_lock);
787         if (inode) {
788                 filemap_fdatawrite(inode->i_mapping);
789                 iput(inode);
790         } else {
791                 /*
792                  * We should submit bio, since it exists several
793                  * wribacking dentry pages in the freeing inode.
794                  */
795                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
796         }
797         goto retry;
798 }
799
800 /*
801  * Freeze all the FS-operations for checkpoint.
802  */
803 static int block_operations(struct f2fs_sb_info *sbi)
804 {
805         struct writeback_control wbc = {
806                 .sync_mode = WB_SYNC_ALL,
807                 .nr_to_write = LONG_MAX,
808                 .for_reclaim = 0,
809         };
810         struct blk_plug plug;
811         int err = 0;
812
813         blk_start_plug(&plug);
814
815 retry_flush_dents:
816         f2fs_lock_all(sbi);
817         /* write all the dirty dentry pages */
818         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
819                 f2fs_unlock_all(sbi);
820                 sync_dirty_dir_inodes(sbi);
821                 if (unlikely(f2fs_cp_error(sbi))) {
822                         err = -EIO;
823                         goto out;
824                 }
825                 goto retry_flush_dents;
826         }
827
828         /*
829          * POR: we should ensure that there are no dirty node pages
830          * until finishing nat/sit flush.
831          */
832 retry_flush_nodes:
833         down_write(&sbi->node_write);
834
835         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
836                 up_write(&sbi->node_write);
837                 sync_node_pages(sbi, 0, &wbc);
838                 if (unlikely(f2fs_cp_error(sbi))) {
839                         f2fs_unlock_all(sbi);
840                         err = -EIO;
841                         goto out;
842                 }
843                 goto retry_flush_nodes;
844         }
845 out:
846         blk_finish_plug(&plug);
847         return err;
848 }
849
850 static void unblock_operations(struct f2fs_sb_info *sbi)
851 {
852         up_write(&sbi->node_write);
853         f2fs_unlock_all(sbi);
854 }
855
856 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
857 {
858         DEFINE_WAIT(wait);
859
860         for (;;) {
861                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
862
863                 if (!get_pages(sbi, F2FS_WRITEBACK))
864                         break;
865
866                 io_schedule();
867         }
868         finish_wait(&sbi->cp_wait, &wait);
869 }
870
871 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
872 {
873         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
874         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
875         struct f2fs_nm_info *nm_i = NM_I(sbi);
876         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
877         nid_t last_nid = nm_i->next_scan_nid;
878         block_t start_blk;
879         struct page *cp_page;
880         unsigned int data_sum_blocks, orphan_blocks;
881         __u32 crc32 = 0;
882         void *kaddr;
883         int i;
884         int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
885
886         /*
887          * This avoids to conduct wrong roll-forward operations and uses
888          * metapages, so should be called prior to sync_meta_pages below.
889          */
890         discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
891
892         /* Flush all the NAT/SIT pages */
893         while (get_pages(sbi, F2FS_DIRTY_META)) {
894                 sync_meta_pages(sbi, META, LONG_MAX);
895                 if (unlikely(f2fs_cp_error(sbi)))
896                         return;
897         }
898
899         next_free_nid(sbi, &last_nid);
900
901         /*
902          * modify checkpoint
903          * version number is already updated
904          */
905         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
906         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
907         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
908         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
909                 ckpt->cur_node_segno[i] =
910                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
911                 ckpt->cur_node_blkoff[i] =
912                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
913                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
914                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
915         }
916         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
917                 ckpt->cur_data_segno[i] =
918                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
919                 ckpt->cur_data_blkoff[i] =
920                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
921                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
922                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
923         }
924
925         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
926         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
927         ckpt->next_free_nid = cpu_to_le32(last_nid);
928
929         /* 2 cp  + n data seg summary + orphan inode blocks */
930         data_sum_blocks = npages_for_summary_flush(sbi, false);
931         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
932                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
933         else
934                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
935
936         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
937         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
938                         orphan_blocks);
939
940         if (cpc->reason == CP_UMOUNT) {
941                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
942                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
943                                 cp_payload_blks + data_sum_blocks +
944                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
945         } else {
946                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
947                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
948                                 cp_payload_blks + data_sum_blocks +
949                                 orphan_blocks);
950         }
951
952         if (orphan_num)
953                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
954         else
955                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
956
957         if (sbi->need_fsck)
958                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
959
960         /* update SIT/NAT bitmap */
961         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
962         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
963
964         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
965         *((__le32 *)((unsigned char *)ckpt +
966                                 le32_to_cpu(ckpt->checksum_offset)))
967                                 = cpu_to_le32(crc32);
968
969         start_blk = __start_cp_addr(sbi);
970
971         /* write out checkpoint buffer at block 0 */
972         cp_page = grab_meta_page(sbi, start_blk++);
973         kaddr = page_address(cp_page);
974         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
975         set_page_dirty(cp_page);
976         f2fs_put_page(cp_page, 1);
977
978         for (i = 1; i < 1 + cp_payload_blks; i++) {
979                 cp_page = grab_meta_page(sbi, start_blk++);
980                 kaddr = page_address(cp_page);
981                 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
982                                 (1 << sbi->log_blocksize));
983                 set_page_dirty(cp_page);
984                 f2fs_put_page(cp_page, 1);
985         }
986
987         if (orphan_num) {
988                 write_orphan_inodes(sbi, start_blk);
989                 start_blk += orphan_blocks;
990         }
991
992         write_data_summaries(sbi, start_blk);
993         start_blk += data_sum_blocks;
994         if (cpc->reason == CP_UMOUNT) {
995                 write_node_summaries(sbi, start_blk);
996                 start_blk += NR_CURSEG_NODE_TYPE;
997         }
998
999         /* writeout checkpoint block */
1000         cp_page = grab_meta_page(sbi, start_blk);
1001         kaddr = page_address(cp_page);
1002         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
1003         set_page_dirty(cp_page);
1004         f2fs_put_page(cp_page, 1);
1005
1006         /* wait for previous submitted node/meta pages writeback */
1007         wait_on_all_pages_writeback(sbi);
1008
1009         if (unlikely(f2fs_cp_error(sbi)))
1010                 return;
1011
1012         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1013         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1014
1015         /* update user_block_counts */
1016         sbi->last_valid_block_count = sbi->total_valid_block_count;
1017         sbi->alloc_valid_block_count = 0;
1018
1019         /* Here, we only have one bio having CP pack */
1020         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1021
1022         /* wait for previous submitted meta pages writeback */
1023         wait_on_all_pages_writeback(sbi);
1024
1025         release_dirty_inode(sbi);
1026
1027         if (unlikely(f2fs_cp_error(sbi)))
1028                 return;
1029
1030         clear_prefree_segments(sbi);
1031         F2FS_RESET_SB_DIRT(sbi);
1032 }
1033
1034 /*
1035  * We guarantee that this checkpoint procedure will not fail.
1036  */
1037 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1038 {
1039         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1040         unsigned long long ckpt_ver;
1041
1042         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1043
1044         mutex_lock(&sbi->cp_mutex);
1045
1046         if (!sbi->s_dirty && cpc->reason != CP_DISCARD)
1047                 goto out;
1048         if (unlikely(f2fs_cp_error(sbi)))
1049                 goto out;
1050         if (block_operations(sbi))
1051                 goto out;
1052
1053         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1054
1055         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1056         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1057         f2fs_submit_merged_bio(sbi, META, WRITE);
1058
1059         /*
1060          * update checkpoint pack index
1061          * Increase the version number so that
1062          * SIT entries and seg summaries are written at correct place
1063          */
1064         ckpt_ver = cur_cp_version(ckpt);
1065         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1066
1067         /* write cached NAT/SIT entries to NAT/SIT area */
1068         flush_nat_entries(sbi);
1069         flush_sit_entries(sbi, cpc);
1070
1071         /* unlock all the fs_lock[] in do_checkpoint() */
1072         do_checkpoint(sbi, cpc);
1073
1074         unblock_operations(sbi);
1075         stat_inc_cp_count(sbi->stat_info);
1076 out:
1077         mutex_unlock(&sbi->cp_mutex);
1078         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1079 }
1080
1081 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1082 {
1083         int i;
1084
1085         for (i = 0; i < MAX_INO_ENTRY; i++) {
1086                 struct inode_management *im = &sbi->im[i];
1087
1088                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1089                 spin_lock_init(&im->ino_lock);
1090                 INIT_LIST_HEAD(&im->ino_list);
1091                 im->ino_num = 0;
1092         }
1093
1094         /*
1095          * considering 512 blocks in a segment 8 blocks are needed for cp
1096          * and log segment summaries. Remaining blocks are used to keep
1097          * orphan entries with the limitation one reserved segment
1098          * for cp pack we can have max 1020*504 orphan entries
1099          */
1100         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1101                         NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
1102 }
1103
1104 int __init create_checkpoint_caches(void)
1105 {
1106         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1107                         sizeof(struct ino_entry));
1108         if (!ino_entry_slab)
1109                 return -ENOMEM;
1110         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1111                         sizeof(struct inode_entry));
1112         if (!inode_entry_slab) {
1113                 kmem_cache_destroy(ino_entry_slab);
1114                 return -ENOMEM;
1115         }
1116         return 0;
1117 }
1118
1119 void destroy_checkpoint_caches(void)
1120 {
1121         kmem_cache_destroy(ino_entry_slab);
1122         kmem_cache_destroy(inode_entry_slab);
1123 }