f2fs: keep PagePrivate during releasepage
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34         struct address_space *mapping = META_MAPPING(sbi);
35         struct page *page = NULL;
36 repeat:
37         page = grab_cache_page(mapping, index);
38         if (!page) {
39                 cond_resched();
40                 goto repeat;
41         }
42         f2fs_wait_on_page_writeback(page, META);
43         SetPageUptodate(page);
44         return page;
45 }
46
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52         struct address_space *mapping = META_MAPPING(sbi);
53         struct page *page;
54         struct f2fs_io_info fio = {
55                 .type = META,
56                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
57                 .blk_addr = index,
58         };
59 repeat:
60         page = grab_cache_page(mapping, index);
61         if (!page) {
62                 cond_resched();
63                 goto repeat;
64         }
65         if (PageUptodate(page))
66                 goto out;
67
68         if (f2fs_submit_page_bio(sbi, page, &fio))
69                 goto repeat;
70
71         lock_page(page);
72         if (unlikely(page->mapping != mapping)) {
73                 f2fs_put_page(page, 1);
74                 goto repeat;
75         }
76 out:
77         return page;
78 }
79
80 static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi,
81                                                 block_t blkaddr, int type)
82 {
83         switch (type) {
84         case META_NAT:
85                 break;
86         case META_SIT:
87                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
88                         return false;
89                 break;
90         case META_SSA:
91                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
92                         blkaddr < SM_I(sbi)->ssa_blkaddr))
93                         return false;
94                 break;
95         case META_CP:
96                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
97                         blkaddr < __start_cp_addr(sbi)))
98                         return false;
99                 break;
100         case META_POR:
101                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
102                         blkaddr < MAIN_BLKADDR(sbi)))
103                         return false;
104                 break;
105         default:
106                 BUG();
107         }
108
109         return true;
110 }
111
112 /*
113  * Readahead CP/NAT/SIT/SSA pages
114  */
115 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
116 {
117         block_t prev_blk_addr = 0;
118         struct page *page;
119         block_t blkno = start;
120         struct f2fs_io_info fio = {
121                 .type = META,
122                 .rw = READ_SYNC | REQ_META | REQ_PRIO
123         };
124
125         for (; nrpages-- > 0; blkno++) {
126
127                 if (!is_valid_blkaddr(sbi, blkno, type))
128                         goto out;
129
130                 switch (type) {
131                 case META_NAT:
132                         if (unlikely(blkno >=
133                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
134                                 blkno = 0;
135                         /* get nat block addr */
136                         fio.blk_addr = current_nat_addr(sbi,
137                                         blkno * NAT_ENTRY_PER_BLOCK);
138                         break;
139                 case META_SIT:
140                         /* get sit block addr */
141                         fio.blk_addr = current_sit_addr(sbi,
142                                         blkno * SIT_ENTRY_PER_BLOCK);
143                         if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
144                                 goto out;
145                         prev_blk_addr = fio.blk_addr;
146                         break;
147                 case META_SSA:
148                 case META_CP:
149                 case META_POR:
150                         fio.blk_addr = blkno;
151                         break;
152                 default:
153                         BUG();
154                 }
155
156                 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
157                 if (!page)
158                         continue;
159                 if (PageUptodate(page)) {
160                         f2fs_put_page(page, 1);
161                         continue;
162                 }
163
164                 f2fs_submit_page_mbio(sbi, page, &fio);
165                 f2fs_put_page(page, 0);
166         }
167 out:
168         f2fs_submit_merged_bio(sbi, META, READ);
169         return blkno - start;
170 }
171
172 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
173 {
174         struct page *page;
175         bool readahead = false;
176
177         page = find_get_page(META_MAPPING(sbi), index);
178         if (!page || (page && !PageUptodate(page)))
179                 readahead = true;
180         f2fs_put_page(page, 0);
181
182         if (readahead)
183                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
184 }
185
186 static int f2fs_write_meta_page(struct page *page,
187                                 struct writeback_control *wbc)
188 {
189         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
190
191         trace_f2fs_writepage(page, META);
192
193         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
194                 goto redirty_out;
195         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
196                 goto redirty_out;
197         if (unlikely(f2fs_cp_error(sbi)))
198                 goto redirty_out;
199
200         f2fs_wait_on_page_writeback(page, META);
201         write_meta_page(sbi, page);
202         dec_page_count(sbi, F2FS_DIRTY_META);
203         unlock_page(page);
204
205         if (wbc->for_reclaim)
206                 f2fs_submit_merged_bio(sbi, META, WRITE);
207         return 0;
208
209 redirty_out:
210         redirty_page_for_writepage(wbc, page);
211         return AOP_WRITEPAGE_ACTIVATE;
212 }
213
214 static int f2fs_write_meta_pages(struct address_space *mapping,
215                                 struct writeback_control *wbc)
216 {
217         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
218         long diff, written;
219
220         trace_f2fs_writepages(mapping->host, wbc, META);
221
222         /* collect a number of dirty meta pages and write together */
223         if (wbc->for_kupdate ||
224                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
225                 goto skip_write;
226
227         /* if mounting is failed, skip writing node pages */
228         mutex_lock(&sbi->cp_mutex);
229         diff = nr_pages_to_write(sbi, META, wbc);
230         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
231         mutex_unlock(&sbi->cp_mutex);
232         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
233         return 0;
234
235 skip_write:
236         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
237         return 0;
238 }
239
240 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
241                                                 long nr_to_write)
242 {
243         struct address_space *mapping = META_MAPPING(sbi);
244         pgoff_t index = 0, end = LONG_MAX;
245         struct pagevec pvec;
246         long nwritten = 0;
247         struct writeback_control wbc = {
248                 .for_reclaim = 0,
249         };
250
251         pagevec_init(&pvec, 0);
252
253         while (index <= end) {
254                 int i, nr_pages;
255                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
256                                 PAGECACHE_TAG_DIRTY,
257                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
258                 if (unlikely(nr_pages == 0))
259                         break;
260
261                 for (i = 0; i < nr_pages; i++) {
262                         struct page *page = pvec.pages[i];
263
264                         lock_page(page);
265
266                         if (unlikely(page->mapping != mapping)) {
267 continue_unlock:
268                                 unlock_page(page);
269                                 continue;
270                         }
271                         if (!PageDirty(page)) {
272                                 /* someone wrote it for us */
273                                 goto continue_unlock;
274                         }
275
276                         if (!clear_page_dirty_for_io(page))
277                                 goto continue_unlock;
278
279                         if (f2fs_write_meta_page(page, &wbc)) {
280                                 unlock_page(page);
281                                 break;
282                         }
283                         nwritten++;
284                         if (unlikely(nwritten >= nr_to_write))
285                                 break;
286                 }
287                 pagevec_release(&pvec);
288                 cond_resched();
289         }
290
291         if (nwritten)
292                 f2fs_submit_merged_bio(sbi, type, WRITE);
293
294         return nwritten;
295 }
296
297 static int f2fs_set_meta_page_dirty(struct page *page)
298 {
299         trace_f2fs_set_page_dirty(page, META);
300
301         SetPageUptodate(page);
302         if (!PageDirty(page)) {
303                 __set_page_dirty_nobuffers(page);
304                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
305                 SetPagePrivate(page);
306                 f2fs_trace_pid(page);
307                 return 1;
308         }
309         return 0;
310 }
311
312 static void f2fs_invalidate_meta_page(struct page *page, unsigned int offset,
313                                       unsigned int length)
314 {
315         struct inode *inode = page->mapping->host;
316
317         if (PageDirty(page))
318                 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_META);
319         ClearPagePrivate(page);
320 }
321
322 static int f2fs_release_meta_page(struct page *page, gfp_t wait)
323 {
324         /* If this is dirty page, keep PagePrivate */
325         if (PageDirty(page))
326                 return 0;
327
328         ClearPagePrivate(page);
329         return 1;
330 }
331
332 const struct address_space_operations f2fs_meta_aops = {
333         .writepage      = f2fs_write_meta_page,
334         .writepages     = f2fs_write_meta_pages,
335         .set_page_dirty = f2fs_set_meta_page_dirty,
336         .invalidatepage = f2fs_invalidate_meta_page,
337         .releasepage    = f2fs_release_meta_page,
338 };
339
340 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
341 {
342         struct inode_management *im = &sbi->im[type];
343         struct ino_entry *e;
344 retry:
345         if (radix_tree_preload(GFP_NOFS)) {
346                 cond_resched();
347                 goto retry;
348         }
349
350         spin_lock(&im->ino_lock);
351
352         e = radix_tree_lookup(&im->ino_root, ino);
353         if (!e) {
354                 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
355                 if (!e) {
356                         spin_unlock(&im->ino_lock);
357                         radix_tree_preload_end();
358                         goto retry;
359                 }
360                 if (radix_tree_insert(&im->ino_root, ino, e)) {
361                         spin_unlock(&im->ino_lock);
362                         kmem_cache_free(ino_entry_slab, e);
363                         radix_tree_preload_end();
364                         goto retry;
365                 }
366                 memset(e, 0, sizeof(struct ino_entry));
367                 e->ino = ino;
368
369                 list_add_tail(&e->list, &im->ino_list);
370                 if (type != ORPHAN_INO)
371                         im->ino_num++;
372         }
373         spin_unlock(&im->ino_lock);
374         radix_tree_preload_end();
375 }
376
377 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
378 {
379         struct inode_management *im = &sbi->im[type];
380         struct ino_entry *e;
381
382         spin_lock(&im->ino_lock);
383         e = radix_tree_lookup(&im->ino_root, ino);
384         if (e) {
385                 list_del(&e->list);
386                 radix_tree_delete(&im->ino_root, ino);
387                 im->ino_num--;
388                 spin_unlock(&im->ino_lock);
389                 kmem_cache_free(ino_entry_slab, e);
390                 return;
391         }
392         spin_unlock(&im->ino_lock);
393 }
394
395 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
396 {
397         /* add new dirty ino entry into list */
398         __add_ino_entry(sbi, ino, type);
399 }
400
401 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
402 {
403         /* remove dirty ino entry from list */
404         __remove_ino_entry(sbi, ino, type);
405 }
406
407 /* mode should be APPEND_INO or UPDATE_INO */
408 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
409 {
410         struct inode_management *im = &sbi->im[mode];
411         struct ino_entry *e;
412
413         spin_lock(&im->ino_lock);
414         e = radix_tree_lookup(&im->ino_root, ino);
415         spin_unlock(&im->ino_lock);
416         return e ? true : false;
417 }
418
419 void release_dirty_inode(struct f2fs_sb_info *sbi)
420 {
421         struct ino_entry *e, *tmp;
422         int i;
423
424         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
425                 struct inode_management *im = &sbi->im[i];
426
427                 spin_lock(&im->ino_lock);
428                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
429                         list_del(&e->list);
430                         radix_tree_delete(&im->ino_root, e->ino);
431                         kmem_cache_free(ino_entry_slab, e);
432                         im->ino_num--;
433                 }
434                 spin_unlock(&im->ino_lock);
435         }
436 }
437
438 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
439 {
440         struct inode_management *im = &sbi->im[ORPHAN_INO];
441         int err = 0;
442
443         spin_lock(&im->ino_lock);
444         if (unlikely(im->ino_num >= sbi->max_orphans))
445                 err = -ENOSPC;
446         else
447                 im->ino_num++;
448         spin_unlock(&im->ino_lock);
449
450         return err;
451 }
452
453 void release_orphan_inode(struct f2fs_sb_info *sbi)
454 {
455         struct inode_management *im = &sbi->im[ORPHAN_INO];
456
457         spin_lock(&im->ino_lock);
458         f2fs_bug_on(sbi, im->ino_num == 0);
459         im->ino_num--;
460         spin_unlock(&im->ino_lock);
461 }
462
463 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
464 {
465         /* add new orphan ino entry into list */
466         __add_ino_entry(sbi, ino, ORPHAN_INO);
467 }
468
469 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
470 {
471         /* remove orphan entry from orphan list */
472         __remove_ino_entry(sbi, ino, ORPHAN_INO);
473 }
474
475 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
476 {
477         struct inode *inode = f2fs_iget(sbi->sb, ino);
478         f2fs_bug_on(sbi, IS_ERR(inode));
479         clear_nlink(inode);
480
481         /* truncate all the data during iput */
482         iput(inode);
483 }
484
485 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
486 {
487         block_t start_blk, orphan_blkaddr, i, j;
488
489         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
490                 return;
491
492         set_sbi_flag(sbi, SBI_POR_DOING);
493
494         start_blk = __start_cp_addr(sbi) + 1 +
495                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
496         orphan_blkaddr = __start_sum_addr(sbi) - 1;
497
498         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
499
500         for (i = 0; i < orphan_blkaddr; i++) {
501                 struct page *page = get_meta_page(sbi, start_blk + i);
502                 struct f2fs_orphan_block *orphan_blk;
503
504                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
505                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
506                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
507                         recover_orphan_inode(sbi, ino);
508                 }
509                 f2fs_put_page(page, 1);
510         }
511         /* clear Orphan Flag */
512         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
513         clear_sbi_flag(sbi, SBI_POR_DOING);
514         return;
515 }
516
517 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
518 {
519         struct list_head *head;
520         struct f2fs_orphan_block *orphan_blk = NULL;
521         unsigned int nentries = 0;
522         unsigned short index;
523         unsigned short orphan_blocks;
524         struct page *page = NULL;
525         struct ino_entry *orphan = NULL;
526         struct inode_management *im = &sbi->im[ORPHAN_INO];
527
528         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
529
530         for (index = 0; index < orphan_blocks; index++)
531                 grab_meta_page(sbi, start_blk + index);
532
533         index = 1;
534         spin_lock(&im->ino_lock);
535         head = &im->ino_list;
536
537         /* loop for each orphan inode entry and write them in Jornal block */
538         list_for_each_entry(orphan, head, list) {
539                 if (!page) {
540                         page = find_get_page(META_MAPPING(sbi), start_blk++);
541                         f2fs_bug_on(sbi, !page);
542                         orphan_blk =
543                                 (struct f2fs_orphan_block *)page_address(page);
544                         memset(orphan_blk, 0, sizeof(*orphan_blk));
545                         f2fs_put_page(page, 0);
546                 }
547
548                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
549
550                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
551                         /*
552                          * an orphan block is full of 1020 entries,
553                          * then we need to flush current orphan blocks
554                          * and bring another one in memory
555                          */
556                         orphan_blk->blk_addr = cpu_to_le16(index);
557                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
558                         orphan_blk->entry_count = cpu_to_le32(nentries);
559                         set_page_dirty(page);
560                         f2fs_put_page(page, 1);
561                         index++;
562                         nentries = 0;
563                         page = NULL;
564                 }
565         }
566
567         if (page) {
568                 orphan_blk->blk_addr = cpu_to_le16(index);
569                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
570                 orphan_blk->entry_count = cpu_to_le32(nentries);
571                 set_page_dirty(page);
572                 f2fs_put_page(page, 1);
573         }
574
575         spin_unlock(&im->ino_lock);
576 }
577
578 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
579                                 block_t cp_addr, unsigned long long *version)
580 {
581         struct page *cp_page_1, *cp_page_2 = NULL;
582         unsigned long blk_size = sbi->blocksize;
583         struct f2fs_checkpoint *cp_block;
584         unsigned long long cur_version = 0, pre_version = 0;
585         size_t crc_offset;
586         __u32 crc = 0;
587
588         /* Read the 1st cp block in this CP pack */
589         cp_page_1 = get_meta_page(sbi, cp_addr);
590
591         /* get the version number */
592         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
593         crc_offset = le32_to_cpu(cp_block->checksum_offset);
594         if (crc_offset >= blk_size)
595                 goto invalid_cp1;
596
597         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
598         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
599                 goto invalid_cp1;
600
601         pre_version = cur_cp_version(cp_block);
602
603         /* Read the 2nd cp block in this CP pack */
604         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
605         cp_page_2 = get_meta_page(sbi, cp_addr);
606
607         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
608         crc_offset = le32_to_cpu(cp_block->checksum_offset);
609         if (crc_offset >= blk_size)
610                 goto invalid_cp2;
611
612         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
613         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
614                 goto invalid_cp2;
615
616         cur_version = cur_cp_version(cp_block);
617
618         if (cur_version == pre_version) {
619                 *version = cur_version;
620                 f2fs_put_page(cp_page_2, 1);
621                 return cp_page_1;
622         }
623 invalid_cp2:
624         f2fs_put_page(cp_page_2, 1);
625 invalid_cp1:
626         f2fs_put_page(cp_page_1, 1);
627         return NULL;
628 }
629
630 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
631 {
632         struct f2fs_checkpoint *cp_block;
633         struct f2fs_super_block *fsb = sbi->raw_super;
634         struct page *cp1, *cp2, *cur_page;
635         unsigned long blk_size = sbi->blocksize;
636         unsigned long long cp1_version = 0, cp2_version = 0;
637         unsigned long long cp_start_blk_no;
638         unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
639         block_t cp_blk_no;
640         int i;
641
642         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
643         if (!sbi->ckpt)
644                 return -ENOMEM;
645         /*
646          * Finding out valid cp block involves read both
647          * sets( cp pack1 and cp pack 2)
648          */
649         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
650         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
651
652         /* The second checkpoint pack should start at the next segment */
653         cp_start_blk_no += ((unsigned long long)1) <<
654                                 le32_to_cpu(fsb->log_blocks_per_seg);
655         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
656
657         if (cp1 && cp2) {
658                 if (ver_after(cp2_version, cp1_version))
659                         cur_page = cp2;
660                 else
661                         cur_page = cp1;
662         } else if (cp1) {
663                 cur_page = cp1;
664         } else if (cp2) {
665                 cur_page = cp2;
666         } else {
667                 goto fail_no_cp;
668         }
669
670         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
671         memcpy(sbi->ckpt, cp_block, blk_size);
672
673         if (cp_blks <= 1)
674                 goto done;
675
676         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
677         if (cur_page == cp2)
678                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
679
680         for (i = 1; i < cp_blks; i++) {
681                 void *sit_bitmap_ptr;
682                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
683
684                 cur_page = get_meta_page(sbi, cp_blk_no + i);
685                 sit_bitmap_ptr = page_address(cur_page);
686                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
687                 f2fs_put_page(cur_page, 1);
688         }
689 done:
690         f2fs_put_page(cp1, 1);
691         f2fs_put_page(cp2, 1);
692         return 0;
693
694 fail_no_cp:
695         kfree(sbi->ckpt);
696         return -EINVAL;
697 }
698
699 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
700 {
701         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
702
703         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
704                 return -EEXIST;
705
706         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
707         F2FS_I(inode)->dirty_dir = new;
708         list_add_tail(&new->list, &sbi->dir_inode_list);
709         stat_inc_dirty_dir(sbi);
710         return 0;
711 }
712
713 void update_dirty_page(struct inode *inode, struct page *page)
714 {
715         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
716         struct inode_entry *new;
717         int ret = 0;
718
719         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
720                 return;
721
722         if (!S_ISDIR(inode->i_mode)) {
723                 inode_inc_dirty_pages(inode);
724                 goto out;
725         }
726
727         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
728         new->inode = inode;
729         INIT_LIST_HEAD(&new->list);
730
731         spin_lock(&sbi->dir_inode_lock);
732         ret = __add_dirty_inode(inode, new);
733         inode_inc_dirty_pages(inode);
734         spin_unlock(&sbi->dir_inode_lock);
735
736         if (ret)
737                 kmem_cache_free(inode_entry_slab, new);
738 out:
739         SetPagePrivate(page);
740         f2fs_trace_pid(page);
741 }
742
743 void add_dirty_dir_inode(struct inode *inode)
744 {
745         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
746         struct inode_entry *new =
747                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
748         int ret = 0;
749
750         new->inode = inode;
751         INIT_LIST_HEAD(&new->list);
752
753         spin_lock(&sbi->dir_inode_lock);
754         ret = __add_dirty_inode(inode, new);
755         spin_unlock(&sbi->dir_inode_lock);
756
757         if (ret)
758                 kmem_cache_free(inode_entry_slab, new);
759 }
760
761 void remove_dirty_dir_inode(struct inode *inode)
762 {
763         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
764         struct inode_entry *entry;
765
766         if (!S_ISDIR(inode->i_mode))
767                 return;
768
769         spin_lock(&sbi->dir_inode_lock);
770         if (get_dirty_pages(inode) ||
771                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
772                 spin_unlock(&sbi->dir_inode_lock);
773                 return;
774         }
775
776         entry = F2FS_I(inode)->dirty_dir;
777         list_del(&entry->list);
778         F2FS_I(inode)->dirty_dir = NULL;
779         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
780         stat_dec_dirty_dir(sbi);
781         spin_unlock(&sbi->dir_inode_lock);
782         kmem_cache_free(inode_entry_slab, entry);
783
784         /* Only from the recovery routine */
785         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
786                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
787                 iput(inode);
788         }
789 }
790
791 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
792 {
793         struct list_head *head;
794         struct inode_entry *entry;
795         struct inode *inode;
796 retry:
797         if (unlikely(f2fs_cp_error(sbi)))
798                 return;
799
800         spin_lock(&sbi->dir_inode_lock);
801
802         head = &sbi->dir_inode_list;
803         if (list_empty(head)) {
804                 spin_unlock(&sbi->dir_inode_lock);
805                 return;
806         }
807         entry = list_entry(head->next, struct inode_entry, list);
808         inode = igrab(entry->inode);
809         spin_unlock(&sbi->dir_inode_lock);
810         if (inode) {
811                 filemap_fdatawrite(inode->i_mapping);
812                 iput(inode);
813         } else {
814                 /*
815                  * We should submit bio, since it exists several
816                  * wribacking dentry pages in the freeing inode.
817                  */
818                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
819         }
820         goto retry;
821 }
822
823 /*
824  * Freeze all the FS-operations for checkpoint.
825  */
826 static int block_operations(struct f2fs_sb_info *sbi)
827 {
828         struct writeback_control wbc = {
829                 .sync_mode = WB_SYNC_ALL,
830                 .nr_to_write = LONG_MAX,
831                 .for_reclaim = 0,
832         };
833         struct blk_plug plug;
834         int err = 0;
835
836         blk_start_plug(&plug);
837
838 retry_flush_dents:
839         f2fs_lock_all(sbi);
840         /* write all the dirty dentry pages */
841         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
842                 f2fs_unlock_all(sbi);
843                 sync_dirty_dir_inodes(sbi);
844                 if (unlikely(f2fs_cp_error(sbi))) {
845                         err = -EIO;
846                         goto out;
847                 }
848                 goto retry_flush_dents;
849         }
850
851         /*
852          * POR: we should ensure that there are no dirty node pages
853          * until finishing nat/sit flush.
854          */
855 retry_flush_nodes:
856         down_write(&sbi->node_write);
857
858         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
859                 up_write(&sbi->node_write);
860                 sync_node_pages(sbi, 0, &wbc);
861                 if (unlikely(f2fs_cp_error(sbi))) {
862                         f2fs_unlock_all(sbi);
863                         err = -EIO;
864                         goto out;
865                 }
866                 goto retry_flush_nodes;
867         }
868 out:
869         blk_finish_plug(&plug);
870         return err;
871 }
872
873 static void unblock_operations(struct f2fs_sb_info *sbi)
874 {
875         up_write(&sbi->node_write);
876         f2fs_unlock_all(sbi);
877 }
878
879 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
880 {
881         DEFINE_WAIT(wait);
882
883         for (;;) {
884                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
885
886                 if (!get_pages(sbi, F2FS_WRITEBACK))
887                         break;
888
889                 io_schedule();
890         }
891         finish_wait(&sbi->cp_wait, &wait);
892 }
893
894 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
895 {
896         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
897         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
898         struct f2fs_nm_info *nm_i = NM_I(sbi);
899         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
900         nid_t last_nid = nm_i->next_scan_nid;
901         block_t start_blk;
902         struct page *cp_page;
903         unsigned int data_sum_blocks, orphan_blocks;
904         __u32 crc32 = 0;
905         void *kaddr;
906         int i;
907         int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
908
909         /*
910          * This avoids to conduct wrong roll-forward operations and uses
911          * metapages, so should be called prior to sync_meta_pages below.
912          */
913         discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
914
915         /* Flush all the NAT/SIT pages */
916         while (get_pages(sbi, F2FS_DIRTY_META)) {
917                 sync_meta_pages(sbi, META, LONG_MAX);
918                 if (unlikely(f2fs_cp_error(sbi)))
919                         return;
920         }
921
922         next_free_nid(sbi, &last_nid);
923
924         /*
925          * modify checkpoint
926          * version number is already updated
927          */
928         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
929         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
930         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
931         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
932                 ckpt->cur_node_segno[i] =
933                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
934                 ckpt->cur_node_blkoff[i] =
935                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
936                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
937                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
938         }
939         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
940                 ckpt->cur_data_segno[i] =
941                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
942                 ckpt->cur_data_blkoff[i] =
943                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
944                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
945                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
946         }
947
948         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
949         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
950         ckpt->next_free_nid = cpu_to_le32(last_nid);
951
952         /* 2 cp  + n data seg summary + orphan inode blocks */
953         data_sum_blocks = npages_for_summary_flush(sbi, false);
954         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
955                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
956         else
957                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
958
959         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
960         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
961                         orphan_blocks);
962
963         if (__remain_node_summaries(cpc->reason))
964                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
965                                 cp_payload_blks + data_sum_blocks +
966                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
967         else
968                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
969                                 cp_payload_blks + data_sum_blocks +
970                                 orphan_blocks);
971
972         if (cpc->reason == CP_UMOUNT)
973                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
974         else
975                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
976
977         if (cpc->reason == CP_FASTBOOT)
978                 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
979         else
980                 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
981
982         if (orphan_num)
983                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
984         else
985                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
986
987         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
988                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
989
990         /* update SIT/NAT bitmap */
991         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
992         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
993
994         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
995         *((__le32 *)((unsigned char *)ckpt +
996                                 le32_to_cpu(ckpt->checksum_offset)))
997                                 = cpu_to_le32(crc32);
998
999         start_blk = __start_cp_addr(sbi);
1000
1001         /* write out checkpoint buffer at block 0 */
1002         cp_page = grab_meta_page(sbi, start_blk++);
1003         kaddr = page_address(cp_page);
1004         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
1005         set_page_dirty(cp_page);
1006         f2fs_put_page(cp_page, 1);
1007
1008         for (i = 1; i < 1 + cp_payload_blks; i++) {
1009                 cp_page = grab_meta_page(sbi, start_blk++);
1010                 kaddr = page_address(cp_page);
1011                 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
1012                                 (1 << sbi->log_blocksize));
1013                 set_page_dirty(cp_page);
1014                 f2fs_put_page(cp_page, 1);
1015         }
1016
1017         if (orphan_num) {
1018                 write_orphan_inodes(sbi, start_blk);
1019                 start_blk += orphan_blocks;
1020         }
1021
1022         write_data_summaries(sbi, start_blk);
1023         start_blk += data_sum_blocks;
1024         if (__remain_node_summaries(cpc->reason)) {
1025                 write_node_summaries(sbi, start_blk);
1026                 start_blk += NR_CURSEG_NODE_TYPE;
1027         }
1028
1029         /* writeout checkpoint block */
1030         cp_page = grab_meta_page(sbi, start_blk);
1031         kaddr = page_address(cp_page);
1032         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
1033         set_page_dirty(cp_page);
1034         f2fs_put_page(cp_page, 1);
1035
1036         /* wait for previous submitted node/meta pages writeback */
1037         wait_on_all_pages_writeback(sbi);
1038
1039         if (unlikely(f2fs_cp_error(sbi)))
1040                 return;
1041
1042         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1043         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1044
1045         /* update user_block_counts */
1046         sbi->last_valid_block_count = sbi->total_valid_block_count;
1047         sbi->alloc_valid_block_count = 0;
1048
1049         /* Here, we only have one bio having CP pack */
1050         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1051
1052         /* wait for previous submitted meta pages writeback */
1053         wait_on_all_pages_writeback(sbi);
1054
1055         release_dirty_inode(sbi);
1056
1057         if (unlikely(f2fs_cp_error(sbi)))
1058                 return;
1059
1060         clear_prefree_segments(sbi);
1061         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1062 }
1063
1064 /*
1065  * We guarantee that this checkpoint procedure will not fail.
1066  */
1067 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1068 {
1069         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1070         unsigned long long ckpt_ver;
1071
1072         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1073
1074         mutex_lock(&sbi->cp_mutex);
1075
1076         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1077                         cpc->reason != CP_DISCARD && cpc->reason != CP_UMOUNT)
1078                 goto out;
1079         if (unlikely(f2fs_cp_error(sbi)))
1080                 goto out;
1081         if (f2fs_readonly(sbi->sb))
1082                 goto out;
1083         if (block_operations(sbi))
1084                 goto out;
1085
1086         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1087
1088         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1089         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1090         f2fs_submit_merged_bio(sbi, META, WRITE);
1091
1092         /*
1093          * update checkpoint pack index
1094          * Increase the version number so that
1095          * SIT entries and seg summaries are written at correct place
1096          */
1097         ckpt_ver = cur_cp_version(ckpt);
1098         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1099
1100         /* write cached NAT/SIT entries to NAT/SIT area */
1101         flush_nat_entries(sbi);
1102         flush_sit_entries(sbi, cpc);
1103
1104         /* unlock all the fs_lock[] in do_checkpoint() */
1105         do_checkpoint(sbi, cpc);
1106
1107         unblock_operations(sbi);
1108         stat_inc_cp_count(sbi->stat_info);
1109 out:
1110         mutex_unlock(&sbi->cp_mutex);
1111         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1112 }
1113
1114 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1115 {
1116         int i;
1117
1118         for (i = 0; i < MAX_INO_ENTRY; i++) {
1119                 struct inode_management *im = &sbi->im[i];
1120
1121                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1122                 spin_lock_init(&im->ino_lock);
1123                 INIT_LIST_HEAD(&im->ino_list);
1124                 im->ino_num = 0;
1125         }
1126
1127         /*
1128          * considering 512 blocks in a segment 8 blocks are needed for cp
1129          * and log segment summaries. Remaining blocks are used to keep
1130          * orphan entries with the limitation one reserved segment
1131          * for cp pack we can have max 1020*504 orphan entries
1132          */
1133         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1134                         NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
1135 }
1136
1137 int __init create_checkpoint_caches(void)
1138 {
1139         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1140                         sizeof(struct ino_entry));
1141         if (!ino_entry_slab)
1142                 return -ENOMEM;
1143         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1144                         sizeof(struct inode_entry));
1145         if (!inode_entry_slab) {
1146                 kmem_cache_destroy(ino_entry_slab);
1147                 return -ENOMEM;
1148         }
1149         return 0;
1150 }
1151
1152 void destroy_checkpoint_caches(void)
1153 {
1154         kmem_cache_destroy(ino_entry_slab);
1155         kmem_cache_destroy(inode_entry_slab);
1156 }