f2fs: fix typos for the word "destroy" in jump labels
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28 static struct kmem_cache *nat_entry_set_slab;
29
30 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
31 {
32         struct f2fs_nm_info *nm_i = NM_I(sbi);
33         struct sysinfo val;
34         unsigned long avail_ram;
35         unsigned long mem_size = 0;
36         bool res = false;
37
38         si_meminfo(&val);
39
40         /* only uses low memory */
41         avail_ram = val.totalram - val.totalhigh;
42
43         /* give 25%, 25%, 50%, 50% memory for each components respectively */
44         if (type == FREE_NIDS) {
45                 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
46                                                         PAGE_CACHE_SHIFT;
47                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
48         } else if (type == NAT_ENTRIES) {
49                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
50                                                         PAGE_CACHE_SHIFT;
51                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
52         } else if (type == DIRTY_DENTS) {
53                 if (sbi->sb->s_bdi->dirty_exceeded)
54                         return false;
55                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
56                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
57         } else if (type == INO_ENTRIES) {
58                 int i;
59
60                 if (sbi->sb->s_bdi->dirty_exceeded)
61                         return false;
62                 for (i = 0; i <= UPDATE_INO; i++)
63                         mem_size += (sbi->im[i].ino_num *
64                                 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
65                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
66         }
67         return res;
68 }
69
70 static void clear_node_page_dirty(struct page *page)
71 {
72         struct address_space *mapping = page->mapping;
73         unsigned int long flags;
74
75         if (PageDirty(page)) {
76                 spin_lock_irqsave(&mapping->tree_lock, flags);
77                 radix_tree_tag_clear(&mapping->page_tree,
78                                 page_index(page),
79                                 PAGECACHE_TAG_DIRTY);
80                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
81
82                 clear_page_dirty_for_io(page);
83                 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
84         }
85         ClearPageUptodate(page);
86 }
87
88 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
89 {
90         pgoff_t index = current_nat_addr(sbi, nid);
91         return get_meta_page(sbi, index);
92 }
93
94 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
95 {
96         struct page *src_page;
97         struct page *dst_page;
98         pgoff_t src_off;
99         pgoff_t dst_off;
100         void *src_addr;
101         void *dst_addr;
102         struct f2fs_nm_info *nm_i = NM_I(sbi);
103
104         src_off = current_nat_addr(sbi, nid);
105         dst_off = next_nat_addr(sbi, src_off);
106
107         /* get current nat block page with lock */
108         src_page = get_meta_page(sbi, src_off);
109         dst_page = grab_meta_page(sbi, dst_off);
110         f2fs_bug_on(sbi, PageDirty(src_page));
111
112         src_addr = page_address(src_page);
113         dst_addr = page_address(dst_page);
114         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
115         set_page_dirty(dst_page);
116         f2fs_put_page(src_page, 1);
117
118         set_to_next_nat(nm_i, nid);
119
120         return dst_page;
121 }
122
123 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
124 {
125         return radix_tree_lookup(&nm_i->nat_root, n);
126 }
127
128 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
129                 nid_t start, unsigned int nr, struct nat_entry **ep)
130 {
131         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
132 }
133
134 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
135 {
136         list_del(&e->list);
137         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
138         nm_i->nat_cnt--;
139         kmem_cache_free(nat_entry_slab, e);
140 }
141
142 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
143                                                 struct nat_entry *ne)
144 {
145         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
146         struct nat_entry_set *head;
147
148         if (get_nat_flag(ne, IS_DIRTY))
149                 return;
150 retry:
151         head = radix_tree_lookup(&nm_i->nat_set_root, set);
152         if (!head) {
153                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
154
155                 INIT_LIST_HEAD(&head->entry_list);
156                 INIT_LIST_HEAD(&head->set_list);
157                 head->set = set;
158                 head->entry_cnt = 0;
159
160                 if (radix_tree_insert(&nm_i->nat_set_root, set, head)) {
161                         cond_resched();
162                         goto retry;
163                 }
164         }
165         list_move_tail(&ne->list, &head->entry_list);
166         nm_i->dirty_nat_cnt++;
167         head->entry_cnt++;
168         set_nat_flag(ne, IS_DIRTY, true);
169 }
170
171 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
172                                                 struct nat_entry *ne)
173 {
174         nid_t set = ne->ni.nid / NAT_ENTRY_PER_BLOCK;
175         struct nat_entry_set *head;
176
177         head = radix_tree_lookup(&nm_i->nat_set_root, set);
178         if (head) {
179                 list_move_tail(&ne->list, &nm_i->nat_entries);
180                 set_nat_flag(ne, IS_DIRTY, false);
181                 head->entry_cnt--;
182                 nm_i->dirty_nat_cnt--;
183         }
184 }
185
186 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
187                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
188 {
189         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
190                                                         start, nr);
191 }
192
193 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
194 {
195         struct f2fs_nm_info *nm_i = NM_I(sbi);
196         struct nat_entry *e;
197         bool is_cp = true;
198
199         read_lock(&nm_i->nat_tree_lock);
200         e = __lookup_nat_cache(nm_i, nid);
201         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
202                 is_cp = false;
203         read_unlock(&nm_i->nat_tree_lock);
204         return is_cp;
205 }
206
207 bool has_fsynced_inode(struct f2fs_sb_info *sbi, nid_t ino)
208 {
209         struct f2fs_nm_info *nm_i = NM_I(sbi);
210         struct nat_entry *e;
211         bool fsynced = false;
212
213         read_lock(&nm_i->nat_tree_lock);
214         e = __lookup_nat_cache(nm_i, ino);
215         if (e && get_nat_flag(e, HAS_FSYNCED_INODE))
216                 fsynced = true;
217         read_unlock(&nm_i->nat_tree_lock);
218         return fsynced;
219 }
220
221 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
222 {
223         struct f2fs_nm_info *nm_i = NM_I(sbi);
224         struct nat_entry *e;
225         bool need_update = true;
226
227         read_lock(&nm_i->nat_tree_lock);
228         e = __lookup_nat_cache(nm_i, ino);
229         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
230                         (get_nat_flag(e, IS_CHECKPOINTED) ||
231                          get_nat_flag(e, HAS_FSYNCED_INODE)))
232                 need_update = false;
233         read_unlock(&nm_i->nat_tree_lock);
234         return need_update;
235 }
236
237 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
238 {
239         struct nat_entry *new;
240
241         new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
242         if (!new)
243                 return NULL;
244         if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
245                 kmem_cache_free(nat_entry_slab, new);
246                 return NULL;
247         }
248         memset(new, 0, sizeof(struct nat_entry));
249         nat_set_nid(new, nid);
250         nat_reset_flag(new);
251         list_add_tail(&new->list, &nm_i->nat_entries);
252         nm_i->nat_cnt++;
253         return new;
254 }
255
256 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
257                                                 struct f2fs_nat_entry *ne)
258 {
259         struct nat_entry *e;
260 retry:
261         write_lock(&nm_i->nat_tree_lock);
262         e = __lookup_nat_cache(nm_i, nid);
263         if (!e) {
264                 e = grab_nat_entry(nm_i, nid);
265                 if (!e) {
266                         write_unlock(&nm_i->nat_tree_lock);
267                         goto retry;
268                 }
269                 node_info_from_raw_nat(&e->ni, ne);
270         }
271         write_unlock(&nm_i->nat_tree_lock);
272 }
273
274 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
275                         block_t new_blkaddr, bool fsync_done)
276 {
277         struct f2fs_nm_info *nm_i = NM_I(sbi);
278         struct nat_entry *e;
279 retry:
280         write_lock(&nm_i->nat_tree_lock);
281         e = __lookup_nat_cache(nm_i, ni->nid);
282         if (!e) {
283                 e = grab_nat_entry(nm_i, ni->nid);
284                 if (!e) {
285                         write_unlock(&nm_i->nat_tree_lock);
286                         goto retry;
287                 }
288                 e->ni = *ni;
289                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
290         } else if (new_blkaddr == NEW_ADDR) {
291                 /*
292                  * when nid is reallocated,
293                  * previous nat entry can be remained in nat cache.
294                  * So, reinitialize it with new information.
295                  */
296                 e->ni = *ni;
297                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
298         }
299
300         /* sanity check */
301         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
302         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
303                         new_blkaddr == NULL_ADDR);
304         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
305                         new_blkaddr == NEW_ADDR);
306         f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
307                         nat_get_blkaddr(e) != NULL_ADDR &&
308                         new_blkaddr == NEW_ADDR);
309
310         /* increment version no as node is removed */
311         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
312                 unsigned char version = nat_get_version(e);
313                 nat_set_version(e, inc_node_version(version));
314         }
315
316         /* change address */
317         nat_set_blkaddr(e, new_blkaddr);
318         if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
319                 set_nat_flag(e, IS_CHECKPOINTED, false);
320         __set_nat_cache_dirty(nm_i, e);
321
322         /* update fsync_mark if its inode nat entry is still alive */
323         e = __lookup_nat_cache(nm_i, ni->ino);
324         if (e) {
325                 if (fsync_done && ni->nid == ni->ino)
326                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
327                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
328         }
329         write_unlock(&nm_i->nat_tree_lock);
330 }
331
332 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
333 {
334         struct f2fs_nm_info *nm_i = NM_I(sbi);
335
336         if (available_free_memory(sbi, NAT_ENTRIES))
337                 return 0;
338
339         write_lock(&nm_i->nat_tree_lock);
340         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
341                 struct nat_entry *ne;
342                 ne = list_first_entry(&nm_i->nat_entries,
343                                         struct nat_entry, list);
344                 __del_from_nat_cache(nm_i, ne);
345                 nr_shrink--;
346         }
347         write_unlock(&nm_i->nat_tree_lock);
348         return nr_shrink;
349 }
350
351 /*
352  * This function always returns success
353  */
354 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
355 {
356         struct f2fs_nm_info *nm_i = NM_I(sbi);
357         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
358         struct f2fs_summary_block *sum = curseg->sum_blk;
359         nid_t start_nid = START_NID(nid);
360         struct f2fs_nat_block *nat_blk;
361         struct page *page = NULL;
362         struct f2fs_nat_entry ne;
363         struct nat_entry *e;
364         int i;
365
366         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
367         ni->nid = nid;
368
369         /* Check nat cache */
370         read_lock(&nm_i->nat_tree_lock);
371         e = __lookup_nat_cache(nm_i, nid);
372         if (e) {
373                 ni->ino = nat_get_ino(e);
374                 ni->blk_addr = nat_get_blkaddr(e);
375                 ni->version = nat_get_version(e);
376         }
377         read_unlock(&nm_i->nat_tree_lock);
378         if (e)
379                 return;
380
381         /* Check current segment summary */
382         mutex_lock(&curseg->curseg_mutex);
383         i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
384         if (i >= 0) {
385                 ne = nat_in_journal(sum, i);
386                 node_info_from_raw_nat(ni, &ne);
387         }
388         mutex_unlock(&curseg->curseg_mutex);
389         if (i >= 0)
390                 goto cache;
391
392         /* Fill node_info from nat page */
393         page = get_current_nat_page(sbi, start_nid);
394         nat_blk = (struct f2fs_nat_block *)page_address(page);
395         ne = nat_blk->entries[nid - start_nid];
396         node_info_from_raw_nat(ni, &ne);
397         f2fs_put_page(page, 1);
398 cache:
399         /* cache nat entry */
400         cache_nat_entry(NM_I(sbi), nid, &ne);
401 }
402
403 /*
404  * The maximum depth is four.
405  * Offset[0] will have raw inode offset.
406  */
407 static int get_node_path(struct f2fs_inode_info *fi, long block,
408                                 int offset[4], unsigned int noffset[4])
409 {
410         const long direct_index = ADDRS_PER_INODE(fi);
411         const long direct_blks = ADDRS_PER_BLOCK;
412         const long dptrs_per_blk = NIDS_PER_BLOCK;
413         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
414         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
415         int n = 0;
416         int level = 0;
417
418         noffset[0] = 0;
419
420         if (block < direct_index) {
421                 offset[n] = block;
422                 goto got;
423         }
424         block -= direct_index;
425         if (block < direct_blks) {
426                 offset[n++] = NODE_DIR1_BLOCK;
427                 noffset[n] = 1;
428                 offset[n] = block;
429                 level = 1;
430                 goto got;
431         }
432         block -= direct_blks;
433         if (block < direct_blks) {
434                 offset[n++] = NODE_DIR2_BLOCK;
435                 noffset[n] = 2;
436                 offset[n] = block;
437                 level = 1;
438                 goto got;
439         }
440         block -= direct_blks;
441         if (block < indirect_blks) {
442                 offset[n++] = NODE_IND1_BLOCK;
443                 noffset[n] = 3;
444                 offset[n++] = block / direct_blks;
445                 noffset[n] = 4 + offset[n - 1];
446                 offset[n] = block % direct_blks;
447                 level = 2;
448                 goto got;
449         }
450         block -= indirect_blks;
451         if (block < indirect_blks) {
452                 offset[n++] = NODE_IND2_BLOCK;
453                 noffset[n] = 4 + dptrs_per_blk;
454                 offset[n++] = block / direct_blks;
455                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
456                 offset[n] = block % direct_blks;
457                 level = 2;
458                 goto got;
459         }
460         block -= indirect_blks;
461         if (block < dindirect_blks) {
462                 offset[n++] = NODE_DIND_BLOCK;
463                 noffset[n] = 5 + (dptrs_per_blk * 2);
464                 offset[n++] = block / indirect_blks;
465                 noffset[n] = 6 + (dptrs_per_blk * 2) +
466                               offset[n - 1] * (dptrs_per_blk + 1);
467                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
468                 noffset[n] = 7 + (dptrs_per_blk * 2) +
469                               offset[n - 2] * (dptrs_per_blk + 1) +
470                               offset[n - 1];
471                 offset[n] = block % direct_blks;
472                 level = 3;
473                 goto got;
474         } else {
475                 BUG();
476         }
477 got:
478         return level;
479 }
480
481 /*
482  * Caller should call f2fs_put_dnode(dn).
483  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
484  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
485  * In the case of RDONLY_NODE, we don't need to care about mutex.
486  */
487 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
488 {
489         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
490         struct page *npage[4];
491         struct page *parent;
492         int offset[4];
493         unsigned int noffset[4];
494         nid_t nids[4];
495         int level, i;
496         int err = 0;
497
498         level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
499
500         nids[0] = dn->inode->i_ino;
501         npage[0] = dn->inode_page;
502
503         if (!npage[0]) {
504                 npage[0] = get_node_page(sbi, nids[0]);
505                 if (IS_ERR(npage[0]))
506                         return PTR_ERR(npage[0]);
507         }
508         parent = npage[0];
509         if (level != 0)
510                 nids[1] = get_nid(parent, offset[0], true);
511         dn->inode_page = npage[0];
512         dn->inode_page_locked = true;
513
514         /* get indirect or direct nodes */
515         for (i = 1; i <= level; i++) {
516                 bool done = false;
517
518                 if (!nids[i] && mode == ALLOC_NODE) {
519                         /* alloc new node */
520                         if (!alloc_nid(sbi, &(nids[i]))) {
521                                 err = -ENOSPC;
522                                 goto release_pages;
523                         }
524
525                         dn->nid = nids[i];
526                         npage[i] = new_node_page(dn, noffset[i], NULL);
527                         if (IS_ERR(npage[i])) {
528                                 alloc_nid_failed(sbi, nids[i]);
529                                 err = PTR_ERR(npage[i]);
530                                 goto release_pages;
531                         }
532
533                         set_nid(parent, offset[i - 1], nids[i], i == 1);
534                         alloc_nid_done(sbi, nids[i]);
535                         done = true;
536                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
537                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
538                         if (IS_ERR(npage[i])) {
539                                 err = PTR_ERR(npage[i]);
540                                 goto release_pages;
541                         }
542                         done = true;
543                 }
544                 if (i == 1) {
545                         dn->inode_page_locked = false;
546                         unlock_page(parent);
547                 } else {
548                         f2fs_put_page(parent, 1);
549                 }
550
551                 if (!done) {
552                         npage[i] = get_node_page(sbi, nids[i]);
553                         if (IS_ERR(npage[i])) {
554                                 err = PTR_ERR(npage[i]);
555                                 f2fs_put_page(npage[0], 0);
556                                 goto release_out;
557                         }
558                 }
559                 if (i < level) {
560                         parent = npage[i];
561                         nids[i + 1] = get_nid(parent, offset[i], false);
562                 }
563         }
564         dn->nid = nids[level];
565         dn->ofs_in_node = offset[level];
566         dn->node_page = npage[level];
567         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
568         return 0;
569
570 release_pages:
571         f2fs_put_page(parent, 1);
572         if (i > 1)
573                 f2fs_put_page(npage[0], 0);
574 release_out:
575         dn->inode_page = NULL;
576         dn->node_page = NULL;
577         return err;
578 }
579
580 static void truncate_node(struct dnode_of_data *dn)
581 {
582         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
583         struct node_info ni;
584
585         get_node_info(sbi, dn->nid, &ni);
586         if (dn->inode->i_blocks == 0) {
587                 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
588                 goto invalidate;
589         }
590         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
591
592         /* Deallocate node address */
593         invalidate_blocks(sbi, ni.blk_addr);
594         dec_valid_node_count(sbi, dn->inode);
595         set_node_addr(sbi, &ni, NULL_ADDR, false);
596
597         if (dn->nid == dn->inode->i_ino) {
598                 remove_orphan_inode(sbi, dn->nid);
599                 dec_valid_inode_count(sbi);
600         } else {
601                 sync_inode_page(dn);
602         }
603 invalidate:
604         clear_node_page_dirty(dn->node_page);
605         F2FS_SET_SB_DIRT(sbi);
606
607         f2fs_put_page(dn->node_page, 1);
608
609         invalidate_mapping_pages(NODE_MAPPING(sbi),
610                         dn->node_page->index, dn->node_page->index);
611
612         dn->node_page = NULL;
613         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
614 }
615
616 static int truncate_dnode(struct dnode_of_data *dn)
617 {
618         struct page *page;
619
620         if (dn->nid == 0)
621                 return 1;
622
623         /* get direct node */
624         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
625         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
626                 return 1;
627         else if (IS_ERR(page))
628                 return PTR_ERR(page);
629
630         /* Make dnode_of_data for parameter */
631         dn->node_page = page;
632         dn->ofs_in_node = 0;
633         truncate_data_blocks(dn);
634         truncate_node(dn);
635         return 1;
636 }
637
638 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
639                                                 int ofs, int depth)
640 {
641         struct dnode_of_data rdn = *dn;
642         struct page *page;
643         struct f2fs_node *rn;
644         nid_t child_nid;
645         unsigned int child_nofs;
646         int freed = 0;
647         int i, ret;
648
649         if (dn->nid == 0)
650                 return NIDS_PER_BLOCK + 1;
651
652         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
653
654         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
655         if (IS_ERR(page)) {
656                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
657                 return PTR_ERR(page);
658         }
659
660         rn = F2FS_NODE(page);
661         if (depth < 3) {
662                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
663                         child_nid = le32_to_cpu(rn->in.nid[i]);
664                         if (child_nid == 0)
665                                 continue;
666                         rdn.nid = child_nid;
667                         ret = truncate_dnode(&rdn);
668                         if (ret < 0)
669                                 goto out_err;
670                         set_nid(page, i, 0, false);
671                 }
672         } else {
673                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
674                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
675                         child_nid = le32_to_cpu(rn->in.nid[i]);
676                         if (child_nid == 0) {
677                                 child_nofs += NIDS_PER_BLOCK + 1;
678                                 continue;
679                         }
680                         rdn.nid = child_nid;
681                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
682                         if (ret == (NIDS_PER_BLOCK + 1)) {
683                                 set_nid(page, i, 0, false);
684                                 child_nofs += ret;
685                         } else if (ret < 0 && ret != -ENOENT) {
686                                 goto out_err;
687                         }
688                 }
689                 freed = child_nofs;
690         }
691
692         if (!ofs) {
693                 /* remove current indirect node */
694                 dn->node_page = page;
695                 truncate_node(dn);
696                 freed++;
697         } else {
698                 f2fs_put_page(page, 1);
699         }
700         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
701         return freed;
702
703 out_err:
704         f2fs_put_page(page, 1);
705         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
706         return ret;
707 }
708
709 static int truncate_partial_nodes(struct dnode_of_data *dn,
710                         struct f2fs_inode *ri, int *offset, int depth)
711 {
712         struct page *pages[2];
713         nid_t nid[3];
714         nid_t child_nid;
715         int err = 0;
716         int i;
717         int idx = depth - 2;
718
719         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
720         if (!nid[0])
721                 return 0;
722
723         /* get indirect nodes in the path */
724         for (i = 0; i < idx + 1; i++) {
725                 /* reference count'll be increased */
726                 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
727                 if (IS_ERR(pages[i])) {
728                         err = PTR_ERR(pages[i]);
729                         idx = i - 1;
730                         goto fail;
731                 }
732                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
733         }
734
735         /* free direct nodes linked to a partial indirect node */
736         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
737                 child_nid = get_nid(pages[idx], i, false);
738                 if (!child_nid)
739                         continue;
740                 dn->nid = child_nid;
741                 err = truncate_dnode(dn);
742                 if (err < 0)
743                         goto fail;
744                 set_nid(pages[idx], i, 0, false);
745         }
746
747         if (offset[idx + 1] == 0) {
748                 dn->node_page = pages[idx];
749                 dn->nid = nid[idx];
750                 truncate_node(dn);
751         } else {
752                 f2fs_put_page(pages[idx], 1);
753         }
754         offset[idx]++;
755         offset[idx + 1] = 0;
756         idx--;
757 fail:
758         for (i = idx; i >= 0; i--)
759                 f2fs_put_page(pages[i], 1);
760
761         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
762
763         return err;
764 }
765
766 /*
767  * All the block addresses of data and nodes should be nullified.
768  */
769 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
770 {
771         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
772         int err = 0, cont = 1;
773         int level, offset[4], noffset[4];
774         unsigned int nofs = 0;
775         struct f2fs_inode *ri;
776         struct dnode_of_data dn;
777         struct page *page;
778
779         trace_f2fs_truncate_inode_blocks_enter(inode, from);
780
781         level = get_node_path(F2FS_I(inode), from, offset, noffset);
782 restart:
783         page = get_node_page(sbi, inode->i_ino);
784         if (IS_ERR(page)) {
785                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
786                 return PTR_ERR(page);
787         }
788
789         set_new_dnode(&dn, inode, page, NULL, 0);
790         unlock_page(page);
791
792         ri = F2FS_INODE(page);
793         switch (level) {
794         case 0:
795         case 1:
796                 nofs = noffset[1];
797                 break;
798         case 2:
799                 nofs = noffset[1];
800                 if (!offset[level - 1])
801                         goto skip_partial;
802                 err = truncate_partial_nodes(&dn, ri, offset, level);
803                 if (err < 0 && err != -ENOENT)
804                         goto fail;
805                 nofs += 1 + NIDS_PER_BLOCK;
806                 break;
807         case 3:
808                 nofs = 5 + 2 * NIDS_PER_BLOCK;
809                 if (!offset[level - 1])
810                         goto skip_partial;
811                 err = truncate_partial_nodes(&dn, ri, offset, level);
812                 if (err < 0 && err != -ENOENT)
813                         goto fail;
814                 break;
815         default:
816                 BUG();
817         }
818
819 skip_partial:
820         while (cont) {
821                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
822                 switch (offset[0]) {
823                 case NODE_DIR1_BLOCK:
824                 case NODE_DIR2_BLOCK:
825                         err = truncate_dnode(&dn);
826                         break;
827
828                 case NODE_IND1_BLOCK:
829                 case NODE_IND2_BLOCK:
830                         err = truncate_nodes(&dn, nofs, offset[1], 2);
831                         break;
832
833                 case NODE_DIND_BLOCK:
834                         err = truncate_nodes(&dn, nofs, offset[1], 3);
835                         cont = 0;
836                         break;
837
838                 default:
839                         BUG();
840                 }
841                 if (err < 0 && err != -ENOENT)
842                         goto fail;
843                 if (offset[1] == 0 &&
844                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
845                         lock_page(page);
846                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
847                                 f2fs_put_page(page, 1);
848                                 goto restart;
849                         }
850                         f2fs_wait_on_page_writeback(page, NODE);
851                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
852                         set_page_dirty(page);
853                         unlock_page(page);
854                 }
855                 offset[1] = 0;
856                 offset[0]++;
857                 nofs += err;
858         }
859 fail:
860         f2fs_put_page(page, 0);
861         trace_f2fs_truncate_inode_blocks_exit(inode, err);
862         return err > 0 ? 0 : err;
863 }
864
865 int truncate_xattr_node(struct inode *inode, struct page *page)
866 {
867         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
868         nid_t nid = F2FS_I(inode)->i_xattr_nid;
869         struct dnode_of_data dn;
870         struct page *npage;
871
872         if (!nid)
873                 return 0;
874
875         npage = get_node_page(sbi, nid);
876         if (IS_ERR(npage))
877                 return PTR_ERR(npage);
878
879         F2FS_I(inode)->i_xattr_nid = 0;
880
881         /* need to do checkpoint during fsync */
882         F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
883
884         set_new_dnode(&dn, inode, page, npage, nid);
885
886         if (page)
887                 dn.inode_page_locked = true;
888         truncate_node(&dn);
889         return 0;
890 }
891
892 /*
893  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
894  * f2fs_unlock_op().
895  */
896 void remove_inode_page(struct inode *inode)
897 {
898         struct dnode_of_data dn;
899
900         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
901         if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
902                 return;
903
904         if (truncate_xattr_node(inode, dn.inode_page)) {
905                 f2fs_put_dnode(&dn);
906                 return;
907         }
908
909         /* remove potential inline_data blocks */
910         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
911                                 S_ISLNK(inode->i_mode))
912                 truncate_data_blocks_range(&dn, 1);
913
914         /* 0 is possible, after f2fs_new_inode() has failed */
915         f2fs_bug_on(F2FS_I_SB(inode),
916                         inode->i_blocks != 0 && inode->i_blocks != 1);
917
918         /* will put inode & node pages */
919         truncate_node(&dn);
920 }
921
922 struct page *new_inode_page(struct inode *inode)
923 {
924         struct dnode_of_data dn;
925
926         /* allocate inode page for new inode */
927         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
928
929         /* caller should f2fs_put_page(page, 1); */
930         return new_node_page(&dn, 0, NULL);
931 }
932
933 struct page *new_node_page(struct dnode_of_data *dn,
934                                 unsigned int ofs, struct page *ipage)
935 {
936         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
937         struct node_info old_ni, new_ni;
938         struct page *page;
939         int err;
940
941         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
942                 return ERR_PTR(-EPERM);
943
944         page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
945         if (!page)
946                 return ERR_PTR(-ENOMEM);
947
948         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
949                 err = -ENOSPC;
950                 goto fail;
951         }
952
953         get_node_info(sbi, dn->nid, &old_ni);
954
955         /* Reinitialize old_ni with new node page */
956         f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
957         new_ni = old_ni;
958         new_ni.ino = dn->inode->i_ino;
959         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
960
961         f2fs_wait_on_page_writeback(page, NODE);
962         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
963         set_cold_node(dn->inode, page);
964         SetPageUptodate(page);
965         set_page_dirty(page);
966
967         if (f2fs_has_xattr_block(ofs))
968                 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
969
970         dn->node_page = page;
971         if (ipage)
972                 update_inode(dn->inode, ipage);
973         else
974                 sync_inode_page(dn);
975         if (ofs == 0)
976                 inc_valid_inode_count(sbi);
977
978         return page;
979
980 fail:
981         clear_node_page_dirty(page);
982         f2fs_put_page(page, 1);
983         return ERR_PTR(err);
984 }
985
986 /*
987  * Caller should do after getting the following values.
988  * 0: f2fs_put_page(page, 0)
989  * LOCKED_PAGE: f2fs_put_page(page, 1)
990  * error: nothing
991  */
992 static int read_node_page(struct page *page, int rw)
993 {
994         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
995         struct node_info ni;
996
997         get_node_info(sbi, page->index, &ni);
998
999         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1000                 f2fs_put_page(page, 1);
1001                 return -ENOENT;
1002         }
1003
1004         if (PageUptodate(page))
1005                 return LOCKED_PAGE;
1006
1007         return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
1008 }
1009
1010 /*
1011  * Readahead a node page
1012  */
1013 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1014 {
1015         struct page *apage;
1016         int err;
1017
1018         apage = find_get_page(NODE_MAPPING(sbi), nid);
1019         if (apage && PageUptodate(apage)) {
1020                 f2fs_put_page(apage, 0);
1021                 return;
1022         }
1023         f2fs_put_page(apage, 0);
1024
1025         apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1026         if (!apage)
1027                 return;
1028
1029         err = read_node_page(apage, READA);
1030         if (err == 0)
1031                 f2fs_put_page(apage, 0);
1032         else if (err == LOCKED_PAGE)
1033                 f2fs_put_page(apage, 1);
1034 }
1035
1036 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1037 {
1038         struct page *page;
1039         int err;
1040 repeat:
1041         page = grab_cache_page(NODE_MAPPING(sbi), nid);
1042         if (!page)
1043                 return ERR_PTR(-ENOMEM);
1044
1045         err = read_node_page(page, READ_SYNC);
1046         if (err < 0)
1047                 return ERR_PTR(err);
1048         else if (err == LOCKED_PAGE)
1049                 goto got_it;
1050
1051         lock_page(page);
1052         if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
1053                 f2fs_put_page(page, 1);
1054                 return ERR_PTR(-EIO);
1055         }
1056         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1057                 f2fs_put_page(page, 1);
1058                 goto repeat;
1059         }
1060 got_it:
1061         return page;
1062 }
1063
1064 /*
1065  * Return a locked page for the desired node page.
1066  * And, readahead MAX_RA_NODE number of node pages.
1067  */
1068 struct page *get_node_page_ra(struct page *parent, int start)
1069 {
1070         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1071         struct blk_plug plug;
1072         struct page *page;
1073         int err, i, end;
1074         nid_t nid;
1075
1076         /* First, try getting the desired direct node. */
1077         nid = get_nid(parent, start, false);
1078         if (!nid)
1079                 return ERR_PTR(-ENOENT);
1080 repeat:
1081         page = grab_cache_page(NODE_MAPPING(sbi), nid);
1082         if (!page)
1083                 return ERR_PTR(-ENOMEM);
1084
1085         err = read_node_page(page, READ_SYNC);
1086         if (err < 0)
1087                 return ERR_PTR(err);
1088         else if (err == LOCKED_PAGE)
1089                 goto page_hit;
1090
1091         blk_start_plug(&plug);
1092
1093         /* Then, try readahead for siblings of the desired node */
1094         end = start + MAX_RA_NODE;
1095         end = min(end, NIDS_PER_BLOCK);
1096         for (i = start + 1; i < end; i++) {
1097                 nid = get_nid(parent, i, false);
1098                 if (!nid)
1099                         continue;
1100                 ra_node_page(sbi, nid);
1101         }
1102
1103         blk_finish_plug(&plug);
1104
1105         lock_page(page);
1106         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1107                 f2fs_put_page(page, 1);
1108                 goto repeat;
1109         }
1110 page_hit:
1111         if (unlikely(!PageUptodate(page))) {
1112                 f2fs_put_page(page, 1);
1113                 return ERR_PTR(-EIO);
1114         }
1115         return page;
1116 }
1117
1118 void sync_inode_page(struct dnode_of_data *dn)
1119 {
1120         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1121                 update_inode(dn->inode, dn->node_page);
1122         } else if (dn->inode_page) {
1123                 if (!dn->inode_page_locked)
1124                         lock_page(dn->inode_page);
1125                 update_inode(dn->inode, dn->inode_page);
1126                 if (!dn->inode_page_locked)
1127                         unlock_page(dn->inode_page);
1128         } else {
1129                 update_inode_page(dn->inode);
1130         }
1131 }
1132
1133 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1134                                         struct writeback_control *wbc)
1135 {
1136         pgoff_t index, end;
1137         struct pagevec pvec;
1138         int step = ino ? 2 : 0;
1139         int nwritten = 0, wrote = 0;
1140
1141         pagevec_init(&pvec, 0);
1142
1143 next_step:
1144         index = 0;
1145         end = LONG_MAX;
1146
1147         while (index <= end) {
1148                 int i, nr_pages;
1149                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1150                                 PAGECACHE_TAG_DIRTY,
1151                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1152                 if (nr_pages == 0)
1153                         break;
1154
1155                 for (i = 0; i < nr_pages; i++) {
1156                         struct page *page = pvec.pages[i];
1157
1158                         /*
1159                          * flushing sequence with step:
1160                          * 0. indirect nodes
1161                          * 1. dentry dnodes
1162                          * 2. file dnodes
1163                          */
1164                         if (step == 0 && IS_DNODE(page))
1165                                 continue;
1166                         if (step == 1 && (!IS_DNODE(page) ||
1167                                                 is_cold_node(page)))
1168                                 continue;
1169                         if (step == 2 && (!IS_DNODE(page) ||
1170                                                 !is_cold_node(page)))
1171                                 continue;
1172
1173                         /*
1174                          * If an fsync mode,
1175                          * we should not skip writing node pages.
1176                          */
1177                         if (ino && ino_of_node(page) == ino)
1178                                 lock_page(page);
1179                         else if (!trylock_page(page))
1180                                 continue;
1181
1182                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1183 continue_unlock:
1184                                 unlock_page(page);
1185                                 continue;
1186                         }
1187                         if (ino && ino_of_node(page) != ino)
1188                                 goto continue_unlock;
1189
1190                         if (!PageDirty(page)) {
1191                                 /* someone wrote it for us */
1192                                 goto continue_unlock;
1193                         }
1194
1195                         if (!clear_page_dirty_for_io(page))
1196                                 goto continue_unlock;
1197
1198                         /* called by fsync() */
1199                         if (ino && IS_DNODE(page)) {
1200                                 set_fsync_mark(page, 1);
1201                                 if (IS_INODE(page)) {
1202                                         if (!is_checkpointed_node(sbi, ino) &&
1203                                                 !has_fsynced_inode(sbi, ino))
1204                                                 set_dentry_mark(page, 1);
1205                                         else
1206                                                 set_dentry_mark(page, 0);
1207                                 }
1208                                 nwritten++;
1209                         } else {
1210                                 set_fsync_mark(page, 0);
1211                                 set_dentry_mark(page, 0);
1212                         }
1213
1214                         if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1215                                 unlock_page(page);
1216                         else
1217                                 wrote++;
1218
1219                         if (--wbc->nr_to_write == 0)
1220                                 break;
1221                 }
1222                 pagevec_release(&pvec);
1223                 cond_resched();
1224
1225                 if (wbc->nr_to_write == 0) {
1226                         step = 2;
1227                         break;
1228                 }
1229         }
1230
1231         if (step < 2) {
1232                 step++;
1233                 goto next_step;
1234         }
1235
1236         if (wrote)
1237                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1238         return nwritten;
1239 }
1240
1241 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1242 {
1243         pgoff_t index = 0, end = LONG_MAX;
1244         struct pagevec pvec;
1245         int ret2 = 0, ret = 0;
1246
1247         pagevec_init(&pvec, 0);
1248
1249         while (index <= end) {
1250                 int i, nr_pages;
1251                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1252                                 PAGECACHE_TAG_WRITEBACK,
1253                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1254                 if (nr_pages == 0)
1255                         break;
1256
1257                 for (i = 0; i < nr_pages; i++) {
1258                         struct page *page = pvec.pages[i];
1259
1260                         /* until radix tree lookup accepts end_index */
1261                         if (unlikely(page->index > end))
1262                                 continue;
1263
1264                         if (ino && ino_of_node(page) == ino) {
1265                                 f2fs_wait_on_page_writeback(page, NODE);
1266                                 if (TestClearPageError(page))
1267                                         ret = -EIO;
1268                         }
1269                 }
1270                 pagevec_release(&pvec);
1271                 cond_resched();
1272         }
1273
1274         if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1275                 ret2 = -ENOSPC;
1276         if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1277                 ret2 = -EIO;
1278         if (!ret)
1279                 ret = ret2;
1280         return ret;
1281 }
1282
1283 static int f2fs_write_node_page(struct page *page,
1284                                 struct writeback_control *wbc)
1285 {
1286         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1287         nid_t nid;
1288         block_t new_addr;
1289         struct node_info ni;
1290         struct f2fs_io_info fio = {
1291                 .type = NODE,
1292                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1293         };
1294
1295         trace_f2fs_writepage(page, NODE);
1296
1297         if (unlikely(sbi->por_doing))
1298                 goto redirty_out;
1299         if (unlikely(f2fs_cp_error(sbi)))
1300                 goto redirty_out;
1301
1302         f2fs_wait_on_page_writeback(page, NODE);
1303
1304         /* get old block addr of this node page */
1305         nid = nid_of_node(page);
1306         f2fs_bug_on(sbi, page->index != nid);
1307
1308         get_node_info(sbi, nid, &ni);
1309
1310         /* This page is already truncated */
1311         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1312                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1313                 unlock_page(page);
1314                 return 0;
1315         }
1316
1317         if (wbc->for_reclaim) {
1318                 if (!down_read_trylock(&sbi->node_write))
1319                         goto redirty_out;
1320         } else {
1321                 down_read(&sbi->node_write);
1322         }
1323         set_page_writeback(page);
1324         write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1325         set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1326         dec_page_count(sbi, F2FS_DIRTY_NODES);
1327         up_read(&sbi->node_write);
1328         unlock_page(page);
1329
1330         if (wbc->for_reclaim)
1331                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1332
1333         return 0;
1334
1335 redirty_out:
1336         redirty_page_for_writepage(wbc, page);
1337         return AOP_WRITEPAGE_ACTIVATE;
1338 }
1339
1340 static int f2fs_write_node_pages(struct address_space *mapping,
1341                             struct writeback_control *wbc)
1342 {
1343         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1344         long diff;
1345
1346         trace_f2fs_writepages(mapping->host, wbc, NODE);
1347
1348         /* balancing f2fs's metadata in background */
1349         f2fs_balance_fs_bg(sbi);
1350
1351         /* collect a number of dirty node pages and write together */
1352         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1353                 goto skip_write;
1354
1355         diff = nr_pages_to_write(sbi, NODE, wbc);
1356         wbc->sync_mode = WB_SYNC_NONE;
1357         sync_node_pages(sbi, 0, wbc);
1358         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1359         return 0;
1360
1361 skip_write:
1362         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1363         return 0;
1364 }
1365
1366 static int f2fs_set_node_page_dirty(struct page *page)
1367 {
1368         trace_f2fs_set_page_dirty(page, NODE);
1369
1370         SetPageUptodate(page);
1371         if (!PageDirty(page)) {
1372                 __set_page_dirty_nobuffers(page);
1373                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1374                 SetPagePrivate(page);
1375                 return 1;
1376         }
1377         return 0;
1378 }
1379
1380 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1381                                       unsigned int length)
1382 {
1383         struct inode *inode = page->mapping->host;
1384         if (PageDirty(page))
1385                 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_NODES);
1386         ClearPagePrivate(page);
1387 }
1388
1389 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1390 {
1391         ClearPagePrivate(page);
1392         return 1;
1393 }
1394
1395 /*
1396  * Structure of the f2fs node operations
1397  */
1398 const struct address_space_operations f2fs_node_aops = {
1399         .writepage      = f2fs_write_node_page,
1400         .writepages     = f2fs_write_node_pages,
1401         .set_page_dirty = f2fs_set_node_page_dirty,
1402         .invalidatepage = f2fs_invalidate_node_page,
1403         .releasepage    = f2fs_release_node_page,
1404 };
1405
1406 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1407                                                 nid_t n)
1408 {
1409         return radix_tree_lookup(&nm_i->free_nid_root, n);
1410 }
1411
1412 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1413                                                 struct free_nid *i)
1414 {
1415         list_del(&i->list);
1416         radix_tree_delete(&nm_i->free_nid_root, i->nid);
1417 }
1418
1419 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1420 {
1421         struct f2fs_nm_info *nm_i = NM_I(sbi);
1422         struct free_nid *i;
1423         struct nat_entry *ne;
1424         bool allocated = false;
1425
1426         if (!available_free_memory(sbi, FREE_NIDS))
1427                 return -1;
1428
1429         /* 0 nid should not be used */
1430         if (unlikely(nid == 0))
1431                 return 0;
1432
1433         if (build) {
1434                 /* do not add allocated nids */
1435                 read_lock(&nm_i->nat_tree_lock);
1436                 ne = __lookup_nat_cache(nm_i, nid);
1437                 if (ne &&
1438                         (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1439                                 nat_get_blkaddr(ne) != NULL_ADDR))
1440                         allocated = true;
1441                 read_unlock(&nm_i->nat_tree_lock);
1442                 if (allocated)
1443                         return 0;
1444         }
1445
1446         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1447         i->nid = nid;
1448         i->state = NID_NEW;
1449
1450         spin_lock(&nm_i->free_nid_list_lock);
1451         if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1452                 spin_unlock(&nm_i->free_nid_list_lock);
1453                 kmem_cache_free(free_nid_slab, i);
1454                 return 0;
1455         }
1456         list_add_tail(&i->list, &nm_i->free_nid_list);
1457         nm_i->fcnt++;
1458         spin_unlock(&nm_i->free_nid_list_lock);
1459         return 1;
1460 }
1461
1462 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1463 {
1464         struct free_nid *i;
1465         bool need_free = false;
1466
1467         spin_lock(&nm_i->free_nid_list_lock);
1468         i = __lookup_free_nid_list(nm_i, nid);
1469         if (i && i->state == NID_NEW) {
1470                 __del_from_free_nid_list(nm_i, i);
1471                 nm_i->fcnt--;
1472                 need_free = true;
1473         }
1474         spin_unlock(&nm_i->free_nid_list_lock);
1475
1476         if (need_free)
1477                 kmem_cache_free(free_nid_slab, i);
1478 }
1479
1480 static void scan_nat_page(struct f2fs_sb_info *sbi,
1481                         struct page *nat_page, nid_t start_nid)
1482 {
1483         struct f2fs_nm_info *nm_i = NM_I(sbi);
1484         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1485         block_t blk_addr;
1486         int i;
1487
1488         i = start_nid % NAT_ENTRY_PER_BLOCK;
1489
1490         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1491
1492                 if (unlikely(start_nid >= nm_i->max_nid))
1493                         break;
1494
1495                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1496                 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1497                 if (blk_addr == NULL_ADDR) {
1498                         if (add_free_nid(sbi, start_nid, true) < 0)
1499                                 break;
1500                 }
1501         }
1502 }
1503
1504 static void build_free_nids(struct f2fs_sb_info *sbi)
1505 {
1506         struct f2fs_nm_info *nm_i = NM_I(sbi);
1507         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1508         struct f2fs_summary_block *sum = curseg->sum_blk;
1509         int i = 0;
1510         nid_t nid = nm_i->next_scan_nid;
1511
1512         /* Enough entries */
1513         if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1514                 return;
1515
1516         /* readahead nat pages to be scanned */
1517         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1518
1519         while (1) {
1520                 struct page *page = get_current_nat_page(sbi, nid);
1521
1522                 scan_nat_page(sbi, page, nid);
1523                 f2fs_put_page(page, 1);
1524
1525                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1526                 if (unlikely(nid >= nm_i->max_nid))
1527                         nid = 0;
1528
1529                 if (i++ == FREE_NID_PAGES)
1530                         break;
1531         }
1532
1533         /* go to the next free nat pages to find free nids abundantly */
1534         nm_i->next_scan_nid = nid;
1535
1536         /* find free nids from current sum_pages */
1537         mutex_lock(&curseg->curseg_mutex);
1538         for (i = 0; i < nats_in_cursum(sum); i++) {
1539                 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1540                 nid = le32_to_cpu(nid_in_journal(sum, i));
1541                 if (addr == NULL_ADDR)
1542                         add_free_nid(sbi, nid, true);
1543                 else
1544                         remove_free_nid(nm_i, nid);
1545         }
1546         mutex_unlock(&curseg->curseg_mutex);
1547 }
1548
1549 /*
1550  * If this function returns success, caller can obtain a new nid
1551  * from second parameter of this function.
1552  * The returned nid could be used ino as well as nid when inode is created.
1553  */
1554 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1555 {
1556         struct f2fs_nm_info *nm_i = NM_I(sbi);
1557         struct free_nid *i = NULL;
1558 retry:
1559         if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1560                 return false;
1561
1562         spin_lock(&nm_i->free_nid_list_lock);
1563
1564         /* We should not use stale free nids created by build_free_nids */
1565         if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1566                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1567                 list_for_each_entry(i, &nm_i->free_nid_list, list)
1568                         if (i->state == NID_NEW)
1569                                 break;
1570
1571                 f2fs_bug_on(sbi, i->state != NID_NEW);
1572                 *nid = i->nid;
1573                 i->state = NID_ALLOC;
1574                 nm_i->fcnt--;
1575                 spin_unlock(&nm_i->free_nid_list_lock);
1576                 return true;
1577         }
1578         spin_unlock(&nm_i->free_nid_list_lock);
1579
1580         /* Let's scan nat pages and its caches to get free nids */
1581         mutex_lock(&nm_i->build_lock);
1582         build_free_nids(sbi);
1583         mutex_unlock(&nm_i->build_lock);
1584         goto retry;
1585 }
1586
1587 /*
1588  * alloc_nid() should be called prior to this function.
1589  */
1590 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1591 {
1592         struct f2fs_nm_info *nm_i = NM_I(sbi);
1593         struct free_nid *i;
1594
1595         spin_lock(&nm_i->free_nid_list_lock);
1596         i = __lookup_free_nid_list(nm_i, nid);
1597         f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1598         __del_from_free_nid_list(nm_i, i);
1599         spin_unlock(&nm_i->free_nid_list_lock);
1600
1601         kmem_cache_free(free_nid_slab, i);
1602 }
1603
1604 /*
1605  * alloc_nid() should be called prior to this function.
1606  */
1607 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1608 {
1609         struct f2fs_nm_info *nm_i = NM_I(sbi);
1610         struct free_nid *i;
1611         bool need_free = false;
1612
1613         if (!nid)
1614                 return;
1615
1616         spin_lock(&nm_i->free_nid_list_lock);
1617         i = __lookup_free_nid_list(nm_i, nid);
1618         f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1619         if (!available_free_memory(sbi, FREE_NIDS)) {
1620                 __del_from_free_nid_list(nm_i, i);
1621                 need_free = true;
1622         } else {
1623                 i->state = NID_NEW;
1624                 nm_i->fcnt++;
1625         }
1626         spin_unlock(&nm_i->free_nid_list_lock);
1627
1628         if (need_free)
1629                 kmem_cache_free(free_nid_slab, i);
1630 }
1631
1632 void recover_inline_xattr(struct inode *inode, struct page *page)
1633 {
1634         void *src_addr, *dst_addr;
1635         size_t inline_size;
1636         struct page *ipage;
1637         struct f2fs_inode *ri;
1638
1639         ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1640         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1641
1642         ri = F2FS_INODE(page);
1643         if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1644                 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1645                 goto update_inode;
1646         }
1647
1648         dst_addr = inline_xattr_addr(ipage);
1649         src_addr = inline_xattr_addr(page);
1650         inline_size = inline_xattr_size(inode);
1651
1652         f2fs_wait_on_page_writeback(ipage, NODE);
1653         memcpy(dst_addr, src_addr, inline_size);
1654 update_inode:
1655         update_inode(inode, ipage);
1656         f2fs_put_page(ipage, 1);
1657 }
1658
1659 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1660 {
1661         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1662         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1663         nid_t new_xnid = nid_of_node(page);
1664         struct node_info ni;
1665
1666         /* 1: invalidate the previous xattr nid */
1667         if (!prev_xnid)
1668                 goto recover_xnid;
1669
1670         /* Deallocate node address */
1671         get_node_info(sbi, prev_xnid, &ni);
1672         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1673         invalidate_blocks(sbi, ni.blk_addr);
1674         dec_valid_node_count(sbi, inode);
1675         set_node_addr(sbi, &ni, NULL_ADDR, false);
1676
1677 recover_xnid:
1678         /* 2: allocate new xattr nid */
1679         if (unlikely(!inc_valid_node_count(sbi, inode)))
1680                 f2fs_bug_on(sbi, 1);
1681
1682         remove_free_nid(NM_I(sbi), new_xnid);
1683         get_node_info(sbi, new_xnid, &ni);
1684         ni.ino = inode->i_ino;
1685         set_node_addr(sbi, &ni, NEW_ADDR, false);
1686         F2FS_I(inode)->i_xattr_nid = new_xnid;
1687
1688         /* 3: update xattr blkaddr */
1689         refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1690         set_node_addr(sbi, &ni, blkaddr, false);
1691
1692         update_inode_page(inode);
1693 }
1694
1695 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1696 {
1697         struct f2fs_inode *src, *dst;
1698         nid_t ino = ino_of_node(page);
1699         struct node_info old_ni, new_ni;
1700         struct page *ipage;
1701
1702         get_node_info(sbi, ino, &old_ni);
1703
1704         if (unlikely(old_ni.blk_addr != NULL_ADDR))
1705                 return -EINVAL;
1706
1707         ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1708         if (!ipage)
1709                 return -ENOMEM;
1710
1711         /* Should not use this inode from free nid list */
1712         remove_free_nid(NM_I(sbi), ino);
1713
1714         SetPageUptodate(ipage);
1715         fill_node_footer(ipage, ino, ino, 0, true);
1716
1717         src = F2FS_INODE(page);
1718         dst = F2FS_INODE(ipage);
1719
1720         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1721         dst->i_size = 0;
1722         dst->i_blocks = cpu_to_le64(1);
1723         dst->i_links = cpu_to_le32(1);
1724         dst->i_xattr_nid = 0;
1725         dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1726
1727         new_ni = old_ni;
1728         new_ni.ino = ino;
1729
1730         if (unlikely(!inc_valid_node_count(sbi, NULL)))
1731                 WARN_ON(1);
1732         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1733         inc_valid_inode_count(sbi);
1734         set_page_dirty(ipage);
1735         f2fs_put_page(ipage, 1);
1736         return 0;
1737 }
1738
1739 /*
1740  * ra_sum_pages() merge contiguous pages into one bio and submit.
1741  * these pre-read pages are allocated in bd_inode's mapping tree.
1742  */
1743 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
1744                                 int start, int nrpages)
1745 {
1746         struct inode *inode = sbi->sb->s_bdev->bd_inode;
1747         struct address_space *mapping = inode->i_mapping;
1748         int i, page_idx = start;
1749         struct f2fs_io_info fio = {
1750                 .type = META,
1751                 .rw = READ_SYNC | REQ_META | REQ_PRIO
1752         };
1753
1754         for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
1755                 /* alloc page in bd_inode for reading node summary info */
1756                 pages[i] = grab_cache_page(mapping, page_idx);
1757                 if (!pages[i])
1758                         break;
1759                 f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
1760         }
1761
1762         f2fs_submit_merged_bio(sbi, META, READ);
1763         return i;
1764 }
1765
1766 int restore_node_summary(struct f2fs_sb_info *sbi,
1767                         unsigned int segno, struct f2fs_summary_block *sum)
1768 {
1769         struct f2fs_node *rn;
1770         struct f2fs_summary *sum_entry;
1771         struct inode *inode = sbi->sb->s_bdev->bd_inode;
1772         block_t addr;
1773         int bio_blocks = MAX_BIO_BLOCKS(sbi);
1774         struct page *pages[bio_blocks];
1775         int i, idx, last_offset, nrpages, err = 0;
1776
1777         /* scan the node segment */
1778         last_offset = sbi->blocks_per_seg;
1779         addr = START_BLOCK(sbi, segno);
1780         sum_entry = &sum->entries[0];
1781
1782         for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1783                 nrpages = min(last_offset - i, bio_blocks);
1784
1785                 /* readahead node pages */
1786                 nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
1787                 if (!nrpages)
1788                         return -ENOMEM;
1789
1790                 for (idx = 0; idx < nrpages; idx++) {
1791                         if (err)
1792                                 goto skip;
1793
1794                         lock_page(pages[idx]);
1795                         if (unlikely(!PageUptodate(pages[idx]))) {
1796                                 err = -EIO;
1797                         } else {
1798                                 rn = F2FS_NODE(pages[idx]);
1799                                 sum_entry->nid = rn->footer.nid;
1800                                 sum_entry->version = 0;
1801                                 sum_entry->ofs_in_node = 0;
1802                                 sum_entry++;
1803                         }
1804                         unlock_page(pages[idx]);
1805 skip:
1806                         page_cache_release(pages[idx]);
1807                 }
1808
1809                 invalidate_mapping_pages(inode->i_mapping, addr,
1810                                                         addr + nrpages);
1811         }
1812         return err;
1813 }
1814
1815 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1816 {
1817         struct f2fs_nm_info *nm_i = NM_I(sbi);
1818         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1819         struct f2fs_summary_block *sum = curseg->sum_blk;
1820         int i;
1821
1822         mutex_lock(&curseg->curseg_mutex);
1823         for (i = 0; i < nats_in_cursum(sum); i++) {
1824                 struct nat_entry *ne;
1825                 struct f2fs_nat_entry raw_ne;
1826                 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1827
1828                 raw_ne = nat_in_journal(sum, i);
1829 retry:
1830                 write_lock(&nm_i->nat_tree_lock);
1831                 ne = __lookup_nat_cache(nm_i, nid);
1832                 if (ne)
1833                         goto found;
1834
1835                 ne = grab_nat_entry(nm_i, nid);
1836                 if (!ne) {
1837                         write_unlock(&nm_i->nat_tree_lock);
1838                         goto retry;
1839                 }
1840                 node_info_from_raw_nat(&ne->ni, &raw_ne);
1841 found:
1842                 __set_nat_cache_dirty(nm_i, ne);
1843                 write_unlock(&nm_i->nat_tree_lock);
1844         }
1845         update_nats_in_cursum(sum, -i);
1846         mutex_unlock(&curseg->curseg_mutex);
1847 }
1848
1849 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1850                                                 struct list_head *head, int max)
1851 {
1852         struct nat_entry_set *cur;
1853
1854         if (nes->entry_cnt >= max)
1855                 goto add_out;
1856
1857         list_for_each_entry(cur, head, set_list) {
1858                 if (cur->entry_cnt >= nes->entry_cnt) {
1859                         list_add(&nes->set_list, cur->set_list.prev);
1860                         return;
1861                 }
1862         }
1863 add_out:
1864         list_add_tail(&nes->set_list, head);
1865 }
1866
1867 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1868                                         struct nat_entry_set *set)
1869 {
1870         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1871         struct f2fs_summary_block *sum = curseg->sum_blk;
1872         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1873         bool to_journal = true;
1874         struct f2fs_nat_block *nat_blk;
1875         struct nat_entry *ne, *cur;
1876         struct page *page = NULL;
1877
1878         /*
1879          * there are two steps to flush nat entries:
1880          * #1, flush nat entries to journal in current hot data summary block.
1881          * #2, flush nat entries to nat page.
1882          */
1883         if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1884                 to_journal = false;
1885
1886         if (to_journal) {
1887                 mutex_lock(&curseg->curseg_mutex);
1888         } else {
1889                 page = get_next_nat_page(sbi, start_nid);
1890                 nat_blk = page_address(page);
1891                 f2fs_bug_on(sbi, !nat_blk);
1892         }
1893
1894         /* flush dirty nats in nat entry set */
1895         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1896                 struct f2fs_nat_entry *raw_ne;
1897                 nid_t nid = nat_get_nid(ne);
1898                 int offset;
1899
1900                 if (nat_get_blkaddr(ne) == NEW_ADDR)
1901                         continue;
1902
1903                 if (to_journal) {
1904                         offset = lookup_journal_in_cursum(sum,
1905                                                         NAT_JOURNAL, nid, 1);
1906                         f2fs_bug_on(sbi, offset < 0);
1907                         raw_ne = &nat_in_journal(sum, offset);
1908                         nid_in_journal(sum, offset) = cpu_to_le32(nid);
1909                 } else {
1910                         raw_ne = &nat_blk->entries[nid - start_nid];
1911                 }
1912                 raw_nat_from_node_info(raw_ne, &ne->ni);
1913
1914                 write_lock(&NM_I(sbi)->nat_tree_lock);
1915                 nat_reset_flag(ne);
1916                 __clear_nat_cache_dirty(NM_I(sbi), ne);
1917                 write_unlock(&NM_I(sbi)->nat_tree_lock);
1918
1919                 if (nat_get_blkaddr(ne) == NULL_ADDR)
1920                         add_free_nid(sbi, nid, false);
1921         }
1922
1923         if (to_journal)
1924                 mutex_unlock(&curseg->curseg_mutex);
1925         else
1926                 f2fs_put_page(page, 1);
1927
1928         if (!set->entry_cnt) {
1929                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1930                 kmem_cache_free(nat_entry_set_slab, set);
1931         }
1932 }
1933
1934 /*
1935  * This function is called during the checkpointing process.
1936  */
1937 void flush_nat_entries(struct f2fs_sb_info *sbi)
1938 {
1939         struct f2fs_nm_info *nm_i = NM_I(sbi);
1940         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1941         struct f2fs_summary_block *sum = curseg->sum_blk;
1942         struct nat_entry_set *setvec[NATVEC_SIZE];
1943         struct nat_entry_set *set, *tmp;
1944         unsigned int found;
1945         nid_t set_idx = 0;
1946         LIST_HEAD(sets);
1947
1948         /*
1949          * if there are no enough space in journal to store dirty nat
1950          * entries, remove all entries from journal and merge them
1951          * into nat entry set.
1952          */
1953         if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1954                 remove_nats_in_journal(sbi);
1955
1956         if (!nm_i->dirty_nat_cnt)
1957                 return;
1958
1959         while ((found = __gang_lookup_nat_set(nm_i,
1960                                         set_idx, NATVEC_SIZE, setvec))) {
1961                 unsigned idx;
1962                 set_idx = setvec[found - 1]->set + 1;
1963                 for (idx = 0; idx < found; idx++)
1964                         __adjust_nat_entry_set(setvec[idx], &sets,
1965                                                         MAX_NAT_JENTRIES(sum));
1966         }
1967
1968         /* flush dirty nats in nat entry set */
1969         list_for_each_entry_safe(set, tmp, &sets, set_list)
1970                 __flush_nat_entry_set(sbi, set);
1971
1972         f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1973 }
1974
1975 static int init_node_manager(struct f2fs_sb_info *sbi)
1976 {
1977         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1978         struct f2fs_nm_info *nm_i = NM_I(sbi);
1979         unsigned char *version_bitmap;
1980         unsigned int nat_segs, nat_blocks;
1981
1982         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1983
1984         /* segment_count_nat includes pair segment so divide to 2. */
1985         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1986         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1987
1988         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1989
1990         /* not used nids: 0, node, meta, (and root counted as valid node) */
1991         nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
1992         nm_i->fcnt = 0;
1993         nm_i->nat_cnt = 0;
1994         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1995
1996         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1997         INIT_LIST_HEAD(&nm_i->free_nid_list);
1998         INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1999         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_ATOMIC);
2000         INIT_LIST_HEAD(&nm_i->nat_entries);
2001
2002         mutex_init(&nm_i->build_lock);
2003         spin_lock_init(&nm_i->free_nid_list_lock);
2004         rwlock_init(&nm_i->nat_tree_lock);
2005
2006         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2007         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2008         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2009         if (!version_bitmap)
2010                 return -EFAULT;
2011
2012         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2013                                         GFP_KERNEL);
2014         if (!nm_i->nat_bitmap)
2015                 return -ENOMEM;
2016         return 0;
2017 }
2018
2019 int build_node_manager(struct f2fs_sb_info *sbi)
2020 {
2021         int err;
2022
2023         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2024         if (!sbi->nm_info)
2025                 return -ENOMEM;
2026
2027         err = init_node_manager(sbi);
2028         if (err)
2029                 return err;
2030
2031         build_free_nids(sbi);
2032         return 0;
2033 }
2034
2035 void destroy_node_manager(struct f2fs_sb_info *sbi)
2036 {
2037         struct f2fs_nm_info *nm_i = NM_I(sbi);
2038         struct free_nid *i, *next_i;
2039         struct nat_entry *natvec[NATVEC_SIZE];
2040         nid_t nid = 0;
2041         unsigned int found;
2042
2043         if (!nm_i)
2044                 return;
2045
2046         /* destroy free nid list */
2047         spin_lock(&nm_i->free_nid_list_lock);
2048         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2049                 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2050                 __del_from_free_nid_list(nm_i, i);
2051                 nm_i->fcnt--;
2052                 spin_unlock(&nm_i->free_nid_list_lock);
2053                 kmem_cache_free(free_nid_slab, i);
2054                 spin_lock(&nm_i->free_nid_list_lock);
2055         }
2056         f2fs_bug_on(sbi, nm_i->fcnt);
2057         spin_unlock(&nm_i->free_nid_list_lock);
2058
2059         /* destroy nat cache */
2060         write_lock(&nm_i->nat_tree_lock);
2061         while ((found = __gang_lookup_nat_cache(nm_i,
2062                                         nid, NATVEC_SIZE, natvec))) {
2063                 unsigned idx;
2064                 nid = nat_get_nid(natvec[found - 1]) + 1;
2065                 for (idx = 0; idx < found; idx++)
2066                         __del_from_nat_cache(nm_i, natvec[idx]);
2067         }
2068         f2fs_bug_on(sbi, nm_i->nat_cnt);
2069         write_unlock(&nm_i->nat_tree_lock);
2070
2071         kfree(nm_i->nat_bitmap);
2072         sbi->nm_info = NULL;
2073         kfree(nm_i);
2074 }
2075
2076 int __init create_node_manager_caches(void)
2077 {
2078         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2079                         sizeof(struct nat_entry));
2080         if (!nat_entry_slab)
2081                 goto fail;
2082
2083         free_nid_slab = f2fs_kmem_cache_create("free_nid",
2084                         sizeof(struct free_nid));
2085         if (!free_nid_slab)
2086                 goto destroy_nat_entry;
2087
2088         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2089                         sizeof(struct nat_entry_set));
2090         if (!nat_entry_set_slab)
2091                 goto destroy_free_nid;
2092         return 0;
2093
2094 destroy_free_nid:
2095         kmem_cache_destroy(free_nid_slab);
2096 destroy_nat_entry:
2097         kmem_cache_destroy(nat_entry_slab);
2098 fail:
2099         return -ENOMEM;
2100 }
2101
2102 void destroy_node_manager_caches(void)
2103 {
2104         kmem_cache_destroy(nat_entry_set_slab);
2105         kmem_cache_destroy(free_nid_slab);
2106         kmem_cache_destroy(nat_entry_slab);
2107 }