4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
22 #include <trace/events/f2fs.h>
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
27 static void clear_node_page_dirty(struct page *page)
29 struct address_space *mapping = page->mapping;
30 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31 unsigned int long flags;
33 if (PageDirty(page)) {
34 spin_lock_irqsave(&mapping->tree_lock, flags);
35 radix_tree_tag_clear(&mapping->page_tree,
38 spin_unlock_irqrestore(&mapping->tree_lock, flags);
40 clear_page_dirty_for_io(page);
41 dec_page_count(sbi, F2FS_DIRTY_NODES);
43 ClearPageUptodate(page);
46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
48 pgoff_t index = current_nat_addr(sbi, nid);
49 return get_meta_page(sbi, index);
52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
54 struct page *src_page;
55 struct page *dst_page;
60 struct f2fs_nm_info *nm_i = NM_I(sbi);
62 src_off = current_nat_addr(sbi, nid);
63 dst_off = next_nat_addr(sbi, src_off);
65 /* get current nat block page with lock */
66 src_page = get_meta_page(sbi, src_off);
68 /* Dirty src_page means that it is already the new target NAT page. */
69 if (PageDirty(src_page))
72 dst_page = grab_meta_page(sbi, dst_off);
74 src_addr = page_address(src_page);
75 dst_addr = page_address(dst_page);
76 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77 set_page_dirty(dst_page);
78 f2fs_put_page(src_page, 1);
80 set_to_next_nat(nm_i, nid);
88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
90 struct address_space *mapping = sbi->meta_inode->i_mapping;
91 struct f2fs_nm_info *nm_i = NM_I(sbi);
97 blk_start_plug(&plug);
99 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
100 if (nid >= nm_i->max_nid)
102 index = current_nat_addr(sbi, nid);
104 page = grab_cache_page(mapping, index);
107 if (PageUptodate(page)) {
108 f2fs_put_page(page, 1);
111 if (f2fs_readpage(sbi, page, index, READ))
114 f2fs_put_page(page, 0);
116 blk_finish_plug(&plug);
119 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
121 return radix_tree_lookup(&nm_i->nat_root, n);
124 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
125 nid_t start, unsigned int nr, struct nat_entry **ep)
127 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
130 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
133 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
135 kmem_cache_free(nat_entry_slab, e);
138 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
140 struct f2fs_nm_info *nm_i = NM_I(sbi);
144 read_lock(&nm_i->nat_tree_lock);
145 e = __lookup_nat_cache(nm_i, nid);
146 if (e && !e->checkpointed)
148 read_unlock(&nm_i->nat_tree_lock);
152 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
154 struct nat_entry *new;
156 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
159 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
160 kmem_cache_free(nat_entry_slab, new);
163 memset(new, 0, sizeof(struct nat_entry));
164 nat_set_nid(new, nid);
165 list_add_tail(&new->list, &nm_i->nat_entries);
170 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
171 struct f2fs_nat_entry *ne)
175 write_lock(&nm_i->nat_tree_lock);
176 e = __lookup_nat_cache(nm_i, nid);
178 e = grab_nat_entry(nm_i, nid);
180 write_unlock(&nm_i->nat_tree_lock);
183 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
184 nat_set_ino(e, le32_to_cpu(ne->ino));
185 nat_set_version(e, ne->version);
186 e->checkpointed = true;
188 write_unlock(&nm_i->nat_tree_lock);
191 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
194 struct f2fs_nm_info *nm_i = NM_I(sbi);
197 write_lock(&nm_i->nat_tree_lock);
198 e = __lookup_nat_cache(nm_i, ni->nid);
200 e = grab_nat_entry(nm_i, ni->nid);
202 write_unlock(&nm_i->nat_tree_lock);
206 e->checkpointed = true;
207 BUG_ON(ni->blk_addr == NEW_ADDR);
208 } else if (new_blkaddr == NEW_ADDR) {
210 * when nid is reallocated,
211 * previous nat entry can be remained in nat cache.
212 * So, reinitialize it with new information.
215 BUG_ON(ni->blk_addr != NULL_ADDR);
218 if (new_blkaddr == NEW_ADDR)
219 e->checkpointed = false;
222 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
223 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
224 new_blkaddr == NULL_ADDR);
225 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
226 new_blkaddr == NEW_ADDR);
227 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
228 nat_get_blkaddr(e) != NULL_ADDR &&
229 new_blkaddr == NEW_ADDR);
231 /* increament version no as node is removed */
232 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
233 unsigned char version = nat_get_version(e);
234 nat_set_version(e, inc_node_version(version));
238 nat_set_blkaddr(e, new_blkaddr);
239 __set_nat_cache_dirty(nm_i, e);
240 write_unlock(&nm_i->nat_tree_lock);
243 static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
245 struct f2fs_nm_info *nm_i = NM_I(sbi);
247 if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
250 write_lock(&nm_i->nat_tree_lock);
251 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
252 struct nat_entry *ne;
253 ne = list_first_entry(&nm_i->nat_entries,
254 struct nat_entry, list);
255 __del_from_nat_cache(nm_i, ne);
258 write_unlock(&nm_i->nat_tree_lock);
263 * This function returns always success
265 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
267 struct f2fs_nm_info *nm_i = NM_I(sbi);
268 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
269 struct f2fs_summary_block *sum = curseg->sum_blk;
270 nid_t start_nid = START_NID(nid);
271 struct f2fs_nat_block *nat_blk;
272 struct page *page = NULL;
273 struct f2fs_nat_entry ne;
277 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
280 /* Check nat cache */
281 read_lock(&nm_i->nat_tree_lock);
282 e = __lookup_nat_cache(nm_i, nid);
284 ni->ino = nat_get_ino(e);
285 ni->blk_addr = nat_get_blkaddr(e);
286 ni->version = nat_get_version(e);
288 read_unlock(&nm_i->nat_tree_lock);
292 /* Check current segment summary */
293 mutex_lock(&curseg->curseg_mutex);
294 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
296 ne = nat_in_journal(sum, i);
297 node_info_from_raw_nat(ni, &ne);
299 mutex_unlock(&curseg->curseg_mutex);
303 /* Fill node_info from nat page */
304 page = get_current_nat_page(sbi, start_nid);
305 nat_blk = (struct f2fs_nat_block *)page_address(page);
306 ne = nat_blk->entries[nid - start_nid];
307 node_info_from_raw_nat(ni, &ne);
308 f2fs_put_page(page, 1);
310 /* cache nat entry */
311 cache_nat_entry(NM_I(sbi), nid, &ne);
315 * The maximum depth is four.
316 * Offset[0] will have raw inode offset.
318 static int get_node_path(long block, int offset[4], unsigned int noffset[4])
320 const long direct_index = ADDRS_PER_INODE;
321 const long direct_blks = ADDRS_PER_BLOCK;
322 const long dptrs_per_blk = NIDS_PER_BLOCK;
323 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
324 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
330 if (block < direct_index) {
334 block -= direct_index;
335 if (block < direct_blks) {
336 offset[n++] = NODE_DIR1_BLOCK;
342 block -= direct_blks;
343 if (block < direct_blks) {
344 offset[n++] = NODE_DIR2_BLOCK;
350 block -= direct_blks;
351 if (block < indirect_blks) {
352 offset[n++] = NODE_IND1_BLOCK;
354 offset[n++] = block / direct_blks;
355 noffset[n] = 4 + offset[n - 1];
356 offset[n] = block % direct_blks;
360 block -= indirect_blks;
361 if (block < indirect_blks) {
362 offset[n++] = NODE_IND2_BLOCK;
363 noffset[n] = 4 + dptrs_per_blk;
364 offset[n++] = block / direct_blks;
365 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
366 offset[n] = block % direct_blks;
370 block -= indirect_blks;
371 if (block < dindirect_blks) {
372 offset[n++] = NODE_DIND_BLOCK;
373 noffset[n] = 5 + (dptrs_per_blk * 2);
374 offset[n++] = block / indirect_blks;
375 noffset[n] = 6 + (dptrs_per_blk * 2) +
376 offset[n - 1] * (dptrs_per_blk + 1);
377 offset[n++] = (block / direct_blks) % dptrs_per_blk;
378 noffset[n] = 7 + (dptrs_per_blk * 2) +
379 offset[n - 2] * (dptrs_per_blk + 1) +
381 offset[n] = block % direct_blks;
392 * Caller should call f2fs_put_dnode(dn).
393 * Also, it should grab and release a mutex by calling mutex_lock_op() and
394 * mutex_unlock_op() only if ro is not set RDONLY_NODE.
395 * In the case of RDONLY_NODE, we don't need to care about mutex.
397 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
399 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
400 struct page *npage[4];
403 unsigned int noffset[4];
408 level = get_node_path(index, offset, noffset);
410 nids[0] = dn->inode->i_ino;
411 npage[0] = get_node_page(sbi, nids[0]);
412 if (IS_ERR(npage[0]))
413 return PTR_ERR(npage[0]);
417 nids[1] = get_nid(parent, offset[0], true);
418 dn->inode_page = npage[0];
419 dn->inode_page_locked = true;
421 /* get indirect or direct nodes */
422 for (i = 1; i <= level; i++) {
425 if (!nids[i] && mode == ALLOC_NODE) {
427 if (!alloc_nid(sbi, &(nids[i]))) {
433 npage[i] = new_node_page(dn, noffset[i]);
434 if (IS_ERR(npage[i])) {
435 alloc_nid_failed(sbi, nids[i]);
436 err = PTR_ERR(npage[i]);
440 set_nid(parent, offset[i - 1], nids[i], i == 1);
441 alloc_nid_done(sbi, nids[i]);
443 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
444 npage[i] = get_node_page_ra(parent, offset[i - 1]);
445 if (IS_ERR(npage[i])) {
446 err = PTR_ERR(npage[i]);
452 dn->inode_page_locked = false;
455 f2fs_put_page(parent, 1);
459 npage[i] = get_node_page(sbi, nids[i]);
460 if (IS_ERR(npage[i])) {
461 err = PTR_ERR(npage[i]);
462 f2fs_put_page(npage[0], 0);
468 nids[i + 1] = get_nid(parent, offset[i], false);
471 dn->nid = nids[level];
472 dn->ofs_in_node = offset[level];
473 dn->node_page = npage[level];
474 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
478 f2fs_put_page(parent, 1);
480 f2fs_put_page(npage[0], 0);
482 dn->inode_page = NULL;
483 dn->node_page = NULL;
487 static void truncate_node(struct dnode_of_data *dn)
489 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
492 get_node_info(sbi, dn->nid, &ni);
493 if (dn->inode->i_blocks == 0) {
494 BUG_ON(ni.blk_addr != NULL_ADDR);
497 BUG_ON(ni.blk_addr == NULL_ADDR);
499 /* Deallocate node address */
500 invalidate_blocks(sbi, ni.blk_addr);
501 dec_valid_node_count(sbi, dn->inode, 1);
502 set_node_addr(sbi, &ni, NULL_ADDR);
504 if (dn->nid == dn->inode->i_ino) {
505 remove_orphan_inode(sbi, dn->nid);
506 dec_valid_inode_count(sbi);
511 clear_node_page_dirty(dn->node_page);
512 F2FS_SET_SB_DIRT(sbi);
514 f2fs_put_page(dn->node_page, 1);
515 dn->node_page = NULL;
516 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
519 static int truncate_dnode(struct dnode_of_data *dn)
521 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
527 /* get direct node */
528 page = get_node_page(sbi, dn->nid);
529 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
531 else if (IS_ERR(page))
532 return PTR_ERR(page);
534 /* Make dnode_of_data for parameter */
535 dn->node_page = page;
537 truncate_data_blocks(dn);
542 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
545 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
546 struct dnode_of_data rdn = *dn;
548 struct f2fs_node *rn;
550 unsigned int child_nofs;
555 return NIDS_PER_BLOCK + 1;
557 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
559 page = get_node_page(sbi, dn->nid);
561 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
562 return PTR_ERR(page);
565 rn = (struct f2fs_node *)page_address(page);
567 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
568 child_nid = le32_to_cpu(rn->in.nid[i]);
572 ret = truncate_dnode(&rdn);
575 set_nid(page, i, 0, false);
578 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
579 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
580 child_nid = le32_to_cpu(rn->in.nid[i]);
581 if (child_nid == 0) {
582 child_nofs += NIDS_PER_BLOCK + 1;
586 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
587 if (ret == (NIDS_PER_BLOCK + 1)) {
588 set_nid(page, i, 0, false);
590 } else if (ret < 0 && ret != -ENOENT) {
598 /* remove current indirect node */
599 dn->node_page = page;
603 f2fs_put_page(page, 1);
605 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
609 f2fs_put_page(page, 1);
610 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
614 static int truncate_partial_nodes(struct dnode_of_data *dn,
615 struct f2fs_inode *ri, int *offset, int depth)
617 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
618 struct page *pages[2];
625 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
629 /* get indirect nodes in the path */
630 for (i = 0; i < depth - 1; i++) {
631 /* refernece count'll be increased */
632 pages[i] = get_node_page(sbi, nid[i]);
633 if (IS_ERR(pages[i])) {
635 err = PTR_ERR(pages[i]);
638 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
641 /* free direct nodes linked to a partial indirect node */
642 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
643 child_nid = get_nid(pages[idx], i, false);
647 err = truncate_dnode(dn);
650 set_nid(pages[idx], i, 0, false);
653 if (offset[depth - 1] == 0) {
654 dn->node_page = pages[idx];
658 f2fs_put_page(pages[idx], 1);
661 offset[depth - 1] = 0;
663 for (i = depth - 3; i >= 0; i--)
664 f2fs_put_page(pages[i], 1);
666 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
672 * All the block addresses of data and nodes should be nullified.
674 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
676 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
677 struct address_space *node_mapping = sbi->node_inode->i_mapping;
678 int err = 0, cont = 1;
679 int level, offset[4], noffset[4];
680 unsigned int nofs = 0;
681 struct f2fs_node *rn;
682 struct dnode_of_data dn;
685 trace_f2fs_truncate_inode_blocks_enter(inode, from);
687 level = get_node_path(from, offset, noffset);
689 page = get_node_page(sbi, inode->i_ino);
691 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
692 return PTR_ERR(page);
695 set_new_dnode(&dn, inode, page, NULL, 0);
698 rn = page_address(page);
706 if (!offset[level - 1])
708 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
709 if (err < 0 && err != -ENOENT)
711 nofs += 1 + NIDS_PER_BLOCK;
714 nofs = 5 + 2 * NIDS_PER_BLOCK;
715 if (!offset[level - 1])
717 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
718 if (err < 0 && err != -ENOENT)
727 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
729 case NODE_DIR1_BLOCK:
730 case NODE_DIR2_BLOCK:
731 err = truncate_dnode(&dn);
734 case NODE_IND1_BLOCK:
735 case NODE_IND2_BLOCK:
736 err = truncate_nodes(&dn, nofs, offset[1], 2);
739 case NODE_DIND_BLOCK:
740 err = truncate_nodes(&dn, nofs, offset[1], 3);
747 if (err < 0 && err != -ENOENT)
749 if (offset[1] == 0 &&
750 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
752 if (page->mapping != node_mapping) {
753 f2fs_put_page(page, 1);
756 wait_on_page_writeback(page);
757 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
758 set_page_dirty(page);
766 f2fs_put_page(page, 0);
767 trace_f2fs_truncate_inode_blocks_exit(inode, err);
768 return err > 0 ? 0 : err;
772 * Caller should grab and release a mutex by calling mutex_lock_op() and
775 int remove_inode_page(struct inode *inode)
777 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
779 nid_t ino = inode->i_ino;
780 struct dnode_of_data dn;
782 page = get_node_page(sbi, ino);
784 return PTR_ERR(page);
786 if (F2FS_I(inode)->i_xattr_nid) {
787 nid_t nid = F2FS_I(inode)->i_xattr_nid;
788 struct page *npage = get_node_page(sbi, nid);
791 return PTR_ERR(npage);
793 F2FS_I(inode)->i_xattr_nid = 0;
794 set_new_dnode(&dn, inode, page, npage, nid);
795 dn.inode_page_locked = 1;
799 /* 0 is possible, after f2fs_new_inode() is failed */
800 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
801 set_new_dnode(&dn, inode, page, page, ino);
806 int new_inode_page(struct inode *inode, const struct qstr *name)
809 struct dnode_of_data dn;
811 /* allocate inode page for new inode */
812 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
813 page = new_node_page(&dn, 0);
814 init_dent_inode(name, page);
816 return PTR_ERR(page);
817 f2fs_put_page(page, 1);
821 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
823 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
824 struct address_space *mapping = sbi->node_inode->i_mapping;
825 struct node_info old_ni, new_ni;
829 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
830 return ERR_PTR(-EPERM);
832 page = grab_cache_page(mapping, dn->nid);
834 return ERR_PTR(-ENOMEM);
836 get_node_info(sbi, dn->nid, &old_ni);
838 SetPageUptodate(page);
839 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
841 /* Reinitialize old_ni with new node page */
842 BUG_ON(old_ni.blk_addr != NULL_ADDR);
844 new_ni.ino = dn->inode->i_ino;
846 if (!inc_valid_node_count(sbi, dn->inode, 1)) {
850 set_node_addr(sbi, &new_ni, NEW_ADDR);
851 set_cold_node(dn->inode, page);
853 dn->node_page = page;
855 set_page_dirty(page);
857 inc_valid_inode_count(sbi);
862 clear_node_page_dirty(page);
863 f2fs_put_page(page, 1);
868 * Caller should do after getting the following values.
869 * 0: f2fs_put_page(page, 0)
870 * LOCKED_PAGE: f2fs_put_page(page, 1)
873 static int read_node_page(struct page *page, int type)
875 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
878 get_node_info(sbi, page->index, &ni);
880 if (ni.blk_addr == NULL_ADDR) {
881 f2fs_put_page(page, 1);
885 if (PageUptodate(page))
888 return f2fs_readpage(sbi, page, ni.blk_addr, type);
892 * Readahead a node page
894 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
896 struct address_space *mapping = sbi->node_inode->i_mapping;
900 apage = find_get_page(mapping, nid);
901 if (apage && PageUptodate(apage)) {
902 f2fs_put_page(apage, 0);
905 f2fs_put_page(apage, 0);
907 apage = grab_cache_page(mapping, nid);
911 err = read_node_page(apage, READA);
913 f2fs_put_page(apage, 0);
914 else if (err == LOCKED_PAGE)
915 f2fs_put_page(apage, 1);
919 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
921 struct address_space *mapping = sbi->node_inode->i_mapping;
925 page = grab_cache_page(mapping, nid);
927 return ERR_PTR(-ENOMEM);
929 err = read_node_page(page, READ_SYNC);
932 else if (err == LOCKED_PAGE)
936 if (!PageUptodate(page)) {
937 f2fs_put_page(page, 1);
938 return ERR_PTR(-EIO);
940 if (page->mapping != mapping) {
941 f2fs_put_page(page, 1);
945 BUG_ON(nid != nid_of_node(page));
946 mark_page_accessed(page);
951 * Return a locked page for the desired node page.
952 * And, readahead MAX_RA_NODE number of node pages.
954 struct page *get_node_page_ra(struct page *parent, int start)
956 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
957 struct address_space *mapping = sbi->node_inode->i_mapping;
958 struct blk_plug plug;
963 /* First, try getting the desired direct node. */
964 nid = get_nid(parent, start, false);
966 return ERR_PTR(-ENOENT);
968 page = grab_cache_page(mapping, nid);
970 return ERR_PTR(-ENOMEM);
972 err = read_node_page(page, READ_SYNC);
975 else if (err == LOCKED_PAGE)
978 blk_start_plug(&plug);
980 /* Then, try readahead for siblings of the desired node */
981 end = start + MAX_RA_NODE;
982 end = min(end, NIDS_PER_BLOCK);
983 for (i = start + 1; i < end; i++) {
984 nid = get_nid(parent, i, false);
987 ra_node_page(sbi, nid);
990 blk_finish_plug(&plug);
993 if (page->mapping != mapping) {
994 f2fs_put_page(page, 1);
998 if (!PageUptodate(page)) {
999 f2fs_put_page(page, 1);
1000 return ERR_PTR(-EIO);
1002 mark_page_accessed(page);
1006 void sync_inode_page(struct dnode_of_data *dn)
1008 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1009 update_inode(dn->inode, dn->node_page);
1010 } else if (dn->inode_page) {
1011 if (!dn->inode_page_locked)
1012 lock_page(dn->inode_page);
1013 update_inode(dn->inode, dn->inode_page);
1014 if (!dn->inode_page_locked)
1015 unlock_page(dn->inode_page);
1017 update_inode_page(dn->inode);
1021 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1022 struct writeback_control *wbc)
1024 struct address_space *mapping = sbi->node_inode->i_mapping;
1026 struct pagevec pvec;
1027 int step = ino ? 2 : 0;
1028 int nwritten = 0, wrote = 0;
1030 pagevec_init(&pvec, 0);
1036 while (index <= end) {
1038 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1039 PAGECACHE_TAG_DIRTY,
1040 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1044 for (i = 0; i < nr_pages; i++) {
1045 struct page *page = pvec.pages[i];
1048 * flushing sequence with step:
1053 if (step == 0 && IS_DNODE(page))
1055 if (step == 1 && (!IS_DNODE(page) ||
1056 is_cold_node(page)))
1058 if (step == 2 && (!IS_DNODE(page) ||
1059 !is_cold_node(page)))
1064 * we should not skip writing node pages.
1066 if (ino && ino_of_node(page) == ino)
1068 else if (!trylock_page(page))
1071 if (unlikely(page->mapping != mapping)) {
1076 if (ino && ino_of_node(page) != ino)
1077 goto continue_unlock;
1079 if (!PageDirty(page)) {
1080 /* someone wrote it for us */
1081 goto continue_unlock;
1084 if (!clear_page_dirty_for_io(page))
1085 goto continue_unlock;
1087 /* called by fsync() */
1088 if (ino && IS_DNODE(page)) {
1089 int mark = !is_checkpointed_node(sbi, ino);
1090 set_fsync_mark(page, 1);
1092 set_dentry_mark(page, mark);
1095 set_fsync_mark(page, 0);
1096 set_dentry_mark(page, 0);
1098 mapping->a_ops->writepage(page, wbc);
1101 if (--wbc->nr_to_write == 0)
1104 pagevec_release(&pvec);
1107 if (wbc->nr_to_write == 0) {
1119 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1124 static int f2fs_write_node_page(struct page *page,
1125 struct writeback_control *wbc)
1127 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1130 struct node_info ni;
1132 wait_on_page_writeback(page);
1134 /* get old block addr of this node page */
1135 nid = nid_of_node(page);
1136 BUG_ON(page->index != nid);
1138 get_node_info(sbi, nid, &ni);
1140 /* This page is already truncated */
1141 if (ni.blk_addr == NULL_ADDR) {
1142 dec_page_count(sbi, F2FS_DIRTY_NODES);
1147 if (wbc->for_reclaim) {
1148 dec_page_count(sbi, F2FS_DIRTY_NODES);
1149 wbc->pages_skipped++;
1150 set_page_dirty(page);
1151 return AOP_WRITEPAGE_ACTIVATE;
1154 mutex_lock(&sbi->node_write);
1155 set_page_writeback(page);
1156 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1157 set_node_addr(sbi, &ni, new_addr);
1158 dec_page_count(sbi, F2FS_DIRTY_NODES);
1159 mutex_unlock(&sbi->node_write);
1165 * It is very important to gather dirty pages and write at once, so that we can
1166 * submit a big bio without interfering other data writes.
1167 * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1169 #define COLLECT_DIRTY_NODES 512
1170 static int f2fs_write_node_pages(struct address_space *mapping,
1171 struct writeback_control *wbc)
1173 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1174 long nr_to_write = wbc->nr_to_write;
1176 /* First check balancing cached NAT entries */
1177 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
1178 f2fs_sync_fs(sbi->sb, true);
1182 /* collect a number of dirty node pages and write together */
1183 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1186 /* if mounting is failed, skip writing node pages */
1187 wbc->nr_to_write = max_hw_blocks(sbi);
1188 sync_node_pages(sbi, 0, wbc);
1189 wbc->nr_to_write = nr_to_write - (max_hw_blocks(sbi) - wbc->nr_to_write);
1193 static int f2fs_set_node_page_dirty(struct page *page)
1195 struct address_space *mapping = page->mapping;
1196 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1198 SetPageUptodate(page);
1199 if (!PageDirty(page)) {
1200 __set_page_dirty_nobuffers(page);
1201 inc_page_count(sbi, F2FS_DIRTY_NODES);
1202 SetPagePrivate(page);
1208 static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
1210 struct inode *inode = page->mapping->host;
1211 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1212 if (PageDirty(page))
1213 dec_page_count(sbi, F2FS_DIRTY_NODES);
1214 ClearPagePrivate(page);
1217 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1219 ClearPagePrivate(page);
1224 * Structure of the f2fs node operations
1226 const struct address_space_operations f2fs_node_aops = {
1227 .writepage = f2fs_write_node_page,
1228 .writepages = f2fs_write_node_pages,
1229 .set_page_dirty = f2fs_set_node_page_dirty,
1230 .invalidatepage = f2fs_invalidate_node_page,
1231 .releasepage = f2fs_release_node_page,
1234 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1236 struct list_head *this;
1238 list_for_each(this, head) {
1239 i = list_entry(this, struct free_nid, list);
1246 static void __del_from_free_nid_list(struct free_nid *i)
1249 kmem_cache_free(free_nid_slab, i);
1252 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1255 struct nat_entry *ne;
1256 bool allocated = false;
1258 if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1261 /* 0 nid should not be used */
1268 /* do not add allocated nids */
1269 read_lock(&nm_i->nat_tree_lock);
1270 ne = __lookup_nat_cache(nm_i, nid);
1271 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1273 read_unlock(&nm_i->nat_tree_lock);
1277 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1285 spin_lock(&nm_i->free_nid_list_lock);
1286 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1287 spin_unlock(&nm_i->free_nid_list_lock);
1288 kmem_cache_free(free_nid_slab, i);
1291 list_add_tail(&i->list, &nm_i->free_nid_list);
1293 spin_unlock(&nm_i->free_nid_list_lock);
1297 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1300 spin_lock(&nm_i->free_nid_list_lock);
1301 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1302 if (i && i->state == NID_NEW) {
1303 __del_from_free_nid_list(i);
1306 spin_unlock(&nm_i->free_nid_list_lock);
1309 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1310 struct page *nat_page, nid_t start_nid)
1312 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1316 i = start_nid % NAT_ENTRY_PER_BLOCK;
1318 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1320 if (start_nid >= nm_i->max_nid)
1323 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1324 BUG_ON(blk_addr == NEW_ADDR);
1325 if (blk_addr == NULL_ADDR) {
1326 if (add_free_nid(nm_i, start_nid, true) < 0)
1332 static void build_free_nids(struct f2fs_sb_info *sbi)
1334 struct f2fs_nm_info *nm_i = NM_I(sbi);
1335 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1336 struct f2fs_summary_block *sum = curseg->sum_blk;
1338 nid_t nid = nm_i->next_scan_nid;
1340 /* Enough entries */
1341 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1344 /* readahead nat pages to be scanned */
1345 ra_nat_pages(sbi, nid);
1348 struct page *page = get_current_nat_page(sbi, nid);
1350 scan_nat_page(nm_i, page, nid);
1351 f2fs_put_page(page, 1);
1353 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1354 if (nid >= nm_i->max_nid)
1357 if (i++ == FREE_NID_PAGES)
1361 /* go to the next free nat pages to find free nids abundantly */
1362 nm_i->next_scan_nid = nid;
1364 /* find free nids from current sum_pages */
1365 mutex_lock(&curseg->curseg_mutex);
1366 for (i = 0; i < nats_in_cursum(sum); i++) {
1367 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1368 nid = le32_to_cpu(nid_in_journal(sum, i));
1369 if (addr == NULL_ADDR)
1370 add_free_nid(nm_i, nid, true);
1372 remove_free_nid(nm_i, nid);
1374 mutex_unlock(&curseg->curseg_mutex);
1378 * If this function returns success, caller can obtain a new nid
1379 * from second parameter of this function.
1380 * The returned nid could be used ino as well as nid when inode is created.
1382 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1384 struct f2fs_nm_info *nm_i = NM_I(sbi);
1385 struct free_nid *i = NULL;
1386 struct list_head *this;
1388 if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
1391 spin_lock(&nm_i->free_nid_list_lock);
1393 /* We should not use stale free nids created by build_free_nids */
1394 if (nm_i->fcnt && !sbi->on_build_free_nids) {
1395 BUG_ON(list_empty(&nm_i->free_nid_list));
1396 list_for_each(this, &nm_i->free_nid_list) {
1397 i = list_entry(this, struct free_nid, list);
1398 if (i->state == NID_NEW)
1402 BUG_ON(i->state != NID_NEW);
1404 i->state = NID_ALLOC;
1406 spin_unlock(&nm_i->free_nid_list_lock);
1409 spin_unlock(&nm_i->free_nid_list_lock);
1411 /* Let's scan nat pages and its caches to get free nids */
1412 mutex_lock(&nm_i->build_lock);
1413 sbi->on_build_free_nids = 1;
1414 build_free_nids(sbi);
1415 sbi->on_build_free_nids = 0;
1416 mutex_unlock(&nm_i->build_lock);
1421 * alloc_nid() should be called prior to this function.
1423 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1425 struct f2fs_nm_info *nm_i = NM_I(sbi);
1428 spin_lock(&nm_i->free_nid_list_lock);
1429 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1430 BUG_ON(!i || i->state != NID_ALLOC);
1431 __del_from_free_nid_list(i);
1432 spin_unlock(&nm_i->free_nid_list_lock);
1436 * alloc_nid() should be called prior to this function.
1438 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1440 struct f2fs_nm_info *nm_i = NM_I(sbi);
1443 spin_lock(&nm_i->free_nid_list_lock);
1444 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1445 BUG_ON(!i || i->state != NID_ALLOC);
1446 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1447 __del_from_free_nid_list(i);
1452 spin_unlock(&nm_i->free_nid_list_lock);
1455 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1456 struct f2fs_summary *sum, struct node_info *ni,
1457 block_t new_blkaddr)
1459 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1460 set_node_addr(sbi, ni, new_blkaddr);
1461 clear_node_page_dirty(page);
1464 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1466 struct address_space *mapping = sbi->node_inode->i_mapping;
1467 struct f2fs_node *src, *dst;
1468 nid_t ino = ino_of_node(page);
1469 struct node_info old_ni, new_ni;
1472 ipage = grab_cache_page(mapping, ino);
1476 /* Should not use this inode from free nid list */
1477 remove_free_nid(NM_I(sbi), ino);
1479 get_node_info(sbi, ino, &old_ni);
1480 SetPageUptodate(ipage);
1481 fill_node_footer(ipage, ino, ino, 0, true);
1483 src = (struct f2fs_node *)page_address(page);
1484 dst = (struct f2fs_node *)page_address(ipage);
1486 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1488 dst->i.i_blocks = cpu_to_le64(1);
1489 dst->i.i_links = cpu_to_le32(1);
1490 dst->i.i_xattr_nid = 0;
1495 set_node_addr(sbi, &new_ni, NEW_ADDR);
1496 inc_valid_inode_count(sbi);
1498 f2fs_put_page(ipage, 1);
1502 int restore_node_summary(struct f2fs_sb_info *sbi,
1503 unsigned int segno, struct f2fs_summary_block *sum)
1505 struct f2fs_node *rn;
1506 struct f2fs_summary *sum_entry;
1511 /* alloc temporal page for read node */
1512 page = alloc_page(GFP_NOFS | __GFP_ZERO);
1514 return PTR_ERR(page);
1517 /* scan the node segment */
1518 last_offset = sbi->blocks_per_seg;
1519 addr = START_BLOCK(sbi, segno);
1520 sum_entry = &sum->entries[0];
1522 for (i = 0; i < last_offset; i++, sum_entry++) {
1524 * In order to read next node page,
1525 * we must clear PageUptodate flag.
1527 ClearPageUptodate(page);
1529 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1533 rn = (struct f2fs_node *)page_address(page);
1534 sum_entry->nid = rn->footer.nid;
1535 sum_entry->version = 0;
1536 sum_entry->ofs_in_node = 0;
1541 __free_pages(page, 0);
1545 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1547 struct f2fs_nm_info *nm_i = NM_I(sbi);
1548 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1549 struct f2fs_summary_block *sum = curseg->sum_blk;
1552 mutex_lock(&curseg->curseg_mutex);
1554 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1555 mutex_unlock(&curseg->curseg_mutex);
1559 for (i = 0; i < nats_in_cursum(sum); i++) {
1560 struct nat_entry *ne;
1561 struct f2fs_nat_entry raw_ne;
1562 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1564 raw_ne = nat_in_journal(sum, i);
1566 write_lock(&nm_i->nat_tree_lock);
1567 ne = __lookup_nat_cache(nm_i, nid);
1569 __set_nat_cache_dirty(nm_i, ne);
1570 write_unlock(&nm_i->nat_tree_lock);
1573 ne = grab_nat_entry(nm_i, nid);
1575 write_unlock(&nm_i->nat_tree_lock);
1578 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1579 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1580 nat_set_version(ne, raw_ne.version);
1581 __set_nat_cache_dirty(nm_i, ne);
1582 write_unlock(&nm_i->nat_tree_lock);
1584 update_nats_in_cursum(sum, -i);
1585 mutex_unlock(&curseg->curseg_mutex);
1590 * This function is called during the checkpointing process.
1592 void flush_nat_entries(struct f2fs_sb_info *sbi)
1594 struct f2fs_nm_info *nm_i = NM_I(sbi);
1595 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1596 struct f2fs_summary_block *sum = curseg->sum_blk;
1597 struct list_head *cur, *n;
1598 struct page *page = NULL;
1599 struct f2fs_nat_block *nat_blk = NULL;
1600 nid_t start_nid = 0, end_nid = 0;
1603 flushed = flush_nats_in_journal(sbi);
1606 mutex_lock(&curseg->curseg_mutex);
1608 /* 1) flush dirty nat caches */
1609 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1610 struct nat_entry *ne;
1612 struct f2fs_nat_entry raw_ne;
1614 block_t new_blkaddr;
1616 ne = list_entry(cur, struct nat_entry, list);
1617 nid = nat_get_nid(ne);
1619 if (nat_get_blkaddr(ne) == NEW_ADDR)
1624 /* if there is room for nat enries in curseg->sumpage */
1625 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1627 raw_ne = nat_in_journal(sum, offset);
1631 if (!page || (start_nid > nid || nid > end_nid)) {
1633 f2fs_put_page(page, 1);
1636 start_nid = START_NID(nid);
1637 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1640 * get nat block with dirty flag, increased reference
1641 * count, mapped and lock
1643 page = get_next_nat_page(sbi, start_nid);
1644 nat_blk = page_address(page);
1648 raw_ne = nat_blk->entries[nid - start_nid];
1650 new_blkaddr = nat_get_blkaddr(ne);
1652 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1653 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1654 raw_ne.version = nat_get_version(ne);
1657 nat_blk->entries[nid - start_nid] = raw_ne;
1659 nat_in_journal(sum, offset) = raw_ne;
1660 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1663 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1664 add_free_nid(NM_I(sbi), nid, false) <= 0) {
1665 write_lock(&nm_i->nat_tree_lock);
1666 __del_from_nat_cache(nm_i, ne);
1667 write_unlock(&nm_i->nat_tree_lock);
1669 write_lock(&nm_i->nat_tree_lock);
1670 __clear_nat_cache_dirty(nm_i, ne);
1671 ne->checkpointed = true;
1672 write_unlock(&nm_i->nat_tree_lock);
1676 mutex_unlock(&curseg->curseg_mutex);
1677 f2fs_put_page(page, 1);
1679 /* 2) shrink nat caches if necessary */
1680 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1683 static int init_node_manager(struct f2fs_sb_info *sbi)
1685 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1686 struct f2fs_nm_info *nm_i = NM_I(sbi);
1687 unsigned char *version_bitmap;
1688 unsigned int nat_segs, nat_blocks;
1690 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1692 /* segment_count_nat includes pair segment so divide to 2. */
1693 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1694 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1695 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1699 INIT_LIST_HEAD(&nm_i->free_nid_list);
1700 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1701 INIT_LIST_HEAD(&nm_i->nat_entries);
1702 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1704 mutex_init(&nm_i->build_lock);
1705 spin_lock_init(&nm_i->free_nid_list_lock);
1706 rwlock_init(&nm_i->nat_tree_lock);
1708 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1709 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1710 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1711 if (!version_bitmap)
1714 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1716 if (!nm_i->nat_bitmap)
1721 int build_node_manager(struct f2fs_sb_info *sbi)
1725 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1729 err = init_node_manager(sbi);
1733 build_free_nids(sbi);
1737 void destroy_node_manager(struct f2fs_sb_info *sbi)
1739 struct f2fs_nm_info *nm_i = NM_I(sbi);
1740 struct free_nid *i, *next_i;
1741 struct nat_entry *natvec[NATVEC_SIZE];
1748 /* destroy free nid list */
1749 spin_lock(&nm_i->free_nid_list_lock);
1750 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1751 BUG_ON(i->state == NID_ALLOC);
1752 __del_from_free_nid_list(i);
1756 spin_unlock(&nm_i->free_nid_list_lock);
1758 /* destroy nat cache */
1759 write_lock(&nm_i->nat_tree_lock);
1760 while ((found = __gang_lookup_nat_cache(nm_i,
1761 nid, NATVEC_SIZE, natvec))) {
1763 for (idx = 0; idx < found; idx++) {
1764 struct nat_entry *e = natvec[idx];
1765 nid = nat_get_nid(e) + 1;
1766 __del_from_nat_cache(nm_i, e);
1769 BUG_ON(nm_i->nat_cnt);
1770 write_unlock(&nm_i->nat_tree_lock);
1772 kfree(nm_i->nat_bitmap);
1773 sbi->nm_info = NULL;
1777 int __init create_node_manager_caches(void)
1779 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1780 sizeof(struct nat_entry), NULL);
1781 if (!nat_entry_slab)
1784 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1785 sizeof(struct free_nid), NULL);
1786 if (!free_nid_slab) {
1787 kmem_cache_destroy(nat_entry_slab);
1793 void destroy_node_manager_caches(void)
1795 kmem_cache_destroy(free_nid_slab);
1796 kmem_cache_destroy(nat_entry_slab);