f2fs: unlock_page when node page is redirtied out
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28 static struct kmem_cache *nat_entry_set_slab;
29
30 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
31 {
32         struct f2fs_nm_info *nm_i = NM_I(sbi);
33         struct sysinfo val;
34         unsigned long mem_size = 0;
35         bool res = false;
36
37         si_meminfo(&val);
38         /* give 25%, 25%, 50% memory for each components respectively */
39         if (type == FREE_NIDS) {
40                 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 12;
41                 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
42         } else if (type == NAT_ENTRIES) {
43                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 12;
44                 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
45         } else if (type == DIRTY_DENTS) {
46                 if (sbi->sb->s_bdi->dirty_exceeded)
47                         return false;
48                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
49                 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 1);
50         }
51         return res;
52 }
53
54 static void clear_node_page_dirty(struct page *page)
55 {
56         struct address_space *mapping = page->mapping;
57         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
58         unsigned int long flags;
59
60         if (PageDirty(page)) {
61                 spin_lock_irqsave(&mapping->tree_lock, flags);
62                 radix_tree_tag_clear(&mapping->page_tree,
63                                 page_index(page),
64                                 PAGECACHE_TAG_DIRTY);
65                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
66
67                 clear_page_dirty_for_io(page);
68                 dec_page_count(sbi, F2FS_DIRTY_NODES);
69         }
70         ClearPageUptodate(page);
71 }
72
73 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
74 {
75         pgoff_t index = current_nat_addr(sbi, nid);
76         return get_meta_page(sbi, index);
77 }
78
79 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
80 {
81         struct page *src_page;
82         struct page *dst_page;
83         pgoff_t src_off;
84         pgoff_t dst_off;
85         void *src_addr;
86         void *dst_addr;
87         struct f2fs_nm_info *nm_i = NM_I(sbi);
88
89         src_off = current_nat_addr(sbi, nid);
90         dst_off = next_nat_addr(sbi, src_off);
91
92         /* get current nat block page with lock */
93         src_page = get_meta_page(sbi, src_off);
94         dst_page = grab_meta_page(sbi, dst_off);
95         f2fs_bug_on(PageDirty(src_page));
96
97         src_addr = page_address(src_page);
98         dst_addr = page_address(dst_page);
99         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
100         set_page_dirty(dst_page);
101         f2fs_put_page(src_page, 1);
102
103         set_to_next_nat(nm_i, nid);
104
105         return dst_page;
106 }
107
108 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
109 {
110         return radix_tree_lookup(&nm_i->nat_root, n);
111 }
112
113 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
114                 nid_t start, unsigned int nr, struct nat_entry **ep)
115 {
116         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
117 }
118
119 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
120 {
121         list_del(&e->list);
122         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
123         nm_i->nat_cnt--;
124         kmem_cache_free(nat_entry_slab, e);
125 }
126
127 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
128 {
129         struct f2fs_nm_info *nm_i = NM_I(sbi);
130         struct nat_entry *e;
131         int is_cp = 1;
132
133         read_lock(&nm_i->nat_tree_lock);
134         e = __lookup_nat_cache(nm_i, nid);
135         if (e && !e->checkpointed)
136                 is_cp = 0;
137         read_unlock(&nm_i->nat_tree_lock);
138         return is_cp;
139 }
140
141 bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
142 {
143         struct f2fs_nm_info *nm_i = NM_I(sbi);
144         struct nat_entry *e;
145         bool fsync_done = false;
146
147         read_lock(&nm_i->nat_tree_lock);
148         e = __lookup_nat_cache(nm_i, nid);
149         if (e)
150                 fsync_done = e->fsync_done;
151         read_unlock(&nm_i->nat_tree_lock);
152         return fsync_done;
153 }
154
155 void fsync_mark_clear(struct f2fs_sb_info *sbi, nid_t nid)
156 {
157         struct f2fs_nm_info *nm_i = NM_I(sbi);
158         struct nat_entry *e;
159
160         write_lock(&nm_i->nat_tree_lock);
161         e = __lookup_nat_cache(nm_i, nid);
162         if (e)
163                 e->fsync_done = false;
164         write_unlock(&nm_i->nat_tree_lock);
165 }
166
167 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
168 {
169         struct nat_entry *new;
170
171         new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
172         if (!new)
173                 return NULL;
174         if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
175                 kmem_cache_free(nat_entry_slab, new);
176                 return NULL;
177         }
178         memset(new, 0, sizeof(struct nat_entry));
179         nat_set_nid(new, nid);
180         new->checkpointed = true;
181         list_add_tail(&new->list, &nm_i->nat_entries);
182         nm_i->nat_cnt++;
183         return new;
184 }
185
186 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
187                                                 struct f2fs_nat_entry *ne)
188 {
189         struct nat_entry *e;
190 retry:
191         write_lock(&nm_i->nat_tree_lock);
192         e = __lookup_nat_cache(nm_i, nid);
193         if (!e) {
194                 e = grab_nat_entry(nm_i, nid);
195                 if (!e) {
196                         write_unlock(&nm_i->nat_tree_lock);
197                         goto retry;
198                 }
199                 node_info_from_raw_nat(&e->ni, ne);
200         }
201         write_unlock(&nm_i->nat_tree_lock);
202 }
203
204 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
205                         block_t new_blkaddr, bool fsync_done)
206 {
207         struct f2fs_nm_info *nm_i = NM_I(sbi);
208         struct nat_entry *e;
209 retry:
210         write_lock(&nm_i->nat_tree_lock);
211         e = __lookup_nat_cache(nm_i, ni->nid);
212         if (!e) {
213                 e = grab_nat_entry(nm_i, ni->nid);
214                 if (!e) {
215                         write_unlock(&nm_i->nat_tree_lock);
216                         goto retry;
217                 }
218                 e->ni = *ni;
219                 f2fs_bug_on(ni->blk_addr == NEW_ADDR);
220         } else if (new_blkaddr == NEW_ADDR) {
221                 /*
222                  * when nid is reallocated,
223                  * previous nat entry can be remained in nat cache.
224                  * So, reinitialize it with new information.
225                  */
226                 e->ni = *ni;
227                 f2fs_bug_on(ni->blk_addr != NULL_ADDR);
228         }
229
230         /* sanity check */
231         f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
232         f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
233                         new_blkaddr == NULL_ADDR);
234         f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
235                         new_blkaddr == NEW_ADDR);
236         f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
237                         nat_get_blkaddr(e) != NULL_ADDR &&
238                         new_blkaddr == NEW_ADDR);
239
240         /* increment version no as node is removed */
241         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
242                 unsigned char version = nat_get_version(e);
243                 nat_set_version(e, inc_node_version(version));
244         }
245
246         /* change address */
247         nat_set_blkaddr(e, new_blkaddr);
248         __set_nat_cache_dirty(nm_i, e);
249
250         /* update fsync_mark if its inode nat entry is still alive */
251         e = __lookup_nat_cache(nm_i, ni->ino);
252         if (e)
253                 e->fsync_done = fsync_done;
254         write_unlock(&nm_i->nat_tree_lock);
255 }
256
257 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
258 {
259         struct f2fs_nm_info *nm_i = NM_I(sbi);
260
261         if (available_free_memory(sbi, NAT_ENTRIES))
262                 return 0;
263
264         write_lock(&nm_i->nat_tree_lock);
265         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
266                 struct nat_entry *ne;
267                 ne = list_first_entry(&nm_i->nat_entries,
268                                         struct nat_entry, list);
269                 __del_from_nat_cache(nm_i, ne);
270                 nr_shrink--;
271         }
272         write_unlock(&nm_i->nat_tree_lock);
273         return nr_shrink;
274 }
275
276 /*
277  * This function always returns success
278  */
279 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
280 {
281         struct f2fs_nm_info *nm_i = NM_I(sbi);
282         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
283         struct f2fs_summary_block *sum = curseg->sum_blk;
284         nid_t start_nid = START_NID(nid);
285         struct f2fs_nat_block *nat_blk;
286         struct page *page = NULL;
287         struct f2fs_nat_entry ne;
288         struct nat_entry *e;
289         int i;
290
291         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
292         ni->nid = nid;
293
294         /* Check nat cache */
295         read_lock(&nm_i->nat_tree_lock);
296         e = __lookup_nat_cache(nm_i, nid);
297         if (e) {
298                 ni->ino = nat_get_ino(e);
299                 ni->blk_addr = nat_get_blkaddr(e);
300                 ni->version = nat_get_version(e);
301         }
302         read_unlock(&nm_i->nat_tree_lock);
303         if (e)
304                 return;
305
306         /* Check current segment summary */
307         mutex_lock(&curseg->curseg_mutex);
308         i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
309         if (i >= 0) {
310                 ne = nat_in_journal(sum, i);
311                 node_info_from_raw_nat(ni, &ne);
312         }
313         mutex_unlock(&curseg->curseg_mutex);
314         if (i >= 0)
315                 goto cache;
316
317         /* Fill node_info from nat page */
318         page = get_current_nat_page(sbi, start_nid);
319         nat_blk = (struct f2fs_nat_block *)page_address(page);
320         ne = nat_blk->entries[nid - start_nid];
321         node_info_from_raw_nat(ni, &ne);
322         f2fs_put_page(page, 1);
323 cache:
324         /* cache nat entry */
325         cache_nat_entry(NM_I(sbi), nid, &ne);
326 }
327
328 /*
329  * The maximum depth is four.
330  * Offset[0] will have raw inode offset.
331  */
332 static int get_node_path(struct f2fs_inode_info *fi, long block,
333                                 int offset[4], unsigned int noffset[4])
334 {
335         const long direct_index = ADDRS_PER_INODE(fi);
336         const long direct_blks = ADDRS_PER_BLOCK;
337         const long dptrs_per_blk = NIDS_PER_BLOCK;
338         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
339         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
340         int n = 0;
341         int level = 0;
342
343         noffset[0] = 0;
344
345         if (block < direct_index) {
346                 offset[n] = block;
347                 goto got;
348         }
349         block -= direct_index;
350         if (block < direct_blks) {
351                 offset[n++] = NODE_DIR1_BLOCK;
352                 noffset[n] = 1;
353                 offset[n] = block;
354                 level = 1;
355                 goto got;
356         }
357         block -= direct_blks;
358         if (block < direct_blks) {
359                 offset[n++] = NODE_DIR2_BLOCK;
360                 noffset[n] = 2;
361                 offset[n] = block;
362                 level = 1;
363                 goto got;
364         }
365         block -= direct_blks;
366         if (block < indirect_blks) {
367                 offset[n++] = NODE_IND1_BLOCK;
368                 noffset[n] = 3;
369                 offset[n++] = block / direct_blks;
370                 noffset[n] = 4 + offset[n - 1];
371                 offset[n] = block % direct_blks;
372                 level = 2;
373                 goto got;
374         }
375         block -= indirect_blks;
376         if (block < indirect_blks) {
377                 offset[n++] = NODE_IND2_BLOCK;
378                 noffset[n] = 4 + dptrs_per_blk;
379                 offset[n++] = block / direct_blks;
380                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
381                 offset[n] = block % direct_blks;
382                 level = 2;
383                 goto got;
384         }
385         block -= indirect_blks;
386         if (block < dindirect_blks) {
387                 offset[n++] = NODE_DIND_BLOCK;
388                 noffset[n] = 5 + (dptrs_per_blk * 2);
389                 offset[n++] = block / indirect_blks;
390                 noffset[n] = 6 + (dptrs_per_blk * 2) +
391                               offset[n - 1] * (dptrs_per_blk + 1);
392                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
393                 noffset[n] = 7 + (dptrs_per_blk * 2) +
394                               offset[n - 2] * (dptrs_per_blk + 1) +
395                               offset[n - 1];
396                 offset[n] = block % direct_blks;
397                 level = 3;
398                 goto got;
399         } else {
400                 BUG();
401         }
402 got:
403         return level;
404 }
405
406 /*
407  * Caller should call f2fs_put_dnode(dn).
408  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
409  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
410  * In the case of RDONLY_NODE, we don't need to care about mutex.
411  */
412 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
413 {
414         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
415         struct page *npage[4];
416         struct page *parent;
417         int offset[4];
418         unsigned int noffset[4];
419         nid_t nids[4];
420         int level, i;
421         int err = 0;
422
423         level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
424
425         nids[0] = dn->inode->i_ino;
426         npage[0] = dn->inode_page;
427
428         if (!npage[0]) {
429                 npage[0] = get_node_page(sbi, nids[0]);
430                 if (IS_ERR(npage[0]))
431                         return PTR_ERR(npage[0]);
432         }
433         parent = npage[0];
434         if (level != 0)
435                 nids[1] = get_nid(parent, offset[0], true);
436         dn->inode_page = npage[0];
437         dn->inode_page_locked = true;
438
439         /* get indirect or direct nodes */
440         for (i = 1; i <= level; i++) {
441                 bool done = false;
442
443                 if (!nids[i] && mode == ALLOC_NODE) {
444                         /* alloc new node */
445                         if (!alloc_nid(sbi, &(nids[i]))) {
446                                 err = -ENOSPC;
447                                 goto release_pages;
448                         }
449
450                         dn->nid = nids[i];
451                         npage[i] = new_node_page(dn, noffset[i], NULL);
452                         if (IS_ERR(npage[i])) {
453                                 alloc_nid_failed(sbi, nids[i]);
454                                 err = PTR_ERR(npage[i]);
455                                 goto release_pages;
456                         }
457
458                         set_nid(parent, offset[i - 1], nids[i], i == 1);
459                         alloc_nid_done(sbi, nids[i]);
460                         done = true;
461                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
462                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
463                         if (IS_ERR(npage[i])) {
464                                 err = PTR_ERR(npage[i]);
465                                 goto release_pages;
466                         }
467                         done = true;
468                 }
469                 if (i == 1) {
470                         dn->inode_page_locked = false;
471                         unlock_page(parent);
472                 } else {
473                         f2fs_put_page(parent, 1);
474                 }
475
476                 if (!done) {
477                         npage[i] = get_node_page(sbi, nids[i]);
478                         if (IS_ERR(npage[i])) {
479                                 err = PTR_ERR(npage[i]);
480                                 f2fs_put_page(npage[0], 0);
481                                 goto release_out;
482                         }
483                 }
484                 if (i < level) {
485                         parent = npage[i];
486                         nids[i + 1] = get_nid(parent, offset[i], false);
487                 }
488         }
489         dn->nid = nids[level];
490         dn->ofs_in_node = offset[level];
491         dn->node_page = npage[level];
492         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
493         return 0;
494
495 release_pages:
496         f2fs_put_page(parent, 1);
497         if (i > 1)
498                 f2fs_put_page(npage[0], 0);
499 release_out:
500         dn->inode_page = NULL;
501         dn->node_page = NULL;
502         return err;
503 }
504
505 static void truncate_node(struct dnode_of_data *dn)
506 {
507         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
508         struct node_info ni;
509
510         get_node_info(sbi, dn->nid, &ni);
511         if (dn->inode->i_blocks == 0) {
512                 f2fs_bug_on(ni.blk_addr != NULL_ADDR);
513                 goto invalidate;
514         }
515         f2fs_bug_on(ni.blk_addr == NULL_ADDR);
516
517         /* Deallocate node address */
518         invalidate_blocks(sbi, ni.blk_addr);
519         dec_valid_node_count(sbi, dn->inode);
520         set_node_addr(sbi, &ni, NULL_ADDR, false);
521
522         if (dn->nid == dn->inode->i_ino) {
523                 remove_orphan_inode(sbi, dn->nid);
524                 dec_valid_inode_count(sbi);
525         } else {
526                 sync_inode_page(dn);
527         }
528 invalidate:
529         clear_node_page_dirty(dn->node_page);
530         F2FS_SET_SB_DIRT(sbi);
531
532         f2fs_put_page(dn->node_page, 1);
533
534         invalidate_mapping_pages(NODE_MAPPING(sbi),
535                         dn->node_page->index, dn->node_page->index);
536
537         dn->node_page = NULL;
538         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
539 }
540
541 static int truncate_dnode(struct dnode_of_data *dn)
542 {
543         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
544         struct page *page;
545
546         if (dn->nid == 0)
547                 return 1;
548
549         /* get direct node */
550         page = get_node_page(sbi, dn->nid);
551         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
552                 return 1;
553         else if (IS_ERR(page))
554                 return PTR_ERR(page);
555
556         /* Make dnode_of_data for parameter */
557         dn->node_page = page;
558         dn->ofs_in_node = 0;
559         truncate_data_blocks(dn);
560         truncate_node(dn);
561         return 1;
562 }
563
564 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
565                                                 int ofs, int depth)
566 {
567         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
568         struct dnode_of_data rdn = *dn;
569         struct page *page;
570         struct f2fs_node *rn;
571         nid_t child_nid;
572         unsigned int child_nofs;
573         int freed = 0;
574         int i, ret;
575
576         if (dn->nid == 0)
577                 return NIDS_PER_BLOCK + 1;
578
579         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
580
581         page = get_node_page(sbi, dn->nid);
582         if (IS_ERR(page)) {
583                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
584                 return PTR_ERR(page);
585         }
586
587         rn = F2FS_NODE(page);
588         if (depth < 3) {
589                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
590                         child_nid = le32_to_cpu(rn->in.nid[i]);
591                         if (child_nid == 0)
592                                 continue;
593                         rdn.nid = child_nid;
594                         ret = truncate_dnode(&rdn);
595                         if (ret < 0)
596                                 goto out_err;
597                         set_nid(page, i, 0, false);
598                 }
599         } else {
600                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
601                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
602                         child_nid = le32_to_cpu(rn->in.nid[i]);
603                         if (child_nid == 0) {
604                                 child_nofs += NIDS_PER_BLOCK + 1;
605                                 continue;
606                         }
607                         rdn.nid = child_nid;
608                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
609                         if (ret == (NIDS_PER_BLOCK + 1)) {
610                                 set_nid(page, i, 0, false);
611                                 child_nofs += ret;
612                         } else if (ret < 0 && ret != -ENOENT) {
613                                 goto out_err;
614                         }
615                 }
616                 freed = child_nofs;
617         }
618
619         if (!ofs) {
620                 /* remove current indirect node */
621                 dn->node_page = page;
622                 truncate_node(dn);
623                 freed++;
624         } else {
625                 f2fs_put_page(page, 1);
626         }
627         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
628         return freed;
629
630 out_err:
631         f2fs_put_page(page, 1);
632         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
633         return ret;
634 }
635
636 static int truncate_partial_nodes(struct dnode_of_data *dn,
637                         struct f2fs_inode *ri, int *offset, int depth)
638 {
639         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
640         struct page *pages[2];
641         nid_t nid[3];
642         nid_t child_nid;
643         int err = 0;
644         int i;
645         int idx = depth - 2;
646
647         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
648         if (!nid[0])
649                 return 0;
650
651         /* get indirect nodes in the path */
652         for (i = 0; i < idx + 1; i++) {
653                 /* reference count'll be increased */
654                 pages[i] = get_node_page(sbi, nid[i]);
655                 if (IS_ERR(pages[i])) {
656                         err = PTR_ERR(pages[i]);
657                         idx = i - 1;
658                         goto fail;
659                 }
660                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
661         }
662
663         /* free direct nodes linked to a partial indirect node */
664         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
665                 child_nid = get_nid(pages[idx], i, false);
666                 if (!child_nid)
667                         continue;
668                 dn->nid = child_nid;
669                 err = truncate_dnode(dn);
670                 if (err < 0)
671                         goto fail;
672                 set_nid(pages[idx], i, 0, false);
673         }
674
675         if (offset[idx + 1] == 0) {
676                 dn->node_page = pages[idx];
677                 dn->nid = nid[idx];
678                 truncate_node(dn);
679         } else {
680                 f2fs_put_page(pages[idx], 1);
681         }
682         offset[idx]++;
683         offset[idx + 1] = 0;
684         idx--;
685 fail:
686         for (i = idx; i >= 0; i--)
687                 f2fs_put_page(pages[i], 1);
688
689         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
690
691         return err;
692 }
693
694 /*
695  * All the block addresses of data and nodes should be nullified.
696  */
697 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
698 {
699         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
700         int err = 0, cont = 1;
701         int level, offset[4], noffset[4];
702         unsigned int nofs = 0;
703         struct f2fs_inode *ri;
704         struct dnode_of_data dn;
705         struct page *page;
706
707         trace_f2fs_truncate_inode_blocks_enter(inode, from);
708
709         level = get_node_path(F2FS_I(inode), from, offset, noffset);
710 restart:
711         page = get_node_page(sbi, inode->i_ino);
712         if (IS_ERR(page)) {
713                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
714                 return PTR_ERR(page);
715         }
716
717         set_new_dnode(&dn, inode, page, NULL, 0);
718         unlock_page(page);
719
720         ri = F2FS_INODE(page);
721         switch (level) {
722         case 0:
723         case 1:
724                 nofs = noffset[1];
725                 break;
726         case 2:
727                 nofs = noffset[1];
728                 if (!offset[level - 1])
729                         goto skip_partial;
730                 err = truncate_partial_nodes(&dn, ri, offset, level);
731                 if (err < 0 && err != -ENOENT)
732                         goto fail;
733                 nofs += 1 + NIDS_PER_BLOCK;
734                 break;
735         case 3:
736                 nofs = 5 + 2 * NIDS_PER_BLOCK;
737                 if (!offset[level - 1])
738                         goto skip_partial;
739                 err = truncate_partial_nodes(&dn, ri, offset, level);
740                 if (err < 0 && err != -ENOENT)
741                         goto fail;
742                 break;
743         default:
744                 BUG();
745         }
746
747 skip_partial:
748         while (cont) {
749                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
750                 switch (offset[0]) {
751                 case NODE_DIR1_BLOCK:
752                 case NODE_DIR2_BLOCK:
753                         err = truncate_dnode(&dn);
754                         break;
755
756                 case NODE_IND1_BLOCK:
757                 case NODE_IND2_BLOCK:
758                         err = truncate_nodes(&dn, nofs, offset[1], 2);
759                         break;
760
761                 case NODE_DIND_BLOCK:
762                         err = truncate_nodes(&dn, nofs, offset[1], 3);
763                         cont = 0;
764                         break;
765
766                 default:
767                         BUG();
768                 }
769                 if (err < 0 && err != -ENOENT)
770                         goto fail;
771                 if (offset[1] == 0 &&
772                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
773                         lock_page(page);
774                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
775                                 f2fs_put_page(page, 1);
776                                 goto restart;
777                         }
778                         f2fs_wait_on_page_writeback(page, NODE);
779                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
780                         set_page_dirty(page);
781                         unlock_page(page);
782                 }
783                 offset[1] = 0;
784                 offset[0]++;
785                 nofs += err;
786         }
787 fail:
788         f2fs_put_page(page, 0);
789         trace_f2fs_truncate_inode_blocks_exit(inode, err);
790         return err > 0 ? 0 : err;
791 }
792
793 int truncate_xattr_node(struct inode *inode, struct page *page)
794 {
795         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
796         nid_t nid = F2FS_I(inode)->i_xattr_nid;
797         struct dnode_of_data dn;
798         struct page *npage;
799
800         if (!nid)
801                 return 0;
802
803         npage = get_node_page(sbi, nid);
804         if (IS_ERR(npage))
805                 return PTR_ERR(npage);
806
807         F2FS_I(inode)->i_xattr_nid = 0;
808
809         /* need to do checkpoint during fsync */
810         F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
811
812         set_new_dnode(&dn, inode, page, npage, nid);
813
814         if (page)
815                 dn.inode_page_locked = true;
816         truncate_node(&dn);
817         return 0;
818 }
819
820 /*
821  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
822  * f2fs_unlock_op().
823  */
824 void remove_inode_page(struct inode *inode)
825 {
826         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
827         struct page *page;
828         nid_t ino = inode->i_ino;
829         struct dnode_of_data dn;
830
831         page = get_node_page(sbi, ino);
832         if (IS_ERR(page))
833                 return;
834
835         if (truncate_xattr_node(inode, page)) {
836                 f2fs_put_page(page, 1);
837                 return;
838         }
839         /* 0 is possible, after f2fs_new_inode() has failed */
840         f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
841         set_new_dnode(&dn, inode, page, page, ino);
842         truncate_node(&dn);
843 }
844
845 struct page *new_inode_page(struct inode *inode)
846 {
847         struct dnode_of_data dn;
848
849         /* allocate inode page for new inode */
850         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
851
852         /* caller should f2fs_put_page(page, 1); */
853         return new_node_page(&dn, 0, NULL);
854 }
855
856 struct page *new_node_page(struct dnode_of_data *dn,
857                                 unsigned int ofs, struct page *ipage)
858 {
859         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
860         struct node_info old_ni, new_ni;
861         struct page *page;
862         int err;
863
864         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
865                 return ERR_PTR(-EPERM);
866
867         page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
868         if (!page)
869                 return ERR_PTR(-ENOMEM);
870
871         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
872                 err = -ENOSPC;
873                 goto fail;
874         }
875
876         get_node_info(sbi, dn->nid, &old_ni);
877
878         /* Reinitialize old_ni with new node page */
879         f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
880         new_ni = old_ni;
881         new_ni.ino = dn->inode->i_ino;
882         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
883
884         f2fs_wait_on_page_writeback(page, NODE);
885         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
886         set_cold_node(dn->inode, page);
887         SetPageUptodate(page);
888         set_page_dirty(page);
889
890         if (f2fs_has_xattr_block(ofs))
891                 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
892
893         dn->node_page = page;
894         if (ipage)
895                 update_inode(dn->inode, ipage);
896         else
897                 sync_inode_page(dn);
898         if (ofs == 0)
899                 inc_valid_inode_count(sbi);
900
901         return page;
902
903 fail:
904         clear_node_page_dirty(page);
905         f2fs_put_page(page, 1);
906         return ERR_PTR(err);
907 }
908
909 /*
910  * Caller should do after getting the following values.
911  * 0: f2fs_put_page(page, 0)
912  * LOCKED_PAGE: f2fs_put_page(page, 1)
913  * error: nothing
914  */
915 static int read_node_page(struct page *page, int rw)
916 {
917         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
918         struct node_info ni;
919
920         get_node_info(sbi, page->index, &ni);
921
922         if (unlikely(ni.blk_addr == NULL_ADDR)) {
923                 f2fs_put_page(page, 1);
924                 return -ENOENT;
925         }
926
927         if (PageUptodate(page))
928                 return LOCKED_PAGE;
929
930         return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
931 }
932
933 /*
934  * Readahead a node page
935  */
936 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
937 {
938         struct page *apage;
939         int err;
940
941         apage = find_get_page(NODE_MAPPING(sbi), nid);
942         if (apage && PageUptodate(apage)) {
943                 f2fs_put_page(apage, 0);
944                 return;
945         }
946         f2fs_put_page(apage, 0);
947
948         apage = grab_cache_page(NODE_MAPPING(sbi), nid);
949         if (!apage)
950                 return;
951
952         err = read_node_page(apage, READA);
953         if (err == 0)
954                 f2fs_put_page(apage, 0);
955         else if (err == LOCKED_PAGE)
956                 f2fs_put_page(apage, 1);
957 }
958
959 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
960 {
961         struct page *page;
962         int err;
963 repeat:
964         page = grab_cache_page(NODE_MAPPING(sbi), nid);
965         if (!page)
966                 return ERR_PTR(-ENOMEM);
967
968         err = read_node_page(page, READ_SYNC);
969         if (err < 0)
970                 return ERR_PTR(err);
971         else if (err == LOCKED_PAGE)
972                 goto got_it;
973
974         lock_page(page);
975         if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
976                 f2fs_put_page(page, 1);
977                 return ERR_PTR(-EIO);
978         }
979         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
980                 f2fs_put_page(page, 1);
981                 goto repeat;
982         }
983 got_it:
984         return page;
985 }
986
987 /*
988  * Return a locked page for the desired node page.
989  * And, readahead MAX_RA_NODE number of node pages.
990  */
991 struct page *get_node_page_ra(struct page *parent, int start)
992 {
993         struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
994         struct blk_plug plug;
995         struct page *page;
996         int err, i, end;
997         nid_t nid;
998
999         /* First, try getting the desired direct node. */
1000         nid = get_nid(parent, start, false);
1001         if (!nid)
1002                 return ERR_PTR(-ENOENT);
1003 repeat:
1004         page = grab_cache_page(NODE_MAPPING(sbi), nid);
1005         if (!page)
1006                 return ERR_PTR(-ENOMEM);
1007
1008         err = read_node_page(page, READ_SYNC);
1009         if (err < 0)
1010                 return ERR_PTR(err);
1011         else if (err == LOCKED_PAGE)
1012                 goto page_hit;
1013
1014         blk_start_plug(&plug);
1015
1016         /* Then, try readahead for siblings of the desired node */
1017         end = start + MAX_RA_NODE;
1018         end = min(end, NIDS_PER_BLOCK);
1019         for (i = start + 1; i < end; i++) {
1020                 nid = get_nid(parent, i, false);
1021                 if (!nid)
1022                         continue;
1023                 ra_node_page(sbi, nid);
1024         }
1025
1026         blk_finish_plug(&plug);
1027
1028         lock_page(page);
1029         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1030                 f2fs_put_page(page, 1);
1031                 goto repeat;
1032         }
1033 page_hit:
1034         if (unlikely(!PageUptodate(page))) {
1035                 f2fs_put_page(page, 1);
1036                 return ERR_PTR(-EIO);
1037         }
1038         return page;
1039 }
1040
1041 void sync_inode_page(struct dnode_of_data *dn)
1042 {
1043         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1044                 update_inode(dn->inode, dn->node_page);
1045         } else if (dn->inode_page) {
1046                 if (!dn->inode_page_locked)
1047                         lock_page(dn->inode_page);
1048                 update_inode(dn->inode, dn->inode_page);
1049                 if (!dn->inode_page_locked)
1050                         unlock_page(dn->inode_page);
1051         } else {
1052                 update_inode_page(dn->inode);
1053         }
1054 }
1055
1056 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1057                                         struct writeback_control *wbc)
1058 {
1059         pgoff_t index, end;
1060         struct pagevec pvec;
1061         int step = ino ? 2 : 0;
1062         int nwritten = 0, wrote = 0;
1063
1064         pagevec_init(&pvec, 0);
1065
1066 next_step:
1067         index = 0;
1068         end = LONG_MAX;
1069
1070         while (index <= end) {
1071                 int i, nr_pages;
1072                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1073                                 PAGECACHE_TAG_DIRTY,
1074                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1075                 if (nr_pages == 0)
1076                         break;
1077
1078                 for (i = 0; i < nr_pages; i++) {
1079                         struct page *page = pvec.pages[i];
1080
1081                         /*
1082                          * flushing sequence with step:
1083                          * 0. indirect nodes
1084                          * 1. dentry dnodes
1085                          * 2. file dnodes
1086                          */
1087                         if (step == 0 && IS_DNODE(page))
1088                                 continue;
1089                         if (step == 1 && (!IS_DNODE(page) ||
1090                                                 is_cold_node(page)))
1091                                 continue;
1092                         if (step == 2 && (!IS_DNODE(page) ||
1093                                                 !is_cold_node(page)))
1094                                 continue;
1095
1096                         /*
1097                          * If an fsync mode,
1098                          * we should not skip writing node pages.
1099                          */
1100                         if (ino && ino_of_node(page) == ino)
1101                                 lock_page(page);
1102                         else if (!trylock_page(page))
1103                                 continue;
1104
1105                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1106 continue_unlock:
1107                                 unlock_page(page);
1108                                 continue;
1109                         }
1110                         if (ino && ino_of_node(page) != ino)
1111                                 goto continue_unlock;
1112
1113                         if (!PageDirty(page)) {
1114                                 /* someone wrote it for us */
1115                                 goto continue_unlock;
1116                         }
1117
1118                         if (!clear_page_dirty_for_io(page))
1119                                 goto continue_unlock;
1120
1121                         /* called by fsync() */
1122                         if (ino && IS_DNODE(page)) {
1123                                 int mark = !is_checkpointed_node(sbi, ino);
1124                                 set_fsync_mark(page, 1);
1125                                 if (IS_INODE(page))
1126                                         set_dentry_mark(page, mark);
1127                                 nwritten++;
1128                         } else {
1129                                 set_fsync_mark(page, 0);
1130                                 set_dentry_mark(page, 0);
1131                         }
1132
1133                         if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1134                                 unlock_page(page);
1135                         else
1136                                 wrote++;
1137
1138                         if (--wbc->nr_to_write == 0)
1139                                 break;
1140                 }
1141                 pagevec_release(&pvec);
1142                 cond_resched();
1143
1144                 if (wbc->nr_to_write == 0) {
1145                         step = 2;
1146                         break;
1147                 }
1148         }
1149
1150         if (step < 2) {
1151                 step++;
1152                 goto next_step;
1153         }
1154
1155         if (wrote)
1156                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1157         return nwritten;
1158 }
1159
1160 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1161 {
1162         pgoff_t index = 0, end = LONG_MAX;
1163         struct pagevec pvec;
1164         int ret2 = 0, ret = 0;
1165
1166         pagevec_init(&pvec, 0);
1167
1168         while (index <= end) {
1169                 int i, nr_pages;
1170                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1171                                 PAGECACHE_TAG_WRITEBACK,
1172                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1173                 if (nr_pages == 0)
1174                         break;
1175
1176                 for (i = 0; i < nr_pages; i++) {
1177                         struct page *page = pvec.pages[i];
1178
1179                         /* until radix tree lookup accepts end_index */
1180                         if (unlikely(page->index > end))
1181                                 continue;
1182
1183                         if (ino && ino_of_node(page) == ino) {
1184                                 f2fs_wait_on_page_writeback(page, NODE);
1185                                 if (TestClearPageError(page))
1186                                         ret = -EIO;
1187                         }
1188                 }
1189                 pagevec_release(&pvec);
1190                 cond_resched();
1191         }
1192
1193         if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1194                 ret2 = -ENOSPC;
1195         if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1196                 ret2 = -EIO;
1197         if (!ret)
1198                 ret = ret2;
1199         return ret;
1200 }
1201
1202 static int f2fs_write_node_page(struct page *page,
1203                                 struct writeback_control *wbc)
1204 {
1205         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1206         nid_t nid;
1207         block_t new_addr;
1208         struct node_info ni;
1209         struct f2fs_io_info fio = {
1210                 .type = NODE,
1211                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1212         };
1213
1214         trace_f2fs_writepage(page, NODE);
1215
1216         if (unlikely(sbi->por_doing))
1217                 goto redirty_out;
1218
1219         f2fs_wait_on_page_writeback(page, NODE);
1220
1221         /* get old block addr of this node page */
1222         nid = nid_of_node(page);
1223         f2fs_bug_on(page->index != nid);
1224
1225         get_node_info(sbi, nid, &ni);
1226
1227         /* This page is already truncated */
1228         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1229                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1230                 unlock_page(page);
1231                 return 0;
1232         }
1233
1234         if (wbc->for_reclaim)
1235                 goto redirty_out;
1236
1237         down_read(&sbi->node_write);
1238         set_page_writeback(page);
1239         write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1240         set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1241         dec_page_count(sbi, F2FS_DIRTY_NODES);
1242         up_read(&sbi->node_write);
1243         unlock_page(page);
1244         return 0;
1245
1246 redirty_out:
1247         redirty_page_for_writepage(wbc, page);
1248         return AOP_WRITEPAGE_ACTIVATE;
1249 }
1250
1251 static int f2fs_write_node_pages(struct address_space *mapping,
1252                             struct writeback_control *wbc)
1253 {
1254         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1255         long diff;
1256
1257         trace_f2fs_writepages(mapping->host, wbc, NODE);
1258
1259         /* balancing f2fs's metadata in background */
1260         f2fs_balance_fs_bg(sbi);
1261
1262         /* collect a number of dirty node pages and write together */
1263         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1264                 goto skip_write;
1265
1266         diff = nr_pages_to_write(sbi, NODE, wbc);
1267         wbc->sync_mode = WB_SYNC_NONE;
1268         sync_node_pages(sbi, 0, wbc);
1269         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1270         return 0;
1271
1272 skip_write:
1273         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1274         return 0;
1275 }
1276
1277 static int f2fs_set_node_page_dirty(struct page *page)
1278 {
1279         struct address_space *mapping = page->mapping;
1280         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1281
1282         trace_f2fs_set_page_dirty(page, NODE);
1283
1284         SetPageUptodate(page);
1285         if (!PageDirty(page)) {
1286                 __set_page_dirty_nobuffers(page);
1287                 inc_page_count(sbi, F2FS_DIRTY_NODES);
1288                 SetPagePrivate(page);
1289                 return 1;
1290         }
1291         return 0;
1292 }
1293
1294 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1295                                       unsigned int length)
1296 {
1297         struct inode *inode = page->mapping->host;
1298         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1299         if (PageDirty(page))
1300                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1301         ClearPagePrivate(page);
1302 }
1303
1304 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1305 {
1306         ClearPagePrivate(page);
1307         return 1;
1308 }
1309
1310 /*
1311  * Structure of the f2fs node operations
1312  */
1313 const struct address_space_operations f2fs_node_aops = {
1314         .writepage      = f2fs_write_node_page,
1315         .writepages     = f2fs_write_node_pages,
1316         .set_page_dirty = f2fs_set_node_page_dirty,
1317         .invalidatepage = f2fs_invalidate_node_page,
1318         .releasepage    = f2fs_release_node_page,
1319 };
1320
1321 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1322                                                 nid_t n)
1323 {
1324         return radix_tree_lookup(&nm_i->free_nid_root, n);
1325 }
1326
1327 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1328                                                 struct free_nid *i)
1329 {
1330         list_del(&i->list);
1331         radix_tree_delete(&nm_i->free_nid_root, i->nid);
1332 }
1333
1334 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1335 {
1336         struct f2fs_nm_info *nm_i = NM_I(sbi);
1337         struct free_nid *i;
1338         struct nat_entry *ne;
1339         bool allocated = false;
1340
1341         if (!available_free_memory(sbi, FREE_NIDS))
1342                 return -1;
1343
1344         /* 0 nid should not be used */
1345         if (unlikely(nid == 0))
1346                 return 0;
1347
1348         if (build) {
1349                 /* do not add allocated nids */
1350                 read_lock(&nm_i->nat_tree_lock);
1351                 ne = __lookup_nat_cache(nm_i, nid);
1352                 if (ne &&
1353                         (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
1354                         allocated = true;
1355                 read_unlock(&nm_i->nat_tree_lock);
1356                 if (allocated)
1357                         return 0;
1358         }
1359
1360         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1361         i->nid = nid;
1362         i->state = NID_NEW;
1363
1364         spin_lock(&nm_i->free_nid_list_lock);
1365         if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1366                 spin_unlock(&nm_i->free_nid_list_lock);
1367                 kmem_cache_free(free_nid_slab, i);
1368                 return 0;
1369         }
1370         list_add_tail(&i->list, &nm_i->free_nid_list);
1371         nm_i->fcnt++;
1372         spin_unlock(&nm_i->free_nid_list_lock);
1373         return 1;
1374 }
1375
1376 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1377 {
1378         struct free_nid *i;
1379         bool need_free = false;
1380
1381         spin_lock(&nm_i->free_nid_list_lock);
1382         i = __lookup_free_nid_list(nm_i, nid);
1383         if (i && i->state == NID_NEW) {
1384                 __del_from_free_nid_list(nm_i, i);
1385                 nm_i->fcnt--;
1386                 need_free = true;
1387         }
1388         spin_unlock(&nm_i->free_nid_list_lock);
1389
1390         if (need_free)
1391                 kmem_cache_free(free_nid_slab, i);
1392 }
1393
1394 static void scan_nat_page(struct f2fs_sb_info *sbi,
1395                         struct page *nat_page, nid_t start_nid)
1396 {
1397         struct f2fs_nm_info *nm_i = NM_I(sbi);
1398         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1399         block_t blk_addr;
1400         int i;
1401
1402         i = start_nid % NAT_ENTRY_PER_BLOCK;
1403
1404         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1405
1406                 if (unlikely(start_nid >= nm_i->max_nid))
1407                         break;
1408
1409                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1410                 f2fs_bug_on(blk_addr == NEW_ADDR);
1411                 if (blk_addr == NULL_ADDR) {
1412                         if (add_free_nid(sbi, start_nid, true) < 0)
1413                                 break;
1414                 }
1415         }
1416 }
1417
1418 static void build_free_nids(struct f2fs_sb_info *sbi)
1419 {
1420         struct f2fs_nm_info *nm_i = NM_I(sbi);
1421         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1422         struct f2fs_summary_block *sum = curseg->sum_blk;
1423         int i = 0;
1424         nid_t nid = nm_i->next_scan_nid;
1425
1426         /* Enough entries */
1427         if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1428                 return;
1429
1430         /* readahead nat pages to be scanned */
1431         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1432
1433         while (1) {
1434                 struct page *page = get_current_nat_page(sbi, nid);
1435
1436                 scan_nat_page(sbi, page, nid);
1437                 f2fs_put_page(page, 1);
1438
1439                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1440                 if (unlikely(nid >= nm_i->max_nid))
1441                         nid = 0;
1442
1443                 if (i++ == FREE_NID_PAGES)
1444                         break;
1445         }
1446
1447         /* go to the next free nat pages to find free nids abundantly */
1448         nm_i->next_scan_nid = nid;
1449
1450         /* find free nids from current sum_pages */
1451         mutex_lock(&curseg->curseg_mutex);
1452         for (i = 0; i < nats_in_cursum(sum); i++) {
1453                 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1454                 nid = le32_to_cpu(nid_in_journal(sum, i));
1455                 if (addr == NULL_ADDR)
1456                         add_free_nid(sbi, nid, true);
1457                 else
1458                         remove_free_nid(nm_i, nid);
1459         }
1460         mutex_unlock(&curseg->curseg_mutex);
1461 }
1462
1463 /*
1464  * If this function returns success, caller can obtain a new nid
1465  * from second parameter of this function.
1466  * The returned nid could be used ino as well as nid when inode is created.
1467  */
1468 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1469 {
1470         struct f2fs_nm_info *nm_i = NM_I(sbi);
1471         struct free_nid *i = NULL;
1472 retry:
1473         if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1474                 return false;
1475
1476         spin_lock(&nm_i->free_nid_list_lock);
1477
1478         /* We should not use stale free nids created by build_free_nids */
1479         if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1480                 f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1481                 list_for_each_entry(i, &nm_i->free_nid_list, list)
1482                         if (i->state == NID_NEW)
1483                                 break;
1484
1485                 f2fs_bug_on(i->state != NID_NEW);
1486                 *nid = i->nid;
1487                 i->state = NID_ALLOC;
1488                 nm_i->fcnt--;
1489                 spin_unlock(&nm_i->free_nid_list_lock);
1490                 return true;
1491         }
1492         spin_unlock(&nm_i->free_nid_list_lock);
1493
1494         /* Let's scan nat pages and its caches to get free nids */
1495         mutex_lock(&nm_i->build_lock);
1496         build_free_nids(sbi);
1497         mutex_unlock(&nm_i->build_lock);
1498         goto retry;
1499 }
1500
1501 /*
1502  * alloc_nid() should be called prior to this function.
1503  */
1504 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1505 {
1506         struct f2fs_nm_info *nm_i = NM_I(sbi);
1507         struct free_nid *i;
1508
1509         spin_lock(&nm_i->free_nid_list_lock);
1510         i = __lookup_free_nid_list(nm_i, nid);
1511         f2fs_bug_on(!i || i->state != NID_ALLOC);
1512         __del_from_free_nid_list(nm_i, i);
1513         spin_unlock(&nm_i->free_nid_list_lock);
1514
1515         kmem_cache_free(free_nid_slab, i);
1516 }
1517
1518 /*
1519  * alloc_nid() should be called prior to this function.
1520  */
1521 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1522 {
1523         struct f2fs_nm_info *nm_i = NM_I(sbi);
1524         struct free_nid *i;
1525         bool need_free = false;
1526
1527         if (!nid)
1528                 return;
1529
1530         spin_lock(&nm_i->free_nid_list_lock);
1531         i = __lookup_free_nid_list(nm_i, nid);
1532         f2fs_bug_on(!i || i->state != NID_ALLOC);
1533         if (!available_free_memory(sbi, FREE_NIDS)) {
1534                 __del_from_free_nid_list(nm_i, i);
1535                 need_free = true;
1536         } else {
1537                 i->state = NID_NEW;
1538                 nm_i->fcnt++;
1539         }
1540         spin_unlock(&nm_i->free_nid_list_lock);
1541
1542         if (need_free)
1543                 kmem_cache_free(free_nid_slab, i);
1544 }
1545
1546 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1547                 struct f2fs_summary *sum, struct node_info *ni,
1548                 block_t new_blkaddr)
1549 {
1550         rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1551         set_node_addr(sbi, ni, new_blkaddr, false);
1552         clear_node_page_dirty(page);
1553 }
1554
1555 void recover_inline_xattr(struct inode *inode, struct page *page)
1556 {
1557         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1558         void *src_addr, *dst_addr;
1559         size_t inline_size;
1560         struct page *ipage;
1561         struct f2fs_inode *ri;
1562
1563         ipage = get_node_page(sbi, inode->i_ino);
1564         f2fs_bug_on(IS_ERR(ipage));
1565
1566         ri = F2FS_INODE(page);
1567         if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1568                 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1569                 goto update_inode;
1570         }
1571
1572         dst_addr = inline_xattr_addr(ipage);
1573         src_addr = inline_xattr_addr(page);
1574         inline_size = inline_xattr_size(inode);
1575
1576         f2fs_wait_on_page_writeback(ipage, NODE);
1577         memcpy(dst_addr, src_addr, inline_size);
1578 update_inode:
1579         update_inode(inode, ipage);
1580         f2fs_put_page(ipage, 1);
1581 }
1582
1583 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1584 {
1585         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1586         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1587         nid_t new_xnid = nid_of_node(page);
1588         struct node_info ni;
1589
1590         /* 1: invalidate the previous xattr nid */
1591         if (!prev_xnid)
1592                 goto recover_xnid;
1593
1594         /* Deallocate node address */
1595         get_node_info(sbi, prev_xnid, &ni);
1596         f2fs_bug_on(ni.blk_addr == NULL_ADDR);
1597         invalidate_blocks(sbi, ni.blk_addr);
1598         dec_valid_node_count(sbi, inode);
1599         set_node_addr(sbi, &ni, NULL_ADDR, false);
1600
1601 recover_xnid:
1602         /* 2: allocate new xattr nid */
1603         if (unlikely(!inc_valid_node_count(sbi, inode)))
1604                 f2fs_bug_on(1);
1605
1606         remove_free_nid(NM_I(sbi), new_xnid);
1607         get_node_info(sbi, new_xnid, &ni);
1608         ni.ino = inode->i_ino;
1609         set_node_addr(sbi, &ni, NEW_ADDR, false);
1610         F2FS_I(inode)->i_xattr_nid = new_xnid;
1611
1612         /* 3: update xattr blkaddr */
1613         refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1614         set_node_addr(sbi, &ni, blkaddr, false);
1615
1616         update_inode_page(inode);
1617 }
1618
1619 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1620 {
1621         struct f2fs_inode *src, *dst;
1622         nid_t ino = ino_of_node(page);
1623         struct node_info old_ni, new_ni;
1624         struct page *ipage;
1625
1626         get_node_info(sbi, ino, &old_ni);
1627
1628         if (unlikely(old_ni.blk_addr != NULL_ADDR))
1629                 return -EINVAL;
1630
1631         ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1632         if (!ipage)
1633                 return -ENOMEM;
1634
1635         /* Should not use this inode from free nid list */
1636         remove_free_nid(NM_I(sbi), ino);
1637
1638         SetPageUptodate(ipage);
1639         fill_node_footer(ipage, ino, ino, 0, true);
1640
1641         src = F2FS_INODE(page);
1642         dst = F2FS_INODE(ipage);
1643
1644         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1645         dst->i_size = 0;
1646         dst->i_blocks = cpu_to_le64(1);
1647         dst->i_links = cpu_to_le32(1);
1648         dst->i_xattr_nid = 0;
1649         dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1650
1651         new_ni = old_ni;
1652         new_ni.ino = ino;
1653
1654         if (unlikely(!inc_valid_node_count(sbi, NULL)))
1655                 WARN_ON(1);
1656         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1657         inc_valid_inode_count(sbi);
1658         set_page_dirty(ipage);
1659         f2fs_put_page(ipage, 1);
1660         return 0;
1661 }
1662
1663 /*
1664  * ra_sum_pages() merge contiguous pages into one bio and submit.
1665  * these pre-read pages are allocated in bd_inode's mapping tree.
1666  */
1667 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
1668                                 int start, int nrpages)
1669 {
1670         struct inode *inode = sbi->sb->s_bdev->bd_inode;
1671         struct address_space *mapping = inode->i_mapping;
1672         int i, page_idx = start;
1673         struct f2fs_io_info fio = {
1674                 .type = META,
1675                 .rw = READ_SYNC | REQ_META | REQ_PRIO
1676         };
1677
1678         for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
1679                 /* alloc page in bd_inode for reading node summary info */
1680                 pages[i] = grab_cache_page(mapping, page_idx);
1681                 if (!pages[i])
1682                         break;
1683                 f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
1684         }
1685
1686         f2fs_submit_merged_bio(sbi, META, READ);
1687         return i;
1688 }
1689
1690 int restore_node_summary(struct f2fs_sb_info *sbi,
1691                         unsigned int segno, struct f2fs_summary_block *sum)
1692 {
1693         struct f2fs_node *rn;
1694         struct f2fs_summary *sum_entry;
1695         struct inode *inode = sbi->sb->s_bdev->bd_inode;
1696         block_t addr;
1697         int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1698         struct page *pages[bio_blocks];
1699         int i, idx, last_offset, nrpages, err = 0;
1700
1701         /* scan the node segment */
1702         last_offset = sbi->blocks_per_seg;
1703         addr = START_BLOCK(sbi, segno);
1704         sum_entry = &sum->entries[0];
1705
1706         for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1707                 nrpages = min(last_offset - i, bio_blocks);
1708
1709                 /* readahead node pages */
1710                 nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
1711                 if (!nrpages)
1712                         return -ENOMEM;
1713
1714                 for (idx = 0; idx < nrpages; idx++) {
1715                         if (err)
1716                                 goto skip;
1717
1718                         lock_page(pages[idx]);
1719                         if (unlikely(!PageUptodate(pages[idx]))) {
1720                                 err = -EIO;
1721                         } else {
1722                                 rn = F2FS_NODE(pages[idx]);
1723                                 sum_entry->nid = rn->footer.nid;
1724                                 sum_entry->version = 0;
1725                                 sum_entry->ofs_in_node = 0;
1726                                 sum_entry++;
1727                         }
1728                         unlock_page(pages[idx]);
1729 skip:
1730                         page_cache_release(pages[idx]);
1731                 }
1732
1733                 invalidate_mapping_pages(inode->i_mapping, addr,
1734                                                         addr + nrpages);
1735         }
1736         return err;
1737 }
1738
1739 static struct nat_entry_set *grab_nat_entry_set(void)
1740 {
1741         struct nat_entry_set *nes =
1742                         f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
1743
1744         nes->entry_cnt = 0;
1745         INIT_LIST_HEAD(&nes->set_list);
1746         INIT_LIST_HEAD(&nes->entry_list);
1747         return nes;
1748 }
1749
1750 static void release_nat_entry_set(struct nat_entry_set *nes,
1751                                                 struct f2fs_nm_info *nm_i)
1752 {
1753         f2fs_bug_on(!list_empty(&nes->entry_list));
1754
1755         nm_i->dirty_nat_cnt -= nes->entry_cnt;
1756         list_del(&nes->set_list);
1757         kmem_cache_free(nat_entry_set_slab, nes);
1758 }
1759
1760 static void adjust_nat_entry_set(struct nat_entry_set *nes,
1761                                                 struct list_head *head)
1762 {
1763         struct nat_entry_set *next = nes;
1764
1765         if (list_is_last(&nes->set_list, head))
1766                 return;
1767
1768         list_for_each_entry_continue(next, head, set_list)
1769                 if (nes->entry_cnt <= next->entry_cnt)
1770                         break;
1771
1772         list_move_tail(&nes->set_list, &next->set_list);
1773 }
1774
1775 static void add_nat_entry(struct nat_entry *ne, struct list_head *head)
1776 {
1777         struct nat_entry_set *nes;
1778         nid_t start_nid = START_NID(ne->ni.nid);
1779
1780         list_for_each_entry(nes, head, set_list) {
1781                 if (nes->start_nid == start_nid) {
1782                         list_move_tail(&ne->list, &nes->entry_list);
1783                         nes->entry_cnt++;
1784                         adjust_nat_entry_set(nes, head);
1785                         return;
1786                 }
1787         }
1788
1789         nes = grab_nat_entry_set();
1790
1791         nes->start_nid = start_nid;
1792         list_move_tail(&ne->list, &nes->entry_list);
1793         nes->entry_cnt++;
1794         list_add(&nes->set_list, head);
1795 }
1796
1797 static void merge_nats_in_set(struct f2fs_sb_info *sbi)
1798 {
1799         struct f2fs_nm_info *nm_i = NM_I(sbi);
1800         struct list_head *dirty_list = &nm_i->dirty_nat_entries;
1801         struct list_head *set_list = &nm_i->nat_entry_set;
1802         struct nat_entry *ne, *tmp;
1803
1804         write_lock(&nm_i->nat_tree_lock);
1805         list_for_each_entry_safe(ne, tmp, dirty_list, list) {
1806                 if (nat_get_blkaddr(ne) == NEW_ADDR)
1807                         continue;
1808                 add_nat_entry(ne, set_list);
1809                 nm_i->dirty_nat_cnt++;
1810         }
1811         write_unlock(&nm_i->nat_tree_lock);
1812 }
1813
1814 static bool __has_cursum_space(struct f2fs_summary_block *sum, int size)
1815 {
1816         if (nats_in_cursum(sum) + size <= NAT_JOURNAL_ENTRIES)
1817                 return true;
1818         else
1819                 return false;
1820 }
1821
1822 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1823 {
1824         struct f2fs_nm_info *nm_i = NM_I(sbi);
1825         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1826         struct f2fs_summary_block *sum = curseg->sum_blk;
1827         int i;
1828
1829         mutex_lock(&curseg->curseg_mutex);
1830         for (i = 0; i < nats_in_cursum(sum); i++) {
1831                 struct nat_entry *ne;
1832                 struct f2fs_nat_entry raw_ne;
1833                 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1834
1835                 raw_ne = nat_in_journal(sum, i);
1836 retry:
1837                 write_lock(&nm_i->nat_tree_lock);
1838                 ne = __lookup_nat_cache(nm_i, nid);
1839                 if (ne)
1840                         goto found;
1841
1842                 ne = grab_nat_entry(nm_i, nid);
1843                 if (!ne) {
1844                         write_unlock(&nm_i->nat_tree_lock);
1845                         goto retry;
1846                 }
1847                 node_info_from_raw_nat(&ne->ni, &raw_ne);
1848 found:
1849                 __set_nat_cache_dirty(nm_i, ne);
1850                 write_unlock(&nm_i->nat_tree_lock);
1851         }
1852         update_nats_in_cursum(sum, -i);
1853         mutex_unlock(&curseg->curseg_mutex);
1854 }
1855
1856 /*
1857  * This function is called during the checkpointing process.
1858  */
1859 void flush_nat_entries(struct f2fs_sb_info *sbi)
1860 {
1861         struct f2fs_nm_info *nm_i = NM_I(sbi);
1862         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1863         struct f2fs_summary_block *sum = curseg->sum_blk;
1864         struct nat_entry_set *nes, *tmp;
1865         struct list_head *head = &nm_i->nat_entry_set;
1866         bool to_journal = true;
1867
1868         /* merge nat entries of dirty list to nat entry set temporarily */
1869         merge_nats_in_set(sbi);
1870
1871         /*
1872          * if there are no enough space in journal to store dirty nat
1873          * entries, remove all entries from journal and merge them
1874          * into nat entry set.
1875          */
1876         if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt)) {
1877                 remove_nats_in_journal(sbi);
1878
1879                 /*
1880                  * merge nat entries of dirty list to nat entry set temporarily
1881                  */
1882                 merge_nats_in_set(sbi);
1883         }
1884
1885         if (!nm_i->dirty_nat_cnt)
1886                 return;
1887
1888         /*
1889          * there are two steps to flush nat entries:
1890          * #1, flush nat entries to journal in current hot data summary block.
1891          * #2, flush nat entries to nat page.
1892          */
1893         list_for_each_entry_safe(nes, tmp, head, set_list) {
1894                 struct f2fs_nat_block *nat_blk;
1895                 struct nat_entry *ne, *cur;
1896                 struct page *page;
1897                 nid_t start_nid = nes->start_nid;
1898
1899                 if (to_journal && !__has_cursum_space(sum, nes->entry_cnt))
1900                         to_journal = false;
1901
1902                 if (to_journal) {
1903                         mutex_lock(&curseg->curseg_mutex);
1904                 } else {
1905                         page = get_next_nat_page(sbi, start_nid);
1906                         nat_blk = page_address(page);
1907                         f2fs_bug_on(!nat_blk);
1908                 }
1909
1910                 /* flush dirty nats in nat entry set */
1911                 list_for_each_entry_safe(ne, cur, &nes->entry_list, list) {
1912                         struct f2fs_nat_entry *raw_ne;
1913                         nid_t nid = nat_get_nid(ne);
1914                         int offset;
1915
1916                         if (to_journal) {
1917                                 offset = lookup_journal_in_cursum(sum,
1918                                                         NAT_JOURNAL, nid, 1);
1919                                 f2fs_bug_on(offset < 0);
1920                                 raw_ne = &nat_in_journal(sum, offset);
1921                                 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1922                         } else {
1923                                 raw_ne = &nat_blk->entries[nid - start_nid];
1924                         }
1925                         raw_nat_from_node_info(raw_ne, &ne->ni);
1926
1927                         if (nat_get_blkaddr(ne) == NULL_ADDR &&
1928                                 add_free_nid(sbi, nid, false) <= 0) {
1929                                 write_lock(&nm_i->nat_tree_lock);
1930                                 __del_from_nat_cache(nm_i, ne);
1931                                 write_unlock(&nm_i->nat_tree_lock);
1932                         } else {
1933                                 write_lock(&nm_i->nat_tree_lock);
1934                                 __clear_nat_cache_dirty(nm_i, ne);
1935                                 write_unlock(&nm_i->nat_tree_lock);
1936                         }
1937                 }
1938
1939                 if (to_journal)
1940                         mutex_unlock(&curseg->curseg_mutex);
1941                 else
1942                         f2fs_put_page(page, 1);
1943
1944                 release_nat_entry_set(nes, nm_i);
1945         }
1946
1947         f2fs_bug_on(!list_empty(head));
1948         f2fs_bug_on(nm_i->dirty_nat_cnt);
1949 }
1950
1951 static int init_node_manager(struct f2fs_sb_info *sbi)
1952 {
1953         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1954         struct f2fs_nm_info *nm_i = NM_I(sbi);
1955         unsigned char *version_bitmap;
1956         unsigned int nat_segs, nat_blocks;
1957
1958         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1959
1960         /* segment_count_nat includes pair segment so divide to 2. */
1961         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1962         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1963
1964         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1965
1966         /* not used nids: 0, node, meta, (and root counted as valid node) */
1967         nm_i->available_nids = nm_i->max_nid - 3;
1968         nm_i->fcnt = 0;
1969         nm_i->nat_cnt = 0;
1970         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1971
1972         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1973         INIT_LIST_HEAD(&nm_i->free_nid_list);
1974         INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1975         INIT_LIST_HEAD(&nm_i->nat_entries);
1976         INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1977         INIT_LIST_HEAD(&nm_i->nat_entry_set);
1978
1979         mutex_init(&nm_i->build_lock);
1980         spin_lock_init(&nm_i->free_nid_list_lock);
1981         rwlock_init(&nm_i->nat_tree_lock);
1982
1983         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1984         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1985         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1986         if (!version_bitmap)
1987                 return -EFAULT;
1988
1989         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1990                                         GFP_KERNEL);
1991         if (!nm_i->nat_bitmap)
1992                 return -ENOMEM;
1993         return 0;
1994 }
1995
1996 int build_node_manager(struct f2fs_sb_info *sbi)
1997 {
1998         int err;
1999
2000         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2001         if (!sbi->nm_info)
2002                 return -ENOMEM;
2003
2004         err = init_node_manager(sbi);
2005         if (err)
2006                 return err;
2007
2008         build_free_nids(sbi);
2009         return 0;
2010 }
2011
2012 void destroy_node_manager(struct f2fs_sb_info *sbi)
2013 {
2014         struct f2fs_nm_info *nm_i = NM_I(sbi);
2015         struct free_nid *i, *next_i;
2016         struct nat_entry *natvec[NATVEC_SIZE];
2017         nid_t nid = 0;
2018         unsigned int found;
2019
2020         if (!nm_i)
2021                 return;
2022
2023         /* destroy free nid list */
2024         spin_lock(&nm_i->free_nid_list_lock);
2025         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2026                 f2fs_bug_on(i->state == NID_ALLOC);
2027                 __del_from_free_nid_list(nm_i, i);
2028                 nm_i->fcnt--;
2029                 spin_unlock(&nm_i->free_nid_list_lock);
2030                 kmem_cache_free(free_nid_slab, i);
2031                 spin_lock(&nm_i->free_nid_list_lock);
2032         }
2033         f2fs_bug_on(nm_i->fcnt);
2034         spin_unlock(&nm_i->free_nid_list_lock);
2035
2036         /* destroy nat cache */
2037         write_lock(&nm_i->nat_tree_lock);
2038         while ((found = __gang_lookup_nat_cache(nm_i,
2039                                         nid, NATVEC_SIZE, natvec))) {
2040                 unsigned idx;
2041                 nid = nat_get_nid(natvec[found - 1]) + 1;
2042                 for (idx = 0; idx < found; idx++)
2043                         __del_from_nat_cache(nm_i, natvec[idx]);
2044         }
2045         f2fs_bug_on(nm_i->nat_cnt);
2046         write_unlock(&nm_i->nat_tree_lock);
2047
2048         kfree(nm_i->nat_bitmap);
2049         sbi->nm_info = NULL;
2050         kfree(nm_i);
2051 }
2052
2053 int __init create_node_manager_caches(void)
2054 {
2055         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2056                         sizeof(struct nat_entry));
2057         if (!nat_entry_slab)
2058                 goto fail;
2059
2060         free_nid_slab = f2fs_kmem_cache_create("free_nid",
2061                         sizeof(struct free_nid));
2062         if (!free_nid_slab)
2063                 goto destory_nat_entry;
2064
2065         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2066                         sizeof(struct nat_entry_set));
2067         if (!nat_entry_set_slab)
2068                 goto destory_free_nid;
2069         return 0;
2070
2071 destory_free_nid:
2072         kmem_cache_destroy(free_nid_slab);
2073 destory_nat_entry:
2074         kmem_cache_destroy(nat_entry_slab);
2075 fail:
2076         return -ENOMEM;
2077 }
2078
2079 void destroy_node_manager_caches(void)
2080 {
2081         kmem_cache_destroy(nat_entry_set_slab);
2082         kmem_cache_destroy(free_nid_slab);
2083         kmem_cache_destroy(nat_entry_slab);
2084 }