3a0d027aad7e4d8559794d1eed7f37e95d4bc8c5
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21 #include <trace/events/f2fs.h>
22
23 /*
24  * This function balances dirty node and dentry pages.
25  * In addition, it controls garbage collection.
26  */
27 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
28 {
29         /*
30          * We should do GC or end up with checkpoint, if there are so many dirty
31          * dir/node pages without enough free segments.
32          */
33         if (has_not_enough_free_secs(sbi, 0)) {
34                 mutex_lock(&sbi->gc_mutex);
35                 f2fs_gc(sbi);
36         }
37 }
38
39 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
40                 enum dirty_type dirty_type)
41 {
42         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
43
44         /* need not be added */
45         if (IS_CURSEG(sbi, segno))
46                 return;
47
48         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
49                 dirty_i->nr_dirty[dirty_type]++;
50
51         if (dirty_type == DIRTY) {
52                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
53                 enum dirty_type t = DIRTY_HOT_DATA;
54
55                 dirty_type = sentry->type;
56
57                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
58                         dirty_i->nr_dirty[dirty_type]++;
59
60                 /* Only one bitmap should be set */
61                 for (; t <= DIRTY_COLD_NODE; t++) {
62                         if (t == dirty_type)
63                                 continue;
64                         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
65                                 dirty_i->nr_dirty[t]--;
66                 }
67         }
68 }
69
70 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
71                 enum dirty_type dirty_type)
72 {
73         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
74
75         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
76                 dirty_i->nr_dirty[dirty_type]--;
77
78         if (dirty_type == DIRTY) {
79                 enum dirty_type t = DIRTY_HOT_DATA;
80
81                 /* clear all the bitmaps */
82                 for (; t <= DIRTY_COLD_NODE; t++)
83                         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
84                                 dirty_i->nr_dirty[t]--;
85
86                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
87                         clear_bit(GET_SECNO(sbi, segno),
88                                                 dirty_i->victim_secmap);
89         }
90 }
91
92 /*
93  * Should not occur error such as -ENOMEM.
94  * Adding dirty entry into seglist is not critical operation.
95  * If a given segment is one of current working segments, it won't be added.
96  */
97 void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
98 {
99         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
100         unsigned short valid_blocks;
101
102         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
103                 return;
104
105         mutex_lock(&dirty_i->seglist_lock);
106
107         valid_blocks = get_valid_blocks(sbi, segno, 0);
108
109         if (valid_blocks == 0) {
110                 __locate_dirty_segment(sbi, segno, PRE);
111                 __remove_dirty_segment(sbi, segno, DIRTY);
112         } else if (valid_blocks < sbi->blocks_per_seg) {
113                 __locate_dirty_segment(sbi, segno, DIRTY);
114         } else {
115                 /* Recovery routine with SSR needs this */
116                 __remove_dirty_segment(sbi, segno, DIRTY);
117         }
118
119         mutex_unlock(&dirty_i->seglist_lock);
120         return;
121 }
122
123 /*
124  * Should call clear_prefree_segments after checkpoint is done.
125  */
126 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
127 {
128         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
129         unsigned int segno = -1;
130         unsigned int total_segs = TOTAL_SEGS(sbi);
131
132         mutex_lock(&dirty_i->seglist_lock);
133         while (1) {
134                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
135                                 segno + 1);
136                 if (segno >= total_segs)
137                         break;
138                 __set_test_and_free(sbi, segno);
139         }
140         mutex_unlock(&dirty_i->seglist_lock);
141 }
142
143 void clear_prefree_segments(struct f2fs_sb_info *sbi)
144 {
145         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
146         unsigned int segno = -1;
147         unsigned int total_segs = TOTAL_SEGS(sbi);
148
149         mutex_lock(&dirty_i->seglist_lock);
150         while (1) {
151                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
152                                 segno + 1);
153                 if (segno >= total_segs)
154                         break;
155
156                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
157                         dirty_i->nr_dirty[PRE]--;
158
159                 /* Let's use trim */
160                 if (test_opt(sbi, DISCARD))
161                         blkdev_issue_discard(sbi->sb->s_bdev,
162                                         START_BLOCK(sbi, segno) <<
163                                         sbi->log_sectors_per_block,
164                                         1 << (sbi->log_sectors_per_block +
165                                                 sbi->log_blocks_per_seg),
166                                         GFP_NOFS, 0);
167         }
168         mutex_unlock(&dirty_i->seglist_lock);
169 }
170
171 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
172 {
173         struct sit_info *sit_i = SIT_I(sbi);
174         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
175                 sit_i->dirty_sentries++;
176 }
177
178 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
179                                         unsigned int segno, int modified)
180 {
181         struct seg_entry *se = get_seg_entry(sbi, segno);
182         se->type = type;
183         if (modified)
184                 __mark_sit_entry_dirty(sbi, segno);
185 }
186
187 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
188 {
189         struct seg_entry *se;
190         unsigned int segno, offset;
191         long int new_vblocks;
192
193         segno = GET_SEGNO(sbi, blkaddr);
194
195         se = get_seg_entry(sbi, segno);
196         new_vblocks = se->valid_blocks + del;
197         offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
198
199         BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
200                                 (new_vblocks > sbi->blocks_per_seg)));
201
202         se->valid_blocks = new_vblocks;
203         se->mtime = get_mtime(sbi);
204         SIT_I(sbi)->max_mtime = se->mtime;
205
206         /* Update valid block bitmap */
207         if (del > 0) {
208                 if (f2fs_set_bit(offset, se->cur_valid_map))
209                         BUG();
210         } else {
211                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
212                         BUG();
213         }
214         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
215                 se->ckpt_valid_blocks += del;
216
217         __mark_sit_entry_dirty(sbi, segno);
218
219         /* update total number of valid blocks to be written in ckpt area */
220         SIT_I(sbi)->written_valid_blocks += del;
221
222         if (sbi->segs_per_sec > 1)
223                 get_sec_entry(sbi, segno)->valid_blocks += del;
224 }
225
226 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
227                         block_t old_blkaddr, block_t new_blkaddr)
228 {
229         update_sit_entry(sbi, new_blkaddr, 1);
230         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
231                 update_sit_entry(sbi, old_blkaddr, -1);
232 }
233
234 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
235 {
236         unsigned int segno = GET_SEGNO(sbi, addr);
237         struct sit_info *sit_i = SIT_I(sbi);
238
239         BUG_ON(addr == NULL_ADDR);
240         if (addr == NEW_ADDR)
241                 return;
242
243         /* add it into sit main buffer */
244         mutex_lock(&sit_i->sentry_lock);
245
246         update_sit_entry(sbi, addr, -1);
247
248         /* add it into dirty seglist */
249         locate_dirty_segment(sbi, segno);
250
251         mutex_unlock(&sit_i->sentry_lock);
252 }
253
254 /*
255  * This function should be resided under the curseg_mutex lock
256  */
257 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
258                 struct f2fs_summary *sum, unsigned short offset)
259 {
260         struct curseg_info *curseg = CURSEG_I(sbi, type);
261         void *addr = curseg->sum_blk;
262         addr += offset * sizeof(struct f2fs_summary);
263         memcpy(addr, sum, sizeof(struct f2fs_summary));
264         return;
265 }
266
267 /*
268  * Calculate the number of current summary pages for writing
269  */
270 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
271 {
272         int total_size_bytes = 0;
273         int valid_sum_count = 0;
274         int i, sum_space;
275
276         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
277                 if (sbi->ckpt->alloc_type[i] == SSR)
278                         valid_sum_count += sbi->blocks_per_seg;
279                 else
280                         valid_sum_count += curseg_blkoff(sbi, i);
281         }
282
283         total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
284                         + sizeof(struct nat_journal) + 2
285                         + sizeof(struct sit_journal) + 2;
286         sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
287         if (total_size_bytes < sum_space)
288                 return 1;
289         else if (total_size_bytes < 2 * sum_space)
290                 return 2;
291         return 3;
292 }
293
294 /*
295  * Caller should put this summary page
296  */
297 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
298 {
299         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
300 }
301
302 static void write_sum_page(struct f2fs_sb_info *sbi,
303                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
304 {
305         struct page *page = grab_meta_page(sbi, blk_addr);
306         void *kaddr = page_address(page);
307         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
308         set_page_dirty(page);
309         f2fs_put_page(page, 1);
310 }
311
312 static unsigned int check_prefree_segments(struct f2fs_sb_info *sbi, int type)
313 {
314         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
315         unsigned long *prefree_segmap = dirty_i->dirty_segmap[PRE];
316         unsigned int segno;
317         unsigned int ofs = 0;
318
319         /*
320          * If there is not enough reserved sections,
321          * we should not reuse prefree segments.
322          */
323         if (has_not_enough_free_secs(sbi, 0))
324                 return NULL_SEGNO;
325
326         /*
327          * NODE page should not reuse prefree segment,
328          * since those information is used for SPOR.
329          */
330         if (IS_NODESEG(type))
331                 return NULL_SEGNO;
332 next:
333         segno = find_next_bit(prefree_segmap, TOTAL_SEGS(sbi), ofs);
334         ofs += sbi->segs_per_sec;
335
336         if (segno < TOTAL_SEGS(sbi)) {
337                 int i;
338
339                 /* skip intermediate segments in a section */
340                 if (segno % sbi->segs_per_sec)
341                         goto next;
342
343                 /* skip if the section is currently used */
344                 if (sec_usage_check(sbi, GET_SECNO(sbi, segno)))
345                         goto next;
346
347                 /* skip if whole section is not prefree */
348                 for (i = 1; i < sbi->segs_per_sec; i++)
349                         if (!test_bit(segno + i, prefree_segmap))
350                                 goto next;
351
352                 /* skip if whole section was not free at the last checkpoint */
353                 for (i = 0; i < sbi->segs_per_sec; i++)
354                         if (get_seg_entry(sbi, segno + i)->ckpt_valid_blocks)
355                                 goto next;
356
357                 return segno;
358         }
359         return NULL_SEGNO;
360 }
361
362 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
363 {
364         struct curseg_info *curseg = CURSEG_I(sbi, type);
365         unsigned int segno = curseg->segno + 1;
366         struct free_segmap_info *free_i = FREE_I(sbi);
367
368         if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
369                 return !test_bit(segno, free_i->free_segmap);
370         return 0;
371 }
372
373 /*
374  * Find a new segment from the free segments bitmap to right order
375  * This function should be returned with success, otherwise BUG
376  */
377 static void get_new_segment(struct f2fs_sb_info *sbi,
378                         unsigned int *newseg, bool new_sec, int dir)
379 {
380         struct free_segmap_info *free_i = FREE_I(sbi);
381         unsigned int segno, secno, zoneno;
382         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
383         unsigned int hint = *newseg / sbi->segs_per_sec;
384         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
385         unsigned int left_start = hint;
386         bool init = true;
387         int go_left = 0;
388         int i;
389
390         write_lock(&free_i->segmap_lock);
391
392         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
393                 segno = find_next_zero_bit(free_i->free_segmap,
394                                         TOTAL_SEGS(sbi), *newseg + 1);
395                 if (segno - *newseg < sbi->segs_per_sec -
396                                         (*newseg % sbi->segs_per_sec))
397                         goto got_it;
398         }
399 find_other_zone:
400         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
401         if (secno >= TOTAL_SECS(sbi)) {
402                 if (dir == ALLOC_RIGHT) {
403                         secno = find_next_zero_bit(free_i->free_secmap,
404                                                         TOTAL_SECS(sbi), 0);
405                         BUG_ON(secno >= TOTAL_SECS(sbi));
406                 } else {
407                         go_left = 1;
408                         left_start = hint - 1;
409                 }
410         }
411         if (go_left == 0)
412                 goto skip_left;
413
414         while (test_bit(left_start, free_i->free_secmap)) {
415                 if (left_start > 0) {
416                         left_start--;
417                         continue;
418                 }
419                 left_start = find_next_zero_bit(free_i->free_secmap,
420                                                         TOTAL_SECS(sbi), 0);
421                 BUG_ON(left_start >= TOTAL_SECS(sbi));
422                 break;
423         }
424         secno = left_start;
425 skip_left:
426         hint = secno;
427         segno = secno * sbi->segs_per_sec;
428         zoneno = secno / sbi->secs_per_zone;
429
430         /* give up on finding another zone */
431         if (!init)
432                 goto got_it;
433         if (sbi->secs_per_zone == 1)
434                 goto got_it;
435         if (zoneno == old_zoneno)
436                 goto got_it;
437         if (dir == ALLOC_LEFT) {
438                 if (!go_left && zoneno + 1 >= total_zones)
439                         goto got_it;
440                 if (go_left && zoneno == 0)
441                         goto got_it;
442         }
443         for (i = 0; i < NR_CURSEG_TYPE; i++)
444                 if (CURSEG_I(sbi, i)->zone == zoneno)
445                         break;
446
447         if (i < NR_CURSEG_TYPE) {
448                 /* zone is in user, try another */
449                 if (go_left)
450                         hint = zoneno * sbi->secs_per_zone - 1;
451                 else if (zoneno + 1 >= total_zones)
452                         hint = 0;
453                 else
454                         hint = (zoneno + 1) * sbi->secs_per_zone;
455                 init = false;
456                 goto find_other_zone;
457         }
458 got_it:
459         /* set it as dirty segment in free segmap */
460         BUG_ON(test_bit(segno, free_i->free_segmap));
461         __set_inuse(sbi, segno);
462         *newseg = segno;
463         write_unlock(&free_i->segmap_lock);
464 }
465
466 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
467 {
468         struct curseg_info *curseg = CURSEG_I(sbi, type);
469         struct summary_footer *sum_footer;
470
471         curseg->segno = curseg->next_segno;
472         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
473         curseg->next_blkoff = 0;
474         curseg->next_segno = NULL_SEGNO;
475
476         sum_footer = &(curseg->sum_blk->footer);
477         memset(sum_footer, 0, sizeof(struct summary_footer));
478         if (IS_DATASEG(type))
479                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
480         if (IS_NODESEG(type))
481                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
482         __set_sit_entry_type(sbi, type, curseg->segno, modified);
483 }
484
485 /*
486  * Allocate a current working segment.
487  * This function always allocates a free segment in LFS manner.
488  */
489 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
490 {
491         struct curseg_info *curseg = CURSEG_I(sbi, type);
492         unsigned int segno = curseg->segno;
493         int dir = ALLOC_LEFT;
494
495         write_sum_page(sbi, curseg->sum_blk,
496                                 GET_SUM_BLOCK(sbi, segno));
497         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
498                 dir = ALLOC_RIGHT;
499
500         if (test_opt(sbi, NOHEAP))
501                 dir = ALLOC_RIGHT;
502
503         get_new_segment(sbi, &segno, new_sec, dir);
504         curseg->next_segno = segno;
505         reset_curseg(sbi, type, 1);
506         curseg->alloc_type = LFS;
507 }
508
509 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
510                         struct curseg_info *seg, block_t start)
511 {
512         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
513         block_t ofs;
514         for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
515                 if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
516                         && !f2fs_test_bit(ofs, se->cur_valid_map))
517                         break;
518         }
519         seg->next_blkoff = ofs;
520 }
521
522 /*
523  * If a segment is written by LFS manner, next block offset is just obtained
524  * by increasing the current block offset. However, if a segment is written by
525  * SSR manner, next block offset obtained by calling __next_free_blkoff
526  */
527 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
528                                 struct curseg_info *seg)
529 {
530         if (seg->alloc_type == SSR)
531                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
532         else
533                 seg->next_blkoff++;
534 }
535
536 /*
537  * This function always allocates a used segment (from dirty seglist) by SSR
538  * manner, so it should recover the existing segment information of valid blocks
539  */
540 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
541 {
542         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
543         struct curseg_info *curseg = CURSEG_I(sbi, type);
544         unsigned int new_segno = curseg->next_segno;
545         struct f2fs_summary_block *sum_node;
546         struct page *sum_page;
547
548         write_sum_page(sbi, curseg->sum_blk,
549                                 GET_SUM_BLOCK(sbi, curseg->segno));
550         __set_test_and_inuse(sbi, new_segno);
551
552         mutex_lock(&dirty_i->seglist_lock);
553         __remove_dirty_segment(sbi, new_segno, PRE);
554         __remove_dirty_segment(sbi, new_segno, DIRTY);
555         mutex_unlock(&dirty_i->seglist_lock);
556
557         reset_curseg(sbi, type, 1);
558         curseg->alloc_type = SSR;
559         __next_free_blkoff(sbi, curseg, 0);
560
561         if (reuse) {
562                 sum_page = get_sum_page(sbi, new_segno);
563                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
564                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
565                 f2fs_put_page(sum_page, 1);
566         }
567 }
568
569 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
570 {
571         struct curseg_info *curseg = CURSEG_I(sbi, type);
572         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
573
574         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
575                 return v_ops->get_victim(sbi,
576                                 &(curseg)->next_segno, BG_GC, type, SSR);
577
578         /* For data segments, let's do SSR more intensively */
579         for (; type >= CURSEG_HOT_DATA; type--)
580                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
581                                                 BG_GC, type, SSR))
582                         return 1;
583         return 0;
584 }
585
586 /*
587  * flush out current segment and replace it with new segment
588  * This function should be returned with success, otherwise BUG
589  */
590 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
591                                                 int type, bool force)
592 {
593         struct curseg_info *curseg = CURSEG_I(sbi, type);
594
595         if (force) {
596                 new_curseg(sbi, type, true);
597                 goto out;
598         }
599
600         curseg->next_segno = check_prefree_segments(sbi, type);
601
602         if (curseg->next_segno != NULL_SEGNO)
603                 change_curseg(sbi, type, false);
604         else if (type == CURSEG_WARM_NODE)
605                 new_curseg(sbi, type, false);
606         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
607                 new_curseg(sbi, type, false);
608         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
609                 change_curseg(sbi, type, true);
610         else
611                 new_curseg(sbi, type, false);
612 out:
613         sbi->segment_count[curseg->alloc_type]++;
614 }
615
616 void allocate_new_segments(struct f2fs_sb_info *sbi)
617 {
618         struct curseg_info *curseg;
619         unsigned int old_curseg;
620         int i;
621
622         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
623                 curseg = CURSEG_I(sbi, i);
624                 old_curseg = curseg->segno;
625                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
626                 locate_dirty_segment(sbi, old_curseg);
627         }
628 }
629
630 static const struct segment_allocation default_salloc_ops = {
631         .allocate_segment = allocate_segment_by_default,
632 };
633
634 static void f2fs_end_io_write(struct bio *bio, int err)
635 {
636         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
637         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
638         struct bio_private *p = bio->bi_private;
639
640         do {
641                 struct page *page = bvec->bv_page;
642
643                 if (--bvec >= bio->bi_io_vec)
644                         prefetchw(&bvec->bv_page->flags);
645                 if (!uptodate) {
646                         SetPageError(page);
647                         if (page->mapping)
648                                 set_bit(AS_EIO, &page->mapping->flags);
649                         set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
650                         p->sbi->sb->s_flags |= MS_RDONLY;
651                 }
652                 end_page_writeback(page);
653                 dec_page_count(p->sbi, F2FS_WRITEBACK);
654         } while (bvec >= bio->bi_io_vec);
655
656         if (p->is_sync)
657                 complete(p->wait);
658         kfree(p);
659         bio_put(bio);
660 }
661
662 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
663 {
664         struct bio *bio;
665         struct bio_private *priv;
666 retry:
667         priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
668         if (!priv) {
669                 cond_resched();
670                 goto retry;
671         }
672
673         /* No failure on bio allocation */
674         bio = bio_alloc(GFP_NOIO, npages);
675         bio->bi_bdev = bdev;
676         bio->bi_private = priv;
677         return bio;
678 }
679
680 static void do_submit_bio(struct f2fs_sb_info *sbi,
681                                 enum page_type type, bool sync)
682 {
683         int rw = sync ? WRITE_SYNC : WRITE;
684         enum page_type btype = type > META ? META : type;
685
686         if (type >= META_FLUSH)
687                 rw = WRITE_FLUSH_FUA;
688
689         if (btype == META)
690                 rw |= REQ_META;
691
692         if (sbi->bio[btype]) {
693                 struct bio_private *p = sbi->bio[btype]->bi_private;
694                 p->sbi = sbi;
695                 sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
696
697                 trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
698
699                 if (type == META_FLUSH) {
700                         DECLARE_COMPLETION_ONSTACK(wait);
701                         p->is_sync = true;
702                         p->wait = &wait;
703                         submit_bio(rw, sbi->bio[btype]);
704                         wait_for_completion(&wait);
705                 } else {
706                         p->is_sync = false;
707                         submit_bio(rw, sbi->bio[btype]);
708                 }
709                 sbi->bio[btype] = NULL;
710         }
711 }
712
713 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
714 {
715         down_write(&sbi->bio_sem);
716         do_submit_bio(sbi, type, sync);
717         up_write(&sbi->bio_sem);
718 }
719
720 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
721                                 block_t blk_addr, enum page_type type)
722 {
723         struct block_device *bdev = sbi->sb->s_bdev;
724
725         verify_block_addr(sbi, blk_addr);
726
727         down_write(&sbi->bio_sem);
728
729         inc_page_count(sbi, F2FS_WRITEBACK);
730
731         if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
732                 do_submit_bio(sbi, type, false);
733 alloc_new:
734         if (sbi->bio[type] == NULL) {
735                 sbi->bio[type] = f2fs_bio_alloc(bdev, max_hw_blocks(sbi));
736                 sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
737                 /*
738                  * The end_io will be assigned at the sumbission phase.
739                  * Until then, let bio_add_page() merge consecutive IOs as much
740                  * as possible.
741                  */
742         }
743
744         if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
745                                                         PAGE_CACHE_SIZE) {
746                 do_submit_bio(sbi, type, false);
747                 goto alloc_new;
748         }
749
750         sbi->last_block_in_bio[type] = blk_addr;
751
752         up_write(&sbi->bio_sem);
753         trace_f2fs_submit_write_page(page, blk_addr, type);
754 }
755
756 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
757 {
758         struct curseg_info *curseg = CURSEG_I(sbi, type);
759         if (curseg->next_blkoff < sbi->blocks_per_seg)
760                 return true;
761         return false;
762 }
763
764 static int __get_segment_type_2(struct page *page, enum page_type p_type)
765 {
766         if (p_type == DATA)
767                 return CURSEG_HOT_DATA;
768         else
769                 return CURSEG_HOT_NODE;
770 }
771
772 static int __get_segment_type_4(struct page *page, enum page_type p_type)
773 {
774         if (p_type == DATA) {
775                 struct inode *inode = page->mapping->host;
776
777                 if (S_ISDIR(inode->i_mode))
778                         return CURSEG_HOT_DATA;
779                 else
780                         return CURSEG_COLD_DATA;
781         } else {
782                 if (IS_DNODE(page) && !is_cold_node(page))
783                         return CURSEG_HOT_NODE;
784                 else
785                         return CURSEG_COLD_NODE;
786         }
787 }
788
789 static int __get_segment_type_6(struct page *page, enum page_type p_type)
790 {
791         if (p_type == DATA) {
792                 struct inode *inode = page->mapping->host;
793
794                 if (S_ISDIR(inode->i_mode))
795                         return CURSEG_HOT_DATA;
796                 else if (is_cold_data(page) || is_cold_file(inode))
797                         return CURSEG_COLD_DATA;
798                 else
799                         return CURSEG_WARM_DATA;
800         } else {
801                 if (IS_DNODE(page))
802                         return is_cold_node(page) ? CURSEG_WARM_NODE :
803                                                 CURSEG_HOT_NODE;
804                 else
805                         return CURSEG_COLD_NODE;
806         }
807 }
808
809 static int __get_segment_type(struct page *page, enum page_type p_type)
810 {
811         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
812         switch (sbi->active_logs) {
813         case 2:
814                 return __get_segment_type_2(page, p_type);
815         case 4:
816                 return __get_segment_type_4(page, p_type);
817         }
818         /* NR_CURSEG_TYPE(6) logs by default */
819         BUG_ON(sbi->active_logs != NR_CURSEG_TYPE);
820         return __get_segment_type_6(page, p_type);
821 }
822
823 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
824                         block_t old_blkaddr, block_t *new_blkaddr,
825                         struct f2fs_summary *sum, enum page_type p_type)
826 {
827         struct sit_info *sit_i = SIT_I(sbi);
828         struct curseg_info *curseg;
829         unsigned int old_cursegno;
830         int type;
831
832         type = __get_segment_type(page, p_type);
833         curseg = CURSEG_I(sbi, type);
834
835         mutex_lock(&curseg->curseg_mutex);
836
837         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
838         old_cursegno = curseg->segno;
839
840         /*
841          * __add_sum_entry should be resided under the curseg_mutex
842          * because, this function updates a summary entry in the
843          * current summary block.
844          */
845         __add_sum_entry(sbi, type, sum, curseg->next_blkoff);
846
847         mutex_lock(&sit_i->sentry_lock);
848         __refresh_next_blkoff(sbi, curseg);
849         sbi->block_count[curseg->alloc_type]++;
850
851         /*
852          * SIT information should be updated before segment allocation,
853          * since SSR needs latest valid block information.
854          */
855         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
856
857         if (!__has_curseg_space(sbi, type))
858                 sit_i->s_ops->allocate_segment(sbi, type, false);
859
860         locate_dirty_segment(sbi, old_cursegno);
861         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
862         mutex_unlock(&sit_i->sentry_lock);
863
864         if (p_type == NODE)
865                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
866
867         /* writeout dirty page into bdev */
868         submit_write_page(sbi, page, *new_blkaddr, p_type);
869
870         mutex_unlock(&curseg->curseg_mutex);
871 }
872
873 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
874 {
875         set_page_writeback(page);
876         submit_write_page(sbi, page, page->index, META);
877 }
878
879 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
880                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
881 {
882         struct f2fs_summary sum;
883         set_summary(&sum, nid, 0, 0);
884         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
885 }
886
887 void write_data_page(struct inode *inode, struct page *page,
888                 struct dnode_of_data *dn, block_t old_blkaddr,
889                 block_t *new_blkaddr)
890 {
891         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
892         struct f2fs_summary sum;
893         struct node_info ni;
894
895         BUG_ON(old_blkaddr == NULL_ADDR);
896         get_node_info(sbi, dn->nid, &ni);
897         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
898
899         do_write_page(sbi, page, old_blkaddr,
900                         new_blkaddr, &sum, DATA);
901 }
902
903 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
904                                         block_t old_blk_addr)
905 {
906         submit_write_page(sbi, page, old_blk_addr, DATA);
907 }
908
909 void recover_data_page(struct f2fs_sb_info *sbi,
910                         struct page *page, struct f2fs_summary *sum,
911                         block_t old_blkaddr, block_t new_blkaddr)
912 {
913         struct sit_info *sit_i = SIT_I(sbi);
914         struct curseg_info *curseg;
915         unsigned int segno, old_cursegno;
916         struct seg_entry *se;
917         int type;
918
919         segno = GET_SEGNO(sbi, new_blkaddr);
920         se = get_seg_entry(sbi, segno);
921         type = se->type;
922
923         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
924                 if (old_blkaddr == NULL_ADDR)
925                         type = CURSEG_COLD_DATA;
926                 else
927                         type = CURSEG_WARM_DATA;
928         }
929         curseg = CURSEG_I(sbi, type);
930
931         mutex_lock(&curseg->curseg_mutex);
932         mutex_lock(&sit_i->sentry_lock);
933
934         old_cursegno = curseg->segno;
935
936         /* change the current segment */
937         if (segno != curseg->segno) {
938                 curseg->next_segno = segno;
939                 change_curseg(sbi, type, true);
940         }
941
942         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
943                                         (sbi->blocks_per_seg - 1);
944         __add_sum_entry(sbi, type, sum, curseg->next_blkoff);
945
946         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
947
948         locate_dirty_segment(sbi, old_cursegno);
949         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
950
951         mutex_unlock(&sit_i->sentry_lock);
952         mutex_unlock(&curseg->curseg_mutex);
953 }
954
955 void rewrite_node_page(struct f2fs_sb_info *sbi,
956                         struct page *page, struct f2fs_summary *sum,
957                         block_t old_blkaddr, block_t new_blkaddr)
958 {
959         struct sit_info *sit_i = SIT_I(sbi);
960         int type = CURSEG_WARM_NODE;
961         struct curseg_info *curseg;
962         unsigned int segno, old_cursegno;
963         block_t next_blkaddr = next_blkaddr_of_node(page);
964         unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
965
966         curseg = CURSEG_I(sbi, type);
967
968         mutex_lock(&curseg->curseg_mutex);
969         mutex_lock(&sit_i->sentry_lock);
970
971         segno = GET_SEGNO(sbi, new_blkaddr);
972         old_cursegno = curseg->segno;
973
974         /* change the current segment */
975         if (segno != curseg->segno) {
976                 curseg->next_segno = segno;
977                 change_curseg(sbi, type, true);
978         }
979         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
980                                         (sbi->blocks_per_seg - 1);
981         __add_sum_entry(sbi, type, sum, curseg->next_blkoff);
982
983         /* change the current log to the next block addr in advance */
984         if (next_segno != segno) {
985                 curseg->next_segno = next_segno;
986                 change_curseg(sbi, type, true);
987         }
988         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
989                                         (sbi->blocks_per_seg - 1);
990
991         /* rewrite node page */
992         set_page_writeback(page);
993         submit_write_page(sbi, page, new_blkaddr, NODE);
994         f2fs_submit_bio(sbi, NODE, true);
995         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
996
997         locate_dirty_segment(sbi, old_cursegno);
998         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
999
1000         mutex_unlock(&sit_i->sentry_lock);
1001         mutex_unlock(&curseg->curseg_mutex);
1002 }
1003
1004 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1005 {
1006         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1007         struct curseg_info *seg_i;
1008         unsigned char *kaddr;
1009         struct page *page;
1010         block_t start;
1011         int i, j, offset;
1012
1013         start = start_sum_block(sbi);
1014
1015         page = get_meta_page(sbi, start++);
1016         kaddr = (unsigned char *)page_address(page);
1017
1018         /* Step 1: restore nat cache */
1019         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1020         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1021
1022         /* Step 2: restore sit cache */
1023         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1024         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1025                                                 SUM_JOURNAL_SIZE);
1026         offset = 2 * SUM_JOURNAL_SIZE;
1027
1028         /* Step 3: restore summary entries */
1029         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1030                 unsigned short blk_off;
1031                 unsigned int segno;
1032
1033                 seg_i = CURSEG_I(sbi, i);
1034                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1035                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1036                 seg_i->next_segno = segno;
1037                 reset_curseg(sbi, i, 0);
1038                 seg_i->alloc_type = ckpt->alloc_type[i];
1039                 seg_i->next_blkoff = blk_off;
1040
1041                 if (seg_i->alloc_type == SSR)
1042                         blk_off = sbi->blocks_per_seg;
1043
1044                 for (j = 0; j < blk_off; j++) {
1045                         struct f2fs_summary *s;
1046                         s = (struct f2fs_summary *)(kaddr + offset);
1047                         seg_i->sum_blk->entries[j] = *s;
1048                         offset += SUMMARY_SIZE;
1049                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1050                                                 SUM_FOOTER_SIZE)
1051                                 continue;
1052
1053                         f2fs_put_page(page, 1);
1054                         page = NULL;
1055
1056                         page = get_meta_page(sbi, start++);
1057                         kaddr = (unsigned char *)page_address(page);
1058                         offset = 0;
1059                 }
1060         }
1061         f2fs_put_page(page, 1);
1062         return 0;
1063 }
1064
1065 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1066 {
1067         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1068         struct f2fs_summary_block *sum;
1069         struct curseg_info *curseg;
1070         struct page *new;
1071         unsigned short blk_off;
1072         unsigned int segno = 0;
1073         block_t blk_addr = 0;
1074
1075         /* get segment number and block addr */
1076         if (IS_DATASEG(type)) {
1077                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1078                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1079                                                         CURSEG_HOT_DATA]);
1080                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1081                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1082                 else
1083                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1084         } else {
1085                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1086                                                         CURSEG_HOT_NODE]);
1087                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1088                                                         CURSEG_HOT_NODE]);
1089                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1090                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1091                                                         type - CURSEG_HOT_NODE);
1092                 else
1093                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1094         }
1095
1096         new = get_meta_page(sbi, blk_addr);
1097         sum = (struct f2fs_summary_block *)page_address(new);
1098
1099         if (IS_NODESEG(type)) {
1100                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1101                         struct f2fs_summary *ns = &sum->entries[0];
1102                         int i;
1103                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1104                                 ns->version = 0;
1105                                 ns->ofs_in_node = 0;
1106                         }
1107                 } else {
1108                         if (restore_node_summary(sbi, segno, sum)) {
1109                                 f2fs_put_page(new, 1);
1110                                 return -EINVAL;
1111                         }
1112                 }
1113         }
1114
1115         /* set uncompleted segment to curseg */
1116         curseg = CURSEG_I(sbi, type);
1117         mutex_lock(&curseg->curseg_mutex);
1118         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1119         curseg->next_segno = segno;
1120         reset_curseg(sbi, type, 0);
1121         curseg->alloc_type = ckpt->alloc_type[type];
1122         curseg->next_blkoff = blk_off;
1123         mutex_unlock(&curseg->curseg_mutex);
1124         f2fs_put_page(new, 1);
1125         return 0;
1126 }
1127
1128 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1129 {
1130         int type = CURSEG_HOT_DATA;
1131
1132         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1133                 /* restore for compacted data summary */
1134                 if (read_compacted_summaries(sbi))
1135                         return -EINVAL;
1136                 type = CURSEG_HOT_NODE;
1137         }
1138
1139         for (; type <= CURSEG_COLD_NODE; type++)
1140                 if (read_normal_summaries(sbi, type))
1141                         return -EINVAL;
1142         return 0;
1143 }
1144
1145 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1146 {
1147         struct page *page;
1148         unsigned char *kaddr;
1149         struct f2fs_summary *summary;
1150         struct curseg_info *seg_i;
1151         int written_size = 0;
1152         int i, j;
1153
1154         page = grab_meta_page(sbi, blkaddr++);
1155         kaddr = (unsigned char *)page_address(page);
1156
1157         /* Step 1: write nat cache */
1158         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1159         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1160         written_size += SUM_JOURNAL_SIZE;
1161
1162         /* Step 2: write sit cache */
1163         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1164         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1165                                                 SUM_JOURNAL_SIZE);
1166         written_size += SUM_JOURNAL_SIZE;
1167
1168         set_page_dirty(page);
1169
1170         /* Step 3: write summary entries */
1171         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1172                 unsigned short blkoff;
1173                 seg_i = CURSEG_I(sbi, i);
1174                 if (sbi->ckpt->alloc_type[i] == SSR)
1175                         blkoff = sbi->blocks_per_seg;
1176                 else
1177                         blkoff = curseg_blkoff(sbi, i);
1178
1179                 for (j = 0; j < blkoff; j++) {
1180                         if (!page) {
1181                                 page = grab_meta_page(sbi, blkaddr++);
1182                                 kaddr = (unsigned char *)page_address(page);
1183                                 written_size = 0;
1184                         }
1185                         summary = (struct f2fs_summary *)(kaddr + written_size);
1186                         *summary = seg_i->sum_blk->entries[j];
1187                         written_size += SUMMARY_SIZE;
1188                         set_page_dirty(page);
1189
1190                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1191                                                         SUM_FOOTER_SIZE)
1192                                 continue;
1193
1194                         f2fs_put_page(page, 1);
1195                         page = NULL;
1196                 }
1197         }
1198         if (page)
1199                 f2fs_put_page(page, 1);
1200 }
1201
1202 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1203                                         block_t blkaddr, int type)
1204 {
1205         int i, end;
1206         if (IS_DATASEG(type))
1207                 end = type + NR_CURSEG_DATA_TYPE;
1208         else
1209                 end = type + NR_CURSEG_NODE_TYPE;
1210
1211         for (i = type; i < end; i++) {
1212                 struct curseg_info *sum = CURSEG_I(sbi, i);
1213                 mutex_lock(&sum->curseg_mutex);
1214                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1215                 mutex_unlock(&sum->curseg_mutex);
1216         }
1217 }
1218
1219 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1220 {
1221         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1222                 write_compacted_summaries(sbi, start_blk);
1223         else
1224                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1225 }
1226
1227 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1228 {
1229         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1230                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1231         return;
1232 }
1233
1234 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1235                                         unsigned int val, int alloc)
1236 {
1237         int i;
1238
1239         if (type == NAT_JOURNAL) {
1240                 for (i = 0; i < nats_in_cursum(sum); i++) {
1241                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1242                                 return i;
1243                 }
1244                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1245                         return update_nats_in_cursum(sum, 1);
1246         } else if (type == SIT_JOURNAL) {
1247                 for (i = 0; i < sits_in_cursum(sum); i++)
1248                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1249                                 return i;
1250                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1251                         return update_sits_in_cursum(sum, 1);
1252         }
1253         return -1;
1254 }
1255
1256 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1257                                         unsigned int segno)
1258 {
1259         struct sit_info *sit_i = SIT_I(sbi);
1260         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1261         block_t blk_addr = sit_i->sit_base_addr + offset;
1262
1263         check_seg_range(sbi, segno);
1264
1265         /* calculate sit block address */
1266         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1267                 blk_addr += sit_i->sit_blocks;
1268
1269         return get_meta_page(sbi, blk_addr);
1270 }
1271
1272 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1273                                         unsigned int start)
1274 {
1275         struct sit_info *sit_i = SIT_I(sbi);
1276         struct page *src_page, *dst_page;
1277         pgoff_t src_off, dst_off;
1278         void *src_addr, *dst_addr;
1279
1280         src_off = current_sit_addr(sbi, start);
1281         dst_off = next_sit_addr(sbi, src_off);
1282
1283         /* get current sit block page without lock */
1284         src_page = get_meta_page(sbi, src_off);
1285         dst_page = grab_meta_page(sbi, dst_off);
1286         BUG_ON(PageDirty(src_page));
1287
1288         src_addr = page_address(src_page);
1289         dst_addr = page_address(dst_page);
1290         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1291
1292         set_page_dirty(dst_page);
1293         f2fs_put_page(src_page, 1);
1294
1295         set_to_next_sit(sit_i, start);
1296
1297         return dst_page;
1298 }
1299
1300 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1301 {
1302         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1303         struct f2fs_summary_block *sum = curseg->sum_blk;
1304         int i;
1305
1306         /*
1307          * If the journal area in the current summary is full of sit entries,
1308          * all the sit entries will be flushed. Otherwise the sit entries
1309          * are not able to replace with newly hot sit entries.
1310          */
1311         if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1312                 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1313                         unsigned int segno;
1314                         segno = le32_to_cpu(segno_in_journal(sum, i));
1315                         __mark_sit_entry_dirty(sbi, segno);
1316                 }
1317                 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1318                 return 1;
1319         }
1320         return 0;
1321 }
1322
1323 /*
1324  * CP calls this function, which flushes SIT entries including sit_journal,
1325  * and moves prefree segs to free segs.
1326  */
1327 void flush_sit_entries(struct f2fs_sb_info *sbi)
1328 {
1329         struct sit_info *sit_i = SIT_I(sbi);
1330         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1331         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1332         struct f2fs_summary_block *sum = curseg->sum_blk;
1333         unsigned long nsegs = TOTAL_SEGS(sbi);
1334         struct page *page = NULL;
1335         struct f2fs_sit_block *raw_sit = NULL;
1336         unsigned int start = 0, end = 0;
1337         unsigned int segno = -1;
1338         bool flushed;
1339
1340         mutex_lock(&curseg->curseg_mutex);
1341         mutex_lock(&sit_i->sentry_lock);
1342
1343         /*
1344          * "flushed" indicates whether sit entries in journal are flushed
1345          * to the SIT area or not.
1346          */
1347         flushed = flush_sits_in_journal(sbi);
1348
1349         while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1350                 struct seg_entry *se = get_seg_entry(sbi, segno);
1351                 int sit_offset, offset;
1352
1353                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1354
1355                 if (flushed)
1356                         goto to_sit_page;
1357
1358                 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1359                 if (offset >= 0) {
1360                         segno_in_journal(sum, offset) = cpu_to_le32(segno);
1361                         seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1362                         goto flush_done;
1363                 }
1364 to_sit_page:
1365                 if (!page || (start > segno) || (segno > end)) {
1366                         if (page) {
1367                                 f2fs_put_page(page, 1);
1368                                 page = NULL;
1369                         }
1370
1371                         start = START_SEGNO(sit_i, segno);
1372                         end = start + SIT_ENTRY_PER_BLOCK - 1;
1373
1374                         /* read sit block that will be updated */
1375                         page = get_next_sit_page(sbi, start);
1376                         raw_sit = page_address(page);
1377                 }
1378
1379                 /* udpate entry in SIT block */
1380                 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1381 flush_done:
1382                 __clear_bit(segno, bitmap);
1383                 sit_i->dirty_sentries--;
1384         }
1385         mutex_unlock(&sit_i->sentry_lock);
1386         mutex_unlock(&curseg->curseg_mutex);
1387
1388         /* writeout last modified SIT block */
1389         f2fs_put_page(page, 1);
1390
1391         set_prefree_as_free_segments(sbi);
1392 }
1393
1394 static int build_sit_info(struct f2fs_sb_info *sbi)
1395 {
1396         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1397         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1398         struct sit_info *sit_i;
1399         unsigned int sit_segs, start;
1400         char *src_bitmap, *dst_bitmap;
1401         unsigned int bitmap_size;
1402
1403         /* allocate memory for SIT information */
1404         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1405         if (!sit_i)
1406                 return -ENOMEM;
1407
1408         SM_I(sbi)->sit_info = sit_i;
1409
1410         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1411         if (!sit_i->sentries)
1412                 return -ENOMEM;
1413
1414         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1415         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1416         if (!sit_i->dirty_sentries_bitmap)
1417                 return -ENOMEM;
1418
1419         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1420                 sit_i->sentries[start].cur_valid_map
1421                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1422                 sit_i->sentries[start].ckpt_valid_map
1423                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1424                 if (!sit_i->sentries[start].cur_valid_map
1425                                 || !sit_i->sentries[start].ckpt_valid_map)
1426                         return -ENOMEM;
1427         }
1428
1429         if (sbi->segs_per_sec > 1) {
1430                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1431                                         sizeof(struct sec_entry));
1432                 if (!sit_i->sec_entries)
1433                         return -ENOMEM;
1434         }
1435
1436         /* get information related with SIT */
1437         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1438
1439         /* setup SIT bitmap from ckeckpoint pack */
1440         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1441         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1442
1443         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1444         if (!dst_bitmap)
1445                 return -ENOMEM;
1446
1447         /* init SIT information */
1448         sit_i->s_ops = &default_salloc_ops;
1449
1450         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1451         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1452         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1453         sit_i->sit_bitmap = dst_bitmap;
1454         sit_i->bitmap_size = bitmap_size;
1455         sit_i->dirty_sentries = 0;
1456         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1457         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1458         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1459         mutex_init(&sit_i->sentry_lock);
1460         return 0;
1461 }
1462
1463 static int build_free_segmap(struct f2fs_sb_info *sbi)
1464 {
1465         struct f2fs_sm_info *sm_info = SM_I(sbi);
1466         struct free_segmap_info *free_i;
1467         unsigned int bitmap_size, sec_bitmap_size;
1468
1469         /* allocate memory for free segmap information */
1470         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1471         if (!free_i)
1472                 return -ENOMEM;
1473
1474         SM_I(sbi)->free_info = free_i;
1475
1476         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1477         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1478         if (!free_i->free_segmap)
1479                 return -ENOMEM;
1480
1481         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1482         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1483         if (!free_i->free_secmap)
1484                 return -ENOMEM;
1485
1486         /* set all segments as dirty temporarily */
1487         memset(free_i->free_segmap, 0xff, bitmap_size);
1488         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1489
1490         /* init free segmap information */
1491         free_i->start_segno =
1492                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1493         free_i->free_segments = 0;
1494         free_i->free_sections = 0;
1495         rwlock_init(&free_i->segmap_lock);
1496         return 0;
1497 }
1498
1499 static int build_curseg(struct f2fs_sb_info *sbi)
1500 {
1501         struct curseg_info *array;
1502         int i;
1503
1504         array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1505         if (!array)
1506                 return -ENOMEM;
1507
1508         SM_I(sbi)->curseg_array = array;
1509
1510         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1511                 mutex_init(&array[i].curseg_mutex);
1512                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1513                 if (!array[i].sum_blk)
1514                         return -ENOMEM;
1515                 array[i].segno = NULL_SEGNO;
1516                 array[i].next_blkoff = 0;
1517         }
1518         return restore_curseg_summaries(sbi);
1519 }
1520
1521 static void build_sit_entries(struct f2fs_sb_info *sbi)
1522 {
1523         struct sit_info *sit_i = SIT_I(sbi);
1524         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1525         struct f2fs_summary_block *sum = curseg->sum_blk;
1526         unsigned int start;
1527
1528         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1529                 struct seg_entry *se = &sit_i->sentries[start];
1530                 struct f2fs_sit_block *sit_blk;
1531                 struct f2fs_sit_entry sit;
1532                 struct page *page;
1533                 int i;
1534
1535                 mutex_lock(&curseg->curseg_mutex);
1536                 for (i = 0; i < sits_in_cursum(sum); i++) {
1537                         if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1538                                 sit = sit_in_journal(sum, i);
1539                                 mutex_unlock(&curseg->curseg_mutex);
1540                                 goto got_it;
1541                         }
1542                 }
1543                 mutex_unlock(&curseg->curseg_mutex);
1544                 page = get_current_sit_page(sbi, start);
1545                 sit_blk = (struct f2fs_sit_block *)page_address(page);
1546                 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1547                 f2fs_put_page(page, 1);
1548 got_it:
1549                 check_block_count(sbi, start, &sit);
1550                 seg_info_from_raw_sit(se, &sit);
1551                 if (sbi->segs_per_sec > 1) {
1552                         struct sec_entry *e = get_sec_entry(sbi, start);
1553                         e->valid_blocks += se->valid_blocks;
1554                 }
1555         }
1556 }
1557
1558 static void init_free_segmap(struct f2fs_sb_info *sbi)
1559 {
1560         unsigned int start;
1561         int type;
1562
1563         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1564                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1565                 if (!sentry->valid_blocks)
1566                         __set_free(sbi, start);
1567         }
1568
1569         /* set use the current segments */
1570         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1571                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1572                 __set_test_and_inuse(sbi, curseg_t->segno);
1573         }
1574 }
1575
1576 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1577 {
1578         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1579         struct free_segmap_info *free_i = FREE_I(sbi);
1580         unsigned int segno = 0, offset = 0;
1581         unsigned short valid_blocks;
1582
1583         while (segno < TOTAL_SEGS(sbi)) {
1584                 /* find dirty segment based on free segmap */
1585                 segno = find_next_inuse(free_i, TOTAL_SEGS(sbi), offset);
1586                 if (segno >= TOTAL_SEGS(sbi))
1587                         break;
1588                 offset = segno + 1;
1589                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1590                 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1591                         continue;
1592                 mutex_lock(&dirty_i->seglist_lock);
1593                 __locate_dirty_segment(sbi, segno, DIRTY);
1594                 mutex_unlock(&dirty_i->seglist_lock);
1595         }
1596 }
1597
1598 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1599 {
1600         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1601         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1602
1603         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1604         if (!dirty_i->victim_secmap)
1605                 return -ENOMEM;
1606         return 0;
1607 }
1608
1609 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1610 {
1611         struct dirty_seglist_info *dirty_i;
1612         unsigned int bitmap_size, i;
1613
1614         /* allocate memory for dirty segments list information */
1615         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1616         if (!dirty_i)
1617                 return -ENOMEM;
1618
1619         SM_I(sbi)->dirty_info = dirty_i;
1620         mutex_init(&dirty_i->seglist_lock);
1621
1622         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1623
1624         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1625                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1626                 if (!dirty_i->dirty_segmap[i])
1627                         return -ENOMEM;
1628         }
1629
1630         init_dirty_segmap(sbi);
1631         return init_victim_secmap(sbi);
1632 }
1633
1634 /*
1635  * Update min, max modified time for cost-benefit GC algorithm
1636  */
1637 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1638 {
1639         struct sit_info *sit_i = SIT_I(sbi);
1640         unsigned int segno;
1641
1642         mutex_lock(&sit_i->sentry_lock);
1643
1644         sit_i->min_mtime = LLONG_MAX;
1645
1646         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1647                 unsigned int i;
1648                 unsigned long long mtime = 0;
1649
1650                 for (i = 0; i < sbi->segs_per_sec; i++)
1651                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1652
1653                 mtime = div_u64(mtime, sbi->segs_per_sec);
1654
1655                 if (sit_i->min_mtime > mtime)
1656                         sit_i->min_mtime = mtime;
1657         }
1658         sit_i->max_mtime = get_mtime(sbi);
1659         mutex_unlock(&sit_i->sentry_lock);
1660 }
1661
1662 int build_segment_manager(struct f2fs_sb_info *sbi)
1663 {
1664         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1665         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1666         struct f2fs_sm_info *sm_info;
1667         int err;
1668
1669         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1670         if (!sm_info)
1671                 return -ENOMEM;
1672
1673         /* init sm info */
1674         sbi->sm_info = sm_info;
1675         INIT_LIST_HEAD(&sm_info->wblist_head);
1676         spin_lock_init(&sm_info->wblist_lock);
1677         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1678         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1679         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1680         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1681         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1682         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1683         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1684
1685         err = build_sit_info(sbi);
1686         if (err)
1687                 return err;
1688         err = build_free_segmap(sbi);
1689         if (err)
1690                 return err;
1691         err = build_curseg(sbi);
1692         if (err)
1693                 return err;
1694
1695         /* reinit free segmap based on SIT */
1696         build_sit_entries(sbi);
1697
1698         init_free_segmap(sbi);
1699         err = build_dirty_segmap(sbi);
1700         if (err)
1701                 return err;
1702
1703         init_min_max_mtime(sbi);
1704         return 0;
1705 }
1706
1707 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1708                 enum dirty_type dirty_type)
1709 {
1710         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1711
1712         mutex_lock(&dirty_i->seglist_lock);
1713         kfree(dirty_i->dirty_segmap[dirty_type]);
1714         dirty_i->nr_dirty[dirty_type] = 0;
1715         mutex_unlock(&dirty_i->seglist_lock);
1716 }
1717
1718 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1719 {
1720         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1721         kfree(dirty_i->victim_secmap);
1722 }
1723
1724 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1725 {
1726         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1727         int i;
1728
1729         if (!dirty_i)
1730                 return;
1731
1732         /* discard pre-free/dirty segments list */
1733         for (i = 0; i < NR_DIRTY_TYPE; i++)
1734                 discard_dirty_segmap(sbi, i);
1735
1736         destroy_victim_secmap(sbi);
1737         SM_I(sbi)->dirty_info = NULL;
1738         kfree(dirty_i);
1739 }
1740
1741 static void destroy_curseg(struct f2fs_sb_info *sbi)
1742 {
1743         struct curseg_info *array = SM_I(sbi)->curseg_array;
1744         int i;
1745
1746         if (!array)
1747                 return;
1748         SM_I(sbi)->curseg_array = NULL;
1749         for (i = 0; i < NR_CURSEG_TYPE; i++)
1750                 kfree(array[i].sum_blk);
1751         kfree(array);
1752 }
1753
1754 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1755 {
1756         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1757         if (!free_i)
1758                 return;
1759         SM_I(sbi)->free_info = NULL;
1760         kfree(free_i->free_segmap);
1761         kfree(free_i->free_secmap);
1762         kfree(free_i);
1763 }
1764
1765 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1766 {
1767         struct sit_info *sit_i = SIT_I(sbi);
1768         unsigned int start;
1769
1770         if (!sit_i)
1771                 return;
1772
1773         if (sit_i->sentries) {
1774                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1775                         kfree(sit_i->sentries[start].cur_valid_map);
1776                         kfree(sit_i->sentries[start].ckpt_valid_map);
1777                 }
1778         }
1779         vfree(sit_i->sentries);
1780         vfree(sit_i->sec_entries);
1781         kfree(sit_i->dirty_sentries_bitmap);
1782
1783         SM_I(sbi)->sit_info = NULL;
1784         kfree(sit_i->sit_bitmap);
1785         kfree(sit_i);
1786 }
1787
1788 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1789 {
1790         struct f2fs_sm_info *sm_info = SM_I(sbi);
1791         destroy_dirty_segmap(sbi);
1792         destroy_curseg(sbi);
1793         destroy_free_segmap(sbi);
1794         destroy_sit_info(sbi);
1795         sbi->sm_info = NULL;
1796         kfree(sm_info);
1797 }