f2fs: add tracepoint for f2fs_issue_flush
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include <trace/events/f2fs.h>
24
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26
27 static struct kmem_cache *discard_entry_slab;
28
29 /*
30  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
31  * MSB and LSB are reversed in a byte by f2fs_set_bit.
32  */
33 static inline unsigned long __reverse_ffs(unsigned long word)
34 {
35         int num = 0;
36
37 #if BITS_PER_LONG == 64
38         if ((word & 0xffffffff) == 0) {
39                 num += 32;
40                 word >>= 32;
41         }
42 #endif
43         if ((word & 0xffff) == 0) {
44                 num += 16;
45                 word >>= 16;
46         }
47         if ((word & 0xff) == 0) {
48                 num += 8;
49                 word >>= 8;
50         }
51         if ((word & 0xf0) == 0)
52                 num += 4;
53         else
54                 word >>= 4;
55         if ((word & 0xc) == 0)
56                 num += 2;
57         else
58                 word >>= 2;
59         if ((word & 0x2) == 0)
60                 num += 1;
61         return num;
62 }
63
64 /*
65  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
66  * f2fs_set_bit makes MSB and LSB reversed in a byte.
67  * Example:
68  *                             LSB <--> MSB
69  *   f2fs_set_bit(0, bitmap) => 0000 0001
70  *   f2fs_set_bit(7, bitmap) => 1000 0000
71  */
72 static unsigned long __find_rev_next_bit(const unsigned long *addr,
73                         unsigned long size, unsigned long offset)
74 {
75         const unsigned long *p = addr + BIT_WORD(offset);
76         unsigned long result = offset & ~(BITS_PER_LONG - 1);
77         unsigned long tmp;
78         unsigned long mask, submask;
79         unsigned long quot, rest;
80
81         if (offset >= size)
82                 return size;
83
84         size -= result;
85         offset %= BITS_PER_LONG;
86         if (!offset)
87                 goto aligned;
88
89         tmp = *(p++);
90         quot = (offset >> 3) << 3;
91         rest = offset & 0x7;
92         mask = ~0UL << quot;
93         submask = (unsigned char)(0xff << rest) >> rest;
94         submask <<= quot;
95         mask &= submask;
96         tmp &= mask;
97         if (size < BITS_PER_LONG)
98                 goto found_first;
99         if (tmp)
100                 goto found_middle;
101
102         size -= BITS_PER_LONG;
103         result += BITS_PER_LONG;
104 aligned:
105         while (size & ~(BITS_PER_LONG-1)) {
106                 tmp = *(p++);
107                 if (tmp)
108                         goto found_middle;
109                 result += BITS_PER_LONG;
110                 size -= BITS_PER_LONG;
111         }
112         if (!size)
113                 return result;
114         tmp = *p;
115 found_first:
116         tmp &= (~0UL >> (BITS_PER_LONG - size));
117         if (tmp == 0UL)         /* Are any bits set? */
118                 return result + size;   /* Nope. */
119 found_middle:
120         return result + __reverse_ffs(tmp);
121 }
122
123 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
124                         unsigned long size, unsigned long offset)
125 {
126         const unsigned long *p = addr + BIT_WORD(offset);
127         unsigned long result = offset & ~(BITS_PER_LONG - 1);
128         unsigned long tmp;
129         unsigned long mask, submask;
130         unsigned long quot, rest;
131
132         if (offset >= size)
133                 return size;
134
135         size -= result;
136         offset %= BITS_PER_LONG;
137         if (!offset)
138                 goto aligned;
139
140         tmp = *(p++);
141         quot = (offset >> 3) << 3;
142         rest = offset & 0x7;
143         mask = ~(~0UL << quot);
144         submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
145         submask <<= quot;
146         mask += submask;
147         tmp |= mask;
148         if (size < BITS_PER_LONG)
149                 goto found_first;
150         if (~tmp)
151                 goto found_middle;
152
153         size -= BITS_PER_LONG;
154         result += BITS_PER_LONG;
155 aligned:
156         while (size & ~(BITS_PER_LONG - 1)) {
157                 tmp = *(p++);
158                 if (~tmp)
159                         goto found_middle;
160                 result += BITS_PER_LONG;
161                 size -= BITS_PER_LONG;
162         }
163         if (!size)
164                 return result;
165         tmp = *p;
166
167 found_first:
168         tmp |= ~0UL << size;
169         if (tmp == ~0UL)        /* Are any bits zero? */
170                 return result + size;   /* Nope. */
171 found_middle:
172         return result + __reverse_ffz(tmp);
173 }
174
175 /*
176  * This function balances dirty node and dentry pages.
177  * In addition, it controls garbage collection.
178  */
179 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
180 {
181         /*
182          * We should do GC or end up with checkpoint, if there are so many dirty
183          * dir/node pages without enough free segments.
184          */
185         if (has_not_enough_free_secs(sbi, 0)) {
186                 mutex_lock(&sbi->gc_mutex);
187                 f2fs_gc(sbi);
188         }
189 }
190
191 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
192 {
193         /* check the # of cached NAT entries and prefree segments */
194         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
195                                 excess_prefree_segs(sbi))
196                 f2fs_sync_fs(sbi->sb, true);
197 }
198
199 static int issue_flush_thread(void *data)
200 {
201         struct f2fs_sb_info *sbi = data;
202         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
203         wait_queue_head_t *q = &fcc->flush_wait_queue;
204 repeat:
205         if (kthread_should_stop())
206                 return 0;
207
208         spin_lock(&fcc->issue_lock);
209         if (fcc->issue_list) {
210                 fcc->dispatch_list = fcc->issue_list;
211                 fcc->issue_list = fcc->issue_tail = NULL;
212         }
213         spin_unlock(&fcc->issue_lock);
214
215         if (fcc->dispatch_list) {
216                 struct bio *bio = bio_alloc(GFP_NOIO, 0);
217                 struct flush_cmd *cmd, *next;
218                 int ret;
219
220                 bio->bi_bdev = sbi->sb->s_bdev;
221                 ret = submit_bio_wait(WRITE_FLUSH, bio);
222
223                 for (cmd = fcc->dispatch_list; cmd; cmd = next) {
224                         cmd->ret = ret;
225                         next = cmd->next;
226                         complete(&cmd->wait);
227                 }
228                 bio_put(bio);
229                 fcc->dispatch_list = NULL;
230         }
231
232         wait_event_interruptible(*q,
233                         kthread_should_stop() || fcc->issue_list);
234         goto repeat;
235 }
236
237 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
238 {
239         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
240         struct flush_cmd cmd;
241
242         trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
243                                         test_opt(sbi, FLUSH_MERGE));
244
245         if (test_opt(sbi, NOBARRIER))
246                 return 0;
247
248         if (!test_opt(sbi, FLUSH_MERGE))
249                 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
250
251         init_completion(&cmd.wait);
252         cmd.next = NULL;
253
254         spin_lock(&fcc->issue_lock);
255         if (fcc->issue_list)
256                 fcc->issue_tail->next = &cmd;
257         else
258                 fcc->issue_list = &cmd;
259         fcc->issue_tail = &cmd;
260         spin_unlock(&fcc->issue_lock);
261
262         if (!fcc->dispatch_list)
263                 wake_up(&fcc->flush_wait_queue);
264
265         wait_for_completion(&cmd.wait);
266
267         return cmd.ret;
268 }
269
270 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
271 {
272         dev_t dev = sbi->sb->s_bdev->bd_dev;
273         struct flush_cmd_control *fcc;
274         int err = 0;
275
276         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
277         if (!fcc)
278                 return -ENOMEM;
279         spin_lock_init(&fcc->issue_lock);
280         init_waitqueue_head(&fcc->flush_wait_queue);
281         SM_I(sbi)->cmd_control_info = fcc;
282         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
283                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
284         if (IS_ERR(fcc->f2fs_issue_flush)) {
285                 err = PTR_ERR(fcc->f2fs_issue_flush);
286                 kfree(fcc);
287                 SM_I(sbi)->cmd_control_info = NULL;
288                 return err;
289         }
290
291         return err;
292 }
293
294 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
295 {
296         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
297
298         if (fcc && fcc->f2fs_issue_flush)
299                 kthread_stop(fcc->f2fs_issue_flush);
300         kfree(fcc);
301         SM_I(sbi)->cmd_control_info = NULL;
302 }
303
304 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
305                 enum dirty_type dirty_type)
306 {
307         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
308
309         /* need not be added */
310         if (IS_CURSEG(sbi, segno))
311                 return;
312
313         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
314                 dirty_i->nr_dirty[dirty_type]++;
315
316         if (dirty_type == DIRTY) {
317                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
318                 enum dirty_type t = sentry->type;
319
320                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
321                         dirty_i->nr_dirty[t]++;
322         }
323 }
324
325 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
326                 enum dirty_type dirty_type)
327 {
328         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
329
330         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
331                 dirty_i->nr_dirty[dirty_type]--;
332
333         if (dirty_type == DIRTY) {
334                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
335                 enum dirty_type t = sentry->type;
336
337                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
338                         dirty_i->nr_dirty[t]--;
339
340                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
341                         clear_bit(GET_SECNO(sbi, segno),
342                                                 dirty_i->victim_secmap);
343         }
344 }
345
346 /*
347  * Should not occur error such as -ENOMEM.
348  * Adding dirty entry into seglist is not critical operation.
349  * If a given segment is one of current working segments, it won't be added.
350  */
351 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
352 {
353         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
354         unsigned short valid_blocks;
355
356         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
357                 return;
358
359         mutex_lock(&dirty_i->seglist_lock);
360
361         valid_blocks = get_valid_blocks(sbi, segno, 0);
362
363         if (valid_blocks == 0) {
364                 __locate_dirty_segment(sbi, segno, PRE);
365                 __remove_dirty_segment(sbi, segno, DIRTY);
366         } else if (valid_blocks < sbi->blocks_per_seg) {
367                 __locate_dirty_segment(sbi, segno, DIRTY);
368         } else {
369                 /* Recovery routine with SSR needs this */
370                 __remove_dirty_segment(sbi, segno, DIRTY);
371         }
372
373         mutex_unlock(&dirty_i->seglist_lock);
374 }
375
376 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
377                                 block_t blkstart, block_t blklen)
378 {
379         sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
380         sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
381         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
382         return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
383 }
384
385 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
386 {
387         if (f2fs_issue_discard(sbi, blkaddr, 1)) {
388                 struct page *page = grab_meta_page(sbi, blkaddr);
389                 /* zero-filled page */
390                 set_page_dirty(page);
391                 f2fs_put_page(page, 1);
392         }
393 }
394
395 static void add_discard_addrs(struct f2fs_sb_info *sbi,
396                         unsigned int segno, struct seg_entry *se)
397 {
398         struct list_head *head = &SM_I(sbi)->discard_list;
399         struct discard_entry *new;
400         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
401         int max_blocks = sbi->blocks_per_seg;
402         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
403         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
404         unsigned long dmap[entries];
405         unsigned int start = 0, end = -1;
406         int i;
407
408         if (!test_opt(sbi, DISCARD))
409                 return;
410
411         /* zero block will be discarded through the prefree list */
412         if (!se->valid_blocks || se->valid_blocks == max_blocks)
413                 return;
414
415         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
416         for (i = 0; i < entries; i++)
417                 dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
418
419         while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
420                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
421                 if (start >= max_blocks)
422                         break;
423
424                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
425
426                 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
427                 INIT_LIST_HEAD(&new->list);
428                 new->blkaddr = START_BLOCK(sbi, segno) + start;
429                 new->len = end - start;
430
431                 list_add_tail(&new->list, head);
432                 SM_I(sbi)->nr_discards += end - start;
433         }
434 }
435
436 /*
437  * Should call clear_prefree_segments after checkpoint is done.
438  */
439 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
440 {
441         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
442         unsigned int segno = -1;
443         unsigned int total_segs = TOTAL_SEGS(sbi);
444
445         mutex_lock(&dirty_i->seglist_lock);
446         while (1) {
447                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
448                                 segno + 1);
449                 if (segno >= total_segs)
450                         break;
451                 __set_test_and_free(sbi, segno);
452         }
453         mutex_unlock(&dirty_i->seglist_lock);
454 }
455
456 void clear_prefree_segments(struct f2fs_sb_info *sbi)
457 {
458         struct list_head *head = &(SM_I(sbi)->discard_list);
459         struct discard_entry *entry, *this;
460         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
461         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
462         unsigned int total_segs = TOTAL_SEGS(sbi);
463         unsigned int start = 0, end = -1;
464
465         mutex_lock(&dirty_i->seglist_lock);
466
467         while (1) {
468                 int i;
469                 start = find_next_bit(prefree_map, total_segs, end + 1);
470                 if (start >= total_segs)
471                         break;
472                 end = find_next_zero_bit(prefree_map, total_segs, start + 1);
473
474                 for (i = start; i < end; i++)
475                         clear_bit(i, prefree_map);
476
477                 dirty_i->nr_dirty[PRE] -= end - start;
478
479                 if (!test_opt(sbi, DISCARD))
480                         continue;
481
482                 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
483                                 (end - start) << sbi->log_blocks_per_seg);
484         }
485         mutex_unlock(&dirty_i->seglist_lock);
486
487         /* send small discards */
488         list_for_each_entry_safe(entry, this, head, list) {
489                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
490                 list_del(&entry->list);
491                 SM_I(sbi)->nr_discards -= entry->len;
492                 kmem_cache_free(discard_entry_slab, entry);
493         }
494 }
495
496 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
497 {
498         struct sit_info *sit_i = SIT_I(sbi);
499         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
500                 sit_i->dirty_sentries++;
501 }
502
503 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
504                                         unsigned int segno, int modified)
505 {
506         struct seg_entry *se = get_seg_entry(sbi, segno);
507         se->type = type;
508         if (modified)
509                 __mark_sit_entry_dirty(sbi, segno);
510 }
511
512 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
513 {
514         struct seg_entry *se;
515         unsigned int segno, offset;
516         long int new_vblocks;
517
518         segno = GET_SEGNO(sbi, blkaddr);
519
520         se = get_seg_entry(sbi, segno);
521         new_vblocks = se->valid_blocks + del;
522         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
523
524         f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
525                                 (new_vblocks > sbi->blocks_per_seg)));
526
527         se->valid_blocks = new_vblocks;
528         se->mtime = get_mtime(sbi);
529         SIT_I(sbi)->max_mtime = se->mtime;
530
531         /* Update valid block bitmap */
532         if (del > 0) {
533                 if (f2fs_set_bit(offset, se->cur_valid_map))
534                         BUG();
535         } else {
536                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
537                         BUG();
538         }
539         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
540                 se->ckpt_valid_blocks += del;
541
542         __mark_sit_entry_dirty(sbi, segno);
543
544         /* update total number of valid blocks to be written in ckpt area */
545         SIT_I(sbi)->written_valid_blocks += del;
546
547         if (sbi->segs_per_sec > 1)
548                 get_sec_entry(sbi, segno)->valid_blocks += del;
549 }
550
551 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
552 {
553         update_sit_entry(sbi, new, 1);
554         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
555                 update_sit_entry(sbi, old, -1);
556
557         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
558         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
559 }
560
561 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
562 {
563         unsigned int segno = GET_SEGNO(sbi, addr);
564         struct sit_info *sit_i = SIT_I(sbi);
565
566         f2fs_bug_on(addr == NULL_ADDR);
567         if (addr == NEW_ADDR)
568                 return;
569
570         /* add it into sit main buffer */
571         mutex_lock(&sit_i->sentry_lock);
572
573         update_sit_entry(sbi, addr, -1);
574
575         /* add it into dirty seglist */
576         locate_dirty_segment(sbi, segno);
577
578         mutex_unlock(&sit_i->sentry_lock);
579 }
580
581 /*
582  * This function should be resided under the curseg_mutex lock
583  */
584 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
585                                         struct f2fs_summary *sum)
586 {
587         struct curseg_info *curseg = CURSEG_I(sbi, type);
588         void *addr = curseg->sum_blk;
589         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
590         memcpy(addr, sum, sizeof(struct f2fs_summary));
591 }
592
593 /*
594  * Calculate the number of current summary pages for writing
595  */
596 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
597 {
598         int valid_sum_count = 0;
599         int i, sum_in_page;
600
601         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
602                 if (sbi->ckpt->alloc_type[i] == SSR)
603                         valid_sum_count += sbi->blocks_per_seg;
604                 else
605                         valid_sum_count += curseg_blkoff(sbi, i);
606         }
607
608         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
609                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
610         if (valid_sum_count <= sum_in_page)
611                 return 1;
612         else if ((valid_sum_count - sum_in_page) <=
613                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
614                 return 2;
615         return 3;
616 }
617
618 /*
619  * Caller should put this summary page
620  */
621 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
622 {
623         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
624 }
625
626 static void write_sum_page(struct f2fs_sb_info *sbi,
627                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
628 {
629         struct page *page = grab_meta_page(sbi, blk_addr);
630         void *kaddr = page_address(page);
631         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
632         set_page_dirty(page);
633         f2fs_put_page(page, 1);
634 }
635
636 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
637 {
638         struct curseg_info *curseg = CURSEG_I(sbi, type);
639         unsigned int segno = curseg->segno + 1;
640         struct free_segmap_info *free_i = FREE_I(sbi);
641
642         if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
643                 return !test_bit(segno, free_i->free_segmap);
644         return 0;
645 }
646
647 /*
648  * Find a new segment from the free segments bitmap to right order
649  * This function should be returned with success, otherwise BUG
650  */
651 static void get_new_segment(struct f2fs_sb_info *sbi,
652                         unsigned int *newseg, bool new_sec, int dir)
653 {
654         struct free_segmap_info *free_i = FREE_I(sbi);
655         unsigned int segno, secno, zoneno;
656         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
657         unsigned int hint = *newseg / sbi->segs_per_sec;
658         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
659         unsigned int left_start = hint;
660         bool init = true;
661         int go_left = 0;
662         int i;
663
664         write_lock(&free_i->segmap_lock);
665
666         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
667                 segno = find_next_zero_bit(free_i->free_segmap,
668                                         TOTAL_SEGS(sbi), *newseg + 1);
669                 if (segno - *newseg < sbi->segs_per_sec -
670                                         (*newseg % sbi->segs_per_sec))
671                         goto got_it;
672         }
673 find_other_zone:
674         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
675         if (secno >= TOTAL_SECS(sbi)) {
676                 if (dir == ALLOC_RIGHT) {
677                         secno = find_next_zero_bit(free_i->free_secmap,
678                                                         TOTAL_SECS(sbi), 0);
679                         f2fs_bug_on(secno >= TOTAL_SECS(sbi));
680                 } else {
681                         go_left = 1;
682                         left_start = hint - 1;
683                 }
684         }
685         if (go_left == 0)
686                 goto skip_left;
687
688         while (test_bit(left_start, free_i->free_secmap)) {
689                 if (left_start > 0) {
690                         left_start--;
691                         continue;
692                 }
693                 left_start = find_next_zero_bit(free_i->free_secmap,
694                                                         TOTAL_SECS(sbi), 0);
695                 f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
696                 break;
697         }
698         secno = left_start;
699 skip_left:
700         hint = secno;
701         segno = secno * sbi->segs_per_sec;
702         zoneno = secno / sbi->secs_per_zone;
703
704         /* give up on finding another zone */
705         if (!init)
706                 goto got_it;
707         if (sbi->secs_per_zone == 1)
708                 goto got_it;
709         if (zoneno == old_zoneno)
710                 goto got_it;
711         if (dir == ALLOC_LEFT) {
712                 if (!go_left && zoneno + 1 >= total_zones)
713                         goto got_it;
714                 if (go_left && zoneno == 0)
715                         goto got_it;
716         }
717         for (i = 0; i < NR_CURSEG_TYPE; i++)
718                 if (CURSEG_I(sbi, i)->zone == zoneno)
719                         break;
720
721         if (i < NR_CURSEG_TYPE) {
722                 /* zone is in user, try another */
723                 if (go_left)
724                         hint = zoneno * sbi->secs_per_zone - 1;
725                 else if (zoneno + 1 >= total_zones)
726                         hint = 0;
727                 else
728                         hint = (zoneno + 1) * sbi->secs_per_zone;
729                 init = false;
730                 goto find_other_zone;
731         }
732 got_it:
733         /* set it as dirty segment in free segmap */
734         f2fs_bug_on(test_bit(segno, free_i->free_segmap));
735         __set_inuse(sbi, segno);
736         *newseg = segno;
737         write_unlock(&free_i->segmap_lock);
738 }
739
740 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
741 {
742         struct curseg_info *curseg = CURSEG_I(sbi, type);
743         struct summary_footer *sum_footer;
744
745         curseg->segno = curseg->next_segno;
746         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
747         curseg->next_blkoff = 0;
748         curseg->next_segno = NULL_SEGNO;
749
750         sum_footer = &(curseg->sum_blk->footer);
751         memset(sum_footer, 0, sizeof(struct summary_footer));
752         if (IS_DATASEG(type))
753                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
754         if (IS_NODESEG(type))
755                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
756         __set_sit_entry_type(sbi, type, curseg->segno, modified);
757 }
758
759 /*
760  * Allocate a current working segment.
761  * This function always allocates a free segment in LFS manner.
762  */
763 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
764 {
765         struct curseg_info *curseg = CURSEG_I(sbi, type);
766         unsigned int segno = curseg->segno;
767         int dir = ALLOC_LEFT;
768
769         write_sum_page(sbi, curseg->sum_blk,
770                                 GET_SUM_BLOCK(sbi, segno));
771         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
772                 dir = ALLOC_RIGHT;
773
774         if (test_opt(sbi, NOHEAP))
775                 dir = ALLOC_RIGHT;
776
777         get_new_segment(sbi, &segno, new_sec, dir);
778         curseg->next_segno = segno;
779         reset_curseg(sbi, type, 1);
780         curseg->alloc_type = LFS;
781 }
782
783 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
784                         struct curseg_info *seg, block_t start)
785 {
786         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
787         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
788         unsigned long target_map[entries];
789         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
790         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
791         int i, pos;
792
793         for (i = 0; i < entries; i++)
794                 target_map[i] = ckpt_map[i] | cur_map[i];
795
796         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
797
798         seg->next_blkoff = pos;
799 }
800
801 /*
802  * If a segment is written by LFS manner, next block offset is just obtained
803  * by increasing the current block offset. However, if a segment is written by
804  * SSR manner, next block offset obtained by calling __next_free_blkoff
805  */
806 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
807                                 struct curseg_info *seg)
808 {
809         if (seg->alloc_type == SSR)
810                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
811         else
812                 seg->next_blkoff++;
813 }
814
815 /*
816  * This function always allocates a used segment (from dirty seglist) by SSR
817  * manner, so it should recover the existing segment information of valid blocks
818  */
819 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
820 {
821         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
822         struct curseg_info *curseg = CURSEG_I(sbi, type);
823         unsigned int new_segno = curseg->next_segno;
824         struct f2fs_summary_block *sum_node;
825         struct page *sum_page;
826
827         write_sum_page(sbi, curseg->sum_blk,
828                                 GET_SUM_BLOCK(sbi, curseg->segno));
829         __set_test_and_inuse(sbi, new_segno);
830
831         mutex_lock(&dirty_i->seglist_lock);
832         __remove_dirty_segment(sbi, new_segno, PRE);
833         __remove_dirty_segment(sbi, new_segno, DIRTY);
834         mutex_unlock(&dirty_i->seglist_lock);
835
836         reset_curseg(sbi, type, 1);
837         curseg->alloc_type = SSR;
838         __next_free_blkoff(sbi, curseg, 0);
839
840         if (reuse) {
841                 sum_page = get_sum_page(sbi, new_segno);
842                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
843                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
844                 f2fs_put_page(sum_page, 1);
845         }
846 }
847
848 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
849 {
850         struct curseg_info *curseg = CURSEG_I(sbi, type);
851         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
852
853         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
854                 return v_ops->get_victim(sbi,
855                                 &(curseg)->next_segno, BG_GC, type, SSR);
856
857         /* For data segments, let's do SSR more intensively */
858         for (; type >= CURSEG_HOT_DATA; type--)
859                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
860                                                 BG_GC, type, SSR))
861                         return 1;
862         return 0;
863 }
864
865 /*
866  * flush out current segment and replace it with new segment
867  * This function should be returned with success, otherwise BUG
868  */
869 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
870                                                 int type, bool force)
871 {
872         struct curseg_info *curseg = CURSEG_I(sbi, type);
873
874         if (force)
875                 new_curseg(sbi, type, true);
876         else if (type == CURSEG_WARM_NODE)
877                 new_curseg(sbi, type, false);
878         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
879                 new_curseg(sbi, type, false);
880         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
881                 change_curseg(sbi, type, true);
882         else
883                 new_curseg(sbi, type, false);
884
885         stat_inc_seg_type(sbi, curseg);
886 }
887
888 void allocate_new_segments(struct f2fs_sb_info *sbi)
889 {
890         struct curseg_info *curseg;
891         unsigned int old_curseg;
892         int i;
893
894         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
895                 curseg = CURSEG_I(sbi, i);
896                 old_curseg = curseg->segno;
897                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
898                 locate_dirty_segment(sbi, old_curseg);
899         }
900 }
901
902 static const struct segment_allocation default_salloc_ops = {
903         .allocate_segment = allocate_segment_by_default,
904 };
905
906 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
907 {
908         struct curseg_info *curseg = CURSEG_I(sbi, type);
909         if (curseg->next_blkoff < sbi->blocks_per_seg)
910                 return true;
911         return false;
912 }
913
914 static int __get_segment_type_2(struct page *page, enum page_type p_type)
915 {
916         if (p_type == DATA)
917                 return CURSEG_HOT_DATA;
918         else
919                 return CURSEG_HOT_NODE;
920 }
921
922 static int __get_segment_type_4(struct page *page, enum page_type p_type)
923 {
924         if (p_type == DATA) {
925                 struct inode *inode = page->mapping->host;
926
927                 if (S_ISDIR(inode->i_mode))
928                         return CURSEG_HOT_DATA;
929                 else
930                         return CURSEG_COLD_DATA;
931         } else {
932                 if (IS_DNODE(page) && !is_cold_node(page))
933                         return CURSEG_HOT_NODE;
934                 else
935                         return CURSEG_COLD_NODE;
936         }
937 }
938
939 static int __get_segment_type_6(struct page *page, enum page_type p_type)
940 {
941         if (p_type == DATA) {
942                 struct inode *inode = page->mapping->host;
943
944                 if (S_ISDIR(inode->i_mode))
945                         return CURSEG_HOT_DATA;
946                 else if (is_cold_data(page) || file_is_cold(inode))
947                         return CURSEG_COLD_DATA;
948                 else
949                         return CURSEG_WARM_DATA;
950         } else {
951                 if (IS_DNODE(page))
952                         return is_cold_node(page) ? CURSEG_WARM_NODE :
953                                                 CURSEG_HOT_NODE;
954                 else
955                         return CURSEG_COLD_NODE;
956         }
957 }
958
959 static int __get_segment_type(struct page *page, enum page_type p_type)
960 {
961         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
962         switch (sbi->active_logs) {
963         case 2:
964                 return __get_segment_type_2(page, p_type);
965         case 4:
966                 return __get_segment_type_4(page, p_type);
967         }
968         /* NR_CURSEG_TYPE(6) logs by default */
969         f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
970         return __get_segment_type_6(page, p_type);
971 }
972
973 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
974                 block_t old_blkaddr, block_t *new_blkaddr,
975                 struct f2fs_summary *sum, int type)
976 {
977         struct sit_info *sit_i = SIT_I(sbi);
978         struct curseg_info *curseg;
979         unsigned int old_cursegno;
980
981         curseg = CURSEG_I(sbi, type);
982
983         mutex_lock(&curseg->curseg_mutex);
984
985         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
986         old_cursegno = curseg->segno;
987
988         /*
989          * __add_sum_entry should be resided under the curseg_mutex
990          * because, this function updates a summary entry in the
991          * current summary block.
992          */
993         __add_sum_entry(sbi, type, sum);
994
995         mutex_lock(&sit_i->sentry_lock);
996         __refresh_next_blkoff(sbi, curseg);
997
998         stat_inc_block_count(sbi, curseg);
999
1000         if (!__has_curseg_space(sbi, type))
1001                 sit_i->s_ops->allocate_segment(sbi, type, false);
1002         /*
1003          * SIT information should be updated before segment allocation,
1004          * since SSR needs latest valid block information.
1005          */
1006         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1007         locate_dirty_segment(sbi, old_cursegno);
1008
1009         mutex_unlock(&sit_i->sentry_lock);
1010
1011         if (page && IS_NODESEG(type))
1012                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1013
1014         mutex_unlock(&curseg->curseg_mutex);
1015 }
1016
1017 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1018                         block_t old_blkaddr, block_t *new_blkaddr,
1019                         struct f2fs_summary *sum, struct f2fs_io_info *fio)
1020 {
1021         int type = __get_segment_type(page, fio->type);
1022
1023         allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
1024
1025         /* writeout dirty page into bdev */
1026         f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
1027 }
1028
1029 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1030 {
1031         struct f2fs_io_info fio = {
1032                 .type = META,
1033                 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
1034         };
1035
1036         set_page_writeback(page);
1037         f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1038 }
1039
1040 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1041                 struct f2fs_io_info *fio,
1042                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1043 {
1044         struct f2fs_summary sum;
1045         set_summary(&sum, nid, 0, 0);
1046         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
1047 }
1048
1049 void write_data_page(struct page *page, struct dnode_of_data *dn,
1050                 block_t *new_blkaddr, struct f2fs_io_info *fio)
1051 {
1052         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
1053         struct f2fs_summary sum;
1054         struct node_info ni;
1055
1056         f2fs_bug_on(dn->data_blkaddr == NULL_ADDR);
1057         get_node_info(sbi, dn->nid, &ni);
1058         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1059
1060         do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
1061 }
1062
1063 void rewrite_data_page(struct page *page, block_t old_blkaddr,
1064                                         struct f2fs_io_info *fio)
1065 {
1066         struct inode *inode = page->mapping->host;
1067         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1068         f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio);
1069 }
1070
1071 void recover_data_page(struct f2fs_sb_info *sbi,
1072                         struct page *page, struct f2fs_summary *sum,
1073                         block_t old_blkaddr, block_t new_blkaddr)
1074 {
1075         struct sit_info *sit_i = SIT_I(sbi);
1076         struct curseg_info *curseg;
1077         unsigned int segno, old_cursegno;
1078         struct seg_entry *se;
1079         int type;
1080
1081         segno = GET_SEGNO(sbi, new_blkaddr);
1082         se = get_seg_entry(sbi, segno);
1083         type = se->type;
1084
1085         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1086                 if (old_blkaddr == NULL_ADDR)
1087                         type = CURSEG_COLD_DATA;
1088                 else
1089                         type = CURSEG_WARM_DATA;
1090         }
1091         curseg = CURSEG_I(sbi, type);
1092
1093         mutex_lock(&curseg->curseg_mutex);
1094         mutex_lock(&sit_i->sentry_lock);
1095
1096         old_cursegno = curseg->segno;
1097
1098         /* change the current segment */
1099         if (segno != curseg->segno) {
1100                 curseg->next_segno = segno;
1101                 change_curseg(sbi, type, true);
1102         }
1103
1104         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1105         __add_sum_entry(sbi, type, sum);
1106
1107         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1108         locate_dirty_segment(sbi, old_cursegno);
1109
1110         mutex_unlock(&sit_i->sentry_lock);
1111         mutex_unlock(&curseg->curseg_mutex);
1112 }
1113
1114 void rewrite_node_page(struct f2fs_sb_info *sbi,
1115                         struct page *page, struct f2fs_summary *sum,
1116                         block_t old_blkaddr, block_t new_blkaddr)
1117 {
1118         struct sit_info *sit_i = SIT_I(sbi);
1119         int type = CURSEG_WARM_NODE;
1120         struct curseg_info *curseg;
1121         unsigned int segno, old_cursegno;
1122         block_t next_blkaddr = next_blkaddr_of_node(page);
1123         unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1124         struct f2fs_io_info fio = {
1125                 .type = NODE,
1126                 .rw = WRITE_SYNC,
1127         };
1128
1129         curseg = CURSEG_I(sbi, type);
1130
1131         mutex_lock(&curseg->curseg_mutex);
1132         mutex_lock(&sit_i->sentry_lock);
1133
1134         segno = GET_SEGNO(sbi, new_blkaddr);
1135         old_cursegno = curseg->segno;
1136
1137         /* change the current segment */
1138         if (segno != curseg->segno) {
1139                 curseg->next_segno = segno;
1140                 change_curseg(sbi, type, true);
1141         }
1142         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1143         __add_sum_entry(sbi, type, sum);
1144
1145         /* change the current log to the next block addr in advance */
1146         if (next_segno != segno) {
1147                 curseg->next_segno = next_segno;
1148                 change_curseg(sbi, type, true);
1149         }
1150         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, next_blkaddr);
1151
1152         /* rewrite node page */
1153         set_page_writeback(page);
1154         f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio);
1155         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1156         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1157         locate_dirty_segment(sbi, old_cursegno);
1158
1159         mutex_unlock(&sit_i->sentry_lock);
1160         mutex_unlock(&curseg->curseg_mutex);
1161 }
1162
1163 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1164                                         struct page *page, enum page_type type)
1165 {
1166         enum page_type btype = PAGE_TYPE_OF_BIO(type);
1167         struct f2fs_bio_info *io = &sbi->write_io[btype];
1168         struct bio_vec *bvec;
1169         int i;
1170
1171         down_read(&io->io_rwsem);
1172         if (!io->bio)
1173                 goto out;
1174
1175         bio_for_each_segment_all(bvec, io->bio, i) {
1176                 if (page == bvec->bv_page) {
1177                         up_read(&io->io_rwsem);
1178                         return true;
1179                 }
1180         }
1181
1182 out:
1183         up_read(&io->io_rwsem);
1184         return false;
1185 }
1186
1187 void f2fs_wait_on_page_writeback(struct page *page,
1188                                 enum page_type type)
1189 {
1190         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1191         if (PageWriteback(page)) {
1192                 if (is_merged_page(sbi, page, type))
1193                         f2fs_submit_merged_bio(sbi, type, WRITE);
1194                 wait_on_page_writeback(page);
1195         }
1196 }
1197
1198 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1199 {
1200         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1201         struct curseg_info *seg_i;
1202         unsigned char *kaddr;
1203         struct page *page;
1204         block_t start;
1205         int i, j, offset;
1206
1207         start = start_sum_block(sbi);
1208
1209         page = get_meta_page(sbi, start++);
1210         kaddr = (unsigned char *)page_address(page);
1211
1212         /* Step 1: restore nat cache */
1213         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1214         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1215
1216         /* Step 2: restore sit cache */
1217         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1218         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1219                                                 SUM_JOURNAL_SIZE);
1220         offset = 2 * SUM_JOURNAL_SIZE;
1221
1222         /* Step 3: restore summary entries */
1223         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1224                 unsigned short blk_off;
1225                 unsigned int segno;
1226
1227                 seg_i = CURSEG_I(sbi, i);
1228                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1229                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1230                 seg_i->next_segno = segno;
1231                 reset_curseg(sbi, i, 0);
1232                 seg_i->alloc_type = ckpt->alloc_type[i];
1233                 seg_i->next_blkoff = blk_off;
1234
1235                 if (seg_i->alloc_type == SSR)
1236                         blk_off = sbi->blocks_per_seg;
1237
1238                 for (j = 0; j < blk_off; j++) {
1239                         struct f2fs_summary *s;
1240                         s = (struct f2fs_summary *)(kaddr + offset);
1241                         seg_i->sum_blk->entries[j] = *s;
1242                         offset += SUMMARY_SIZE;
1243                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1244                                                 SUM_FOOTER_SIZE)
1245                                 continue;
1246
1247                         f2fs_put_page(page, 1);
1248                         page = NULL;
1249
1250                         page = get_meta_page(sbi, start++);
1251                         kaddr = (unsigned char *)page_address(page);
1252                         offset = 0;
1253                 }
1254         }
1255         f2fs_put_page(page, 1);
1256         return 0;
1257 }
1258
1259 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1260 {
1261         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1262         struct f2fs_summary_block *sum;
1263         struct curseg_info *curseg;
1264         struct page *new;
1265         unsigned short blk_off;
1266         unsigned int segno = 0;
1267         block_t blk_addr = 0;
1268
1269         /* get segment number and block addr */
1270         if (IS_DATASEG(type)) {
1271                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1272                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1273                                                         CURSEG_HOT_DATA]);
1274                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1275                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1276                 else
1277                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1278         } else {
1279                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1280                                                         CURSEG_HOT_NODE]);
1281                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1282                                                         CURSEG_HOT_NODE]);
1283                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1284                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1285                                                         type - CURSEG_HOT_NODE);
1286                 else
1287                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1288         }
1289
1290         new = get_meta_page(sbi, blk_addr);
1291         sum = (struct f2fs_summary_block *)page_address(new);
1292
1293         if (IS_NODESEG(type)) {
1294                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1295                         struct f2fs_summary *ns = &sum->entries[0];
1296                         int i;
1297                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1298                                 ns->version = 0;
1299                                 ns->ofs_in_node = 0;
1300                         }
1301                 } else {
1302                         int err;
1303
1304                         err = restore_node_summary(sbi, segno, sum);
1305                         if (err) {
1306                                 f2fs_put_page(new, 1);
1307                                 return err;
1308                         }
1309                 }
1310         }
1311
1312         /* set uncompleted segment to curseg */
1313         curseg = CURSEG_I(sbi, type);
1314         mutex_lock(&curseg->curseg_mutex);
1315         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1316         curseg->next_segno = segno;
1317         reset_curseg(sbi, type, 0);
1318         curseg->alloc_type = ckpt->alloc_type[type];
1319         curseg->next_blkoff = blk_off;
1320         mutex_unlock(&curseg->curseg_mutex);
1321         f2fs_put_page(new, 1);
1322         return 0;
1323 }
1324
1325 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1326 {
1327         int type = CURSEG_HOT_DATA;
1328         int err;
1329
1330         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1331                 /* restore for compacted data summary */
1332                 if (read_compacted_summaries(sbi))
1333                         return -EINVAL;
1334                 type = CURSEG_HOT_NODE;
1335         }
1336
1337         for (; type <= CURSEG_COLD_NODE; type++) {
1338                 err = read_normal_summaries(sbi, type);
1339                 if (err)
1340                         return err;
1341         }
1342
1343         return 0;
1344 }
1345
1346 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1347 {
1348         struct page *page;
1349         unsigned char *kaddr;
1350         struct f2fs_summary *summary;
1351         struct curseg_info *seg_i;
1352         int written_size = 0;
1353         int i, j;
1354
1355         page = grab_meta_page(sbi, blkaddr++);
1356         kaddr = (unsigned char *)page_address(page);
1357
1358         /* Step 1: write nat cache */
1359         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1360         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1361         written_size += SUM_JOURNAL_SIZE;
1362
1363         /* Step 2: write sit cache */
1364         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1365         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1366                                                 SUM_JOURNAL_SIZE);
1367         written_size += SUM_JOURNAL_SIZE;
1368
1369         /* Step 3: write summary entries */
1370         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1371                 unsigned short blkoff;
1372                 seg_i = CURSEG_I(sbi, i);
1373                 if (sbi->ckpt->alloc_type[i] == SSR)
1374                         blkoff = sbi->blocks_per_seg;
1375                 else
1376                         blkoff = curseg_blkoff(sbi, i);
1377
1378                 for (j = 0; j < blkoff; j++) {
1379                         if (!page) {
1380                                 page = grab_meta_page(sbi, blkaddr++);
1381                                 kaddr = (unsigned char *)page_address(page);
1382                                 written_size = 0;
1383                         }
1384                         summary = (struct f2fs_summary *)(kaddr + written_size);
1385                         *summary = seg_i->sum_blk->entries[j];
1386                         written_size += SUMMARY_SIZE;
1387
1388                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1389                                                         SUM_FOOTER_SIZE)
1390                                 continue;
1391
1392                         set_page_dirty(page);
1393                         f2fs_put_page(page, 1);
1394                         page = NULL;
1395                 }
1396         }
1397         if (page) {
1398                 set_page_dirty(page);
1399                 f2fs_put_page(page, 1);
1400         }
1401 }
1402
1403 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1404                                         block_t blkaddr, int type)
1405 {
1406         int i, end;
1407         if (IS_DATASEG(type))
1408                 end = type + NR_CURSEG_DATA_TYPE;
1409         else
1410                 end = type + NR_CURSEG_NODE_TYPE;
1411
1412         for (i = type; i < end; i++) {
1413                 struct curseg_info *sum = CURSEG_I(sbi, i);
1414                 mutex_lock(&sum->curseg_mutex);
1415                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1416                 mutex_unlock(&sum->curseg_mutex);
1417         }
1418 }
1419
1420 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1421 {
1422         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1423                 write_compacted_summaries(sbi, start_blk);
1424         else
1425                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1426 }
1427
1428 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1429 {
1430         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1431                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1432 }
1433
1434 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1435                                         unsigned int val, int alloc)
1436 {
1437         int i;
1438
1439         if (type == NAT_JOURNAL) {
1440                 for (i = 0; i < nats_in_cursum(sum); i++) {
1441                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1442                                 return i;
1443                 }
1444                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1445                         return update_nats_in_cursum(sum, 1);
1446         } else if (type == SIT_JOURNAL) {
1447                 for (i = 0; i < sits_in_cursum(sum); i++)
1448                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1449                                 return i;
1450                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1451                         return update_sits_in_cursum(sum, 1);
1452         }
1453         return -1;
1454 }
1455
1456 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1457                                         unsigned int segno)
1458 {
1459         struct sit_info *sit_i = SIT_I(sbi);
1460         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1461         block_t blk_addr = sit_i->sit_base_addr + offset;
1462
1463         check_seg_range(sbi, segno);
1464
1465         /* calculate sit block address */
1466         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1467                 blk_addr += sit_i->sit_blocks;
1468
1469         return get_meta_page(sbi, blk_addr);
1470 }
1471
1472 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1473                                         unsigned int start)
1474 {
1475         struct sit_info *sit_i = SIT_I(sbi);
1476         struct page *src_page, *dst_page;
1477         pgoff_t src_off, dst_off;
1478         void *src_addr, *dst_addr;
1479
1480         src_off = current_sit_addr(sbi, start);
1481         dst_off = next_sit_addr(sbi, src_off);
1482
1483         /* get current sit block page without lock */
1484         src_page = get_meta_page(sbi, src_off);
1485         dst_page = grab_meta_page(sbi, dst_off);
1486         f2fs_bug_on(PageDirty(src_page));
1487
1488         src_addr = page_address(src_page);
1489         dst_addr = page_address(dst_page);
1490         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1491
1492         set_page_dirty(dst_page);
1493         f2fs_put_page(src_page, 1);
1494
1495         set_to_next_sit(sit_i, start);
1496
1497         return dst_page;
1498 }
1499
1500 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1501 {
1502         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1503         struct f2fs_summary_block *sum = curseg->sum_blk;
1504         int i;
1505
1506         /*
1507          * If the journal area in the current summary is full of sit entries,
1508          * all the sit entries will be flushed. Otherwise the sit entries
1509          * are not able to replace with newly hot sit entries.
1510          */
1511         if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1512                 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1513                         unsigned int segno;
1514                         segno = le32_to_cpu(segno_in_journal(sum, i));
1515                         __mark_sit_entry_dirty(sbi, segno);
1516                 }
1517                 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1518                 return true;
1519         }
1520         return false;
1521 }
1522
1523 /*
1524  * CP calls this function, which flushes SIT entries including sit_journal,
1525  * and moves prefree segs to free segs.
1526  */
1527 void flush_sit_entries(struct f2fs_sb_info *sbi)
1528 {
1529         struct sit_info *sit_i = SIT_I(sbi);
1530         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1531         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1532         struct f2fs_summary_block *sum = curseg->sum_blk;
1533         unsigned long nsegs = TOTAL_SEGS(sbi);
1534         struct page *page = NULL;
1535         struct f2fs_sit_block *raw_sit = NULL;
1536         unsigned int start = 0, end = 0;
1537         unsigned int segno = -1;
1538         bool flushed;
1539
1540         mutex_lock(&curseg->curseg_mutex);
1541         mutex_lock(&sit_i->sentry_lock);
1542
1543         /*
1544          * "flushed" indicates whether sit entries in journal are flushed
1545          * to the SIT area or not.
1546          */
1547         flushed = flush_sits_in_journal(sbi);
1548
1549         while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1550                 struct seg_entry *se = get_seg_entry(sbi, segno);
1551                 int sit_offset, offset;
1552
1553                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1554
1555                 /* add discard candidates */
1556                 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1557                         add_discard_addrs(sbi, segno, se);
1558
1559                 if (flushed)
1560                         goto to_sit_page;
1561
1562                 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1563                 if (offset >= 0) {
1564                         segno_in_journal(sum, offset) = cpu_to_le32(segno);
1565                         seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1566                         goto flush_done;
1567                 }
1568 to_sit_page:
1569                 if (!page || (start > segno) || (segno > end)) {
1570                         if (page) {
1571                                 f2fs_put_page(page, 1);
1572                                 page = NULL;
1573                         }
1574
1575                         start = START_SEGNO(sit_i, segno);
1576                         end = start + SIT_ENTRY_PER_BLOCK - 1;
1577
1578                         /* read sit block that will be updated */
1579                         page = get_next_sit_page(sbi, start);
1580                         raw_sit = page_address(page);
1581                 }
1582
1583                 /* udpate entry in SIT block */
1584                 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1585 flush_done:
1586                 __clear_bit(segno, bitmap);
1587                 sit_i->dirty_sentries--;
1588         }
1589         mutex_unlock(&sit_i->sentry_lock);
1590         mutex_unlock(&curseg->curseg_mutex);
1591
1592         /* writeout last modified SIT block */
1593         f2fs_put_page(page, 1);
1594
1595         set_prefree_as_free_segments(sbi);
1596 }
1597
1598 static int build_sit_info(struct f2fs_sb_info *sbi)
1599 {
1600         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1601         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1602         struct sit_info *sit_i;
1603         unsigned int sit_segs, start;
1604         char *src_bitmap, *dst_bitmap;
1605         unsigned int bitmap_size;
1606
1607         /* allocate memory for SIT information */
1608         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1609         if (!sit_i)
1610                 return -ENOMEM;
1611
1612         SM_I(sbi)->sit_info = sit_i;
1613
1614         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1615         if (!sit_i->sentries)
1616                 return -ENOMEM;
1617
1618         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1619         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1620         if (!sit_i->dirty_sentries_bitmap)
1621                 return -ENOMEM;
1622
1623         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1624                 sit_i->sentries[start].cur_valid_map
1625                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1626                 sit_i->sentries[start].ckpt_valid_map
1627                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1628                 if (!sit_i->sentries[start].cur_valid_map
1629                                 || !sit_i->sentries[start].ckpt_valid_map)
1630                         return -ENOMEM;
1631         }
1632
1633         if (sbi->segs_per_sec > 1) {
1634                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1635                                         sizeof(struct sec_entry));
1636                 if (!sit_i->sec_entries)
1637                         return -ENOMEM;
1638         }
1639
1640         /* get information related with SIT */
1641         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1642
1643         /* setup SIT bitmap from ckeckpoint pack */
1644         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1645         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1646
1647         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1648         if (!dst_bitmap)
1649                 return -ENOMEM;
1650
1651         /* init SIT information */
1652         sit_i->s_ops = &default_salloc_ops;
1653
1654         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1655         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1656         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1657         sit_i->sit_bitmap = dst_bitmap;
1658         sit_i->bitmap_size = bitmap_size;
1659         sit_i->dirty_sentries = 0;
1660         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1661         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1662         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1663         mutex_init(&sit_i->sentry_lock);
1664         return 0;
1665 }
1666
1667 static int build_free_segmap(struct f2fs_sb_info *sbi)
1668 {
1669         struct f2fs_sm_info *sm_info = SM_I(sbi);
1670         struct free_segmap_info *free_i;
1671         unsigned int bitmap_size, sec_bitmap_size;
1672
1673         /* allocate memory for free segmap information */
1674         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1675         if (!free_i)
1676                 return -ENOMEM;
1677
1678         SM_I(sbi)->free_info = free_i;
1679
1680         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1681         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1682         if (!free_i->free_segmap)
1683                 return -ENOMEM;
1684
1685         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1686         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1687         if (!free_i->free_secmap)
1688                 return -ENOMEM;
1689
1690         /* set all segments as dirty temporarily */
1691         memset(free_i->free_segmap, 0xff, bitmap_size);
1692         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1693
1694         /* init free segmap information */
1695         free_i->start_segno =
1696                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1697         free_i->free_segments = 0;
1698         free_i->free_sections = 0;
1699         rwlock_init(&free_i->segmap_lock);
1700         return 0;
1701 }
1702
1703 static int build_curseg(struct f2fs_sb_info *sbi)
1704 {
1705         struct curseg_info *array;
1706         int i;
1707
1708         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
1709         if (!array)
1710                 return -ENOMEM;
1711
1712         SM_I(sbi)->curseg_array = array;
1713
1714         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1715                 mutex_init(&array[i].curseg_mutex);
1716                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1717                 if (!array[i].sum_blk)
1718                         return -ENOMEM;
1719                 array[i].segno = NULL_SEGNO;
1720                 array[i].next_blkoff = 0;
1721         }
1722         return restore_curseg_summaries(sbi);
1723 }
1724
1725 static void build_sit_entries(struct f2fs_sb_info *sbi)
1726 {
1727         struct sit_info *sit_i = SIT_I(sbi);
1728         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1729         struct f2fs_summary_block *sum = curseg->sum_blk;
1730         int sit_blk_cnt = SIT_BLK_CNT(sbi);
1731         unsigned int i, start, end;
1732         unsigned int readed, start_blk = 0;
1733         int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1734
1735         do {
1736                 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1737
1738                 start = start_blk * sit_i->sents_per_block;
1739                 end = (start_blk + readed) * sit_i->sents_per_block;
1740
1741                 for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1742                         struct seg_entry *se = &sit_i->sentries[start];
1743                         struct f2fs_sit_block *sit_blk;
1744                         struct f2fs_sit_entry sit;
1745                         struct page *page;
1746
1747                         mutex_lock(&curseg->curseg_mutex);
1748                         for (i = 0; i < sits_in_cursum(sum); i++) {
1749                                 if (le32_to_cpu(segno_in_journal(sum, i))
1750                                                                 == start) {
1751                                         sit = sit_in_journal(sum, i);
1752                                         mutex_unlock(&curseg->curseg_mutex);
1753                                         goto got_it;
1754                                 }
1755                         }
1756                         mutex_unlock(&curseg->curseg_mutex);
1757
1758                         page = get_current_sit_page(sbi, start);
1759                         sit_blk = (struct f2fs_sit_block *)page_address(page);
1760                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1761                         f2fs_put_page(page, 1);
1762 got_it:
1763                         check_block_count(sbi, start, &sit);
1764                         seg_info_from_raw_sit(se, &sit);
1765                         if (sbi->segs_per_sec > 1) {
1766                                 struct sec_entry *e = get_sec_entry(sbi, start);
1767                                 e->valid_blocks += se->valid_blocks;
1768                         }
1769                 }
1770                 start_blk += readed;
1771         } while (start_blk < sit_blk_cnt);
1772 }
1773
1774 static void init_free_segmap(struct f2fs_sb_info *sbi)
1775 {
1776         unsigned int start;
1777         int type;
1778
1779         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1780                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1781                 if (!sentry->valid_blocks)
1782                         __set_free(sbi, start);
1783         }
1784
1785         /* set use the current segments */
1786         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1787                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1788                 __set_test_and_inuse(sbi, curseg_t->segno);
1789         }
1790 }
1791
1792 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1793 {
1794         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1795         struct free_segmap_info *free_i = FREE_I(sbi);
1796         unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1797         unsigned short valid_blocks;
1798
1799         while (1) {
1800                 /* find dirty segment based on free segmap */
1801                 segno = find_next_inuse(free_i, total_segs, offset);
1802                 if (segno >= total_segs)
1803                         break;
1804                 offset = segno + 1;
1805                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1806                 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1807                         continue;
1808                 mutex_lock(&dirty_i->seglist_lock);
1809                 __locate_dirty_segment(sbi, segno, DIRTY);
1810                 mutex_unlock(&dirty_i->seglist_lock);
1811         }
1812 }
1813
1814 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1815 {
1816         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1817         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1818
1819         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1820         if (!dirty_i->victim_secmap)
1821                 return -ENOMEM;
1822         return 0;
1823 }
1824
1825 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1826 {
1827         struct dirty_seglist_info *dirty_i;
1828         unsigned int bitmap_size, i;
1829
1830         /* allocate memory for dirty segments list information */
1831         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1832         if (!dirty_i)
1833                 return -ENOMEM;
1834
1835         SM_I(sbi)->dirty_info = dirty_i;
1836         mutex_init(&dirty_i->seglist_lock);
1837
1838         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1839
1840         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1841                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1842                 if (!dirty_i->dirty_segmap[i])
1843                         return -ENOMEM;
1844         }
1845
1846         init_dirty_segmap(sbi);
1847         return init_victim_secmap(sbi);
1848 }
1849
1850 /*
1851  * Update min, max modified time for cost-benefit GC algorithm
1852  */
1853 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1854 {
1855         struct sit_info *sit_i = SIT_I(sbi);
1856         unsigned int segno;
1857
1858         mutex_lock(&sit_i->sentry_lock);
1859
1860         sit_i->min_mtime = LLONG_MAX;
1861
1862         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1863                 unsigned int i;
1864                 unsigned long long mtime = 0;
1865
1866                 for (i = 0; i < sbi->segs_per_sec; i++)
1867                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1868
1869                 mtime = div_u64(mtime, sbi->segs_per_sec);
1870
1871                 if (sit_i->min_mtime > mtime)
1872                         sit_i->min_mtime = mtime;
1873         }
1874         sit_i->max_mtime = get_mtime(sbi);
1875         mutex_unlock(&sit_i->sentry_lock);
1876 }
1877
1878 int build_segment_manager(struct f2fs_sb_info *sbi)
1879 {
1880         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1881         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1882         struct f2fs_sm_info *sm_info;
1883         int err;
1884
1885         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1886         if (!sm_info)
1887                 return -ENOMEM;
1888
1889         /* init sm info */
1890         sbi->sm_info = sm_info;
1891         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1892         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1893         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1894         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1895         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1896         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1897         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1898         sm_info->rec_prefree_segments = sm_info->main_segments *
1899                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
1900         sm_info->ipu_policy = F2FS_IPU_DISABLE;
1901         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1902
1903         INIT_LIST_HEAD(&sm_info->discard_list);
1904         sm_info->nr_discards = 0;
1905         sm_info->max_discards = 0;
1906
1907         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
1908                 err = create_flush_cmd_control(sbi);
1909                 if (err)
1910                         return err;
1911         }
1912
1913         err = build_sit_info(sbi);
1914         if (err)
1915                 return err;
1916         err = build_free_segmap(sbi);
1917         if (err)
1918                 return err;
1919         err = build_curseg(sbi);
1920         if (err)
1921                 return err;
1922
1923         /* reinit free segmap based on SIT */
1924         build_sit_entries(sbi);
1925
1926         init_free_segmap(sbi);
1927         err = build_dirty_segmap(sbi);
1928         if (err)
1929                 return err;
1930
1931         init_min_max_mtime(sbi);
1932         return 0;
1933 }
1934
1935 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1936                 enum dirty_type dirty_type)
1937 {
1938         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1939
1940         mutex_lock(&dirty_i->seglist_lock);
1941         kfree(dirty_i->dirty_segmap[dirty_type]);
1942         dirty_i->nr_dirty[dirty_type] = 0;
1943         mutex_unlock(&dirty_i->seglist_lock);
1944 }
1945
1946 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1947 {
1948         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1949         kfree(dirty_i->victim_secmap);
1950 }
1951
1952 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1953 {
1954         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1955         int i;
1956
1957         if (!dirty_i)
1958                 return;
1959
1960         /* discard pre-free/dirty segments list */
1961         for (i = 0; i < NR_DIRTY_TYPE; i++)
1962                 discard_dirty_segmap(sbi, i);
1963
1964         destroy_victim_secmap(sbi);
1965         SM_I(sbi)->dirty_info = NULL;
1966         kfree(dirty_i);
1967 }
1968
1969 static void destroy_curseg(struct f2fs_sb_info *sbi)
1970 {
1971         struct curseg_info *array = SM_I(sbi)->curseg_array;
1972         int i;
1973
1974         if (!array)
1975                 return;
1976         SM_I(sbi)->curseg_array = NULL;
1977         for (i = 0; i < NR_CURSEG_TYPE; i++)
1978                 kfree(array[i].sum_blk);
1979         kfree(array);
1980 }
1981
1982 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1983 {
1984         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1985         if (!free_i)
1986                 return;
1987         SM_I(sbi)->free_info = NULL;
1988         kfree(free_i->free_segmap);
1989         kfree(free_i->free_secmap);
1990         kfree(free_i);
1991 }
1992
1993 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1994 {
1995         struct sit_info *sit_i = SIT_I(sbi);
1996         unsigned int start;
1997
1998         if (!sit_i)
1999                 return;
2000
2001         if (sit_i->sentries) {
2002                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
2003                         kfree(sit_i->sentries[start].cur_valid_map);
2004                         kfree(sit_i->sentries[start].ckpt_valid_map);
2005                 }
2006         }
2007         vfree(sit_i->sentries);
2008         vfree(sit_i->sec_entries);
2009         kfree(sit_i->dirty_sentries_bitmap);
2010
2011         SM_I(sbi)->sit_info = NULL;
2012         kfree(sit_i->sit_bitmap);
2013         kfree(sit_i);
2014 }
2015
2016 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2017 {
2018         struct f2fs_sm_info *sm_info = SM_I(sbi);
2019
2020         if (!sm_info)
2021                 return;
2022         destroy_flush_cmd_control(sbi);
2023         destroy_dirty_segmap(sbi);
2024         destroy_curseg(sbi);
2025         destroy_free_segmap(sbi);
2026         destroy_sit_info(sbi);
2027         sbi->sm_info = NULL;
2028         kfree(sm_info);
2029 }
2030
2031 int __init create_segment_manager_caches(void)
2032 {
2033         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2034                         sizeof(struct discard_entry));
2035         if (!discard_entry_slab)
2036                 return -ENOMEM;
2037         return 0;
2038 }
2039
2040 void destroy_segment_manager_caches(void)
2041 {
2042         kmem_cache_destroy(discard_entry_slab);
2043 }