853c8f5445fdf3cac1ea392cc94fc97992a6afb8
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include <trace/events/f2fs.h>
24
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26
27 static struct kmem_cache *discard_entry_slab;
28
29 /*
30  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
31  * MSB and LSB are reversed in a byte by f2fs_set_bit.
32  */
33 static inline unsigned long __reverse_ffs(unsigned long word)
34 {
35         int num = 0;
36
37 #if BITS_PER_LONG == 64
38         if ((word & 0xffffffff) == 0) {
39                 num += 32;
40                 word >>= 32;
41         }
42 #endif
43         if ((word & 0xffff) == 0) {
44                 num += 16;
45                 word >>= 16;
46         }
47         if ((word & 0xff) == 0) {
48                 num += 8;
49                 word >>= 8;
50         }
51         if ((word & 0xf0) == 0)
52                 num += 4;
53         else
54                 word >>= 4;
55         if ((word & 0xc) == 0)
56                 num += 2;
57         else
58                 word >>= 2;
59         if ((word & 0x2) == 0)
60                 num += 1;
61         return num;
62 }
63
64 /*
65  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
66  * f2fs_set_bit makes MSB and LSB reversed in a byte.
67  * Example:
68  *                             LSB <--> MSB
69  *   f2fs_set_bit(0, bitmap) => 0000 0001
70  *   f2fs_set_bit(7, bitmap) => 1000 0000
71  */
72 static unsigned long __find_rev_next_bit(const unsigned long *addr,
73                         unsigned long size, unsigned long offset)
74 {
75         const unsigned long *p = addr + BIT_WORD(offset);
76         unsigned long result = offset & ~(BITS_PER_LONG - 1);
77         unsigned long tmp;
78         unsigned long mask, submask;
79         unsigned long quot, rest;
80
81         if (offset >= size)
82                 return size;
83
84         size -= result;
85         offset %= BITS_PER_LONG;
86         if (!offset)
87                 goto aligned;
88
89         tmp = *(p++);
90         quot = (offset >> 3) << 3;
91         rest = offset & 0x7;
92         mask = ~0UL << quot;
93         submask = (unsigned char)(0xff << rest) >> rest;
94         submask <<= quot;
95         mask &= submask;
96         tmp &= mask;
97         if (size < BITS_PER_LONG)
98                 goto found_first;
99         if (tmp)
100                 goto found_middle;
101
102         size -= BITS_PER_LONG;
103         result += BITS_PER_LONG;
104 aligned:
105         while (size & ~(BITS_PER_LONG-1)) {
106                 tmp = *(p++);
107                 if (tmp)
108                         goto found_middle;
109                 result += BITS_PER_LONG;
110                 size -= BITS_PER_LONG;
111         }
112         if (!size)
113                 return result;
114         tmp = *p;
115 found_first:
116         tmp &= (~0UL >> (BITS_PER_LONG - size));
117         if (tmp == 0UL)         /* Are any bits set? */
118                 return result + size;   /* Nope. */
119 found_middle:
120         return result + __reverse_ffs(tmp);
121 }
122
123 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
124                         unsigned long size, unsigned long offset)
125 {
126         const unsigned long *p = addr + BIT_WORD(offset);
127         unsigned long result = offset & ~(BITS_PER_LONG - 1);
128         unsigned long tmp;
129         unsigned long mask, submask;
130         unsigned long quot, rest;
131
132         if (offset >= size)
133                 return size;
134
135         size -= result;
136         offset %= BITS_PER_LONG;
137         if (!offset)
138                 goto aligned;
139
140         tmp = *(p++);
141         quot = (offset >> 3) << 3;
142         rest = offset & 0x7;
143         mask = ~(~0UL << quot);
144         submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
145         submask <<= quot;
146         mask += submask;
147         tmp |= mask;
148         if (size < BITS_PER_LONG)
149                 goto found_first;
150         if (~tmp)
151                 goto found_middle;
152
153         size -= BITS_PER_LONG;
154         result += BITS_PER_LONG;
155 aligned:
156         while (size & ~(BITS_PER_LONG - 1)) {
157                 tmp = *(p++);
158                 if (~tmp)
159                         goto found_middle;
160                 result += BITS_PER_LONG;
161                 size -= BITS_PER_LONG;
162         }
163         if (!size)
164                 return result;
165         tmp = *p;
166
167 found_first:
168         tmp |= ~0UL << size;
169         if (tmp == ~0UL)        /* Are any bits zero? */
170                 return result + size;   /* Nope. */
171 found_middle:
172         return result + __reverse_ffz(tmp);
173 }
174
175 /*
176  * This function balances dirty node and dentry pages.
177  * In addition, it controls garbage collection.
178  */
179 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
180 {
181         /*
182          * We should do GC or end up with checkpoint, if there are so many dirty
183          * dir/node pages without enough free segments.
184          */
185         if (has_not_enough_free_secs(sbi, 0)) {
186                 mutex_lock(&sbi->gc_mutex);
187                 f2fs_gc(sbi);
188         }
189 }
190
191 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
192 {
193         /* check the # of cached NAT entries and prefree segments */
194         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
195                                 excess_prefree_segs(sbi))
196                 f2fs_sync_fs(sbi->sb, true);
197 }
198
199 static int issue_flush_thread(void *data)
200 {
201         struct f2fs_sb_info *sbi = data;
202         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
203         wait_queue_head_t *q = &fcc->flush_wait_queue;
204 repeat:
205         if (kthread_should_stop())
206                 return 0;
207
208         spin_lock(&fcc->issue_lock);
209         if (fcc->issue_list) {
210                 fcc->dispatch_list = fcc->issue_list;
211                 fcc->issue_list = fcc->issue_tail = NULL;
212         }
213         spin_unlock(&fcc->issue_lock);
214
215         if (fcc->dispatch_list) {
216                 struct bio *bio = bio_alloc(GFP_NOIO, 0);
217                 struct flush_cmd *cmd, *next;
218                 int ret;
219
220                 bio->bi_bdev = sbi->sb->s_bdev;
221                 ret = submit_bio_wait(WRITE_FLUSH, bio);
222
223                 for (cmd = fcc->dispatch_list; cmd; cmd = next) {
224                         cmd->ret = ret;
225                         next = cmd->next;
226                         complete(&cmd->wait);
227                 }
228                 bio_put(bio);
229                 fcc->dispatch_list = NULL;
230         }
231
232         wait_event_interruptible(*q,
233                         kthread_should_stop() || fcc->issue_list);
234         goto repeat;
235 }
236
237 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
238 {
239         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
240         struct flush_cmd cmd;
241
242         trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
243                                         test_opt(sbi, FLUSH_MERGE));
244
245         if (test_opt(sbi, NOBARRIER))
246                 return 0;
247
248         if (!test_opt(sbi, FLUSH_MERGE))
249                 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
250
251         init_completion(&cmd.wait);
252         cmd.next = NULL;
253
254         spin_lock(&fcc->issue_lock);
255         if (fcc->issue_list)
256                 fcc->issue_tail->next = &cmd;
257         else
258                 fcc->issue_list = &cmd;
259         fcc->issue_tail = &cmd;
260         spin_unlock(&fcc->issue_lock);
261
262         if (!fcc->dispatch_list)
263                 wake_up(&fcc->flush_wait_queue);
264
265         wait_for_completion(&cmd.wait);
266
267         return cmd.ret;
268 }
269
270 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
271 {
272         dev_t dev = sbi->sb->s_bdev->bd_dev;
273         struct flush_cmd_control *fcc;
274         int err = 0;
275
276         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
277         if (!fcc)
278                 return -ENOMEM;
279         spin_lock_init(&fcc->issue_lock);
280         init_waitqueue_head(&fcc->flush_wait_queue);
281         SM_I(sbi)->cmd_control_info = fcc;
282         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
283                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
284         if (IS_ERR(fcc->f2fs_issue_flush)) {
285                 err = PTR_ERR(fcc->f2fs_issue_flush);
286                 kfree(fcc);
287                 SM_I(sbi)->cmd_control_info = NULL;
288                 return err;
289         }
290
291         return err;
292 }
293
294 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
295 {
296         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
297
298         if (fcc && fcc->f2fs_issue_flush)
299                 kthread_stop(fcc->f2fs_issue_flush);
300         kfree(fcc);
301         SM_I(sbi)->cmd_control_info = NULL;
302 }
303
304 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
305                 enum dirty_type dirty_type)
306 {
307         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
308
309         /* need not be added */
310         if (IS_CURSEG(sbi, segno))
311                 return;
312
313         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
314                 dirty_i->nr_dirty[dirty_type]++;
315
316         if (dirty_type == DIRTY) {
317                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
318                 enum dirty_type t = sentry->type;
319
320                 if (unlikely(t >= DIRTY)) {
321                         f2fs_bug_on(sbi, 1);
322                         return;
323                 }
324                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
325                         dirty_i->nr_dirty[t]++;
326         }
327 }
328
329 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
330                 enum dirty_type dirty_type)
331 {
332         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
333
334         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
335                 dirty_i->nr_dirty[dirty_type]--;
336
337         if (dirty_type == DIRTY) {
338                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
339                 enum dirty_type t = sentry->type;
340
341                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
342                         dirty_i->nr_dirty[t]--;
343
344                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
345                         clear_bit(GET_SECNO(sbi, segno),
346                                                 dirty_i->victim_secmap);
347         }
348 }
349
350 /*
351  * Should not occur error such as -ENOMEM.
352  * Adding dirty entry into seglist is not critical operation.
353  * If a given segment is one of current working segments, it won't be added.
354  */
355 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
356 {
357         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
358         unsigned short valid_blocks;
359
360         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
361                 return;
362
363         mutex_lock(&dirty_i->seglist_lock);
364
365         valid_blocks = get_valid_blocks(sbi, segno, 0);
366
367         if (valid_blocks == 0) {
368                 __locate_dirty_segment(sbi, segno, PRE);
369                 __remove_dirty_segment(sbi, segno, DIRTY);
370         } else if (valid_blocks < sbi->blocks_per_seg) {
371                 __locate_dirty_segment(sbi, segno, DIRTY);
372         } else {
373                 /* Recovery routine with SSR needs this */
374                 __remove_dirty_segment(sbi, segno, DIRTY);
375         }
376
377         mutex_unlock(&dirty_i->seglist_lock);
378 }
379
380 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
381                                 block_t blkstart, block_t blklen)
382 {
383         sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
384         sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
385         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
386         return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
387 }
388
389 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
390 {
391         if (f2fs_issue_discard(sbi, blkaddr, 1)) {
392                 struct page *page = grab_meta_page(sbi, blkaddr);
393                 /* zero-filled page */
394                 set_page_dirty(page);
395                 f2fs_put_page(page, 1);
396         }
397 }
398
399 static void add_discard_addrs(struct f2fs_sb_info *sbi,
400                         unsigned int segno, struct seg_entry *se)
401 {
402         struct list_head *head = &SM_I(sbi)->discard_list;
403         struct discard_entry *new;
404         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
405         int max_blocks = sbi->blocks_per_seg;
406         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
407         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
408         unsigned long dmap[entries];
409         unsigned int start = 0, end = -1;
410         int i;
411
412         if (!test_opt(sbi, DISCARD))
413                 return;
414
415         /* zero block will be discarded through the prefree list */
416         if (!se->valid_blocks || se->valid_blocks == max_blocks)
417                 return;
418
419         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
420         for (i = 0; i < entries; i++)
421                 dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
422
423         while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
424                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
425                 if (start >= max_blocks)
426                         break;
427
428                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
429
430                 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
431                 INIT_LIST_HEAD(&new->list);
432                 new->blkaddr = START_BLOCK(sbi, segno) + start;
433                 new->len = end - start;
434
435                 list_add_tail(&new->list, head);
436                 SM_I(sbi)->nr_discards += end - start;
437         }
438 }
439
440 /*
441  * Should call clear_prefree_segments after checkpoint is done.
442  */
443 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
444 {
445         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
446         unsigned int segno;
447         unsigned int total_segs = TOTAL_SEGS(sbi);
448
449         mutex_lock(&dirty_i->seglist_lock);
450         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], total_segs)
451                 __set_test_and_free(sbi, segno);
452         mutex_unlock(&dirty_i->seglist_lock);
453 }
454
455 void clear_prefree_segments(struct f2fs_sb_info *sbi)
456 {
457         struct list_head *head = &(SM_I(sbi)->discard_list);
458         struct discard_entry *entry, *this;
459         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
460         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
461         unsigned int total_segs = TOTAL_SEGS(sbi);
462         unsigned int start = 0, end = -1;
463
464         mutex_lock(&dirty_i->seglist_lock);
465
466         while (1) {
467                 int i;
468                 start = find_next_bit(prefree_map, total_segs, end + 1);
469                 if (start >= total_segs)
470                         break;
471                 end = find_next_zero_bit(prefree_map, total_segs, start + 1);
472
473                 for (i = start; i < end; i++)
474                         clear_bit(i, prefree_map);
475
476                 dirty_i->nr_dirty[PRE] -= end - start;
477
478                 if (!test_opt(sbi, DISCARD))
479                         continue;
480
481                 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
482                                 (end - start) << sbi->log_blocks_per_seg);
483         }
484         mutex_unlock(&dirty_i->seglist_lock);
485
486         /* send small discards */
487         list_for_each_entry_safe(entry, this, head, list) {
488                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
489                 list_del(&entry->list);
490                 SM_I(sbi)->nr_discards -= entry->len;
491                 kmem_cache_free(discard_entry_slab, entry);
492         }
493 }
494
495 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
496 {
497         struct sit_info *sit_i = SIT_I(sbi);
498         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
499                 sit_i->dirty_sentries++;
500 }
501
502 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
503                                         unsigned int segno, int modified)
504 {
505         struct seg_entry *se = get_seg_entry(sbi, segno);
506         se->type = type;
507         if (modified)
508                 __mark_sit_entry_dirty(sbi, segno);
509 }
510
511 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
512 {
513         struct seg_entry *se;
514         unsigned int segno, offset;
515         long int new_vblocks;
516
517         segno = GET_SEGNO(sbi, blkaddr);
518
519         se = get_seg_entry(sbi, segno);
520         new_vblocks = se->valid_blocks + del;
521         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
522
523         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
524                                 (new_vblocks > sbi->blocks_per_seg)));
525
526         se->valid_blocks = new_vblocks;
527         se->mtime = get_mtime(sbi);
528         SIT_I(sbi)->max_mtime = se->mtime;
529
530         /* Update valid block bitmap */
531         if (del > 0) {
532                 if (f2fs_set_bit(offset, se->cur_valid_map))
533                         f2fs_bug_on(sbi, 1);
534         } else {
535                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
536                         f2fs_bug_on(sbi, 1);
537         }
538         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
539                 se->ckpt_valid_blocks += del;
540
541         __mark_sit_entry_dirty(sbi, segno);
542
543         /* update total number of valid blocks to be written in ckpt area */
544         SIT_I(sbi)->written_valid_blocks += del;
545
546         if (sbi->segs_per_sec > 1)
547                 get_sec_entry(sbi, segno)->valid_blocks += del;
548 }
549
550 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
551 {
552         update_sit_entry(sbi, new, 1);
553         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
554                 update_sit_entry(sbi, old, -1);
555
556         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
557         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
558 }
559
560 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
561 {
562         unsigned int segno = GET_SEGNO(sbi, addr);
563         struct sit_info *sit_i = SIT_I(sbi);
564
565         f2fs_bug_on(sbi, addr == NULL_ADDR);
566         if (addr == NEW_ADDR)
567                 return;
568
569         /* add it into sit main buffer */
570         mutex_lock(&sit_i->sentry_lock);
571
572         update_sit_entry(sbi, addr, -1);
573
574         /* add it into dirty seglist */
575         locate_dirty_segment(sbi, segno);
576
577         mutex_unlock(&sit_i->sentry_lock);
578 }
579
580 /*
581  * This function should be resided under the curseg_mutex lock
582  */
583 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
584                                         struct f2fs_summary *sum)
585 {
586         struct curseg_info *curseg = CURSEG_I(sbi, type);
587         void *addr = curseg->sum_blk;
588         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
589         memcpy(addr, sum, sizeof(struct f2fs_summary));
590 }
591
592 /*
593  * Calculate the number of current summary pages for writing
594  */
595 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
596 {
597         int valid_sum_count = 0;
598         int i, sum_in_page;
599
600         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
601                 if (sbi->ckpt->alloc_type[i] == SSR)
602                         valid_sum_count += sbi->blocks_per_seg;
603                 else
604                         valid_sum_count += curseg_blkoff(sbi, i);
605         }
606
607         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
608                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
609         if (valid_sum_count <= sum_in_page)
610                 return 1;
611         else if ((valid_sum_count - sum_in_page) <=
612                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
613                 return 2;
614         return 3;
615 }
616
617 /*
618  * Caller should put this summary page
619  */
620 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
621 {
622         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
623 }
624
625 static void write_sum_page(struct f2fs_sb_info *sbi,
626                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
627 {
628         struct page *page = grab_meta_page(sbi, blk_addr);
629         void *kaddr = page_address(page);
630         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
631         set_page_dirty(page);
632         f2fs_put_page(page, 1);
633 }
634
635 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
636 {
637         struct curseg_info *curseg = CURSEG_I(sbi, type);
638         unsigned int segno = curseg->segno + 1;
639         struct free_segmap_info *free_i = FREE_I(sbi);
640
641         if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
642                 return !test_bit(segno, free_i->free_segmap);
643         return 0;
644 }
645
646 /*
647  * Find a new segment from the free segments bitmap to right order
648  * This function should be returned with success, otherwise BUG
649  */
650 static void get_new_segment(struct f2fs_sb_info *sbi,
651                         unsigned int *newseg, bool new_sec, int dir)
652 {
653         struct free_segmap_info *free_i = FREE_I(sbi);
654         unsigned int segno, secno, zoneno;
655         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
656         unsigned int hint = *newseg / sbi->segs_per_sec;
657         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
658         unsigned int left_start = hint;
659         bool init = true;
660         int go_left = 0;
661         int i;
662
663         write_lock(&free_i->segmap_lock);
664
665         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
666                 segno = find_next_zero_bit(free_i->free_segmap,
667                                         TOTAL_SEGS(sbi), *newseg + 1);
668                 if (segno - *newseg < sbi->segs_per_sec -
669                                         (*newseg % sbi->segs_per_sec))
670                         goto got_it;
671         }
672 find_other_zone:
673         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
674         if (secno >= TOTAL_SECS(sbi)) {
675                 if (dir == ALLOC_RIGHT) {
676                         secno = find_next_zero_bit(free_i->free_secmap,
677                                                         TOTAL_SECS(sbi), 0);
678                         f2fs_bug_on(sbi, secno >= TOTAL_SECS(sbi));
679                 } else {
680                         go_left = 1;
681                         left_start = hint - 1;
682                 }
683         }
684         if (go_left == 0)
685                 goto skip_left;
686
687         while (test_bit(left_start, free_i->free_secmap)) {
688                 if (left_start > 0) {
689                         left_start--;
690                         continue;
691                 }
692                 left_start = find_next_zero_bit(free_i->free_secmap,
693                                                         TOTAL_SECS(sbi), 0);
694                 f2fs_bug_on(sbi, left_start >= TOTAL_SECS(sbi));
695                 break;
696         }
697         secno = left_start;
698 skip_left:
699         hint = secno;
700         segno = secno * sbi->segs_per_sec;
701         zoneno = secno / sbi->secs_per_zone;
702
703         /* give up on finding another zone */
704         if (!init)
705                 goto got_it;
706         if (sbi->secs_per_zone == 1)
707                 goto got_it;
708         if (zoneno == old_zoneno)
709                 goto got_it;
710         if (dir == ALLOC_LEFT) {
711                 if (!go_left && zoneno + 1 >= total_zones)
712                         goto got_it;
713                 if (go_left && zoneno == 0)
714                         goto got_it;
715         }
716         for (i = 0; i < NR_CURSEG_TYPE; i++)
717                 if (CURSEG_I(sbi, i)->zone == zoneno)
718                         break;
719
720         if (i < NR_CURSEG_TYPE) {
721                 /* zone is in user, try another */
722                 if (go_left)
723                         hint = zoneno * sbi->secs_per_zone - 1;
724                 else if (zoneno + 1 >= total_zones)
725                         hint = 0;
726                 else
727                         hint = (zoneno + 1) * sbi->secs_per_zone;
728                 init = false;
729                 goto find_other_zone;
730         }
731 got_it:
732         /* set it as dirty segment in free segmap */
733         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
734         __set_inuse(sbi, segno);
735         *newseg = segno;
736         write_unlock(&free_i->segmap_lock);
737 }
738
739 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
740 {
741         struct curseg_info *curseg = CURSEG_I(sbi, type);
742         struct summary_footer *sum_footer;
743
744         curseg->segno = curseg->next_segno;
745         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
746         curseg->next_blkoff = 0;
747         curseg->next_segno = NULL_SEGNO;
748
749         sum_footer = &(curseg->sum_blk->footer);
750         memset(sum_footer, 0, sizeof(struct summary_footer));
751         if (IS_DATASEG(type))
752                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
753         if (IS_NODESEG(type))
754                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
755         __set_sit_entry_type(sbi, type, curseg->segno, modified);
756 }
757
758 /*
759  * Allocate a current working segment.
760  * This function always allocates a free segment in LFS manner.
761  */
762 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
763 {
764         struct curseg_info *curseg = CURSEG_I(sbi, type);
765         unsigned int segno = curseg->segno;
766         int dir = ALLOC_LEFT;
767
768         write_sum_page(sbi, curseg->sum_blk,
769                                 GET_SUM_BLOCK(sbi, segno));
770         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
771                 dir = ALLOC_RIGHT;
772
773         if (test_opt(sbi, NOHEAP))
774                 dir = ALLOC_RIGHT;
775
776         get_new_segment(sbi, &segno, new_sec, dir);
777         curseg->next_segno = segno;
778         reset_curseg(sbi, type, 1);
779         curseg->alloc_type = LFS;
780 }
781
782 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
783                         struct curseg_info *seg, block_t start)
784 {
785         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
786         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
787         unsigned long target_map[entries];
788         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
789         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
790         int i, pos;
791
792         for (i = 0; i < entries; i++)
793                 target_map[i] = ckpt_map[i] | cur_map[i];
794
795         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
796
797         seg->next_blkoff = pos;
798 }
799
800 /*
801  * If a segment is written by LFS manner, next block offset is just obtained
802  * by increasing the current block offset. However, if a segment is written by
803  * SSR manner, next block offset obtained by calling __next_free_blkoff
804  */
805 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
806                                 struct curseg_info *seg)
807 {
808         if (seg->alloc_type == SSR)
809                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
810         else
811                 seg->next_blkoff++;
812 }
813
814 /*
815  * This function always allocates a used segment(from dirty seglist) by SSR
816  * manner, so it should recover the existing segment information of valid blocks
817  */
818 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
819 {
820         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
821         struct curseg_info *curseg = CURSEG_I(sbi, type);
822         unsigned int new_segno = curseg->next_segno;
823         struct f2fs_summary_block *sum_node;
824         struct page *sum_page;
825
826         write_sum_page(sbi, curseg->sum_blk,
827                                 GET_SUM_BLOCK(sbi, curseg->segno));
828         __set_test_and_inuse(sbi, new_segno);
829
830         mutex_lock(&dirty_i->seglist_lock);
831         __remove_dirty_segment(sbi, new_segno, PRE);
832         __remove_dirty_segment(sbi, new_segno, DIRTY);
833         mutex_unlock(&dirty_i->seglist_lock);
834
835         reset_curseg(sbi, type, 1);
836         curseg->alloc_type = SSR;
837         __next_free_blkoff(sbi, curseg, 0);
838
839         if (reuse) {
840                 sum_page = get_sum_page(sbi, new_segno);
841                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
842                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
843                 f2fs_put_page(sum_page, 1);
844         }
845 }
846
847 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
848 {
849         struct curseg_info *curseg = CURSEG_I(sbi, type);
850         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
851
852         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
853                 return v_ops->get_victim(sbi,
854                                 &(curseg)->next_segno, BG_GC, type, SSR);
855
856         /* For data segments, let's do SSR more intensively */
857         for (; type >= CURSEG_HOT_DATA; type--)
858                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
859                                                 BG_GC, type, SSR))
860                         return 1;
861         return 0;
862 }
863
864 /*
865  * flush out current segment and replace it with new segment
866  * This function should be returned with success, otherwise BUG
867  */
868 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
869                                                 int type, bool force)
870 {
871         struct curseg_info *curseg = CURSEG_I(sbi, type);
872
873         if (force)
874                 new_curseg(sbi, type, true);
875         else if (type == CURSEG_WARM_NODE)
876                 new_curseg(sbi, type, false);
877         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
878                 new_curseg(sbi, type, false);
879         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
880                 change_curseg(sbi, type, true);
881         else
882                 new_curseg(sbi, type, false);
883
884         stat_inc_seg_type(sbi, curseg);
885 }
886
887 void allocate_new_segments(struct f2fs_sb_info *sbi)
888 {
889         struct curseg_info *curseg;
890         unsigned int old_curseg;
891         int i;
892
893         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
894                 curseg = CURSEG_I(sbi, i);
895                 old_curseg = curseg->segno;
896                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
897                 locate_dirty_segment(sbi, old_curseg);
898         }
899 }
900
901 static const struct segment_allocation default_salloc_ops = {
902         .allocate_segment = allocate_segment_by_default,
903 };
904
905 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
906 {
907         struct curseg_info *curseg = CURSEG_I(sbi, type);
908         if (curseg->next_blkoff < sbi->blocks_per_seg)
909                 return true;
910         return false;
911 }
912
913 static int __get_segment_type_2(struct page *page, enum page_type p_type)
914 {
915         if (p_type == DATA)
916                 return CURSEG_HOT_DATA;
917         else
918                 return CURSEG_HOT_NODE;
919 }
920
921 static int __get_segment_type_4(struct page *page, enum page_type p_type)
922 {
923         if (p_type == DATA) {
924                 struct inode *inode = page->mapping->host;
925
926                 if (S_ISDIR(inode->i_mode))
927                         return CURSEG_HOT_DATA;
928                 else
929                         return CURSEG_COLD_DATA;
930         } else {
931                 if (IS_DNODE(page) && !is_cold_node(page))
932                         return CURSEG_HOT_NODE;
933                 else
934                         return CURSEG_COLD_NODE;
935         }
936 }
937
938 static int __get_segment_type_6(struct page *page, enum page_type p_type)
939 {
940         if (p_type == DATA) {
941                 struct inode *inode = page->mapping->host;
942
943                 if (S_ISDIR(inode->i_mode))
944                         return CURSEG_HOT_DATA;
945                 else if (is_cold_data(page) || file_is_cold(inode))
946                         return CURSEG_COLD_DATA;
947                 else
948                         return CURSEG_WARM_DATA;
949         } else {
950                 if (IS_DNODE(page))
951                         return is_cold_node(page) ? CURSEG_WARM_NODE :
952                                                 CURSEG_HOT_NODE;
953                 else
954                         return CURSEG_COLD_NODE;
955         }
956 }
957
958 static int __get_segment_type(struct page *page, enum page_type p_type)
959 {
960         switch (F2FS_P_SB(page)->active_logs) {
961         case 2:
962                 return __get_segment_type_2(page, p_type);
963         case 4:
964                 return __get_segment_type_4(page, p_type);
965         }
966         /* NR_CURSEG_TYPE(6) logs by default */
967         f2fs_bug_on(F2FS_P_SB(page),
968                 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
969         return __get_segment_type_6(page, p_type);
970 }
971
972 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
973                 block_t old_blkaddr, block_t *new_blkaddr,
974                 struct f2fs_summary *sum, int type)
975 {
976         struct sit_info *sit_i = SIT_I(sbi);
977         struct curseg_info *curseg;
978
979         curseg = CURSEG_I(sbi, type);
980
981         mutex_lock(&curseg->curseg_mutex);
982
983         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
984
985         /*
986          * __add_sum_entry should be resided under the curseg_mutex
987          * because, this function updates a summary entry in the
988          * current summary block.
989          */
990         __add_sum_entry(sbi, type, sum);
991
992         mutex_lock(&sit_i->sentry_lock);
993         __refresh_next_blkoff(sbi, curseg);
994
995         stat_inc_block_count(sbi, curseg);
996
997         if (!__has_curseg_space(sbi, type))
998                 sit_i->s_ops->allocate_segment(sbi, type, false);
999         /*
1000          * SIT information should be updated before segment allocation,
1001          * since SSR needs latest valid block information.
1002          */
1003         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1004
1005         mutex_unlock(&sit_i->sentry_lock);
1006
1007         if (page && IS_NODESEG(type))
1008                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1009
1010         mutex_unlock(&curseg->curseg_mutex);
1011 }
1012
1013 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1014                         block_t old_blkaddr, block_t *new_blkaddr,
1015                         struct f2fs_summary *sum, struct f2fs_io_info *fio)
1016 {
1017         int type = __get_segment_type(page, fio->type);
1018
1019         allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
1020
1021         /* writeout dirty page into bdev */
1022         f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
1023 }
1024
1025 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1026 {
1027         struct f2fs_io_info fio = {
1028                 .type = META,
1029                 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
1030         };
1031
1032         set_page_writeback(page);
1033         f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1034 }
1035
1036 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1037                 struct f2fs_io_info *fio,
1038                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1039 {
1040         struct f2fs_summary sum;
1041         set_summary(&sum, nid, 0, 0);
1042         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
1043 }
1044
1045 void write_data_page(struct page *page, struct dnode_of_data *dn,
1046                 block_t *new_blkaddr, struct f2fs_io_info *fio)
1047 {
1048         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1049         struct f2fs_summary sum;
1050         struct node_info ni;
1051
1052         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1053         get_node_info(sbi, dn->nid, &ni);
1054         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1055
1056         do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
1057 }
1058
1059 void rewrite_data_page(struct page *page, block_t old_blkaddr,
1060                                         struct f2fs_io_info *fio)
1061 {
1062         f2fs_submit_page_mbio(F2FS_P_SB(page), page, old_blkaddr, fio);
1063 }
1064
1065 void recover_data_page(struct f2fs_sb_info *sbi,
1066                         struct page *page, struct f2fs_summary *sum,
1067                         block_t old_blkaddr, block_t new_blkaddr)
1068 {
1069         struct sit_info *sit_i = SIT_I(sbi);
1070         struct curseg_info *curseg;
1071         unsigned int segno, old_cursegno;
1072         struct seg_entry *se;
1073         int type;
1074
1075         segno = GET_SEGNO(sbi, new_blkaddr);
1076         se = get_seg_entry(sbi, segno);
1077         type = se->type;
1078
1079         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1080                 if (old_blkaddr == NULL_ADDR)
1081                         type = CURSEG_COLD_DATA;
1082                 else
1083                         type = CURSEG_WARM_DATA;
1084         }
1085         curseg = CURSEG_I(sbi, type);
1086
1087         mutex_lock(&curseg->curseg_mutex);
1088         mutex_lock(&sit_i->sentry_lock);
1089
1090         old_cursegno = curseg->segno;
1091
1092         /* change the current segment */
1093         if (segno != curseg->segno) {
1094                 curseg->next_segno = segno;
1095                 change_curseg(sbi, type, true);
1096         }
1097
1098         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1099         __add_sum_entry(sbi, type, sum);
1100
1101         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1102         locate_dirty_segment(sbi, old_cursegno);
1103
1104         mutex_unlock(&sit_i->sentry_lock);
1105         mutex_unlock(&curseg->curseg_mutex);
1106 }
1107
1108 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1109                                         struct page *page, enum page_type type)
1110 {
1111         enum page_type btype = PAGE_TYPE_OF_BIO(type);
1112         struct f2fs_bio_info *io = &sbi->write_io[btype];
1113         struct bio_vec *bvec;
1114         int i;
1115
1116         down_read(&io->io_rwsem);
1117         if (!io->bio)
1118                 goto out;
1119
1120         bio_for_each_segment_all(bvec, io->bio, i) {
1121                 if (page == bvec->bv_page) {
1122                         up_read(&io->io_rwsem);
1123                         return true;
1124                 }
1125         }
1126
1127 out:
1128         up_read(&io->io_rwsem);
1129         return false;
1130 }
1131
1132 void f2fs_wait_on_page_writeback(struct page *page,
1133                                 enum page_type type)
1134 {
1135         if (PageWriteback(page)) {
1136                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1137
1138                 if (is_merged_page(sbi, page, type))
1139                         f2fs_submit_merged_bio(sbi, type, WRITE);
1140                 wait_on_page_writeback(page);
1141         }
1142 }
1143
1144 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1145 {
1146         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1147         struct curseg_info *seg_i;
1148         unsigned char *kaddr;
1149         struct page *page;
1150         block_t start;
1151         int i, j, offset;
1152
1153         start = start_sum_block(sbi);
1154
1155         page = get_meta_page(sbi, start++);
1156         kaddr = (unsigned char *)page_address(page);
1157
1158         /* Step 1: restore nat cache */
1159         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1160         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1161
1162         /* Step 2: restore sit cache */
1163         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1164         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1165                                                 SUM_JOURNAL_SIZE);
1166         offset = 2 * SUM_JOURNAL_SIZE;
1167
1168         /* Step 3: restore summary entries */
1169         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1170                 unsigned short blk_off;
1171                 unsigned int segno;
1172
1173                 seg_i = CURSEG_I(sbi, i);
1174                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1175                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1176                 seg_i->next_segno = segno;
1177                 reset_curseg(sbi, i, 0);
1178                 seg_i->alloc_type = ckpt->alloc_type[i];
1179                 seg_i->next_blkoff = blk_off;
1180
1181                 if (seg_i->alloc_type == SSR)
1182                         blk_off = sbi->blocks_per_seg;
1183
1184                 for (j = 0; j < blk_off; j++) {
1185                         struct f2fs_summary *s;
1186                         s = (struct f2fs_summary *)(kaddr + offset);
1187                         seg_i->sum_blk->entries[j] = *s;
1188                         offset += SUMMARY_SIZE;
1189                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1190                                                 SUM_FOOTER_SIZE)
1191                                 continue;
1192
1193                         f2fs_put_page(page, 1);
1194                         page = NULL;
1195
1196                         page = get_meta_page(sbi, start++);
1197                         kaddr = (unsigned char *)page_address(page);
1198                         offset = 0;
1199                 }
1200         }
1201         f2fs_put_page(page, 1);
1202         return 0;
1203 }
1204
1205 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1206 {
1207         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1208         struct f2fs_summary_block *sum;
1209         struct curseg_info *curseg;
1210         struct page *new;
1211         unsigned short blk_off;
1212         unsigned int segno = 0;
1213         block_t blk_addr = 0;
1214
1215         /* get segment number and block addr */
1216         if (IS_DATASEG(type)) {
1217                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1218                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1219                                                         CURSEG_HOT_DATA]);
1220                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1221                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1222                 else
1223                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1224         } else {
1225                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1226                                                         CURSEG_HOT_NODE]);
1227                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1228                                                         CURSEG_HOT_NODE]);
1229                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1230                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1231                                                         type - CURSEG_HOT_NODE);
1232                 else
1233                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1234         }
1235
1236         new = get_meta_page(sbi, blk_addr);
1237         sum = (struct f2fs_summary_block *)page_address(new);
1238
1239         if (IS_NODESEG(type)) {
1240                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1241                         struct f2fs_summary *ns = &sum->entries[0];
1242                         int i;
1243                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1244                                 ns->version = 0;
1245                                 ns->ofs_in_node = 0;
1246                         }
1247                 } else {
1248                         int err;
1249
1250                         err = restore_node_summary(sbi, segno, sum);
1251                         if (err) {
1252                                 f2fs_put_page(new, 1);
1253                                 return err;
1254                         }
1255                 }
1256         }
1257
1258         /* set uncompleted segment to curseg */
1259         curseg = CURSEG_I(sbi, type);
1260         mutex_lock(&curseg->curseg_mutex);
1261         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1262         curseg->next_segno = segno;
1263         reset_curseg(sbi, type, 0);
1264         curseg->alloc_type = ckpt->alloc_type[type];
1265         curseg->next_blkoff = blk_off;
1266         mutex_unlock(&curseg->curseg_mutex);
1267         f2fs_put_page(new, 1);
1268         return 0;
1269 }
1270
1271 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1272 {
1273         int type = CURSEG_HOT_DATA;
1274         int err;
1275
1276         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1277                 /* restore for compacted data summary */
1278                 if (read_compacted_summaries(sbi))
1279                         return -EINVAL;
1280                 type = CURSEG_HOT_NODE;
1281         }
1282
1283         for (; type <= CURSEG_COLD_NODE; type++) {
1284                 err = read_normal_summaries(sbi, type);
1285                 if (err)
1286                         return err;
1287         }
1288
1289         return 0;
1290 }
1291
1292 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1293 {
1294         struct page *page;
1295         unsigned char *kaddr;
1296         struct f2fs_summary *summary;
1297         struct curseg_info *seg_i;
1298         int written_size = 0;
1299         int i, j;
1300
1301         page = grab_meta_page(sbi, blkaddr++);
1302         kaddr = (unsigned char *)page_address(page);
1303
1304         /* Step 1: write nat cache */
1305         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1306         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1307         written_size += SUM_JOURNAL_SIZE;
1308
1309         /* Step 2: write sit cache */
1310         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1311         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1312                                                 SUM_JOURNAL_SIZE);
1313         written_size += SUM_JOURNAL_SIZE;
1314
1315         /* Step 3: write summary entries */
1316         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1317                 unsigned short blkoff;
1318                 seg_i = CURSEG_I(sbi, i);
1319                 if (sbi->ckpt->alloc_type[i] == SSR)
1320                         blkoff = sbi->blocks_per_seg;
1321                 else
1322                         blkoff = curseg_blkoff(sbi, i);
1323
1324                 for (j = 0; j < blkoff; j++) {
1325                         if (!page) {
1326                                 page = grab_meta_page(sbi, blkaddr++);
1327                                 kaddr = (unsigned char *)page_address(page);
1328                                 written_size = 0;
1329                         }
1330                         summary = (struct f2fs_summary *)(kaddr + written_size);
1331                         *summary = seg_i->sum_blk->entries[j];
1332                         written_size += SUMMARY_SIZE;
1333
1334                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1335                                                         SUM_FOOTER_SIZE)
1336                                 continue;
1337
1338                         set_page_dirty(page);
1339                         f2fs_put_page(page, 1);
1340                         page = NULL;
1341                 }
1342         }
1343         if (page) {
1344                 set_page_dirty(page);
1345                 f2fs_put_page(page, 1);
1346         }
1347 }
1348
1349 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1350                                         block_t blkaddr, int type)
1351 {
1352         int i, end;
1353         if (IS_DATASEG(type))
1354                 end = type + NR_CURSEG_DATA_TYPE;
1355         else
1356                 end = type + NR_CURSEG_NODE_TYPE;
1357
1358         for (i = type; i < end; i++) {
1359                 struct curseg_info *sum = CURSEG_I(sbi, i);
1360                 mutex_lock(&sum->curseg_mutex);
1361                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1362                 mutex_unlock(&sum->curseg_mutex);
1363         }
1364 }
1365
1366 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1367 {
1368         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1369                 write_compacted_summaries(sbi, start_blk);
1370         else
1371                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1372 }
1373
1374 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1375 {
1376         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1377                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1378 }
1379
1380 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1381                                         unsigned int val, int alloc)
1382 {
1383         int i;
1384
1385         if (type == NAT_JOURNAL) {
1386                 for (i = 0; i < nats_in_cursum(sum); i++) {
1387                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1388                                 return i;
1389                 }
1390                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1391                         return update_nats_in_cursum(sum, 1);
1392         } else if (type == SIT_JOURNAL) {
1393                 for (i = 0; i < sits_in_cursum(sum); i++)
1394                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1395                                 return i;
1396                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1397                         return update_sits_in_cursum(sum, 1);
1398         }
1399         return -1;
1400 }
1401
1402 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1403                                         unsigned int segno)
1404 {
1405         struct sit_info *sit_i = SIT_I(sbi);
1406         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1407         block_t blk_addr = sit_i->sit_base_addr + offset;
1408
1409         check_seg_range(sbi, segno);
1410
1411         /* calculate sit block address */
1412         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1413                 blk_addr += sit_i->sit_blocks;
1414
1415         return get_meta_page(sbi, blk_addr);
1416 }
1417
1418 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1419                                         unsigned int start)
1420 {
1421         struct sit_info *sit_i = SIT_I(sbi);
1422         struct page *src_page, *dst_page;
1423         pgoff_t src_off, dst_off;
1424         void *src_addr, *dst_addr;
1425
1426         src_off = current_sit_addr(sbi, start);
1427         dst_off = next_sit_addr(sbi, src_off);
1428
1429         /* get current sit block page without lock */
1430         src_page = get_meta_page(sbi, src_off);
1431         dst_page = grab_meta_page(sbi, dst_off);
1432         f2fs_bug_on(sbi, PageDirty(src_page));
1433
1434         src_addr = page_address(src_page);
1435         dst_addr = page_address(dst_page);
1436         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1437
1438         set_page_dirty(dst_page);
1439         f2fs_put_page(src_page, 1);
1440
1441         set_to_next_sit(sit_i, start);
1442
1443         return dst_page;
1444 }
1445
1446 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1447 {
1448         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1449         struct f2fs_summary_block *sum = curseg->sum_blk;
1450         int i;
1451
1452         /*
1453          * If the journal area in the current summary is full of sit entries,
1454          * all the sit entries will be flushed. Otherwise the sit entries
1455          * are not able to replace with newly hot sit entries.
1456          */
1457         if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1458                 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1459                         unsigned int segno;
1460                         segno = le32_to_cpu(segno_in_journal(sum, i));
1461                         __mark_sit_entry_dirty(sbi, segno);
1462                 }
1463                 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1464                 return true;
1465         }
1466         return false;
1467 }
1468
1469 /*
1470  * CP calls this function, which flushes SIT entries including sit_journal,
1471  * and moves prefree segs to free segs.
1472  */
1473 void flush_sit_entries(struct f2fs_sb_info *sbi)
1474 {
1475         struct sit_info *sit_i = SIT_I(sbi);
1476         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1477         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1478         struct f2fs_summary_block *sum = curseg->sum_blk;
1479         unsigned long nsegs = TOTAL_SEGS(sbi);
1480         struct page *page = NULL;
1481         struct f2fs_sit_block *raw_sit = NULL;
1482         unsigned int start = 0, end = 0;
1483         unsigned int segno;
1484         bool flushed;
1485
1486         mutex_lock(&curseg->curseg_mutex);
1487         mutex_lock(&sit_i->sentry_lock);
1488
1489         /*
1490          * "flushed" indicates whether sit entries in journal are flushed
1491          * to the SIT area or not.
1492          */
1493         flushed = flush_sits_in_journal(sbi);
1494
1495         for_each_set_bit(segno, bitmap, nsegs) {
1496                 struct seg_entry *se = get_seg_entry(sbi, segno);
1497                 int sit_offset, offset;
1498
1499                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1500
1501                 /* add discard candidates */
1502                 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1503                         add_discard_addrs(sbi, segno, se);
1504
1505                 if (flushed)
1506                         goto to_sit_page;
1507
1508                 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1509                 if (offset >= 0) {
1510                         segno_in_journal(sum, offset) = cpu_to_le32(segno);
1511                         seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1512                         goto flush_done;
1513                 }
1514 to_sit_page:
1515                 if (!page || (start > segno) || (segno > end)) {
1516                         if (page) {
1517                                 f2fs_put_page(page, 1);
1518                                 page = NULL;
1519                         }
1520
1521                         start = START_SEGNO(sit_i, segno);
1522                         end = start + SIT_ENTRY_PER_BLOCK - 1;
1523
1524                         /* read sit block that will be updated */
1525                         page = get_next_sit_page(sbi, start);
1526                         raw_sit = page_address(page);
1527                 }
1528
1529                 /* udpate entry in SIT block */
1530                 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1531 flush_done:
1532                 __clear_bit(segno, bitmap);
1533                 sit_i->dirty_sentries--;
1534         }
1535         mutex_unlock(&sit_i->sentry_lock);
1536         mutex_unlock(&curseg->curseg_mutex);
1537
1538         /* writeout last modified SIT block */
1539         f2fs_put_page(page, 1);
1540
1541         set_prefree_as_free_segments(sbi);
1542 }
1543
1544 static int build_sit_info(struct f2fs_sb_info *sbi)
1545 {
1546         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1547         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1548         struct sit_info *sit_i;
1549         unsigned int sit_segs, start;
1550         char *src_bitmap, *dst_bitmap;
1551         unsigned int bitmap_size;
1552
1553         /* allocate memory for SIT information */
1554         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1555         if (!sit_i)
1556                 return -ENOMEM;
1557
1558         SM_I(sbi)->sit_info = sit_i;
1559
1560         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1561         if (!sit_i->sentries)
1562                 return -ENOMEM;
1563
1564         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1565         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1566         if (!sit_i->dirty_sentries_bitmap)
1567                 return -ENOMEM;
1568
1569         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1570                 sit_i->sentries[start].cur_valid_map
1571                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1572                 sit_i->sentries[start].ckpt_valid_map
1573                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1574                 if (!sit_i->sentries[start].cur_valid_map
1575                                 || !sit_i->sentries[start].ckpt_valid_map)
1576                         return -ENOMEM;
1577         }
1578
1579         if (sbi->segs_per_sec > 1) {
1580                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1581                                         sizeof(struct sec_entry));
1582                 if (!sit_i->sec_entries)
1583                         return -ENOMEM;
1584         }
1585
1586         /* get information related with SIT */
1587         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1588
1589         /* setup SIT bitmap from ckeckpoint pack */
1590         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1591         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1592
1593         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1594         if (!dst_bitmap)
1595                 return -ENOMEM;
1596
1597         /* init SIT information */
1598         sit_i->s_ops = &default_salloc_ops;
1599
1600         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1601         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1602         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1603         sit_i->sit_bitmap = dst_bitmap;
1604         sit_i->bitmap_size = bitmap_size;
1605         sit_i->dirty_sentries = 0;
1606         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1607         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1608         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1609         mutex_init(&sit_i->sentry_lock);
1610         return 0;
1611 }
1612
1613 static int build_free_segmap(struct f2fs_sb_info *sbi)
1614 {
1615         struct f2fs_sm_info *sm_info = SM_I(sbi);
1616         struct free_segmap_info *free_i;
1617         unsigned int bitmap_size, sec_bitmap_size;
1618
1619         /* allocate memory for free segmap information */
1620         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1621         if (!free_i)
1622                 return -ENOMEM;
1623
1624         SM_I(sbi)->free_info = free_i;
1625
1626         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1627         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1628         if (!free_i->free_segmap)
1629                 return -ENOMEM;
1630
1631         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1632         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1633         if (!free_i->free_secmap)
1634                 return -ENOMEM;
1635
1636         /* set all segments as dirty temporarily */
1637         memset(free_i->free_segmap, 0xff, bitmap_size);
1638         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1639
1640         /* init free segmap information */
1641         free_i->start_segno =
1642                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1643         free_i->free_segments = 0;
1644         free_i->free_sections = 0;
1645         rwlock_init(&free_i->segmap_lock);
1646         return 0;
1647 }
1648
1649 static int build_curseg(struct f2fs_sb_info *sbi)
1650 {
1651         struct curseg_info *array;
1652         int i;
1653
1654         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
1655         if (!array)
1656                 return -ENOMEM;
1657
1658         SM_I(sbi)->curseg_array = array;
1659
1660         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1661                 mutex_init(&array[i].curseg_mutex);
1662                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1663                 if (!array[i].sum_blk)
1664                         return -ENOMEM;
1665                 array[i].segno = NULL_SEGNO;
1666                 array[i].next_blkoff = 0;
1667         }
1668         return restore_curseg_summaries(sbi);
1669 }
1670
1671 static void build_sit_entries(struct f2fs_sb_info *sbi)
1672 {
1673         struct sit_info *sit_i = SIT_I(sbi);
1674         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1675         struct f2fs_summary_block *sum = curseg->sum_blk;
1676         int sit_blk_cnt = SIT_BLK_CNT(sbi);
1677         unsigned int i, start, end;
1678         unsigned int readed, start_blk = 0;
1679         int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1680
1681         do {
1682                 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1683
1684                 start = start_blk * sit_i->sents_per_block;
1685                 end = (start_blk + readed) * sit_i->sents_per_block;
1686
1687                 for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1688                         struct seg_entry *se = &sit_i->sentries[start];
1689                         struct f2fs_sit_block *sit_blk;
1690                         struct f2fs_sit_entry sit;
1691                         struct page *page;
1692
1693                         mutex_lock(&curseg->curseg_mutex);
1694                         for (i = 0; i < sits_in_cursum(sum); i++) {
1695                                 if (le32_to_cpu(segno_in_journal(sum, i))
1696                                                                 == start) {
1697                                         sit = sit_in_journal(sum, i);
1698                                         mutex_unlock(&curseg->curseg_mutex);
1699                                         goto got_it;
1700                                 }
1701                         }
1702                         mutex_unlock(&curseg->curseg_mutex);
1703
1704                         page = get_current_sit_page(sbi, start);
1705                         sit_blk = (struct f2fs_sit_block *)page_address(page);
1706                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1707                         f2fs_put_page(page, 1);
1708 got_it:
1709                         check_block_count(sbi, start, &sit);
1710                         seg_info_from_raw_sit(se, &sit);
1711                         if (sbi->segs_per_sec > 1) {
1712                                 struct sec_entry *e = get_sec_entry(sbi, start);
1713                                 e->valid_blocks += se->valid_blocks;
1714                         }
1715                 }
1716                 start_blk += readed;
1717         } while (start_blk < sit_blk_cnt);
1718 }
1719
1720 static void init_free_segmap(struct f2fs_sb_info *sbi)
1721 {
1722         unsigned int start;
1723         int type;
1724
1725         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1726                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1727                 if (!sentry->valid_blocks)
1728                         __set_free(sbi, start);
1729         }
1730
1731         /* set use the current segments */
1732         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1733                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1734                 __set_test_and_inuse(sbi, curseg_t->segno);
1735         }
1736 }
1737
1738 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1739 {
1740         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1741         struct free_segmap_info *free_i = FREE_I(sbi);
1742         unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1743         unsigned short valid_blocks;
1744
1745         while (1) {
1746                 /* find dirty segment based on free segmap */
1747                 segno = find_next_inuse(free_i, total_segs, offset);
1748                 if (segno >= total_segs)
1749                         break;
1750                 offset = segno + 1;
1751                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1752                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
1753                         continue;
1754                 if (valid_blocks > sbi->blocks_per_seg) {
1755                         f2fs_bug_on(sbi, 1);
1756                         continue;
1757                 }
1758                 mutex_lock(&dirty_i->seglist_lock);
1759                 __locate_dirty_segment(sbi, segno, DIRTY);
1760                 mutex_unlock(&dirty_i->seglist_lock);
1761         }
1762 }
1763
1764 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1765 {
1766         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1767         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1768
1769         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1770         if (!dirty_i->victim_secmap)
1771                 return -ENOMEM;
1772         return 0;
1773 }
1774
1775 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1776 {
1777         struct dirty_seglist_info *dirty_i;
1778         unsigned int bitmap_size, i;
1779
1780         /* allocate memory for dirty segments list information */
1781         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1782         if (!dirty_i)
1783                 return -ENOMEM;
1784
1785         SM_I(sbi)->dirty_info = dirty_i;
1786         mutex_init(&dirty_i->seglist_lock);
1787
1788         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1789
1790         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1791                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1792                 if (!dirty_i->dirty_segmap[i])
1793                         return -ENOMEM;
1794         }
1795
1796         init_dirty_segmap(sbi);
1797         return init_victim_secmap(sbi);
1798 }
1799
1800 /*
1801  * Update min, max modified time for cost-benefit GC algorithm
1802  */
1803 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1804 {
1805         struct sit_info *sit_i = SIT_I(sbi);
1806         unsigned int segno;
1807
1808         mutex_lock(&sit_i->sentry_lock);
1809
1810         sit_i->min_mtime = LLONG_MAX;
1811
1812         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1813                 unsigned int i;
1814                 unsigned long long mtime = 0;
1815
1816                 for (i = 0; i < sbi->segs_per_sec; i++)
1817                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1818
1819                 mtime = div_u64(mtime, sbi->segs_per_sec);
1820
1821                 if (sit_i->min_mtime > mtime)
1822                         sit_i->min_mtime = mtime;
1823         }
1824         sit_i->max_mtime = get_mtime(sbi);
1825         mutex_unlock(&sit_i->sentry_lock);
1826 }
1827
1828 int build_segment_manager(struct f2fs_sb_info *sbi)
1829 {
1830         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1831         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1832         struct f2fs_sm_info *sm_info;
1833         int err;
1834
1835         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1836         if (!sm_info)
1837                 return -ENOMEM;
1838
1839         /* init sm info */
1840         sbi->sm_info = sm_info;
1841         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1842         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1843         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1844         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1845         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1846         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1847         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1848         sm_info->rec_prefree_segments = sm_info->main_segments *
1849                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
1850         sm_info->ipu_policy = F2FS_IPU_DISABLE;
1851         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1852
1853         INIT_LIST_HEAD(&sm_info->discard_list);
1854         sm_info->nr_discards = 0;
1855         sm_info->max_discards = 0;
1856
1857         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
1858                 err = create_flush_cmd_control(sbi);
1859                 if (err)
1860                         return err;
1861         }
1862
1863         err = build_sit_info(sbi);
1864         if (err)
1865                 return err;
1866         err = build_free_segmap(sbi);
1867         if (err)
1868                 return err;
1869         err = build_curseg(sbi);
1870         if (err)
1871                 return err;
1872
1873         /* reinit free segmap based on SIT */
1874         build_sit_entries(sbi);
1875
1876         init_free_segmap(sbi);
1877         err = build_dirty_segmap(sbi);
1878         if (err)
1879                 return err;
1880
1881         init_min_max_mtime(sbi);
1882         return 0;
1883 }
1884
1885 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1886                 enum dirty_type dirty_type)
1887 {
1888         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1889
1890         mutex_lock(&dirty_i->seglist_lock);
1891         kfree(dirty_i->dirty_segmap[dirty_type]);
1892         dirty_i->nr_dirty[dirty_type] = 0;
1893         mutex_unlock(&dirty_i->seglist_lock);
1894 }
1895
1896 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1897 {
1898         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1899         kfree(dirty_i->victim_secmap);
1900 }
1901
1902 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1903 {
1904         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1905         int i;
1906
1907         if (!dirty_i)
1908                 return;
1909
1910         /* discard pre-free/dirty segments list */
1911         for (i = 0; i < NR_DIRTY_TYPE; i++)
1912                 discard_dirty_segmap(sbi, i);
1913
1914         destroy_victim_secmap(sbi);
1915         SM_I(sbi)->dirty_info = NULL;
1916         kfree(dirty_i);
1917 }
1918
1919 static void destroy_curseg(struct f2fs_sb_info *sbi)
1920 {
1921         struct curseg_info *array = SM_I(sbi)->curseg_array;
1922         int i;
1923
1924         if (!array)
1925                 return;
1926         SM_I(sbi)->curseg_array = NULL;
1927         for (i = 0; i < NR_CURSEG_TYPE; i++)
1928                 kfree(array[i].sum_blk);
1929         kfree(array);
1930 }
1931
1932 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1933 {
1934         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1935         if (!free_i)
1936                 return;
1937         SM_I(sbi)->free_info = NULL;
1938         kfree(free_i->free_segmap);
1939         kfree(free_i->free_secmap);
1940         kfree(free_i);
1941 }
1942
1943 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1944 {
1945         struct sit_info *sit_i = SIT_I(sbi);
1946         unsigned int start;
1947
1948         if (!sit_i)
1949                 return;
1950
1951         if (sit_i->sentries) {
1952                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1953                         kfree(sit_i->sentries[start].cur_valid_map);
1954                         kfree(sit_i->sentries[start].ckpt_valid_map);
1955                 }
1956         }
1957         vfree(sit_i->sentries);
1958         vfree(sit_i->sec_entries);
1959         kfree(sit_i->dirty_sentries_bitmap);
1960
1961         SM_I(sbi)->sit_info = NULL;
1962         kfree(sit_i->sit_bitmap);
1963         kfree(sit_i);
1964 }
1965
1966 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1967 {
1968         struct f2fs_sm_info *sm_info = SM_I(sbi);
1969
1970         if (!sm_info)
1971                 return;
1972         destroy_flush_cmd_control(sbi);
1973         destroy_dirty_segmap(sbi);
1974         destroy_curseg(sbi);
1975         destroy_free_segmap(sbi);
1976         destroy_sit_info(sbi);
1977         sbi->sm_info = NULL;
1978         kfree(sm_info);
1979 }
1980
1981 int __init create_segment_manager_caches(void)
1982 {
1983         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
1984                         sizeof(struct discard_entry));
1985         if (!discard_entry_slab)
1986                 return -ENOMEM;
1987         return 0;
1988 }
1989
1990 void destroy_segment_manager_caches(void)
1991 {
1992         kmem_cache_destroy(discard_entry_slab);
1993 }