e158d63584748fc1e830d0af32543ad6873328ff
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include <trace/events/f2fs.h>
24
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26
27 static struct kmem_cache *discard_entry_slab;
28 static struct kmem_cache *sit_entry_set_slab;
29
30 /*
31  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
32  * MSB and LSB are reversed in a byte by f2fs_set_bit.
33  */
34 static inline unsigned long __reverse_ffs(unsigned long word)
35 {
36         int num = 0;
37
38 #if BITS_PER_LONG == 64
39         if ((word & 0xffffffff) == 0) {
40                 num += 32;
41                 word >>= 32;
42         }
43 #endif
44         if ((word & 0xffff) == 0) {
45                 num += 16;
46                 word >>= 16;
47         }
48         if ((word & 0xff) == 0) {
49                 num += 8;
50                 word >>= 8;
51         }
52         if ((word & 0xf0) == 0)
53                 num += 4;
54         else
55                 word >>= 4;
56         if ((word & 0xc) == 0)
57                 num += 2;
58         else
59                 word >>= 2;
60         if ((word & 0x2) == 0)
61                 num += 1;
62         return num;
63 }
64
65 /*
66  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
67  * f2fs_set_bit makes MSB and LSB reversed in a byte.
68  * Example:
69  *                             LSB <--> MSB
70  *   f2fs_set_bit(0, bitmap) => 0000 0001
71  *   f2fs_set_bit(7, bitmap) => 1000 0000
72  */
73 static unsigned long __find_rev_next_bit(const unsigned long *addr,
74                         unsigned long size, unsigned long offset)
75 {
76         const unsigned long *p = addr + BIT_WORD(offset);
77         unsigned long result = offset & ~(BITS_PER_LONG - 1);
78         unsigned long tmp;
79         unsigned long mask, submask;
80         unsigned long quot, rest;
81
82         if (offset >= size)
83                 return size;
84
85         size -= result;
86         offset %= BITS_PER_LONG;
87         if (!offset)
88                 goto aligned;
89
90         tmp = *(p++);
91         quot = (offset >> 3) << 3;
92         rest = offset & 0x7;
93         mask = ~0UL << quot;
94         submask = (unsigned char)(0xff << rest) >> rest;
95         submask <<= quot;
96         mask &= submask;
97         tmp &= mask;
98         if (size < BITS_PER_LONG)
99                 goto found_first;
100         if (tmp)
101                 goto found_middle;
102
103         size -= BITS_PER_LONG;
104         result += BITS_PER_LONG;
105 aligned:
106         while (size & ~(BITS_PER_LONG-1)) {
107                 tmp = *(p++);
108                 if (tmp)
109                         goto found_middle;
110                 result += BITS_PER_LONG;
111                 size -= BITS_PER_LONG;
112         }
113         if (!size)
114                 return result;
115         tmp = *p;
116 found_first:
117         tmp &= (~0UL >> (BITS_PER_LONG - size));
118         if (tmp == 0UL)         /* Are any bits set? */
119                 return result + size;   /* Nope. */
120 found_middle:
121         return result + __reverse_ffs(tmp);
122 }
123
124 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
125                         unsigned long size, unsigned long offset)
126 {
127         const unsigned long *p = addr + BIT_WORD(offset);
128         unsigned long result = offset & ~(BITS_PER_LONG - 1);
129         unsigned long tmp;
130         unsigned long mask, submask;
131         unsigned long quot, rest;
132
133         if (offset >= size)
134                 return size;
135
136         size -= result;
137         offset %= BITS_PER_LONG;
138         if (!offset)
139                 goto aligned;
140
141         tmp = *(p++);
142         quot = (offset >> 3) << 3;
143         rest = offset & 0x7;
144         mask = ~(~0UL << quot);
145         submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
146         submask <<= quot;
147         mask += submask;
148         tmp |= mask;
149         if (size < BITS_PER_LONG)
150                 goto found_first;
151         if (~tmp)
152                 goto found_middle;
153
154         size -= BITS_PER_LONG;
155         result += BITS_PER_LONG;
156 aligned:
157         while (size & ~(BITS_PER_LONG - 1)) {
158                 tmp = *(p++);
159                 if (~tmp)
160                         goto found_middle;
161                 result += BITS_PER_LONG;
162                 size -= BITS_PER_LONG;
163         }
164         if (!size)
165                 return result;
166         tmp = *p;
167
168 found_first:
169         tmp |= ~0UL << size;
170         if (tmp == ~0UL)        /* Are any bits zero? */
171                 return result + size;   /* Nope. */
172 found_middle:
173         return result + __reverse_ffz(tmp);
174 }
175
176 /*
177  * This function balances dirty node and dentry pages.
178  * In addition, it controls garbage collection.
179  */
180 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
181 {
182         /*
183          * We should do GC or end up with checkpoint, if there are so many dirty
184          * dir/node pages without enough free segments.
185          */
186         if (has_not_enough_free_secs(sbi, 0)) {
187                 mutex_lock(&sbi->gc_mutex);
188                 f2fs_gc(sbi);
189         }
190 }
191
192 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
193 {
194         /* check the # of cached NAT entries and prefree segments */
195         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
196                                 excess_prefree_segs(sbi))
197                 f2fs_sync_fs(sbi->sb, true);
198 }
199
200 static int issue_flush_thread(void *data)
201 {
202         struct f2fs_sb_info *sbi = data;
203         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
204         wait_queue_head_t *q = &fcc->flush_wait_queue;
205 repeat:
206         if (kthread_should_stop())
207                 return 0;
208
209         if (!llist_empty(&fcc->issue_list)) {
210                 struct bio *bio = bio_alloc(GFP_NOIO, 0);
211                 struct flush_cmd *cmd, *next;
212                 int ret;
213
214                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
215                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
216
217                 bio->bi_bdev = sbi->sb->s_bdev;
218                 ret = submit_bio_wait(WRITE_FLUSH, bio);
219
220                 llist_for_each_entry_safe(cmd, next,
221                                           fcc->dispatch_list, llnode) {
222                         cmd->ret = ret;
223                         complete(&cmd->wait);
224                 }
225                 bio_put(bio);
226                 fcc->dispatch_list = NULL;
227         }
228
229         wait_event_interruptible(*q,
230                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
231         goto repeat;
232 }
233
234 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
235 {
236         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
237         struct flush_cmd cmd;
238
239         trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
240                                         test_opt(sbi, FLUSH_MERGE));
241
242         if (test_opt(sbi, NOBARRIER))
243                 return 0;
244
245         if (!test_opt(sbi, FLUSH_MERGE))
246                 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
247
248         init_completion(&cmd.wait);
249
250         llist_add(&cmd.llnode, &fcc->issue_list);
251
252         if (!fcc->dispatch_list)
253                 wake_up(&fcc->flush_wait_queue);
254
255         wait_for_completion(&cmd.wait);
256
257         return cmd.ret;
258 }
259
260 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
261 {
262         dev_t dev = sbi->sb->s_bdev->bd_dev;
263         struct flush_cmd_control *fcc;
264         int err = 0;
265
266         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
267         if (!fcc)
268                 return -ENOMEM;
269         init_waitqueue_head(&fcc->flush_wait_queue);
270         init_llist_head(&fcc->issue_list);
271         SM_I(sbi)->cmd_control_info = fcc;
272         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
273                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
274         if (IS_ERR(fcc->f2fs_issue_flush)) {
275                 err = PTR_ERR(fcc->f2fs_issue_flush);
276                 kfree(fcc);
277                 SM_I(sbi)->cmd_control_info = NULL;
278                 return err;
279         }
280
281         return err;
282 }
283
284 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
285 {
286         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
287
288         if (fcc && fcc->f2fs_issue_flush)
289                 kthread_stop(fcc->f2fs_issue_flush);
290         kfree(fcc);
291         SM_I(sbi)->cmd_control_info = NULL;
292 }
293
294 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
295                 enum dirty_type dirty_type)
296 {
297         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
298
299         /* need not be added */
300         if (IS_CURSEG(sbi, segno))
301                 return;
302
303         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
304                 dirty_i->nr_dirty[dirty_type]++;
305
306         if (dirty_type == DIRTY) {
307                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
308                 enum dirty_type t = sentry->type;
309
310                 if (unlikely(t >= DIRTY)) {
311                         f2fs_bug_on(sbi, 1);
312                         return;
313                 }
314                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
315                         dirty_i->nr_dirty[t]++;
316         }
317 }
318
319 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
320                 enum dirty_type dirty_type)
321 {
322         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
323
324         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
325                 dirty_i->nr_dirty[dirty_type]--;
326
327         if (dirty_type == DIRTY) {
328                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
329                 enum dirty_type t = sentry->type;
330
331                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
332                         dirty_i->nr_dirty[t]--;
333
334                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
335                         clear_bit(GET_SECNO(sbi, segno),
336                                                 dirty_i->victim_secmap);
337         }
338 }
339
340 /*
341  * Should not occur error such as -ENOMEM.
342  * Adding dirty entry into seglist is not critical operation.
343  * If a given segment is one of current working segments, it won't be added.
344  */
345 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
346 {
347         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
348         unsigned short valid_blocks;
349
350         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
351                 return;
352
353         mutex_lock(&dirty_i->seglist_lock);
354
355         valid_blocks = get_valid_blocks(sbi, segno, 0);
356
357         if (valid_blocks == 0) {
358                 __locate_dirty_segment(sbi, segno, PRE);
359                 __remove_dirty_segment(sbi, segno, DIRTY);
360         } else if (valid_blocks < sbi->blocks_per_seg) {
361                 __locate_dirty_segment(sbi, segno, DIRTY);
362         } else {
363                 /* Recovery routine with SSR needs this */
364                 __remove_dirty_segment(sbi, segno, DIRTY);
365         }
366
367         mutex_unlock(&dirty_i->seglist_lock);
368 }
369
370 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
371                                 block_t blkstart, block_t blklen)
372 {
373         sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
374         sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
375         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
376         return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
377 }
378
379 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
380 {
381         if (f2fs_issue_discard(sbi, blkaddr, 1)) {
382                 struct page *page = grab_meta_page(sbi, blkaddr);
383                 /* zero-filled page */
384                 set_page_dirty(page);
385                 f2fs_put_page(page, 1);
386         }
387 }
388
389 static void add_discard_addrs(struct f2fs_sb_info *sbi,
390                         unsigned int segno, struct seg_entry *se)
391 {
392         struct list_head *head = &SM_I(sbi)->discard_list;
393         struct discard_entry *new;
394         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
395         int max_blocks = sbi->blocks_per_seg;
396         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
397         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
398         unsigned long dmap[entries];
399         unsigned int start = 0, end = -1;
400         int i;
401
402         if (!test_opt(sbi, DISCARD))
403                 return;
404
405         /* zero block will be discarded through the prefree list */
406         if (!se->valid_blocks || se->valid_blocks == max_blocks)
407                 return;
408
409         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
410         for (i = 0; i < entries; i++)
411                 dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
412
413         while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
414                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
415                 if (start >= max_blocks)
416                         break;
417
418                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
419
420                 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
421                 INIT_LIST_HEAD(&new->list);
422                 new->blkaddr = START_BLOCK(sbi, segno) + start;
423                 new->len = end - start;
424
425                 list_add_tail(&new->list, head);
426                 SM_I(sbi)->nr_discards += end - start;
427         }
428 }
429
430 /*
431  * Should call clear_prefree_segments after checkpoint is done.
432  */
433 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
434 {
435         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
436         unsigned int segno;
437         unsigned int total_segs = TOTAL_SEGS(sbi);
438
439         mutex_lock(&dirty_i->seglist_lock);
440         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], total_segs)
441                 __set_test_and_free(sbi, segno);
442         mutex_unlock(&dirty_i->seglist_lock);
443 }
444
445 void clear_prefree_segments(struct f2fs_sb_info *sbi)
446 {
447         struct list_head *head = &(SM_I(sbi)->discard_list);
448         struct discard_entry *entry, *this;
449         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
450         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
451         unsigned int total_segs = TOTAL_SEGS(sbi);
452         unsigned int start = 0, end = -1;
453
454         mutex_lock(&dirty_i->seglist_lock);
455
456         while (1) {
457                 int i;
458                 start = find_next_bit(prefree_map, total_segs, end + 1);
459                 if (start >= total_segs)
460                         break;
461                 end = find_next_zero_bit(prefree_map, total_segs, start + 1);
462
463                 for (i = start; i < end; i++)
464                         clear_bit(i, prefree_map);
465
466                 dirty_i->nr_dirty[PRE] -= end - start;
467
468                 if (!test_opt(sbi, DISCARD))
469                         continue;
470
471                 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
472                                 (end - start) << sbi->log_blocks_per_seg);
473         }
474         mutex_unlock(&dirty_i->seglist_lock);
475
476         /* send small discards */
477         list_for_each_entry_safe(entry, this, head, list) {
478                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
479                 list_del(&entry->list);
480                 SM_I(sbi)->nr_discards -= entry->len;
481                 kmem_cache_free(discard_entry_slab, entry);
482         }
483 }
484
485 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
486 {
487         struct sit_info *sit_i = SIT_I(sbi);
488
489         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
490                 sit_i->dirty_sentries++;
491                 return false;
492         }
493
494         return true;
495 }
496
497 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
498                                         unsigned int segno, int modified)
499 {
500         struct seg_entry *se = get_seg_entry(sbi, segno);
501         se->type = type;
502         if (modified)
503                 __mark_sit_entry_dirty(sbi, segno);
504 }
505
506 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
507 {
508         struct seg_entry *se;
509         unsigned int segno, offset;
510         long int new_vblocks;
511
512         segno = GET_SEGNO(sbi, blkaddr);
513
514         se = get_seg_entry(sbi, segno);
515         new_vblocks = se->valid_blocks + del;
516         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
517
518         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
519                                 (new_vblocks > sbi->blocks_per_seg)));
520
521         se->valid_blocks = new_vblocks;
522         se->mtime = get_mtime(sbi);
523         SIT_I(sbi)->max_mtime = se->mtime;
524
525         /* Update valid block bitmap */
526         if (del > 0) {
527                 if (f2fs_set_bit(offset, se->cur_valid_map))
528                         f2fs_bug_on(sbi, 1);
529         } else {
530                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
531                         f2fs_bug_on(sbi, 1);
532         }
533         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
534                 se->ckpt_valid_blocks += del;
535
536         __mark_sit_entry_dirty(sbi, segno);
537
538         /* update total number of valid blocks to be written in ckpt area */
539         SIT_I(sbi)->written_valid_blocks += del;
540
541         if (sbi->segs_per_sec > 1)
542                 get_sec_entry(sbi, segno)->valid_blocks += del;
543 }
544
545 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
546 {
547         update_sit_entry(sbi, new, 1);
548         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
549                 update_sit_entry(sbi, old, -1);
550
551         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
552         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
553 }
554
555 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
556 {
557         unsigned int segno = GET_SEGNO(sbi, addr);
558         struct sit_info *sit_i = SIT_I(sbi);
559
560         f2fs_bug_on(sbi, addr == NULL_ADDR);
561         if (addr == NEW_ADDR)
562                 return;
563
564         /* add it into sit main buffer */
565         mutex_lock(&sit_i->sentry_lock);
566
567         update_sit_entry(sbi, addr, -1);
568
569         /* add it into dirty seglist */
570         locate_dirty_segment(sbi, segno);
571
572         mutex_unlock(&sit_i->sentry_lock);
573 }
574
575 /*
576  * This function should be resided under the curseg_mutex lock
577  */
578 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
579                                         struct f2fs_summary *sum)
580 {
581         struct curseg_info *curseg = CURSEG_I(sbi, type);
582         void *addr = curseg->sum_blk;
583         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
584         memcpy(addr, sum, sizeof(struct f2fs_summary));
585 }
586
587 /*
588  * Calculate the number of current summary pages for writing
589  */
590 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
591 {
592         int valid_sum_count = 0;
593         int i, sum_in_page;
594
595         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
596                 if (sbi->ckpt->alloc_type[i] == SSR)
597                         valid_sum_count += sbi->blocks_per_seg;
598                 else
599                         valid_sum_count += curseg_blkoff(sbi, i);
600         }
601
602         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
603                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
604         if (valid_sum_count <= sum_in_page)
605                 return 1;
606         else if ((valid_sum_count - sum_in_page) <=
607                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
608                 return 2;
609         return 3;
610 }
611
612 /*
613  * Caller should put this summary page
614  */
615 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
616 {
617         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
618 }
619
620 static void write_sum_page(struct f2fs_sb_info *sbi,
621                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
622 {
623         struct page *page = grab_meta_page(sbi, blk_addr);
624         void *kaddr = page_address(page);
625         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
626         set_page_dirty(page);
627         f2fs_put_page(page, 1);
628 }
629
630 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
631 {
632         struct curseg_info *curseg = CURSEG_I(sbi, type);
633         unsigned int segno = curseg->segno + 1;
634         struct free_segmap_info *free_i = FREE_I(sbi);
635
636         if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
637                 return !test_bit(segno, free_i->free_segmap);
638         return 0;
639 }
640
641 /*
642  * Find a new segment from the free segments bitmap to right order
643  * This function should be returned with success, otherwise BUG
644  */
645 static void get_new_segment(struct f2fs_sb_info *sbi,
646                         unsigned int *newseg, bool new_sec, int dir)
647 {
648         struct free_segmap_info *free_i = FREE_I(sbi);
649         unsigned int segno, secno, zoneno;
650         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
651         unsigned int hint = *newseg / sbi->segs_per_sec;
652         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
653         unsigned int left_start = hint;
654         bool init = true;
655         int go_left = 0;
656         int i;
657
658         write_lock(&free_i->segmap_lock);
659
660         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
661                 segno = find_next_zero_bit(free_i->free_segmap,
662                                         TOTAL_SEGS(sbi), *newseg + 1);
663                 if (segno - *newseg < sbi->segs_per_sec -
664                                         (*newseg % sbi->segs_per_sec))
665                         goto got_it;
666         }
667 find_other_zone:
668         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
669         if (secno >= TOTAL_SECS(sbi)) {
670                 if (dir == ALLOC_RIGHT) {
671                         secno = find_next_zero_bit(free_i->free_secmap,
672                                                         TOTAL_SECS(sbi), 0);
673                         f2fs_bug_on(sbi, secno >= TOTAL_SECS(sbi));
674                 } else {
675                         go_left = 1;
676                         left_start = hint - 1;
677                 }
678         }
679         if (go_left == 0)
680                 goto skip_left;
681
682         while (test_bit(left_start, free_i->free_secmap)) {
683                 if (left_start > 0) {
684                         left_start--;
685                         continue;
686                 }
687                 left_start = find_next_zero_bit(free_i->free_secmap,
688                                                         TOTAL_SECS(sbi), 0);
689                 f2fs_bug_on(sbi, left_start >= TOTAL_SECS(sbi));
690                 break;
691         }
692         secno = left_start;
693 skip_left:
694         hint = secno;
695         segno = secno * sbi->segs_per_sec;
696         zoneno = secno / sbi->secs_per_zone;
697
698         /* give up on finding another zone */
699         if (!init)
700                 goto got_it;
701         if (sbi->secs_per_zone == 1)
702                 goto got_it;
703         if (zoneno == old_zoneno)
704                 goto got_it;
705         if (dir == ALLOC_LEFT) {
706                 if (!go_left && zoneno + 1 >= total_zones)
707                         goto got_it;
708                 if (go_left && zoneno == 0)
709                         goto got_it;
710         }
711         for (i = 0; i < NR_CURSEG_TYPE; i++)
712                 if (CURSEG_I(sbi, i)->zone == zoneno)
713                         break;
714
715         if (i < NR_CURSEG_TYPE) {
716                 /* zone is in user, try another */
717                 if (go_left)
718                         hint = zoneno * sbi->secs_per_zone - 1;
719                 else if (zoneno + 1 >= total_zones)
720                         hint = 0;
721                 else
722                         hint = (zoneno + 1) * sbi->secs_per_zone;
723                 init = false;
724                 goto find_other_zone;
725         }
726 got_it:
727         /* set it as dirty segment in free segmap */
728         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
729         __set_inuse(sbi, segno);
730         *newseg = segno;
731         write_unlock(&free_i->segmap_lock);
732 }
733
734 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
735 {
736         struct curseg_info *curseg = CURSEG_I(sbi, type);
737         struct summary_footer *sum_footer;
738
739         curseg->segno = curseg->next_segno;
740         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
741         curseg->next_blkoff = 0;
742         curseg->next_segno = NULL_SEGNO;
743
744         sum_footer = &(curseg->sum_blk->footer);
745         memset(sum_footer, 0, sizeof(struct summary_footer));
746         if (IS_DATASEG(type))
747                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
748         if (IS_NODESEG(type))
749                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
750         __set_sit_entry_type(sbi, type, curseg->segno, modified);
751 }
752
753 /*
754  * Allocate a current working segment.
755  * This function always allocates a free segment in LFS manner.
756  */
757 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
758 {
759         struct curseg_info *curseg = CURSEG_I(sbi, type);
760         unsigned int segno = curseg->segno;
761         int dir = ALLOC_LEFT;
762
763         write_sum_page(sbi, curseg->sum_blk,
764                                 GET_SUM_BLOCK(sbi, segno));
765         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
766                 dir = ALLOC_RIGHT;
767
768         if (test_opt(sbi, NOHEAP))
769                 dir = ALLOC_RIGHT;
770
771         get_new_segment(sbi, &segno, new_sec, dir);
772         curseg->next_segno = segno;
773         reset_curseg(sbi, type, 1);
774         curseg->alloc_type = LFS;
775 }
776
777 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
778                         struct curseg_info *seg, block_t start)
779 {
780         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
781         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
782         unsigned long target_map[entries];
783         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
784         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
785         int i, pos;
786
787         for (i = 0; i < entries; i++)
788                 target_map[i] = ckpt_map[i] | cur_map[i];
789
790         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
791
792         seg->next_blkoff = pos;
793 }
794
795 /*
796  * If a segment is written by LFS manner, next block offset is just obtained
797  * by increasing the current block offset. However, if a segment is written by
798  * SSR manner, next block offset obtained by calling __next_free_blkoff
799  */
800 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
801                                 struct curseg_info *seg)
802 {
803         if (seg->alloc_type == SSR)
804                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
805         else
806                 seg->next_blkoff++;
807 }
808
809 /*
810  * This function always allocates a used segment(from dirty seglist) by SSR
811  * manner, so it should recover the existing segment information of valid blocks
812  */
813 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
814 {
815         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
816         struct curseg_info *curseg = CURSEG_I(sbi, type);
817         unsigned int new_segno = curseg->next_segno;
818         struct f2fs_summary_block *sum_node;
819         struct page *sum_page;
820
821         write_sum_page(sbi, curseg->sum_blk,
822                                 GET_SUM_BLOCK(sbi, curseg->segno));
823         __set_test_and_inuse(sbi, new_segno);
824
825         mutex_lock(&dirty_i->seglist_lock);
826         __remove_dirty_segment(sbi, new_segno, PRE);
827         __remove_dirty_segment(sbi, new_segno, DIRTY);
828         mutex_unlock(&dirty_i->seglist_lock);
829
830         reset_curseg(sbi, type, 1);
831         curseg->alloc_type = SSR;
832         __next_free_blkoff(sbi, curseg, 0);
833
834         if (reuse) {
835                 sum_page = get_sum_page(sbi, new_segno);
836                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
837                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
838                 f2fs_put_page(sum_page, 1);
839         }
840 }
841
842 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
843 {
844         struct curseg_info *curseg = CURSEG_I(sbi, type);
845         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
846
847         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
848                 return v_ops->get_victim(sbi,
849                                 &(curseg)->next_segno, BG_GC, type, SSR);
850
851         /* For data segments, let's do SSR more intensively */
852         for (; type >= CURSEG_HOT_DATA; type--)
853                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
854                                                 BG_GC, type, SSR))
855                         return 1;
856         return 0;
857 }
858
859 /*
860  * flush out current segment and replace it with new segment
861  * This function should be returned with success, otherwise BUG
862  */
863 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
864                                                 int type, bool force)
865 {
866         struct curseg_info *curseg = CURSEG_I(sbi, type);
867
868         if (force)
869                 new_curseg(sbi, type, true);
870         else if (type == CURSEG_WARM_NODE)
871                 new_curseg(sbi, type, false);
872         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
873                 new_curseg(sbi, type, false);
874         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
875                 change_curseg(sbi, type, true);
876         else
877                 new_curseg(sbi, type, false);
878
879         stat_inc_seg_type(sbi, curseg);
880 }
881
882 void allocate_new_segments(struct f2fs_sb_info *sbi)
883 {
884         struct curseg_info *curseg;
885         unsigned int old_curseg;
886         int i;
887
888         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
889                 curseg = CURSEG_I(sbi, i);
890                 old_curseg = curseg->segno;
891                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
892                 locate_dirty_segment(sbi, old_curseg);
893         }
894 }
895
896 static const struct segment_allocation default_salloc_ops = {
897         .allocate_segment = allocate_segment_by_default,
898 };
899
900 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
901 {
902         struct curseg_info *curseg = CURSEG_I(sbi, type);
903         if (curseg->next_blkoff < sbi->blocks_per_seg)
904                 return true;
905         return false;
906 }
907
908 static int __get_segment_type_2(struct page *page, enum page_type p_type)
909 {
910         if (p_type == DATA)
911                 return CURSEG_HOT_DATA;
912         else
913                 return CURSEG_HOT_NODE;
914 }
915
916 static int __get_segment_type_4(struct page *page, enum page_type p_type)
917 {
918         if (p_type == DATA) {
919                 struct inode *inode = page->mapping->host;
920
921                 if (S_ISDIR(inode->i_mode))
922                         return CURSEG_HOT_DATA;
923                 else
924                         return CURSEG_COLD_DATA;
925         } else {
926                 if (IS_DNODE(page) && !is_cold_node(page))
927                         return CURSEG_HOT_NODE;
928                 else
929                         return CURSEG_COLD_NODE;
930         }
931 }
932
933 static int __get_segment_type_6(struct page *page, enum page_type p_type)
934 {
935         if (p_type == DATA) {
936                 struct inode *inode = page->mapping->host;
937
938                 if (S_ISDIR(inode->i_mode))
939                         return CURSEG_HOT_DATA;
940                 else if (is_cold_data(page) || file_is_cold(inode))
941                         return CURSEG_COLD_DATA;
942                 else
943                         return CURSEG_WARM_DATA;
944         } else {
945                 if (IS_DNODE(page))
946                         return is_cold_node(page) ? CURSEG_WARM_NODE :
947                                                 CURSEG_HOT_NODE;
948                 else
949                         return CURSEG_COLD_NODE;
950         }
951 }
952
953 static int __get_segment_type(struct page *page, enum page_type p_type)
954 {
955         switch (F2FS_P_SB(page)->active_logs) {
956         case 2:
957                 return __get_segment_type_2(page, p_type);
958         case 4:
959                 return __get_segment_type_4(page, p_type);
960         }
961         /* NR_CURSEG_TYPE(6) logs by default */
962         f2fs_bug_on(F2FS_P_SB(page),
963                 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
964         return __get_segment_type_6(page, p_type);
965 }
966
967 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
968                 block_t old_blkaddr, block_t *new_blkaddr,
969                 struct f2fs_summary *sum, int type)
970 {
971         struct sit_info *sit_i = SIT_I(sbi);
972         struct curseg_info *curseg;
973
974         curseg = CURSEG_I(sbi, type);
975
976         mutex_lock(&curseg->curseg_mutex);
977
978         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
979
980         /*
981          * __add_sum_entry should be resided under the curseg_mutex
982          * because, this function updates a summary entry in the
983          * current summary block.
984          */
985         __add_sum_entry(sbi, type, sum);
986
987         mutex_lock(&sit_i->sentry_lock);
988         __refresh_next_blkoff(sbi, curseg);
989
990         stat_inc_block_count(sbi, curseg);
991
992         if (!__has_curseg_space(sbi, type))
993                 sit_i->s_ops->allocate_segment(sbi, type, false);
994         /*
995          * SIT information should be updated before segment allocation,
996          * since SSR needs latest valid block information.
997          */
998         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
999
1000         mutex_unlock(&sit_i->sentry_lock);
1001
1002         if (page && IS_NODESEG(type))
1003                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1004
1005         mutex_unlock(&curseg->curseg_mutex);
1006 }
1007
1008 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1009                         block_t old_blkaddr, block_t *new_blkaddr,
1010                         struct f2fs_summary *sum, struct f2fs_io_info *fio)
1011 {
1012         int type = __get_segment_type(page, fio->type);
1013
1014         allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
1015
1016         /* writeout dirty page into bdev */
1017         f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
1018 }
1019
1020 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1021 {
1022         struct f2fs_io_info fio = {
1023                 .type = META,
1024                 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
1025         };
1026
1027         set_page_writeback(page);
1028         f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1029 }
1030
1031 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1032                 struct f2fs_io_info *fio,
1033                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1034 {
1035         struct f2fs_summary sum;
1036         set_summary(&sum, nid, 0, 0);
1037         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
1038 }
1039
1040 void write_data_page(struct page *page, struct dnode_of_data *dn,
1041                 block_t *new_blkaddr, struct f2fs_io_info *fio)
1042 {
1043         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1044         struct f2fs_summary sum;
1045         struct node_info ni;
1046
1047         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1048         get_node_info(sbi, dn->nid, &ni);
1049         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1050
1051         do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
1052 }
1053
1054 void rewrite_data_page(struct page *page, block_t old_blkaddr,
1055                                         struct f2fs_io_info *fio)
1056 {
1057         f2fs_submit_page_mbio(F2FS_P_SB(page), page, old_blkaddr, fio);
1058 }
1059
1060 void recover_data_page(struct f2fs_sb_info *sbi,
1061                         struct page *page, struct f2fs_summary *sum,
1062                         block_t old_blkaddr, block_t new_blkaddr)
1063 {
1064         struct sit_info *sit_i = SIT_I(sbi);
1065         struct curseg_info *curseg;
1066         unsigned int segno, old_cursegno;
1067         struct seg_entry *se;
1068         int type;
1069
1070         segno = GET_SEGNO(sbi, new_blkaddr);
1071         se = get_seg_entry(sbi, segno);
1072         type = se->type;
1073
1074         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1075                 if (old_blkaddr == NULL_ADDR)
1076                         type = CURSEG_COLD_DATA;
1077                 else
1078                         type = CURSEG_WARM_DATA;
1079         }
1080         curseg = CURSEG_I(sbi, type);
1081
1082         mutex_lock(&curseg->curseg_mutex);
1083         mutex_lock(&sit_i->sentry_lock);
1084
1085         old_cursegno = curseg->segno;
1086
1087         /* change the current segment */
1088         if (segno != curseg->segno) {
1089                 curseg->next_segno = segno;
1090                 change_curseg(sbi, type, true);
1091         }
1092
1093         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1094         __add_sum_entry(sbi, type, sum);
1095
1096         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1097         locate_dirty_segment(sbi, old_cursegno);
1098
1099         mutex_unlock(&sit_i->sentry_lock);
1100         mutex_unlock(&curseg->curseg_mutex);
1101 }
1102
1103 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1104                                         struct page *page, enum page_type type)
1105 {
1106         enum page_type btype = PAGE_TYPE_OF_BIO(type);
1107         struct f2fs_bio_info *io = &sbi->write_io[btype];
1108         struct bio_vec *bvec;
1109         int i;
1110
1111         down_read(&io->io_rwsem);
1112         if (!io->bio)
1113                 goto out;
1114
1115         bio_for_each_segment_all(bvec, io->bio, i) {
1116                 if (page == bvec->bv_page) {
1117                         up_read(&io->io_rwsem);
1118                         return true;
1119                 }
1120         }
1121
1122 out:
1123         up_read(&io->io_rwsem);
1124         return false;
1125 }
1126
1127 void f2fs_wait_on_page_writeback(struct page *page,
1128                                 enum page_type type)
1129 {
1130         if (PageWriteback(page)) {
1131                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1132
1133                 if (is_merged_page(sbi, page, type))
1134                         f2fs_submit_merged_bio(sbi, type, WRITE);
1135                 wait_on_page_writeback(page);
1136         }
1137 }
1138
1139 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1140 {
1141         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1142         struct curseg_info *seg_i;
1143         unsigned char *kaddr;
1144         struct page *page;
1145         block_t start;
1146         int i, j, offset;
1147
1148         start = start_sum_block(sbi);
1149
1150         page = get_meta_page(sbi, start++);
1151         kaddr = (unsigned char *)page_address(page);
1152
1153         /* Step 1: restore nat cache */
1154         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1155         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1156
1157         /* Step 2: restore sit cache */
1158         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1159         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1160                                                 SUM_JOURNAL_SIZE);
1161         offset = 2 * SUM_JOURNAL_SIZE;
1162
1163         /* Step 3: restore summary entries */
1164         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1165                 unsigned short blk_off;
1166                 unsigned int segno;
1167
1168                 seg_i = CURSEG_I(sbi, i);
1169                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1170                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1171                 seg_i->next_segno = segno;
1172                 reset_curseg(sbi, i, 0);
1173                 seg_i->alloc_type = ckpt->alloc_type[i];
1174                 seg_i->next_blkoff = blk_off;
1175
1176                 if (seg_i->alloc_type == SSR)
1177                         blk_off = sbi->blocks_per_seg;
1178
1179                 for (j = 0; j < blk_off; j++) {
1180                         struct f2fs_summary *s;
1181                         s = (struct f2fs_summary *)(kaddr + offset);
1182                         seg_i->sum_blk->entries[j] = *s;
1183                         offset += SUMMARY_SIZE;
1184                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1185                                                 SUM_FOOTER_SIZE)
1186                                 continue;
1187
1188                         f2fs_put_page(page, 1);
1189                         page = NULL;
1190
1191                         page = get_meta_page(sbi, start++);
1192                         kaddr = (unsigned char *)page_address(page);
1193                         offset = 0;
1194                 }
1195         }
1196         f2fs_put_page(page, 1);
1197         return 0;
1198 }
1199
1200 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1201 {
1202         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1203         struct f2fs_summary_block *sum;
1204         struct curseg_info *curseg;
1205         struct page *new;
1206         unsigned short blk_off;
1207         unsigned int segno = 0;
1208         block_t blk_addr = 0;
1209
1210         /* get segment number and block addr */
1211         if (IS_DATASEG(type)) {
1212                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1213                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1214                                                         CURSEG_HOT_DATA]);
1215                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1216                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1217                 else
1218                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1219         } else {
1220                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1221                                                         CURSEG_HOT_NODE]);
1222                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1223                                                         CURSEG_HOT_NODE]);
1224                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1225                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1226                                                         type - CURSEG_HOT_NODE);
1227                 else
1228                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1229         }
1230
1231         new = get_meta_page(sbi, blk_addr);
1232         sum = (struct f2fs_summary_block *)page_address(new);
1233
1234         if (IS_NODESEG(type)) {
1235                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1236                         struct f2fs_summary *ns = &sum->entries[0];
1237                         int i;
1238                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1239                                 ns->version = 0;
1240                                 ns->ofs_in_node = 0;
1241                         }
1242                 } else {
1243                         int err;
1244
1245                         err = restore_node_summary(sbi, segno, sum);
1246                         if (err) {
1247                                 f2fs_put_page(new, 1);
1248                                 return err;
1249                         }
1250                 }
1251         }
1252
1253         /* set uncompleted segment to curseg */
1254         curseg = CURSEG_I(sbi, type);
1255         mutex_lock(&curseg->curseg_mutex);
1256         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1257         curseg->next_segno = segno;
1258         reset_curseg(sbi, type, 0);
1259         curseg->alloc_type = ckpt->alloc_type[type];
1260         curseg->next_blkoff = blk_off;
1261         mutex_unlock(&curseg->curseg_mutex);
1262         f2fs_put_page(new, 1);
1263         return 0;
1264 }
1265
1266 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1267 {
1268         int type = CURSEG_HOT_DATA;
1269         int err;
1270
1271         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1272                 /* restore for compacted data summary */
1273                 if (read_compacted_summaries(sbi))
1274                         return -EINVAL;
1275                 type = CURSEG_HOT_NODE;
1276         }
1277
1278         for (; type <= CURSEG_COLD_NODE; type++) {
1279                 err = read_normal_summaries(sbi, type);
1280                 if (err)
1281                         return err;
1282         }
1283
1284         return 0;
1285 }
1286
1287 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1288 {
1289         struct page *page;
1290         unsigned char *kaddr;
1291         struct f2fs_summary *summary;
1292         struct curseg_info *seg_i;
1293         int written_size = 0;
1294         int i, j;
1295
1296         page = grab_meta_page(sbi, blkaddr++);
1297         kaddr = (unsigned char *)page_address(page);
1298
1299         /* Step 1: write nat cache */
1300         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1301         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1302         written_size += SUM_JOURNAL_SIZE;
1303
1304         /* Step 2: write sit cache */
1305         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1306         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1307                                                 SUM_JOURNAL_SIZE);
1308         written_size += SUM_JOURNAL_SIZE;
1309
1310         /* Step 3: write summary entries */
1311         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1312                 unsigned short blkoff;
1313                 seg_i = CURSEG_I(sbi, i);
1314                 if (sbi->ckpt->alloc_type[i] == SSR)
1315                         blkoff = sbi->blocks_per_seg;
1316                 else
1317                         blkoff = curseg_blkoff(sbi, i);
1318
1319                 for (j = 0; j < blkoff; j++) {
1320                         if (!page) {
1321                                 page = grab_meta_page(sbi, blkaddr++);
1322                                 kaddr = (unsigned char *)page_address(page);
1323                                 written_size = 0;
1324                         }
1325                         summary = (struct f2fs_summary *)(kaddr + written_size);
1326                         *summary = seg_i->sum_blk->entries[j];
1327                         written_size += SUMMARY_SIZE;
1328
1329                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1330                                                         SUM_FOOTER_SIZE)
1331                                 continue;
1332
1333                         set_page_dirty(page);
1334                         f2fs_put_page(page, 1);
1335                         page = NULL;
1336                 }
1337         }
1338         if (page) {
1339                 set_page_dirty(page);
1340                 f2fs_put_page(page, 1);
1341         }
1342 }
1343
1344 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1345                                         block_t blkaddr, int type)
1346 {
1347         int i, end;
1348         if (IS_DATASEG(type))
1349                 end = type + NR_CURSEG_DATA_TYPE;
1350         else
1351                 end = type + NR_CURSEG_NODE_TYPE;
1352
1353         for (i = type; i < end; i++) {
1354                 struct curseg_info *sum = CURSEG_I(sbi, i);
1355                 mutex_lock(&sum->curseg_mutex);
1356                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1357                 mutex_unlock(&sum->curseg_mutex);
1358         }
1359 }
1360
1361 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1362 {
1363         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1364                 write_compacted_summaries(sbi, start_blk);
1365         else
1366                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1367 }
1368
1369 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1370 {
1371         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1372                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1373 }
1374
1375 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1376                                         unsigned int val, int alloc)
1377 {
1378         int i;
1379
1380         if (type == NAT_JOURNAL) {
1381                 for (i = 0; i < nats_in_cursum(sum); i++) {
1382                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1383                                 return i;
1384                 }
1385                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1386                         return update_nats_in_cursum(sum, 1);
1387         } else if (type == SIT_JOURNAL) {
1388                 for (i = 0; i < sits_in_cursum(sum); i++)
1389                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1390                                 return i;
1391                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1392                         return update_sits_in_cursum(sum, 1);
1393         }
1394         return -1;
1395 }
1396
1397 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1398                                         unsigned int segno)
1399 {
1400         struct sit_info *sit_i = SIT_I(sbi);
1401         unsigned int offset = SIT_BLOCK_OFFSET(segno);
1402         block_t blk_addr = sit_i->sit_base_addr + offset;
1403
1404         check_seg_range(sbi, segno);
1405
1406         /* calculate sit block address */
1407         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1408                 blk_addr += sit_i->sit_blocks;
1409
1410         return get_meta_page(sbi, blk_addr);
1411 }
1412
1413 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1414                                         unsigned int start)
1415 {
1416         struct sit_info *sit_i = SIT_I(sbi);
1417         struct page *src_page, *dst_page;
1418         pgoff_t src_off, dst_off;
1419         void *src_addr, *dst_addr;
1420
1421         src_off = current_sit_addr(sbi, start);
1422         dst_off = next_sit_addr(sbi, src_off);
1423
1424         /* get current sit block page without lock */
1425         src_page = get_meta_page(sbi, src_off);
1426         dst_page = grab_meta_page(sbi, dst_off);
1427         f2fs_bug_on(sbi, PageDirty(src_page));
1428
1429         src_addr = page_address(src_page);
1430         dst_addr = page_address(dst_page);
1431         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1432
1433         set_page_dirty(dst_page);
1434         f2fs_put_page(src_page, 1);
1435
1436         set_to_next_sit(sit_i, start);
1437
1438         return dst_page;
1439 }
1440
1441 static struct sit_entry_set *grab_sit_entry_set(void)
1442 {
1443         struct sit_entry_set *ses =
1444                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC);
1445
1446         ses->entry_cnt = 0;
1447         INIT_LIST_HEAD(&ses->set_list);
1448         return ses;
1449 }
1450
1451 static void release_sit_entry_set(struct sit_entry_set *ses)
1452 {
1453         list_del(&ses->set_list);
1454         kmem_cache_free(sit_entry_set_slab, ses);
1455 }
1456
1457 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1458                                                 struct list_head *head)
1459 {
1460         struct sit_entry_set *next = ses;
1461
1462         if (list_is_last(&ses->set_list, head))
1463                 return;
1464
1465         list_for_each_entry_continue(next, head, set_list)
1466                 if (ses->entry_cnt <= next->entry_cnt)
1467                         break;
1468
1469         list_move_tail(&ses->set_list, &next->set_list);
1470 }
1471
1472 static void add_sit_entry(unsigned int segno, struct list_head *head)
1473 {
1474         struct sit_entry_set *ses;
1475         unsigned int start_segno = START_SEGNO(segno);
1476
1477         list_for_each_entry(ses, head, set_list) {
1478                 if (ses->start_segno == start_segno) {
1479                         ses->entry_cnt++;
1480                         adjust_sit_entry_set(ses, head);
1481                         return;
1482                 }
1483         }
1484
1485         ses = grab_sit_entry_set();
1486
1487         ses->start_segno = start_segno;
1488         ses->entry_cnt++;
1489         list_add(&ses->set_list, head);
1490 }
1491
1492 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1493 {
1494         struct f2fs_sm_info *sm_info = SM_I(sbi);
1495         struct list_head *set_list = &sm_info->sit_entry_set;
1496         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1497         unsigned long nsegs = TOTAL_SEGS(sbi);
1498         unsigned int segno;
1499
1500         for_each_set_bit(segno, bitmap, nsegs)
1501                 add_sit_entry(segno, set_list);
1502 }
1503
1504 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1505 {
1506         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1507         struct f2fs_summary_block *sum = curseg->sum_blk;
1508         int i;
1509
1510         for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1511                 unsigned int segno;
1512                 bool dirtied;
1513
1514                 segno = le32_to_cpu(segno_in_journal(sum, i));
1515                 dirtied = __mark_sit_entry_dirty(sbi, segno);
1516
1517                 if (!dirtied)
1518                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1519         }
1520         update_sits_in_cursum(sum, -sits_in_cursum(sum));
1521 }
1522
1523 /*
1524  * CP calls this function, which flushes SIT entries including sit_journal,
1525  * and moves prefree segs to free segs.
1526  */
1527 void flush_sit_entries(struct f2fs_sb_info *sbi)
1528 {
1529         struct sit_info *sit_i = SIT_I(sbi);
1530         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1531         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1532         struct f2fs_summary_block *sum = curseg->sum_blk;
1533         struct sit_entry_set *ses, *tmp;
1534         struct list_head *head = &SM_I(sbi)->sit_entry_set;
1535         unsigned long nsegs = TOTAL_SEGS(sbi);
1536         bool to_journal = true;
1537
1538         mutex_lock(&curseg->curseg_mutex);
1539         mutex_lock(&sit_i->sentry_lock);
1540
1541         /*
1542          * add and account sit entries of dirty bitmap in sit entry
1543          * set temporarily
1544          */
1545         add_sits_in_set(sbi);
1546
1547         /*
1548          * if there are no enough space in journal to store dirty sit
1549          * entries, remove all entries from journal and add and account
1550          * them in sit entry set.
1551          */
1552         if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1553                 remove_sits_in_journal(sbi);
1554
1555         if (!sit_i->dirty_sentries)
1556                 goto out;
1557
1558         /*
1559          * there are two steps to flush sit entries:
1560          * #1, flush sit entries to journal in current cold data summary block.
1561          * #2, flush sit entries to sit page.
1562          */
1563         list_for_each_entry_safe(ses, tmp, head, set_list) {
1564                 struct page *page;
1565                 struct f2fs_sit_block *raw_sit = NULL;
1566                 unsigned int start_segno = ses->start_segno;
1567                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1568                                                                 nsegs);
1569                 unsigned int segno = start_segno;
1570
1571                 if (to_journal &&
1572                         !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1573                         to_journal = false;
1574
1575                 if (!to_journal) {
1576                         page = get_next_sit_page(sbi, start_segno);
1577                         raw_sit = page_address(page);
1578                 }
1579
1580                 /* flush dirty sit entries in region of current sit set */
1581                 for_each_set_bit_from(segno, bitmap, end) {
1582                         int offset, sit_offset;
1583                         struct seg_entry *se = get_seg_entry(sbi, segno);
1584
1585                         /* add discard candidates */
1586                         if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1587                                 add_discard_addrs(sbi, segno, se);
1588
1589                         if (to_journal) {
1590                                 offset = lookup_journal_in_cursum(sum,
1591                                                         SIT_JOURNAL, segno, 1);
1592                                 f2fs_bug_on(sbi, offset < 0);
1593                                 segno_in_journal(sum, offset) =
1594                                                         cpu_to_le32(segno);
1595                                 seg_info_to_raw_sit(se,
1596                                                 &sit_in_journal(sum, offset));
1597                         } else {
1598                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1599                                 seg_info_to_raw_sit(se,
1600                                                 &raw_sit->entries[sit_offset]);
1601                         }
1602
1603                         __clear_bit(segno, bitmap);
1604                         sit_i->dirty_sentries--;
1605                         ses->entry_cnt--;
1606                 }
1607
1608                 if (!to_journal)
1609                         f2fs_put_page(page, 1);
1610
1611                 f2fs_bug_on(sbi, ses->entry_cnt);
1612                 release_sit_entry_set(ses);
1613         }
1614
1615         f2fs_bug_on(sbi, !list_empty(head));
1616         f2fs_bug_on(sbi, sit_i->dirty_sentries);
1617
1618 out:
1619         mutex_unlock(&sit_i->sentry_lock);
1620         mutex_unlock(&curseg->curseg_mutex);
1621
1622         set_prefree_as_free_segments(sbi);
1623 }
1624
1625 static int build_sit_info(struct f2fs_sb_info *sbi)
1626 {
1627         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1628         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1629         struct sit_info *sit_i;
1630         unsigned int sit_segs, start;
1631         char *src_bitmap, *dst_bitmap;
1632         unsigned int bitmap_size;
1633
1634         /* allocate memory for SIT information */
1635         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1636         if (!sit_i)
1637                 return -ENOMEM;
1638
1639         SM_I(sbi)->sit_info = sit_i;
1640
1641         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1642         if (!sit_i->sentries)
1643                 return -ENOMEM;
1644
1645         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1646         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1647         if (!sit_i->dirty_sentries_bitmap)
1648                 return -ENOMEM;
1649
1650         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1651                 sit_i->sentries[start].cur_valid_map
1652                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1653                 sit_i->sentries[start].ckpt_valid_map
1654                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1655                 if (!sit_i->sentries[start].cur_valid_map
1656                                 || !sit_i->sentries[start].ckpt_valid_map)
1657                         return -ENOMEM;
1658         }
1659
1660         if (sbi->segs_per_sec > 1) {
1661                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1662                                         sizeof(struct sec_entry));
1663                 if (!sit_i->sec_entries)
1664                         return -ENOMEM;
1665         }
1666
1667         /* get information related with SIT */
1668         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1669
1670         /* setup SIT bitmap from ckeckpoint pack */
1671         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1672         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1673
1674         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1675         if (!dst_bitmap)
1676                 return -ENOMEM;
1677
1678         /* init SIT information */
1679         sit_i->s_ops = &default_salloc_ops;
1680
1681         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1682         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1683         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1684         sit_i->sit_bitmap = dst_bitmap;
1685         sit_i->bitmap_size = bitmap_size;
1686         sit_i->dirty_sentries = 0;
1687         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1688         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1689         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1690         mutex_init(&sit_i->sentry_lock);
1691         return 0;
1692 }
1693
1694 static int build_free_segmap(struct f2fs_sb_info *sbi)
1695 {
1696         struct f2fs_sm_info *sm_info = SM_I(sbi);
1697         struct free_segmap_info *free_i;
1698         unsigned int bitmap_size, sec_bitmap_size;
1699
1700         /* allocate memory for free segmap information */
1701         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1702         if (!free_i)
1703                 return -ENOMEM;
1704
1705         SM_I(sbi)->free_info = free_i;
1706
1707         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1708         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1709         if (!free_i->free_segmap)
1710                 return -ENOMEM;
1711
1712         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1713         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1714         if (!free_i->free_secmap)
1715                 return -ENOMEM;
1716
1717         /* set all segments as dirty temporarily */
1718         memset(free_i->free_segmap, 0xff, bitmap_size);
1719         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1720
1721         /* init free segmap information */
1722         free_i->start_segno =
1723                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1724         free_i->free_segments = 0;
1725         free_i->free_sections = 0;
1726         rwlock_init(&free_i->segmap_lock);
1727         return 0;
1728 }
1729
1730 static int build_curseg(struct f2fs_sb_info *sbi)
1731 {
1732         struct curseg_info *array;
1733         int i;
1734
1735         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
1736         if (!array)
1737                 return -ENOMEM;
1738
1739         SM_I(sbi)->curseg_array = array;
1740
1741         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1742                 mutex_init(&array[i].curseg_mutex);
1743                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1744                 if (!array[i].sum_blk)
1745                         return -ENOMEM;
1746                 array[i].segno = NULL_SEGNO;
1747                 array[i].next_blkoff = 0;
1748         }
1749         return restore_curseg_summaries(sbi);
1750 }
1751
1752 static void build_sit_entries(struct f2fs_sb_info *sbi)
1753 {
1754         struct sit_info *sit_i = SIT_I(sbi);
1755         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1756         struct f2fs_summary_block *sum = curseg->sum_blk;
1757         int sit_blk_cnt = SIT_BLK_CNT(sbi);
1758         unsigned int i, start, end;
1759         unsigned int readed, start_blk = 0;
1760         int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1761
1762         do {
1763                 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1764
1765                 start = start_blk * sit_i->sents_per_block;
1766                 end = (start_blk + readed) * sit_i->sents_per_block;
1767
1768                 for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1769                         struct seg_entry *se = &sit_i->sentries[start];
1770                         struct f2fs_sit_block *sit_blk;
1771                         struct f2fs_sit_entry sit;
1772                         struct page *page;
1773
1774                         mutex_lock(&curseg->curseg_mutex);
1775                         for (i = 0; i < sits_in_cursum(sum); i++) {
1776                                 if (le32_to_cpu(segno_in_journal(sum, i))
1777                                                                 == start) {
1778                                         sit = sit_in_journal(sum, i);
1779                                         mutex_unlock(&curseg->curseg_mutex);
1780                                         goto got_it;
1781                                 }
1782                         }
1783                         mutex_unlock(&curseg->curseg_mutex);
1784
1785                         page = get_current_sit_page(sbi, start);
1786                         sit_blk = (struct f2fs_sit_block *)page_address(page);
1787                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1788                         f2fs_put_page(page, 1);
1789 got_it:
1790                         check_block_count(sbi, start, &sit);
1791                         seg_info_from_raw_sit(se, &sit);
1792                         if (sbi->segs_per_sec > 1) {
1793                                 struct sec_entry *e = get_sec_entry(sbi, start);
1794                                 e->valid_blocks += se->valid_blocks;
1795                         }
1796                 }
1797                 start_blk += readed;
1798         } while (start_blk < sit_blk_cnt);
1799 }
1800
1801 static void init_free_segmap(struct f2fs_sb_info *sbi)
1802 {
1803         unsigned int start;
1804         int type;
1805
1806         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1807                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1808                 if (!sentry->valid_blocks)
1809                         __set_free(sbi, start);
1810         }
1811
1812         /* set use the current segments */
1813         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1814                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1815                 __set_test_and_inuse(sbi, curseg_t->segno);
1816         }
1817 }
1818
1819 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1820 {
1821         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1822         struct free_segmap_info *free_i = FREE_I(sbi);
1823         unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1824         unsigned short valid_blocks;
1825
1826         while (1) {
1827                 /* find dirty segment based on free segmap */
1828                 segno = find_next_inuse(free_i, total_segs, offset);
1829                 if (segno >= total_segs)
1830                         break;
1831                 offset = segno + 1;
1832                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1833                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
1834                         continue;
1835                 if (valid_blocks > sbi->blocks_per_seg) {
1836                         f2fs_bug_on(sbi, 1);
1837                         continue;
1838                 }
1839                 mutex_lock(&dirty_i->seglist_lock);
1840                 __locate_dirty_segment(sbi, segno, DIRTY);
1841                 mutex_unlock(&dirty_i->seglist_lock);
1842         }
1843 }
1844
1845 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1846 {
1847         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1848         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1849
1850         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1851         if (!dirty_i->victim_secmap)
1852                 return -ENOMEM;
1853         return 0;
1854 }
1855
1856 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1857 {
1858         struct dirty_seglist_info *dirty_i;
1859         unsigned int bitmap_size, i;
1860
1861         /* allocate memory for dirty segments list information */
1862         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1863         if (!dirty_i)
1864                 return -ENOMEM;
1865
1866         SM_I(sbi)->dirty_info = dirty_i;
1867         mutex_init(&dirty_i->seglist_lock);
1868
1869         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1870
1871         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1872                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1873                 if (!dirty_i->dirty_segmap[i])
1874                         return -ENOMEM;
1875         }
1876
1877         init_dirty_segmap(sbi);
1878         return init_victim_secmap(sbi);
1879 }
1880
1881 /*
1882  * Update min, max modified time for cost-benefit GC algorithm
1883  */
1884 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1885 {
1886         struct sit_info *sit_i = SIT_I(sbi);
1887         unsigned int segno;
1888
1889         mutex_lock(&sit_i->sentry_lock);
1890
1891         sit_i->min_mtime = LLONG_MAX;
1892
1893         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1894                 unsigned int i;
1895                 unsigned long long mtime = 0;
1896
1897                 for (i = 0; i < sbi->segs_per_sec; i++)
1898                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1899
1900                 mtime = div_u64(mtime, sbi->segs_per_sec);
1901
1902                 if (sit_i->min_mtime > mtime)
1903                         sit_i->min_mtime = mtime;
1904         }
1905         sit_i->max_mtime = get_mtime(sbi);
1906         mutex_unlock(&sit_i->sentry_lock);
1907 }
1908
1909 int build_segment_manager(struct f2fs_sb_info *sbi)
1910 {
1911         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1912         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1913         struct f2fs_sm_info *sm_info;
1914         int err;
1915
1916         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1917         if (!sm_info)
1918                 return -ENOMEM;
1919
1920         /* init sm info */
1921         sbi->sm_info = sm_info;
1922         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1923         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1924         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1925         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1926         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1927         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1928         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1929         sm_info->rec_prefree_segments = sm_info->main_segments *
1930                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
1931         sm_info->ipu_policy = F2FS_IPU_DISABLE;
1932         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1933
1934         INIT_LIST_HEAD(&sm_info->discard_list);
1935         sm_info->nr_discards = 0;
1936         sm_info->max_discards = 0;
1937
1938         INIT_LIST_HEAD(&sm_info->sit_entry_set);
1939
1940         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
1941                 err = create_flush_cmd_control(sbi);
1942                 if (err)
1943                         return err;
1944         }
1945
1946         err = build_sit_info(sbi);
1947         if (err)
1948                 return err;
1949         err = build_free_segmap(sbi);
1950         if (err)
1951                 return err;
1952         err = build_curseg(sbi);
1953         if (err)
1954                 return err;
1955
1956         /* reinit free segmap based on SIT */
1957         build_sit_entries(sbi);
1958
1959         init_free_segmap(sbi);
1960         err = build_dirty_segmap(sbi);
1961         if (err)
1962                 return err;
1963
1964         init_min_max_mtime(sbi);
1965         return 0;
1966 }
1967
1968 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1969                 enum dirty_type dirty_type)
1970 {
1971         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1972
1973         mutex_lock(&dirty_i->seglist_lock);
1974         kfree(dirty_i->dirty_segmap[dirty_type]);
1975         dirty_i->nr_dirty[dirty_type] = 0;
1976         mutex_unlock(&dirty_i->seglist_lock);
1977 }
1978
1979 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1980 {
1981         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1982         kfree(dirty_i->victim_secmap);
1983 }
1984
1985 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1986 {
1987         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1988         int i;
1989
1990         if (!dirty_i)
1991                 return;
1992
1993         /* discard pre-free/dirty segments list */
1994         for (i = 0; i < NR_DIRTY_TYPE; i++)
1995                 discard_dirty_segmap(sbi, i);
1996
1997         destroy_victim_secmap(sbi);
1998         SM_I(sbi)->dirty_info = NULL;
1999         kfree(dirty_i);
2000 }
2001
2002 static void destroy_curseg(struct f2fs_sb_info *sbi)
2003 {
2004         struct curseg_info *array = SM_I(sbi)->curseg_array;
2005         int i;
2006
2007         if (!array)
2008                 return;
2009         SM_I(sbi)->curseg_array = NULL;
2010         for (i = 0; i < NR_CURSEG_TYPE; i++)
2011                 kfree(array[i].sum_blk);
2012         kfree(array);
2013 }
2014
2015 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2016 {
2017         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2018         if (!free_i)
2019                 return;
2020         SM_I(sbi)->free_info = NULL;
2021         kfree(free_i->free_segmap);
2022         kfree(free_i->free_secmap);
2023         kfree(free_i);
2024 }
2025
2026 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2027 {
2028         struct sit_info *sit_i = SIT_I(sbi);
2029         unsigned int start;
2030
2031         if (!sit_i)
2032                 return;
2033
2034         if (sit_i->sentries) {
2035                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
2036                         kfree(sit_i->sentries[start].cur_valid_map);
2037                         kfree(sit_i->sentries[start].ckpt_valid_map);
2038                 }
2039         }
2040         vfree(sit_i->sentries);
2041         vfree(sit_i->sec_entries);
2042         kfree(sit_i->dirty_sentries_bitmap);
2043
2044         SM_I(sbi)->sit_info = NULL;
2045         kfree(sit_i->sit_bitmap);
2046         kfree(sit_i);
2047 }
2048
2049 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2050 {
2051         struct f2fs_sm_info *sm_info = SM_I(sbi);
2052
2053         if (!sm_info)
2054                 return;
2055         destroy_flush_cmd_control(sbi);
2056         destroy_dirty_segmap(sbi);
2057         destroy_curseg(sbi);
2058         destroy_free_segmap(sbi);
2059         destroy_sit_info(sbi);
2060         sbi->sm_info = NULL;
2061         kfree(sm_info);
2062 }
2063
2064 int __init create_segment_manager_caches(void)
2065 {
2066         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2067                         sizeof(struct discard_entry));
2068         if (!discard_entry_slab)
2069                 goto fail;
2070
2071         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2072                         sizeof(struct nat_entry_set));
2073         if (!sit_entry_set_slab)
2074                 goto destory_discard_entry;
2075         return 0;
2076
2077 destory_discard_entry:
2078         kmem_cache_destroy(discard_entry_slab);
2079 fail:
2080         return -ENOMEM;
2081 }
2082
2083 void destroy_segment_manager_caches(void)
2084 {
2085         kmem_cache_destroy(sit_entry_set_slab);
2086         kmem_cache_destroy(discard_entry_slab);
2087 }