f2fs: change GC bitmaps to apply the section granularity
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21
22 /*
23  * This function balances dirty node and dentry pages.
24  * In addition, it controls garbage collection.
25  */
26 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
27 {
28         /*
29          * We should do GC or end up with checkpoint, if there are so many dirty
30          * dir/node pages without enough free segments.
31          */
32         if (has_not_enough_free_secs(sbi, 0)) {
33                 mutex_lock(&sbi->gc_mutex);
34                 f2fs_gc(sbi);
35         }
36 }
37
38 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
39                 enum dirty_type dirty_type)
40 {
41         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
42
43         /* need not be added */
44         if (IS_CURSEG(sbi, segno))
45                 return;
46
47         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
48                 dirty_i->nr_dirty[dirty_type]++;
49
50         if (dirty_type == DIRTY) {
51                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
52                 dirty_type = sentry->type;
53                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
54                         dirty_i->nr_dirty[dirty_type]++;
55         }
56 }
57
58 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
59                 enum dirty_type dirty_type)
60 {
61         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
62
63         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
64                 dirty_i->nr_dirty[dirty_type]--;
65
66         if (dirty_type == DIRTY) {
67                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
68                 dirty_type = sentry->type;
69                 if (test_and_clear_bit(segno,
70                                         dirty_i->dirty_segmap[dirty_type]))
71                         dirty_i->nr_dirty[dirty_type]--;
72                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
73                         clear_bit(GET_SECNO(sbi, segno),
74                                                 dirty_i->victim_secmap);
75         }
76 }
77
78 /*
79  * Should not occur error such as -ENOMEM.
80  * Adding dirty entry into seglist is not critical operation.
81  * If a given segment is one of current working segments, it won't be added.
82  */
83 void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
84 {
85         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
86         unsigned short valid_blocks;
87
88         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
89                 return;
90
91         mutex_lock(&dirty_i->seglist_lock);
92
93         valid_blocks = get_valid_blocks(sbi, segno, 0);
94
95         if (valid_blocks == 0) {
96                 __locate_dirty_segment(sbi, segno, PRE);
97                 __remove_dirty_segment(sbi, segno, DIRTY);
98         } else if (valid_blocks < sbi->blocks_per_seg) {
99                 __locate_dirty_segment(sbi, segno, DIRTY);
100         } else {
101                 /* Recovery routine with SSR needs this */
102                 __remove_dirty_segment(sbi, segno, DIRTY);
103         }
104
105         mutex_unlock(&dirty_i->seglist_lock);
106         return;
107 }
108
109 /*
110  * Should call clear_prefree_segments after checkpoint is done.
111  */
112 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
113 {
114         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
115         unsigned int segno, offset = 0;
116         unsigned int total_segs = TOTAL_SEGS(sbi);
117
118         mutex_lock(&dirty_i->seglist_lock);
119         while (1) {
120                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
121                                 offset);
122                 if (segno >= total_segs)
123                         break;
124                 __set_test_and_free(sbi, segno);
125                 offset = segno + 1;
126         }
127         mutex_unlock(&dirty_i->seglist_lock);
128 }
129
130 void clear_prefree_segments(struct f2fs_sb_info *sbi)
131 {
132         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
133         unsigned int segno, offset = 0;
134         unsigned int total_segs = TOTAL_SEGS(sbi);
135
136         mutex_lock(&dirty_i->seglist_lock);
137         while (1) {
138                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
139                                 offset);
140                 if (segno >= total_segs)
141                         break;
142
143                 offset = segno + 1;
144                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
145                         dirty_i->nr_dirty[PRE]--;
146
147                 /* Let's use trim */
148                 if (test_opt(sbi, DISCARD))
149                         blkdev_issue_discard(sbi->sb->s_bdev,
150                                         START_BLOCK(sbi, segno) <<
151                                         sbi->log_sectors_per_block,
152                                         1 << (sbi->log_sectors_per_block +
153                                                 sbi->log_blocks_per_seg),
154                                         GFP_NOFS, 0);
155         }
156         mutex_unlock(&dirty_i->seglist_lock);
157 }
158
159 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
160 {
161         struct sit_info *sit_i = SIT_I(sbi);
162         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
163                 sit_i->dirty_sentries++;
164 }
165
166 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
167                                         unsigned int segno, int modified)
168 {
169         struct seg_entry *se = get_seg_entry(sbi, segno);
170         se->type = type;
171         if (modified)
172                 __mark_sit_entry_dirty(sbi, segno);
173 }
174
175 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
176 {
177         struct seg_entry *se;
178         unsigned int segno, offset;
179         long int new_vblocks;
180
181         segno = GET_SEGNO(sbi, blkaddr);
182
183         se = get_seg_entry(sbi, segno);
184         new_vblocks = se->valid_blocks + del;
185         offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
186
187         BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
188                                 (new_vblocks > sbi->blocks_per_seg)));
189
190         se->valid_blocks = new_vblocks;
191         se->mtime = get_mtime(sbi);
192         SIT_I(sbi)->max_mtime = se->mtime;
193
194         /* Update valid block bitmap */
195         if (del > 0) {
196                 if (f2fs_set_bit(offset, se->cur_valid_map))
197                         BUG();
198         } else {
199                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
200                         BUG();
201         }
202         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
203                 se->ckpt_valid_blocks += del;
204
205         __mark_sit_entry_dirty(sbi, segno);
206
207         /* update total number of valid blocks to be written in ckpt area */
208         SIT_I(sbi)->written_valid_blocks += del;
209
210         if (sbi->segs_per_sec > 1)
211                 get_sec_entry(sbi, segno)->valid_blocks += del;
212 }
213
214 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
215                         block_t old_blkaddr, block_t new_blkaddr)
216 {
217         update_sit_entry(sbi, new_blkaddr, 1);
218         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
219                 update_sit_entry(sbi, old_blkaddr, -1);
220 }
221
222 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
223 {
224         unsigned int segno = GET_SEGNO(sbi, addr);
225         struct sit_info *sit_i = SIT_I(sbi);
226
227         BUG_ON(addr == NULL_ADDR);
228         if (addr == NEW_ADDR)
229                 return;
230
231         /* add it into sit main buffer */
232         mutex_lock(&sit_i->sentry_lock);
233
234         update_sit_entry(sbi, addr, -1);
235
236         /* add it into dirty seglist */
237         locate_dirty_segment(sbi, segno);
238
239         mutex_unlock(&sit_i->sentry_lock);
240 }
241
242 /*
243  * This function should be resided under the curseg_mutex lock
244  */
245 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
246                 struct f2fs_summary *sum, unsigned short offset)
247 {
248         struct curseg_info *curseg = CURSEG_I(sbi, type);
249         void *addr = curseg->sum_blk;
250         addr += offset * sizeof(struct f2fs_summary);
251         memcpy(addr, sum, sizeof(struct f2fs_summary));
252         return;
253 }
254
255 /*
256  * Calculate the number of current summary pages for writing
257  */
258 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
259 {
260         int total_size_bytes = 0;
261         int valid_sum_count = 0;
262         int i, sum_space;
263
264         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
265                 if (sbi->ckpt->alloc_type[i] == SSR)
266                         valid_sum_count += sbi->blocks_per_seg;
267                 else
268                         valid_sum_count += curseg_blkoff(sbi, i);
269         }
270
271         total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
272                         + sizeof(struct nat_journal) + 2
273                         + sizeof(struct sit_journal) + 2;
274         sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
275         if (total_size_bytes < sum_space)
276                 return 1;
277         else if (total_size_bytes < 2 * sum_space)
278                 return 2;
279         return 3;
280 }
281
282 /*
283  * Caller should put this summary page
284  */
285 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
286 {
287         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
288 }
289
290 static void write_sum_page(struct f2fs_sb_info *sbi,
291                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
292 {
293         struct page *page = grab_meta_page(sbi, blk_addr);
294         void *kaddr = page_address(page);
295         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
296         set_page_dirty(page);
297         f2fs_put_page(page, 1);
298 }
299
300 static unsigned int check_prefree_segments(struct f2fs_sb_info *sbi, int type)
301 {
302         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
303         unsigned long *prefree_segmap = dirty_i->dirty_segmap[PRE];
304         unsigned int segno;
305         unsigned int ofs = 0;
306
307         /*
308          * If there is not enough reserved sections,
309          * we should not reuse prefree segments.
310          */
311         if (has_not_enough_free_secs(sbi, 0))
312                 return NULL_SEGNO;
313
314         /*
315          * NODE page should not reuse prefree segment,
316          * since those information is used for SPOR.
317          */
318         if (IS_NODESEG(type))
319                 return NULL_SEGNO;
320 next:
321         segno = find_next_bit(prefree_segmap, TOTAL_SEGS(sbi), ofs);
322         ofs += sbi->segs_per_sec;
323
324         if (segno < TOTAL_SEGS(sbi)) {
325                 int i;
326
327                 /* skip intermediate segments in a section */
328                 if (segno % sbi->segs_per_sec)
329                         goto next;
330
331                 /* skip if the section is currently used */
332                 if (sec_usage_check(sbi, GET_SECNO(sbi, segno)))
333                         goto next;
334
335                 /* skip if whole section is not prefree */
336                 for (i = 1; i < sbi->segs_per_sec; i++)
337                         if (!test_bit(segno + i, prefree_segmap))
338                                 goto next;
339
340                 /* skip if whole section was not free at the last checkpoint */
341                 for (i = 0; i < sbi->segs_per_sec; i++)
342                         if (get_seg_entry(sbi, segno + i)->ckpt_valid_blocks)
343                                 goto next;
344
345                 return segno;
346         }
347         return NULL_SEGNO;
348 }
349
350 /*
351  * Find a new segment from the free segments bitmap to right order
352  * This function should be returned with success, otherwise BUG
353  */
354 static void get_new_segment(struct f2fs_sb_info *sbi,
355                         unsigned int *newseg, bool new_sec, int dir)
356 {
357         struct free_segmap_info *free_i = FREE_I(sbi);
358         unsigned int segno, secno, zoneno;
359         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
360         unsigned int hint = *newseg / sbi->segs_per_sec;
361         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
362         unsigned int left_start = hint;
363         bool init = true;
364         int go_left = 0;
365         int i;
366
367         write_lock(&free_i->segmap_lock);
368
369         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
370                 segno = find_next_zero_bit(free_i->free_segmap,
371                                         TOTAL_SEGS(sbi), *newseg + 1);
372                 if (segno - *newseg < sbi->segs_per_sec -
373                                         (*newseg % sbi->segs_per_sec))
374                         goto got_it;
375         }
376 find_other_zone:
377         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
378         if (secno >= TOTAL_SECS(sbi)) {
379                 if (dir == ALLOC_RIGHT) {
380                         secno = find_next_zero_bit(free_i->free_secmap,
381                                                         TOTAL_SECS(sbi), 0);
382                         BUG_ON(secno >= TOTAL_SECS(sbi));
383                 } else {
384                         go_left = 1;
385                         left_start = hint - 1;
386                 }
387         }
388         if (go_left == 0)
389                 goto skip_left;
390
391         while (test_bit(left_start, free_i->free_secmap)) {
392                 if (left_start > 0) {
393                         left_start--;
394                         continue;
395                 }
396                 left_start = find_next_zero_bit(free_i->free_secmap,
397                                                         TOTAL_SECS(sbi), 0);
398                 BUG_ON(left_start >= TOTAL_SECS(sbi));
399                 break;
400         }
401         secno = left_start;
402 skip_left:
403         hint = secno;
404         segno = secno * sbi->segs_per_sec;
405         zoneno = secno / sbi->secs_per_zone;
406
407         /* give up on finding another zone */
408         if (!init)
409                 goto got_it;
410         if (sbi->secs_per_zone == 1)
411                 goto got_it;
412         if (zoneno == old_zoneno)
413                 goto got_it;
414         if (dir == ALLOC_LEFT) {
415                 if (!go_left && zoneno + 1 >= total_zones)
416                         goto got_it;
417                 if (go_left && zoneno == 0)
418                         goto got_it;
419         }
420         for (i = 0; i < NR_CURSEG_TYPE; i++)
421                 if (CURSEG_I(sbi, i)->zone == zoneno)
422                         break;
423
424         if (i < NR_CURSEG_TYPE) {
425                 /* zone is in user, try another */
426                 if (go_left)
427                         hint = zoneno * sbi->secs_per_zone - 1;
428                 else if (zoneno + 1 >= total_zones)
429                         hint = 0;
430                 else
431                         hint = (zoneno + 1) * sbi->secs_per_zone;
432                 init = false;
433                 goto find_other_zone;
434         }
435 got_it:
436         /* set it as dirty segment in free segmap */
437         BUG_ON(test_bit(segno, free_i->free_segmap));
438         __set_inuse(sbi, segno);
439         *newseg = segno;
440         write_unlock(&free_i->segmap_lock);
441 }
442
443 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
444 {
445         struct curseg_info *curseg = CURSEG_I(sbi, type);
446         struct summary_footer *sum_footer;
447
448         curseg->segno = curseg->next_segno;
449         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
450         curseg->next_blkoff = 0;
451         curseg->next_segno = NULL_SEGNO;
452
453         sum_footer = &(curseg->sum_blk->footer);
454         memset(sum_footer, 0, sizeof(struct summary_footer));
455         if (IS_DATASEG(type))
456                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
457         if (IS_NODESEG(type))
458                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
459         __set_sit_entry_type(sbi, type, curseg->segno, modified);
460 }
461
462 /*
463  * Allocate a current working segment.
464  * This function always allocates a free segment in LFS manner.
465  */
466 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
467 {
468         struct curseg_info *curseg = CURSEG_I(sbi, type);
469         unsigned int segno = curseg->segno;
470         int dir = ALLOC_LEFT;
471
472         write_sum_page(sbi, curseg->sum_blk,
473                                 GET_SUM_BLOCK(sbi, curseg->segno));
474         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
475                 dir = ALLOC_RIGHT;
476
477         if (test_opt(sbi, NOHEAP))
478                 dir = ALLOC_RIGHT;
479
480         get_new_segment(sbi, &segno, new_sec, dir);
481         curseg->next_segno = segno;
482         reset_curseg(sbi, type, 1);
483         curseg->alloc_type = LFS;
484 }
485
486 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
487                         struct curseg_info *seg, block_t start)
488 {
489         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
490         block_t ofs;
491         for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
492                 if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
493                         && !f2fs_test_bit(ofs, se->cur_valid_map))
494                         break;
495         }
496         seg->next_blkoff = ofs;
497 }
498
499 /*
500  * If a segment is written by LFS manner, next block offset is just obtained
501  * by increasing the current block offset. However, if a segment is written by
502  * SSR manner, next block offset obtained by calling __next_free_blkoff
503  */
504 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
505                                 struct curseg_info *seg)
506 {
507         if (seg->alloc_type == SSR)
508                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
509         else
510                 seg->next_blkoff++;
511 }
512
513 /*
514  * This function always allocates a used segment (from dirty seglist) by SSR
515  * manner, so it should recover the existing segment information of valid blocks
516  */
517 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
518 {
519         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
520         struct curseg_info *curseg = CURSEG_I(sbi, type);
521         unsigned int new_segno = curseg->next_segno;
522         struct f2fs_summary_block *sum_node;
523         struct page *sum_page;
524
525         write_sum_page(sbi, curseg->sum_blk,
526                                 GET_SUM_BLOCK(sbi, curseg->segno));
527         __set_test_and_inuse(sbi, new_segno);
528
529         mutex_lock(&dirty_i->seglist_lock);
530         __remove_dirty_segment(sbi, new_segno, PRE);
531         __remove_dirty_segment(sbi, new_segno, DIRTY);
532         mutex_unlock(&dirty_i->seglist_lock);
533
534         reset_curseg(sbi, type, 1);
535         curseg->alloc_type = SSR;
536         __next_free_blkoff(sbi, curseg, 0);
537
538         if (reuse) {
539                 sum_page = get_sum_page(sbi, new_segno);
540                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
541                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
542                 f2fs_put_page(sum_page, 1);
543         }
544 }
545
546 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
547 {
548         struct curseg_info *curseg = CURSEG_I(sbi, type);
549         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
550
551         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
552                 return v_ops->get_victim(sbi,
553                                 &(curseg)->next_segno, BG_GC, type, SSR);
554
555         /* For data segments, let's do SSR more intensively */
556         for (; type >= CURSEG_HOT_DATA; type--)
557                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
558                                                 BG_GC, type, SSR))
559                         return 1;
560         return 0;
561 }
562
563 /*
564  * flush out current segment and replace it with new segment
565  * This function should be returned with success, otherwise BUG
566  */
567 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
568                                                 int type, bool force)
569 {
570         struct curseg_info *curseg = CURSEG_I(sbi, type);
571
572         if (force) {
573                 new_curseg(sbi, type, true);
574                 goto out;
575         }
576
577         curseg->next_segno = check_prefree_segments(sbi, type);
578
579         if (curseg->next_segno != NULL_SEGNO)
580                 change_curseg(sbi, type, false);
581         else if (type == CURSEG_WARM_NODE)
582                 new_curseg(sbi, type, false);
583         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
584                 change_curseg(sbi, type, true);
585         else
586                 new_curseg(sbi, type, false);
587 out:
588         sbi->segment_count[curseg->alloc_type]++;
589 }
590
591 void allocate_new_segments(struct f2fs_sb_info *sbi)
592 {
593         struct curseg_info *curseg;
594         unsigned int old_curseg;
595         int i;
596
597         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
598                 curseg = CURSEG_I(sbi, i);
599                 old_curseg = curseg->segno;
600                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
601                 locate_dirty_segment(sbi, old_curseg);
602         }
603 }
604
605 static const struct segment_allocation default_salloc_ops = {
606         .allocate_segment = allocate_segment_by_default,
607 };
608
609 static void f2fs_end_io_write(struct bio *bio, int err)
610 {
611         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
612         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
613         struct bio_private *p = bio->bi_private;
614
615         do {
616                 struct page *page = bvec->bv_page;
617
618                 if (--bvec >= bio->bi_io_vec)
619                         prefetchw(&bvec->bv_page->flags);
620                 if (!uptodate) {
621                         SetPageError(page);
622                         if (page->mapping)
623                                 set_bit(AS_EIO, &page->mapping->flags);
624                         set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
625                         p->sbi->sb->s_flags |= MS_RDONLY;
626                 }
627                 end_page_writeback(page);
628                 dec_page_count(p->sbi, F2FS_WRITEBACK);
629         } while (bvec >= bio->bi_io_vec);
630
631         if (p->is_sync)
632                 complete(p->wait);
633         kfree(p);
634         bio_put(bio);
635 }
636
637 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
638 {
639         struct bio *bio;
640         struct bio_private *priv;
641 retry:
642         priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
643         if (!priv) {
644                 cond_resched();
645                 goto retry;
646         }
647
648         /* No failure on bio allocation */
649         bio = bio_alloc(GFP_NOIO, npages);
650         bio->bi_bdev = bdev;
651         bio->bi_private = priv;
652         return bio;
653 }
654
655 static void do_submit_bio(struct f2fs_sb_info *sbi,
656                                 enum page_type type, bool sync)
657 {
658         int rw = sync ? WRITE_SYNC : WRITE;
659         enum page_type btype = type > META ? META : type;
660
661         if (type >= META_FLUSH)
662                 rw = WRITE_FLUSH_FUA;
663
664         if (sbi->bio[btype]) {
665                 struct bio_private *p = sbi->bio[btype]->bi_private;
666                 p->sbi = sbi;
667                 sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
668                 if (type == META_FLUSH) {
669                         DECLARE_COMPLETION_ONSTACK(wait);
670                         p->is_sync = true;
671                         p->wait = &wait;
672                         submit_bio(rw, sbi->bio[btype]);
673                         wait_for_completion(&wait);
674                 } else {
675                         p->is_sync = false;
676                         submit_bio(rw, sbi->bio[btype]);
677                 }
678                 sbi->bio[btype] = NULL;
679         }
680 }
681
682 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
683 {
684         down_write(&sbi->bio_sem);
685         do_submit_bio(sbi, type, sync);
686         up_write(&sbi->bio_sem);
687 }
688
689 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
690                                 block_t blk_addr, enum page_type type)
691 {
692         struct block_device *bdev = sbi->sb->s_bdev;
693
694         verify_block_addr(sbi, blk_addr);
695
696         down_write(&sbi->bio_sem);
697
698         inc_page_count(sbi, F2FS_WRITEBACK);
699
700         if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
701                 do_submit_bio(sbi, type, false);
702 alloc_new:
703         if (sbi->bio[type] == NULL) {
704                 sbi->bio[type] = f2fs_bio_alloc(bdev, bio_get_nr_vecs(bdev));
705                 sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
706                 /*
707                  * The end_io will be assigned at the sumbission phase.
708                  * Until then, let bio_add_page() merge consecutive IOs as much
709                  * as possible.
710                  */
711         }
712
713         if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
714                                                         PAGE_CACHE_SIZE) {
715                 do_submit_bio(sbi, type, false);
716                 goto alloc_new;
717         }
718
719         sbi->last_block_in_bio[type] = blk_addr;
720
721         up_write(&sbi->bio_sem);
722 }
723
724 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
725 {
726         struct curseg_info *curseg = CURSEG_I(sbi, type);
727         if (curseg->next_blkoff < sbi->blocks_per_seg)
728                 return true;
729         return false;
730 }
731
732 static int __get_segment_type_2(struct page *page, enum page_type p_type)
733 {
734         if (p_type == DATA)
735                 return CURSEG_HOT_DATA;
736         else
737                 return CURSEG_HOT_NODE;
738 }
739
740 static int __get_segment_type_4(struct page *page, enum page_type p_type)
741 {
742         if (p_type == DATA) {
743                 struct inode *inode = page->mapping->host;
744
745                 if (S_ISDIR(inode->i_mode))
746                         return CURSEG_HOT_DATA;
747                 else
748                         return CURSEG_COLD_DATA;
749         } else {
750                 if (IS_DNODE(page) && !is_cold_node(page))
751                         return CURSEG_HOT_NODE;
752                 else
753                         return CURSEG_COLD_NODE;
754         }
755 }
756
757 static int __get_segment_type_6(struct page *page, enum page_type p_type)
758 {
759         if (p_type == DATA) {
760                 struct inode *inode = page->mapping->host;
761
762                 if (S_ISDIR(inode->i_mode))
763                         return CURSEG_HOT_DATA;
764                 else if (is_cold_data(page) || is_cold_file(inode))
765                         return CURSEG_COLD_DATA;
766                 else
767                         return CURSEG_WARM_DATA;
768         } else {
769                 if (IS_DNODE(page))
770                         return is_cold_node(page) ? CURSEG_WARM_NODE :
771                                                 CURSEG_HOT_NODE;
772                 else
773                         return CURSEG_COLD_NODE;
774         }
775 }
776
777 static int __get_segment_type(struct page *page, enum page_type p_type)
778 {
779         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
780         switch (sbi->active_logs) {
781         case 2:
782                 return __get_segment_type_2(page, p_type);
783         case 4:
784                 return __get_segment_type_4(page, p_type);
785         }
786         /* NR_CURSEG_TYPE(6) logs by default */
787         BUG_ON(sbi->active_logs != NR_CURSEG_TYPE);
788         return __get_segment_type_6(page, p_type);
789 }
790
791 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
792                         block_t old_blkaddr, block_t *new_blkaddr,
793                         struct f2fs_summary *sum, enum page_type p_type)
794 {
795         struct sit_info *sit_i = SIT_I(sbi);
796         struct curseg_info *curseg;
797         unsigned int old_cursegno;
798         int type;
799
800         type = __get_segment_type(page, p_type);
801         curseg = CURSEG_I(sbi, type);
802
803         mutex_lock(&curseg->curseg_mutex);
804
805         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
806         old_cursegno = curseg->segno;
807
808         /*
809          * __add_sum_entry should be resided under the curseg_mutex
810          * because, this function updates a summary entry in the
811          * current summary block.
812          */
813         __add_sum_entry(sbi, type, sum, curseg->next_blkoff);
814
815         mutex_lock(&sit_i->sentry_lock);
816         __refresh_next_blkoff(sbi, curseg);
817         sbi->block_count[curseg->alloc_type]++;
818
819         /*
820          * SIT information should be updated before segment allocation,
821          * since SSR needs latest valid block information.
822          */
823         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
824
825         if (!__has_curseg_space(sbi, type))
826                 sit_i->s_ops->allocate_segment(sbi, type, false);
827
828         locate_dirty_segment(sbi, old_cursegno);
829         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
830         mutex_unlock(&sit_i->sentry_lock);
831
832         if (p_type == NODE)
833                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
834
835         /* writeout dirty page into bdev */
836         submit_write_page(sbi, page, *new_blkaddr, p_type);
837
838         mutex_unlock(&curseg->curseg_mutex);
839 }
840
841 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
842 {
843         set_page_writeback(page);
844         submit_write_page(sbi, page, page->index, META);
845 }
846
847 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
848                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
849 {
850         struct f2fs_summary sum;
851         set_summary(&sum, nid, 0, 0);
852         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
853 }
854
855 void write_data_page(struct inode *inode, struct page *page,
856                 struct dnode_of_data *dn, block_t old_blkaddr,
857                 block_t *new_blkaddr)
858 {
859         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
860         struct f2fs_summary sum;
861         struct node_info ni;
862
863         BUG_ON(old_blkaddr == NULL_ADDR);
864         get_node_info(sbi, dn->nid, &ni);
865         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
866
867         do_write_page(sbi, page, old_blkaddr,
868                         new_blkaddr, &sum, DATA);
869 }
870
871 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
872                                         block_t old_blk_addr)
873 {
874         submit_write_page(sbi, page, old_blk_addr, DATA);
875 }
876
877 void recover_data_page(struct f2fs_sb_info *sbi,
878                         struct page *page, struct f2fs_summary *sum,
879                         block_t old_blkaddr, block_t new_blkaddr)
880 {
881         struct sit_info *sit_i = SIT_I(sbi);
882         struct curseg_info *curseg;
883         unsigned int segno, old_cursegno;
884         struct seg_entry *se;
885         int type;
886
887         segno = GET_SEGNO(sbi, new_blkaddr);
888         se = get_seg_entry(sbi, segno);
889         type = se->type;
890
891         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
892                 if (old_blkaddr == NULL_ADDR)
893                         type = CURSEG_COLD_DATA;
894                 else
895                         type = CURSEG_WARM_DATA;
896         }
897         curseg = CURSEG_I(sbi, type);
898
899         mutex_lock(&curseg->curseg_mutex);
900         mutex_lock(&sit_i->sentry_lock);
901
902         old_cursegno = curseg->segno;
903
904         /* change the current segment */
905         if (segno != curseg->segno) {
906                 curseg->next_segno = segno;
907                 change_curseg(sbi, type, true);
908         }
909
910         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
911                                         (sbi->blocks_per_seg - 1);
912         __add_sum_entry(sbi, type, sum, curseg->next_blkoff);
913
914         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
915
916         locate_dirty_segment(sbi, old_cursegno);
917         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
918
919         mutex_unlock(&sit_i->sentry_lock);
920         mutex_unlock(&curseg->curseg_mutex);
921 }
922
923 void rewrite_node_page(struct f2fs_sb_info *sbi,
924                         struct page *page, struct f2fs_summary *sum,
925                         block_t old_blkaddr, block_t new_blkaddr)
926 {
927         struct sit_info *sit_i = SIT_I(sbi);
928         int type = CURSEG_WARM_NODE;
929         struct curseg_info *curseg;
930         unsigned int segno, old_cursegno;
931         block_t next_blkaddr = next_blkaddr_of_node(page);
932         unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
933
934         curseg = CURSEG_I(sbi, type);
935
936         mutex_lock(&curseg->curseg_mutex);
937         mutex_lock(&sit_i->sentry_lock);
938
939         segno = GET_SEGNO(sbi, new_blkaddr);
940         old_cursegno = curseg->segno;
941
942         /* change the current segment */
943         if (segno != curseg->segno) {
944                 curseg->next_segno = segno;
945                 change_curseg(sbi, type, true);
946         }
947         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
948                                         (sbi->blocks_per_seg - 1);
949         __add_sum_entry(sbi, type, sum, curseg->next_blkoff);
950
951         /* change the current log to the next block addr in advance */
952         if (next_segno != segno) {
953                 curseg->next_segno = next_segno;
954                 change_curseg(sbi, type, true);
955         }
956         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
957                                         (sbi->blocks_per_seg - 1);
958
959         /* rewrite node page */
960         set_page_writeback(page);
961         submit_write_page(sbi, page, new_blkaddr, NODE);
962         f2fs_submit_bio(sbi, NODE, true);
963         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
964
965         locate_dirty_segment(sbi, old_cursegno);
966         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
967
968         mutex_unlock(&sit_i->sentry_lock);
969         mutex_unlock(&curseg->curseg_mutex);
970 }
971
972 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
973 {
974         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
975         struct curseg_info *seg_i;
976         unsigned char *kaddr;
977         struct page *page;
978         block_t start;
979         int i, j, offset;
980
981         start = start_sum_block(sbi);
982
983         page = get_meta_page(sbi, start++);
984         kaddr = (unsigned char *)page_address(page);
985
986         /* Step 1: restore nat cache */
987         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
988         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
989
990         /* Step 2: restore sit cache */
991         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
992         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
993                                                 SUM_JOURNAL_SIZE);
994         offset = 2 * SUM_JOURNAL_SIZE;
995
996         /* Step 3: restore summary entries */
997         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
998                 unsigned short blk_off;
999                 unsigned int segno;
1000
1001                 seg_i = CURSEG_I(sbi, i);
1002                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1003                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1004                 seg_i->next_segno = segno;
1005                 reset_curseg(sbi, i, 0);
1006                 seg_i->alloc_type = ckpt->alloc_type[i];
1007                 seg_i->next_blkoff = blk_off;
1008
1009                 if (seg_i->alloc_type == SSR)
1010                         blk_off = sbi->blocks_per_seg;
1011
1012                 for (j = 0; j < blk_off; j++) {
1013                         struct f2fs_summary *s;
1014                         s = (struct f2fs_summary *)(kaddr + offset);
1015                         seg_i->sum_blk->entries[j] = *s;
1016                         offset += SUMMARY_SIZE;
1017                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1018                                                 SUM_FOOTER_SIZE)
1019                                 continue;
1020
1021                         f2fs_put_page(page, 1);
1022                         page = NULL;
1023
1024                         page = get_meta_page(sbi, start++);
1025                         kaddr = (unsigned char *)page_address(page);
1026                         offset = 0;
1027                 }
1028         }
1029         f2fs_put_page(page, 1);
1030         return 0;
1031 }
1032
1033 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1034 {
1035         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1036         struct f2fs_summary_block *sum;
1037         struct curseg_info *curseg;
1038         struct page *new;
1039         unsigned short blk_off;
1040         unsigned int segno = 0;
1041         block_t blk_addr = 0;
1042
1043         /* get segment number and block addr */
1044         if (IS_DATASEG(type)) {
1045                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1046                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1047                                                         CURSEG_HOT_DATA]);
1048                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1049                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1050                 else
1051                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1052         } else {
1053                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1054                                                         CURSEG_HOT_NODE]);
1055                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1056                                                         CURSEG_HOT_NODE]);
1057                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1058                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1059                                                         type - CURSEG_HOT_NODE);
1060                 else
1061                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1062         }
1063
1064         new = get_meta_page(sbi, blk_addr);
1065         sum = (struct f2fs_summary_block *)page_address(new);
1066
1067         if (IS_NODESEG(type)) {
1068                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1069                         struct f2fs_summary *ns = &sum->entries[0];
1070                         int i;
1071                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1072                                 ns->version = 0;
1073                                 ns->ofs_in_node = 0;
1074                         }
1075                 } else {
1076                         if (restore_node_summary(sbi, segno, sum)) {
1077                                 f2fs_put_page(new, 1);
1078                                 return -EINVAL;
1079                         }
1080                 }
1081         }
1082
1083         /* set uncompleted segment to curseg */
1084         curseg = CURSEG_I(sbi, type);
1085         mutex_lock(&curseg->curseg_mutex);
1086         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1087         curseg->next_segno = segno;
1088         reset_curseg(sbi, type, 0);
1089         curseg->alloc_type = ckpt->alloc_type[type];
1090         curseg->next_blkoff = blk_off;
1091         mutex_unlock(&curseg->curseg_mutex);
1092         f2fs_put_page(new, 1);
1093         return 0;
1094 }
1095
1096 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1097 {
1098         int type = CURSEG_HOT_DATA;
1099
1100         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1101                 /* restore for compacted data summary */
1102                 if (read_compacted_summaries(sbi))
1103                         return -EINVAL;
1104                 type = CURSEG_HOT_NODE;
1105         }
1106
1107         for (; type <= CURSEG_COLD_NODE; type++)
1108                 if (read_normal_summaries(sbi, type))
1109                         return -EINVAL;
1110         return 0;
1111 }
1112
1113 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1114 {
1115         struct page *page;
1116         unsigned char *kaddr;
1117         struct f2fs_summary *summary;
1118         struct curseg_info *seg_i;
1119         int written_size = 0;
1120         int i, j;
1121
1122         page = grab_meta_page(sbi, blkaddr++);
1123         kaddr = (unsigned char *)page_address(page);
1124
1125         /* Step 1: write nat cache */
1126         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1127         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1128         written_size += SUM_JOURNAL_SIZE;
1129
1130         /* Step 2: write sit cache */
1131         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1132         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1133                                                 SUM_JOURNAL_SIZE);
1134         written_size += SUM_JOURNAL_SIZE;
1135
1136         set_page_dirty(page);
1137
1138         /* Step 3: write summary entries */
1139         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1140                 unsigned short blkoff;
1141                 seg_i = CURSEG_I(sbi, i);
1142                 if (sbi->ckpt->alloc_type[i] == SSR)
1143                         blkoff = sbi->blocks_per_seg;
1144                 else
1145                         blkoff = curseg_blkoff(sbi, i);
1146
1147                 for (j = 0; j < blkoff; j++) {
1148                         if (!page) {
1149                                 page = grab_meta_page(sbi, blkaddr++);
1150                                 kaddr = (unsigned char *)page_address(page);
1151                                 written_size = 0;
1152                         }
1153                         summary = (struct f2fs_summary *)(kaddr + written_size);
1154                         *summary = seg_i->sum_blk->entries[j];
1155                         written_size += SUMMARY_SIZE;
1156                         set_page_dirty(page);
1157
1158                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1159                                                         SUM_FOOTER_SIZE)
1160                                 continue;
1161
1162                         f2fs_put_page(page, 1);
1163                         page = NULL;
1164                 }
1165         }
1166         if (page)
1167                 f2fs_put_page(page, 1);
1168 }
1169
1170 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1171                                         block_t blkaddr, int type)
1172 {
1173         int i, end;
1174         if (IS_DATASEG(type))
1175                 end = type + NR_CURSEG_DATA_TYPE;
1176         else
1177                 end = type + NR_CURSEG_NODE_TYPE;
1178
1179         for (i = type; i < end; i++) {
1180                 struct curseg_info *sum = CURSEG_I(sbi, i);
1181                 mutex_lock(&sum->curseg_mutex);
1182                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1183                 mutex_unlock(&sum->curseg_mutex);
1184         }
1185 }
1186
1187 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1188 {
1189         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1190                 write_compacted_summaries(sbi, start_blk);
1191         else
1192                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1193 }
1194
1195 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1196 {
1197         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1198                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1199         return;
1200 }
1201
1202 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1203                                         unsigned int val, int alloc)
1204 {
1205         int i;
1206
1207         if (type == NAT_JOURNAL) {
1208                 for (i = 0; i < nats_in_cursum(sum); i++) {
1209                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1210                                 return i;
1211                 }
1212                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1213                         return update_nats_in_cursum(sum, 1);
1214         } else if (type == SIT_JOURNAL) {
1215                 for (i = 0; i < sits_in_cursum(sum); i++)
1216                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1217                                 return i;
1218                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1219                         return update_sits_in_cursum(sum, 1);
1220         }
1221         return -1;
1222 }
1223
1224 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1225                                         unsigned int segno)
1226 {
1227         struct sit_info *sit_i = SIT_I(sbi);
1228         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1229         block_t blk_addr = sit_i->sit_base_addr + offset;
1230
1231         check_seg_range(sbi, segno);
1232
1233         /* calculate sit block address */
1234         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1235                 blk_addr += sit_i->sit_blocks;
1236
1237         return get_meta_page(sbi, blk_addr);
1238 }
1239
1240 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1241                                         unsigned int start)
1242 {
1243         struct sit_info *sit_i = SIT_I(sbi);
1244         struct page *src_page, *dst_page;
1245         pgoff_t src_off, dst_off;
1246         void *src_addr, *dst_addr;
1247
1248         src_off = current_sit_addr(sbi, start);
1249         dst_off = next_sit_addr(sbi, src_off);
1250
1251         /* get current sit block page without lock */
1252         src_page = get_meta_page(sbi, src_off);
1253         dst_page = grab_meta_page(sbi, dst_off);
1254         BUG_ON(PageDirty(src_page));
1255
1256         src_addr = page_address(src_page);
1257         dst_addr = page_address(dst_page);
1258         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1259
1260         set_page_dirty(dst_page);
1261         f2fs_put_page(src_page, 1);
1262
1263         set_to_next_sit(sit_i, start);
1264
1265         return dst_page;
1266 }
1267
1268 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1269 {
1270         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1271         struct f2fs_summary_block *sum = curseg->sum_blk;
1272         int i;
1273
1274         /*
1275          * If the journal area in the current summary is full of sit entries,
1276          * all the sit entries will be flushed. Otherwise the sit entries
1277          * are not able to replace with newly hot sit entries.
1278          */
1279         if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1280                 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1281                         unsigned int segno;
1282                         segno = le32_to_cpu(segno_in_journal(sum, i));
1283                         __mark_sit_entry_dirty(sbi, segno);
1284                 }
1285                 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1286                 return 1;
1287         }
1288         return 0;
1289 }
1290
1291 /*
1292  * CP calls this function, which flushes SIT entries including sit_journal,
1293  * and moves prefree segs to free segs.
1294  */
1295 void flush_sit_entries(struct f2fs_sb_info *sbi)
1296 {
1297         struct sit_info *sit_i = SIT_I(sbi);
1298         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1299         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1300         struct f2fs_summary_block *sum = curseg->sum_blk;
1301         unsigned long nsegs = TOTAL_SEGS(sbi);
1302         struct page *page = NULL;
1303         struct f2fs_sit_block *raw_sit = NULL;
1304         unsigned int start = 0, end = 0;
1305         unsigned int segno = -1;
1306         bool flushed;
1307
1308         mutex_lock(&curseg->curseg_mutex);
1309         mutex_lock(&sit_i->sentry_lock);
1310
1311         /*
1312          * "flushed" indicates whether sit entries in journal are flushed
1313          * to the SIT area or not.
1314          */
1315         flushed = flush_sits_in_journal(sbi);
1316
1317         while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1318                 struct seg_entry *se = get_seg_entry(sbi, segno);
1319                 int sit_offset, offset;
1320
1321                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1322
1323                 if (flushed)
1324                         goto to_sit_page;
1325
1326                 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1327                 if (offset >= 0) {
1328                         segno_in_journal(sum, offset) = cpu_to_le32(segno);
1329                         seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1330                         goto flush_done;
1331                 }
1332 to_sit_page:
1333                 if (!page || (start > segno) || (segno > end)) {
1334                         if (page) {
1335                                 f2fs_put_page(page, 1);
1336                                 page = NULL;
1337                         }
1338
1339                         start = START_SEGNO(sit_i, segno);
1340                         end = start + SIT_ENTRY_PER_BLOCK - 1;
1341
1342                         /* read sit block that will be updated */
1343                         page = get_next_sit_page(sbi, start);
1344                         raw_sit = page_address(page);
1345                 }
1346
1347                 /* udpate entry in SIT block */
1348                 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1349 flush_done:
1350                 __clear_bit(segno, bitmap);
1351                 sit_i->dirty_sentries--;
1352         }
1353         mutex_unlock(&sit_i->sentry_lock);
1354         mutex_unlock(&curseg->curseg_mutex);
1355
1356         /* writeout last modified SIT block */
1357         f2fs_put_page(page, 1);
1358
1359         set_prefree_as_free_segments(sbi);
1360 }
1361
1362 static int build_sit_info(struct f2fs_sb_info *sbi)
1363 {
1364         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1365         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1366         struct sit_info *sit_i;
1367         unsigned int sit_segs, start;
1368         char *src_bitmap, *dst_bitmap;
1369         unsigned int bitmap_size;
1370
1371         /* allocate memory for SIT information */
1372         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1373         if (!sit_i)
1374                 return -ENOMEM;
1375
1376         SM_I(sbi)->sit_info = sit_i;
1377
1378         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1379         if (!sit_i->sentries)
1380                 return -ENOMEM;
1381
1382         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1383         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1384         if (!sit_i->dirty_sentries_bitmap)
1385                 return -ENOMEM;
1386
1387         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1388                 sit_i->sentries[start].cur_valid_map
1389                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1390                 sit_i->sentries[start].ckpt_valid_map
1391                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1392                 if (!sit_i->sentries[start].cur_valid_map
1393                                 || !sit_i->sentries[start].ckpt_valid_map)
1394                         return -ENOMEM;
1395         }
1396
1397         if (sbi->segs_per_sec > 1) {
1398                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1399                                         sizeof(struct sec_entry));
1400                 if (!sit_i->sec_entries)
1401                         return -ENOMEM;
1402         }
1403
1404         /* get information related with SIT */
1405         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1406
1407         /* setup SIT bitmap from ckeckpoint pack */
1408         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1409         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1410
1411         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1412         if (!dst_bitmap)
1413                 return -ENOMEM;
1414
1415         /* init SIT information */
1416         sit_i->s_ops = &default_salloc_ops;
1417
1418         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1419         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1420         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1421         sit_i->sit_bitmap = dst_bitmap;
1422         sit_i->bitmap_size = bitmap_size;
1423         sit_i->dirty_sentries = 0;
1424         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1425         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1426         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1427         mutex_init(&sit_i->sentry_lock);
1428         return 0;
1429 }
1430
1431 static int build_free_segmap(struct f2fs_sb_info *sbi)
1432 {
1433         struct f2fs_sm_info *sm_info = SM_I(sbi);
1434         struct free_segmap_info *free_i;
1435         unsigned int bitmap_size, sec_bitmap_size;
1436
1437         /* allocate memory for free segmap information */
1438         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1439         if (!free_i)
1440                 return -ENOMEM;
1441
1442         SM_I(sbi)->free_info = free_i;
1443
1444         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1445         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1446         if (!free_i->free_segmap)
1447                 return -ENOMEM;
1448
1449         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1450         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1451         if (!free_i->free_secmap)
1452                 return -ENOMEM;
1453
1454         /* set all segments as dirty temporarily */
1455         memset(free_i->free_segmap, 0xff, bitmap_size);
1456         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1457
1458         /* init free segmap information */
1459         free_i->start_segno =
1460                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1461         free_i->free_segments = 0;
1462         free_i->free_sections = 0;
1463         rwlock_init(&free_i->segmap_lock);
1464         return 0;
1465 }
1466
1467 static int build_curseg(struct f2fs_sb_info *sbi)
1468 {
1469         struct curseg_info *array;
1470         int i;
1471
1472         array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1473         if (!array)
1474                 return -ENOMEM;
1475
1476         SM_I(sbi)->curseg_array = array;
1477
1478         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1479                 mutex_init(&array[i].curseg_mutex);
1480                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1481                 if (!array[i].sum_blk)
1482                         return -ENOMEM;
1483                 array[i].segno = NULL_SEGNO;
1484                 array[i].next_blkoff = 0;
1485         }
1486         return restore_curseg_summaries(sbi);
1487 }
1488
1489 static void build_sit_entries(struct f2fs_sb_info *sbi)
1490 {
1491         struct sit_info *sit_i = SIT_I(sbi);
1492         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1493         struct f2fs_summary_block *sum = curseg->sum_blk;
1494         unsigned int start;
1495
1496         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1497                 struct seg_entry *se = &sit_i->sentries[start];
1498                 struct f2fs_sit_block *sit_blk;
1499                 struct f2fs_sit_entry sit;
1500                 struct page *page;
1501                 int i;
1502
1503                 mutex_lock(&curseg->curseg_mutex);
1504                 for (i = 0; i < sits_in_cursum(sum); i++) {
1505                         if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1506                                 sit = sit_in_journal(sum, i);
1507                                 mutex_unlock(&curseg->curseg_mutex);
1508                                 goto got_it;
1509                         }
1510                 }
1511                 mutex_unlock(&curseg->curseg_mutex);
1512                 page = get_current_sit_page(sbi, start);
1513                 sit_blk = (struct f2fs_sit_block *)page_address(page);
1514                 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1515                 f2fs_put_page(page, 1);
1516 got_it:
1517                 check_block_count(sbi, start, &sit);
1518                 seg_info_from_raw_sit(se, &sit);
1519                 if (sbi->segs_per_sec > 1) {
1520                         struct sec_entry *e = get_sec_entry(sbi, start);
1521                         e->valid_blocks += se->valid_blocks;
1522                 }
1523         }
1524 }
1525
1526 static void init_free_segmap(struct f2fs_sb_info *sbi)
1527 {
1528         unsigned int start;
1529         int type;
1530
1531         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1532                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1533                 if (!sentry->valid_blocks)
1534                         __set_free(sbi, start);
1535         }
1536
1537         /* set use the current segments */
1538         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1539                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1540                 __set_test_and_inuse(sbi, curseg_t->segno);
1541         }
1542 }
1543
1544 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1545 {
1546         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1547         struct free_segmap_info *free_i = FREE_I(sbi);
1548         unsigned int segno = 0, offset = 0;
1549         unsigned short valid_blocks;
1550
1551         while (segno < TOTAL_SEGS(sbi)) {
1552                 /* find dirty segment based on free segmap */
1553                 segno = find_next_inuse(free_i, TOTAL_SEGS(sbi), offset);
1554                 if (segno >= TOTAL_SEGS(sbi))
1555                         break;
1556                 offset = segno + 1;
1557                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1558                 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1559                         continue;
1560                 mutex_lock(&dirty_i->seglist_lock);
1561                 __locate_dirty_segment(sbi, segno, DIRTY);
1562                 mutex_unlock(&dirty_i->seglist_lock);
1563         }
1564 }
1565
1566 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1567 {
1568         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1569         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1570
1571         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1572         if (!dirty_i->victim_secmap)
1573                 return -ENOMEM;
1574         return 0;
1575 }
1576
1577 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1578 {
1579         struct dirty_seglist_info *dirty_i;
1580         unsigned int bitmap_size, i;
1581
1582         /* allocate memory for dirty segments list information */
1583         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1584         if (!dirty_i)
1585                 return -ENOMEM;
1586
1587         SM_I(sbi)->dirty_info = dirty_i;
1588         mutex_init(&dirty_i->seglist_lock);
1589
1590         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1591
1592         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1593                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1594                 if (!dirty_i->dirty_segmap[i])
1595                         return -ENOMEM;
1596         }
1597
1598         init_dirty_segmap(sbi);
1599         return init_victim_secmap(sbi);
1600 }
1601
1602 /*
1603  * Update min, max modified time for cost-benefit GC algorithm
1604  */
1605 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1606 {
1607         struct sit_info *sit_i = SIT_I(sbi);
1608         unsigned int segno;
1609
1610         mutex_lock(&sit_i->sentry_lock);
1611
1612         sit_i->min_mtime = LLONG_MAX;
1613
1614         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1615                 unsigned int i;
1616                 unsigned long long mtime = 0;
1617
1618                 for (i = 0; i < sbi->segs_per_sec; i++)
1619                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1620
1621                 mtime = div_u64(mtime, sbi->segs_per_sec);
1622
1623                 if (sit_i->min_mtime > mtime)
1624                         sit_i->min_mtime = mtime;
1625         }
1626         sit_i->max_mtime = get_mtime(sbi);
1627         mutex_unlock(&sit_i->sentry_lock);
1628 }
1629
1630 int build_segment_manager(struct f2fs_sb_info *sbi)
1631 {
1632         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1633         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1634         struct f2fs_sm_info *sm_info;
1635         int err;
1636
1637         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1638         if (!sm_info)
1639                 return -ENOMEM;
1640
1641         /* init sm info */
1642         sbi->sm_info = sm_info;
1643         INIT_LIST_HEAD(&sm_info->wblist_head);
1644         spin_lock_init(&sm_info->wblist_lock);
1645         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1646         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1647         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1648         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1649         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1650         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1651         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1652
1653         err = build_sit_info(sbi);
1654         if (err)
1655                 return err;
1656         err = build_free_segmap(sbi);
1657         if (err)
1658                 return err;
1659         err = build_curseg(sbi);
1660         if (err)
1661                 return err;
1662
1663         /* reinit free segmap based on SIT */
1664         build_sit_entries(sbi);
1665
1666         init_free_segmap(sbi);
1667         err = build_dirty_segmap(sbi);
1668         if (err)
1669                 return err;
1670
1671         init_min_max_mtime(sbi);
1672         return 0;
1673 }
1674
1675 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1676                 enum dirty_type dirty_type)
1677 {
1678         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1679
1680         mutex_lock(&dirty_i->seglist_lock);
1681         kfree(dirty_i->dirty_segmap[dirty_type]);
1682         dirty_i->nr_dirty[dirty_type] = 0;
1683         mutex_unlock(&dirty_i->seglist_lock);
1684 }
1685
1686 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1687 {
1688         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1689         kfree(dirty_i->victim_secmap);
1690 }
1691
1692 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1693 {
1694         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1695         int i;
1696
1697         if (!dirty_i)
1698                 return;
1699
1700         /* discard pre-free/dirty segments list */
1701         for (i = 0; i < NR_DIRTY_TYPE; i++)
1702                 discard_dirty_segmap(sbi, i);
1703
1704         destroy_victim_secmap(sbi);
1705         SM_I(sbi)->dirty_info = NULL;
1706         kfree(dirty_i);
1707 }
1708
1709 static void destroy_curseg(struct f2fs_sb_info *sbi)
1710 {
1711         struct curseg_info *array = SM_I(sbi)->curseg_array;
1712         int i;
1713
1714         if (!array)
1715                 return;
1716         SM_I(sbi)->curseg_array = NULL;
1717         for (i = 0; i < NR_CURSEG_TYPE; i++)
1718                 kfree(array[i].sum_blk);
1719         kfree(array);
1720 }
1721
1722 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1723 {
1724         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1725         if (!free_i)
1726                 return;
1727         SM_I(sbi)->free_info = NULL;
1728         kfree(free_i->free_segmap);
1729         kfree(free_i->free_secmap);
1730         kfree(free_i);
1731 }
1732
1733 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1734 {
1735         struct sit_info *sit_i = SIT_I(sbi);
1736         unsigned int start;
1737
1738         if (!sit_i)
1739                 return;
1740
1741         if (sit_i->sentries) {
1742                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1743                         kfree(sit_i->sentries[start].cur_valid_map);
1744                         kfree(sit_i->sentries[start].ckpt_valid_map);
1745                 }
1746         }
1747         vfree(sit_i->sentries);
1748         vfree(sit_i->sec_entries);
1749         kfree(sit_i->dirty_sentries_bitmap);
1750
1751         SM_I(sbi)->sit_info = NULL;
1752         kfree(sit_i->sit_bitmap);
1753         kfree(sit_i);
1754 }
1755
1756 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1757 {
1758         struct f2fs_sm_info *sm_info = SM_I(sbi);
1759         destroy_dirty_segmap(sbi);
1760         destroy_curseg(sbi);
1761         destroy_free_segmap(sbi);
1762         destroy_sit_info(sbi);
1763         sbi->sm_info = NULL;
1764         kfree(sm_info);
1765 }