bed0dc967f29c797df673ad8e5eb87a1a94b9aeb
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / segment.h
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12
13 /* constant macro */
14 #define NULL_SEGNO                      ((unsigned int)(~0))
15 #define NULL_SECNO                      ((unsigned int)(~0))
16
17 #define DEF_RECLAIM_PREFREE_SEGMENTS    5       /* 5% over total segments */
18
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno)    (segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno)    (segno + free_i->start_segno)
22
23 #define IS_DATASEG(t)   (t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t)   (t >= CURSEG_HOT_NODE)
25
26 #define IS_CURSEG(sbi, seg)                                             \
27         ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||      \
28          (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||     \
29          (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||     \
30          (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||      \
31          (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||     \
32          (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33
34 #define IS_CURSEC(sbi, secno)                                           \
35         ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /              \
36           sbi->segs_per_sec) || \
37          (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /             \
38           sbi->segs_per_sec) || \
39          (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /             \
40           sbi->segs_per_sec) || \
41          (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /              \
42           sbi->segs_per_sec) || \
43          (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /             \
44           sbi->segs_per_sec) || \
45          (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /             \
46           sbi->segs_per_sec))   \
47
48 #define START_BLOCK(sbi, segno)                                         \
49         (SM_I(sbi)->seg0_blkaddr +                                      \
50          (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
52         (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
53
54 #define MAIN_BASE_BLOCK(sbi)    (SM_I(sbi)->main_blkaddr)
55
56 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)                             \
57         ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
59         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)                             \
61         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
62
63 #define GET_SEGNO(sbi, blk_addr)                                        \
64         (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?          \
65         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
66                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
67 #define GET_SECNO(sbi, segno)                                   \
68         ((segno) / sbi->segs_per_sec)
69 #define GET_ZONENO_FROM_SEGNO(sbi, segno)                               \
70         ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
71
72 #define GET_SUM_BLOCK(sbi, segno)                               \
73         ((sbi->sm_info->ssa_blkaddr) + segno)
74
75 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
76 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
77
78 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
79         (segno % sit_i->sents_per_block)
80 #define SIT_BLOCK_OFFSET(segno)                                 \
81         (segno / SIT_ENTRY_PER_BLOCK)
82 #define START_SEGNO(segno)              \
83         (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
84 #define SIT_BLK_CNT(sbi)                        \
85         ((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
86 #define f2fs_bitmap_size(nr)                    \
87         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
88 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
89 #define TOTAL_SECS(sbi) (sbi->total_sections)
90
91 #define SECTOR_FROM_BLOCK(sbi, blk_addr)                                \
92         (((sector_t)blk_addr) << (sbi)->log_sectors_per_block)
93 #define SECTOR_TO_BLOCK(sbi, sectors)                                   \
94         (sectors >> (sbi)->log_sectors_per_block)
95 #define MAX_BIO_BLOCKS(max_hw_blocks)                                   \
96         (min((int)max_hw_blocks, BIO_MAX_PAGES))
97
98 /*
99  * indicate a block allocation direction: RIGHT and LEFT.
100  * RIGHT means allocating new sections towards the end of volume.
101  * LEFT means the opposite direction.
102  */
103 enum {
104         ALLOC_RIGHT = 0,
105         ALLOC_LEFT
106 };
107
108 /*
109  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
110  * LFS writes data sequentially with cleaning operations.
111  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
112  */
113 enum {
114         LFS = 0,
115         SSR
116 };
117
118 /*
119  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
120  * GC_CB is based on cost-benefit algorithm.
121  * GC_GREEDY is based on greedy algorithm.
122  */
123 enum {
124         GC_CB = 0,
125         GC_GREEDY
126 };
127
128 /*
129  * BG_GC means the background cleaning job.
130  * FG_GC means the on-demand cleaning job.
131  */
132 enum {
133         BG_GC = 0,
134         FG_GC
135 };
136
137 /* for a function parameter to select a victim segment */
138 struct victim_sel_policy {
139         int alloc_mode;                 /* LFS or SSR */
140         int gc_mode;                    /* GC_CB or GC_GREEDY */
141         unsigned long *dirty_segmap;    /* dirty segment bitmap */
142         unsigned int max_search;        /* maximum # of segments to search */
143         unsigned int offset;            /* last scanned bitmap offset */
144         unsigned int ofs_unit;          /* bitmap search unit */
145         unsigned int min_cost;          /* minimum cost */
146         unsigned int min_segno;         /* segment # having min. cost */
147 };
148
149 struct seg_entry {
150         unsigned short valid_blocks;    /* # of valid blocks */
151         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
152         /*
153          * # of valid blocks and the validity bitmap stored in the the last
154          * checkpoint pack. This information is used by the SSR mode.
155          */
156         unsigned short ckpt_valid_blocks;
157         unsigned char *ckpt_valid_map;
158         unsigned char type;             /* segment type like CURSEG_XXX_TYPE */
159         unsigned long long mtime;       /* modification time of the segment */
160 };
161
162 struct sec_entry {
163         unsigned int valid_blocks;      /* # of valid blocks in a section */
164 };
165
166 struct segment_allocation {
167         void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
168 };
169
170 struct sit_info {
171         const struct segment_allocation *s_ops;
172
173         block_t sit_base_addr;          /* start block address of SIT area */
174         block_t sit_blocks;             /* # of blocks used by SIT area */
175         block_t written_valid_blocks;   /* # of valid blocks in main area */
176         char *sit_bitmap;               /* SIT bitmap pointer */
177         unsigned int bitmap_size;       /* SIT bitmap size */
178
179         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
180         unsigned int dirty_sentries;            /* # of dirty sentries */
181         unsigned int sents_per_block;           /* # of SIT entries per block */
182         struct mutex sentry_lock;               /* to protect SIT cache */
183         struct seg_entry *sentries;             /* SIT segment-level cache */
184         struct sec_entry *sec_entries;          /* SIT section-level cache */
185
186         /* for cost-benefit algorithm in cleaning procedure */
187         unsigned long long elapsed_time;        /* elapsed time after mount */
188         unsigned long long mounted_time;        /* mount time */
189         unsigned long long min_mtime;           /* min. modification time */
190         unsigned long long max_mtime;           /* max. modification time */
191 };
192
193 struct free_segmap_info {
194         unsigned int start_segno;       /* start segment number logically */
195         unsigned int free_segments;     /* # of free segments */
196         unsigned int free_sections;     /* # of free sections */
197         rwlock_t segmap_lock;           /* free segmap lock */
198         unsigned long *free_segmap;     /* free segment bitmap */
199         unsigned long *free_secmap;     /* free section bitmap */
200 };
201
202 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
203 enum dirty_type {
204         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
205         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
206         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
207         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
208         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
209         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
210         DIRTY,                  /* to count # of dirty segments */
211         PRE,                    /* to count # of entirely obsolete segments */
212         NR_DIRTY_TYPE
213 };
214
215 struct dirty_seglist_info {
216         const struct victim_selection *v_ops;   /* victim selction operation */
217         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
218         struct mutex seglist_lock;              /* lock for segment bitmaps */
219         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
220         unsigned long *victim_secmap;           /* background GC victims */
221 };
222
223 /* victim selection function for cleaning and SSR */
224 struct victim_selection {
225         int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
226                                                         int, int, char);
227 };
228
229 /* for active log information */
230 struct curseg_info {
231         struct mutex curseg_mutex;              /* lock for consistency */
232         struct f2fs_summary_block *sum_blk;     /* cached summary block */
233         unsigned char alloc_type;               /* current allocation type */
234         unsigned int segno;                     /* current segment number */
235         unsigned short next_blkoff;             /* next block offset to write */
236         unsigned int zone;                      /* current zone number */
237         unsigned int next_segno;                /* preallocated segment */
238 };
239
240 struct sit_entry_set {
241         struct list_head set_list;      /* link with all sit sets */
242         unsigned int start_segno;       /* start segno of sits in set */
243         unsigned int entry_cnt;         /* the # of sit entries in set */
244 };
245
246 /*
247  * inline functions
248  */
249 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
250 {
251         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
252 }
253
254 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
255                                                 unsigned int segno)
256 {
257         struct sit_info *sit_i = SIT_I(sbi);
258         return &sit_i->sentries[segno];
259 }
260
261 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
262                                                 unsigned int segno)
263 {
264         struct sit_info *sit_i = SIT_I(sbi);
265         return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
266 }
267
268 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
269                                 unsigned int segno, int section)
270 {
271         /*
272          * In order to get # of valid blocks in a section instantly from many
273          * segments, f2fs manages two counting structures separately.
274          */
275         if (section > 1)
276                 return get_sec_entry(sbi, segno)->valid_blocks;
277         else
278                 return get_seg_entry(sbi, segno)->valid_blocks;
279 }
280
281 static inline void seg_info_from_raw_sit(struct seg_entry *se,
282                                         struct f2fs_sit_entry *rs)
283 {
284         se->valid_blocks = GET_SIT_VBLOCKS(rs);
285         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
286         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
287         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
288         se->type = GET_SIT_TYPE(rs);
289         se->mtime = le64_to_cpu(rs->mtime);
290 }
291
292 static inline void seg_info_to_raw_sit(struct seg_entry *se,
293                                         struct f2fs_sit_entry *rs)
294 {
295         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
296                                         se->valid_blocks;
297         rs->vblocks = cpu_to_le16(raw_vblocks);
298         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
299         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
300         se->ckpt_valid_blocks = se->valid_blocks;
301         rs->mtime = cpu_to_le64(se->mtime);
302 }
303
304 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
305                 unsigned int max, unsigned int segno)
306 {
307         unsigned int ret;
308         read_lock(&free_i->segmap_lock);
309         ret = find_next_bit(free_i->free_segmap, max, segno);
310         read_unlock(&free_i->segmap_lock);
311         return ret;
312 }
313
314 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
315 {
316         struct free_segmap_info *free_i = FREE_I(sbi);
317         unsigned int secno = segno / sbi->segs_per_sec;
318         unsigned int start_segno = secno * sbi->segs_per_sec;
319         unsigned int next;
320
321         write_lock(&free_i->segmap_lock);
322         clear_bit(segno, free_i->free_segmap);
323         free_i->free_segments++;
324
325         next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
326         if (next >= start_segno + sbi->segs_per_sec) {
327                 clear_bit(secno, free_i->free_secmap);
328                 free_i->free_sections++;
329         }
330         write_unlock(&free_i->segmap_lock);
331 }
332
333 static inline void __set_inuse(struct f2fs_sb_info *sbi,
334                 unsigned int segno)
335 {
336         struct free_segmap_info *free_i = FREE_I(sbi);
337         unsigned int secno = segno / sbi->segs_per_sec;
338         set_bit(segno, free_i->free_segmap);
339         free_i->free_segments--;
340         if (!test_and_set_bit(secno, free_i->free_secmap))
341                 free_i->free_sections--;
342 }
343
344 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
345                 unsigned int segno)
346 {
347         struct free_segmap_info *free_i = FREE_I(sbi);
348         unsigned int secno = segno / sbi->segs_per_sec;
349         unsigned int start_segno = secno * sbi->segs_per_sec;
350         unsigned int next;
351
352         write_lock(&free_i->segmap_lock);
353         if (test_and_clear_bit(segno, free_i->free_segmap)) {
354                 free_i->free_segments++;
355
356                 next = find_next_bit(free_i->free_segmap,
357                                 start_segno + sbi->segs_per_sec, start_segno);
358                 if (next >= start_segno + sbi->segs_per_sec) {
359                         if (test_and_clear_bit(secno, free_i->free_secmap))
360                                 free_i->free_sections++;
361                 }
362         }
363         write_unlock(&free_i->segmap_lock);
364 }
365
366 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
367                 unsigned int segno)
368 {
369         struct free_segmap_info *free_i = FREE_I(sbi);
370         unsigned int secno = segno / sbi->segs_per_sec;
371         write_lock(&free_i->segmap_lock);
372         if (!test_and_set_bit(segno, free_i->free_segmap)) {
373                 free_i->free_segments--;
374                 if (!test_and_set_bit(secno, free_i->free_secmap))
375                         free_i->free_sections--;
376         }
377         write_unlock(&free_i->segmap_lock);
378 }
379
380 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
381                 void *dst_addr)
382 {
383         struct sit_info *sit_i = SIT_I(sbi);
384         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
385 }
386
387 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
388 {
389         return SIT_I(sbi)->written_valid_blocks;
390 }
391
392 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
393 {
394         return FREE_I(sbi)->free_segments;
395 }
396
397 static inline int reserved_segments(struct f2fs_sb_info *sbi)
398 {
399         return SM_I(sbi)->reserved_segments;
400 }
401
402 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
403 {
404         return FREE_I(sbi)->free_sections;
405 }
406
407 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
408 {
409         return DIRTY_I(sbi)->nr_dirty[PRE];
410 }
411
412 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
413 {
414         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
415                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
416                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
417                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
418                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
419                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
420 }
421
422 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
423 {
424         return SM_I(sbi)->ovp_segments;
425 }
426
427 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
428 {
429         return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
430 }
431
432 static inline int reserved_sections(struct f2fs_sb_info *sbi)
433 {
434         return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
435 }
436
437 static inline bool need_SSR(struct f2fs_sb_info *sbi)
438 {
439         return (prefree_segments(sbi) / sbi->segs_per_sec)
440                         + free_sections(sbi) < overprovision_sections(sbi);
441 }
442
443 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
444 {
445         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
446         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
447
448         if (unlikely(sbi->por_doing))
449                 return false;
450
451         return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
452                                                 reserved_sections(sbi));
453 }
454
455 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
456 {
457         return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
458 }
459
460 static inline int utilization(struct f2fs_sb_info *sbi)
461 {
462         return div_u64((u64)valid_user_blocks(sbi) * 100,
463                                         sbi->user_block_count);
464 }
465
466 /*
467  * Sometimes f2fs may be better to drop out-of-place update policy.
468  * And, users can control the policy through sysfs entries.
469  * There are five policies with triggering conditions as follows.
470  * F2FS_IPU_FORCE - all the time,
471  * F2FS_IPU_SSR - if SSR mode is activated,
472  * F2FS_IPU_UTIL - if FS utilization is over threashold,
473  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
474  *                     threashold,
475  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
476  */
477 #define DEF_MIN_IPU_UTIL        70
478
479 enum {
480         F2FS_IPU_FORCE,
481         F2FS_IPU_SSR,
482         F2FS_IPU_UTIL,
483         F2FS_IPU_SSR_UTIL,
484         F2FS_IPU_DISABLE,
485 };
486
487 static inline bool need_inplace_update(struct inode *inode)
488 {
489         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
490
491         /* IPU can be done only for the user data */
492         if (S_ISDIR(inode->i_mode))
493                 return false;
494
495         /* this is only set during fdatasync */
496         if (is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
497                 return true;
498
499         switch (SM_I(sbi)->ipu_policy) {
500         case F2FS_IPU_FORCE:
501                 return true;
502         case F2FS_IPU_SSR:
503                 if (need_SSR(sbi))
504                         return true;
505                 break;
506         case F2FS_IPU_UTIL:
507                 if (utilization(sbi) > SM_I(sbi)->min_ipu_util)
508                         return true;
509                 break;
510         case F2FS_IPU_SSR_UTIL:
511                 if (need_SSR(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
512                         return true;
513                 break;
514         case F2FS_IPU_DISABLE:
515                 break;
516         }
517         return false;
518 }
519
520 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
521                 int type)
522 {
523         struct curseg_info *curseg = CURSEG_I(sbi, type);
524         return curseg->segno;
525 }
526
527 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
528                 int type)
529 {
530         struct curseg_info *curseg = CURSEG_I(sbi, type);
531         return curseg->alloc_type;
532 }
533
534 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
535 {
536         struct curseg_info *curseg = CURSEG_I(sbi, type);
537         return curseg->next_blkoff;
538 }
539
540 #ifdef CONFIG_F2FS_CHECK_FS
541 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
542 {
543         unsigned int end_segno = SM_I(sbi)->segment_count - 1;
544         BUG_ON(segno > end_segno);
545 }
546
547 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
548 {
549         struct f2fs_sm_info *sm_info = SM_I(sbi);
550         block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
551         block_t start_addr = sm_info->seg0_blkaddr;
552         block_t end_addr = start_addr + total_blks - 1;
553         BUG_ON(blk_addr < start_addr);
554         BUG_ON(blk_addr > end_addr);
555 }
556
557 /*
558  * Summary block is always treated as an invalid block
559  */
560 static inline void check_block_count(struct f2fs_sb_info *sbi,
561                 int segno, struct f2fs_sit_entry *raw_sit)
562 {
563         struct f2fs_sm_info *sm_info = SM_I(sbi);
564         unsigned int end_segno = sm_info->segment_count - 1;
565         bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
566         int valid_blocks = 0;
567         int cur_pos = 0, next_pos;
568
569         /* check segment usage */
570         BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
571
572         /* check boundary of a given segment number */
573         BUG_ON(segno > end_segno);
574
575         /* check bitmap with valid block count */
576         do {
577                 if (is_valid) {
578                         next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
579                                         sbi->blocks_per_seg,
580                                         cur_pos);
581                         valid_blocks += next_pos - cur_pos;
582                 } else
583                         next_pos = find_next_bit_le(&raw_sit->valid_map,
584                                         sbi->blocks_per_seg,
585                                         cur_pos);
586                 cur_pos = next_pos;
587                 is_valid = !is_valid;
588         } while (cur_pos < sbi->blocks_per_seg);
589         BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
590 }
591 #else
592 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
593 {
594         unsigned int end_segno = SM_I(sbi)->segment_count - 1;
595
596         if (segno > end_segno)
597                 sbi->need_fsck = true;
598 }
599
600 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
601 {
602         struct f2fs_sm_info *sm_info = SM_I(sbi);
603         block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
604         block_t start_addr = sm_info->seg0_blkaddr;
605         block_t end_addr = start_addr + total_blks - 1;
606
607         if (blk_addr < start_addr || blk_addr > end_addr)
608                 sbi->need_fsck = true;
609 }
610
611 /*
612  * Summary block is always treated as an invalid block
613  */
614 static inline void check_block_count(struct f2fs_sb_info *sbi,
615                 int segno, struct f2fs_sit_entry *raw_sit)
616 {
617         unsigned int end_segno = SM_I(sbi)->segment_count - 1;
618
619         /* check segment usage */
620         if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
621                 sbi->need_fsck = true;
622
623         /* check boundary of a given segment number */
624         if (segno > end_segno)
625                 sbi->need_fsck = true;
626 }
627 #endif
628
629 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
630                                                 unsigned int start)
631 {
632         struct sit_info *sit_i = SIT_I(sbi);
633         unsigned int offset = SIT_BLOCK_OFFSET(start);
634         block_t blk_addr = sit_i->sit_base_addr + offset;
635
636         check_seg_range(sbi, start);
637
638         /* calculate sit block address */
639         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
640                 blk_addr += sit_i->sit_blocks;
641
642         return blk_addr;
643 }
644
645 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
646                                                 pgoff_t block_addr)
647 {
648         struct sit_info *sit_i = SIT_I(sbi);
649         block_addr -= sit_i->sit_base_addr;
650         if (block_addr < sit_i->sit_blocks)
651                 block_addr += sit_i->sit_blocks;
652         else
653                 block_addr -= sit_i->sit_blocks;
654
655         return block_addr + sit_i->sit_base_addr;
656 }
657
658 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
659 {
660         unsigned int block_off = SIT_BLOCK_OFFSET(start);
661
662         if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
663                 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
664         else
665                 f2fs_set_bit(block_off, sit_i->sit_bitmap);
666 }
667
668 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
669 {
670         struct sit_info *sit_i = SIT_I(sbi);
671         return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
672                                                 sit_i->mounted_time;
673 }
674
675 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
676                         unsigned int ofs_in_node, unsigned char version)
677 {
678         sum->nid = cpu_to_le32(nid);
679         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
680         sum->version = version;
681 }
682
683 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
684 {
685         return __start_cp_addr(sbi) +
686                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
687 }
688
689 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
690 {
691         return __start_cp_addr(sbi) +
692                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
693                                 - (base + 1) + type;
694 }
695
696 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
697 {
698         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
699                 return true;
700         return false;
701 }
702
703 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
704 {
705         struct block_device *bdev = sbi->sb->s_bdev;
706         struct request_queue *q = bdev_get_queue(bdev);
707         return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
708 }
709
710 /*
711  * It is very important to gather dirty pages and write at once, so that we can
712  * submit a big bio without interfering other data writes.
713  * By default, 512 pages for directory data,
714  * 512 pages (2MB) * 3 for three types of nodes, and
715  * max_bio_blocks for meta are set.
716  */
717 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
718 {
719         if (type == DATA)
720                 return sbi->blocks_per_seg;
721         else if (type == NODE)
722                 return 3 * sbi->blocks_per_seg;
723         else if (type == META)
724                 return MAX_BIO_BLOCKS(max_hw_blocks(sbi));
725         else
726                 return 0;
727 }
728
729 /*
730  * When writing pages, it'd better align nr_to_write for segment size.
731  */
732 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
733                                         struct writeback_control *wbc)
734 {
735         long nr_to_write, desired;
736
737         if (wbc->sync_mode != WB_SYNC_NONE)
738                 return 0;
739
740         nr_to_write = wbc->nr_to_write;
741
742         if (type == DATA)
743                 desired = 4096;
744         else if (type == NODE)
745                 desired = 3 * max_hw_blocks(sbi);
746         else
747                 desired = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
748
749         wbc->nr_to_write = desired;
750         return desired - nr_to_write;
751 }