f2fs: do checkpoint when umount flag is not set
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 enum {
43         Opt_gc_background,
44         Opt_disable_roll_forward,
45         Opt_discard,
46         Opt_noheap,
47         Opt_user_xattr,
48         Opt_nouser_xattr,
49         Opt_acl,
50         Opt_noacl,
51         Opt_active_logs,
52         Opt_disable_ext_identify,
53         Opt_inline_xattr,
54         Opt_inline_data,
55         Opt_inline_dentry,
56         Opt_flush_merge,
57         Opt_nobarrier,
58         Opt_fastboot,
59         Opt_err,
60 };
61
62 static match_table_t f2fs_tokens = {
63         {Opt_gc_background, "background_gc=%s"},
64         {Opt_disable_roll_forward, "disable_roll_forward"},
65         {Opt_discard, "discard"},
66         {Opt_noheap, "no_heap"},
67         {Opt_user_xattr, "user_xattr"},
68         {Opt_nouser_xattr, "nouser_xattr"},
69         {Opt_acl, "acl"},
70         {Opt_noacl, "noacl"},
71         {Opt_active_logs, "active_logs=%u"},
72         {Opt_disable_ext_identify, "disable_ext_identify"},
73         {Opt_inline_xattr, "inline_xattr"},
74         {Opt_inline_data, "inline_data"},
75         {Opt_inline_dentry, "inline_dentry"},
76         {Opt_flush_merge, "flush_merge"},
77         {Opt_nobarrier, "nobarrier"},
78         {Opt_fastboot, "fastboot"},
79         {Opt_err, NULL},
80 };
81
82 /* Sysfs support for f2fs */
83 enum {
84         GC_THREAD,      /* struct f2fs_gc_thread */
85         SM_INFO,        /* struct f2fs_sm_info */
86         NM_INFO,        /* struct f2fs_nm_info */
87         F2FS_SBI,       /* struct f2fs_sb_info */
88 };
89
90 struct f2fs_attr {
91         struct attribute attr;
92         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
93         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
94                          const char *, size_t);
95         int struct_type;
96         int offset;
97 };
98
99 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
100 {
101         if (struct_type == GC_THREAD)
102                 return (unsigned char *)sbi->gc_thread;
103         else if (struct_type == SM_INFO)
104                 return (unsigned char *)SM_I(sbi);
105         else if (struct_type == NM_INFO)
106                 return (unsigned char *)NM_I(sbi);
107         else if (struct_type == F2FS_SBI)
108                 return (unsigned char *)sbi;
109         return NULL;
110 }
111
112 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
113                         struct f2fs_sb_info *sbi, char *buf)
114 {
115         unsigned char *ptr = NULL;
116         unsigned int *ui;
117
118         ptr = __struct_ptr(sbi, a->struct_type);
119         if (!ptr)
120                 return -EINVAL;
121
122         ui = (unsigned int *)(ptr + a->offset);
123
124         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
125 }
126
127 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
128                         struct f2fs_sb_info *sbi,
129                         const char *buf, size_t count)
130 {
131         unsigned char *ptr;
132         unsigned long t;
133         unsigned int *ui;
134         ssize_t ret;
135
136         ptr = __struct_ptr(sbi, a->struct_type);
137         if (!ptr)
138                 return -EINVAL;
139
140         ui = (unsigned int *)(ptr + a->offset);
141
142         ret = kstrtoul(skip_spaces(buf), 0, &t);
143         if (ret < 0)
144                 return ret;
145         *ui = t;
146         return count;
147 }
148
149 static ssize_t f2fs_attr_show(struct kobject *kobj,
150                                 struct attribute *attr, char *buf)
151 {
152         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
153                                                                 s_kobj);
154         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
155
156         return a->show ? a->show(a, sbi, buf) : 0;
157 }
158
159 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
160                                                 const char *buf, size_t len)
161 {
162         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
163                                                                         s_kobj);
164         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
165
166         return a->store ? a->store(a, sbi, buf, len) : 0;
167 }
168
169 static void f2fs_sb_release(struct kobject *kobj)
170 {
171         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
172                                                                 s_kobj);
173         complete(&sbi->s_kobj_unregister);
174 }
175
176 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
177 static struct f2fs_attr f2fs_attr_##_name = {                   \
178         .attr = {.name = __stringify(_name), .mode = _mode },   \
179         .show   = _show,                                        \
180         .store  = _store,                                       \
181         .struct_type = _struct_type,                            \
182         .offset = _offset                                       \
183 }
184
185 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
186         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
187                 f2fs_sbi_show, f2fs_sbi_store,                  \
188                 offsetof(struct struct_name, elname))
189
190 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
191 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
192 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
193 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
194 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
195 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
196 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
197 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
198 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
199 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
200 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
201 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
202
203 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
204 static struct attribute *f2fs_attrs[] = {
205         ATTR_LIST(gc_min_sleep_time),
206         ATTR_LIST(gc_max_sleep_time),
207         ATTR_LIST(gc_no_gc_sleep_time),
208         ATTR_LIST(gc_idle),
209         ATTR_LIST(reclaim_segments),
210         ATTR_LIST(max_small_discards),
211         ATTR_LIST(ipu_policy),
212         ATTR_LIST(min_ipu_util),
213         ATTR_LIST(min_fsync_blocks),
214         ATTR_LIST(max_victim_search),
215         ATTR_LIST(dir_level),
216         ATTR_LIST(ram_thresh),
217         NULL,
218 };
219
220 static const struct sysfs_ops f2fs_attr_ops = {
221         .show   = f2fs_attr_show,
222         .store  = f2fs_attr_store,
223 };
224
225 static struct kobj_type f2fs_ktype = {
226         .default_attrs  = f2fs_attrs,
227         .sysfs_ops      = &f2fs_attr_ops,
228         .release        = f2fs_sb_release,
229 };
230
231 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
232 {
233         struct va_format vaf;
234         va_list args;
235
236         va_start(args, fmt);
237         vaf.fmt = fmt;
238         vaf.va = &args;
239         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
240         va_end(args);
241 }
242
243 static void init_once(void *foo)
244 {
245         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
246
247         inode_init_once(&fi->vfs_inode);
248 }
249
250 static int parse_options(struct super_block *sb, char *options)
251 {
252         struct f2fs_sb_info *sbi = F2FS_SB(sb);
253         substring_t args[MAX_OPT_ARGS];
254         char *p, *name;
255         int arg = 0;
256
257         if (!options)
258                 return 0;
259
260         while ((p = strsep(&options, ",")) != NULL) {
261                 int token;
262                 if (!*p)
263                         continue;
264                 /*
265                  * Initialize args struct so we know whether arg was
266                  * found; some options take optional arguments.
267                  */
268                 args[0].to = args[0].from = NULL;
269                 token = match_token(p, f2fs_tokens, args);
270
271                 switch (token) {
272                 case Opt_gc_background:
273                         name = match_strdup(&args[0]);
274
275                         if (!name)
276                                 return -ENOMEM;
277                         if (strlen(name) == 2 && !strncmp(name, "on", 2))
278                                 set_opt(sbi, BG_GC);
279                         else if (strlen(name) == 3 && !strncmp(name, "off", 3))
280                                 clear_opt(sbi, BG_GC);
281                         else {
282                                 kfree(name);
283                                 return -EINVAL;
284                         }
285                         kfree(name);
286                         break;
287                 case Opt_disable_roll_forward:
288                         set_opt(sbi, DISABLE_ROLL_FORWARD);
289                         break;
290                 case Opt_discard:
291                         set_opt(sbi, DISCARD);
292                         break;
293                 case Opt_noheap:
294                         set_opt(sbi, NOHEAP);
295                         break;
296 #ifdef CONFIG_F2FS_FS_XATTR
297                 case Opt_user_xattr:
298                         set_opt(sbi, XATTR_USER);
299                         break;
300                 case Opt_nouser_xattr:
301                         clear_opt(sbi, XATTR_USER);
302                         break;
303                 case Opt_inline_xattr:
304                         set_opt(sbi, INLINE_XATTR);
305                         break;
306 #else
307                 case Opt_user_xattr:
308                         f2fs_msg(sb, KERN_INFO,
309                                 "user_xattr options not supported");
310                         break;
311                 case Opt_nouser_xattr:
312                         f2fs_msg(sb, KERN_INFO,
313                                 "nouser_xattr options not supported");
314                         break;
315                 case Opt_inline_xattr:
316                         f2fs_msg(sb, KERN_INFO,
317                                 "inline_xattr options not supported");
318                         break;
319 #endif
320 #ifdef CONFIG_F2FS_FS_POSIX_ACL
321                 case Opt_acl:
322                         set_opt(sbi, POSIX_ACL);
323                         break;
324                 case Opt_noacl:
325                         clear_opt(sbi, POSIX_ACL);
326                         break;
327 #else
328                 case Opt_acl:
329                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
330                         break;
331                 case Opt_noacl:
332                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
333                         break;
334 #endif
335                 case Opt_active_logs:
336                         if (args->from && match_int(args, &arg))
337                                 return -EINVAL;
338                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
339                                 return -EINVAL;
340                         sbi->active_logs = arg;
341                         break;
342                 case Opt_disable_ext_identify:
343                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
344                         break;
345                 case Opt_inline_data:
346                         set_opt(sbi, INLINE_DATA);
347                         break;
348                 case Opt_inline_dentry:
349                         set_opt(sbi, INLINE_DENTRY);
350                         break;
351                 case Opt_flush_merge:
352                         set_opt(sbi, FLUSH_MERGE);
353                         break;
354                 case Opt_nobarrier:
355                         set_opt(sbi, NOBARRIER);
356                         break;
357                 case Opt_fastboot:
358                         set_opt(sbi, FASTBOOT);
359                         break;
360                 default:
361                         f2fs_msg(sb, KERN_ERR,
362                                 "Unrecognized mount option \"%s\" or missing value",
363                                 p);
364                         return -EINVAL;
365                 }
366         }
367         return 0;
368 }
369
370 static struct inode *f2fs_alloc_inode(struct super_block *sb)
371 {
372         struct f2fs_inode_info *fi;
373
374         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
375         if (!fi)
376                 return NULL;
377
378         init_once((void *) fi);
379
380         /* Initialize f2fs-specific inode info */
381         fi->vfs_inode.i_version = 1;
382         atomic_set(&fi->dirty_pages, 0);
383         fi->i_current_depth = 1;
384         fi->i_advise = 0;
385         rwlock_init(&fi->ext.ext_lock);
386         init_rwsem(&fi->i_sem);
387         INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS);
388         INIT_LIST_HEAD(&fi->inmem_pages);
389         mutex_init(&fi->inmem_lock);
390
391         set_inode_flag(fi, FI_NEW_INODE);
392
393         if (test_opt(F2FS_SB(sb), INLINE_XATTR))
394                 set_inode_flag(fi, FI_INLINE_XATTR);
395
396         /* Will be used by directory only */
397         fi->i_dir_level = F2FS_SB(sb)->dir_level;
398
399         return &fi->vfs_inode;
400 }
401
402 static int f2fs_drop_inode(struct inode *inode)
403 {
404         /*
405          * This is to avoid a deadlock condition like below.
406          * writeback_single_inode(inode)
407          *  - f2fs_write_data_page
408          *    - f2fs_gc -> iput -> evict
409          *       - inode_wait_for_writeback(inode)
410          */
411         if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
412                 return 0;
413         return generic_drop_inode(inode);
414 }
415
416 /*
417  * f2fs_dirty_inode() is called from __mark_inode_dirty()
418  *
419  * We should call set_dirty_inode to write the dirty inode through write_inode.
420  */
421 static void f2fs_dirty_inode(struct inode *inode, int flags)
422 {
423         set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
424 }
425
426 static void f2fs_i_callback(struct rcu_head *head)
427 {
428         struct inode *inode = container_of(head, struct inode, i_rcu);
429         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
430 }
431
432 static void f2fs_destroy_inode(struct inode *inode)
433 {
434         call_rcu(&inode->i_rcu, f2fs_i_callback);
435 }
436
437 static void f2fs_put_super(struct super_block *sb)
438 {
439         struct f2fs_sb_info *sbi = F2FS_SB(sb);
440
441         if (sbi->s_proc) {
442                 remove_proc_entry("segment_info", sbi->s_proc);
443                 remove_proc_entry(sb->s_id, f2fs_proc_root);
444         }
445         kobject_del(&sbi->s_kobj);
446
447         f2fs_destroy_stats(sbi);
448         stop_gc_thread(sbi);
449
450         /*
451          * We don't need to do checkpoint when superblock is clean.
452          * But, the previous checkpoint was not done by umount, it needs to do
453          * clean checkpoint again.
454          */
455         if (sbi->s_dirty ||
456                         !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
457                 struct cp_control cpc = {
458                         .reason = CP_UMOUNT,
459                 };
460                 write_checkpoint(sbi, &cpc);
461         }
462
463         /*
464          * normally superblock is clean, so we need to release this.
465          * In addition, EIO will skip do checkpoint, we need this as well.
466          */
467         release_dirty_inode(sbi);
468         release_discard_addrs(sbi);
469
470         iput(sbi->node_inode);
471         iput(sbi->meta_inode);
472
473         /* destroy f2fs internal modules */
474         destroy_node_manager(sbi);
475         destroy_segment_manager(sbi);
476
477         kfree(sbi->ckpt);
478         kobject_put(&sbi->s_kobj);
479         wait_for_completion(&sbi->s_kobj_unregister);
480
481         sb->s_fs_info = NULL;
482         brelse(sbi->raw_super_buf);
483         kfree(sbi);
484 }
485
486 int f2fs_sync_fs(struct super_block *sb, int sync)
487 {
488         struct f2fs_sb_info *sbi = F2FS_SB(sb);
489
490         trace_f2fs_sync_fs(sb, sync);
491
492         if (sync) {
493                 struct cp_control cpc;
494
495                 cpc.reason = (test_opt(sbi, FASTBOOT) || sbi->s_closing) ?
496                                                         CP_UMOUNT : CP_SYNC;
497                 mutex_lock(&sbi->gc_mutex);
498                 write_checkpoint(sbi, &cpc);
499                 mutex_unlock(&sbi->gc_mutex);
500         } else {
501                 f2fs_balance_fs(sbi);
502         }
503         f2fs_trace_ios(NULL, NULL, 1);
504
505         return 0;
506 }
507
508 static int f2fs_freeze(struct super_block *sb)
509 {
510         int err;
511
512         if (f2fs_readonly(sb))
513                 return 0;
514
515         err = f2fs_sync_fs(sb, 1);
516         return err;
517 }
518
519 static int f2fs_unfreeze(struct super_block *sb)
520 {
521         return 0;
522 }
523
524 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
525 {
526         struct super_block *sb = dentry->d_sb;
527         struct f2fs_sb_info *sbi = F2FS_SB(sb);
528         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
529         block_t total_count, user_block_count, start_count, ovp_count;
530
531         total_count = le64_to_cpu(sbi->raw_super->block_count);
532         user_block_count = sbi->user_block_count;
533         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
534         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
535         buf->f_type = F2FS_SUPER_MAGIC;
536         buf->f_bsize = sbi->blocksize;
537
538         buf->f_blocks = total_count - start_count;
539         buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
540         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
541
542         buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
543         buf->f_ffree = buf->f_files - valid_inode_count(sbi);
544
545         buf->f_namelen = F2FS_NAME_LEN;
546         buf->f_fsid.val[0] = (u32)id;
547         buf->f_fsid.val[1] = (u32)(id >> 32);
548
549         return 0;
550 }
551
552 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
553 {
554         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
555
556         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
557                 seq_printf(seq, ",background_gc=%s", "on");
558         else
559                 seq_printf(seq, ",background_gc=%s", "off");
560         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
561                 seq_puts(seq, ",disable_roll_forward");
562         if (test_opt(sbi, DISCARD))
563                 seq_puts(seq, ",discard");
564         if (test_opt(sbi, NOHEAP))
565                 seq_puts(seq, ",no_heap_alloc");
566 #ifdef CONFIG_F2FS_FS_XATTR
567         if (test_opt(sbi, XATTR_USER))
568                 seq_puts(seq, ",user_xattr");
569         else
570                 seq_puts(seq, ",nouser_xattr");
571         if (test_opt(sbi, INLINE_XATTR))
572                 seq_puts(seq, ",inline_xattr");
573 #endif
574 #ifdef CONFIG_F2FS_FS_POSIX_ACL
575         if (test_opt(sbi, POSIX_ACL))
576                 seq_puts(seq, ",acl");
577         else
578                 seq_puts(seq, ",noacl");
579 #endif
580         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
581                 seq_puts(seq, ",disable_ext_identify");
582         if (test_opt(sbi, INLINE_DATA))
583                 seq_puts(seq, ",inline_data");
584         if (test_opt(sbi, INLINE_DENTRY))
585                 seq_puts(seq, ",inline_dentry");
586         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
587                 seq_puts(seq, ",flush_merge");
588         if (test_opt(sbi, NOBARRIER))
589                 seq_puts(seq, ",nobarrier");
590         if (test_opt(sbi, FASTBOOT))
591                 seq_puts(seq, ",fastboot");
592         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
593
594         return 0;
595 }
596
597 static int segment_info_seq_show(struct seq_file *seq, void *offset)
598 {
599         struct super_block *sb = seq->private;
600         struct f2fs_sb_info *sbi = F2FS_SB(sb);
601         unsigned int total_segs =
602                         le32_to_cpu(sbi->raw_super->segment_count_main);
603         int i;
604
605         seq_puts(seq, "format: segment_type|valid_blocks\n"
606                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
607
608         for (i = 0; i < total_segs; i++) {
609                 struct seg_entry *se = get_seg_entry(sbi, i);
610
611                 if ((i % 10) == 0)
612                         seq_printf(seq, "%-5d", i);
613                 seq_printf(seq, "%d|%-3u", se->type,
614                                         get_valid_blocks(sbi, i, 1));
615                 if ((i % 10) == 9 || i == (total_segs - 1))
616                         seq_putc(seq, '\n');
617                 else
618                         seq_putc(seq, ' ');
619         }
620
621         return 0;
622 }
623
624 static int segment_info_open_fs(struct inode *inode, struct file *file)
625 {
626         return single_open(file, segment_info_seq_show, PDE_DATA(inode));
627 }
628
629 static const struct file_operations f2fs_seq_segment_info_fops = {
630         .owner = THIS_MODULE,
631         .open = segment_info_open_fs,
632         .read = seq_read,
633         .llseek = seq_lseek,
634         .release = single_release,
635 };
636
637 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
638 {
639         struct f2fs_sb_info *sbi = F2FS_SB(sb);
640         struct f2fs_mount_info org_mount_opt;
641         int err, active_logs;
642         bool need_restart_gc = false;
643         bool need_stop_gc = false;
644
645         sync_filesystem(sb);
646
647         /*
648          * Save the old mount options in case we
649          * need to restore them.
650          */
651         org_mount_opt = sbi->mount_opt;
652         active_logs = sbi->active_logs;
653
654         sbi->mount_opt.opt = 0;
655         sbi->active_logs = NR_CURSEG_TYPE;
656
657         /* parse mount options */
658         err = parse_options(sb, data);
659         if (err)
660                 goto restore_opts;
661
662         /*
663          * Previous and new state of filesystem is RO,
664          * so skip checking GC and FLUSH_MERGE conditions.
665          */
666         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
667                 goto skip;
668
669         /*
670          * We stop the GC thread if FS is mounted as RO
671          * or if background_gc = off is passed in mount
672          * option. Also sync the filesystem.
673          */
674         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
675                 if (sbi->gc_thread) {
676                         stop_gc_thread(sbi);
677                         f2fs_sync_fs(sb, 1);
678                         need_restart_gc = true;
679                 }
680         } else if (!sbi->gc_thread) {
681                 err = start_gc_thread(sbi);
682                 if (err)
683                         goto restore_opts;
684                 need_stop_gc = true;
685         }
686
687         /*
688          * We stop issue flush thread if FS is mounted as RO
689          * or if flush_merge is not passed in mount option.
690          */
691         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
692                 destroy_flush_cmd_control(sbi);
693         } else if (!SM_I(sbi)->cmd_control_info) {
694                 err = create_flush_cmd_control(sbi);
695                 if (err)
696                         goto restore_gc;
697         }
698 skip:
699         /* Update the POSIXACL Flag */
700          sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
701                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
702         return 0;
703 restore_gc:
704         if (need_restart_gc) {
705                 if (start_gc_thread(sbi))
706                         f2fs_msg(sbi->sb, KERN_WARNING,
707                                 "background gc thread has stopped");
708         } else if (need_stop_gc) {
709                 stop_gc_thread(sbi);
710         }
711 restore_opts:
712         sbi->mount_opt = org_mount_opt;
713         sbi->active_logs = active_logs;
714         return err;
715 }
716
717 static struct super_operations f2fs_sops = {
718         .alloc_inode    = f2fs_alloc_inode,
719         .drop_inode     = f2fs_drop_inode,
720         .destroy_inode  = f2fs_destroy_inode,
721         .write_inode    = f2fs_write_inode,
722         .dirty_inode    = f2fs_dirty_inode,
723         .show_options   = f2fs_show_options,
724         .evict_inode    = f2fs_evict_inode,
725         .put_super      = f2fs_put_super,
726         .sync_fs        = f2fs_sync_fs,
727         .freeze_fs      = f2fs_freeze,
728         .unfreeze_fs    = f2fs_unfreeze,
729         .statfs         = f2fs_statfs,
730         .remount_fs     = f2fs_remount,
731 };
732
733 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
734                 u64 ino, u32 generation)
735 {
736         struct f2fs_sb_info *sbi = F2FS_SB(sb);
737         struct inode *inode;
738
739         if (check_nid_range(sbi, ino))
740                 return ERR_PTR(-ESTALE);
741
742         /*
743          * f2fs_iget isn't quite right if the inode is currently unallocated!
744          * However f2fs_iget currently does appropriate checks to handle stale
745          * inodes so everything is OK.
746          */
747         inode = f2fs_iget(sb, ino);
748         if (IS_ERR(inode))
749                 return ERR_CAST(inode);
750         if (unlikely(generation && inode->i_generation != generation)) {
751                 /* we didn't find the right inode.. */
752                 iput(inode);
753                 return ERR_PTR(-ESTALE);
754         }
755         return inode;
756 }
757
758 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
759                 int fh_len, int fh_type)
760 {
761         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
762                                     f2fs_nfs_get_inode);
763 }
764
765 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
766                 int fh_len, int fh_type)
767 {
768         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
769                                     f2fs_nfs_get_inode);
770 }
771
772 static const struct export_operations f2fs_export_ops = {
773         .fh_to_dentry = f2fs_fh_to_dentry,
774         .fh_to_parent = f2fs_fh_to_parent,
775         .get_parent = f2fs_get_parent,
776 };
777
778 static loff_t max_file_size(unsigned bits)
779 {
780         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
781         loff_t leaf_count = ADDRS_PER_BLOCK;
782
783         /* two direct node blocks */
784         result += (leaf_count * 2);
785
786         /* two indirect node blocks */
787         leaf_count *= NIDS_PER_BLOCK;
788         result += (leaf_count * 2);
789
790         /* one double indirect node block */
791         leaf_count *= NIDS_PER_BLOCK;
792         result += leaf_count;
793
794         result <<= bits;
795         return result;
796 }
797
798 static int sanity_check_raw_super(struct super_block *sb,
799                         struct f2fs_super_block *raw_super)
800 {
801         unsigned int blocksize;
802
803         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
804                 f2fs_msg(sb, KERN_INFO,
805                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
806                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
807                 return 1;
808         }
809
810         /* Currently, support only 4KB page cache size */
811         if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
812                 f2fs_msg(sb, KERN_INFO,
813                         "Invalid page_cache_size (%lu), supports only 4KB\n",
814                         PAGE_CACHE_SIZE);
815                 return 1;
816         }
817
818         /* Currently, support only 4KB block size */
819         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
820         if (blocksize != F2FS_BLKSIZE) {
821                 f2fs_msg(sb, KERN_INFO,
822                         "Invalid blocksize (%u), supports only 4KB\n",
823                         blocksize);
824                 return 1;
825         }
826
827         /* Currently, support 512/1024/2048/4096 bytes sector size */
828         if (le32_to_cpu(raw_super->log_sectorsize) >
829                                 F2FS_MAX_LOG_SECTOR_SIZE ||
830                 le32_to_cpu(raw_super->log_sectorsize) <
831                                 F2FS_MIN_LOG_SECTOR_SIZE) {
832                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
833                         le32_to_cpu(raw_super->log_sectorsize));
834                 return 1;
835         }
836         if (le32_to_cpu(raw_super->log_sectors_per_block) +
837                 le32_to_cpu(raw_super->log_sectorsize) !=
838                         F2FS_MAX_LOG_SECTOR_SIZE) {
839                 f2fs_msg(sb, KERN_INFO,
840                         "Invalid log sectors per block(%u) log sectorsize(%u)",
841                         le32_to_cpu(raw_super->log_sectors_per_block),
842                         le32_to_cpu(raw_super->log_sectorsize));
843                 return 1;
844         }
845         return 0;
846 }
847
848 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
849 {
850         unsigned int total, fsmeta;
851         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
852         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
853
854         total = le32_to_cpu(raw_super->segment_count);
855         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
856         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
857         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
858         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
859         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
860
861         if (unlikely(fsmeta >= total))
862                 return 1;
863
864         if (unlikely(f2fs_cp_error(sbi))) {
865                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
866                 return 1;
867         }
868         return 0;
869 }
870
871 static void init_sb_info(struct f2fs_sb_info *sbi)
872 {
873         struct f2fs_super_block *raw_super = sbi->raw_super;
874         int i;
875
876         sbi->log_sectors_per_block =
877                 le32_to_cpu(raw_super->log_sectors_per_block);
878         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
879         sbi->blocksize = 1 << sbi->log_blocksize;
880         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
881         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
882         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
883         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
884         sbi->total_sections = le32_to_cpu(raw_super->section_count);
885         sbi->total_node_count =
886                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
887                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
888         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
889         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
890         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
891         sbi->cur_victim_sec = NULL_SECNO;
892         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
893
894         for (i = 0; i < NR_COUNT_TYPE; i++)
895                 atomic_set(&sbi->nr_pages[i], 0);
896
897         sbi->dir_level = DEF_DIR_LEVEL;
898         sbi->need_fsck = false;
899 }
900
901 /*
902  * Read f2fs raw super block.
903  * Because we have two copies of super block, so read the first one at first,
904  * if the first one is invalid, move to read the second one.
905  */
906 static int read_raw_super_block(struct super_block *sb,
907                         struct f2fs_super_block **raw_super,
908                         struct buffer_head **raw_super_buf)
909 {
910         int block = 0;
911
912 retry:
913         *raw_super_buf = sb_bread(sb, block);
914         if (!*raw_super_buf) {
915                 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
916                                 block + 1);
917                 if (block == 0) {
918                         block++;
919                         goto retry;
920                 } else {
921                         return -EIO;
922                 }
923         }
924
925         *raw_super = (struct f2fs_super_block *)
926                 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
927
928         /* sanity checking of raw super */
929         if (sanity_check_raw_super(sb, *raw_super)) {
930                 brelse(*raw_super_buf);
931                 f2fs_msg(sb, KERN_ERR,
932                         "Can't find valid F2FS filesystem in %dth superblock",
933                                                                 block + 1);
934                 if (block == 0) {
935                         block++;
936                         goto retry;
937                 } else {
938                         return -EINVAL;
939                 }
940         }
941
942         return 0;
943 }
944
945 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
946 {
947         struct f2fs_sb_info *sbi;
948         struct f2fs_super_block *raw_super = NULL;
949         struct buffer_head *raw_super_buf;
950         struct inode *root;
951         long err = -EINVAL;
952         bool retry = true;
953         int i;
954
955 try_onemore:
956         /* allocate memory for f2fs-specific super block info */
957         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
958         if (!sbi)
959                 return -ENOMEM;
960
961         /* set a block size */
962         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
963                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
964                 goto free_sbi;
965         }
966
967         err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
968         if (err)
969                 goto free_sbi;
970
971         sb->s_fs_info = sbi;
972         /* init some FS parameters */
973         sbi->active_logs = NR_CURSEG_TYPE;
974
975         set_opt(sbi, BG_GC);
976
977 #ifdef CONFIG_F2FS_FS_XATTR
978         set_opt(sbi, XATTR_USER);
979 #endif
980 #ifdef CONFIG_F2FS_FS_POSIX_ACL
981         set_opt(sbi, POSIX_ACL);
982 #endif
983         /* parse mount options */
984         err = parse_options(sb, (char *)data);
985         if (err)
986                 goto free_sb_buf;
987
988         sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
989         sb->s_max_links = F2FS_LINK_MAX;
990         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
991
992         sb->s_op = &f2fs_sops;
993         sb->s_xattr = f2fs_xattr_handlers;
994         sb->s_export_op = &f2fs_export_ops;
995         sb->s_magic = F2FS_SUPER_MAGIC;
996         sb->s_time_gran = 1;
997         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
998                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
999         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1000
1001         /* init f2fs-specific super block info */
1002         sbi->sb = sb;
1003         sbi->raw_super = raw_super;
1004         sbi->raw_super_buf = raw_super_buf;
1005         mutex_init(&sbi->gc_mutex);
1006         mutex_init(&sbi->writepages);
1007         mutex_init(&sbi->cp_mutex);
1008         init_rwsem(&sbi->node_write);
1009         sbi->por_doing = false;
1010         spin_lock_init(&sbi->stat_lock);
1011
1012         init_rwsem(&sbi->read_io.io_rwsem);
1013         sbi->read_io.sbi = sbi;
1014         sbi->read_io.bio = NULL;
1015         for (i = 0; i < NR_PAGE_TYPE; i++) {
1016                 init_rwsem(&sbi->write_io[i].io_rwsem);
1017                 sbi->write_io[i].sbi = sbi;
1018                 sbi->write_io[i].bio = NULL;
1019         }
1020
1021         init_rwsem(&sbi->cp_rwsem);
1022         init_waitqueue_head(&sbi->cp_wait);
1023         init_sb_info(sbi);
1024
1025         /* get an inode for meta space */
1026         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1027         if (IS_ERR(sbi->meta_inode)) {
1028                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1029                 err = PTR_ERR(sbi->meta_inode);
1030                 goto free_sb_buf;
1031         }
1032
1033         err = get_valid_checkpoint(sbi);
1034         if (err) {
1035                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1036                 goto free_meta_inode;
1037         }
1038
1039         /* sanity checking of checkpoint */
1040         err = -EINVAL;
1041         if (sanity_check_ckpt(sbi)) {
1042                 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1043                 goto free_cp;
1044         }
1045
1046         sbi->total_valid_node_count =
1047                                 le32_to_cpu(sbi->ckpt->valid_node_count);
1048         sbi->total_valid_inode_count =
1049                                 le32_to_cpu(sbi->ckpt->valid_inode_count);
1050         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1051         sbi->total_valid_block_count =
1052                                 le64_to_cpu(sbi->ckpt->valid_block_count);
1053         sbi->last_valid_block_count = sbi->total_valid_block_count;
1054         sbi->alloc_valid_block_count = 0;
1055         INIT_LIST_HEAD(&sbi->dir_inode_list);
1056         spin_lock_init(&sbi->dir_inode_lock);
1057
1058         init_ino_entry_info(sbi);
1059
1060         /* setup f2fs internal modules */
1061         err = build_segment_manager(sbi);
1062         if (err) {
1063                 f2fs_msg(sb, KERN_ERR,
1064                         "Failed to initialize F2FS segment manager");
1065                 goto free_sm;
1066         }
1067         err = build_node_manager(sbi);
1068         if (err) {
1069                 f2fs_msg(sb, KERN_ERR,
1070                         "Failed to initialize F2FS node manager");
1071                 goto free_nm;
1072         }
1073
1074         build_gc_manager(sbi);
1075
1076         /* get an inode for node space */
1077         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1078         if (IS_ERR(sbi->node_inode)) {
1079                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1080                 err = PTR_ERR(sbi->node_inode);
1081                 goto free_nm;
1082         }
1083
1084         /* if there are nt orphan nodes free them */
1085         recover_orphan_inodes(sbi);
1086
1087         /* read root inode and dentry */
1088         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1089         if (IS_ERR(root)) {
1090                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1091                 err = PTR_ERR(root);
1092                 goto free_node_inode;
1093         }
1094         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1095                 iput(root);
1096                 err = -EINVAL;
1097                 goto free_node_inode;
1098         }
1099
1100         sb->s_root = d_make_root(root); /* allocate root dentry */
1101         if (!sb->s_root) {
1102                 err = -ENOMEM;
1103                 goto free_root_inode;
1104         }
1105
1106         err = f2fs_build_stats(sbi);
1107         if (err)
1108                 goto free_root_inode;
1109
1110         if (f2fs_proc_root)
1111                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1112
1113         if (sbi->s_proc)
1114                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1115                                  &f2fs_seq_segment_info_fops, sb);
1116
1117         if (test_opt(sbi, DISCARD)) {
1118                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1119                 if (!blk_queue_discard(q))
1120                         f2fs_msg(sb, KERN_WARNING,
1121                                         "mounting with \"discard\" option, but "
1122                                         "the device does not support discard");
1123         }
1124
1125         sbi->s_kobj.kset = f2fs_kset;
1126         init_completion(&sbi->s_kobj_unregister);
1127         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1128                                                         "%s", sb->s_id);
1129         if (err)
1130                 goto free_proc;
1131
1132         if (!retry)
1133                 sbi->need_fsck = true;
1134
1135         /* recover fsynced data */
1136         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1137                 err = recover_fsync_data(sbi);
1138                 if (err) {
1139                         f2fs_msg(sb, KERN_ERR,
1140                                 "Cannot recover all fsync data errno=%ld", err);
1141                         goto free_kobj;
1142                 }
1143         }
1144
1145         /*
1146          * If filesystem is not mounted as read-only then
1147          * do start the gc_thread.
1148          */
1149         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1150                 /* After POR, we can run background GC thread.*/
1151                 err = start_gc_thread(sbi);
1152                 if (err)
1153                         goto free_kobj;
1154         }
1155         return 0;
1156
1157 free_kobj:
1158         kobject_del(&sbi->s_kobj);
1159 free_proc:
1160         if (sbi->s_proc) {
1161                 remove_proc_entry("segment_info", sbi->s_proc);
1162                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1163         }
1164         f2fs_destroy_stats(sbi);
1165 free_root_inode:
1166         dput(sb->s_root);
1167         sb->s_root = NULL;
1168 free_node_inode:
1169         iput(sbi->node_inode);
1170 free_nm:
1171         destroy_node_manager(sbi);
1172 free_sm:
1173         destroy_segment_manager(sbi);
1174 free_cp:
1175         kfree(sbi->ckpt);
1176 free_meta_inode:
1177         make_bad_inode(sbi->meta_inode);
1178         iput(sbi->meta_inode);
1179 free_sb_buf:
1180         brelse(raw_super_buf);
1181 free_sbi:
1182         kfree(sbi);
1183
1184         /* give only one another chance */
1185         if (retry) {
1186                 retry = 0;
1187                 shrink_dcache_sb(sb);
1188                 goto try_onemore;
1189         }
1190         return err;
1191 }
1192
1193 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1194                         const char *dev_name, void *data)
1195 {
1196         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1197 }
1198
1199 static void kill_f2fs_super(struct super_block *sb)
1200 {
1201         if (sb->s_root)
1202                 F2FS_SB(sb)->s_closing = true;
1203         kill_block_super(sb);
1204 }
1205
1206 static struct file_system_type f2fs_fs_type = {
1207         .owner          = THIS_MODULE,
1208         .name           = "f2fs",
1209         .mount          = f2fs_mount,
1210         .kill_sb        = kill_f2fs_super,
1211         .fs_flags       = FS_REQUIRES_DEV,
1212 };
1213 MODULE_ALIAS_FS("f2fs");
1214
1215 static int __init init_inodecache(void)
1216 {
1217         f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1218                         sizeof(struct f2fs_inode_info));
1219         if (!f2fs_inode_cachep)
1220                 return -ENOMEM;
1221         return 0;
1222 }
1223
1224 static void destroy_inodecache(void)
1225 {
1226         /*
1227          * Make sure all delayed rcu free inodes are flushed before we
1228          * destroy cache.
1229          */
1230         rcu_barrier();
1231         kmem_cache_destroy(f2fs_inode_cachep);
1232 }
1233
1234 static int __init init_f2fs_fs(void)
1235 {
1236         int err;
1237
1238         f2fs_build_trace_ios();
1239
1240         err = init_inodecache();
1241         if (err)
1242                 goto fail;
1243         err = create_node_manager_caches();
1244         if (err)
1245                 goto free_inodecache;
1246         err = create_segment_manager_caches();
1247         if (err)
1248                 goto free_node_manager_caches;
1249         err = create_checkpoint_caches();
1250         if (err)
1251                 goto free_segment_manager_caches;
1252         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1253         if (!f2fs_kset) {
1254                 err = -ENOMEM;
1255                 goto free_checkpoint_caches;
1256         }
1257         err = register_filesystem(&f2fs_fs_type);
1258         if (err)
1259                 goto free_kset;
1260         f2fs_create_root_stats();
1261         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1262         return 0;
1263
1264 free_kset:
1265         kset_unregister(f2fs_kset);
1266 free_checkpoint_caches:
1267         destroy_checkpoint_caches();
1268 free_segment_manager_caches:
1269         destroy_segment_manager_caches();
1270 free_node_manager_caches:
1271         destroy_node_manager_caches();
1272 free_inodecache:
1273         destroy_inodecache();
1274 fail:
1275         return err;
1276 }
1277
1278 static void __exit exit_f2fs_fs(void)
1279 {
1280         remove_proc_entry("fs/f2fs", NULL);
1281         f2fs_destroy_root_stats();
1282         unregister_filesystem(&f2fs_fs_type);
1283         destroy_checkpoint_caches();
1284         destroy_segment_manager_caches();
1285         destroy_node_manager_caches();
1286         destroy_inodecache();
1287         kset_unregister(f2fs_kset);
1288         f2fs_destroy_trace_ios();
1289 }
1290
1291 module_init(init_f2fs_fs)
1292 module_exit(exit_f2fs_fs)
1293
1294 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1295 MODULE_DESCRIPTION("Flash Friendly File System");
1296 MODULE_LICENSE("GPL");